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Factorization and classical
Darboux transformations

In this chapter we describe the algebraical factorization-based method to dress
solutions of (1+1)-dimensional equations. We also show how the Darboux
transformation (DT) theory appears in this framework.

First, in Sect. 2.1, we introduce the non-Abelian Bell polynomials and
then generalize them in Sect. 2.2 to formulate in Sect. 2.3 a problem of fac-
torization of a polynomial differential operator in the form of division by a
monomial from the right and from the left. The relation between the factor-
ization rules and the classical Darboux theorem [102] generalized in [314] is
described in Sect. 2.4: the formalism produces a compact form of the DT for
non-Abelian coefficients of linear operators, polynomial in a differentiation
on a ring. Section 2.5 is devoted to a representation of the iterated DTs in
terms of quasideterminants. As a highly nontrivial example of the iterated
DT formalism, we describe positon solutions of the Korteweg–de Vries (KdV)
equation discovered by Matveev [318, 319].

The growing interest in discrete models appeals to wider classes of sym-
metry structures of the corresponding nonlinear problems [149, 196, 255,
256, 339]. Very recently a suitable basis for new searches in the field of
differential-difference and difference-difference equations was discovered [321]
in the framework of the classical DT theory such that the difference opera-
tor is replaced by an arbitrary automorphism transformation. In Sect. 2.6 we
present the dressing method via factorization for such a kind of generaliza-
tions. Like in the case of differential operators, this approach demonstrates
links with the Hirota bilinearization method [260] and the factorization the-
ory [271], with similar applications. We reformulate the Darboux covariance
theorem from the paper of Matveev [321] and introduce a kind of difference
Bell polynomials. These polynomials correspond naturally to the differential
(generalized) Bell polynomials in their non-Abelian version of Sect. 2.2.

The joint covariance principle is formulated in Sect. 2.7 for Abelian and in
Sect. 2.8 for non-Abelian differential rings. The same construction for a pair of
difference equations is elaborated in Sect. 2.9. The form of the DT presented
here allows us to develop a classification scheme with respect to the DTs in
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32 2 Factorization and classical Darboux transformations

connection with the generalized Bell polynomials [187, 260, 467]. If a pair of
such operators determines the Lax equations, the joint covariance with respect
to the DTs produces a symmetry for the compatibility condition [314, 324]. In
Sects. 2.10 and 2.11 we illustrate the possibilities of the method by examples
of specific nonlinear equations: the non-Abelian Hirota system [210] having
promising applications [149], and the Nahm equations [344]. We introduce
a lattice Lax pair for the Nahm equations which is covariant with respect to
combined Darboux-gauge transformations that generate the dressing structure
for the equations. Finally, in Sect. 2.12 we illustrate the formalism developed,
solving a particular case of the Nahm equations.

2.1 Basic notations and auxiliary results.
Bell polynomials

Let K be a differential ring of the zero characteristics with unit e (i.e., unitary
ring) and with an involution denoted by a superscript asterisk. The differenti-
ation is denoted as D. The differentiation and the involution are agreed with
operations in K:

1. (a∗)∗ = a, (a + b)∗ = a∗ + b∗, (ab)∗ = b∗a∗, a, b ∈ K.
2. D(a + b) = Da + Db, D(ab) = (Da)b + aDb.
3. (Da)∗ = −Da∗.
4. Operators Dn with different n form a basis in a K-module Diff(K) of

differential operators. The subring of constants is K0 and a multiplicative
group of elements of K is G.

5. For any s ∈ K there exists an element ϕ ∈ K such that Dϕ = sϕ; this
also means the existence of a solution of the equation

Dφ = −φs, (2.1)

owing to the involution properties.

There are lots of applications of the rings of square matrices in the theory
of integrable nonlinear equations, as well as in classical and quantum linear
problems. In this case matrices are parameterized by a variable x and D can be
a derivative with respect to this variable or a combination of partial derivatives
that satisfies conditions 1 and 2. If D is the standard differentiation, then
the involution (asterisk) may be the Hermitian conjugation. In the case of
a commutator, the operator D acts as Da = [d, a] and (Da)∗ = −[d∗, a].
Having in mind this or similar applications, we shall refer to the involution
as conjugation. We do not restrict ourselves to the matrix-valued case; an
appropriate operator ring is also suitable for our theory.

Below we introduce left and right non-Abelian Bell polynomials (see also
[388]) and formulate the statements for them. The differential Bell polynomials
are defined in Definition 2.1:



2.2 Generalized Bell polynomials 33

Definition 2.1. The left and right non-Abelian Bell polynomials Bn(s) are
defined by the recurrence relations

Bn(s) = DBn−1(s) + Bn−1(s)s, n = 1, 2, . . . (2.2)

for left Bell polynomials and

B+
n (s) = −DB+

n−1(s) + s, n = 1, 2, . . . (2.3)

for right Bell polynomials with the “initial condition”

B0(s) = e. (2.4)

Proposition 2.2. If an element ϕ ∈ G satisfies the equation Dϕ = sϕ, then

Dnϕ = Bn(s)ϕ, n = 0, 1, 2, . . . .

Proposition 2.3. If an element φ ∈ G satisfies (2.1), then

Dnφ = (−1)nφB+
n (s), n = 0, 1, 2, . . . .

Proposition 2.4. The left and right Bell polynomials are connected by the
following relations:

Bn(s)∗ = B+
n (s∗), B+

n (s)∗ = Bn(s∗).

If the ring is Abelian, left and right polynomials coincide.

Remark 2.5. Proposition 2.4 means that a duality takes place for the Bell
polynomials: any relation for right polynomials can be transformed to the
corresponding relation for left ones, and vice versa.

Let us denote
Ls = D − s. (2.5)

Note that the recursion (2.3) may be written by means of Ls (2.5) as

B+
n+1(s) = −LsB+

n (s), n = 0, 1, 2, . . . ,

with the simple corollary

B+
n (s) = (−1)nLns e, n = 0, 1, 2, . . . .

2.2 Generalized Bell polynomials

In the next section a problem of division of an arbitrary operator L by the
operator Ls will be studied. To this aim, for the right division we introduce
here auxiliary operators Hn by means of Definition 2.6:
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Definition 2.6. The operators Hn are defined by the recurrence relation

Hn = DHn−1 + Bn(s), n = 1, 2, . . . , H0 = e. (2.6)

Proposition 2.7. The following identity holds:

Dn = Hn−1Ls + Bn(s), n = 1, 2, . . . .

Coefficients of the operators Hn are expressed via the generalized Bell poly-
nomials that are defined in Definition 2.8:

Definition 2.8. Generalized Bell polynomials are defined by the “initial con-
ditions”

Bn,0(s) = e, n = 0, 1, 2, . . .

and by the recurrence relations

Bn,k(s) = Bn−1,k(s) + DBn−1,k−1(s), k = 1, 2, . . . n− 1, n = 2, 3, . . . ,
(2.7)

Bn,n(s) = DBn−1,n−1(s) + Bn(s), n = 1, 2, . . . . (2.8)

Proposition 2.7 is proved by acting with D from the left to (2.7) n + 1 times
and substituting (2.2) and (2.6) into the resulting equation because

Dn+1 = HnLs + Bn+1 = DHn−1Ls + DBn

= (DHn−1)Ls + Hn−1DLs + B′
n + BnD.

Proposition 2.9. Generalized Bell polynomials are coefficients in the decom-
position of the operators Hn, i.e.,

Hn =
n∑

k=0

Bn,n−k(s)Dk, n = 0, 1, 2, . . . . (2.9)

Since the recurrence relation (2.6) defines the operators Hn uniquely, (2.9)
easily follows. Equations (2.7) and (2.8) are simple but not useful for evalua-
tion of Bn,k(s); therefore, we suggest a practically easier algorithm. For this
reason we put (2.9) into (2.7). The following formulas are extracted:

Bn,n−k+1(s) =
n∑

i=k

(
i

k

)
Bn,n−i(s)Di−ks, k = 1, 2, . . . , n, n = 0, 1, 2, . . .

(2.10)
and

Bn+1(s) =
n∑

i=0

Bn,n−i(s)Dis, n = 0, 1, 2, . . . . (2.11)
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Equation (2.11) expresses the standard (non-Abelian) Bell polynomials via
the generalized ones:

Bn+1(s) =
n∑

i=0

Bn,i(s)Dn−is, n = 0, 1, 2, . . . .

Rearranging the summation in (2.10) as k → n − k + 1 yields after simple
calculation

Bn,k(s) =
k−1∑

i=0

(
n− i

n− k + 1

)
Bn,i(s)Dk−i−1s, k = 1, . . . , n, n = 0, 1, . . . .

(2.12)
Evaluation of the generalized Bell polynomials by (2.10) gives (s′ = Ds)

Bn,1(s) = s, Bn,2(s) = s2+nDs, Bn,3(s) = s3+ns′s+(n−1)sDs+
(
n

2

)
D2s,

Bn,4(s) = s4 + ns′s2 + (n− 1)ss′s + (n− 2)s2Ds

+
(
n

2

)
s′′s + n(n− 2)(Ds)2 +

(
n− 1

2

)
sD2s +

(
n

3

)
D3s.

