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Preface

The emergence of a new paradigm in science offers vast perspectives for future
investigations, as well as providing fresh insight into existing areas of knowl-
edge, discovering hitherto unknown relations between them. We can observe
this kind of process in connection with the appearance of the concept of soli-
tons [465]. Understanding the fact that nonlinear modes are as fundamental as
linear ones, with the advent of a rigorous formalism making it possible to find
exact solutions of a wide class of physically important nonlinear equations,
gave rise to “a revolution that has quietly transformed the realm of science
over the past quarter century” [392].

The inverse spectral (or scattering) transform (IST) method serves as
the mathematical background for the soliton theory. The development of the
IST formalism affects many fields of mathematics, revealing on frequent oc-
casions unexpected links between them. For example, the theory of surfaces
in R

3 can be considered as a chapter of the theory of solitons [468]. The
modern version of IST is based on the dressing method proposed by Za-
kharov and Shabat, first in terms of the factorization of integral operators
on a line into a product of two Volterra integral operators [474] and then
using the Riemann–Hilbert (RH) problem [475]. The most powerful version
of the dressing method incorporates the ∂̄ problem formalism. The ∂̄ prob-
lem was put forward by Beals and Coifman [39, 40] as a generalization of
the RH problem and was applied to the study of first-order one-dimensional
spectral problems. The full-scale opportunities provided by this formalism
came to be clear after the paper by Ablowitz et al. [1] devoted to solving the
Kadomtsev–Petviashvili II equation. The main achievements within this sub-
ject have been summarized in the excellent books by Novikov et al. [354], Fad-
deev and Takhtajan [148], Ablowitz and Clarkson [3], and Belokolos et al. [45],
published more than a decade ago. Experimental aspects of the soliton physics
are presented in the book by Remoissenet [373]. The elegant group-theoretical
approach to integrable systems was presented in a recent book by Reyman and
Semenov-tyan-Shansky [374].

xv
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Generally, the term “dressing” implies a construction that contains a trans-
formation from a simpler (bare, seed) state of a system to a more advanced,
dressed state. In particular cases, dressing transformations, as the purely al-
gebraic construction, are realized in terms of the Bäcklund transformations
which act in the space of solutions of the nonlinear equation, or the Darboux
transformations (DTs) acting in the space of solutions of the associated linear
problem.

At the same time, it should be stressed that the term “dressed” has ap-
peared for the first time perhaps in quantum field theory that operates with
the states of bare and dressed particles or quasiparticles. These states are in-
terconnected by operators whose properties have much in common, no matter
whether we speak about electrons or phonons. The study of these operators,
which goes back to Heisenberg and Fock, was in due course one of the stimuli
for active promotion of the methods of the Lie groups and algebras in physics.

In mathematical physics, the operators of this sort occur under different
names, like creation–annihilation, raising–lowering, or ladder operators. The
factorization method [214] widely applicable in quantum mechanics consists
in fact in dressing of the vacuum state by the creation operators which are
obtained as a result of the factorization of the Schrödinger operator. The
property of intertwining of the dressing operators is ultimately connected
with the algebraic construction known as supersymmetry.

Hence, the concept of dressing is in fact considerably wider than if we
were to take into account its application in soliton theory alone. Evidently,
an attempt to span all the diversity of dressing applications treated in the
aforementioned extended sense under the cover of a single book seems too
ambitious. With regard to the authors’ scientific interests, we restrict our
consideration to essentially two global aspects of the dressing method. The
first one is mostly algebraical and relates to an extension of the possibili-
ties of the DTs and Moutard transformations invoking new constructions and
enhancing classes of objects used. In essence, we aim to go beyond the tradi-
tional scope of the Darboux–Bäcklund transformations towards the modern
development like dressing chains, operator factorization on associative rings, a
nonlinear von Neumann equation for the density matrix, and so on. Following
our extended understanding of dressing, we demonstrate efficient use of the
Darboux-like transformations for the discrete spectrum management in linear
quantum mechanics. The second aspect of the dressing concept is largely an-
alytical and is based on the RH and ∂ formalisms following most closely the
Zakharov and Shabat ideas.

The DTs, as the representative of the direct methods in soliton theory,
provide a powerful tool to analyze and solve nonlinear equations [324] and
allow far-reaching generalizations. On the other hand, direct methods are not
very suitable for solving the initial-value (Cauchy) problems or to describe in-
teraction of radiation with localized objects. Therefore, the second main topic
of our book is devoted to solving the Cauchy problem and finding localized
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solution of various nonlinear integrable equations in both 1+1 and 2+1 di-
mensions by means of the RH and ∂̄ problems.

Let us briefly comment on a modern state of the art of the subjects our
book is devoted to. If ψ(x, λ) and ϕ(x, μ) ∈ C are linearly independent solu-
tions of the linear equation

−ψxx + u(x)ψ = λψ

associated with the parameters λ and μ, then

ψ[1] = ψx + σψ , σ = −ϕx/ϕ

is the solution of the equation

−ψ[1]xx + u[1]ψ[1] = λψ[1] ,

with
u[1](x) = u + 2σx .

They are the analytic expressions of ψ[1] and u[1] in terms of ψ, ϕ, and u that
determine the DT.

