ANTI-TAMPER DATABASES:
Querying Encrypted Databases

Gultekin Ozsoyoglu”, David A. Singer®, Sun S. Chung”
*EECS Department, *Math Department, Case Western Reserve University, Cleveland, OH
44106, (gxo3, das5, ssc7)@po.cwru.edu

Abstract A way to prevent, delay, limit, or contain the compromise of the protected data
in a database is to encrypt the data and the database schema, and yet allow
queries and transactions over the encrypted data. Clearly, there is a
compromise between the degree of security provided by encryption and the
efficient querying ofthe database. In this paper, we investigate the capabilities
and limitations of encrypting the database in relational databases, and yet
allowing, to the extent possible, efficient SQL querying of the encrypted
database.

We concentrate on integer-valued attributes, and investigate a family of open-
form and closed-form homomorphism encryption/decryption functions, the
associated query transformation problems, inference control issues, and how
to handle overflow and precision errors.

Key words: querying encrypted database, encryption algorithm, homomorphism
encryption/decryption functions

1. INTRODUCTION

Mobile computing and powerful laptops allow databases with sensitive
data to travel everywhere. Laptops can be physically retrieved by malicious
users who can employ techniques that were not previously thought of, such
as disk scans, compromising the data by bypassing the database
management system software or database user authentication processes. Or,
when databases are provided as a service [3, 4], the service provider may not
be trustworthy, and the data needs to be protected from the database service
provider. These examples illustrate the need to

134 DATA AND APPLICATIONS SECURITY XVII

e Encrypt data in a database since compromise will occur with the
traditional ways of securing databases such as access controls [17, 13],
multilevel secure database architectures [5, 11, 7], database integrity
lock architectures [7], or statistical database inference controls [1].
e Allow, as much as possible, standard DBMS functionality, such as
querying and query optimization, over encrypted data.
In this paper, we consider a database environment where (a) the database
contains sensitive data available only to its legitimate users, and (b) the
database can be captured by the adversary physically, and a compromise
threat exists. We believe that a good way to prevent, delay, or contain the
compromise of the protected data in a database is to encrypt the database,
and yet allow queries over the encrypted data. This paper considers attribute
(field)-level encryption for relational databases. We give an example.
Example 1. Consider a relational employee database with the relation EMPLOYEE
(Id, Salary) where Id and Salary are integer-valued employee id and employee
salary attributes. Assume that f() and g(), functions from integers to integers with
inverses f "'() and g"'() respectively, are used to encrypt employee salaries and
employee ids, and the relation EMPLOYEE and the attribute names Id and Salary
are encrypted as the characters R, A, and B. Then the SQL query Q(DB) over the
database DB (DB):

SELECT EMPLOYEE.Id FROM EMPLOYEE

WHERE Salary=a

returns the employees with salary a. Q(DB) is rewritten into the SQL query
Qe(DBg) over the encrypted database DBg as follows.
Qe(DBg): SELECT R.A FROM R WHERE B=f(a)
Then, Qg(DBg) is submitted to the DBMS, to be executed against the database DBg.
Assume that the output O(Qg(DBg)) of the query Qg(DBg) is a single tuple with
value y. Then the value y is decrypted as g"(y), and returned as the output O(DB) of
the query Q(DB).

We refer to the process of transforming the SQL query Q(DB) of the
original database into the SQL query Qg(DBg) of the encrypted database as
the query rewriting process.

In this paper, we investigate techniques for encrypting a database, and
the accompanying techniques to query the encrypted database, which we
refer to as the anti-tamper database, and explore the tradeoffs among (a) the
security of the database, and (b) the query expressive power and query
processing. The site (computer) in which the anti-tamper database resides is
called as the anti-tamper site.

Anti-Tamper Databases 135

Consider a database DB, and the set S of SQL queries Q on DB that
correspond to the set of safe relational calculus [16] queries'. Let DB be the
encrypted database DB (i.e., f(x)=y, for all x € DB, yeDBg) with the
transformed set Sg of SQL queries Qg(DBg) on the database DBg. For
encrypting the database DB using the encryption function f(), we choose an
encryption function f() that is a group homomorphism from DB onto DBg
with respect to S [12], i.e., for any query Q in S, we have Q(DB) =f
'(Qe(f(DB))). This means that (a) SQL queries in S can be completely
evaluated solely using a single query Qg on the anti-tamper database DBg,
and, (b) with the exception of decrypting the output of Qg(DBg)) (possibly, at
another “‘secure” site), there is no extra query processing burden on
evaluating Qg(DBg).

