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Important links

In this chapter we sketch some important links between ideas of the dress-
ing Darboux transformation (DT), Bäcklund transformation (BT), etc. with
related mathematical constructions. Firstly, it is the Hirota representation
which originally produced many of the known families of multisoliton solu-
tions, and these have often led to a disclosure of the underlying Lax systems
and infinite sets of conserved quantities [209, 385]. In Sect. 7.1 we demon-
strate a systematic derivation of the bilinear BTs from the so-called Y-systems
which are formulated in terms of the binary Bell polynomials. Taking as the
example equations with the “sech2” soliton solutions, we illustrate how to
obtain the binary BTs for different weights of the Y-polynomials. In Sect. 7.2
we represent the Darboux covariant Lax pairs in terms of the Y-systems. In
Sect. 7.3 we explain how to construct BTs from the explicit dressing formu-
las and, using the Noether theorem, how to derive discrete and continuous
conservation laws. Next, in Sect. 7.4 the main formulas of the dressing theory
are retrieved within the Weiss–Tabor–Carnevale procedure [449] of Painlevé
analysis for partial differential equations (PDEs). In addition, we comment
on a historical point connected with the appearance of the dressing method
in the Zakharov–Shabat theory. Namely, we suggest in Sect. 7.5 an original
revisiting of the technique of inverse scattering transform (IST) in terms of
the Gel’fand–Levitan–Marchenko integral equation. Notice in connection with
this that the search for perhaps the most general dressing scheme within the
framework of the Zakharov and Shabat ideas is represented in [478].

7.1 Bilinear formalism. The Hirota method

A striking feature of the bilinear formalism is the ease with which direct in-
sight can be gained into the nature of the eigenvalue problem associated with
soliton equations (such as the KdV, Boussinesq, or Sawada–Kotera equations)
derivable from the bilinear Hirota equation (representation) for a single Hi-
rota function. The key element is the bilinear form of the BT which can be
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200 7 Important links

straightforwardly obtained from the Hirota representation of these equations,
through decoupling of a related “two-field condition” by means of an appropri-
ate constraint of minimal weight [262]. The main point is that bilinear BTs are
obtained systematically, without the need for tricky exchange formulas [209].
They arise in the form of “Y-systems,” each equation within such a system
belonging to a linear space spanned by the basis of binary Bell polynomials
(Y-polynomials) [187].

An important element is the logarithmic linearizability of Y-systems, which
implies that each bilinear BT can be mapped onto a corresponding linear sys-
tem of the Lax type. However, it turns out that these linear systems involve
differential operators which, even in the simplest case, do not constitute a Dar-
boux covariant [265, 324] Lax pair . This fact prevents us from obtaining large
classes of solutions by direct application of the powerful Darboux machinery
to the systems which arise by straightforward linearization of the Y-systems.
Here we present a simple scheme to resolve this difficulty for a variety of soli-
ton equations which allow a bilinear BT that comprises a constraint of the
lowest possible weight (weight 2). Darboux covariant Lax pairs for the KdV,
Boussinesq, and Lax equations are obtained in a unified manner, by exploiting
the relations between the coefficients of linear differential operators connected
by the classical DT. Exponential Bell polynomials [44] and generalized “mul-
tipotential” Y-systems are found to be useful for this purpose. This approach
reveals deep connections between the (1+1)-dimensional equations and the
underlying (higher-dimensional) Kadomtsev–Petviashvili (KP) hierarchy. We
start our discussion by recalling the basic properties of the Y-polynomials
(derived in [187]) and by indicating how the use of the Y-basis can lead sys-
tematically from the original nonlinear PDEs to the associated linear systems.
The example of the Lax equation is instructive since this fifth-order equation
has no single bilinear Hirota representation. The content of this section follows
[260].

7.1.1 Binary Bell polynomials

The class of exponential Bell polynomials, originally defined for the Abelian
entries as

Ymx(v) = Ym(vx, vxx, ..., vmx) ≡ e−v
∂m

∂xm
ev, m ∈ Z, (7.1)

was introduced in Sect. 2.1. It keeps a balance between linear and quadratic
terms of the (generalized) Burgers equation, for

Ymx(lnψ) = ψmx/ψ. (7.2)

Examples are easily derived and are given in Sect. 2.1. The property of
x-homogeneity,

Ym(λx)(v) = λ−m(v)Ymx(v), (7.3)



7.1 Bilinear formalism. The Hirota method 201

introduces the weight m.
The binary polynomials that we shall use in this section are defined in

terms of the exponential Bell polynomials

Ymx,nt(f) = e−f∂mx ∂nt ef (7.4)

as follows:

Ymx,nt(v, w) ≡ Ymx,nt(f)
∣∣∣∣
fpx,qt =

{
vpx,qt if p + q = odd,
wpx,qt if p + q = even,

(7.5)

with the understanding that fpx,qt ≡ ∂px∂
q
t f . They inherit the easily recogniz-

able partition structure of the Bell polynomials (for a recurrent definition see
Sect. 2.2):

Yx(v) = vx,
Y2x(v, w) = w2x + v2

x,
Yx,t(v, w) = wxt + vxvt,

Y3x(v, w) = v3x + 3vxw2x + v3
x, · · ·

(7.6)

The link between the Y-polynomials and the standard Hirota expression

Dp
xD

q
tG

′ ·G ≡ (∂x − ∂x′)p (∂t − ∂t′)
q
G′(x, t)G(x′, t′)

∣∣∣
x′=x,t′=t

(7.7)

is given by the identity

Ymx,nt(v = lnG′/G, w = lnG′G) ≡ (G′G)−1Dm
x Dn

t G
′ ·G. (7.8)

In the particular case G′ = G, one has

G−2Dm
x Dn

t G · G ≡ Ymx,nt(0, Q = 2 lnG) =
{

0, if m + n = odd,
Pmx,nt(Q), if m + n = even,

(7.9)
the P -polynomials being characterized by an equally recognizable “even part”
partition structure:

P2x(Q) = Q2x, Px,t(Q) = Qxt, P4x(Q) = Q4x + 3Q2
2x,

P6x(Q) = Q6x + 15Q2xQ4x + 15Q3
2x, . . . . (7.10)

A crucial property of the Y-polynomials relates to the transformation w =
v + Q, v = lnψ:

Ypx,qt(v, w = v + Q)
∣∣∣
v=lnψ

(7.11)

= ψ−1

p∑

j=0

q∑

k=0
j+k=even

(
p
q

)(
q
k

)
Pjx,kt(Q)ψ(p−j)x,(q−k)t
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and originates from the addition formula for the polynomials Y (v):

Ymx(v1 + v2) =
m∑

j=0

(
m
j

)
Y(m−j)x(v1)Yjx(v2). (7.12)

The proof is performed by use of the Newton–Leibnitz formula.
It should also be noticed that polynomials Ypx,qt(v, w), constructed with

the derivatives of dimensionless variables v and w, are homogeneous expres-
sions of the weight p+ qr, if r stands for the dimension of t (the dimension of
x is chosen equal to 1).