Already the pioneering papers of Matveev [313, 314, 315] have shown that
the DT represents in fact a universal algebraic operation up to the most
advanced one [321] for associative rings. The Matveev theorem provides a
natural generalization of the DTs in the spirit of the classical approach of
Darboux [102] with a great variety of applications. Let us start with the class
of functional-differential equations for some function f(x, t) and coefficients
um(x, t) belonging to the ring,

ft(x, t) =
N∑

m=−M
um(x, t)Tm(f) , t ∈ R ,

where T is an automorphism. This equation is covariant with respect to the
DT:

D±f = f − σ±T±1f,

with σ± = ϕ[T±1(ϕ)]−1. It is possible to reformulate the result for differential-
difference or difference-difference equations and give the explicit expres-
sions for the transformed coefficients [321]. From this result, the lattice and
q-deformation DTs for matrix-valued functions follow in a straightforward
way:

T (f)(x, t) = f(x + δ, t) , x, δ ∈ R

or
T (f)(x, t) = f(qx, t) , x, q ∈ R , q �= 0 .
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It is sufficient to take the limit

σf − fx = lim
δ→0

1
δ
D±f = lim

q→1
(x − xq)−1D±f

to reproduce the formalism in the case of classical differential operators [321].
The general form of the DT permits us to incorporate the Combesqure

and Levy transforms of conjugate nets in classical differential geometry [138],
as well as the vectorial DTs for quadrilateral lattices [128, 307].

Being the covariance transformation, the DT can be iterated and this thus
constitutes an important feature of the dressing procedure. The result of the
iterations is expressed through determinants of the Wronskian type [94]. The
universal way to generate the iterated transforms for different versions of the
DT including those containing integral operators is given in [324]; e.g., the
Abelian lattice DT results in the Casorati determinants [314, 322].

The DT theory is strictly connected with the problem of the factorization
of differential and difference T operators [271] and hence with the technique
of symbolic manipulations [298, 429, 431]. Namely, let Q± = ±D + σ and

H(0) = −D2 + u = Q−Q+ , H(1) = Q+Q− = −D2 + u[1] .

The operators H(i) play an important role in quantum mechanics as the one-
dimensional energy operators. The spectral parameter λ stands for the energy
and the relation Q+Q−(Q+ψλ) = λ(Q+ψλ) shows the property of DTs Q± to
be the ladder operators. The majority of explicitly solvable models of quantum
mechanics are connected with those properties that allow us to generate new
potentials together with eigenfunctions [190, 214, 324]. The operator of the
DT deletes the energy level that corresponds to the solution ϕ. Conversely, the
inverse transformation adds a level. So, there is a possibility to manage the
spectrum by a sequence of DTs. The intertwining relation H(1)Q+ = Q+H(0)

gives rise to supersymmetry algebra that is an example of infinite-dimensional
graded Lie algebras or, more generally, the Kac–Moody algebras. The Moutard
transformation is a map of the DT type: it connects solutions and potentials
of the equation

ψxy + u(x, y)ψ = 0 ,

so that if ϕ and ψ are different solutions, then the solution of the twin equation
with ψ → ψ[1] and u(x, y)→ u[1](x, y) can be constructed solving the system

(ψ[1]ϕ)x = −ϕ2(ψϕ−1)x , (ψ[1]ϕ)y = ϕ2(ψϕ−1)y .

The transformed potential is given by

u[1] = u− 2(logϕ)xy = −u + ϕxϕy/ϕ
2

together with the transformation of the wave function

ψ[1] = ψ − ϕΩ(ϕ, ψ)/Ω(ϕ,ϕ) ,
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where Ω is the integral of the exact differential form

dΩ = ϕψxdx + ψϕydy .

The Moutard equation, by a complexification of independent variables, is
transformed to the two-dimensional Schrödinger equation and studied in con-
nection with problems of classical differential geometry [242]. In the soliton
theory it enters the Lax pairs for some (2+1)-dimensional nonlinear equations
[3, 58]. Another generalization of the Moutard transformations leads after it-
erations to multidimensional Toda-like lattice models [435]. Note that there
is a possibility of local approximation of solutions by a sequence of Moutard
and Ribacour transformations [170]. Other applications of the DT theory in
multidimensions can be found in [26, 228, 278, 281, 287, 277]. A useful chrono-
logical survey of DTs, intertwining relations, and the factorization method is
given by Rosu [377].

A wide class of geometrical ideas and particular results of soliton surfaces
[417] in real semisimple Lie algebras is connected with the concept of the
Darboux matrix that seems to be the most “Darboux-like” approach in the
whole of DT theory. Note also in this connection the application of the DTs in
vortex and relativistic string problems initiated by the paper of Nahm [344].

In searching for alternative formulations of the method containing the prin-
cipal ideas of the Darboux approach, the so-called elementary DT [279] on a
differential ring was introduced [467] . Its particular case that does not depend
on solutions (only on potentials) is referred to as the Schlesinger transforma-
tion [389, 467]. The elementary DT in combination with a conjugate to it
generates a new transformation. This construction was named the binary DT
in [267, 270, 281]. Such a name intersects with the notion introduced in [317];
for details, see [324]. Therefore, we use the new term of twofold elementary
DT throughout this book. This transformation strictly realizes the dressing
procedure for solutions of integrable nonlinear equations. Namely, the twofold
elementary DT solves the matrix RH problem with zeros.

