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Dressing in 2+1 dimensions

In this chapter we speak again about the origin of the dressing technique, now
in multidimensions. The important step was realized in the Moutard papers
[340, 341] that the stabilization of the Laplace transformation chain can gen-
erate solutions. Notice again (see Chap. 1) that the net of points generated by
the transform of the invariants of the gauge transformations has two possible
symmetry reductions: the first reduction corresponds to the Moutard case and
the second one was discovered by Goursat [192, 193]. The dressing procedure
in two spatial dimensions opened a way to apply the Laplace equation in Lax
pairs to solve some nonlinear 2+1 equations because their associated spectral
problems are expressed in terms of the Laplace equation.

The celebrated 2+1 Kadomtsev–Petviashvili (KP) equation for surface
water waves (there are lots of other applications [228]; see Chaps. 9, 10) and
the corresponding dressing based on the direct extension of the Darboux the-
ory (linear Schrödinger evolution as the first operator in the Lax pair) [313]
have been the subject of intense studies [324]. The dressing methods for the
Davey–Stewartson (DS) equation were introduced in [277], where, by means
of eight Ablowitz–Kaup–Newell–Segur (AKNS) type pairs, ordinary and two-
fold elementary Darboux transformations (DTs) were studied and used for
construction of multisoliton solutions of both types (DS I and DS II) of the
DS equation. The dressed potentials were expressed in terms of quasidetermi-
nants studied previously in [176]. It was proved that nonlinear superposition
formulas have a symmetry structure that gives a possibility to build networks
of DTs that can be used to solve boundary problems via the construction pro-
posed in [199]. An important class of solutions of a general Zakharov-Shabat
(ZS) hierarchy that was not mentioned in [324] is generated by the dressing
formulas from [313, 314]. In particular, solutions of the KP equations are given
by the relation [313]

u = −2∂2 lnW (ϕ1, . . . , ϕs),

141
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where the Wronskian W is formed by the dressing functions ϕj depending on
a parameter k and arbitrary function g(k):

ϕj = [∂k + g(x)] exp(kx + k2y + k3t)|k=kj .

This class of solutions contains the so-called general position solutions derived
by Krichever [252] via the finite-gap formalism. Note also that these solutions
generate the Calogero–Moser potentials

u = 2
∑

j

1
x− xj(y, t)

,

which can be extracted from the dressing formulas. For the N -particle prob-
lems and polynomial solutions of the ZS hierarchy we refer to [315]. The 2+1
theory of generalized AKNS equations, including the DS, the Boiti–Leon–
Manna–Pempinelli (BLMP1 and BLMP2) [58, 65], and some other equations,
is studied in [140, 141, 143, 144, 142].

Here we concentrate on studying a general theory of dressing based on
combinations of the following transformations: Laplace, Darboux (Sects. 5.1,
5.2), Goursat (Sect. 5.3), and Moutard (Sect. 5.4). Among other things, we
derive a new integrable equation (5.19) which can be treated as the two-
dimensional generalization of the sinh–Gordon equation. Sections 5.5 and 5.6
illustrate applications of this theory to the two-dimensional Korteweg–de Vries
(KdV), two-dimensional modified KdV (MKdV), Nizhnik–Veselov–Novikov,
and BLMP1 equations.

5.1 Combined Darboux–Laplace transformations

In this section we formulate constraints to coefficients of the Laplace equation
which reduce it to the Moutard and Goursat equations. We show that a num-
ber of integrable nonlinear equations arise as a consequences of the reduction
equations for the DTs. The content of this section is based on [287].

5.1.1 Definitions

For the Laplace equation

ψxy + aψy + bψ = 0 (5.1)

the following were introduced:

1. The Laplace transformations (LTs) (Sect. 1.5)

a→ a−1 = a− ∂x ln(b− ay), b→ b−1 = b− ay, ψ → ψ−1 = ψx + aψ,
(5.2)

a→ a1 = a+∂x ln b, b→ b1 = b+∂y (a + ∂x ln b) , ψ → ψ1 =
ψy
b
.

(5.3)
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2. The DTs

a→ a1 = a−∂x ln(a+σ), b→ b1 = b+σy, ψ → ψ1 = ψx−σψ, (5.4)

a→ 1a = −(σ + bρ), b→ 1b = b− (bρ)y, ψ → 1ψ = ρψy − ψ.
(5.5)

where σ = σ(x, y) = φx/φ, ρ = φ/φy , and ψ and φ are particular solutions
of (5.1) with predetermined a and b. We refer to φ as the support function
of the DT.

