5

Dressing in 2+1 dimensions

In this chapter we speak again about the origin of the dressing technique, now
in multidimensions. The important step was realized in the Moutard papers
[340, 341] that the stabilization of the Laplace transformation chain can gen-
erate solutions. Notice again (see Chap. 1) that the net of points generated by
the transform of the invariants of the gauge transformations has two possible
symmetry reductions: the first reduction corresponds to the Moutard case and
the second one was discovered by Goursat [192, 193]. The dressing procedure
in two spatial dimensions opened a way to apply the Laplace equation in Lax
pairs to solve some nonlinear 2+1 equations because their associated spectral
problems are expressed in terms of the Laplace equation.

The celebrated 2+1 Kadomtsev—Petviashvili (KP) equation for surface
water waves (there are lots of other applications [228]; see Chaps. 9, 10) and
the corresponding dressing based on the direct extension of the Darboux the-
ory (linear Schrédinger evolution as the first operator in the Lax pair) [313]
have been the subject of intense studies [324]. The dressing methods for the
Davey—Stewartson (DS) equation were introduced in [277], where, by means
of eight Ablowitz—Kaup—Newell-Segur (AKNS) type pairs, ordinary and two-
fold elementary Darboux transformations (DTs) were studied and used for
construction of multisoliton solutions of both types (DS I and DS II) of the
DS equation. The dressed potentials were expressed in terms of quasidetermi-
nants studied previously in [176]. It was proved that nonlinear superposition
formulas have a symmetry structure that gives a possibility to build networks
of DT's that can be used to solve boundary problems via the construction pro-
posed in [199]. An important class of solutions of a general Zakharov-Shabat
(ZS) hierarchy that was not mentioned in [324] is generated by the dressing
formulas from [313, 314]. In particular, solutions of the KP equations are given
by the relation [313]

u = 7282IHW(¢15' "aws)a
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where the Wronskian W is formed by the dressing functions ¢; depending on
a parameter k and arbitrary function g(k):

@; = [0 + g(@)] exp(kx + Ky + k°t) k=, -

This class of solutions contains the so-called general position solutions derived
by Krichever [252] via the finite-gap formalism. Note also that these solutions
generate the Calogero—Moser potentials

1
=2
" ;(E—l’j(y,f)’

which can be extracted from the dressing formulas. For the N-particle prob-
lems and polynomial solutions of the ZS hierarchy we refer to [315]. The 2+1
theory of generalized AKNS equations, including the DS, the Boiti-Leon—
Manna—Pempinelli (BLMP1 and BLMP2) [58, 65], and some other equations,
is studied in [140, 141, 143, 144, 142].

Here we concentrate on studying a general theory of dressing based on
combinations of the following transformations: Laplace, Darboux (Sects. 5.1,
5.2), Goursat (Sect. 5.3), and Moutard (Sect. 5.4). Among other things, we
derive a new integrable equation (5.19) which can be treated as the two-
dimensional generalization of the sinh—Gordon equation. Sections 5.5 and 5.6
illustrate applications of this theory to the two-dimensional Korteweg—de Vries
(KdV), two-dimensional modified KdV (MKdV), Nizhnik—Veselov—Novikov,
and BLMP1 equations.

5.1 Combined Darboux—Laplace transformations

In this section we formulate constraints to coefficients of the Laplace equation
which reduce it to the Moutard and Goursat equations. We show that a num-
ber of integrable nonlinear equations arise as a consequences of the reduction
equations for the DTs. The content of this section is based on [287].
5.1.1 Definitions
For the Laplace equation

Yay +athy +b0p =0 (5.1)
the following were introduced:

1. The Laplace transformations (LTs) (Sect. 1.5)
a—a_1=a—0;Inlb—ay), b—b_1=b—ay,, Y —P_1=1;+ar,

a— a1 =a+0;Inb, b— b =b+0,(a+0;1Inb), 1/)%1/)1:1/@.
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2. The DTs
a—a=a—0;In(a+0), b—b=b+oy, P—1=¢,—0y, (54)

Gora=—(c4bp), boib=b—(bp)y, b1 = pihy — .
(5.5)
where 0 = o(z,y) = ¢ /0, p = ¢/¢y, and ¢ and ¢ are particular solutions
of (5.1) with predetermined a and b. We refer to ¢ as the support function
of the DT.