To solve the problem of the left division of L by Ls, a similar but somewhat
simpler consideration is needed. The analog of Proposition 2.9 is as follows:

Proposition 2.10. The following identity is valid:

Dn = LsH
+
n−1 + B+

n (s), n = 1, 2, . . . , (2.13)

where

H+
n =

n∑

k=0

B+
n−k(s)D

k, n = 0, 1, 2, . . . . (2.14)

2.3 Division and factorization of differential operators.
Generalized Miura equations

Let

L =
N∑

n=0

anD
n, an ∈ K (2.15)

be a differential operator of order N . We shall study the right and left divisions
of L by the operator Ls defined by (2.5). Suppose

L = MLs + r, L = LsM
+ + r+, (2.16)
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where M and M+ are the results of right and left divisions, r and r+ being
the remainders. Propositions 2.9 and 2.10 allow us to solve the problem of
division in a simple way.

Proposition 2.11. If the representation (2.16) is valid, then the remainder
r and the result of division M are written as

r =
N∑

n=0

anBn(s),

M =
N∑

n=1

anHn−1 =
N−1∑

n=0

bnD
n, (2.17)

where

bn =
N∑

k=n+1

akBk−1,k−n−1(s), n = 0, 1, . . . , N − 1. (2.18)

For the proof it is enough to check

L = a0 +
N∑

n=1

an[Hn−1Ls + Bn(s)] =
N∑

n=1

anHn−1Ls + a0 +
N∑

n=1

anBn(s)

by the equality from Proposition 2.7 and to account for Hn−1 given by (2.9).
As a corollary we get the following:

Proposition 2.12. For the linear operator L to be right-divisible by Ls with-
out remainder, it is necessary and sufficient that s be a solution of the differ-
ential equation

N∑

n=0

anBn(s) = 0. (2.19)

If this condition holds, the operator L factorizes as L = MLs, where M is
given by (2.17) and (2.18).

Equation (2.19) is nonlinear. For N = 2 it is the Riccati-type equation
known in the theory of the KdV equation as the Miura map. Therefore, it is
natural to term it as a generalized right Miura equation . It links the function
s and coefficients of the operator L. The left Miura equation is generalized by
means of Proposition 2.2, giving the following theorem:

Theorem 2.13. Let an invertible function ϕ be a solution to the linear dif-
ferential equation

N∑

n=0

anD
nϕ = 0. (2.20)

Then the operator L, defined by (2.15), is right-divisible by Ls, where s =
ϕ′ϕ−1 and ϕ′ ≡ Dϕ. Moreover, s is a solution of the right Miura equation
(2.19).
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To solve the left division problem, let us write the result of division in the
form

M+ =
N−1∑

n=0

b+nD
n. (2.21)

Now we should determine b+n , n = 0, 1, . . . , n − 1. To this aim we substitute
(2.21) into the right-hand side of the second equation of (2.16). Following the
lines of Proposition 2.11, we obtain

b+N−1 = aN , (2.22)

b+n = an+1 − Lsb
+
n+1, n = 0, 1, . . . , N − 2, (2.23)

and
r+ = a0 − Lsb

−
0 . (2.24)

Solving subsequently equations (2.23) and (2.24), we arrive at

b+n =
N∑

k=n+1

(−1)k−n−1Lk−n−1
s ak, n = 0, 1, . . . , N − 1 (2.25)

and

r+ =
N∑

k=0

(−1)kLksak. (2.26)

The entities b+n , n = 0, 1, . . . , N − 1, and r+ can be expressed in terms of the
right Bell polynomials if we use (2.5) and take into account

Lksa = Lksea = (−1)kB+
k (s)a.

Hence, (2.25) and (2.26) transform to

b+n =
N∑

k=n+1

B+
k−n−1(s)ak, n = 0, 1, . . . , N − 1 (2.27)

and

r+ =
N∑

k=0

B+
k (s)ak. (2.28)

Formulas (2.16), (2.21), (2.25), and (2.26) give a solution of the left division
problem of division of L by Ls. So, the following is proved:

Theorem 2.14. For the operator L to be left-divisible by the operator Ls
(without remainder), it is necessary and sufficient that s be a solution of the
differential equation

N∑

k=0

Bk(s)+ak = 0. (2.29)
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If this condition holds, the operator L factorizes as L = LsM
+, where M+ is

given by (2.21) and (2.25) [or (2.27)]. For the reminder r+ and the result of
division M+ equations (2.28) [or (2.26)] and (2.21) exist.

The nonlinear equation (2.29) is called the generalized left Miura equation,
which is obviously linearized by Proposition 2.4. As a result, we have the
following:

Proposition 2.15. Let an invertible element ϕ satisfy the linear differential
equation

N∑

n=0

(−1)nBn(s)+anD
nϕ = 0.

Then the operator L determined by (2.15) is left-divisible by the operator Ls,
where s = −ϕ−1ϕ′. The function s is a solution to the generalized left Miura
equation (2.29).

2.4 Darboux transformation. Generalized
Burgers equations

The problem of the operator division is directly connected to the DT. To clar-
ify this point, suppose that in the ring K there exists one more differentiation
D0 which commutes with the operator D. It may be a differentiation in a
parameter t.

Let us introduce an auxiliary commutation relation

Lsr = rLs + r′ + [r, s]. (2.30)

Indeed,

Lsr − rLs = (D − s)r − r(D − s) = Dr − sr − rD + rs

= rD + Dr − sr − rD + rs = r′ + [r, s].

Taking into account the equalities (2.30) and (2.16), we arrive at the relation

Ls(D0 − L) = (D0 − L̃)Ls + D0s− r′ − [r, s], (2.31)

where
L̃ = LsM + r. (2.32)

As the result, the following important conclusion can be drawn:

Proposition 2.16. If a function s satisfies the equation

D0s = r′ + [r, s], (2.33)

the operator Ls intertwines the operators D0 − L and D0 − L̃,

Ls(D0 − L) = (D0 − L̃)Ls. (2.34)
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The explicit expression for L̃ can be obtained in terms of (2.32) and (2.16)
and has the form

L̃ = a0 +
N∑

n=1

(a′nHn−1 + anHn − sanHn−1). (2.35)

Let us write (2.33) explicitly using (2.16). It is established that for the
intertwining relation (2.34) to be valid, it is necessary and sufficient that s be
a solution of the equation

D0s =
N∑

n=0

[a′nBn(s) + anBn+1(s)− sanBn(s)]. (2.36)

Remark 2.17. Equation (2.36) is nonlinear but linearizable. This equation (in
a different form) was introduced in [388]. The form we suggest here is the most
compact and convenient for further investigations, e.g., in the framework of
the bilineraization technique of Hirota [210].

In the case of scalar functions and L = D2 equation (2.36) is known as the
Burgers equation. For this reason and owing to the integrability of (2.36) by
the Cole–Hopf transformation, it is natural to refer to (2.36) as a generalized
Burgers equation.

Proposition 2.18. Suppose an invertible function ϕ is a solution to the linear
differential equation

D0ϕ = Lϕ.

Then the function s satisfies the generalized Burgers equation (2.36).

The obvious corollary of the intertwining relation (2.34) and Proposition 2.18
is as follows:

Theorem 2.19. Let functions ψ and ϕ be solutions of the equations

D0ψ = Lψ, D0ϕ = Lϕ (2.37)

for an invertible function ϕ. Then the function

ψ̃ = Lsψ = Dψ − sψ, s = (Dϕ)ϕ−1 (2.38)

is a solution of the equation
D0ψ̃ = L̃ψ̃. (2.39)

The last statement accomplishes the proof of the Matveev theorem for
differential polynomials [314] in its non-Abelian version.
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The equality (2.35) gives a representation of the transformed operator in
terms of the generalized Bell polynomials. The explicit expressions for the
transformed coefficients are

aN [1] = aN , (2.40)

ak[1] = ak +
N∑

n=k+1

[anBn,n−k + (a′n − san)Bn−1,n−1−k], (2.41)

k = 0, . . . , N − 1.

2.5 Iterations and quasideterminants
via Darboux transformation

Here we would like to revisit the non-Abelian iterated DT formulas following
the ideas of the pioneering paper of Matveev [313], where the basic formulas
were derived. Their Abelian counterpart is demonstrated in [324] and dis-
cussed also in [316, 322]. In fact, this approach goes back to the famous paper
of Crum [94]. We will see, in the framework of a general non-Abelian DT
theory, that the dressing procedure naturally produces the quasideterminants
(Sect. 1.9). In the paper [191] this procedure is also properly analyzed for the
matrix Schrödinger operator.

2.5.1 General statements

Let R be a differential algebra with a derivation D : R → R and φ ∈ R be
an invertible element. Recall that we denote D(g) = g′ and Dk(g) = g(k). In
particular, D(0)(g) = g.