5.1.2 Reduction constraints and reduction equations

A constraint for the coefficients a and b of (5.1) fixes a particular class of
equations which we are interesting in. Namely, the condition

a = 0, b = u (5.6)

yields the Moutard equation

ψxy + u(x, y)ψ = 0, (5.7)

while
a = −1

2
∂x lnλ, b = −λ (5.8)

leads to the Goursat equation

ζxy = 2
√

λ ζxζy. (5.9)

After the substitution ψ =
√
ζx and χ =

√
ζy we get

ψy =
√
λχ, χx =

√
λψ

or, in the form of the Laplace equation,

ψxy =
1
2
(lnλ)xψy + λψ (5.10)

and a similar equation for χ; see also Sect. 5.1.3. The functions u and λ are
solutions of the special equations which we call the reduction equations. In
this section we will derive these equations for the LT and the DT. We study
mostly the example of the Goursat equation, but the approach is directly
reformulated for the Moutard equation.

Let us consider the LTs (5.2). The invariance of the reduction constraint
(5.8) means

λ−1 = λ− 1
2
∂x∂y lnλ =

C

2λ
, C = const. (5.11)

It is obvious that (5.11) is valid for the LT (5.3) as well because the last one
is inverse to (5.2).
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The reduction equation for this transformation is the well-known sinh–Gordon
equation

∂x∂y lnλ = 2λ− C

λ
, (5.12)

and the new potential λ−1 is a solution of (5.12) too. In the case C = 0 we
obtain λ−1 = 0 and the Liouville equation, instead of (5.12). The general
integral for the Liouville equation is well known:

λ =
f ′g′

(f + g)2
,

where f = f(x) and g = g(y) are arbitrary differentiable functions. The
Goursat equation is integrated as

ζ = − 1
C2

1

∂y ln(f + g) + V, C1 = const.

The function V = V (y) is determined by the equation

V ′ =
(

1
2C1

(ln g′)′
)2

=
1

4C2
1

(
g′′

g′

)2

and

ψ =
√
f ′g′

C1(f + g)
, χ =

1
2C1

∂y ln
(
−∂y 1

f + g

)
.

Proposition 5.1. Let M and L be two Laplace invariants of (5.1). This
means that

M =
1
2
∂x∂y lnλ− λ, L = −λ.

Using the reduction equation (5.12) yields

M = − C

2λ
, L = −λ

and
M−1 = M1 = L, L−1 = L1 = M.

Now we take the DT (5.4). Inserting both transforms into the reduction
condition (5.8), we get

λ1 = λ− σy = λ

(
σ − λx

2λ

)
. (5.13)

Denote α = lnφ and Λ = lnλ. Since

λ− σy =
(
−1

2
Λx + αx

)
αy
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and σ = αx, we obtain from the transform (5.13) the condition for Λ:
(
αx − 1

2
Λx

)[
αy − exp(Λ)

(
αx − 1

2
Λx

)]
= 0. (5.14)

Equating to zero the first parentheses yields

Λxy = 2 exp(Λ)

and α = Λ/2 − c(y), where c(y) is an arbitrary function. But in this case
we get λ1 = 0, and the Liouville equation is in the realm of the reduction
equation.

Equating to zero the brackets in (5.14), we arrive at the equation

[exp(−2α)λ]x = [exp(−2α)]y ; (5.15)

therefore,

θx = ψ2 =
1

Fx + C2
, λ =

Fy + C1

Fx + C2
,

where F = F (x, y) is any differentiable function and C1,2 = const. Substituting
(5.15) into (5.10) yields

2(C2 + Fx)C2
1 + [(Fyxx + 4Fy)C2 + FxFyxx + 4FyFx − FxxFyx]C1 + 2F 2

yFx

+
(
FyxxFy − 1

2
F 2
yx + 2F 2

y

)
C2 − 1

2
F 2
yxFx − FyFxxFyx + FxFyFyxx = 0.

(5.16)
Define new fields P and Q as

Fx = P − C2, Fy = Q− C1.

Then (5.16) can be split into the system

2QxQPx − (2QxxQ−Q2
x + 4Q2)P = 0, Py = Qx. (5.17)

After integration of the first equation we get

P =
C3Qx√

Q
expG, Gx = 2

Q

Qx
,

where C3 is the third constant of integration. It is necessary to obey the second
equation in (5.17). Let

Q = n2(x, y), G = lnm(x, y).

Then the reduction equation is simplified:
(
n2

)
x

= 2C (mnx)y , mxnx = mn. (5.18)

This system can be rewritten in more convenient form. Let

nx = n expS, mx = m exp(−S),
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S = S(x, y). After substituting into (5.18) we get

Sy =
1
C

n

m
− ∂y ln(mn);

therefore,
Sxy = 4(sinhS) ∂y∂−1

x coshS. (5.19)

Equation (5.19) is the reduction equation for the DT (5.4). It looks like (5.12)
and it is a generalization of the d = 2 sinh–Gordon equation. The Lax pair
for (5.19) is introduced by means of the following:

Proposition 5.2. The (L,A) pair for (5.19) is written as

Kψ = 0, K1Dψ = 0,

where

D = ∂x − σ, K = ∂x∂y − 1
2
λx
λ

∂y − λ, K1 = ∂x∂y − 1
2
λ1,x

λ1
∂y − λ1,

and the variables λ and λ1 are determined by

λ =
(Sx + 2 coshS)y

4 sinhS
exp(−S), λ1 =

(Sx + 2 coshS)y
4 sinhS

expS, (5.20)

and σy ≡ λ− λ1.