7.1.2 Y-systems associated with “sech2” soliton equations

We consider four examples of “sech2” soliton equations with the order ranging
from 3 to 5: the KdV, Boussinesq, Lax, and Sawada–Kotera equations.

KdV equation

The invariance of the KdV equation

KdV(u) ≡ ut + u3x + 6uux = 0 (7.13)

under the scale transformation

x→ λx, t→ λ3t, u→ λ−2u (7.14)

shows that u has the dimension −2. A dimensionless field Q can be introduced
by setting u = cQ2x, with c being a dimensionless parameter to be determined.
The resulting equation for Q can be derived from the potential equation

Qxt + Q4x + 3cQ2
2x = 0, (7.15)

which can be cast into the form

E(Q) ≡ Pxt(Q) + P4x(Q) ≡ G−2(DxDt + D4
x)G ·G

∣∣∣
G=exp(Q/2)

= 0 (7.16)

by setting c = 1.
The well-known Hirota two-field condition on G and G′, to be satisfied as

a differential consequence of a bilinear BT (that we have to find), takes the
form [209]

G′−2(DxDt + D4
x)G

′ ·G′ −G−2(DxDt + D4
x)G ·G = 0. (7.17)

It corresponds to the following condition on Q = 2 lnG = w − v and
Q′ = 2 lnG′ = w + v:

E(w + v)− E(w − v) = 2(vxt + v4x + 6v2xw2x)

≡ 2 {∂x [Yt(v) + Y3x(v, w)] + 6W [Y2x(v, w),Yx(v)]} = 0, (7.18)
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where W (Y1,Y2) is the Wronskian. This condition can easily be decoupled into
a pair of equations in the form of linear combinations of the Y-polynomials.
It suffices to impose such a constraint on v and w (pj and qj are integers or
zero, cj is a constant),

∑

j

cjYpjx,qjt(v, w) = 0, (7.19)

of the lowest possible order (or weight). The simplest choice is a constraint of
weight 2:

Y2x(v, w) ≡ w2x + v2
x = 0. (7.20)

In order to obtain a parameter-dependent decomposition, we should im-
pose the condition

Y2x(v, w) = λ, (7.21)

where λ is an arbitrary parameter of weight 2. This leads to the following
Y-system

Y2x(v, w)− λ = 0, Yt(v) + Y3x(v, w) + 3λYx(v) = 0, (7.22)

the compatibility of which is guaranteed by the corresponding system for ψ
[setting w = v + Q, v = lnψ and using (7.10)]:

(L2 − λ)ψ ≡ ψ2x + (Q2x − λ)ψ = 0, (7.23)

(∂t + L3)ψ ≡ ψt + ψ3x + 3(Q2x + λ)ψx = 0,

i.e., to the (λ-independent) condition:

(Qxt + Q4x + 3Q2x)x ≡ ∂xE(Q) = 0. (7.24)

The bilinear equivalent of the Y-system (7.22) is obtained by means of (7.8):

D2
xG

′ ·G = λG′G, (Dt + D3
x + 3λDx)G′ ·G = 0. (7.25)

It is the bilinear BT for the KdV proposed by Hirota [209].

Boussinesq equation

A similar analysis can be applied to the Boussinesq equation

Bq(u) ≡ u2t − u4x + 3(u2)2x = 0. (7.26)
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This equation can be derived from a potential version obtained by setting
u = −Q2x:

E(Q) ≡ P2t(q)− P4x(Q) ≡ G−2(D2
t −D4

x)G ·G
∣∣∣
G=exp(Q/2)

= 0. (7.27)

The corresponding two-field condition

E(Q′ = w + v)− E(Q = w − v) ≡ 2(v2t − v4x − 6v2w2x)

= −2∂xY3x(v, w) + 2v2t + 6W [Y2x(v, w),Yx(v)] = 0 (7.28)

can still be decoupled into a pair of equations of the form (7.19) by means of
the Y-constraint of weight 2 (notice that in this case the dimension of t = 2,
so we dispose of two Y-polynomials of weight 2):

Yt(v) + aY2x(v, w) = 0, (7.29)

where a is a dimensionless constant to be determined.
The decoupling requires a2 = −3 and produces the following parameter-

dependent Y-system (λ is an integration constant):

Yt + aY2x(v, w) = 0, aYx,t(v, w) + Y3x(v, w) = λ. (7.30)

The corresponding bilinear system

(Dt + aD2
x)G

′ ·G = 0, (aDxDt + D3
x − λ)G′ ·G = 0 (7.31)

is exactly the bilinear BT for the Boussinesq equation obtained by Nimmo
and Freeman [350]. Its compatibility is subject to that of the linear equivalent
to the system (7.30):

ψt + aψ2x + aQ2xψ = 0, (7.32)

aψxt + ψ3x + 3Q2xψx + (aQxt − λ)ψ = 0,

i.e., to the following potential version of the Boussinesq equation:

PBq(Q) ≡ (Q2t −Q4x − 3Q2
2x)x = 0. (7.33)

Lax equation

We now consider the Lax equation

Lax(u) ≡ ut + u5x + 10uu3x + 20uxu2x + 30u2ux = 0. (7.34)
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Setting u = cQ2x brings it to the potential equation:

Ec(Q) ≡ Qxt + Q6x + 10cQ2xQ4x + 5cQ2
3x + 10c2Q3

2x = 0. (7.35)

The left-hand side of this equation is homogeneous with weight 6, but there is
no value of c such that (7.35) can be expressed as a linear combination of the
weight 6 polynomials P6x(Q) and Pxt(Q). Setting c = 1, we may nevertheless
consider the two-field condition

