Chapter 1

INTRODUCTION

1. Motivation

The technological advances experienced in the last decade has initi-
ated an increasing trend towards IP-integration based System-on-Chip
(SoC) design. Much of the driving force for these technological advances
is the increasing miniaturization of integrated circuits. Due to the eco-
nomics of these technologies where electronic components are fabricated
onto a piece of silicon, the cost and size have exponentially reduced
while increasing the performance of these components. Dating back to
the early 1960s where two-transistor chips depicted leading edge tech-
nology, design engineers might have had difficulty envisioning the 100
million transistor chip mark that was achieved in 2001 [7]. Moore’s
law indicates that this progress is expected to continue up to twenty
more years from today [44]. The ability to miniaturize systems onto a
single chip promotes the design of more complex and often heteroge-
neous systems in both form and function [12]. For example, systems are
becoming increasingly dependent on the concept of hardware and soft-
ware co-design where hardware and software components are designed
together such that once the hardware is fabricated onto a piece of sili-
con, the co-designed software is guaranteed to work correctly. On the
other hand, a single chip can also perform multiple functions, for ex-
ample network processors handle regular processor functionality as well
as network protocol functionality. Consequently, the gap between the
product complexity and the engineering effort needed for its realization
is increasing drastically, commonly known as the productivity gap, as
shown in Figure 1. Many factors contribute to the productivity gap



2

such as the lack of design methodologies, modeling frameworks & tools,
hardware & software co-design environments and so on. Due to the hin-
dering productivity gap, industries experience an unaffordable increase
in design time making it difficult to meet the time-to-market. In our ef-
forts to manage complex designs while reducing the productivity gap, we
specifically address modeling and simulation frameworks that are gener-
ally crucial in the design cycle. In particular, we attempt at raising the
level of abstraction to achieve closure of this productivity gap. In this
effort, we build on the modeling and simulation framework of SystemC
[49].

Logical

Transis-

tors per I

Chip (log) Productivity
(log)

‘81 85 '89 93 97 ‘01 ‘05 09

Figure 1.1. Productivity Gap [16]

2. System Level Design Languages and
Frameworks

System Level Design Languages (SLDL) provide users with a col-
lection of libraries of data types, kernels, and components accessible
through either graphical or programmatic means to model systems and
simulate the system behavior. A modeling framework provides a way
to create a representation of models for simulation, and a simulation
framework is a collection of core libraries that simulates a model.

In the past few years, we have seen the introduction of many SLDLs
and frameworks such as SystemC, SpecC, System Verilog [49, 63, 65] etc.,
to manage the issue of complex designs. There also is an effort to lift
the abstraction level in the hardware description languages, exemplified
in the efforts to standardize SystemVerilog [65]. Another Java-based



Introduction 3

system modeling framework developed by U. C. Berkeley is Ptolemy II
[25]. The success of any of these languages/frameworks is predicated
upon their successful adoption as a standard design entry language by
the industry and the resulting closure of the productivity and verification
gaps.

SystemC [49] is poised as one of the strong contenders for such a lan-
guage. SystemC is an open-source SLDL that has a C++ based modeling
environment. SystemC’s advantage is that it has free simulation libraries
to support the modeling framework. This provides designers with the
ability to construct models of their systems and simulate them in a very
VHDL and Verilog [69, 68] like manner. SystemC’s framework is based
on a simulation kernel which is essentially a scheduler. This kernel is
responsible for simulating the model with a particular behavior. The
current SystemC has a Discrete-Event based kernel that is very simi-
lar to the event-based VHDL simulator. However, the strive to attain
a higher level of abstraction for closure of the productivity gap, while
keeping the Discrete-Event (DE) simulation semantics are highly contra-
dictory goals. In fact, most system models for SoCs are heterogeneous in
nature, and encompass multiple Models of Computation (MoC) [37, 23]
in its different components.