5.1.2 Reduction constraints and reduction equations

A constraint for the coefficients a and b of (5.1) fixes a particular class of
equations which we are interesting in. Namely, the condition

a =0, b=u (5.6)
yields the Moutard equation
Yoy + u(z,y)th =0, (5.7)
while 1
a= —26w1n)\, b= -\ (5.8)

leads to the Goursat equation

Cay = 20/ A GGy (5.9)
After the substitution ¥ = 1/, and x = \/Cy we get

Yy = VA, X =V

or, in the form of the Laplace equation,

Yoy = 5 (Nt + A0 (5.10)

and a similar equation for y; see also Sect. 5.1.3. The functions u and \ are
solutions of the special equations which we call the reduction equations. In
this section we will derive these equations for the LT and the DT. We study
mostly the example of the Goursat equation, but the approach is directly
reformulated for the Moutard equation.

Let us consider the LTs (5.2). The invariance of the reduction constraint
(5.8) means

1
Ao =A— 28I8y1n/\: 20)\, C = const. (5.11)
It is obvious that (5.11) is valid for the LT (5.3) as well because the last one
is inverse to (5.2).
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The reduction equation for this transformation is the well-known sinh—Gordon
equation

0,0, In \ = 2)\ — f (5.12)

and the new potential A_; is a solution of (5.12) too. In the case C' = 0 we
obtain A_; = 0 and the Liouville equation, instead of (5.12). The general
integral for the Liouville equation is well known:

f'g
(f+9)%

where f = f(z) and g = g¢(y) are arbitrary differentiable functions. The
Goursat equation is integrated as

1

(= o2 OyIn(f+g)+V, C;=const.
1

The function V' = V(y) is determined by the equation

/ 1 N 2 1 q" 2
= 1 =
v (261 ( ng ) 4012 v

_ Ve 1 (_ 1 )
l/J—Ol(erg), X—QOlayln 6yf+g .

Proposition 5.1. Let M and L be two Laplace invariants of (5.1). This
means that

and

1
M:28I8y1n/\—/\, L=-\
Using the reduction equation (5.12) yields

C
M=— L=-)\
2\’

and

M_y=M=L  L_,=L =M.

Now we take the DT (5.4). Inserting both transforms into the reduction
condition (5.8), we get

Az
Al—)\ay—)\(02)\). (5.13)

Denote @ =In¢ and A = In \. Since

1
)\—Uy = (—2Aw+aw) Qg
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and 0 = a, we obtain from the transform (5.13) the condition for A:

(o 20 oot (o Sa)] 20 o

Equating to zero the first parentheses yields
Agy = 2exp(A)

and a = A/2 — ¢(y), where ¢(y) is an arbitrary function. But in this case
we get \; = 0, and the Liouville equation is in the realm of the reduction
equation.

Equating to zero the brackets in (5.14), we arrive at the equation

fexp(—20)ALs = [exp(—20)], ; (5.15)
therefore,
0, = > = ! _ G
’ F, + Cy ’ F, + 027

where F' = F(z,y) is any differentiable function and C; 2 = const. Substituting
(5.15) into (5.10) yields

2(Cy + F)CF 4 [(Fyaw + 4F,)Co + FuFyay + AF,Fy — FyuFyy] C1 + 2F . F,
1 1
F2 + 2Fy2) Cy— F2Fy — FyFpuFyy + FyFyFypy = 0.

(5.16)

Define new fields P and Q) as
F, =P —(Cy, F,=Q - Ch.
Then (5.16) can be split into the system
2Q.QP; — (2Q.,Q — Q% +4Q*)P =0, P, = Q.. (5.17)
After integration of the first equation we get

C3Qq
p_ 3Q _ 9 Q ’
V@ Qq
where C'5 is the third constant of integration. It is necessary to obey the second
equation in (5.17). Let

Q:nQ(z,y), G =Inm(z,y).