We make the following assumptions about the anti-tamper database:

¢ The encrypting of the original database is transparent and unknown to
the legitimate wusers of the database. (no extra query
specification/transformation burden on the legitimate users)

¢ The general encryption mechanism is made available to the public,
including the adversary. However, certain parameters of the encryption
mechanism (e.g., private keys) are kept secret so as to make the
protected information in the database secure.

¢ The commercial DBMS that hosts the data does not know that the data
in its database is encrypted. Commercial DBMSs are complex
proprietary software systems, any security technique that is deployable
without modifying the DBMS is more desirable over ones that require
changes to the DBMS.

2. COMPUTING ARCHITECTURE

We employ the following computing architecture for our environment.
Let the original database DB be encrypted into the encrypted (anti-tamper)
database DBg. Now, if DBg directly becomes available to the adversary, its
contents are devoid of semantics and, therefore not directly usable by the
adversary. We employ an intermediary software agent, called the
(Encryption/Decryption) Agent, which we assume to be secure. That is, the
adversary cannot capture the Agent software code, and reverse-engineer its

" Thus, a query Q in S has a Where clause with conjunctions and/or disjunctions of predicates
p, and existential and universal quantifiers. The predicate p either (a) specifies that a
variable does/does not range over an attribute of a relation, or (b) specifies “x0z™ where x
is a variable, z is a variable or a constant, and 8 € (<, >, =, #, <, 2}. Q has a finite output
and finite evaluation time.

136 DATA AND APPLICATIONS SECURITY XVII

encryption/decryption algorithms. We consider two alternative architectures:

e The agent resides at a site different than the site of the anti-tamper
database DBg, and has significant computational power and storage
space. We refer to this site as a secure site, and to the Agent as a secure-
site Agent. There may also be a secure DBMS at the secure site. We
refer to this DBMS as DBMS sgeu.

e The agent resides at the site of the anti-tamper database, and has little
computational power. We refer to this Agent as the anti-tamper-site
Agent.

For both architectures, user queries are processed as follows:

a. The user forms a query Q(DB) against the original database DB, and
submits it to the Agent.

b. The Agent rewrites the original query Q(DB) into either
i) A single query Qg(DBg) over the encrypted DB or
ii) A set {Qr(DBEg)|1<i <k} of k different, k> 1, queries,

and submits Qg(DBg) or the query set {Qg(DBg)}, respectively, to the

DBMS of the anti-tamper database, referred to as DBMSE.

c. The DBMSg processes the query Qg(DBg) or the query set {Qg(DBg)},
and returns the output O(Qg(DBg)) or the output set {O(Qg(DBg))},
respectively, to the Agent.

d. In the case of a single output O(Qg(DBg)), the Agent decrypts
O(Qe(DBg)) into O(Q(DB)), the legitimate output of the original query
Q against the original database DB, and returns it to the user. In the
case of the multiple output set {O(Qgi(DBg))}, the Agent decrypts each
output O(Qg(DBg)), performs, if necessary, additional computations
with the decrypted output set to obtain and return the answer O(Q(DB))
to the user.

Note that the user site in this architecture can be the secure site, the anti-
tamper site, or yet a third (secure) site. If the user site is the third site, we
assume that there is a secure communication channel between the Agent site
and the user site. If the user and the Agent are both at the anti-tamper site
then the decrypted output of a query returned to the user can be
compromised (until it is destroyed by the user) if captured by the adversary.

3. ORDER- AND DISTANCE-PRESERVING, OPEN-
FORM ENCRYPTION

In this paper, we concentrate only on the primitive data type integer.
Next, we illustrate with examples the issues with the data type integer.
Def’n (Order-Preserving Encryption). Consider attribute V of relation R, and the

Anti-Tamper Databases 137

encryption function f() for V values. The encryption function f() is order-preserving
if when a > b for any two V values a and b in the original database DB then f(a) >
f(b) in the anti-tamper database DBE.