This statement is checked by direct substitution. Thus, the reduction equa-
tions for the DT (5.4) have either the form of (5.19) or the form of the Liouville
equation.

The reduction equations for the DT (5.5) are obtained similarly. As a
result, we get

λ = C1φy expF, 1λ = −C1C2φ
2

φy
expF, (5.21)

where φ is the support function of the DT (5.5) and the reduction equation
can be written in the form of a system

φxy = φy[Fx + 2C1φ expF ], Fyφy = C2φ.

Proposition 5.3. By the construction (5.20) for the DT (5.4) we get

M = −λ1, L = −λ

and
M1 = M exp(−2S), L1 = L exp(2S).
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Similarly for the DT (5.5) the use of (5.21) gives

M = −C2(−φx + φFx + C1φ
2 expF )

φy
, L = −C1φy expF

and

1M = − φ2
y

C2φ2
M, 1L = −C2φ

2

φ2
y

L.

The product of the Laplace invariants ML is invariant in both cases. Combi-
nations of LT and DT generate new equations and their Lax pairs.

5.1.3 Goursat equation, geometry, and two-dimensional
MKdV equation

As shown in Sect. 5.1.2, the Goursat equation (5.9) is connected to the par-
ticular case of (5.1) with two potentials a = a(x, y) and b = b(x, y) = λ(x, y).
We refer to λ as the potential function. The reduction (5.8) is valid only for
special types of potentials if the form of the Laplace equation is maintained
while transformations are performed. Our interest in the Goursat equation
is caused by applications of this equation in geometry and in the soliton
theory:

1. As regards geometry, let x be the complex coordinate, y = −x,
√
λ is the

real-valued function, and ψ or χ as solutions of (5.10) are complex-valued
functions. Then we define three real-valued functions Xi, i = 1, 2, 3 which
are the coordinates of a surface in R

3 [242]:

X1 + iX2 = 2i
∫

Γ

(
ψ2dy′ − χ2dx′

)
,

X1 − iX2 = −2i
∫

Γ

(
ψ2dy′ − χ2dx′),

X3 = −2
∫

Γ

(
ψχdy′ + χψdx′),

(5.22)

where Γ is an arbitrary path of integration in the complex plane. The
corresponding first fundamental form, the Gaussian curvature K, and the
mean curvature H yield:

ds2 = 4U2dxdy, K =
1
U2

∂x∂y lnU, H =

√
λ

U
.

Here U =| ψ |2 + | χ |2 and any analytic surface in R
3 can be globally

represented by (5.22) [244].
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2. As an example of soliton equations, consider the system of the two-
dimensional MKdV equations introduced by Boiti, Leon, Martina, and
Pempinelli [58, 65]:

4λ2(λt −Aλx + Bλy − λxxx − λyyy) + 4λ3 [(2λ + B)y + (2λ−A)x] +

+6λ(λyλyy + λxλxx)− 3(λ3
x + λ3

y) = 0,

Bx = 3λy − λx, Ay = λy − 3λx.
(5.23)

Here λ = λ(x, y, t), A = A(x, y, t), and B = B(x, y, t). If we introduce the
function u =

√
λ, then we can rewrite (5.23) in the more customary form

ut + 2u2(ux + uy) + 1
2 (By −Ax)u + Buy −Aux − u3y − u3x = 0,

Bx = (3∂y − ∂x)u2, Ay = (∂y − 3∂x)u2.
(5.24)

The reduction conditions A = −B = −2u2 and uy = ux lead to the MKdV
equation,

ut + 12u2ux − 2u3x = 0,

(here u3x ≡ uxxx) so we call (5.24) the two-dimensional MKdV equations.
The two-dimensional MKdV equations (5.24) are the compatibility con-
dition of the linear system comprising (5.10) and

ψt = ψ3x+ψ3y−3
2
λy
λ

ψyy+

[
3
4

(
λy
λ

)2

− λ−B

]
ψy+(A−λ)ψx+

1
2
(Ax−λx)ψ.

We will study (5.24) in Sect. 5.6.

Remark 5.4. Zenchuk [477] studied the chains of discrete transformations
(5.2)–(5.5) of solutions and potentials in the general case of the linear second-
order partial differential equation with two independent variables. Consider-
ing the simplest (k = 2) closed chains of these transformations, he obtained a
novel integrable equation

1
2
Sxy − eS − e−S

[
C1 − C2∂

−1
x

(
e−S

)
y

]
= 0,

where C2 > 0.