E1(w + v)− E1(w − v) ≡ 2 {∂x [Yt(v) + Y5x(v, w)] + R(v, w)} = 0, (7.36)

with

R(v, w) = −5
(
vxw5x − v2xw4x + 6vxw2xw3x + 2v3

xw3x − 3v2xw
2
2x

+6v2
xv2xw2x + 4vxv2xv3x + 2v2

xv4x + v4
xv2x − 2v3

2x

)
. (7.37)

Eliminating w2x and its derivatives by means of the weight 2 constraint (7.21),
we find that the condition (7.36) can be decoupled into the following Y-system:

Y2x(v, w) = λ, Y(v) + Y5x(v, w) + 15λ2Yx(v) = 0. (7.38)

Its compatibility is subjected to that of the corresponding linear system:

ψ2x + (Q2x − λ)ψ = 0, ψt + L5ψ = 0, (7.39)

L5 = ∂5
x + 10Q2x∂

3
x + 5(Q4x + 3Q2

2x + 3λ2)∂x,

i.e., to the condition

(Qxt + Q6x + 10Q2xQ4x + 5Q2
3x + 10Q3

2x)x ≡ ∂xE1(Q) = 0. (7.40)

Sawada–Kotera equation

We finally consider the Sawada–Kotera equation

SK(u) ≡ ut + u5x + 15uu3x + 15uxu2x + 45u2ux = 0, (7.41)

which again can be derived from a potential equation by setting u = Q2x,
expressible in terms of P6x(Q) and Pxt(Q):

E(Q) = Pxt(Q) + P6x(Q) ≡ G−2(DxDt + D6
x)G ·G

∣∣∣
G=exp(Q/2)

= 0. (7.42)

It is easy to see that the corresponding two-field condition

E(w + v)− E(w − v) ≡ 2∂x [Yt(v) + Y5x(v, w)] + 10R(v, w) = 0, (7.43)
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with
R(v, w) = −vxw5x + 2v2xw4x − 2v3xw3x + w2xv4x

−2v2
xv4x − 4vxv2xv3x + 6v2xw

2
2x (7.44)

+3v3
2x − 6vxw2xw3x − 2v3

xw3x − 6v2
xv2xw2x − v4

xv2x,

can no longer be decoupled into a Y-system by means of a weight 2 constraint
of the form (7.20).

Yet, the weight 3 constraint

Y3x(v, w) ≡ v3x + 3vxw2x + v3
x = λ (7.45)

enables us to express R(v, w) as follows:

R(v, w) = −1
2
∂x [Y5x(v, w) + 3λY2x(v, w)] . (7.46)

This means that the condition (7.43) can be decoupled into the following
(λ-dependent) Y-system:

Y2x(u, v)− λ = 0, Yt(v)− 3
2
Y5x(v, w) − 15

2
λY2x(v, w) = 0. (7.47)

Its compatibility is subjected to that of the corresponding ψ-system
(w = v + Q, v = lnψ):

ψ3x + 3Q2xψx − λψ = 0, (7.48)

ψt − 3
2
ψ5x − 15Q2xψ3x − 15

2
P4x(Q)ψx − 15

2
λ(ψ2x + Q2xψ) = 0,

i.e., to the condition:
(
Qxt + Q6x + 15Q2xQ4x + 15Q3

2x

)
x
≡ ∂xE(Q) = 0. (7.49)

The bilinear equivalent of the system (7.47),

(D3
x − λ)G′ ·G = 0,

(
Dt − 3

2
D5
x −

15
2
λD2

x

)
G′ ·G = 0, (7.50)

is the bilinear BT for the Sawada–Kotera equation reported in [386].

7.2 Darboux-covariant Lax pairs in terms of Y-functions

In Sect. 3.7 a joint covariance property of operators was defined and investi-
gated. It results in some necessary conditions, e.g., the joint covariance equa-
tions, whose solutions yield restriction on a form of solvable equations. Let
us now go back to the KdV equation (7.13) and the associated linear system
(7.23). It comprises the second-order eigenvalue equation considered by Lax
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[263], with the covariance property we study throughout this book. According
to this property, (nonvanishing) solutions φ to the spectral equation produce
transformations

Gφ = φ∂xφ
−1 = ∂x − σ, σ = ∂x lnφ, (7.51)

which map L2 = ∂2
x + Q2x onto the similar operator

L̃2 ≡ GφL2(Q2x)G−1
φ ≡ L2(Q̃2x), (7.52)

with Q̃2x = Q2x + 2σx. With the second-order eigenvalue equation obtained
from the constraint (7.21) through the map v = lnψ,

Y2x(v, v + Q) = λ, (7.53)

we may try to associate a Darboux-covariant third-order evolution equation.
Note that any equation of the form

∑

n

cnYpnx,qnt

(
v, v + Q(n)

)
= 0 (7.54)

corresponds to a linear equation for ψ. In particular, there is a correspondence
between the evolution equation (c2 and c3 are constants)

Yt(v) + c2Y2x

(
v, v + Q(2)

)
+ c3Y3x

(
v, v + Q(3)

)
= 0 (7.55)

and its linear counterpart

ψt + L3ψ = 0, L3 = c3∂
3
x + c2∂

2
x + b1∂x + b0, (7.56)

with
b1 = 3c3Q

(3)
2x , b0 = c2Q

(2)
2x . (7.57)

Let Gφ be a transformation (7.51) generated by a (nonvanishing) solution
φ of the system

(L2 − λ)φ ≡ (∂2
x + Q2x − λ)φ = 0, (7.58)

(∂t + L3)φ ≡ (∂t + c3∂
3
x + c2∂

2
x + b1∂x + b0)φ = 0.

It maps the operators L2 − λ and ∂t + L3 onto the similar operators

Gφ(L2 − λ)G−1
φ = L2(Q̃2x)− λ, Gφ(∂t + L3)G−1

φ = ∂t + L̃3,

L̃3 ≡ c3∂
3
x + c2∂

2
x + b̃1∂x + b̃0, (7.59)

where
b̃1 = b1 + Δb1, Δb1 = 3c3σx, (7.60)

b̃0 = b0 + Δb0, Δb0 = b1,x + σΔb1 + 2c2σx + 3c3σ2x, (7.61)
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and the following differential consequences of (7.58) have been taken into
account:

∂x

(
φ2x

φ
+ Q2x − λ

)
= 0 ⇐⇒ ∂xY2x(lnφ)+Q3x ≡ (σx+σ2)x+Q3x = 0,

∂x [Yt(lnφ) + c3Y3x(lnφ) + c2Y2x(lnφ) + b1Yx(lnφ) + b0] = 0 (7.62)

⇐⇒ σt + c3(σ2x + 3σσx + σ3)x + c2(σx + σ2)x + (b1σ)x + b0,x = 0.