In other words, the encryption of attribute V retains the ordering in V.
Arithmetic comparison operators <, >, 2, and < (but, not = and #) of
primitive data types (e.g., integers) depend on the total ordering of attribute
values.

Integer attributes can also participate in arbitrary arithmetic expressions

of SQL queries. Let us consider one of the simplest arithmetic expressions,
namely, arithmetic difference.
Def’n (Difference-Preserving Encryption). Given an attribute V with nonnegative
integer or real values, and an encryption function f(), f() is difference-preserving if,
for any two attribute V values a and b where (a — b) = k, we have f(a) — f(b) =1 * k,
where r is a constant.

In general, an encryption function f(x) that is difference-preserving for
integers (and reals) has to be affine, i.e., f(x) = Ax+C, where C is a constant
and A=r ifx is a scalar.

When we employ an open-form encryption function, the system uses an
encryption algorithm, which is more than computing a closed-form function,
to encrypt original database DB into DBg. Since DBg creation is a one-time
(database creation-time) task, employing a more time consuming encryption
algorithm is acceptable. For decrypting query outputs as well as for
intermediate processing, the agent also needs to execute a decryption
algorithm.

Consider an integer-valued attribute V with values X, to be encrypted
using open form order-preserving encryption. Let us assume that the
encryption function f(X) and its inverse are in the form of E(K,X) and
D(K,Y), respectively, where K is the secret key. We would like to define a
family of functions Y=E (K,X), X=D(K,Y), where X)Y, and K are
nonnegative integers:

1. K is the secret key. Given K, E and D should be efficiently computable.

2. Forall X, Y, K, we have D (K, E (K,X))=X.

3. It should be hard(see 3.2 Inference Control) to find X from Y or Y from X in the
absence of knowledge of K, even assuming complete knowledge of the functions

E and D.

4. If X < X'then E (K,X) < E(K,X") for any K. (Order-preservation)

Assume that the domain for our function Eg, is the integers from 1 to N,
and the range is the integers from 1 to M. For fixed K, let y,= Ex(n) for 1 <n
< N. Define a new sequence z, by z2;=y; —- 1, Zp1=Yn+1 — Yo — 1. In other
words, the z's are the differences (minus 1) between successive values of the
encryption function Eg(n). Then condition 4 above is equivalent to the
statement z,, > 0 for all n.

138 DATA AND APPLICATIONS SECURITY XVII

If we have any order-preserving function we can define the corresponding
sequence z,, and the converse is also true: given a sequence zi, Zy,...,Z, Of
nonnegative integers, there is a uniquely determined order-preserving
function for which z’s are the differences. Furthermore, we have the
algorithms in figure 1 for computing the encryptionfunction Ex(n) and its

inverse Dx(yn).

Encryption:

Ex(1) :=1 +zy; Ex(n+1) := Ex(n) + 1 + 2,45
Decryption:

Input: Y Output: Dg(Y)

begin

=0, W:=Y;

while W >ido begini:=i+1; W:=W-gz

endwhile;

if W =i then return Dg(Y) := i else output *"Failure";
end.

Figure 1. Encryption and decryption algorithms for order-preserving, integer-to-integer encryption

Our goal is to construct a family of functions indexed by a key K, which
contains as little information as possible. One way to achieve this is to
generate a pseudorandom sequence z; using an initial seed K, and then use
the algorithms in figure 1 to define the encryption and decryption functions.
There are a large number of well-known algorithms [8] for generating
pseudorandom integers efficiently which have known security properties.

To minimize information leakage of the proposed order-preserving
encryption algorithm, one can optimize the encryption algorithm by altering
the distribution of the z;. For example, it might be better if each z is
uniformly chosen from an interval depending on the sum of the previous z;.
Figure 2 lists such an algorithm.