In the present chapter we use the reduction restriction (5.8) as a (weak)
condition of closure. In Sect. 5.1.2 we derived a new integrable equation (5.19),
the two-dimensional generalization of the sinh–Gordon equation. In the next
section we employ the Goursat transformation and the binary Goursat trans-
formation to construct explicit solutions of the Goursat equation. These trans-
formations allow us to obtain new solutions of the Goursat equation without
solving the reduction equation. We also discuss the transformation for Laplace
invariants.
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5.2 Goursat and binary Goursat transformations

An analogy of the Moutard transformation for the Goursat equation was
studied by Ganzha [169]. Such a Goursat transformation is valid without
a reduction restriction and reduction equations. Many useful details can be
found in the textbook of Ganzha and Tsarev [171], where the transformation
is defined via two solutions of (5.9). The transformed function ψ[1] and the
potential λ[1] are extracted by quadratures [169, 197].

Theorem 5.5. Let the transform ψ[1] be introduced by the relations

(z1ψ[1]/ψ1)x = z1(ψ2/ψ1)x, (5.25)

(z1ψ[1]/ψ1)y = [z1z1xy − 2z1xz1y/z1xy](ψ2/ψ1)y,

where z1,2 are solutions of (5.9) and ψ1,2 = √z1,2x solve (5.10). Then ψ[1] is
a solution of the (transformed) equation (5.10) with the potential

λ[1] = λ− (ln z1)xy

and the transform z[1] is found by a quadrature from

z[1]x = ψ2[1], z[1]y = (ψ[1]y)2/λ[1]. (5.26)

This transformation preserves the form of the Laplace–Goursat equation
(5.10), e.g., possesses the covariance property. Below we introduce a twofold
eDT for the Goursat equaton with the same property.

We introduce new variables ξ = x+ y and η = x− y and rewrite (5.10) in
matrix form,

Ψη = σ3Ψξ + UΨ. (5.27)

Here

Ψ =
(
ψ1 ψ2

χ1 χ2

)
, U =

√
λσ1, (5.28)

where ψk = ψk(ξ, η) and χk = χk(ξ, η), k = 1, 2 are particular solutions of
(5.10) with some λ(ξ, η), and σ1,3 are the Pauli matrices. Let Ψ1 be some
solution of (5.27) and Ψ �= Ψ1. We define a matrix function σ ≡ Ψ1,ξΨ

−1
1 .

Equation (5.27) is covariant with respect to the classical DT:

Φ[1] = Φξ − σΦ, U [1] = U + [σ3, σ]. (5.29)

It is a particular case of the general classical non-Abelian formula from Chap.
2, the Matveev Theorem 2.19.

Remark 5.6. It is not difficult to check that the DT (5.29) is the superposition
formula for two simpler DTs given by (5.4) and (5.5).
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Remark 5.7. Equation (5.27) is the spectral problem for the DS equation
[13, 277]. The LT produces explicitly invertible Bäcklund autotransformations
for the DS equation. It is shown in [459] that these transformations permit
solutions to the DS equation to be constructed that fall off in all directions in
the plane according to exponential and algebraic laws.

Next we consider a closed 1-form

dΩ = dξ ΦΨ + dη Φσ3Ψ, Ω =
∫

dΩ,

where a 2× 2 matrix function Φ solves the equation

Φη = Φξσ3 − ΦU. (5.30)

Let us apply the DT. It can be verified by immediate substitution that (5.30)
is covariant with respect to the transformation

Φ[+1] = Ω(Φ, Ψ1)Ψ−1
1 .

We can alternatively affect U (5.28) by the following transformation:

U [+1,−1] = U + [σ3, Ψ1Ω
−1Φ].

The particular solution of (5.30) has the form

Φ1 =
(
s1ψ1 + s2ψ2 −s1χ1 − s2χ2

s3ψ1 + s4ψ2 −s3χ1 − s4χ2

)
, (5.31)

where sk = const (k = 1, . . . , 4). It is convenient to choose Φ1 in the form

Φ1 = ΨT
1 σ3, (5.32)

where the superscript T stands for the transpose. Equation (5.32) is the par-
ticular case of (5.31). In this case

U [+1,−1] = U − 2AF , (5.33)

where AF is the off-diagonal part of the matrix A = Ψ1Ω
−1ΨT

1 , Ω = Ω(Φ1, Ψ1)
and

AT
F = AF = fσ1. (5.34)

Here f = f(ξ, η) is some function. Using (5.29), (5.33), and (5.34), we see that
U [+1,−1] has the same form as for the initial matrix U ,

U [+1,−1] ≡
(

0
√

λ[+1,−1]√
λ[+1,−1] 0

)
=

(
0

√
λ− 2f√

λ− 2f 0

)
;

thus, the reduction restriction is valid without the reduction equations.
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The new function Φ[+1,−1] has the form