In order that ∂t + L3 be the Darboux-covariant with L2 − λ, we have to
determine the coefficients bi, i = 0, 1, as functions of Q2x and its derivatives,
in such a way that the covariance condition

L̃3(Q2x, Q3x, . . .) = L3(Q̃2x, Q̃3x, . . .) (7.63)

be satisfied with

ΔQ(r+1)x ≡ Q̃(r+1)x −Q(r+1)x = 2σrx, r = 1, 2, . . . . (7.64)

Hence, we should look for expressions bi = Fi(Q2x, Q3x, . . .) such that the
differences Δbi which appear in (7.58) and (7.59) are expressible as

Δbi = Fi(Q2x+ΔQ2x, Q3x+ΔQ3x, . . .)−Fi(Q2x, Q3x, . . .), i = 0, 1. (7.65)

Because
Δb1 =

3
2
c3ΔQ2x, (7.66)

it is clear that we can find an expression Fi, linear in Q2x, which satisfies
condition (7.64), yielding

b1 =
3
2
c3Q2x + c1, (7.67)

c1 being an arbitrary constant. The difference Δb0 is now given by the relation

Δb0 =
3
2
c3Q3x + 3c3σσx + 2c2σx + 3c3σ2x, (7.68)

which, on account of (7.62), becomes

Δb0 = 2c2σx +
3
2
c3σ2x = c2ΔQ2x +

3
4
c3ΔQ3x. (7.69)

It follows that we can find an expression F0, linear in Q2x and Q3x, which
satisfies condition (7.64), yielding

b0 = c2Q2x +
3
4
c3Q3x + c0, (7.70)
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where c0 is an arbitrary constant. Setting c0 = c1 = 0, we obtain

L3 = c3

(
∂3
x +

3
2
Q2x∂x +

3
4
Q3x

)
+ c2L2, (7.71)

indicating that the simplest Darboux-covariant third-order evolution equation
to be associated with (7.58) has the form (setting c2 = 0, c3 = 4)

(ψt + L̄3)ψ ≡ 0, L̄3 = 4∂3
x + 6Q2x∂x + 3Q3x. (7.72)

Together with (7.54) it produces an equivalent version of our previous linear
system (7.23) for the KdV equation, obtained by replacing the second equation
by the combination

[∂t + L3 + 3∂x(L2 − λ)]ψ = 0. (7.73)

The operator L̄3 corresponds precisely to the third-order operator which gives
rise to the KdV equation in the Lax formalism [350]:

[∂t + L̄3, L2] = (Qxt + Q4x + 3Q2
2x)x = 0. (7.74)

The full Darboux-covariant system obtained with expression (7.71) for L3,

(L2 − λ)ψ = 0, (∂t + L3)ψ = 0, (7.75)

corresponds, through the map v = lnψ, to the multipotential Y-system

Y2x(v, v + Q) = λ, (7.76)

Yt(v) + c3Y3x

(
v, v + Q(3)

)
+ c2Y2x

(
v, v + Q(2)

)
= 0,

in which
Q

(3)
2x =

1
2
Q2x, Q

(2)
2x = Q2x +

3
4
c2
c3

Q3x. (7.77)

An interesting alternative to this system results from an interchange be-
tween Y2x(v, v + Q) and c3Y3x

(
v, v + Q(3)

)
+ c2Y2x

(
v, v + Q(2)

)
,

c3Y3x

(
v, v + Q(3)

)
+ c2Y2x

(
v, v + Q(2)

)
= λ,

Yt(v) + Y2x(v, v + Q) = 0, (7.78)

which corresponds to an alternative Lax-like system with the third-order
eigenvalue equation and second-order time evolution:

L3ψ ≡ (c3∂3
x + c2∂

2
x + b1∂x + b0)ψ = λψ,

(∂t + L2)ψ ≡ ∂t + ψ2x + Q2xψ = 0, (7.79)

where the bi, i = 0, 1, are given by (7.57).
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Let Gφ be a transformation generated by a (nonvanishing) solution φ of
the system (7.79). It still maps the operators ∂t +L2 and L3−λ onto similar
operators,

Gφ(∂t + L2)G−1
φ = ∂t + L̃2, L̃2 = L2(Q̃2x), (7.80)

Gφ(L3 − λ)G−1
φ = L̃3 − λ, L̃3 = c3∂

3
x + c2∂

2
x + b̃1∂x + b̃0, (7.81)

where the differences Δbi ≡ b̃i − bi are given by (7.60) and (7.61) and where
the following differential consequences of (7.79) have been taken into account:

σt + (σx + σ2)x + Q3x = 0, (7.82)
c3(σ2x + 3σσx + σ3)x + c2(σx + σ2)x + (b1σ)x + b0,x = 0. (7.83)

Extending the condition (7.64) to r = 0, we find by means of the above
analysis that the covariance of L3 − λ with ∂t + L2 is guaranteed if

b1 =
3
2
c3Q2x + c1, b0 = c2Q2x +

3
4
c3(Q3x −Qxt) + c0, (7.84)

where c0 and c1 are arbitrary constants. Setting c0 = c1 = 0, we find

L3 = c3

(
∂3
x +

3
2
Q2x∂x +

3
4

(Q3x −Qxt)
)

+ c2L2, (7.85)

yielding the simplest Darboux-covariant system of type (7.79):

L̂3ψ = λψ, (∂t + L2)ψ = 0, (7.86)

L̂3 = 4∂3
x + 6Q2x∂x + 3 (Q3x −Qxt) .