1) Generate a sequence of random integers y; in the range [1, M].
Assume that we have a family of pseudorandom functions R[K,n}=xn, where K
is the secret key and n=1,2,3,... Typically this generates a stream of random
bits, which can then be used to produce random integers[9]. There are a large
number of pseudorandom number generators with useful security properties.
See, for example, M. Blum and S. Micali [2] for an early example. Here, the
key serves as the initiator of the sequence.

2) Define z; by the rules:

(@) Sy:=2;:=yy;
(b) for k> 1, define Ay, z+(as Ay=M - Sy, zis) = Int [y, *A/M];
(c) Define Sy . as Sy + 244
The encryption function is then defined by f(k)=S,.
Figure 2. Encryption function f() with uniformly distributed and expanding z;’s

Anti-Tamper Databases 139

3.1 A Class of Queries with Simple Query
Transformation and Same-Cost Query Processing

For the class of SQL queries equivalent to safe relational calculus
queries, there is a very straightforward transformation from Q(DB) to
Qe(DBg):

Query Transformation Rule: Replace each constant ¢ in Q(DB) with f(c) to
obtain QE(DBE)
The query Q of example 1 illustrates the use of the Query Transformation
Rule.
Theorem 1 below states that f() as defined in figure 2 is a group
homomorphism from DB to DBg with respect to the set of SQL queries
equivalent to safe relational calculus queries. Moreover, the cost of
evaluating a transformed query over the encrypted database is the same as
the cost of evaluating the original query over the original database.
Theorem 1. Let DB be a relational database, f() be an encryption function as
defined in Figure 2, DBg be the encrypted database obtained from DB using f(), and
O(Q(DB)) be the output of query Q on database DB. Then for any SQL query
Q(DB) that is expressible in safe relational calculus, the corresponding single SQL
query Qg(DBg) obtained using the Query Transformation Rule is such that applying
f'(y) to each encrypted value y in O(Qg(DBg)) produces O(Q(DB)).
Proof: See the Technical Report [10].
Remark 1. Given any relational DBMS M, the query evaluation cost of Q(DB) on
M is equal to the query evaluation cost of Qg(DBg) on M.
Proof. Follows from the integer-to-integer, order-preserving transformations of
each attribute.
Theorem 1 and Remark 1 are highly practical since (a) the class of safe
relational calculus queries is a reasonably large class, (b) transformation
from Q to Qg is straightforward and not costly, and (c) all things being equal
between DB and DB except encrypted values, processing Q and Qg take the
same amount of time. Nevertheless, Theorem 1 fails for SQL queries with
arithmetic expressions and/or aggregate functions, as well as for SQL
queries with object-relational features such as derived or complex types (as
opposed to primitive types integers, reals, and strings). We give an example.
Example 2. Assume that the relation EMPLOYEE and the attribute name Salary are
encrypted as characters R and B, and the attribute Salary is encrypted using an
order-preserving encryption function f(). Then, the SQL query

SELECT AVG (EMPLOYEE.Salary) FROM EMPLOYEE WHERE Salary > 100,000
will need the evaluation of two queries:

Qg (DBg): SELECT SUM(R.B) FROM R WHERE B > {(100,000),
Qe2(DBg): SELECT COUNT(R.B) FROM R WHERE B > {{100,000)

140 DATA AND APPLICATIONS SECURITY XVII

And, the Agent will compute the answer as a function of the responses O, and O, to
Qe1, Qgs respectively, and f(). The answer is given by f "' (0,/O,). This formula
works because the special form of f() preserves arithmetic means.

We make three observations. First, the query rewriting approach of
Example 2 will fail if f() is not additive, i.e., f(a + b) = f(a) + f(b). That is,
for any x and y values in the Salary attribute, the additivity property
guarantees that f T (f(x) + fly)=f T (f(x + y)) = (x +y). Second, open-form
encryption functions by definition do not satisfy the additivity property.
Third, when the aggregate operations are used in nested SQL queries (with
correlated variables), the issue of rewriting the query becomes even more
difficult.