Φ[+1,−1] = Φ−Ω(Φ, Ψ1) [Ω(Φ1, Ψ1)]
−1 Φ1, (5.35)

where Φ is an arbitrary solution of (5.30).
Using the twofold DT (5.33) and (5.35), we can construct a new solution

of the Goursat equaton by means of dressing a particular solution. As a result,
we get the following theorem (returning to the former variables x and y):

Theorem 5.8. Let

ψk,y =
√
λχk, χk,x =

√
λψk,

αk,y = −
√
λβk, βk,x = −

√
λαk,

where k = 1, 2. Then new functions

α′
1 = α1 − A1ψ1 + A2ψ2

D
, β′

1 = β1 +
A1χ1 + A2χ2

D

are solutions of the equations

α′
1,y =

√
λ′ β′

1, β′
1,x =

√
λ′ α′

1,

where

√
λ′ = −

√
λ +

ψ1χ1Ω22 + ψ2χ2Ω11 − (ψ1χ2 + ψ2χ1)Ω12

D

and

Ω11 =
∫

dxψ2
1 + dyχ2

1, Ω12 = Ω21 =
∫

dxψ1ψ2 + dyχ1χ2,

Ω22 =
∫

dxψ2
2 + dyχ2

2, D = Ω11Ω22 −Ω2
12,

Λ11 =
∫

dxα1ψ1 + dyβ1χ1, Λ12 =
∫

dxα1ψ2 + dyβ1χ2,

Λ21 =
∫

dxα2ψ1 + dyβ2χ1, Λ22 =
∫

dxα2ψ2 + dyβ2χ2,

A1 = Λ11Ω22 − Λ12Ω12, A2 = Λ12Ω11 − Λ11Ω12.

Here
∫

=
∫
Γ , where Γ is an arbitrary path of integration in the plane. The

explicit expressions for the functions α′
2 and β′

2 are obtained by the direct
picking up of the relations indicated.

Thus the twofold eDT allows us to construct explicit solutions of the Goursat
equation without solving the reduction equation.
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5.3 Moutard transformation

The Moutard transformation [340, 341] is a map of the DT type: it connects
solutions and the coefficient u(x, y) of the equation (5.7) so that if ϕ and ψ
are different solutions of (5.7), then the solution of the twin equation with
ψ → ψ[1] and u(x, y) → u[1](x, y) can be constructed by the solution of the
system

(ψ[1]ϕ)x = −ϕ2(ψϕ−1)x, (ψ[1]ϕ)y = ϕ2(ψϕ−1)y.

In other terms,
ψ[1] = ψ − ϕΩ(ϕ, ψ)/Ω(ϕ,ϕ), (5.36)

where Ω is the integral of the exact differential form

dΩ = ϕψxdx + ψϕydy. (5.37)

The transformed coefficient (potential in mathematical physics) is given by

u[1] = u− 2(logϕ)xy = −u + ϕxϕy/ϕ
2.

The proof is straightforward; see [298] for details.
The important feature of the Moutard transformation is general for the

DTs: the transform is parameterized by a pair of solutions of the equation
and the transform vanishes if the solutions coincide. The Moutard equa-
tion is obviously transformed to the two-dimensional Schrödinger equation
and studied in connection with the central problems of classical differential
geometry [197].

In the soliton theory the Moutard equation enters the Lax pairs for non-
linear equations such as the KP equation [35, 168, 298, 430] (see Chaps. 9, 10
for more details).

5.4 Iterations of Moutard transformations

Analysis of the iteration sequences for the transformations of the form (5.36),
where, in accordance with (5.37),

Ω(ϕ,ϕ) =
∫

Δ2(ϕ,ϕ)dxi + cφ = φ2/2 (5.38)

by the appropriate choice of the constant cφ, is performed similarly to the
algorithm given in [324] for the classical DT. Suppose the result of N iterations
is a linear combination of the integrals Ω(ϕi, ψ) of (5.37):

ψ[N ] = ψ +
∑

i

siΩ(ϕi, ψ). (5.39)
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This formula is proved by induction. The main property of the Mourtard
transformation can be written as

ϕk +
∑

i

siΩ(ϕi, ϕk) = 0 (5.40)

and gives
si = Δi/Δ (5.41)

by Kramer’s rule. Denoting

Ωi ≡ Ω(ϕi, ψ) and Ωik ≡ Ω(ϕi, ϕk),

we get Δ = det[Ωik], and Δi is obtained from Δ by the known rule of action
with the ith row. Hence, the results of the iterations can be presented in the
compact determinant form as in the classical Crum case [324].

Differentiating (5.39) yields

ψxy[N ] = ψxy + (siΩi)xy = −u[N ]ψ[N ] (5.42)

= −uψ + (sixΩi + siΩix)y = −u[N ](ψ + siΩi),

and using the definition of the determinant Δ together with the properties
Ωix = ϕiψx, six = −si lnx ϕi gives the DT for the iterated potential

u[N ] = u + 6(lnΔ)xx, (5.43)

that is used for multikink (see the next section) and multidromions [145, 146]
construction.