The operators L̂3 and ∂t + L2 are found to constitute the Lax pair for an
equation which is nothing other than the potential version of the Boussinesq
equation (7.26) in which t has been rescaled (t = aτ, a2 = −3):

[∂t + L2, L̂3] = −(3Q2t + Q4x + 3Q2
2x)x = (Q2τ −Q4x − 3Q2

2x)x. (7.87)

It is easy to verify that the system (7.86) taken with t = aτ and a2 = −3 is
the equivalent version of our previous linear system (7.32) for the Boussinesq
equation which results from subtracting a times the x-derivative of the first
equation from the second one. The full Darboux-covariant system obtained
with expression (7.85),

(L3 − λ)ψ = 0, (∂t + L2)ψ = 0, (7.88)

corresponds, through the map v = lnψ, to a “covariant” version of the system
(7.78) in which

Q
(3)
2x =

1
2
Q2x and Q

(2)
2x = Q2x +

3
4
c2
c3

(Q3x −Qxt). (7.89)
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The striking similarity between the covariant Y-systems associated with
the KdV and Boussinesq equations reveals a deep connection between both
soliton systems. It suffices to consider the next step which leads us from the
system (7.78) to an alternative version with two evolution equations corre-
sponding to two t-variables (tp has the dimension p):

Yt2(v) + Y2x(v, v + Q) = 0, (7.90)

Yt3(v) + c2Y2x

(
v, v + Q(2)

)
+ c3Y3x

(
v, v + Q(3)

)
= 0.

It is clear from the above analysis that the Darboux covariance of the corre-
sponding linear system for ψ = exp v,

(∂t2 + L2)ψ = 0,
(
∂t3 + c3∂

3
x + c2∂

2
x + 3c3Q

(3)
2x ∂x + c2Q

(2)
2x

)
ψ = 0, (7.91)

is still guaranteed by the conditions (7.89) on Q
(3)
2x and Q

(2)
2x . In particular,

it is found that the compatibility of the simplest covariant system (setting
c2 = 0, c3 = 4),

(∂t + L2)ψ = 0, (∂t3 + L̂3)ψ = 0, (7.92)

L̂3 = 4∂3
x + 6Q2x∂x + 3(Q3x −Qxt2),

is subjected to the condition

[∂t3 + L̂3, ∂t2 + L2] = [Px,t3(Q) + 3P2t2(Q) + P4x(Q)]x = 0, (7.93)

which is a potential version of the KP equation:

KP(u) ≡ (ut3 + u3x + 6uux)x + 3u2t2 = 0, (7.94)

obtained by setting u = Q2x and by integrating once with respect to x. We
wish to stress that the above derivation of a covariant Lax pair for the KdV
equation produced three closely related Darboux-covariant systems hinting in
a direct manner at the (well-known) common origin of the KdV and Boussi-
nesq equations as reductions of the KP equation.

We end our discussion with a direct derivation of a Darboux-covariant
equivalent to the linear system (7.39) that we associated with the Lax equation
(7.34). Our starting point is the multipotential Y-system (ci is a constant),

Y2x(v, v + Q) = λ, Yt(v) +
5∑

i=2

ciYix
(
v, v + Q(i)

)
= 0, (7.95)

or its linear version for ψ = exp v,

(L2 − λ)ψ = 0, (∂t + L5)ψ = 0, (7.96)

L5 = c5∂
5
x + c4∂

4
x + b3∂

3
x + b2∂

2
x + b1∂x + b0,
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with

b3 = 10c5Q
(5)
2x + c3, b2 = 6c4Q

(4)
2x + c2,

b1 = 3c3Q
(3)
2x + 5c5

[
Q

(5)
4x + 3

(
Q

(5)
2x

)2
]

+ c1, (7.97)

b0 = c2Q
(2)
2x + c4

[
Q

(4)
4x + 3

(
Q

(4)
2x

)2
]

+ c0.

Let Gφ be a transformation (7.51) generated by a (nonvanishing) solution φ
of the system (7.96) and (7.97). It maps L2 − λ and ∂t + L5 onto the similar
operators (7.60) and ∂t + L̃5, with

L̃5 = c5∂
5
x + c4∂

4
x + b̃3∂

3
x + b̃2∂

2
x + b̃1∂x + b̃0, (7.98)

where

Δb3 ≡ b̃3 − b3 = 5c5σx = 5
2c5ΔQ2x,

Δb2 ≡ b̃2 − b2 = b3,x + σΔb3 + 4c4σx + 10c5σ2x,

Δb1 ≡ b̃1 − b1 = b2,x + σΔb2 + 3σxb̃3 + 6c4σ2x + 10c5σ3x,

Δb0 ≡ b̃0 − b0 = b1,x + σΔb1 + 2σxb̃2 + 3σ2xb̃3 + 4c4σ3x + 5c5σ4x.

(7.99)

In order to ensure the Darboux covariance of ∂t + L5 with L2 − λ, we must
again determine expressions Fi for bi, i = 0, 1, 2, 3, in terms of Q2x and its
derivatives, which are such that condition (7.65) is satisfied at i = 0, 1, 2, 3,
with (7.64). It is clear from (7.98) that F3 can be chosen to be linear in Q2x,
so

b3 =
5
2
c5Q2x + c3, (7.100)

where c3 is an arbitrary constant. Equation (7.98) then becomes

Δb2 =
5
2
csQ3x + 5c5σσx + 4c4σx + 10c5σ2x. (7.101)

Using (7.62), we rewrite it as

Δb2 = 4c4σx +
15
2
c5σ2x = 2c4ΔQ2x +

15
4
c5ΔQ3x, (7.102)

indicating that F2 can be chosen to be linear in Q2x and Q3x, so

b2 = 2c4Q2x +
15
2
c5Q3x + c2, (7.103)

where c2 is an arbitrary constant. Hence, we obtain

Δb1 = 2c4Q3x +
15
4
c5Q4x + 4c4σσx +

15
2
c5σσ2x +

15
2
c5σxQ2x

+3c3σx + 15c5σ2
x + 6c4σ2x + 10c5σ3x, (7.104)
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or, using (7.62),

Δb1 = 2c4ΔQ3x +
25
8
c5ΔQ4x +

15
8
c5 (2Q2xΔQ2x + ΔQ2xΔQ2x)

+
3
2
c3ΔQ2x + 2c4ΔQ3x +

25
8
c5ΔQ4x +

15
8
Δ

(
Q2

2x

)
. (7.105)

It follows that F1 can be chosen to be linear in Q2x, Q3x, Q4x, and Q2
2x, so

b1 =
3
2
c3Q2x + 2c4Q3x +

25
8
c5Q4x +

15
8
c5Q

2
2x + c1. (7.106)

It is found from these results and (7.62) that Δb0 becomes

Δb0 =
15
16

c5 [ΔQ5x + 2Δ(Q2xQ3x)] (7.107)