One of the main purposes in introducing the concept of the twofold DT
directly concerns the problem of reductions [331]. The properties of the
Zakharov–Shabat (ZS) spectral problem and its conjugate give the possi-
bility to establish a class of reductions by solving the simple conditions for
parameters of the elementary DTs which comprise the twofold combination
[279, 280, 434]. The symmetric form of the resulting expressions for potentials
and wave functions make almost obvious the heredity of reduction restric-
tions [281] and underlying authomorphisms [181, 331, 361] of the generating
ZS problem. In [276] an application to some operator problem (Liouville–
von Neumann equation) is studied. Examples of transformations of different
kinds and in different contexts were introduced in [317] (see again [324]) un-
der the name “binary.” The binary transformations in [317, 324] are a 2+1
construction based on alternative Lax pairs. This is a combination of the
classical DTs for the time-dependent Schrödinger equation and a special one
for a conjugate problem. Combinations of twofold elementary DTs were used
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to obtain multisolitons and other solutions of the three-level Maxwell–Bloch
equation [279]. A natural generalization of this construction consists in replac-
ing matrix elements by appropriate matrices. The most promising applications
of the technique are related to operator rings. Such an example was considered
in [267].

As regards the RH problem, its application to the study of spectral equa-
tions goes back to the 1975 paper by Shabat [394], though Zakharov and
Shabat [473] in their classic paper used in fact a formalism closely related to
that of the RH problem. A status of the “keystone” of the soliton theory was
acquired by the RH problem as a result of the 1979 paper by Zakharov and
Shabat [475]. The next important step is associated with Manakov [305], who
put forward a concept of the nonlocal RH problem. This idea turned out to be
very profitable for integration of (2+1)-dimensional nonlinear equations (and
some integro-differential equations in 1+1 dimensions as well). In addition to
the results described in the aforementioned monographs, mention should be
made of more recent papers devoted to the application of the RH problem
to the soliton theory. This includes integration of equations associated with
more complicated spectral problems than the ZS one (e.g., the modified Man-
akov equation [125] and the Ablowitz–Ladik equation [122, 185]). Results of
principal importance were obtained by Shchesnovich and Yang [400, 401], who
derived a novel class of solitons in 1+1 dimensions that corresponds to higher-
order zeros of the RH problem data. The soliton solutions associated with
multiple-pole eigenfunctions of the spectral problems for (2+1)-dimensional
nonlinear equations were obtained by Ablowitz and Villarroel [14, 439, 440].

The RH problem has been proved to be efficient for analysis of nearly inte-
grable systems as well as when solitons are subjected to small perturbations.
The soliton perturbation theory has been elaborated on the basis of the RH
formalism in a number of papers [122, 123, 237, 398, 397, 399]. A connection
between the RH problem and the approximation theory and random matrix
ensembles is demonstrated in [113], where the steepest descent analysis for
the matrix RH problem was performed, and in [160], where the matrix RH
problem was associated with the problem of reconstructing orthogonal poly-
nomials. A closely related area of problems focuses on finding the semiclassical
limit of the N -soliton solution for large N [302, 333].

As is known, solving the RH problem amounts to reconstructing a section-
ally meromorphic function from a given jump condition at some contour (or
contours) of the domains of meromorphy and discrete data given at the pre-
scribed singularities. Studying some nonlinear equations in 2+1 dimensions
reveals a situation when we cannot formulate the RH problem because of the
absence of domains of meromorphy. In other words, functions we work with are
nowhere meromorphic. Beals and Coifman [41] and Ablowitz et al. [1] invoked
a new tool for studying nonlinear equations, the ∂̄ problem, which amounts
to overcoming the difficulty with meromorphy. The ∂̄-dressing method consti-
tutes now a true foundation of the soliton theory. As the latest development
of the ∂̄-dressing formalism, a derivation of the quasiclassical limit of the
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scalar nonlocal ∂̄-dressing problem should be mentioned [245]. Besides, the ∂̄
problem with conjugation has been analyzed within the dressing approach by
Bogdanov and Zakharov [57].

The book is organized as follows. We begin in Chap. 1 with the introduc-
tion of some mathematical notions used throughout the book. This chapter
reviews concisely the operator technique that can be considered as one of the
sources of the dressing ideas. We discuss its origin in Lie algebra theory and
applications in quantum mechanics (creation–annihilation operators, angular
momentum, and spin theory), as well as in classical mechanics in the Poisson
representation. We also give the main definitions and results concerning the
RH boundary-value problem, both scalar and matrix, and the ∂̄ problem.

The other important idea of the dressing technology goes back to fac-
torization of differential and difference operators discussed in Chap. 2. The
story of the factorization of operators of linear equations starts perhaps from
the classic papers by Euler [147] and Jacobi [218] (see the historical essay
in [52]). We present here a rather general construction of the factorization
[467], necessary from the point of view of the dressing theory. Of course, the
result of a right/left division of the differential operators strongly depends
on the ring/field used in the construction, but the link between factors and
the eigenstates is universal. To explain the thesis, note that the factorization
of the second-order differential operator produces the DT by the operator
Lσ = (D − σ) [324]. The factorization of L = (−D − σ)(D − σ) = L+

σLσ
yields a new operator L[1] = LσL

+
σ that is intertwined with L:

L[1]Lσ = LσL . (0.1)

This relation is the basis of the algebraic dressing procedure, when applied
to some eigenstate of L. The theory was developed in [102] in connection
with applications in geometry [103]; it has been attracting more and more
attention from researchers since its introduction (for many developments, see
[197, 376]).

We elaborate a compact form of the solution of the factorization problem
by introducing special (Bell) polynomials for a general non-Abelian case. It
gives a direct link to the DT derivation, a covariance theorem formulation, and
proof. Some examples complementary to those used in the books mentioned
are demonstrated. A natural connection with supersymmetry is shown.

In Chap. 3 we introduce a general non-Abelian version of the elementary
and twofold elementary DT constructed by means of an arbitrary number
of orthogonal projectors pi. The order of the elements in determining the
equations is therefore essential. The resulting expressions for transformations
may be represented both in general operator form and by means of “matrix
elements” xik = pixpk of the ring element x (x stands for either a potential
or a solution of the linear problem).