For ψ ∈ R define D(φ;ψ) = ψ′ − φ′φ−1ψ. Following [321], we call D(φ;ψ)
the DT of ψ defined by φ.

Theorem 2.20. Let φ1, . . . , φN ∈ R. Define by induction the iterated DT
D(φN , . . . φ1;ψ) as follows. For N = 1, it coincides with the DT defined above.
Assume N > 1. The expression D(φN , . . . , φ1;ψ) is defined if D(φN , . . . , φ2;ψ)
is defined and invertible and D(φN ;ψ) is defined. In this case,

D(φN , . . . φ1;ψ) = D[D(φk, . . . φ2;ψ);D(φ1;ψ)].

Theorem 2.21. If all square submatrices of matrix (φ(j)
i ), i = 1, . . . , N ,

j = k − 1, . . . , 0 are invertible, then the Vandermond supermatrix defines the
quasideterminant:

D̂(φN , . . . , φ1;ψ) =

∣∣∣∣∣∣

ψ(k) φ
(k)
1 . . . φ

(k)
k

. . . . . . . . . . . .
ψ φ1 . . . φk

∣∣∣∣∣∣
.
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Recall that we use the “hat” symbol to denote the quasideterminant. This
general statement first appeared in [313].

Proof. Iterations of the DT yield

ψ[N ] = ψ(N) +
N−1∑

m=0

smψ(m), (2.42)

which is a replica of an expression in [313, 322, 324] for the Abelian case.
The iterated DT (2.42) as a function of ψ sends to zero any φi on which the
transformation is constructed:

φp[N ] = φ(N)
p +

N−1∑

m=0

smφ(m)
p = 0, p = 1, . . . , N. (2.43)

The successive excluding of sm as a function of the derivatives ψ
(m)
p from the

system (2.43) yields the algorithm that results in the evaluation of sm; the
procedure was pointed out already in [314], applied in [277] and, as it is
seen from a comparison with the quasideterminant definition, could define
the Vandermond quasideterminant.

Let us illustrate the scheme with the case of N = 2. The first iteration is
based on a set of φp, p = 1, 2. The equations for si, i = 0, 1

φ
(2)
1 + s0φ1 + s1φ

′
1 = 0, φ

(2)
2 + s0φ2 + s1φ

′
2 = 0 (2.44)

yield
s0 = −φ(2)

1 φ−1
1 − s1φ

′
1φ

−1
1 .

Inserting this into the second relation of (2.44) produces the equation for s1:

s1(φ′
2 − φ′

1φ
−1
1 φ2) = −φ(2)

2 + φ
(2)
1 φ−1

1 .

It is solved as

s1 = (−φ(2)
2 + φ

(2)
1 φ−1

1 )(φ′
2 − φ′

1φ
−1
1 φ2)−1,

and
s0 = −φ(2)

1 φ−1
1 − (−φ(2)

2 + φ
(2)
1 φ−1

1 )(φ′
2 − φ′

1φ
−1
1 φ2)−1φ′

1φ
−1
1 ,

both recognized as quasideterminants. The final expression for ψ[2] is given
by (2.42).

As mentioned in [322], the comparison of the resulting formula for ψ[N ]
(2.42) and the formula for the DT

D(φN−1, . . . , φ1;ψ[N−1]) = ψ[N−1]′−φ[N−1]′φ[N−1]−1ψ[N−1], (2.45)

where φ[N − 1] = ψ[N − 1]|ψ=φN , yields the non-Abelian Jacobi identity for
quasi-Wronskians “for free.” Recall that Crum [94] used the Jacobi identity
to prove the determinant formulas for the iterated DT for Abelian entries.
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Remark 2.22. The non-Abelian algorithm to exclude sms hints at the defini-
tion of quasideterminants as a function of submatrices apm (compare with the
results in Sect. 1.9.1). Namely, it is enough to change ψ

(m)
p → apm.

The solution of the system (2.43) with respect to sp may be reinterpreted
as the Vandermond-quasideterminant representation of the iterated DT for
solutions (2.42) (with inserted sm) and, next, linked to the DT for the poten-
tials ak[N ].

To check this proposition, let us substitute (2.42) into the evolution equa-
tion (2.37) for ψ[N ] (see Theorem 2.19):

ψ[N ]t =
n∑

k=0

a[N ]kψ(N+k) +
n∑

k=0

a[N ]k
N−1∑

m=0

(smψ(m))(k). (2.46)

On the other hand,

ψ[N ]t = ψ
(N)
t +

N−1∑

m=0

(sm,tψ(m) + smψ
(m)
t ) (2.47)

=
n∑

k=0

(akψ(k))(N) +
N−1∑

m=0

sm,tψ
(m) +

N−1∑

m=0

sm

n∑

k=0

(akψ(k))(m).

Equating terms with the highest derivative ψ(N+n) gives

a[N ]n = an,

and, subsequently, for ψ(N+n−1) produces

a[N ]n−1 = an−1 + Na′n + sN−1an − ansN−1.

For ψ(N+n−2) we obtain

a[N ]n−2 = an−2 + Na′n−1 +
N(N + 1)

2
a′′n − an(sN−2 + ns′N−1) (2.48)

−a[N ]n−1sN−1 + (N − 1)sN−1a
′
n + sN−1an−1 + sN−2an,

preserving the order of differentiation in (2.47) to keep the non-Abelian char-
acter. Substituting here a[N ]n−1 yields the explicit form of a[N ]n−2:

a[N ]n−2 = an−2 + Na′n−1 +
N(N + 1)

2
a′′n + [sN−1, an−1] + [sN−2, an]

−nans′N−1 − (Na′n + [sN−1, an])sN−1. (2.49)

One could compare the resulting expression (2.49) for commuting entries and
for a′n = a′n−1 = 0,

a[N ]n−2 = an−2 − nans
′
N−1, (2.50)

with (2.37) [322] when taking into account that sN−1 = − lnxxW (ϕ1, . . . , ϕN ),
with ϕj being solutions of (2.38).
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Corollary 2.23. [321] In the commutative case, the iterated Darboux trans-
formation is a ratio of two Wronskians, as follows by direct application of the
Kramer rule to (2.43):

D(φk, . . . , φ1;ψ) =
W (φ1, . . . φk, ψ)
W (φ1, . . . , φk)

. (2.51)

All these results are naturally generalized to the cases when the main prop-
erties of the DTs are valid: the n-iterated transform is a linear function of
T nψ and there is an n-dimensional kernel of the transformation operator.
This remark relates first of all to the next section (see also [321]) and to
the Moutard/Goursat transformations (Chap. 6). The algorithm of the con-
struction given here is easily transferred to the iterated Moutard/Goursat
transformation because the “kernel property” (2.43) is also valid.

2.5.2 Positons

An interesting illustration of the application of (2.51) is concerned with posi-
tons. Positons were introduced by Matveev [318, 319] as a class of singular
solutions of the KdV equation,

ut − 6uux + uxxx = 0, (2.52)

that lead to a trivial scattering matrix for the associated spectral problem

−ψxx + uψ = λψ. (2.53)

Here we consider this topic in more detail, following [323].
The KdV equation can be written as the compatibility condition [13] of

the linear system of equations comprising the spectral problem (2.53) and the
evolutionary equation

ψt = −4ψxxx + 6uψx + 3uxψ. (2.54)

Note that the spectral problem (2.53) is a representative of the general equa-
tion (2.37).

Let φ(λ) solve the spectral equation (2.53). Differentiation in λ produces
(in general, linearly independent) solutions φ[m] = ∂mφ(λ)/∂λm of the same
equation. The set of solutions φ1, . . . , φ

[m1]
1 , φ2, . . . , φ

[m2]
2 , . . . , φn, . . . , φ

[mn]
n ,

mi are integers, generated by the λ-derivatives in the points λ1, λ2, . . . , λn,
yields the iterated DT, which is the Abelian specification of the transform
(2.42) and the quasideterminant formula (2.43).

Proposition 2.24. Let u(x, t) be a solution of the KdV equation (2.52). The
Wronskians

W1 = W (φ1, . . . , φ
[m1]
1 , φ2, . . . , φ

[m2]
2 , . . . , φn, . . . , φ

[mn]
n )
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and
W2 = W (φ1, . . . , φ

[m1]
1 , φ2, . . . , φ

[m2]
2 , . . . , φn, . . . , φ

[mn]
n , ψ)

produce the DT

u[N ] = u− 2∂2
x lnW1, ψ[N ] = W2/W1. (2.55)

The Lax pair equations (2.53) and (2.54) are covariant with respect to the
DT (2.55). In other words, the function ψ[N ] satisfies (2.53) and (2.54) with
u→ u[N ] and ψ → ψ[N ] and u[N ] is a new solution of the KdV equation.

Now we apply the DT (2.55) to dress the simplest seed solution u = 0
with the choice ψ = exp(ikx + 4ik3t), k2 = λ. As a solution of the spectral
equation with zero potential we choose an oscillating function

φ = sinκ(x + x1(κ) + 4κ2t) ≡ sin θ.