+ c4
[
ΔQ4x + Δ

(
Q2

2x

)]
+

3
4
c3ΔQ3x + c2ΔQ2x,

indicating that the appropriate expression for b0 is

b0 = c2Q2x +
3
4
c3Q3x + c4(Q4x +Q2

2x) +
15
16

c5(Q5x + 2Q2xQ3x) + c0. (7.108)

Setting c1 = c0 = 0, we obtain the following expression for L5,

L5 = c4L
2
2 + c3

(
∂3
x +

3
2
Q2x∂x +

3
4
Q3x

)
+ c4L2 + L̂5, (7.109)

with (choosing c5 = 16)

L̂5 = 16∂5
x + 40Q2x∂

3
x + 60Q3x∂

2
x + (50Q4x + 30Q2

2x)∂x + 15(Q5x + 2Q2xQ3x).
(7.110)

The relations between different potentials appearing in the covariant system
(7.95) are determined by (7.97), (7.100), (7.103), (7.106), and (7.108). The
simplest Darboux-covariant fifth-order evolution equation (7.97) to be associ-
ated with (7.96) has the form

(
∂t + L̂5

)
ψ = 0. (7.111)

It is easy to see that the system (7.96) and (7.111) is equivalent to the original
system (7.39):

L̂5 = L5 + 15
[
∂3
x + (Q2x + λ)∂x + Q3x

]
(L2 − λ). (7.112)

Notice that the appearance of the third-order Darboux-covariant operator L3

as a part of the general fifth-order covariant operator L5 can be regarded
as a direct confirmation of the close relationship between the KdV and Lax
equations as the third- and fifth-order members of the same hierarchy.
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7.3 Bäcklund transformations and Noether theorem

BTs naturally arise when the Darboux formalism is “projected” to solutions
of nonlinear equations (the potentials of the corresponding Lax representa-
tion). The action is simple: “wave functions” of the Lax equations should be
excluded [239].

7.3.1 BT and infinitesimal BT

In the previous section we showed that the bilinear BT is a DT covariant form
of the equations of the Hirota method. For the KdV equation it is (7.25), which
is obtained from (7.22). The second relation (7.22) is nothing more than the
first equation of the classical BT, relating the fields w = Qx and w′ = Q′

x:

(w + w′)x = (w − w′)2 − κ2, (7.113)

(w + w′)t = −2(w − w′)(w − w′)xx + (wx − w′
x)

2 + 3((w − w′)2 − κ2)2,

while the second equation (we take the form of [407], the appropriate change
of notations is used) is derived from (7.18) in terms of the Q and Q′ fields
of the potential KdV equation (7.15); we denote 2μ = −κ2. The form of this
equation is not unique, because the first one can be used.

The famous consequence of the BT (7.113) is that both variables w and
w′ are solutions of the potential KdV equation

Λw ≡ wt − 6w2
x + wxxx = 0. (7.114)

Steudel [407, 408, 409] derived conservation laws for soliton equations by
application of the Noether theorem, imposing the BT in a version of the
extended interpretation of

w′ = Bκw ≡ w + κ[1 + κ−2(w′
x + wx)]1/2, (7.115)

which is one of the solutions of the first relation in (7.113) with respect to
w′ − w. The real-valued w is in the realm of the extended BT transform, if
inf[1 + κ−2(w′

x + wx)] ≥ 0, or |w′
x + wx| ≤M2, |κ| ≥M .

Theorem 7.1. Let

wi = Bκiw0, w3 = Bκ2w1, (7.116)

then
Bκ1Bκ2 = Bκ2Bκ1 (7.117)

and
(w3 − w0)(w2 − w1) = κ2

2 − κ2
1. (7.118)
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The fundamental property of the extension basis is that (7.115) is valid
not only for solutions of the potential KdV equation. In other words, the
Laurent series

δw = κ + A1κ
−1 + A2κ

−2 + . . . (7.119)

represents the infinitesimal transform at infinity on the κ-plane. Equating the
x-derivative of the right-hand side of (7.119) and the right-hand side of the
first relation in (7.113) yields

A1 = wx, An =
1
2
A(n−1)x − 1

2

n−2∑

r=1

ArAn−r−1, n = 2, 3, 4, . . . . (7.120)

These formulas were first derived by Zakharov and Faddeev [469] in the con-
text of the IST method; see also [385, 445]. Note also that the expansion
(7.119) after differentiation in x gives an alternative representation of a DT
as δwx ∼ u[1]− u. The recurrent relations (7.120) are solved explicitly:

A2 = wxx/2, A3 = wxxx − w2
x/2, A4 = wxxxx/8− wxwxx, . . . . (7.121)

7.3.2 Noether identity and Noether theorem

A Lagrangian density for the KdV equation is chosen so that

L =
1
2
wxwt +

1
2
w2
xx − 2w2

x (7.122)

gives the potential KdV equation (7.114) as the Euler equation. A variant of
the Noether theorem for the dependence of L on wxx is based on the following
form for the variation (the Frechét differential on the prolonged space):

δL ≡ ∂L

∂wt
δwt +

∂L

∂wx
δwx +

∂L

∂wxx
δwxx. (7.123)

A decomposition of the right-hand side of (7.134) into a divergence and a term
proportional δw gives the Noether identity

δL = At + Bx − Λδw, (7.124)

where
A =

∂L

∂wt
δw =

1
2
wxδw, (7.125)

B=
[
∂L

∂wx
−

(
∂L

∂wxx

)

x

]
δw+

∂L

∂wxx
δwx=

(
1
2
wt + wxxx − 6w2

x

)
δw−wxxδwx.

(7.126)
The expression for Λ is given by (7.114). A proof of the theorem follows from
the identity (

∂L

∂wt
δw

)

t

=
(

∂L

∂wt

)

t

δw +
∂L

∂wt
δwt, (7.127)

and similar ones for other derivatives and the Euler equation. The identity
(7.124) proves the Noether theorem:
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Theorem 7.2. If the Lagrangian changes by a divergence

δL = ε(Θt + Ξx) (7.128)

under the infinitesimal transformations w → w+ εf , then, for all solutions of
the potential KdV equation Λw = 0, the conservation law

Tt + Xx = 0 (7.129)

exists, with

T = ε−1A−Θ, (7.130)
X = ε−1B −Ξ. (7.131)

The following lemma occurs:

Lemma 7.3. Let dik = wi − wk and

L[w1]− L[w0] = Θ01
t + Ξ01

x , (7.132)

with
Θ10 = − 1

12
d10d

2
10 +

1
4
κ2, (7.133)

Ξ10 = d10

(
−4

5
d4
10 − 2κ2 + wx(d2

10 − κ2)− 2w2
x +

1
4
(w1 + w0)

)
.