Example 3. Consider the query in example 2. Now, assume that we have used an
“instance-based” encryption; i.e., for each salary value a, there is a distinct f(a)
value, not expressible in a closed form and maintained in a secondary data structure
at the Agent. In this case, the query rewriting scenario of example 2 fails, and we are
forced to return all of the salary values in the desired range as

Qe:(DBg): SELECT R.B FROM R WHERE B > f{100,000)

with Oj as the output. Then the Agent will need to (i) decrypt and sum up all of the
values in the output Os into X, and (ii) compute the output of the query as X/O,.
This scenario will incur heavy time delays since DBg salary values have to be
shipped to the Agent, and the Agent needs to perform (possibly, a disk-based)
addition, independent of the database query optimization process.

Thus, one important goal in query rewriting is to have minimal
performance degradation in transforming and evaluating the expected set of
queries of the original database DB.

3.2 Inference Control

Let V be an integer-valued attribute and Domain of V, Dom(V) be a set
of integers in [I, N]. Let the encrypted domain E(Dom(V)) be a set of
integers between the range [1, M], where M >> N. Let the attribute V values
be represented by v;, 1 <1< n, which are encrypted to y;’s with an encryption
function f(v;). v;, y; are monotonically increasing, that is v; <v; wheni<j,
and y; < y;. We define the adversary’s Knowledge Space (KS) as the set of
two-tuples (v;, ¥i) i.e., for (v;, y;) € KS, the adversary knows in advance that
yi = f(vi). And, the adversary may or may not know that v;’s range is [1, N]J,
and yi's range is [1, M].

We now briefly investigate the compromise risk; i.e., given KS, how
much the adversary can infer about the values v;. More precisely, when IKSI
=k, we want to know the probability that an unknown (v;, y;) pair is revealed

Anti-Tamper Databases 141

to the adversary. The system is said to be compromised when (v;, y;) is
revealed to the adversary with a probability above the threshold t.

Let Vyuess denote a guess by the adversary for v,. Let P(vyess=Vi| KS), (vy,
y;) is not in KS, denote the probability that the adversary learns f'(y,)=v,
given KS. Then, we select the system-defined parameters so that P(vyyess=Vy)
<t forallr.

When the adversary (a) does not know any v;, that is, KS = { }, and (b)
knows that the domain range of V is [1, N], and the encrypted domain range
is [1, M] then the probability that n unknown v, values are revealed from n
distinct y;values is equivalent to the probability of guessing n numbers over
the range [1, N]. Choosing yi, the adversary guesses v; over [l, N] by Vyyess.
Then the possible range of vy is [1, N-n+1] and P(vguess=vi) = 1/(N-n +1).
Similarly, with KS = {(v,,y1)}, the possible range for v,is [v;+1, N-n+2] and
P(Vgwess=v2 | KS={(vi, y1)}) = U/(N-n-v+2). Generalizing, we have
P(Vguess=Vier | KS={(v1, 1), (v2,¥2), ..., (Vi, ¥1)}) = 1/(N-n-v +k+1). Note that
the uncertainty bound for each value depends on the previously
compromised value and the next compromised value. Furthermore, if the
adversary does not know the size of the encrypted domain M, (s)he can use
the largest encrypted value y, as the upper bound for M. Finally, the worst
case is the case where v; values in KS are evenly distributed over the domain
range.

To distinguish the known values in KS from the original data instances v;
of V, we denote KS = {(sy, t;), (52, t2), ..., (5, &)}, where t; (=y;) is the
encrypted value of s; (= vi), and s; < sj when i < j. For any two consecutive
elements s; and s+ of KS, we denote by S a set of v; values between s; and
s;«1, and by T the set of encrypted y; values between t; and tj+. Assuming v;
values in S are equally likely (i.e., uniformly distributed) to be anywhere
between s; and s+, we can compute the compromise probability as follows.
Let vyess denote the adversary’s guess for v/=sj+1 in S. Then P(vguess=Ve) = 1/
Sj+1- 8j - IS|. That is, once the values s; and 8;+; are known by the adversary,
the corresponding range between t and tj+; is of no significance for the
uncertainty range of v,. Similarly, when v, = s, -1 then P(Vgyess=ve) = 1/5) -
(no. of encrypted values less than t;). And, when v, = sy +1 then P(vyyes=v,)=
1/ N - s — (no. of encrypted values after t). Combining the three cases for
all v, values, compromise occurs when maXy {P(Vyuess=vi| KS)} > 7.