A

SystemC.
DE + C++ for all other MoCs
Q
SystemC.
DE + SDF + C++ for all other
O
MoCs

SystemC.
DE + SDF + FSM + C++ for all
other MoCs
O

SystemC.
DE + SDF + FSM + CSP +
0 C++ for all other MoCs

Possible Modeling Mistakes

Modeling Fidelity

Figure 1.2. Possible Mistakes occurred versus Modeling Fidelity



Figure 1.2 displays the difficulty in being able to express MoC specific
behaviors versus the possible modeling errors made by designers . Users
restricted to DE semantics of SystemC lack in facilities to model other
MoCs distinct from DE, requiring user-level manipulations for correct
behavior of these MoCs. Due to these manipulations, designers may
suffer from an increased number of modeling errors to achieve correct
operation of a model. Hence, Figure 1.2 shows that SystemC with its DE
kernel and functionality of C+-+ provides the most modeling expressive-
ness but also indicates more possible modeling mistakes. Conversely, the
modeling expressiveness is significantly reduced when employing MoC-
specific kernels for SystemC, but the possible errors made are also re-
duced.

We have therefore chosen the term ‘fidelity’” as a qualifying attribute
for modeling frameworks. Restricting SystemC users to use only im-
plemented MoC-specific structures and styles disallows users to use any
feature afforded by free usage of C++4, but such restricted framework
offers higher fidelity. Fidelity here refers to the capability of the frame-
work to faithfully model a theoretical MoC. It is necessary to think
about simulation semantics of such a language away from the semantics
of pure Discrete-Event based hardware models and instead the semantics
should provide a way to express and simulate other Models of Computa-
tion. The inspiration of such a system is drawn upon the success of the
Ptolemy II framework in specification and simulation of heterogeneous
embedded software systems [25]. However, since SystemC is targeted
to be the language of choice for semiconductor manufacturers as well
as system designers, as opposed to Ptolemy II, its goals are more am-
bitious. Our focus is in developing an extension to the SystemC kernel
to propose our extended SystemC as a possible heterogeneous SLDL.
We demonstrate the approach by showing language extensions to Sys-
temC for Synchronous Data Flow (SDF), Communicating Sequential
Processes (CSP) and Finite State Machine (FSM) MoCs. A common
use of SDF is in Digital Signal Processing (DSP) applications that re-
quire stream-based data models. CSP is used for exploring concurrency
in models, and FSMs are used for controllers in hardware designs. Be-
sides the primary objective of providing designers with a better structure
in expressing these MoCs, the secondary objective is to gain simulation
efficiency through modeling systems natural to their behavior.

2.1 Simulation Kernel and MoC

The responsibility of a simulation model is to capture the behavior of
a system being modeled and the simulation kernel’s responsibility is to
simulate the correct behavior for that system. In essence, the Model of



Introduction 5

Computation dictates the behavior which is realized by the simulation
kernel. An MoC is a description mechanism that defines a set of rules to
mimic a particular behavior [39, 37]. The described behavior is selected
based on how suitable it is for the system. Most MoCs describe how
computation proceeds and the manner in which information is transferred
between other communicating components as well as with other MoCs.
For more detailed discussion on MoCs, readers are referred to the preface
of this book and [32, 25].

2.2 System Level Modeling and Simulation

For most design methodologies, simulation is the foremost stage in
the validation cycle of a system, where designers can check for functional
correctness, sufficient and appropriate communication interactions, and
overall correctness of the conceptualization of the system. This stage is
very important from which the entire product idea or concept is modeled
and a working prototype of the system is produced. Not only does this
suggest that the concept can be realized, but the process of designing
simulation models also refines the design. Two major issues that need
consideration when selecting an SLDL for modeling and simulation are
modeling fidelity and simulation efficiency, respectively.

An SLDL’s modeling fidelity refers to the constructs, language and
design guidelines that facilitate in completely describing a system with
various parts of the system expressed with the most appropriate MoCs.
Some SLDLs make it difficult to construct particular models due to the
lack of fidelity in the language. For example, SystemC is well suited
for Discrete-Event based models but not necessarily for Synchronous
Data Flow (SDF) models. [23, 45] suggest extra designer guidelines that
are followed to construct Synchronous Data Flow models in SystemC.
These guidelines are required because the SDF model is built with an
underlying DE kernel, increasing the difficulty in expressing these types
of models. This does not imply that designs other than DE-based sys-
tems cannot be modeled in SystemC, but indicates that expressing such
models is more involved, requiring designer guidelines [23, 45].