A comparison with the relations originating from the matrix RH problem
with zeros demonstrates the possibility to generate the projectors that con-
nect solutions of the RH problem in a simple algebraic way. More detailed
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exposition of this subject is given in Chap. 8. Moreover, for the same reason,
the limiting procedures may be explicitly performed without any reference to
analytic properties of the entries. Note that there are lots of other (advanced
in comparison with twofold) possibilities to combine elementary DTs as well
as to use them directly. It is shown how the non-Abelian geometry is induced
by the DT on a differential ring.

In the last part of Chap. 3 we study a generalization of the theory of small
deformations of iterated transforms with respect to intermediate parameters
that appear within the iteration procedure of twofold elementary DTs. The
perturbation formulas allow us to define and investigate generators of the cor-
responding group, being a symmetry group of a given hierarchy associated
with the ZS problem. Then we give examples that generalize the N -wave sys-
tem as a zero-curvature condition of an appropriate pair of the ZS problems.
This case is chosen to show the importance of this approach in both geome-
try and applied mathematics, with a perspective to apply the DT theory to
computations of eigenfunctions and eigenvalues.

The nontrivial development of methods aimed at solving spectral problems
and nonlinear equations is associated with dressing chain equations produced
by iterated DTs (Chap. 4). It is first of all a link of the DT theory to the
finite-gap potentials (also as solutions of integrable equations) and to the
investigation of asymptotic behavior. The role of the complete set of the DT-
covariance conditions (the so-called Miura maps) is studied. As the new object,
t-chains are constructed and superposed with the x-chains in 1+1 dimensions.

In Chap. 5 we show in detail recent results on integrable nonlinear
equations in two space and one time variables that could be solved by
the Moutard-like and the Goursat-like transformations. We use examples of
(2+1)-dimensional Boiti–Leon–Manna–Pempinelli and Boiti–Leon–Pempinelli
equations. The asymptotic formulas for the multikink solutions are analyzed.

Chapter 6 is devoted to applications of the dressing method to linear prob-
lems of quantum and classical mechanics, exemplifying thereby the “inverse”
influence of the nonlinear theory on the linear one. We briefly review ex-
actly solvable quantum-mechanical problems on a line with potentials from
the review paper by Infeld and Hull [214] subjected to algebraic deformations.
Next we report results concerned with the radial Schrödinger equation and
treat via the dressing procedure the popular model of zero-range potentials.
In particular, we dress the zero-range potentials and consider the dressing of
scattering data. Considering the DT that preserves a potential, we can con-
clude about the spectrum and eigenfunctions of the spectral problem. Going
to the problem of dressing of differential equations with matrix coefficients, we
show links to relativistic quantum equations. Some classical wave and heat-
conduction equations can be solved by the Green function constructed via
the dressing procedure. For the classical n-point system, we can associate the
Poisson bracket with a differentiation, which leads to the possibility to treat
the dressing of classical evolution as a generalized DT.



Preface xxiii

In Chap. 7 we connect the dressing method with the Hirota formalism.
We also explain how to construct in a general way Bäcklund transformations
proceeding from the explicit form of the DT. One more aspect of the dress-
ing theory appears within the Weiss–Tabor–Carnevale procedure of Painlevé
analysis for partial differential equations. We derive DT formulas using the
singular manifold method. At the end of this chapter we comment on the
historical point connected with the appearance of the dressing method in the
ZS theory and suggest some revision of the technique.

The last three chapters deal with a realization of the dressing approach
in terms of complex analysis. In Chap. 8 we apply the local RH problem for
finding soliton (and some other) solutions of (1+1)-dimensional nonlinear in-
tegrable equations. The distinctive feature of the formalism used is the vector
parameterization of the discrete spectral data of the RH problem. Such a
parameterization arises naturally within the RH problem. Using an example
of the classical nonlinear Schrödinger equation, we demonstrate in detail the
dressing of the bare (trivial) solution which leads to the soliton. Each subse-
quent section in this chapter demonstrates a new peculiarity in the application
of the matrix RH problem. Besides, our formalism turns out to be efficient
to obtain another class of solutions associated with the notion of homoclinic
orbits which arise in the case of periodic boundary conditions. The last section
contains the description of the well-known Korteweg–de Vries (KdV) equa-
tion. A purpose of this section is rather methodological: we discuss the KdV
equation in the manner most suitable for treating in the next chapter nonlin-
ear equations in terms of the nonlocal RH problem. We hope the content of
this chapter is useful to newcomers as a concise introduction to the modern
machinery of the theory of solitons.

Dressing by means of the nonlocal RH problem is the main topic of Chap. 9.
We consider three featured examples: the Benjamin–Ono (BO) equation, the
Kadomtsev–Petviashvili I (KP I) equation, and the Davey–Stewartson I (DS I)
equation. Despite the fact that all these equations are well known, most of
the results of Chap. 9 cannot be found in monographic literature. Namely,
for the BO equation we pose the reality condition from the very beginning
and account for important reductions in the space of spectral data. For the
KP I equation we describe a class of localized solutions which arise from the
eigenfunctions with multiple poles. The consideration of the DS I equation
is more traditional and aims to demonstrate peculiarities which occur when
using the matrix nonlocal RH problem.