5.5 Two-dimensional KdV equation

Applications of the Moutard transformations for solution of the KP and DS
equations are well known [324]; for the Nizhnik–Veselov–Novikov equation see
[278]. Here we follow [145] concerning the equation

mty = (mxxy + mymx)x, (5.44)

which is the 2+1 version [281] of the KdV-like Hirota–Satsuma equation
[211]. Equation (5.44) was integrated by inverse spectral transform in [58, 65].
Details of multisoliton (multikink) construction and asymptotic behavior are
given in the next section. We also use this example in Sect. 7.3 to show how
the singular manifold method generates the Moutard transformation.



154 5 Dressing in 2+1 dimensions

5.5.1 Moutard transformations

Here we consider the asymptotic behavior of iterated solutions and the
simplest example of repeated iterations from the zero seed potential that
demonstrates the interaction of kinks. The formula for the N -times iterated
solution is

m = 6(lnΔ)x, (5.45)

where, again, Δ = det[Δik] and, like [277], the one-step transform was
performed,

Δik =
∫

dΩ(φk, φi) + Cik, Cik + Cki = φk(0)φi(0),

Ω(φk, φi) = −2
∫

[δ1dx + δ2dy + δ3dt], (5.46)

δ1 = φkφix, δ2 = φkyφi, δ3 = φkφit − φkxφixx + φkxxφix.

This way we fix the constants of integration. A similar combination of solutions
leads to multidromions [145], the localized solitons in two dimensions (first
appeared in [62]).

5.5.2 Asymptotics of multikink solutions of two-dimensional
KdV equation

To demonstrate the possibilities of the technique in 2+1 dimensions, we con-
sider the example of kink interaction and choose the seed Lax pair solution
as

φk = Ak exp(akx + a3
kt) + Bk exp(bky). (5.47)

Introducing the notations

αik =
ai

ai + ak
, βik =

bi
bi + bk

,

ξk = akx + a3
kt, ξi0 = aix0 + a3

i t0, Ai/Bi = pi,

we perform integration from x0, y0, t0 to x, y, t and obtain

Δik = Cik + αikpipk[exp(ξi + ξk)− exp(ξi0 + ξk0)]+ (5.48)

+pi [exp(ξi + bky)− exp(ξi0 + bky0)] + βik [exp(bi + bk)y − exp(bi + bk)y0] .

We would stop at kinks within the choice ai > 0, bi > 0 for x0, y0, t0 → −∞;
hence,

Δik = [αikpipk exp(χi + χk) + pi exp(χi) + βik] exp[(bi + bk)y] + Cik, (5.49)
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where χi = aix + a3
i t− biy. Notice that it is impossible to represent Δik as a

sum of two exponents with the opposite powers like for the multisoliton de-
terminant representation for the KP equation [324]. Hence, we should develop
an asymptotic calculation technique.

Let us consider the case

0 < Re(a2
1) < . . . < Re(a2

N )

and go to the reference frame of the sth kink that means fixing the phase χs.
Running at the level y, we shall derive the asymptotic at t → ±∞. We shall
also put Cik = 0 and Δ′

ik = Δik exp(bi + bk)y and account for the relation
(lnΔ)′x = (lnΔ)x. Finally, let us investigate

Δ′
ik = αik exp(χ′

i + χ′
k) + exp(χ′

i) + βik, (5.50)

where
x = −a2

st + bsy/as + χs/as, (5.51)

χ′
k = ak(a2

k − a2
s)t + (akbs/as − bk)y + χk/as + ln[pk].

Therefore, at t→∞ and χs = const,

χk =
{−∞, k < s

+∞, k > s

and the elements of the determinant matrix have the following asymptotic
values:

1. Δik → βik, i, k < s
2. Δik → αik exp(χ′

i + χ′
k), i, k > s

3. Δik → expχ′
i, i > s, k < s

4. Δik → αik exp(χ′
i + χ′

k) + βik, i < s, k > s

It can be shown that only the first term contributes to the determinant
asymptotic. We list below the special cases:

i = s
k < s, Δsk = exp(χs) + βsk,

k = s, Δss = [αss exp(χs) + 1] exp(χs) + βsk,
k > s, Δsk = αsk exp(χ′

s + χ′
k).

k = s
i < s, Δis = βis,

i > s, Δis = αis[exp(χs) + 1] exp(χi) exp(χi).