Simulation efficiency is measured by the time taken to simulate a
particular model. This is also a major issue because there are models
that can take up to hours of execution time. For example, a PowerPC
750 architecture in SystemC [42] takes several hours to process certain
testbenches [61]. With increased modeling fidelity through the addition
of MoC kernels in SystemC, models for better simulation efficiency can
be created.

Choosing the appropriate SLDL requires modeling frameworks to be
appropriately matched to allow for meaningful designs. The simulation



6

framework also has to be matched to allow for correct and efficient val-
idation of the system via simulation. The frameworks must provide
sufficient behavior to represent the system under investigation and must
also provide a natural modeling paradigm to ease designer involvement
in construction of the model. Consequently, most industries develop pro-
prietary modeling and simulation frameworks specific for their purpose,
within which their product is modeled, simulated and validated. This
makes simulation efficiency a gating factor in reducing the productivity
gap. The proprietary solutions often lead to incompatibility when vari-
ous parts of a model are reusable components purchased or imported as
soft-IPs. Standardization of modeling languages and frameworks allevi-
ate such interoperability issues.

To make the readers aware of the distinction between modeling guide-
line versus enforced modeling framework, we present a pictorial exam-
ple of how SDF models are implemented in [23, 45] (Figure 1.3) using
SystemC’s DE kernel. This example shows a Finite Impulse Response
(FIR) model with sc_fifo channels and each process is of SCC.THREAD()
type. This model employs the existing SystemC Discrete-Event kernel
and requires handshaking between the Stimulus and FIR, and, FIR and
Display blocks. The handshaking dictates which blocks execute, allow-
ing the Stimulus block to prepare sufficient data for the FIR to perform
its calculation followed by a handshake communication with the Display
block.

Dynamic
SC_THREAD
Scheduling -
sc_fifo channels
Stimulus FIR Display

Figure 1.8. FIR model with Designer Guidelines [45, 23]

The same example with our SDF kernel is shown in Figure 1.4. This
model uses SDFports specifically created for this MoC for data pass-
ing instead of sc_fifos and no synchronization is required since static
scheduling is used. The model with the SDF kernel abandons any need
for handshaking communication between the blocks and uses a schedul-

ing algorithm at initialization time to determine the execution schedule
of the blocks.



Introduction 7

Static Scheduling SC_METHOD

SDF channels

' . . .

Stimulus FIR Display

SDF ports

Figure 1.4. FIR model with our SDF kernel

We provide further explanation about these modeling examples in
Chapters 3 and 5.

2.3 Simulation Efficiency Versus Fidelity of MoCs

It is conceivable that there can be large, detailed models that take
enormous amounts of time for simulation [61]. We measure simulation
performance in terms of the amount of time taken to simulate a model
from start to end. We believe that matching components to models with
the most appropriate MoC enhances simulation efficiency.

An MoC describes the underlying behavior of a system on top of
which a model following that particular behavior is simulated. The sys-
tems expected behavior must be modeled appropriately by the modeling
framework, otherwise an unnatural modeling scheme has to be used to
impose the behavior and the simulation efficiency will almost always suf-
fer. When we describe a simulation framework supporting the Model of
Computation, we particularly refer to kernel-support for that MoC. Our
motivation involves modeling and simulating SDF, CSP, FSM and other
MoC designs in SystemC by introducing distinct simulation kernels for
each MoC. Although meant to be a system level language, the current
SystemC simulation kernel uses only a non-deterministic DE [39, 37, 49]
kernel, which does not explicitly simulate SDF, CSP or FSM models in
the way that they could be simulated more efficiently and easily.