Then the reduction equation is simplified:

exp G, G

(nz)m = 2C (mny)

Y MgNg = MN. (5.18)

This system can be rewritten in more convenient form. Let

Ny = nexp.s, m, = mexp(—>S5),
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S = S(z,y). After substituting into (5.18) we get

1n
Sy = om ™ Oy In(mn);
therefore,
Sy = 4(sinh S) 9,0, * cosh S. (5.19)

Equation (5.19) is the reduction equation for the DT (5.4). It looks like (5.12)
and it is a generalization of the d = 2 sinh—Gordon equation. The Lax pair
for (5.19) is introduced by means of the following:

Proposition 5.2. The (L, A) pair for (5.19) is written as

szov KlDwZOa

where
1 )\1 1 )\l,m

D =0, — o, Kzamay—QAay—A, Klzaiay—Q/\lay—)q,

and the variables A and A1 are determined by
(Sz +2coshS), (Sz +2coshS),
P —_— = -2
A 4sinh S exp(=5), A1 4sinh S exp S, (5.20)

and oy = X — A1

This statement is checked by direct substitution. Thus, the reduction equa-
tions for the DT (5.4) have either the form of (5.19) or the form of the Liouville
equation.

The reduction equations for the DT (5.5) are obtained similarly. As a
result, we get

Rete
Py

where ¢ is the support function of the DT (5.5) and the reduction equation
can be written in the form of a system

A=CipyexpF, A= xp F, (5.21)

¢xy = Qby[Fm + 201¢6XPFL Fy¢y = O2¢
Proposition 5.3. By the construction (5.20) for the DT (5.4) we get
M = —), L=-)\

and

My = M exp(—25), Ly = Lexp(29).
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Similarly for the DT (5.5) the use of (5.21) gives

02(_¢m + ¢Fm + Cl¢2 eXpF)

M= — L=-Ci¢p,expF

by ’
and ) )
Cro
M=—-_"Y"M L=— L.
1 CQ¢2 ) 1 d)g

The product of the Laplace invariants ML is invariant in both cases. Combi-
nations of LT and DT generate new equations and their Lax pairs.

5.1.3 Goursat equation, geometry, and two-dimensional
MKdAV equation

As shown in Sect. 5.1.2, the Goursat equation (5.9) is connected to the par-
ticular case of (5.1) with two potentials a = a(x,y) and b = b(z,y) = A(z,y).
We refer to A as the potential function. The reduction (5.8) is valid only for
special types of potentials if the form of the Laplace equation is maintained
while transformations are performed. Our interest in the Goursat equation
is caused by applications of this equation in geometry and in the soliton
theory:

1. As regards geometry, let  be the complex coordinate, y = —z, v/ is the
real-valued function, and ¢ or x as solutions of (5.10) are complex-valued
functions. Then we define three real-valued functions X;, ¢ = 1, 2, 3 which
are the coordinates of a surface in R3 [242]:

X; 41X, = 2i / (zp?dy’ - X?dx') ,
I
X; —iXy = —2i / (¥?dy’ — x*da’), (5.22)
I

Xy = —2 /F (¥xdy’ + xpde’),

where I' is an arbitrary path of integration in the complex plane. The
corresponding first fundamental form, the Gaussian curvature K, and the
mean curvature H yield:

1 A
ds? = 4U?dzdy, K = UQamay InU, H= é .

Here U =| ¢ |2 4+ | x | and any analytic surface in R® can be globally
represented by (5.22) [244].
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2. As an example of soliton equations, consider the system of the two-
dimensional MKdV equations introduced by Boiti, Leon, Martina, and
Pempinelli [58, 65]:

AN\ — ANy + BNy — Aae — Ayyy) + 4N [(2A + B), + (2X — A),] +
FOAAyAyy + Azdae) — 3(A +A3) =0,

B, =3y — Az, Ay =Xy — 3.
(5.23)
Here A = A\(z,y,t), A = A(z,y,t), and B = B(z,y,t). If we introduce the
function u = /A, then we can rewrite (5.23) in the more customary form

ug + 2u?(ug + uy) + ; (By — Az) u+ Buy — Auy — ugy — use =0,

By = (30, — 0,) u?, Ay = (0y — 30,) u.
(5.24)
The reduction conditions A = —B = —2u? and u,, = u, lead to the MKdV
equation,
up + 120Uy — 2usy = 0,
(here ugy = Ugypy) so we call (5.24) the two-dimensional MKdV equations.
The two-dimensional MKdV equations (5.24) are the compatibility con-
dition of the linear system comprising (5.10) and

30\
-A—B

/(%)

We will study (5.24) in Sect. 5.6.