It is convenient to present the explicit form of the determinant via the super-
matrix
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k < s k = s k > s
i < s βik βik αik exp(χ′

i + χ′
k)

i = s Δsk = exp(χs) + βsk Δss αsk exp(χs + χk)
i > s exp(χi) exp(χi)[αis exp(χs) + 1] αik exp(χi + χk)

In this asymptotic determinant it is possible to extract expχ from rows i > s
and from columns k > s, i.e.,

Δ = exp

(
n∑

i=1

χi − χs

)
Δ1. (5.52)

Then

Δ1 =

∣∣∣∣∣∣

βik βis 0
exp(χs) + β Δss αskχs

1 αis exp(χs) + 1 αik

∣∣∣∣∣∣
,

where 0 and 1 are matrices with zero and unit elements. Obviously, it follows
from (5.45) that

m =

[
n∑

i=1

χi − χs

]

x

+ (lnΔ1)x =
n∑

i=1

ai − as + (lnΔ1)x. (5.53)

A Lagrange expansion by the row of number s,

[0, . . . , 0, αss exp(2χs), 0, . . . , 0] + [1, . . . , 1, αs,s+1 exp(χs+1), 1, . . . , 1] + . . .

+(βs1, . . . , βss, 0, . . . , 0)

allows us to present the result for the asymptotic Δ1 in a “kink” form:

Δ1 = αss exp(2χs)

∣∣∣∣∣∣

βik βis 0
0 1 0
1 αis exp(χs) + 1 αik

∣∣∣∣∣∣

+ exp(χs)

∣∣∣∣∣∣

βik βis 0
1 1 αsk
1 αis exp(χs) + 1 αik

∣∣∣∣∣∣
+

∣∣∣∣∣∣

βik βis 0
βsk βss 0
1 αis exp(χs) + 1 αik

∣∣∣∣∣∣
.

(5.54)

The first determinant is arranged via a sum of the columns with the num-
ber s terms: ∣∣∣∣∣∣

βik
1
1

∣∣∣∣∣∣
+

∣∣∣∣∣∣

0
0

αis exp(χs)

∣∣∣∣∣∣
.

The second determinant is zero because it has a zero row. Finally,

Δa = exp(2χs)(αssΔ1 + Δ2) + exp[χs](Δ3 + Δ4) + Δ5, (5.55)
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where

Δ1 =

∣∣∣∣∣∣

βik βis 0
0 1 0
10 10 αik

∣∣∣∣∣∣
, Δ2 =

∣∣∣∣∣∣

βik 0 0
10 1 αsk
10 αis αik

∣∣∣∣∣∣
, (5.56)

Δ3 =

∣∣∣∣∣∣

βik βis 0
10 1 αsk
10 10 αik

∣∣∣∣∣∣
, Δ4 =

∣∣∣∣∣∣

βik βis 0
βsk βss αsk
10 αis αik

∣∣∣∣∣∣
, (5.57)

Δ5 =

∣∣∣∣∣∣

βik βis 0
βsk βss 0
10 10 αik

∣∣∣∣∣∣
. (5.58)

The determination of the phase of the sth kink is performed in the following
way. If we introduce the phase χ and rewrite Δa as

Δa = (expχ + a)2 + b, (5.59)

then

m = (lnΔa)x = Δa
x/Δ

a = 2[expχ + a]α/[(expχ + a)2 + b], (5.60)

where α = χx. As a result,

m = 0, χ→∞, (5.61)
m = 2aα/(a2 + b), χ→ −∞. (5.62)

Equating powers of exponential terms,

2χ = 2χk + ln(αssΔ1 + Δ2), (5.63)

2a exp
[
1
2

ln(αssΔ1 + Δ2)
]

= Δ3 + Δ4, (5.64)

a2 + b = Δs, (5.65)

we immediately determine the phase χ and asymptotic value of the sth kink
taking into account (5.53), (5.60), and (5.45).

Concluding, though this note is rather technical, it contains ideas about
a development of asymptotic construction in the “dromionic” case of 2+1
equations, as well as symmetry reductions of explicit solutions or the two-
step equation reduction. It follows from Sects. 5.1 and 5.2 that there exists a
direct possibility to construct solutions of (5.10) or (5.7) via forms like (5.37).
More general asymptotic behavior can be analyzed similarly. For example,
equating the phases of (5.53) and (5.48) and linear combinations of ξ and η
of the form (5.50) and (5.51) with Y = const yields

aix + a3
i t− biy = Aiξ + Biη,

Ai = aic2, Bi = aic2 − a3
iT = Y bi.

The three-phase solutions are possible with one determinant condition on the
parameters ai and bi, and so on.
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5.6 Generalized Moutard transformation
for two-dimensional MKdV equations

In this section we generate solutions of the two-dimensional MKdV equations,
giving one more example of efficient applications of the technique which ex-
ploits the generalized Moutard transformation.

5.6.1 Definition of generalized Moutard transformation
and covariance statement

The Lax pair for the two-dimensional MKdV equations (5.23) has the form

ψxy =
ux
u

ψy + u2ψ, (5.66)

ψt = ψxxx + ψyyy − 3
uy
u
ψyy +

[
3
(uy

u

)2

− u2 −B

]
ψy

+
(
A− u2

)
ψx +

1
2
(
A− u2

)
x
ψ.