Finally, Chap. 10 is devoted to the description of the ∂̄ method, as applied
to nonlinear integrable equations. First we develop in detail the technique,
which is based on a rather unusual symbolic calculation, and prove its effi-
ciency. We apply this formalism for the analysis of nonlinear equations with
a self-consistent source (or with a nonanalytic dispersion relation) both in
1+1 and in 2+1 dimensions. The classic example of equations with a self-
consistent source is the Maxwell–Bloch equation. Following our approach, we
obtain the main results concerning the Lax pairs, the recursion operators,
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gauge-equivalent counterparts, and so on. The KP II equation was histori-
cally the first one to be successfully analyzed by means of the ∂̄ formalism.
We briefly outline the main steps of such an analysis. The DS II equation
is considered in more detail. In particular, we describe a recently developed
method aimed at incorporating multiple-pole eigenfunctions for generating a
new class of localized solutions.

Some words about possible linkages of our book with those recently pub-
lished and devoted to similar subjects are in order. The part devoted to the
DT theory is complementary to the book of Matveev and Salle [324]. We
include mostly the results obtained after their book was published. We also
avoided discussing matters dealt with in the book of Rogers and Schief [376]
and the quite new book of Gu et al. [197] where the geometrical problems are
discussed from the scope of the Darboux approach. We almost do not touch
classical one-dimensional integrability discussed in the books of Perelomov
[366, 367].
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Mathematical preliminaries

In this chapter we sketch the basic mathematical notions used in this book,
starting from general relations and illustrating them by the simplest exam-
ples. We also briefly review the ideas of the dressing from the viewpoint of
intertwining relations under the scope of Lie algebras [151]. There is a long
history of the applications of (semisimple) Lie algebras for determination of
operator spectra. One line dating back to Weyl [450] relates to the explicit
algebraic solution of an eigenvalue problem; an overview has been given by
Joseph and Coulson [223, 224, 225]. Perhaps the best known example of such
a construction is the quantum theory of angular momentum, including its
development for many-particle systems (from three particles to aggregates)
in terms of hyperspherical harmonics [154, 456]. The good old geometry of
surfaces and conjugate nets uses the Laplace equations and transformations
as a starting point [138]. The challenging problem of the Laplace operator
factorization, perhaps first addressed by Laplace, created something like an
“undressing” procedure which, being cut at some step, leads to the complete
integrability. The direct attempt to extend the technique of the Laplace trans-
formations and invariants to higher-order operators was made in [264]. In [405]
this technique was generalized under the name of the Darboux integrability
including nonlinearity up to the first derivatives. The search is still going on;
see the very recent paper of Tsarev [431]. It is not yet the Darboux transfor-
mation (DT) but it is precisely in this way that Moutard [340, 341] found its
transference.

Then we are concerned with the modern development of the determinant
theory related to non-Abelian rings. It appears under the name of quaside-
terminant [174]. Quasideterminants defined for matrices over free skew-fields
are not an analog of the commutative determinants but rather of a ratio of
the determinant of n × n matrices to the determinants of (n − 1) × (n − 1)
submatrices. Such a definition is natural for the Darboux dressing. In the last
two sections we give basic notions of the Riemann–Hilbert (RH) problem and
∂̄ problem which will be used in chapters devoted to solving soliton equations.

1



2 1 Mathematical preliminaries

1.1 Intertwining relation

We start from the notion of intertwining relation. Let us consider three
operators L, L1, and A, denoting D(L), D(L1), and D(A) their domains
of definition. Consider the equality

L1A = AL, (1.1)

named as an intertwining relation.

Proposition 1.1. Generally, if

Lψ = 0, ψ ∈ D(A), (1.2)

then
L1(Aψ) = 0. (1.3)

In other words, the operator A maps a solution of (1.2) onto a solution of
(1.3), if Aψ �= 0 and Aψ ∈ D(L1). The case of Aψ = 0 means that ψ belongs
to the kernel of the operator A.

Consider next an eigenvalue problem for the operator L which acts in a
Hilbert space H:

Lψ = λψ, ψ ∈ H. (1.4)

Then, owing to (1.1), L1(Aψ) = ALψ = λ(Aψ). This means that the map
A : ψ → ψ1, ψ1 = Aψ links eigenspaces of operators L and L1, leaving
eigenvalues unchanged. If Aψ ∈ H for any λ and ψ, the operator A is referred
to as an isospectral transformation.

Remark 1.2. If for some ψ, Aψ = 0, then the eigenvalue λ of A does not belong
to the spectrum of A1.

Remark 1.3. If the operator L is factorizable, i.e., L = SA, then A intertwines
L and

L1 = AS. (1.5)

For Hermitian L we have S = A+, A+ is a Hermitian conjugate to A, i.e., the
intertwining relation takes place automatically for L1 = AA+.

Given an operator algebra, we can derive comprehensive statements about
eigenvalues and eigenstates of operators. The important example of such a
construction (ladder operators) is given in the following section.

1.2 Ladder operators

Dressing by means of ladder operators is perhaps the most familiar example
of generating new solutions from the seed one. In this section we recall the
definition of ladder operators, discuss their Hermitian properties, and demon-
strate the diagonalization of the model Jaynes–Cummings (JC) Hamiltonian
by means of a unitary dressing operator.
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1.2.1 Definitions and Lie algebra interpretation

The concept of ladder operators is widely used; they are discussed in [223,
224, 225], where their self-adjoint version is reviewed. Let us start from the
commutation relations

[M,A+] = A+, [M,A−] = −A−, (1.6)

where A+ and A− are mutually adjoint operators. The link to the factor-
ization method (Chap. 2) is immediately seen. Rewriting, for example, the
first relation in (1.6) as MA+ = A+(M + 1), one can easily check that
MA+A− = A+A−M . So, the operators M and A+A− commute; hence, spec-
tral problems for both can be considered together and there exists a link
between the spectral parameters [80]. Such a property is often referred to as
supersymmetry [204].