Remark 5.4. Zenchuk [477] studied the chains of discrete transformations
(5.2)—(5.5) of solutions and potentials in the general case of the linear second-
order partial differential equation with two independent variables. Consider-
ing the simplest (k = 2) closed chains of these transformations, he obtained a
novel integrable equation
1
2

where Cy > 0.

A
Y= ety = Yyt ANt ) (Ae=a)o

Spy — e —e™® [Cl — 0! (e*S)y} =0,

In the present chapter we use the reduction restriction (5.8) as a (weak)
condition of closure. In Sect. 5.1.2 we derived a new integrable equation (5.19),
the two-dimensional generalization of the sinh—Gordon equation. In the next
section we employ the Goursat transformation and the binary Goursat trans-
formation to construct explicit solutions of the Goursat equation. These trans-
formations allow us to obtain new solutions of the Goursat equation without
solving the reduction equation. We also discuss the transformation for Laplace
invariants.
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5.2 Goursat and binary Goursat transformations

An analogy of the Moutard transformation for the Goursat equation was
studied by Ganzha [169]. Such a Goursat transformation is valid without
a reduction restriction and reduction equations. Many useful details can be
found in the textbook of Ganzha and Tsarev [171], where the transformation
is defined via two solutions of (5.9). The transformed function t[1] and the
potential A[1] are extracted by quadratures [169, 197].

Theorem 5.5. Let the transform [1] be introduced by the relations

(z219[1]/¢1)2 = 21(2/P1) 2, (5.25)

(z19[1] /1)y = [21210y — 221021y / 210y | (Y2/ Y1)y,
where z1 2 are solutions of (5.9) and 12 = /21,2, solve (5.10). Then 1[1] is
a solution of the (transformed) equation (5.10) with the potential
M1 =X = (Inz1)gy

and the transform z[1] is found by a quadrature from

e =v?[], 201y = (0[1]y)?/A0]. (5.26)

This transformation preserves the form of the Laplace—Goursat equation
(5.10), e.g., possesses the covariance property. Below we introduce a twofold
eDT for the Goursat equaton with the same property.

We introduce new variables £ = z +y and 7 = x — y and rewrite (5.10) in
matrix form,

U, = o3¥; + UV. (5.27)
Here
W= <¢1 1”2) . U=V, (5.28)
X1 X2

where ¢y, = ¥(§,n) and xr = xx(§,7n), k = 1,2 are particular solutions of
(5.10) with some A(,7n), and 01,3 are the Pauli matrices. Let ¥; be some
solution of (5.27) and ¥ # ¥;. We define a matrix function o = ¥ (¥, *.
Equation (5.27) is covariant with respect to the classical DT:

d[1] =P — 09, U] =U + [o3,0]. (5.29)

It is a particular case of the general classical non-Abelian formula from Chap.
2, the Matveev Theorem 2.19.

Remark 5.6. Tt is not difficult to check that the DT (5.29) is the superposition
formula for two simpler DTs given by (5.4) and (5.5).



150 5 Dressing in 241 dimensions

Remark 5.7. Equation (5.27) is the spectral problem for the DS equation
[13, 277]. The LT produces explicitly invertible Biacklund autotransformations
for the DS equation. It is shown in [459] that these transformations permit
solutions to the DS equation to be constructed that fall off in all directions in
the plane according to exponential and algebraic laws.

Next we consider a closed 1-form
d2 = d§ Y + dn DoV, 2= /d.Q,

where a 2 X 2 matrix function & solves the equation
&, = Peoz — PU. (5.30)

Let us apply the DT. It can be verified by immediate substitution that (5.30)
is covariant with respect to the transformation

D[+1] = 2(®, 0,0, L.
We can alternatively affect U (5.28) by the following transformation:
U+, -1 =U + [o3, 7, 271 9].
The particular solution of (5.30) has the form

s191 + S2tP2  —S1X1 — S2X2
- , 5.31
! <83¢1 + 842 —s3x1 — 84X2) (5:31)

where s = const (k=1,...,4). It is convenient to choose @7 in the form
) =V o3, (5.32)

where the superscript T stands for the transpose. Equation (5.32) is the par-
ticular case of (5.31). In this case

Ul+1,-1] = U — 24p, (5.33)

where A is the off-diagonal part of the matrix A = ¥, 2710 Q2 = Q(®1,¥)
and
AL = Ap = foi. (5.34)

Here f = f(&,n) is some function. Using (5.29), (5.33), and (5.34), we see that
U[+1, —1] has the same form as for the initial matrix U,

Ul+1,-1] = <\/A[+01,—1] \/AHOLl]) _ <w0_2f \/>\02f>;

thus, the reduction restriction is valid without the reduction equations.