In other words, current SystemC is very well suited for designs at the
register transfer level of abstraction, similar to VHDL or Verilog models.
However, since SystemC is also planned as a language at higher levels
of abstraction, notably at the system level, such Discrete-Event based
simulation is not the most efficient. An SoC design might consist of
DSP cores, microprocessor models, bus models etc. Each of these may
be most naturally expressible in their appropriate MoCs. To simulate
such a model the kernel must support each of the MoCs interlaced in the



8

user model. This allows designers to put together heterogeneous mod-
els without worrying about the target simulation kernel and discovering
methodologies to enforce other MoCs onto a single MoC kernel. Figure
1.5 shows an example of a digital analyzer [32] that employs two MoCs,
one being an untimed Data Flow MoC and the other being a timed
model based on the DE MoC. The Controller IP and Analyzer IP could
be possibly obtained from different sources requiring the interfaces to
allow for communication between the two. Support for modeling these
IPs requires the simulation framework to provide the underlying MoCs,
otherwise programmatic alterations are required to the original IPs for
conformity. Again, it is crucial for modeling frameworks to allow de-
signers to express their models in a simple and natural fashion. This
can be achieved by implementing MoC-specific kernels for the model-
ing framework along with sufficient designer guidelines in constructing
models.

Controller IP . .
Distortion
Button Control
1 1 Control
1 1
1 Discrete-Event MOC 1
Interface Interface
1 Data Flow MOC 1
1 1
Analyzer IP
4096 4096
Filter Analyzer
4096

Figure 1.5. Example of Digital Analyzer using Models of Computation [32]

3. Our Approach to Heterogeneous Modeling in
SystemC

Heterogeneous modeling in SystemC has been attempted before, but
has only been attained by using designer guidelines [23, 45]. One of the
first attempts at designer guidelines for heterogeneous modeling is pro-
vided in [23]. We find these guideline based approaches to be quite unsat-
isfactory. In [23] the authors model SDF systems using SC.THREAD()
processes and blocking read and write sc_fifo channels. This scheme uses
dynamic scheduling at runtime as opposed to possible static scheduling
of SDF models. They accommodate an SDF model with the underlying



Introduction 9

DE kernel. We argue that this is not an efficient method of implementing
SDF in SystemC nor is it natural. The adder example they present [23]
uses blocking sc_fifo type channels that generate events on every block-
ing read and write resulting in an increase in the number of delta cycles.
Furthermore, the use of SC_.THRFEAD() introduces context-switching
overhead further reducing the simulation efficiency [20]. Although [23]
promotes that tools may be designed to exploit static scheduling al-
gorithms to make efficient SDF simulation in systems, no solution or
change in the kernel was provided. They only hint at some source level
transformation techniques in enabling SDF systems with the underlying
DE reference implementation kernel.

Another effort in modeling Data Flow systems in SystemC was done
in [45], where they provide an Orthogonal Frequency Division Multiplex
(OFDM) example as an SDF model. However, this model does not ex-
ploit the SDF Model of Computation either since this example also uses
blocking read and write resulting in dynamic scheduling. Once again this
approach defeats the purpose of modeling SDF systems because once
recognized as SDF, they should be statically scheduled. These models
presented in [23, 45] can be converted such that there is no need for
SC_-THREAD() or SC.CTHREAD() processes, communication signals
to pass control, and most importantly dynamic scheduling. We present
an extension of SystemC in which an SDF kernel interoperable [14] with
the existing DE kernel can eliminate the need for dynamic scheduling
and designer guidelines specific for SDF models. Similar extensions are
also prototyped for CSP and FSM Models of Computation.

3.1 Why SystemC?

In addition, the preset C++ language infrastructure and object- ori-
ented nature of C++ used to define SystemC extends usability further
than any existing hardware description language (HDL) at present. Sys-
temC provides embedded system designers with a freely available mod-
eling and simulation environment requiring only a C++ compiler. We
have undertaken the task of building a SystemC simulation kernel that
is interoperable with the existing simulation kernel of the reference im-
plementation, but which employs different simulation kernel functions
depending on which part of the design is being simulated. In this book,
we focus on building the simulation kernel appropriate for the SDF [37,
39, 25], CSP [27] and FSM models.