The important link to the Lie algebra representation theory can be illus-
trated by the simplest example. The algebra su(1, 1) is generated by (1.6)
and

[A−, A+] = 2M. (1.7)

The Casimir operator C is constructed as the second-order Hermitian operator

C = M2 − 1
2
(A−A+ + A+A−), (1.8)

whose eigenvalues are equal to k(k − 1) for the unitary irreducible represen-
tations. This set defines the representation [positive discrete series D+(k)]

M |m, k >= (m + k)|m, k >, (1.9)

A+|m, k > =
√

(m + 1)(m + 2k)|m + 1, k >,

A−|m, k > =
√

m(m + 2k − 1)|m− 1, k >, (1.10)

where m = 0, 1, 2, . . . . The operators A± act as lowering and raising ones for
m.

Generally the ideas expressed by relations (1.7)–(1.10) are used in the
Cartan–Weyl representation theory of Lie algebras [205].

1.2.2 Hermitian ladder operators

The operators in (1.6), being mutually adjoint, cannot be Hermitian; how-
ever, some modification of the theory is possible as mentioned in the previous
subsection in connection with [223, 224, 225].
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Considering the same example with the operators M , A+, and A−, let us
define two matrix operators M̃ and Ã:

M̃ =
(
M 0
0 −M

)
, Ã =

(
0 A−

A+ 0

)
. (1.11)

Both operators are Hermitian by definition and their anticommutator is

[M̃, Ã]+ ≡ (M̃Ã + ÃM̃) = −Ã, (1.12)

where the intertwining relation is also recognized: Ã intertwines M̃
and 11− M̃ .

With every eigenfunction ψm of the operator M , a pair of eigenfunctions
ψ

(a)
m and ψ

(b)
m of the operator M̃ can be associated. The space of eigenfunctions

of this operator is decomposed into a direct sum of two subspaces designated
by (a) and (b). The functions are spinorlike vectors,

ψ(a)
m =

(
ψm

0

)
, ψ(b)

m =

(
0

ψm

)
, (1.13)

that give solutions to the eigenvalue problems

M̃ψ(a)
m = mψ(a)

m , M̃ψ(b)
m = −mψ(b)

m . (1.14)

Applying the operator Ã to the eigenfunctions (1.13) and taking into account
the anticommutator (1.12) yields

Ãψ(a)
m ∼ ψ

(b)
m+1, Ãψ

(b)
m+1 ∼ ψ(a)

m .

Hence, we encounter again the ladder operators which move the eigenfunctions
from one subspace to the other, either increasing or decreasing the eigenvalue
m by 1.

Consider an example in which the Hermitian ladder operators appear. Let
M be the operator of the projection of the angular momentum on the z-axis:

M = Lz. (1.15)

Then we take
A± = Lx ± iLy. (1.16)

As a consequence, the operators M̃ and Ã are written in the form

M̃ =

(
Lz 0

0 −Lz

)
= σzLz (1.17)
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and

Ã =

(
0 Lx − iLy

Lx + iLy 0

)
= σxLx + σyLy. (1.18)

Here σx, σy, and σz are the Pauli matrices

σx =

(
0 1

1 0

)
, σy =

(
0 −i

i 0

)
, σz =

(
1 0

0 −1

)
. (1.19)

The operators A± are often rather complicated, while the Hermitian ones Ã
and M̃ are simpler. The applications studied in [223, 224, 225] cover many
quantum problems, from the harmonic oscillator to the relativistic Kepler
problem; see also more recent papers [107, 301, 379, 457].

1.2.3 Jaynes–Cummings model

One more example of the dressing technique with the use of ladder operators
is concerned with the multimode JC model [204, 221, 300, 402].

Many phenomena of matter–radiation interaction can be described by a
model of (nearly) resonant interaction of a linearly coupled quantum radiation
field and a two-level atomic system. The corresponding Hamiltonian is written
as

H = ω0Sz +
∑

k

ωka
+
k ak +

∑

q

[εqa+
q S− + ε∗qaqS+], (1.20)

where ω and εq are c-numbers. The creation and annihilation operators a+
p

and aq obey the standard commutator algebra [aq, a+
p ] = δpq. The atomic spin

matrices Sz, S+, and S− are expressed by the Pauli matrices (1.19) as

Sz = σz , S± = σx ± iσy .

This canonical approach has been previously applied to the original JC
model, and has proved itself to be much more effective than the algebraic
approach in elucidating the physical origin of the dressing processes [82]. In
[299, 300] the dressing was applied for the two-photon-interaction Hamiltonian

H = ω0Sz +
∑

k

ωka
+
k ak +

∑

k,q

[εk,qa+
k a

+
q S− + ε∗k,qakaqS+]. (1.21)

This Hamiltonian, like the original one-mode JC one (1.20), is diagonalizable
by a transformation in the operator space. The eigenstates are known as states
of a dressed atom, a new physical object.

The ladder operators

A+ =
1
2

∑

k,q

αk,qa
+
k a

+
q , A− =

1
2

∑

k,q

α∗
k,qakaq, M =

1
4

∑

k

(2a+
k ak + 1)

(1.22)
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with the commutators (1.6) and (1.7) generate the Lie algebra su(1, 1). The
corresponding group elements can be used to define generalized coherent
states [366]. If the coefficients in the last term of the Hamiltonian (1.21) are
related to αk,q, εk,q = εαk,q with real ε, it could be rewritten as

H = ω0Sz + 2ω(M − m

4
) + V, (1.23)

where m is a boson mode number and

V = 2ε(A+S− + A−S+).