5.2 Goursat and binary Goursat transformations
The new function ¢[+1, —1] has the form
Bl+1,—1] = & — (D, W) [Py, )] &4,

where @ is an arbitrary solution of (5.30).

Using the twofold DT (5.33) and (5.35), we can construct a new solution
of the Goursat equaton by means of dressing a particular solution. As a result,
we get the following theorem (returning to the former variables x and y):

Theorem 5.8. Let
Uy = VAXk, Xk = VU,
by = VB,  Bre= -V,

where k = 1,2. Then new functions

B A1 + Agiho
D )

Aix1 + Aaxe

51251+ D

/
= Qg
are solutions of the equations
/ _ 1 ! / _ 1 7
al,y - \/A 617 61,1 - \/A Qy,
where

VN = A Y1x18222 + ax28211 — (Y1x2 + vax1) 12
N D

and

0 = /d:czbf +dyx3, $ho = (91 = /dﬂ/fﬂ/fz + dyxixz,
(299 = /d»’ﬂ/}% + dyx3, D = 11020 — (23,
A = /dxalwl + dyBixi, Ap = /dﬂﬁalwz + dyBixe;

/121 = /dxagwl + dyﬂgxl, /122 = /deCQwQ + dyﬁQX%

Al = A11922 - A129127 A2 = AIQQll - All-QlQ-

Here [ = fr, where I' is an arbitrary path of integration in the plane. The
explicit expressions for the functions of and B4 are obtained by the direct

picking up of the relations indicated.

Thus the twofold eDT allows us to construct explicit solutions of the Goursat

equation without solving the reduction equation.



152 5 Dressing in 241 dimensions

5.3 Moutard transformation

The Moutard transformation [340, 341] is a map of the DT type: it connects
solutions and the coefficient u(x,y) of the equation (5.7) so that if ¢ and v
are different solutions of (5.7), then the solution of the twin equation with
¥ — Y[1] and u(z,y) — u[l](x,y) can be constructed by the solution of the
system

@W[A)p)e = —* (W e, @[]p)y = (W),

In other terms,
Y[ =¥ — p2(p, 1)/ 2(p, p), (5.36)

where (2 is the integral of the exact differential form
d2 = gy dz + Pe,dy. (5.37)

The transformed coefficient (potential in mathematical physics) is given by

u[l] = u — 2(10g ©)zy = —u + Puipy /P>

The proof is straightforward; see [298] for details.

The important feature of the Moutard transformation is general for the
DTs: the transform is parameterized by a pair of solutions of the equation
and the transform vanishes if the solutions coincide. The Moutard equa-
tion is obviously transformed to the two-dimensional Schrédinger equation
and studied in connection with the central problems of classical differential
geometry [197].

In the soliton theory the Moutard equation enters the Lax pairs for non-
linear equations such as the KP equation [35, 168, 298, 430] (see Chaps. 9, 10
for more details).

5.4 Iterations of Moutard transformations

Analysis of the iteration sequences for the transformations of the form (5.36),
where, in accordance with (5.37),

Qp.p) = / Aol @)y + cs = 622 (5.38)

by the appropriate choice of the constant cg, is performed similarly to the
algorithm given in [324] for the classical DT. Suppose the result of N iterations
is a linear combination of the integrals £2(¢;,v) of (5.37):

Y[N] =¢+Zsi9(s@i,¢)- (5.39)
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This formula is proved by induction. The main property of the Mourtard
transformation can be written as

ok + Y sif2(pi, o) =0 (5.40)

2

and gives

by Kramer’s rule. Denoting

Qi = Q(s@uw) and Qik = Q(%,QD}C),

we get A = det[f2;;], and 4A; is obtained from A by the known rule of action

with the ith row. Hence, the results of the iterations can be presented in the
compact determinant form as in the classical Crum case [324].
Differentiating (5.39) yields

Yay[N] = Yuy + (8i82i)ay = —u[N]Y[N] (5.42)

= 7’&1/) + (Smhoz + Sz-sz)y = 7U[N](1/) —+ Si.Qi),
and using the definition of the determinant A together with the properties
Qix = iy, Siz = —8;1n, p; gives the DT for the iterated potential

u[N]=u+6(InA),,, (5.43)

that is used for multikink (see the next section) and multidromions [145, 146)
construction.