Here κ is a real parameter and x1(κ) is an analytic function in the vicinity of
the point κ. Therefore, a new solution to the KdV equation is given by

u[1] = −2∂2
x lnW (φ, ∂κφ) (2.56)

and is written explicitly as

u = 32κ2 sin θ − κγ cos θ
(sin 2θ − 2κγ)2

sin θ, (2.57)

where

γ = ∂κθ = x + x2 + 12κ2t, x2 = x1 + κ∂κx1, W (φ, ∂κφ) = sin 2θ − 2κγ.
(2.58)

The solution (2.57) is determined by three real parameters x1, x2, and κ
and has a second-order pole in x. The precise pole position is found by solu-
tion of the nonlinear functional equation W (φ, ∂κφ) = 0. The corresponding
solution of the Lax pair [or of (2.51)] takes the form

ψ(x, k) =
W [φ, ∂κφ, exp(ikx + 4ik3t)]

W (φ, ∂κφ)
(2.59)

=
(
−k2 +

4ikx sin2 θ

sin 2θ − 2κγ
− κ2 sin 2θ + 2κγ

sin 2θ − 2κγ

)
eikx+4ik3t.

In the point k = κ, this solution is simplified:

ψ(k, x) = −4κ2 sin θ

sin 2θ − 2κγ
. (2.60)

We see from (2.60) that the function ψ is localized near its pole but is
not square-integrable on the whole x-axis. The point κ2 is called the Wigner–
von Neuman resonance [320].1 Because κ2 > 0, the solution (2.57) is called
positon, as distinct from the soliton solution for which κ2 < 0 (Sect. 8.7).
1 Generic aspects of the scattering theory of the potentials leading to the Wigner–

von Neumann resonances are discussed in [312, 311].
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Asymptotic behavior of the function ψ is given by

ψ → (−k2 + κ2)eikx+4ik3t[1 + o(1)], x→ ±∞. (2.61)

Let us compare (2.61) with the standard Jost solution J(x, k, t) asymptotic
of the linear Schrödinger equation with a decreasing potential:

J(x, k, t)→ eikx(1 + o(1)), x→ +∞,

J(x, k, t)→ a(k, t)eikx + b(k, t)e−ikx, x→ −∞,

where a(k, t) and b(k, t) are the transmission and reflection coefficients. For
the positon potential we obtain

a(k, t) = 1, b(k, t) = 0.

Potentials for which b(k, t) = 0 are called reflectionless. The well-known exam-
ple of the reflectionless potentials is provided by solitons. However, for solitons
we have a(k, t) �= 1. Hence, positons give a unique example of supertranspar-
ent (or superreflectionless) long-range potentials.

A two-positon solution is generated by the evident extension of (2.56),

u = −2∂2
x lnW (φ1, ∂κ1φ1, φ2, ∂κ2φ2),

with
φ1 = sinκ1(x + x1 + 4κ2

1t), φ2 = sin(x + x2 + 4κ2
2t),

and is determined by six real parameters. For x→∞ the two-positon solution
is decomposed into a sum of two free positons. It should be stressed that the
positon scattering is not accompanied with a phase shift typical for the soliton
scattering.2

Interesting suggestions concerning physical applications of positons can by
found in the paper by Matveev [323].

2.6 Darboux transformations at associative
ring with automorphism

In this section we reformulate and analyze the results from the paper of
Matveev [321] for further use in the derivation of chain equations and joint
covariance of operator pairs [265, 267, 271]. We begin with general notations.
Let R be an associative ring with an automorphism, implying that there exists

2 For singular potentials the scattering data are not uniquely defined. Different
self-adjoint extensions of the same differential operators might lead to different
scattering operators. The definition of the scattering coefficients given above is in
agreement with the nonlinear picture of interaction between positons and solitons,
although the latter can be analyzed independently of this definition.
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a linear invertible map T, R→R such that for any ψ (x, t) and ϕ (x, t) ∈ R,
x ∈ Rn, t ∈ R we have

T (ψϕ) = T (ψ)T (ϕ), T (1) = 1. (2.62)

The automorphism with the defining property (2.62) allows us to write down
a wide class of functional-differential-difference and difference-difference equa-
tions starting from

ψt (x, t) =
N∑

m=−M
UmTmψ, (2.63)

where M and N are integers. For example, the operator T can be chosen as

Tψ(x, t) = ψ(qx + δ, t),

where q ∈ GL(n,C), δ ∈ Rn. Another choice gives

Tψ (x) = Wψ(x)W−1 , W ∈ GL(n,C).

We will save the notations and conditions of the paper [321] discussing other
potentials until the end of Sect. 4.9.

Let us consider two DTs for solutions of (2.63),

D±f = f − σ±T±1f, σ± = ϕ
(
T±1ϕ

)−1
, (2.64)

where ϕ is a particular solution of the same equation (2.63). For the case of
a differential ring and for Tf (x, t) = f (x + δ, t), x, δ ∈ R the limit ∂f =
limδ→0

1
δ (T − 1)f (x, t) gives the link to the classical DT.

To derive the DT of potentials Um, it is necessary to evaluate the deriva-
tive of the elements σ± with respect to the variable t (say, time). We shall do
it by introducing the special functions (analog of the differential Bell polyno-
mials), similar to [467]. Let us start from the first version of the DT definition
D+, expressing Tϕ from (2.64) ; hence, Tϕ = (σ+)−1

ϕ. Acting on this re-
lation by T and taking into account (2.62) yields T 2ϕ = T

[
(σ+)−1

]
Tϕ =

T
[
(σ+)−1

]
(σ+)−1

ϕ . Repeating the action, we arrive at

Tmϕ =
m−1∏

k=0

[T k
(
σ+

)
]−1ϕ = B+

m

(
σ+

)
ϕ. (2.65)

Here and below the product is ordered by the index k running from right to
left.

Definition 2.25. Equation (2.65) defines the function

B+
m (σ) =

m−1∏

k=0

[
T k (σ)

]−1
.
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It is convenient to write down the t-derivative of σ by means of the functions
B+
m (σ+) that are connected with the generalized Bell polynomials [467, 271]:

σ+
t =

N∑

m=−M

[
Um B+

m

(
σ+

)
σ+ − σ+T (Um )B+

m+1

(
σ+

)
σ+

]
. (2.66)

The resulting equation (2.66) is a nonlinear equation associated with (2.63)
that is reduced to a generalized Miura transformation in the stationary case
(Sect. 2.3).

The Matveev theorem for polynomials of the automorphism T provides
far-reaching generalizations of the conventional Darboux theorem proved orig-
inally for the second-order differential equation (for generalizations see [324]
as well) and can be formulated by means of the introduced entries in the
following way:

Theorem 2.26. Let the functions ϕ ∈R and ψ ∈R satisfy (2.63). Then the
function ψ+ = D+ψ satisfies the equation

ψ+
t (x, t) =

N∑

m=−M
U+
mTmψ+,

where the coefficients are evaluated from the recurrence relations

U+
−M = U−M , (2.67)

U+
1 − U+

0 σ+ = U1 − σ+TU0 − σ+
t , (2.68)

U+
m − U+

m−1T
m−1σ+ = Um − σ+TUm−1, (2.69)

U+
N = σ+ (TUN)

(
TNσ+

) −1. (2.70)

Equations (2.67)–(2.70) define recursively the DTs of the coefficients (po-
tentials) of the differential equation (2.63). Solving the recurrence (2.69) by
means of (2.65) yields

U+
m =

m+M∑

l=0

U−M+l − σ+ (TU−M+l−1)B+
−M+l

(
σ+

) [
B+
m

(
σ+

)]−1 (2.71)

U+
N = σ+ (TUN)

(
TNσ+

)−1
. (2.72)

Proof. For the proof it is necessary to check the additional equality that ap-
pears from the term Tmψ with essential use of the expression for σ+

t from
(2.66).

This theorem establishes the covariance (form invariance) of (2.63) with
respect to the DT (2.64).
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The formalism for the second DT from (2.64) may be similarly constructed
on the ground of the identity

Tmϕ =
m∏

k=0

T k
(
σ−)T−1ϕ = B−

m

(
σ−)T−1ϕ. (2.73)

The definition of the lattice Bell polynomials of the second type B−
m (σ−) can

be extracted from (2.73). The evolution equation for σ− is similar to (2.66):

σ−
t =

N∑

m=−M

[
Um B−

m

(
σ−)− σ−T−1 (Um )B−

m−1

(
σ−)] .

It may be considered as a further generalization of the Burgers equation (2.36)
and gives the second generalized Miura map for stationary solutions of (2.63).
Explicit formulas for U−

m are similar to (2.68)–(2.72).