Ganzha [169] studied one type of the Moutard transformation for the
Goursat equation. To use this transformation for obtaining exact solutions
of (5.23), we should complete the definition of the Moutard transformation.
It is easy to do that. Let φ be the second solution of (5.66) (the support
function). Then we have a closed 1-form

dθ = dx θ1 + dy θ2 + dt θ3, θ =
∫

dθ,

where

θ1 = φ2, θ2 =
(
φy
u

)2

, θ3 = (A− u2)φ2 − φ2
y − φ2

x + 2φφxx+

+u−4
[
(2φ3yφy − φ2

yy −Bφ2
y)u

2 − 2uφy(uyφy)y + 3 (uyφy)
2
]
.

We define the generalized Moutard transformation in the following way:

u→ ũ = u−
√

(ln θ)x(ln θ)y , A→ Ã = A− (∂x∂y − 3∂2
x) ln θ,

B → B̃ = B + (∂x∂y − 3∂2
y) ln θ, ψ → ψ̃ =

φQ

θ
,

(5.67)

where
Q ≡

∫
dQ, dQ = dxQ1 + dy Q2 + dtQ3,
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and (w = ψ/φ)

Q1 = θwx, Q2 = −θ3(1/θ)xywy
θxy

,

Q3 = θwxxx + c1wyyy + c2wxx + c3wyy + c4wx + c5wy

with

c1 = − θxy
2u2

+ θ, c2 =
3
2
θ(ln θx)x − θx,

c3 =
uyθxy
2u3

+
φφyy
u2
− 3uyθ

u
+ 3

(
θ

2
(ln θx)y − θy

)
,

c4 =
(

3φxx
φ

+ A− u2

)
θ − θxx

2
,

c5 = −3u2
yθxy

2u4
+ +

1
u3

(θxyuyy + uyφφyy)

+
1
u2

[
3θu2

y − φφ3y +
1
2

(
B − φyy

φ

)
θxy

]

+
(

3φyy
φ
−B

)
θ +

uy
u

(
2θy − 3θθxy

θx

)
+

θxy
2
− u2θ.

The 1-form dQ is closed,

Q1,y = Q2,x, Q1,t = Q3,x, Q2,t = Q3,y.

It is easy to verify that the (L,A) pair (5.66) is covariant with respect to the
generalized Mourtard transformation (5.67).

5.6.2 Solutions of two-dimensional MKdV (BLMP1) equations

Now we use these transformations to construct exact solutions of the two-
dimensional MKdV equations (5.24). Let us choose u = const and A = B = 0.
We will consider two examples.

1. If we take the solution of (5.66) as φ = sinh ξ, where

ξ = ax +
u2

a
y +

(u2 − a2)(u4 − a4)
a3

t (5.68)

with real a = const, then using (5.67) we get a new solution of the two-
dimensional MKdV equations,

ũ =
u
[
2η − a3 sinh(2ξ)

]

2η + a3 sinh(2ξ)
, Ã =

16a3 sinh ξ
[
3a5 sinh ξ − (u2 − 3a2)η cosh ξ

]

[2η + a3 sinh(2ξ)]2
,

B̃ =
16av2 cosh ξ

[
3a3u2 cosh ξ − (3u2 − a2)η sinh ξ

]

[2η + a3 sinh(2ξ)]2
,
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where
η = a2(u2y − a2x) + (u2 − a2)(3u4 + 3a4 + 2a2u2)t . (5.69)

2. To construct the algebraic solutions of (5.44), we choose the solutions of
(5.66) as

φ = (−1)n
∫ β

α

dkζ(k) exp[ξ(k)]
dn

dkn
δ(k − k0),

with ξ(k) from (5.68), a = a(k), and β > k0 > α > 0, where ζ(k) is an
arbitrary differentiable function. For n = 1, ζ = 1 we get

ũ =
u(a6 − 2η2 − 2a3η)

2η2 + 2a3η + a6
, Ã = −8a6(u2 + 3a2)η(η + a3)

(2η2 + 2a3η + a6)2
,

B̃ =
8u2a4(3u2 + a2)η(η + a3)

(2η2 + 2a3η + a6)2
,

(5.70)

with η from (5.69) and a = a(k0). Equation (5.70) is a simple nonsingular
algebraic solution of the two-dimensional MKdV equations.

There is a group of equations for which the dressing technique is directly
applied. The BLMP2 equation is a generalization of the Nizhnik–Veselov–
Novikov equation [58]. There is another new integrable equation that is usually
called the Boiti–Leon–Pempinelli (BLP) equation. It was proposed and stud-
ied in [65]. An integrable generalization of the sine and sinh–Gordon equations
in two spatial dimensions was proposed in [64].