It is possible to have domain values with different distributions. Let R be
a range between any two known values s;, sj+;in KS, and having [Tl unknown
values distributed over R with a hypergeometric distribution. Assume that
the adversary guesses m values from R. If we let random variable X denote
the number of correctly guessed values then X=k means the adversary got
exactly k values correct. So, the probability of X=k would be:

142 DATA AND APPLICATIONS SECURITY XVII

o (T

By the definition of hypergeometric distribution, E(X) = mITI/R gives the
expected number of compromised values.

4. ORDER-PRESERVING CLOSED-FORM
ENCRYPTION AND DECRYPTION

The advantage of closed-form decryption is speed, whereas open-form
decryption may be costly--even when the decryption requests are sorted and
batched. On the minus side, inferring the closed-form of the decryption
function for an attribute amounts to compromising all values of the attribute
unless one-way encryption functions are used to protect the key K.

Closed-form encryption for integer-valued attributes has the
disadvantage that, because a single closed-form function is employed for
encryption, controlling the magnitude of the encrypted values becomes
difficult, leading to overflow problems. One can employ a variety of
techniques to control the sizes of encrypted values; here we discuss one
approach: encrypting a single integer value into a set of integers.

We would like to find encryption functions whose closed-form inverses
exist, are cheap to compute, and “lossless”. We say that an encryption
algorithm E is lossless for an attribute V when there exists a decryption
algorithm D such that, for any value x , 1< x < N, D(E(x)) = x.

When the attribute value x is encrypted using a function, say, E(x) =
Cix+ Cy, we refer to the constants Cy and C, as the key K. We assume that
users are informed of the encryption function, but not the key. We call the
number of such constants C; as the degree of security. Our goal in this
section is to come up with an encryption algorithm E such that, given the
desired degree of security n, the algorithm E locates a “lossless” encryption
function E() with the degree of security of n.

4.1 Single Encryption Function and its Inverse for
Decryption

One encryption approach is to use a single polynomial function f(x) as
the encryption function E. Obviously, in this case, the degree of security is
the number of constants employed by the function f(x). Therefore, given n as
the degree of security, the goal is to find an n degree polynomial that has an
inverse function in closed form:

F(x) = CoX"+ Co X"+ ... + C;X + Gy

Anti-Tamper Databases 143

Remark 2. Let fbe a continuous function on the closed interval [x;, X,] and assume
that fis strictly increasing. Let f{x,) =y, and f{X,) = y;. Then the inverse function is
defined on the closed interval [y, y3].

Thus, to check whether the function has the inverse function or not, we
can compute dev(f(x)) = 0. If there exists at most one solution for dev(f(x))
= 0, then the inverse function of the polynomial exists for all x. If there
exists more than one solution, we find the largest k such that dev(f(k)) = 0O;
and the inverse function exists for x 2 k (by Remark 2). The problem with
this approach is that in general, the closed form of the inverse function of an
arbitrary polynomial function may not exist even if the inverse itself exists.
Therefore, next we introduce the approach of multiple encryption functions.

4.2 Multiple Encryption Functions and an Inverse

Instead of finding the inverse of a single n degree polynomial for a
requested n degree of security, we now apply n ‘simple’ functions iteratively
where each function has its closed form inverse. Some examples of simple
polynomials with well-defined inverse functions are listed below.

fi(x) =Cox +C, HX)=Cx*+C; HX)=Cex’+C,

Given n as the desired level of security, our goal is to find a sequence of
functions fi, 1 <1 < k, from the above list as a sequence of encryption
functions with, altogether, n constants C; (as the key K) so that applying the
inverses of each function in the sequence in reverse order constitutes the
decryption. The encryption algorithm is applied as the sequence f; of
functions in such a way that the output of fi(x) becomes the input of fi,(x)
for 1I<i<k-l1.

Example 4. Let fi(x) = Cox + C, f3(x) =Cy x>+ Cy, fi(x) = Ce X’ + C;
E(x) = f; (f; (fi(x))) = C6(C2 (Cox + C1) + C3)’ + C;
Note that each function f; is monotone; that is, for X; > X,, f(x;) > f(x,).