2.7 Joint covariance of equations and nonlinear
problems. Necessity conditions of covariance

If a pair of linear problems is simultaneously covariant with respect to a
Darboux transformation, it generates Bäcklund transformations of the corre-
sponding compatibility condition, or a nonlinear integrable equation. In the
context of such an integrability, the joint covariance principle, used to con-
struct solutions of nonlinear problems from the very beginning [313], can be
considered as the origin of a classification scheme [265, 267]. In this book,
we examine realizations of this scheme and seek the covariant form of equa-
tions and an appropriate basis with the simplest transformation properties.
Note that a proof of the covariance theorems for the linear operators incor-
porates the generalized Burgers equations that in stationary versions reduce
to the generalized Miura transformation. We give and examine the explicit
form of the Miura equality in both the general and the stationary cases (see
also [270]). This equality gives an additional nonlinear equation that is auto-
matically solved by the Cole–Hopf substitution and is used to generate dress-
ing t-chain equations [79]. We show how the form of the covariant operator
can be found by comparing some kind of Frechét derivatives of the operator
coefficients and the transforms.

2.7.1 Towards the classification scheme: joint
covariance of one-field Lax pairs

The basis of the formalism introduced here has been elaborated in [265, 267]
and the compact formulas with the generalized Bell polynomials are given in
Sect. 2.2. The formalism is valid for non-Abelian coefficients an as well, and
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for solutions of (2.37); φ and ψ can be considered as matrices or operators.
For simplicity, we start with the scalar case.

First we consider particular examples of the theory to derive the explicit
expressions and show some details. We begin with a very simple analysis
to clarify the integrability notion we introduce. Note first that the higher
coefficients an (with n = N and n = N − 1) are transformed almost trivially.
It follows that the coefficients, in general, do not play the role of potentials
to be dressed, or solutions of the nonlinear equation being the compatibility
condition.

If N = 2, the general transformation (2.40) and (2.41) reduces to

a2[1] = a2 ≡ a(x, t), a1[1] = a1(x, t) + Da(x, t),

a0[1] = a0 + Da1(x, t) + 2a(x, t)Dσ + σDa(x, t).
(2.74)

Only the Abelian case is considered at this stage. The explicit form of the
transformations clearly shows a difference between the coefficients a(x, t) and
a1(x, t), which transform irrespectively to solutions, on the one hand, and
a0 = u(x, t), which will stand for an unknown function in a forthcoming
nonlinear equation, on the other hand. We call a0 = u(x, t) the potential in
the context of the Lax representation. The KdV case can be easily recognized
here. Namely, when a = const and a1 = 0, a0 plays the role of the only
unknown function in the KdV equation (we call this situation the one-field
case). We can therefore formulate the following:

Proposition 2.27. The Abelian case with N = 2 is the first nontrivial exam-
ple of a set of covariant operators with coefficients a1,2 that depend only on x
and an additional parameter (e.g., t), but their transformations contain only
the functions a1,2 and is hence said to be trivial. The transformation (gener-
alized DT) for u is given by the last equation in (2.74) and depends on both
a1,2 and solutions of (2.36) via σ.

Let us consider the third-order operator as the second one in the Lax pair.
Letting N = 3 in (2.40) and (2.41) and changing ai → bi, we have

b3[1] = b3, b2[1] = b2 + Db′3, b1[1] = b1 + Db2 + 3b3Dσ + σDb3,

b0[1] = b0 + Db1 + σDb2 + [σ2 + (2Dσ)]Db3 + 3b3(σDσ + D2σ). (2.75)

We consider (2.74) and (2.75) as coefficients of the Lax pair of operators,
both of which depend on the only variable u, and suppose that the coefficients
of the operators and their derivatives with respect to x are analytic functions
of u. We now choose D → ∂

∂y and L→ L1 in (2.37) corresponding to the case
(2.74) and leave the parameter t, i.e., D0 → ∂

∂t for the second case, forming
the Lax pair

ψy = L1ψ, (2.76)

ψt = L2ψ. (2.77)
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Here L2 =
∑2

i=0 biD
i.

Recall the KdV case. The general stationary version of (2.33) for N = 2 is

2∑

n=0

anBn = c = const,

which yields
σ2 + σ′ + u = c. (2.78)

Note that (2.33) for N = 3 is still valid for the same σ = φxφ
−1 if φ is a

solution of the Lax pair (2.76) and (2.77). If we restrict ourselves to the case
b2 = 0 and b3 = b = const in (2.75), we obtain the second equation in the
KdV Lax pair.

Returning to the general case and taking into account the triviality of
transforms of b3 = b(x, t) and b2 in the aforementioned sense, we find that
the first nontrivial potential is b1 = F (u, u′, . . .). Suppose that the covariance
principle holds or, equivalently, take the following equation for F :

b1[1] = F (u[1]) = F (u + Da1 + 2aDσ + σDa)
= F (u) + Db2 + 3bDσ + σDb. (2.79)

The analyticity of F permits us to expand the left-hand side of (2.79) in a
Taylor series:

F (u[1]) = F (u) + Fu(2aDσ + Da1 + σDa) + FDu(. . .) + . . . . (2.80)

Compare the transformation (2.79) with the Frechét differential (2.80) of the
function F . Both equations are identical if the coefficients of σ, Dσ, and the
free term in both equations are the same. Introducing Fu = c(x, t) yields

2ac = 3b, (2.81)

or
F (u) =

3bu
2a

with the additional conditions

cDa1 = Db, (2.82)
cDa = Db. (2.83)

Substituting c from (2.81) in (2.83), we pass either to 3D(lna) = 2D(ln b) and
obtain b = a3/2c1(t), or to Da = Db = 0. In the last case, (2.83) is valid with
an arbitrary c or mutually independent b(t) and a(t), while (2.82) yields the
equation for a1 for both cases, 3Da1 = 2aDb/3b with an arbitrary c1(t).
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Further conditions follow from the last equation in (2.75), i.e., if we in-
troduce a new analytic function G and set b0 = G(u, u′, . . .), the transformed
b0 gives

G(u + Da1 + 2aDσ + σDa) = G(u) + Gu(Da1 + 2aDσ + σDa)

+GDuD(Da1 + 2aDσ + σDa) + . . . . (2.84)
The DT formula for the potential u is obviously used. The DT for the last
coefficient b0 [see (2.75)] yields

b0[1] = G(u) + Db1 + σDb2 + [σ2 + 2(Dσ)]Db + 3bD
(
σ2

2
+ Dσ

)
. (2.85)

We now consider a general version of the Miura transformation (2.78)
which has the form

2∑

0

anBn = u + a1σ + a(σ2 + Dσ) ≡ μ,

and can be used to express σ2 in (2.85). Doing this and equating (2.84) and
(2.85) yields

D
3bu
2a

+ σDb2 +
(
μ− u− a1σ

a
+ Dσ

)
Db + 3bD

(
μ− u− a1σ

2a
+ Dσ

)

= Gu(Da1 + 2aDσ + σDa) + GDuD(Da1 + 2aDσ + σDa). (2.86)

From (2.86) we obtain the coefficients

Gu(Du)2a = 3b (2.87)

for D2σ,

Gu2a +
9b(Da)

2a
=

Db− 3ba1

2a
(2.88)

for Dσ taking (2.87) into account, and

GuDa +
3b
2a

D2a(x, t) = Db2 − a1

a
− 3bD

(a1

2a

)
(2.89)

for σ. The free term is

D
3bu
2a

+
(
μ− u

a

)
Db + 3bD

(
μ− u

2a

)
= GuDa1 +

3b(D2a1)
2a

. (2.90)

From (2.87) and (2.88) we obtain

Gu =
Db

2a
− 3ba1

4a2
− 9b(Da)

4a2
. (2.91)

If Gu is nonzero, then it follows from (2.89) that
(
Db

2a
− 3ba1

4a2
− 9b(Da)

4a2

)
Da +

3b
2a

D2a = Db2 − a1

a
− 3bD

(a1

2a

)
.
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The free term (2.90) gives

u
Db

2a
+μ

Db

a
− 3bDa

2a2
=

(
Db

2a
− 3ba1

4a2
− 9bDa

4a2

)
Da1(x, t)+

3b(D2a1)
2a

. (2.92)

If u is linearly independent of σ and its derivatives and we do not take into
account higher terms in the Frechét differential, then the only choice Db = 0
eliminates the term with u, and (2.92) simplifies to

D2a1 − a1(Da1)
2a

= 0.

The condition Da = 0 as a consequence of (2.83) has been used. Equation
(2.89) also simplifies to

Db2 − a1

a
− 3b(Da1)

2a
= 0

and integration gives the expression for b2.
Another possibility is Gu = 0, which gives

9b(Da)
2a

=
Db− 3ba1

2a
,

instead of (2.91). The free term transforms as

u
Db

2a
+ μ

(
Db

a
− 3bDa

2a2

)
=

3b(D2a1)
2a

and gives the conditions Db = Da = 0 for the same reasons. In turn, this
means that a1 = 0 and, finally, from (2.89), Db2 = 0. Hence, this case contains
the KdV equation with the (possibly, t-dependent) a(t), b(t), and b2(t).

Remark 2.28. The results for the single isolated equation (2.76) contain a
rather wide class of coefficients, in comparison with the joint covariance of
(2.76) and (2.77). Namely, a and a1 are arbitrary functions of x and t. This
may be useful for constructing potentials and solutions (e.g., special functions)
for the linear Schrödinger equation and evolution equations in one-dimensional
quantum mechanics [214].