Once kernel specific MoCs are developed, they can be used as stand-
alone for a specific system and even in unison to build heterogeneous
models. Communication between different kernels could either be event-
driven or cycle-driven depending on the choice of the implementer. Event-



10

driven communication describes a system based on message passing in
the form of events, where events trigger specific kernels to execute. As
an example, our SDF kernel executes only when an event from the DE
kernel is received. On the other hand cycle-driven refers to a system
whereby for a number of cycles one particular kernel is executed fol-
lowed by another.

Our goal is not to provide a complete solution, but to illustrate one
way of extending SystemC. We hope this would convince the SystemC
community to build industry strength tools that support heterogeneous
modeling environments. However, the standardization of SystemC lan-
guage is still underway, but as for the kernel specifications and imple-
mentations, SystemC only provides the Discrete-Event simulation ker-
nel. We build upon the current SystemC standard in laying a foundation
for an open source multi-domain modeling framework based on the C++
programming language which has the following advantages:

m» The open-source nature of SystemC allows alterations to the original
source.

m Object- oriented approach allows modular and object- oriented design
of SystemC and its extensions to support the SDF kernel.

m C++ is a well accepted and commonly used language by industry
and academics, hence making this implementation more valuable to
users.

4. Main Contributions of this Book

We extend the existing SystemC modeling and simulation framework
by implementing a number of MoC-specific kernels, such as SDF, CSP
and FSM. Our kernels are interoperable with SystemC’s DE kernel al-
lowing designers to model and simulate heterogeneous models made from
a collection of DE and SDF models or other combinations correspond-
ing to different parts of a system. By extending the simulation kernel,
we also improve the modeling fidelity of SystemC to naturally construct
models for SDF, CSP and FSM. Furthermore, we increase the simulation
efficiency of SDF and DE-SDF models in SystemC. We do not bench-
mark for the other kernels, but we believe they will also show similar
improvements.

Synchronous Data Flow MoC is by no means a new idea on its own
and extensive work has been done in that area. [5] shows work on
scheduling SDFs, buffer size minimization and other code optimization
techniques. We employ techniques presented in that work, such as their
scheduling algorithm for SDFs. However, the focus of [5] pertains to



Introduction 11

synthesis of embedded C code from SDF specifications. This allows their
SDF representations to be abstract, expressing only the nodes, their
connections, and token values. This is unlike the interaction we have to
consider when investigating the simulation kernel for SystemC. We need
to manipulate the kernel upon computing the schedules requiring us to
discuss the Data Flow theory and scheduling mechanisms. Our aim is
not in just providing evidence to show that changes made in the kernel to
accommodate different MoCs improves simulation efficiency, instead, we
aim at introducing a heterogeneous modeling and simulation framework
in SystemC that does also result in simulation efficiency.

Hoare’s [27] Communicating Sequential Processes is an MoC for mod-
eling concurrent systems with a rendez-vous style synchronization be-
tween processes. Rendez-vous occurs between two processes ready to
communicate. Otherwise, the process attempting the communication
suspends itself and can only be resumed once the process receiving the
transfer of data from that process is ready to communicate. We imple-
ment the CSP kernel with SystemC’s coroutine packages used to create
thread processes. CSP processes in our CSP kernel are SystemC thread
processes with a different scheduling mechanism suitable for CSP mod-
eling.

Most hardware systems have controllers modeled as FSMs. The cur-
rent SystemC can model FSMs using standard switch statements, but
the FSM kernel provides a direct method of invoking different states.
Combining SDF, CSP and FSM MoCs to create heterogeneous models
shows the usefulness of our multi-MoC SystemC framework. The fa-
mous Dining Philosophers problem has an elegant solution that can be
modeled in CSP. Furthermore, a deadlock avoidance technique can be
added using an FSM controller as a footman assigning seats. We discuss
this model in further detail in Chapter 9.

Further improvements in synthesis tools such as Cynthesizer and Co-
centric SystemC Compiler [17, 64] will provide designers with the capa-
bility of effective high level synthesis. We hope to initiate the process
by which SystemC can fulfill its purpose of being a high level and multi-
domain modeling framework for industry use. We plan on distributing
our prototype implementation that introduces heterogeneity in SystemC
to the SystemC community via a freely downloadable distribution [36].