5.5 Two-dimensional KdV equation

Applications of the Moutard transformations for solution of the KP and DS
equations are well known [324]; for the Nizhnik—Veselov—Novikov equation see
[278]. Here we follow [145] concerning the equation

My = (mzzy + mymx)x7 (5.44)

which is the 241 version [281] of the KdV-like Hirota—Satsuma equation
[211]. Equation (5.44) was integrated by inverse spectral transform in [58, 65].
Details of multisoliton (multikink) construction and asymptotic behavior are
given in the next section. We also use this example in Sect. 7.3 to show how
the singular manifold method generates the Moutard transformation.
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5.5.1 Moutard transformations

Here we consider the asymptotic behavior of iterated solutions and the
simplest example of repeated iterations from the zero seed potential that
demonstrates the interaction of kinks. The formula for the N-times iterated

solution is
m=06(InA),, (5.45)

where, again, A = det[A;;] and, like [277], the one-step transform was
performed,

A = / A2, 61) + Cos Cit + Cs = d(0):(0),

Abn, 65) = -2 / [Grder + Sody + Sadl], (5.46)

51 = ¢k¢iwa 62 = (bky(bu 63 = (bk(bzt - (bkw(bmm + (bkww(bm

This way we fix the constants of integration. A similar combination of solutions
leads to multidromions [145], the localized solitons in two dimensions (first
appeared in [62]).

5.5.2 Asymptotics of multikink solutions of two-dimensional
KdV equation

To demonstrate the possibilities of the technique in 2+1 dimensions, we con-
sider the example of kink interaction and choose the seed Lax pair solution
as

or = Ar exp(arz + ait) + By exp(bry). (5.47)

Introducing the notations

a; b;

aik:ai—i—ak’ 5ik:bi+bk7

& = ax® + aiit, &io = a;zo + ajto, Ai/Bi = pi,
we perform integration from xg, yo, to to x, y, t and obtain
A, = Cig + aixpiprlexp(&i + &) — exp(&io + Eko)]+ (5.48)

+pi [exp(& + bry) — exp(&io + bryo)] + Bix [exp(bi + br)y — exp(bi + bx)yo] -

We would stop at kinks within the choice a; > 0, b; > 0 for xg, yo,tg — —00;
hence,

Ai = [airpipr exp(Xi + xx) + pi exp(xi) + Bir] exp[(bi + br)y] + Cir, (5.49)
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where y; = a;x + a?t — b;y. Notice that it is impossible to represent 4A;; as a
sum of two exponents with the opposite powers like for the multisoliton de-
terminant representation for the KP equation [324]. Hence, we should develop
an asymptotic calculation technique.

Let us consider the case

0 < Re(a?) < ... < Re(a%)

and go to the reference frame of the sth kink that means fixing the phase ;.
Running at the level y, we shall derive the asymptotic at t — +00. We shall
also put Cj, = 0 and Af, = A, exp(b; + bi)y and account for the relation
(InA)!. = (In A),. Finally, let us investigate

Ay, = ik exp(x; + Xi) + exp(x;) + Bik, (5.50)

where
T = —a?t—l—bsy/as—i—xs/as, (5.51)

Xk = ar(af — al)t + (arbs/as — br)y + xr/as + In[pz].