The KdV case can be described separately (again using the notation
f ′ = Df):

Guσ
′ + Gu′σ′′ =

3b(1− a)u′

4a2
+

3bσ′′

4a
.

The only possible choice, if we consider σ, σ′, and u′ as independent variables,
is

Gu = 0, Gu′ =
3b
4a

,
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or taking into account the condition of zero coefficient for u′, a = 1, we obtain

G(u, u′, . . .) =
3bu′

4
.

This result leads directly to one of the equivalent Lax pairs for the KdV
equation.

2.7.2 Covariance equations

First we reproduce the “Abelian” scheme, generalizing the study of the Boussi-
nesq equation [270]. To start with, we should fix the number of fields. Let us
consider the third-order operator (2.20) with coefficients bk, k = 0, 1, 2, 3, re-
serving ak for the coefficients in the second operator in a Lax pair. Suppose,
both operators depend on the only potential function w. The problem we con-
sider now can be formulated as follows: to find restrictions on the coefficients
b3(t), b2(x, t), b1 = b(w, t), and b0 = G(w, t) compatible with the DT rules of
the potential function w induced by the DT for bi. The classical DT for the
third order operator coefficients (Matveev generalization [314]) yields

b2[1] = b2 + b′3, (2.93)

b1[1] = b1 + b′2 + 3b3σ′, (2.94)

b0[1] = b0 + b′1 + σb′2 + 3b3(σσ′ + σ′′), (2.95)

having in mind that the highest coefficient b3 does not transform. Note also
that b′3 = 0 yields invariance of b2.

The general idea of the DT form invariance can be realized considering
transformations of the coefficients consistent with respect to the fixed trans-
form of w. Generalizing the analysis of the third order operator transformation
[270], we arrive at the equations for the functions b2(x, t), b(w, t), and G(w).
The covariance of the spectral equation

b3ψxxx + b2(x, t)ψxx + b(w, t)ψx + G(w, t)ψ = λψ (2.96)

can be considered separately and leads to the link between bi only. We, how-
ever, study the problem (2.96) in the context of the Lax representation for
some nonlinear equation; hence, the covariance of the second Lax equation is
taken into account from the very beginning. We refer to such an approach as
the principle of joint covariance [265, 267]. The second (evolution) equation
is written as

ψt = a2(x, t)ψxx + a1(x, t)ψx + wψ, (2.97)

with the operator on the right-hand side having again the general polynomial
form of (2.20).

If we consider the operators L and A of the form
∑

aiD
i, specified in

equations (2.96) and (2.97) as the Lax pair equations, the DT of w implied
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by the covariance of (2.97) should be compatible with DT formulas of both
w-dependent coefficients of (2.96):

a2[1] = a2 = a(x, t), a1[1] = a1(x, t) + Da(x, t),

a0[1] = w[1] = w + a′1 + 2a2σ
′ + σa′2.

The following important relations being in fact the identities in the DT theory
[467] are the particular cases of the generalized Burgers equation for σ (2.36):

σt = [a2(σ2 + σx) + a1σ + w]x (2.98)

for the problem (2.97) and

b3(σ3 + 3σxσ + σxx) + b2(σ2 + σx) + b(w, t)σ + G(w) = const

for (2.96), where φ is a solution of both Lax equations.
Suppose now that the coefficients of the operators are analytic functions of

w together with its derivatives (or integrals) with respect to x (such functions
are named functions on the prolonged space [33]). For the coefficient b0 =
G(w, t) this means

G = G(∂−1w,w,wx, . . . , ∂
−1wt, wt, wtx, . . .). (2.99)

The covariance condition is formulated for the Frechét derivative of the func-
tion G on the prolonged space. In other words, the first terms of a multidi-
mensional Taylor series for (2.99) read

G(w + a′1 + 2a2σ
′ + σa′2) = G(w) + Gwx(a′1 + 2a2σ

′ + σa′2)
′ + . . . . (2.100)

We show only the terms which enter the “minimal” equations of the hierarchy.
In full analogy with (2.94) and (2.100), quite similar expansion arises for

the coefficient b1 = b(w, t). Equating the DT and the expansion, we obtain
the condition

b′2 + 3b3σ′ = bw(a′1 + 2a2σ
′ + σa′2) + bw′(a′1 + 2a2σ

′ + σa′2)
′ . . . . (2.101)

We call this equation as the (first) joint covariance equation that guarantees
consistency between transformations of the coefficients of the Lax pair (2.96)
and (2.97). In the frame of our choice a′2 = 0, the equation simplifies and
linear independence of the derivatives σ(n) yields two constraints

3b3 = 2bwa2, b′2 = bwa
′
1,

or, solving the second and plugging into the first, results in

bw = 3b3/2a2, b′2 = 3b3a′1/2a2. (2.102)
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So, if one wants to save the form of the standard DT for the variable w (poten-
tial), simple comparison of both transformation formulas gives the following
connection for b(w) [with arbitrary function α(t)]:

b(w, t) = 3b3w/2a2 + α(t). (2.103)

Equating the expansion (2.100) with the transform of the b0 = G(w, t)
yields

b′1 + σb′2 + 3b3(σ2/2 + σ′)′ (2.104)

= Gwx(a′1 + 2a2σ
′ + σa′2)

′ + G∂−1wt
[a1t + 2∂−1(a2σ

′
t) + ∂−1(σa′2)t] + . . . .

This second joint covariance equation also simplifies when a′2 = 0 and (2.103)
is accounted for:

3b3w′/2a2 + σb′2 + 3b3(∂−1σt − w)′/2a2 + 3b3σ′′/2 (2.105)

= Gwx(a′1 + 2a2σ
′)′ + G∂−1w(a1 + 2a2σ) + G∂−1wt

(a1t + 2a2σt) + . . . .

Note that the “Miura” transform (2.98) is used on the left-hand side of (2.105)
and linearizes the Frechét derivative with respect to σ; therefore, the deriva-
tives of the function G,

Gwx = 3b3/4a2, G∂−1wt
= 3b3/4a2

2, G∂−1w = b′2/2a2,

are accompanied by the constraint

a1t + a2a
′′
1 + a1a

′
1 = 0, (2.106)

which acquires the form of the Burgers equation after using (2.102). Finally,
the integration of (2.102) gives

b2 = 3b3a1/2a2 + β(t) (2.107)

and the “lower” coefficient of the third-order operator is expressed by

G(w, t) = 3b3wx/2a2 + 3b3a′1∂
−1w/2(a2)2 + 3b3∂−1wt/2a2

2.

Proposition 2.29. The expressions (2.97), (2.96), (2.103), and (2.107) define
the covariant Lax pair when the constraints (2.102) and (2.106) hold.

Remark 2.30. We cut the Frechét differential formulas on the level that is
necessary for the minimal flows. The account of higher terms leads to the
whole hierarchy, similarly to [260, 261].
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2.7.3 Compatibility condition

In the case a′2 = 0 the Lax system (2.96) and (2.97) produces the following
compatibility conditions:

2a2b
′
3 = 3b3a′2,

b3t = 2a2b
′
2 − 3b3a′′1 ,

b2t = a2b
′′
2 + 2a2b

′
1 + a1b

′
2 − 3b3a′′1 − 2b2a′1 − 3b3a′0, (2.108)

b1t = a2b
′′
1 + a1b

′
1 − b3a

′′′
1 − b2a

′′
1 − b1a

′
1 − 3b3a′′0 − 2b2a′0 + 2a2b

′
0,

b0t = a1b
′
0 + a2b

′′
0 − b1a

′
0 − b2a

′′
0 − b3a

′′′
0 .

In the particular case a2 = 0 we derive from the first of the equalities (2.108)
the constraint b′3 = 0. The direct consequence of (2.107) is b3t = 0. In the rest
of the equations the links (2.108) and (2.107) are taken into account. Hence,
(2.106) in combination with the expression for b2t produces βt = −2βa′1 with
β(t) from (2.107). The last two equations (for b3 = 1 and a2 = −1) become

αw + αt + 3a′′1∂
−1w/2 + (2β − 3a1/2)w′ + a′′′1 + 3a1a

′′
1/2 = 0,

3∂−1(wt + a1w)t/4 = (α− 3w/2)w′ − w′′′/4 + 3a1wt/4

+3a1a
′′
1∂

−1w/4 + 3a1a
′
1w/4− 3a′1w

′/4 + (β + 3a1/4)w′′.

In the simplest case of constant coefficients (b′2 = a′1 = 0), one goes down to

3b3(wt + a1w)t/4a2
2 (2.109)

− [
(3b3w/2a2 + α)w′ − b3w

′′′/4 + 3b3a1wt/4a2
2 + (β − 3b3a1/4a2)w′′]′ .

This equation reduces to the standard Boussinesq equation when b1 = a1 = 0,
b3 = 1, and a2 = −1.

We should stress once again that the results given in Sect. 2.2 have been
simplified to show more clearly the algorithm of the derivation of the covariant
Lax pair. A more general study can be developed if a′2 �= 0.