This Hamiltonian is reduced to the familiar two-mode two-quantum JC Hamil-
tonian [221] if αk,q = 1− δk,q:

H2JC = ω0Sz + ω(a+
k ak + a+

q aq) + ε(a+
k a

+
q S− + akaqS+). (1.24)

The Hamiltonian (1.21) is diagonalized by the dressing unitary operator

T = exp
(

θ

2β
(A+S− −A−S+)

)
, (1.25)

where the parameters θ and β are defined by

tan θ = − 4εβ
2ω − ω0

, β =
√

(N − 1 + m/4)(N + m/4)− C,

where C is the Casimir operator.
In the expression for the β, there is an eigenvalue N of the operator

ℵ = (M −m/4) + Sz + 1/2

that commutes with both H0 and V and, owing to (1.22), has the sense of the
total numbers of excitations.

The other (group theoretical) aspect of this approach is connected with a
pioneering paper by Fock [153] reviewed in [150] and generalized in [139] to a
nonlinear case.

1.3 Results for differential operators

The greatest part of this book is directed to operator algebra aspects. We
consider mainly the so-called correspondences [165] of operators polynomial in
the differentiation and shift operators with matrix coefficients. The particular
case of L = L1 in (1.1) means simply that L and A commute. Such a “zero”
level of the study from the point of view of the intertwining relations was
initiated by Burchnal and Chaundy [80].
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1.3.1 Commuting ordinary differential operators

Consider two commuting operators Pm and Qn, polynomial in the differen-
tiation operator D and having finite-dimensional eigenspaces. There exists a
common solution η of these equations:

(Pm − λ)y = 0, (Qn − μ)y = 0. (1.26)

Eliminating m + n derivatives y, Dy, . . ., Dm+n−1y in m + n linear homoge-
neous equations

Dr(Pm − λ)y = 0, r = 0, 1, . . . , n− 1

and

Ds(Qn − μ)y = 0, s = 0, 1, . . . ,m− 1

yields the connection (spectral curve) f(λ, μ) = 0. Analysis of terms with the
highest order in λ and μ and evaluation of the commutator PmQn − QnPm
that contains powers of D from “0” to “m+n−1” lead to the conclusion that
the highest-order term of f(λ, μ) in λ is n and in μ is m.

The operator f(Pm, Qn) maps to zero any linear combination of eigenfunc-
tions ηi of different eigenvalues of P ; hence, it is identically zero. Otherwise,
the relation f(Pm, Qn) = 0 is fundamental. It could be shown that the inverse
statement is valid if m and n are interprime, i.e., when the highest (in D)
order of aQm

n − bPn
m is equal to mn.

The algebraic construction of the “dressing” type was investigated in [80].
The existence of common solutions of (1.26) implies the existence of an op-
erator T such that the common solutions form the kernel of T ; hence, the
operators factorize, or P − h ≡ RT and Q − k ≡ ST . The commutativity of
P and Q yields RTST = STRT and the operator R, say, intertwines TS and
ST , i.e., RTS = STR, or S intertwines RT and TR. Such a phenomenon is
called a transference of the common factor because the operators P ′ = TR
and Q′ = TS commute. In Chap. 2 this phenomenon is used to introduce an
analog of the classical DT. By the transference of a new common factor (T1),
one gets P1 − h1 ≡ T1R1, generating a sequence of operators.

Remark 1.4. The characteristic identity f(P,Q) = 0 is invariant with respect
to the transform P → P ′, Q→ Q′.

The proof is based on the intertwining relation

Tf(P,Q) = f(P ′, Q′)T,

which follows directly from the expansion f(P,Q) =
∑

rs(P − h)r(Q − k)s

after substitution of the factorized form of P and Q.
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Investigation of a general form of commuting operators begins with the
standard form that is obtained by a gauge transformation with a function θ:

P̃ = θ−1Pθ, Q̃ = θ−1Qθ,

which leads to a unit leading coefficient and to a constant second coefficient.
Irreducibility of P and Q means that these operators are not represented as
functions of other commuting operators. The fact that Q−P r commutes with
P if n = mr excludes combinations of multiple orders of D; hence, the least
possible order is m = 2, m > n, m �= nr and the minimal noncommutative
duet comprises the operator P of the order 2 and the operator Q of the
order 3.

The case m = 2 is connected with the famous relation to stationary solu-
tions of the Korteweg–de Vries equation [353]. Here

P = D2 + u. (1.27)

The operator Q should be of odd order:

Q2n+1 = D2n+1 + β2D
2n−1 + ... + θn. (1.28)

The commutativity condition yields the recurrent formula for θn:

θn+1 = θ′′′n /4 + θ′1θn + 2θ1θ
′
n, (1.29)

which leads to hyperelliptic functions. For example, for m = 2 and 2n+1 = 3
the differential condition which provides commutativity gives θ′n+1 = 0. From
(1.29) we have

θ′′′1 /4 + 3θ′1θ1 = 0.

Integration gives θ′2 + 4θ3
1 = g1θ1 − g3. As a result, the explicit expressions

for P and Q are obtained in terms of the Weierstrass function ℘(x):

P = D2 − 2℘(x), Q = D3 − 3℘(x)D − 3℘′(x)/2.

1.3.2 Direct consequences of intertwining relations in the matrix
case and multidimensions

A link between the one-dimensional Schrödinger operators L0 = −∂2/∂x2 and
L = −∂2/∂x2 + u(x) in terms of the intertwining relations was established in
[137] for a potential with regular singularities (the order of poles is less than
3), vanishing at infinity. We give here some details following [191].