Therefore, at t — oo and xs = const,

-0, k<5
Xe = o0, k> s

and the elements of the determinant matrix have the following asymptotic
values:

1. Aikﬁﬁika i7k<3

2. Ak — aigexp(x; +Xy), G, k>s

3. Ay, —expx,, i>s, k<s

4. Qi — agexp(x; +x;) + ik, 1<, k>s

It can be shown that only the first term contributes to the determinant
asymptotic. We list below the special cases:

1=S
k < 57 ASk = eXp(XS) + BSka
k=35, A= [ossexp(xs)+ 1] exp(xs) + Bk,
k>s, Ag=oasexp(xl+Xk)-

k=s
1< S, Ais = ﬂis;
i>38, A = aislexp(xs) + 1] exp(x:) exp(xi)-

It is convenient to present the explicit form of the determinant via the super-
matrix
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| | k<s | k=s | k>s |
i<s Bik Bik @ik exp(x; + X%)
i = 8| Agp = exp(xs) + Bk Ags sk exXp(Xs + Xk)
i>s exp(Xi) exp(xi)[vis exp(xs) + 1]| i exp(xi + Xx)

In this asymptotic determinant it is possible to extract exp x from rows ¢ > s
and from columns k > s, i.e.,

A = exp (Z Xi — Xs) Aq. (5.52)
i=1

Then
Bik Bis 0
Al = exp(xs) + 6 Ass AskXs | s
1 Qs eXp(Xs) +1 ik

where 0 and 1 are matrices with zero and unit elements. Obviously, it follows
from (5.45) that

n
m— [zxi—xs
i=1 -

A Lagrange expansion by the row of number s,

+ (In4y), Zal —as+ (InAy),. (5.53)

[0,...,0, a5 €xp(2X5),0,...,0] + [1,...,1, 5 s+1 €xP(Xs41), L, .-, 1]+ ...

+(6817" '768570;' 70)
allows us to present the result for the asymptotic Ay in a “kink” form:
Bik Bis 0

Ay = agsexp(2xs) | 0 1 0
1 (07F) eXp(Xs) +1 (6733

(5.54)
Bik Bis 0 Bik Bis 0
+ eXp(Xs) 1 1 Qs | + Bsk ﬁss 0
1 aisexp(xs) + 1 au 1 aisexp(xs) + 1 aup

The first determinant is arranged via a sum of the columns with the num-
ber s terms:

Bik 0
1|+ 0
1 ais exp(xs)

The second determinant is zero because it has a zero row. Finally,

A% = exp(2x;s)(ass A1 + Az) + explxs|(As + Ay) + As, (5.55)
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where
Bik Bis 0 Bik 00
Al = 0 1 0 y AQ = 10 1 Agk | (556)
10 19 oy 19 s g
Bik Bis 0 Bik Bis 0
Ag = 10 1 Ak | A4 = Bsk Bss Qs | (557)
19 19 @y 19 a5
Bik Bis 0
AS = ﬁsk ﬁss 0 . (558)
10 10 Ok

The determination of the phase of the sth kink is performed in the following
way. If we introduce the phase x and rewrite A® as

A" = (exp x + a)® + b, (5.59)
then
m = (In A%), = A%/A" = 2[exp x + a]a/[(exp x + a)* + b], (5.60)
where o = x,. As a result,
m =0, X — 00, (5.61)
m = 2ac/(a® 4+ b), X — —00. (5.62)
Equating powers of exponential terms,
2x = 2xk + In(ass Ay + Az), (5.63)
2a exp ; In(ass A1 + Ag)| = Az + Ay, (5.64)
a’ +b= A, (5.65)

we immediately determine the phase x and asymptotic value of the sth kink
taking into account (5.53), (5.60), and (5.45).

Concluding, though this note is rather technical, it contains ideas about
a development of asymptotic construction in the “dromionic” case of 241
equations, as well as symmetry reductions of explicit solutions or the two-
step equation reduction. It follows from Sects. 5.1 and 5.2 that there exists a
direct possibility to construct solutions of (5.10) or (5.7) via forms like (5.37).
More general asymptotic behavior can be analyzed similarly. For example,
equating the phases of (5.53) and (5.48) and linear combinations of £ and n
of the form (5.50) and (5.51) with Y = const yields

a;x + ajt — by = A& + Bin,
Ai = a;C2, BZ = a;C2 — Q?T = Ybl

The three-phase solutions are possible with one determinant condition on the
parameters a; and b;, and so on.
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5.6 Generalized Moutard transformation
for two-dimensional MKdV equations

In this section we generate solutions of the two-dimensional MKdV equations,
giving one more example of efficient applications of the technique which ex-
ploits the generalized Moutard transformation.