2.8 Non-Abelian case. Zakharov–Shabat problem

In this section we consider linear equations comprising the Lax pair with
the coefficients from the non-Abelian differential ring A (for details of the
definitions of the mathematical objects, see [467]) and apply for them the
joint covariance principle.
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2.8.1 Joint covariance conditions for general
Zakharov–Shabat equations

Let us change the notations for the first-order (n = 1) equation (2.39) as
follows:

ψt = (J + u∂)ψ. (2.110)

Here the operator J ∈ A does not depend on x, y, t and the potential a0 ≡
u(x, y, t) ∈ A is a function of the variables indicated. The operator ∂ = ∂/∂x
can be considered as a general differentiation, as in [467]. The transformed
potential

ũ = u + [J, σ], (2.111)

where σ = φxφ
−1 and φ is another solution of (2.110), is defined by the same

formula as before, but the order of the elements is important. The covariance
of the operator in (2.110) follows from the general transformations of the
coefficients in the polynomial (2.41). The coefficient J is not transformed.

Suppose the second operator of a Lax pair has the same form but with
different entries and derivatives:

ψy = (Y + w∂)ψ, Y ∈ A, (2.112)

where the potential w = F (u) ∈ A is a function of the potential of the first
equation (2.110). The principle of joint covariance [265, 267] hence reads

w̃ = w + [Y, σ] = F (u + [J, σ]),

with the direct consequence

F (u) + [Y, σ] = F (u + [J, σ]). (2.113)

So, the joint covariance equation (2.113) defines the function F (u). In the
case of the Abelian algebra we use the Taylor series (generalized by use of
the Frechét derivative) to determine this function. Now some generalization
is necessary. Let us make some remarks.

An operator-valued function F (u) of an operator u in a Banach space may
be considered as a generalized Taylor series with coefficients that are expressed
in terms of Frechèt derivatives. The linear in u part of the series approximates
(in a sense of the space norm) the function

F (u) = F (0) + F ′(0)u + . . . .

This representation is not unique and a similar expression

F (u) = F (0) + uF̂ ′(0) + . . .

may be introduced (definitions are given similarly to those in [33]). Both
expressions, however, are not Hermitian; hence, they are not suitable for the
majority of physical models. It means that the class of such operator functions
is too restrictive. To explain how a more general class of functions could be
introduced, let us consider some examples.
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2.8.2 Covariant combinations of symmetric polynomials

The first natural example is the generalized Euler top equation with the
Hamiltonian Hu+uH which is discussed in Sect. 3.9. The covariant Lax pair
for this case consists of two equations (2.110) and (2.112); the entries of the
operators satisfy the joint covariance condition (2.113) and the compatibility
condition if J = H and Y = H2.

The next example is related to the operator polynomial

P2(H,u) = H2u + HuH + uH2,

whereas the choice F (u) = P2(H,u) satisfies the link (2.113). The direct
substitution in the covariance and compatibility equations leads to a covariant
constraint that turns out to be the identity if Y = H3 and J = H .

More general connection Y = Jn and J = H leads to the covariance of
the function

Pn(H,u) =
n∑

p=0

Hn−puHp.

This observation was exhibited in [276]. For further generalization let us con-
sider combinations of polynomials,

f(H,u) = Hu + uH + S2u + SuS + uS2. (2.114)

Plugging (2.114) as F (u) = f(H,u) into (2.113) hints at a choice Y = AB +
CDE that yields

A[B, σ] + [A, σ]B + CD[E, σ] + C[D,σ]E + [C, σ]DE

= H [J, σ] + [J, σ]H + S2[J, σ] + S[J, σ]S + [J, σ]S2.

The last expression turns out to be the identity if A = B = J = H , C = αH ,
D = αH , D = αH , S = βH , and [α,H ] = 0, [β,H ] = 0 with the link α3 = β2.
Continuing this analysis, we arrive at the following:

Proposition 2.31. The joint covariance principle defines a class of homoge-
neous polynomials Pn(H,u), symmetric with respect to cyclic permutations, as
possible Hamiltonians h(ρ) = Pn(H,u) for the Liouville–von Neumann type
evolution (Sect. 3.9). A linear combination of polynomials

∑N
n=1 βnPn(H,u)

with the coefficients commuting with u and H also yields the covariant pair if
the conditions Y =

∑N
n=1 αnH

n+1, α1 = β1 = 1, αn+2
n = βn+1, and n �= 1

hold.

A proof could be performed by induction that is based on homogene-
ity of Pn and linearity of the constraints with respect to u. The functions
FH(u) =

∑∞
0 anPn(H,u) also satisfy the constraints if the corresponding

series converges.
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2.9 A pair of difference operators

Let us consider a pair of equations of the same type (2.63) for a function ψ:

ψt(x, t) =
N∑

m=−M
UmTmψ, (2.115)

ψy(x, t) =
N ′∑

m=−M ′
VmTmψ. (2.116)

The compatibility condition for them is the nonlinear equation

Usy − Vst =
∑

k

[
VkT

k (Us−k)− Us−kT s−k (Vk)
]

(2.117)

for s = −M−M ′, ..., N+N ′, k ∈ {k′ = −M ′, ..., N ′}∩{s−k = −M , ..., N }.
In the simplest case of the Zakharov–Shabat operators in both (2.115)

and (2.116) with the subclass of stationary in y solutions we obtain three
conditions:

U0t = V0U0 − U0V0,

U1t = V0U1 − U0V1 + V1T (U0)− U1T (V0) ,

and
V1T (U1) = U1T (U1) .

The connection with polynomials of a differential operator and hence with
the theory of classical Bell polynomials can be revealed if we change the
definition of potentials. It is clear that if the automorphism T is the shift
operator Tf(x) = f(x+ δ), the coefficients of the polynomials in T should be
arranged as follows:

ψt(x, t) =
N∑

m=−M

um
δm

m∑

r=0

(
m

m− r

)
(−1)m−rT rψ. (2.118)

The recursion equation that defines classical differential Bell polynomials in
commutative variables y1, y2, . . . [388],

Bm+1 =
m∑

r=0

(
m

r

)
Bm−ryr+1,

together with the definition (2.65) of B+
m, connects these special functions.

Let us remark that the transformations for Um found in Sect. 2.6 give the
transforms for um defined by (2.118). The possibility of inverse transition
depends on the independence of functions (T −1)nf for a given T and the set
of functions ψ under consideration. The joint covariance of the system (2.115)
and (2.116) hence may be investigated along the guidelines of [260] and [270],
where the so-called binary Bell polynomials are used to form a convenient
basis.
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2.10 Non-Abelian Hirota system

Let us consider a pair of the Zakharov–Shabat type equations,

ψt (x, y, t) = (V0 + V1T )ψ (2.119)

and
ψy (x, y, t) =

(
U0 + U−1T

−1
)
ψ. (2.120)

It differs from that used in the previous section by the change T → T−1 on
the right-hand side of (2.120).

In a t-lattice version of equation (2.63) with j ∈ Z we go to

f (x, j + 1) =
N∑

m=−M
UmTmf(x, j).

The case of a lattice in all variables is generated by the transition to
the discrete variables x, y, t → n, j, r ∈ Z, f(x, y, t) → fn(j, r), defined as
in [321]. The operator T acts as the shift of n: Tfn(j, r) = fn+1(j, r). The
corresponding equations (2.119) and (2.120) are written as

fn(j − 1, r) = fn+1(j, r) + v(n, j, r)fn(j, r) (2.121)

and
fn(j, r − 1) = fn(j, r) + u(n, j, r)fn−1(j, r) (2.122)

with the potentials indicated. The compatibility condition of the linear equa-
tions (2.121) and (2.122) has the form

u(n, j − 1, r)− u(n + 1, j, r) = v(n, j, r − 1)− v(n, j, r),

v(n, j, r − 1)u(n, j, r) = u(n, j − 1, r)v(n− 1, j, r). (2.123)

The second equation in (2.123) is automatically valid if

u(n, j, r) = τn+1(j, r − 1)τ−1
n (j, r − 1)τn−1(j, r)τ−1

n (j, r),
v(n, j, r) = τn+1(j − 1, r)τ−1

n (j − 1, r)τn(j, r)τ−1
n+1(j, r). (2.124)

It should be stressed that the order of the entries in these expressions is im-
portant. The substitution of (2.124) in the first equation in (2.123) leads to
the generalized Hirota bilinear equation [210] (compare also with the gener-
alizations in [336]):

τn+1(j − 1, r − 1)τ−1
n (j − 1, r − 1)τn−1(j − 1, r)τ−1

n (j − 1, r)

−τn+1(j − 1, r − 1)τ−1
n (j − 1, r − 1)τn−1(j, r − 1)τ−1

n (j, r − 1)

−τn+2(j, r − 1)τ−1
n+1(j, r − 1)τn(j, r)τ−1

n+1(j, r)

+τn+1(j − 1, r)τ−1
n (j − 1, r)τn(j, r)τ−1

n+1(j, r) = 0. (2.125)
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In the scalar case the system reduces to the Hirota bilinear equation [321]

τn(j + 1, r)τn(j, r + 1)− τn(j, r)τn(j + 1, r + 1)

+τn+1(j + 1, r)τn−1(j, r + 1) = 0. (2.126)

Using (2.124) and the DT formalism, we could elaborate a non-Abelian
version of these equations that can be useful for applications in the theory of
quantum transfer matrices for fusion rules [255, 256] and of quantum corre-
lation functions [36, 37]. Note that the non-Abelian Hirota–Miwa equation is
discussed by Nimmo [351].