Then the transformation Bκ is the Noether transformation.

This is proved by the definitions of the Lagrangian (7.122) and w1 (7.116) on
the basis of (7.113). The product Bκ+εB−κ, being the Noether transformation,
generates the vector (Θ,Ξ) such that

δL = L[w2]− L[w1] = ε(Θt + Ξx) (7.134)

determines the variation about the fixed w0. Finally, the part of the vector
(Θ,Ξ),

T = −κ

2
d40, X = 2κd40(wx − κ2), (7.135)

which is symmetric with respect to κ → −κ (the symmetry of the BT is
accounted for), contributes indeed to the Noether conservation law:

1
2
d40t + 2d40(κ2 − wx)x. (7.136)

The substitution of expansion (7.119) into (7.136) produces the conservation
laws

(A2r−1)t + 4(A2r+1 − wxA2r−1)x = 0, r = 1, 2, . . . (7.137)

in the form of Wadati et al. [445].
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7.3.3 Comment on Miura map

The first relation in (7.113) for imaginary κ = ik in terms of d01 = w0 − w1 =
d∗41 is nothing more than the Miura link for u = 2wx,

σx = σ2 + k2 − u,

or, in the notation of this section,

d01 = σ = φx/φ,

where φ is a solution of
−φxx + uφ = −k2φ.

This link immediately leads to the continuum conservation law from the cel-
ebrated paper of Miura et al. [335]

(φ∗φ)t + (φ∗φxx + φφ∗
xx − 4|φ2

x| − 6k2φ∗φ)x = 0

in the context of the Noether theorem.
Quite similarly the sine–Gordon equation is treated in [409].

7.4 From singular manifold method to Moutard
transformation

Paper [10] contains the so-called Ablowitz–Ramani–Segur conjecture that in-
corporated the Painlevé property [360]. This result was extended by Weiss
et al. [449] as the Weiss–Tabor–Carnevale theory to check the Painlevé prop-
erty for a PDE.

Estévez and Leble [145, 146] developed a procedure to derive the Moutard
transformation (and hence the DTs ) in the framework of the singular manifold
method. The generalization of these ideas for the case of two Painlevé branches
was made in [143].

We will illustrate the idea using the example of the singular mani-
fold method analysis of a version of the 2+1 KdV (Boiti–Leon–Manna–
Pempinelli 1) equation ([59]). Let us write this equation in the form [145]

mty = (mxxy + mymx)x. (7.138)

It is proved that (7.138) has the standard Painlevé property, i.e., its solutions
can be locally expanded in terms of four arbitrary functions. The truncated
expansion produces the auto-BT

m[1] = m + 6
φx
φ

, (7.139)
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which links two solutions of (7.138) by the “singular manifold” function φ.
The substitution of (7.139) into (7.138) and application of the generalized
procedure [146] leads to the Lax pair

φxxx − φt + mxφx = 0, 3φxy + myφ = 0. (7.140)

A consideration of (7.139) as a transformation m → m[1] and the truncated
expansion for the transformed function ψ[1],

ψ[1] =
p

φ
, (7.141)

which is the solution of the Lax pair (7.140) with the transform m[1], yields
the following equations for p:

px = −2ψφx, py = −2φψy, pt = 2ψxφxx − 2φxψxx − 2ψφt. (7.142)

It can be proved that the form

dΩ = −ψφxdx− φψydy + (ψxφxx − φxψxx − ψφt)dt (7.143)

is exact (i.e., dp = −2dΩ) on solutions ψ and φ of the Lax equations and
hence there exists

ψ[1] = ψ − 2
Ω(ψ, φ)

φ
, (7.144)

which coincides with the Moutard transformation [340, 341]. The method
seems to be an effective tool to derive the Moutard transformation formalism
in 2+1 dimensions [140]. It was further applied to generate the DTs for the
Bogoyavlenskii equation in 2 + 1 dimensions [144]. The constructive elements
of the theory are presented in [141].

7.5 Zakharov–Shabat dressing method via operator
factorization

7.5.1 Sketch of IST method

In the “new history” of the soliton theory, half a century after the Bäcklund–
Moutard–Darboux transformations, the notion of dressing appeared within
the inverse scattering problem, when solving the Cauchy problem for the KdV
equation [474]. To begin with, let us sketch the IST method and introduce
scattering data for the one-dimensional Sturm–Liouville problem

−∂2
xψ + u(x)ψ = k2ψ (7.145)

with a localized potential u(x) (ε > 0, |x| → ∞ ⇒ |u(x)x(1+ε)| → 0) and the
spectral parameter k2. The scattering data comprise eigenvalues kn = iκn,
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normalization constants an = limx→∞ exp(κn)ψn for eigenfunctions ψn nor-
malized as

∫∞
−∞ |ψn|2dx = 1, and the reflection coefficient v(k). The last one is

extracted from the asymptotic behavior of the continuum spectrum solutions

ψ(x, k) �
{

exp(−ikx) + v(k) exp(ikx), x→∞,
w(k) exp(−ikx), x→ −∞.

(7.146)

Solving the scattering problem, we arrive at the function F (x) [354]:

F (x) =
∑

m

am exp(−κmx) +
1
2π

∫ ∞

−∞
v(k) exp(ikx) dk, (7.147)

which determines the kernel of the Gel’fand–Levitan–Marchenko (GLM) in-
tegral equation

K(x, y) + F (x + y) +
∫ ∞

x

K(x, s)F (s + y) ds = 0, x ≤ y. (7.148)

Then the potential u(x) is retrieved from the solution K(x, y) of (7.148) as

u(x) = 2
d
dx

K(x, x). (7.149)

Equation (7.148) links K and F ; it maps the scattering data to the poten-
tial and is referred to as the inverse scattering transformation. The Gardner–
Green–Kruskal–Miura theory, using the second operator of the Lax pair (see
Chap. 3), gives explicit dependence of the scattering data on time, am(t) and
v(k, t), via the initial values of am(0) and v(k, 0).