5.6.1 Definition of generalized Moutard transformation
and covariance statement

The Lax pair for the two-dimensional MKdV equations (5.23) has the form
Ug 9
Yoy = " Py +u, (5.66)
U Uy \ 2
Yo = Yas + Yoy =3 Yy + {3 (") - B] ¥y
1
+ (A—u2)z/11 + 5 (A—u2)mw.

Ganzha [169] studied one type of the Moutard transformation for the
Goursat equation. To use this transformation for obtaining exact solutions
of (5.23), we should complete the definition of the Moutard transformation.

It is easy to do that. Let ¢ be the second solution of (5.66) (the support
function). Then we have a closed 1-form

df = dx 0, + dy 05 + dt 03, 9:/d9,
where

2
0, = ¢, e2=(¢;y), 0y = (A —u®)§® — 62 — ¢ + 200uat

+u™ [(2¢3y¢y - ¢32/y - B¢32/)U2 — 2udpy(uydy)y + 3 (uy¢y)2 .
We define the generalized Moutard transformation in the following way:

u—u=u—+/(In0);(Ind A—A=A— (8,0, —30°)Inb
\/(6),(ne),, (0,0, — 302) In6,

5.67)
*Q (

B — B=B+(0:0,-30)n0, ¢ —v="7

where

QE/dQ, dQ = da Q1 + dy Qs + dt Qs,
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and (w = /9)

Q1 = Owy, Q2 = *93(1/99)mywy7

Q3 = OWggr + CLWyyy + 02wx2y+ C3Wyy + C4Wg + CrWy
with

c = _Zzy? + 0, = 39(1n9m)w — 0,

c3 = u;,zgy + (bj;’y - 312’9 +3 (Z(lnem)y - 9y>,

ey = <3gf;”” +Au2> 6 — 9;””,

2
Cs = *31;1“54% + Jru13 (Oytiyy + uyddyy)
- u12 {391112/ — @3y + ; <B - ¢;y> 94

3byy Uy 300,y Oy o
+(¢ B)9+u 20, 0, +2 u-0.

The 1-form d@ is closed,

Q1,y = Q2,2, Q1,t = Q3.0, Q2,t = Q3,4

It is easy to verify that the (L, A) pair (5.66) is covariant with respect to the
generalized Mourtard transformation (5.67).

5.6.2 Solutions of two-dimensional MKdV (BLMP1) equations

Now we use these transformations to construct exact solutions of the two-
dimensional MKdV equations (5.24). Let us choose v = const and A = B = 0.
We will consider two examples.

1. If we take the solution of (5.66) as ¢ = sinh ¢, where

u? (u? — a®)(u* — a*)

E=az+ y+ t (5.68)
a

a3

with real a = const, then using (5.67) we get a new solution of the two-

dimensional MKdV equations,

u [2n — a® sinh(2¢)]
2n + a3 sinh(2¢)

N i 16a® sinh £ [3a® sinh & — (u? — 3a®)n cosh (]
u = 5 = s
[27) + a3 sinh(2¢)]?

16av? cosh € [3au? cosh ¢ — (3u? — a?)nsinh ¢]

B= 2
[2n 4 a3 sinh(2€)]

)
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where
n = a?(u’y — a*z) + (u? — a®)(3u* + 3a* + 2a2u?)t . (5.69)

2. To construct the algebraic solutions of (5.44), we choose the solutions of
(5.66) as

8 qn

o= (1 [ arcyexsle) gy,

with £(k) from (5.68), a = a(k), and § > ko > « > 0, where ((k) is an
arbitrary differentiable function. For n =1, { = 1 we get

5(k - ko),

~ u(a® —2n* — 2a%n) Ao 8a’(u? + 3a®)n(n + a3)

2n2 + 2a3n +ab ' (212 + 2a3n + ab)?

=3}

)

(5.70)
8u?a*(3u? + a®)n(n + a®)

B =
(212 + 2a3n + a®)?

with n from (5.69) and a = a(kg). Equation (5.70) is a simple nonsingular
algebraic solution of the two-dimensional MKdV equations.

There is a group of equations for which the dressing technique is directly
applied. The BLMP2 equation is a generalization of the Nizhnik—Veselov—
Novikov equation [58]. There is another new integrable equation that is usually
called the Boiti-Leon—Pempinelli (BLP) equation. It was proposed and stud-
ied in [65]. An integrable generalization of the sine and sinh—Gordon equations
in two spatial dimensions was proposed in [64].