Let us return to the DT theory. Equations (2.119) and (2.120) are jointly
covariant; hence, solving equations (2.123) or (2.125) is based on the symmetry
that is generated by the joint covariance of (2.121) and (2.122) with respect
to the transformations of the type (2.111), namely,

ψ−(j, r) = ψ − σ−T−1f, σ− = ϕ
(
T−1ϕ

)−1
.

As can be easily seen, the form of both linear equations (2.121) and (2.122)
represents reductions of (2.119) and (2.120) with V1 = 1, V0 = v, U0 = 1, and
U−1 = u. We show further some details in the proof of the covariance theorem
because it demonstrates important features in the procedure of the derivation
of the chain equation. Let us start, say, from (2.122). The covariance conditions
are obtained from the coefficients by ψ, T−1ψ, and T−2ψ. The first one is valid
automatically,

u− = u− σ− (r − 1) + σ− (r) , (2.127)

u−T−1σ− (r) = σ− (r − 1)u. (2.128)

2.11 Nahm equations

The Nahm equations [344] appear in conformal field theory in connection with
the monopole problem. They are solved by the variational method in [129],
producing a parameterization of the Bogomolny equations. Their generaliza-
tions attract great attention in mathematical physics [101, 345].

In the following example, we change the DT formulas a bit, showing the
alternative version, similar to [381]. We stress, however, that the formulas
from Sect. 2.1 give an equivalent result. Some generalization will be needed
within the reduction constraints related to an additional (gauge) transforma-
tion denoted by g. This is expressed by the following:

Theorem 2.32. The equation

ψy = uTψ + vψ + wT−1ψ (2.129)
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is covariant with respect to the combined gauge–DT

ψ[1] = g(T − σ)ψ. (2.130)

Here σ = (Tφ)φ−1, where φ is a solution of the same equation (2.129) and g
is an invertible element of the ring. The transforms of the equation coefficients
are

u[1] = gT (u)[T (g)]−1, (2.131)
v[1] = gT (v))g−1 − gσug−1 + gT (u)T (σ)g−1 + gyg

−1, (2.132)
w[1] = gσw[T−1(gσ)]−1. (2.133)

Proof. The substitution of (2.130) into the transformed equation (2.129) gives
four equations assuming T nψ are independent. Three of them yield trans-
formed potentials (2.131)–(2.133). The fourth equation after use of the trans-
forms takes the form

σy = σF − (TF )σ, (2.134)

where
F = uσ + v + w[T−1(σ)]−1.

One can check the condition (2.134) by direct substitution of the operator σ
and by use of the equation for φ.

Remark 2.33. Theorem 2.32 is evidently valid for the spectral problem

λψ = uTψ + vψ + wT−1ψ (2.135)

with the only correction being that the last term for the transform v[1] is
absent. The equation goes to the “Riccati equation” analog for the function
σ:

μ = uσ + v + w[T−1(σ)]−1. (2.136)

Note that inserting the element σ = (Tφ)φ−1 into (2.136) transforms it to the
spectral problem for φ (2.135) with the spectral parameter μ.

The Nahm equations can be written by means of the Lax representation
using the spectral equation (2.135) and the evolution equation

ψy = (q + pT )ψ (2.137)

with potentials p and q. The covariance of this equation with respect to the
DT (2.130) can be established similarly to Theorem 2.32 with account of the
y-evolution of σ(y):

σy = T (q)σ − σpσ + T (p)T (σ)σ − σq = 0, (2.138)

which proves the following transformation formulas for the coefficients in
(2.137):

p[1] = gT (p) [T (g)]−1
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and
q[1] = g [T (q)− σp + T (p)T (σ)] g−1 + gyg

−1.

The joint covariance principle (Sect. 2.7 and [265]) defines the connection
between potentials p and q and u and v:

p = u + βI, q = v/2. (2.139)

Hence, the joint DT covariance means integrability of the compatibility con-
dition of equations (2.137) and (2.129), e.g., of the Nahm equations:

uy =
1
2
[uT (v)− vu] + β[T (v)− v],

vy = uT (w)− wT−1u + β[T (w)− w],

wy =
1
2
vw − wT − 1(v).

One more possible specification is the use of periodic potentials in the
problem (2.137) with the evolution (2.129) with account for the connections
(2.139) that result in the appearance of commutators on the right-hand sides
of the equations. Some linear transformations and rescaling

u = α(−iϕ1/2− ϕ3), v = ϕ3,

w = α−1(−iϕ1/2 + ϕ3), q = ϕ3/2,
p = α(−iϕ1/2− ϕ3) + βI

produce the Nahm equations for the periodic functions Tϕi = ϕi [periodicity
of ϕi does not mean a periodicity of solutions ψ and φ of the Lax pair and
the corresponding σ = (Tφ)φ−1]:

ϕiy = iεikl[ϕk, ϕl]. (2.140)

α and β are free parameters. This system is covariant with respect to the
combined DT–gauge transformations if the gauge transformation g = expG
is chosen as follows:

Gy = α [(ϕ3 + ϕ1/2)T (σ)− σ(ϕ3 + ϕ1/2)] /2. (2.141)

Finally, the following theorem can be formulated:
Theorem 2.34. For Tϕi = ϕi the system (2.140) is invariant with respect to
the transformations

ϕ1[1] = g
[
(ϕ1/2− iϕ3)T (g)−1 + σ(ϕ1/2 + iϕ3)[T−1(gσ)]−1

]
,

ϕ2[1] = g [ϕ2 + α(iσϕ1/2− iϕ1T (σ)/2 + σϕ3 − T (ϕ3σ))] g−1, (2.142)
ϕ3[1] = g

[
(−iϕ1/2− ϕ3)T (g)−1 + σ(−iϕ1/2 + ϕ3)[T−1(gσ)]−1

]

with the function g = expG, where G is obtained by integrating (2.141), if the
element σ is a solution of the system

μ = α(−iϕ1/2− ϕ3)σ + ϕ3 + α−1(−iϕ1/2 + ϕ3)[T−1(σ)]−1, (2.143)

σy = [ϕ3, σ]/2− σ[α(−iϕ1/2−ϕ3)+ βI]σ + [α(−iϕ1/2−ϕ3)+ βI]T (σ)σ = 0.
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The system (2.143) follows from (2.138) and (2.136).

Remark 2.35. A similar statement can be formulated for the discrete version
[342] of the Nahm system (2.140), as may be seen from the previous section.

2.12 Solutions of Nahm equations

Making use of the construction described in the previous section, we consider
a simple example. Let T be a shift operator Tψ(x, y) = ψ(x+1, y). As a seed
solution of the Nahm equations (2.140) take commuting constant matrices
ϕi = Ai, i = 1, 2, 3, which means constant u, v, and w. First of all we should
generate a solution of the Lax pair (2.135) and (2.137) that can be found
in the form φ = ξ(t)Φ(x) (all elements are supposed to be invertible). The
equation for ξ is obtained as

ξt = [v/2 + (u + βI)T ]ξ = Zξ,

which is solved by
ξ = exp(Zt)ξ0.

Plugging Φ into (2.135) yields the spectral problem for the difference shift
operators:

μΦ(x) = ξ−1[uξΦ(x + 1) + vξΦ + wξΦ(x − 1)].

Separating variables again, a class of particular solutions is built as

Φ = η exp(Σx) ;

hence, we arrive at the matrix spectral problem for η:

μη = ξ−1 [uξη exp(Σ) + vξη + wξη exp(−Σ)] ,

with the operator on the right-hand side and, therefore, spectral parameter μ
parameterized by t. Finally, the matrix σ is composed as

σ = ξ(t)η exp(Σ)η−1ξ−1(t).

An appropriate choice of commutator algebra for Ai, Σ, and η allows us to
obtain an explicit form of σ and, hence, to construct and solve the following
equation for G:

Gt =
α

2

[(
ϕ3 +

1
2
ϕ1

)
ξ(t)η exp(Σ)η−1ξ−1(t)

−ξ(t)η exp(Σ)η−1ξ−1(t)
(
ϕ3 +

1
2
ϕ1

)]
.
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Its exponent (the matrix g) is necessary for the dressing formulas (2.142). We
would like to stress that the matrices σ and g do not depend on x; hence, the
dressed ϕ[i] also does not.

Starting from the known solution of (2.140), we arrive at the Euler system
for fi(y) that is solved in the Jacobi functions [129]. The solutions are dressed
by the transformations (2.142). A more general possibility is a direct series
solution of (2.138).