The GLM equation (7.148) is solved explicitly in some of the simplest
cases [354]. The multisoliton solutions correspond to zero v (reflectionless
potentials). The kernel of the integral operator factorizes in this case and has
a finite number of terms, as is seen from (7.147).

7.5.2 Dressible operators

The idea of the dressing method in its original IST version [474] (we follow
the modification given in [466]) uses the fact that each function F generates
the function K and hence a potential. Let us write (7.147) symbolically as

K + F + K∗F = 0, (7.150)

where the asterisk denotes the action of the integral operator and the function
F (x, y) goes to F (x + y) for the standard GLM equation. Consider a pair of
operators M and M̂ which obey the equation

M̂K + MF + (M̂K)∗F + K∗(MF ) = 0. (7.151)
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The operator M is named the “bare” operator, and M̂ is the “dressed” oper-
ator. Suppose the function F obeys the equation

MF = 0. (7.152)

Then we have
M̂K = 0, (7.153)

if the operator M̂ exists. The set of pairs (M , M̂) forms a vector space.
As an example, consider the operator

M = ∂x + ∂y. (7.154)

In this case (7.151) takes the form

MK(x, y)+MF (x, y)+∂x

∫ ∞

x

K(x, s)F (s, y) ds+
∫ ∞

x

K(x, s)∂yF (s, y) ds = 0.

(7.155)
Evidently,

∂x

∫ ∞

x

K(x, s)F (s, y) ds = −K(x, x)F (x, y) +
∫ ∞

x

[(∂xK(x, s)]F (s, y) ds.

(7.156)
Integration by parts gives

I =
∫ ∞

x

[∂sK(x, s)]F (s, y) ds = −
∫ ∞

x

K(x, s)∂sF (s, y) ds−K(x, x)F (x, y).

(7.157)
In (7.155) take into account (7.156) and introduce I as

MK(x, y) + MF (x, y)−K(x, x)F (x, y) +
∫ ∞

x

[∂xK(x, s)]F (s, y) ds

+
∫ ∞

x

K(x, s)∂yF (s, y) ds + I − I = 0. (7.158)

For +I substitute the mid-positioned term in (7.157), and for −I the right-
hand side of (7.157) with the opposite sign:

MK(x, y) + MF (x, y)−K(x, x)F (x, y) +
∫ ∞

x

[∂xK(x, s)]F (s, y) ds

+
∫ ∞

x

K(x, s)∂yF (s, y) ds +
∫ ∞

x

[∂sK(x, s)]F (s, y) ds

+
∫ ∞

x

K(x, s)∂sF (s, y) ds + K(x, x)F (x, y) = 0. (7.159)
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Ordering the terms, we get

(∂x + ∂y)K(x, y) + MF (x, y) (7.160)

+
∫ ∞

x

[(∂x + ∂s)K(x, s)]F (s, y) ds +
∫ ∞

x

K(x, s) (∂y + ∂s)F (s, y) ds = 0.

Hence, the following operator arises:

M̂ = M = ∂x + ∂y. (7.161)

The operator M is called dressible. A set of dressible operators forms linear
space.

A connection between scattering data and a potential U = U(x, t) with
the additional (time) parameter is used in integrable equations via the Lax
representation [335] and, directly, in quantum evolution problems. The prob-
lems in which potentials are functions of time can be studied by the present
method because the operator of the time derivative ∂t is dressible. As before,
from the equation

MF (x, y, t) = 0
we obtain

M̂K(x, y, t) = 0.
Let a function ψ be a solution of two equations

(∂t − L[U ])ψ = 0, (7.162)

(∂y −A[U ])ψ = 0. (7.163)
If derivatives with respect to t and y commute, then the Lax representation
is

At − Ly = [A,L]. (7.164)

Proposition 7.4. If two operators M and M̂ are such that there exists a
solution of (7.151) (operator M is dressible) and if the operator M forms the
Lax pair with N , then the operators M̂ and N̂ also form a Lax pair. If a pair
of operators M and N produces a nonlinear system, then the pair M̂ and N̂
produces the same system.
The next example is

M = α
∂

∂t
+ ∂2

x − ∂2
y . (7.165)

We want to dress the operator M , applying it to the GLM equation (7.151).
Integrating by parts yields the operator

M̂ = α
∂

∂t
+ ∂2

x − ∂2
y + U(x), (7.166)

where
U(x) = −2

d
dx

K(x, x). (7.167)
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Note that a function U has appeared in the dressed operator, while for the
first-order operator (7.154) the dressed operator is the same as the bare one
(7.161).

In general, we put
L0 = l0(x, t, . . .)∂nx . (7.168)

Consider the operator D of the following structure:

DF = α∂tF + L0F − FL+
0 , (7.169)

where L+
0 is the Hermitian conjugate to L and acts to the left.

Proposition 7.5. The operator (7.169) is dressible. The dressed operator D̂
is

D̂K = α∂yK + LK −KL+
0 , (7.170)

where
L = L0 + L̃ (7.171)

and
L̃ = l̂0 ∂

n−1
x + . . . , l̂0 ∼ (∂x − ∂y)iK

∣∣
y=x

. (7.172)

7.5.3 Example

Let us take
L0 = ∂2

x ⇒ L = ∂2
x + U.

Solving the equation MF = 0 yields M̂K = 0; hence, some class of solvable
equations appears, with some linear space.
Let us consider operators D1 and D2,

D1F = α1∂t1F + L
(1)
0 − FL

(1)+
0 ,

D2F = α2∂t2F + L
(2)
0 − FL

(2)+
0 .

This class of operators contains the Lax representation

α1∂t1L
(2)
0 − α2∂t2L

(1)
0 +

[
L

(1)
0 , L

(2)
0

]
= 0.

For relevant forms of the operators L
(1)
0 and L

(2)
0 and for α1 = α, α2 = −1,

t1 = y, and t2 = t we obtain the KP equation

∂x (ut + 6uux + uxxx) + α2uyy = 0.

In the case of α2 = −1 we have the KP I equation; otherwise, if α2 = 1 we
have the KP II equation. The KP equation is the two-dimensional equation
that contains the KdV equation as a y-independent reduction:

ut + 6uux + uxxx = 0.
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It was demonstrated in [324] that the triangular (Volterra) factorization
of the operator

F = (1 + K+)−1(1 + K−)

proved by Zakharov and Shabat [474] links the Zakharov–Shabat dressing
scheme to the DT dressing.