4.3 Nonlossy multiple encryption functions

There are two types of errors that may occur and may make the
encryption lossy when applying a sequence fi, 1 < i <k, of functions as
encryption/decryption functions, namely, overflow errors (integers) and
precision (round-off) errors (reals)[6].

When multiple functions are applied iteratively to encrypt attribute
values of integer domain, the magnitude of the encrypted value rapidly
increases even when we restrict the degree of each polynomial to either 1 or
2. Since computer arithmetic uses limited (e.g. 32-bit or 64-bit) number of
bits to store a number, an attempt to store an integer of large magnitude

144 DATA AND APPLICATIONS SECURITY XVII

greater than 2*' — 1 for 32-bit arithmetic and greater than 2% ~ 1 for 64-bit
will produce an integer overflow [15].

Therefore, to reduce the magnitude of encrypted values, one may apply
the log function fiey(x) = logx + C where C is a security constant. In this
section, we investigate the use of the log function during encryption. Note
that the log function’s input and output need to be real values.

Assume that the floating-point representation has a base B and a
precision p (i.e., the number of bits to keep the fractional part of a real
number). + by . by by by by, * Bfrepresents the number * (by + b, B'+..+
by B®")B®, (0 <b;<B), where b; is called the significant bits and has p
digits, and e is the exponent [9]. With B = 2, 24 bits are used for significant
bits for 32 bit arithmetic, 53 bits are used for 64-bit arithmetic [15].

When the encryption computations convert the domain of an attribute
from integer to real (e.g., in the case of applying fioz(x) = log; x) or even
when the domain of an attribute is real, information loss occurs if significant
bits overflow (i.e., the precision error or round-off error occurs).

When the log function fi,() is applied in the encryption function
sequence, in order to avoid precision errors, we define the precision range
for x with f(x) = log, x by locating when f(x) loses its precision, i.e., we find
x and x+1 where y,=10g(x) , Yo+ = log(x +1) and y, = ypsi.

Table 1. Precision Limits of log, (x) for 32-bit and 64-bit number representations

32 Bit 64 Bit
X 757283, 2.02967093951847 * 10",
x+1 757284, 2.02967093951848 * 10",
Log(x) = Log(x+1) 19.530474,, 47.528239,,

From Table 1, after the application of log,(x) where x is a 32-bit or 64-bit
number, the maximum value of Int(log,(x)) avoiding precision errors is 19
or 47, respectively. To avoid an early overflow error for attributes with large
domain values, the function fi,, () is always applied first.

We propose the following techniques to control and avoid overflow and
precision errors during the encryption process. (See [11] for the detail.)

— After the application of each log function, We maintain an “encrypted-
value vector” Vg such that we 1) store C * Fract(fio, ()) = € into the
encrypted-value vector Vg., (2) provide w;= (Int (fiio4 ()) + C’) as an
input to the function f i+, ('), where Int(r) and Fract(r) denote functions
that return the integer part of r, and the fractional 24 bits of r as an
integer, respectively, and C, C’ are constants, and (3)repeat steps (1) and
(2) above after application of each f;o4().

Anti-Tamper Databases 145

— After applying fi.; (fiz (X)), let z; = fi.y 5 (fi2) (X)) for z; < 2! for 32-bit
arithmetic. Before converting 2; into a real number in order to apply the
log function fijg we split 32-bit integer 2; into Left; which indicates the
leftmost 19 bits of 32 bit integer z and Right; which indicates the
rightmost 13 bits of z. Then a different function sequence is applied to
each part separately.

Finally, we propose an encryption function sequence E(X) = f yjog(fi1.2(
fi2,1C -+ Friog(fo2(£5.0(farog(£3.2(£2.1(fruiog (X)IN))))...))), where subscripts
are used to number the functions and the function type (linear, quadratic or
log). The subscript k of the function fy ey () in E(x) uniquely specifies the
encryption function sequence. We refer to the subscript value k as the index
of the encryption function sequence E.

4.4 Generating and Encryption Function Sequence with
Desired Degree of Security

By applying the results of the previous section, the relationship between
the encryption function sequence index k and the desired degree of security

d can be defined as
d=a*(&3)*7)+b

where ais Oif k<3 and a=1ifk23; and bis 0, 4, or 6 if (k mod 3) is 0, 1,
or 2, respectively. Therefore, given the desired degree of security by the
user, the system can generate the corresponding encryption function
sequence E(x) in a straightforward manner.

Thus, we have proposed an encryption function sequence E(x) as an
alternative closed form encryption function. The degree of security of E(x) is
the number of constants C; (coefficients) employed by the function
sequence, and the set of C; in E(x) constitute the secret key K in the
encryption.

S. CONCLUSIONS

In this paper, we have proposed the first steps of an approach to securing
databases: encrypt the database, and yet allow query processing over the
encrypted database.

Much work remains to be done. Our approach needs to be extended to
handle SQL queries with arithmetic expressions and aggregate functions as
well as complex SQL queries with nested subqueries[14]. We have
discussed only the encryption of integer-valued attributes; encrypting and

146 DATA AND APPLICATIONS SECURITY XVII

querying attributes of other primitive/complex data types is another research
direction.

6. REFERENCES

[1] Nabil R. Adam, John C. Wortmann: Security-Control Methods for Statistical
Databases: A Comparative Study. ACM Computing Surveys 21(4): 515-556
(1989)

[2] Blum, M., Micali, S., “How to Generate Cryptographically Strong Sequences of
Pseudo-Random Bits”, SIAM Journal on Computing, 13 (1984), 850-864.

[3] Hakan Hacigumus, Balakrishna R. Iyer, Sharad Mehrotra: Providing Database
as a Service. IEEE ICDE 2002

[4] Hakan Hacigumus, Balakrishna R. Iyer, Chen Li, Sharad Mehrotra: Executing
SQL over encrypted data in the database-service-provider model. ACM
SIGMOD Conference 2002: 216-227

[5] Sushil Jajodia, Vijayalakshmi Atluri, Thomas F. Keefe, Catherine D.
McCollum, Ravi Mukkamala: Multilevel Security Transaction Processing.
Journal of Computer Security 9(3): 165-195 (2001)

[6] MelvinJ. Maron. Numerical Analysis — A Practical Approach, 1985 Macmillan
Publishing Co., Inc.

[7] Multi-level secure database management schemes: software review, CMU
Software Engineering Institute, available at
http://www.sei.cmu.edu/str/descriptions/mlsdms_body.html

[8] Menezes, A.J, van Qorschot, P.C. and Vanstone, S.A., Handbook of Applied
Cryptography, CRC Press, Boca Raton, 1997, page 239.

[9]1 Goldberg, D., “What Every Computer Scientist Should Know About Floating
Point Arithmetic’, ACM Computing Surveys, 1991, available at
http://citeseer.nj.nec.com/goldberg91what.html

[10] Ozsoyoglu, G., Singer, D., Chung, S., “Querying Encrypted Databases”, Tech.
Report, EECS, CWRU.

[11] Xiaolei Qian, Teresa F. Lunt: A Semantic Framework of the Multilevel Secure
Relational Model. IEEE TKDE 9(2): 292-301 (1997)

[12] R. L. Rivest, L. Adleman and M.L. Dertouzos, On data banks and privacy
homomorphisms, in R. A. DeMillo et al.,, eds., Foundations of Secure
Computation, Academic Press, New York, 1978, 169-179.

[13] Database Management Systems, R. Ramakrishnan, J. Gehrke, McGraw-Hill,
2000.

[14] Eisengerg, A., Melton, J., “Sql: 1999, formerly known as sql 37, ACM
SIGMOD Record, 28(1), 131-138, 1999.

[15] Richard Startz. 8087/80287/80387 — Applications and Programming with
Intel’s Math Coprocessors. 1988 Brandy Books, a division of Simon &
Schuster, Inc.

[16] Ullman, J.D., “Principles of Database and Knowledge-Base Systems”, Vol 1.,
Computer Science Press, 1989.

[17] Duminda Wijesekera, Sushil Jajodia: Policy algebras for access control: the
propositional case. ACM Conference on Computer and Communications
Security 2001: 38-47