A monodromy ψ → (∂ − σ)ψ, σ = σ(x) is called trivial if all the solutions
of the equation (

− ∂2

∂x2
+ u(x)

)
ψ = λψ

are single-valued in the λ-plane. The monodromy is proved trivial iff the op-
erator L is intertwined with L0 by a finite product of the DTs. This means
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that a given operator A = Dn + ... + a0 having the kernel K intertwines
operators L and L0. The proof is based on the property of the operator A
(Proposition 1.1) and the statement about division of L0 by A [191]. Then
the theorem about the important property of the potential having only regular
singularities generalizes the statement of [137] for the matrix potentials.

The paper [191] describes the matrix-valued potentials U(x) ∈ Matd(C)
of the Schrödinger operator

LU = − ∂2

∂x2
+ U(x) (1.30)

having trivial monodromy. The monodromy operator is expressed via the
quasideterminant (see the definition in Sect. 1.9) as

AΨ = |Ŵ (Ψ1, ..., Ψn, Ψ)|n+1,n+1. (1.31)

The d × d matrices Ψi, i = 1, . . . , n and Ψ are eigenmatrices of the operator
L0 and the Vandermond supermatrix Ŵ (Ψ1, ..., Ψn, Ψ) is defined by its first
superrow. Hence,

U = U0 − 2∂x(YnnŴ−1
nn ), (1.32)

where Y is obtained from Ŵ (Ψ1, ..., Ψn) by deletion of the (n−1)th superrow.
The special case of U0 = 0 yields

U(z) =
Nd∑

i=1

Ai
(z − zi)2

, Nd = deg det Ŵ ,

where the singularities of the potential, owing to (1.32), are the roots of
det Ŵ = 0, and the matrices Ai have rank 1 in the generic case of the simple
roots zi.

The intertwining relation for a dressing in multidimensions in the case of
the zero potential was studied from a general mathematical point of view for
x ∈ C

n [85]. The intertwining relation was used for studying maps between
solutions of the Laplace equations with the seed operator

L0 = Δ =
n∑

i=1

∂2

∂x2
i

and the “dressed” operator

Lu = Δ + u(x)

with a rational potential u,

u(x) =
∑

α∈S

mα(mα + 1)(α⊥, α⊥)
[α(x)]2

,
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for α⊥ = {ai}, ai ∈ C. The set S contains a finite number of hyperplanes
α(x) = (α⊥, x) = a0. Relation (1.1) is considered with A(x, ∂

∂x ) and is named
as the DT.

The paper [85] formulates the sufficient condition (the results from [47] are
used) for the existence of the intertwining operator and describes all rational
potentials linked to Δ by the intertwining relation.

1.4 Hyperspherical coordinate systems
and ladder operators

In the review paper [150] the hyperspherical coordinates [153, 154] are used to
describe quantum dynamical evolution of atomic and molecular aggregates,
ranging from their compact states to fragments. Using such a type of coordi-
nates is directly related to a generalization of the ladder operators’ structure
to many degrees of freedom.

In this approach, in contrast to the traditional independent-particle theory
[304], a quantum-mechanical multiparticle problem is parameterized by the
single collective radial parameter. The hyperradius

R =

(
N∑

i=1

Mir
2
i

M

)1/2

, M =
N∑

i=1

Mi

serves as the basic aggregate coordinate of a wave function. Subsequent sepa-
ration of variables results in the equation for hyperspherical harmonics which
is a product of the Legendre functions of subaggregate angle variables and the
Jacobi function.

The invariance of the total kinetic energy under multidimensional rotations
hints at an analogy with the angular momentum theory and hence with ladder
operators, new eigenvalues, and new quantum numbers. A new basis is formed
by hyperspherical harmonics constructed by a kind of the “laddering” or, as
we call it here, the purely algebraic dressing procedure [456], without solving
differential equations.

A corresponding theory follows from the angular momentum theory of
quantum mechanics, where the components Lx, Ly, and Lz of one-particle
angular momentum combine to reproduce the ladder operators’ algebra as in
(1.15) and (1.16). In spherical coordinates, l3 = Lz = −i(∂/∂φ), l± = Lx±iLy.
Generalizing to the case of arbitrary number of particles, we take

lzi = −i
(
xi

∂

∂yi
− yi

∂

∂xi

)
= −i

∂

∂φi
. (1.33)

The celebrated example of the helium atom [154] involves three indepen-
dent rotations of two Cartesian sets in the center-of-mass system. As a
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result, two one-particle operators lz1 and lz2 are combined with the third
(“mixed”) one,

−i
(
z1

∂

∂z2
− z2

∂

∂z1

)
. (1.34)

The operators (1.33) and (1.34) commute; hence, they form the Cartan
subalgebra hi ∈ H [205] in the Lie algebra of angular-momentum-like op-
erators formed by xi(∂/∂yj) and xi(∂/∂xj). The ladder operators in d
dimensions

Jxyij = −i
(
xi

∂

∂yj
− yj

∂

∂xi

)
, Jxxij = −i

(
xi

∂

∂xj
− xj

∂

∂xi

)
(1.35)

raise or lower eigenvalues (or “weights”, in the nomenclature of the semisimple
Lie algebra representation theory) of the operators hi. In the whole algebra,
some commutator relations can be read as eigenvalue problems of the adjoint
representation of hi:

ad(hi)eα = [hi, eα] = αieα, i = 1, . . . , l = dimH. (1.36)

The ladder operators are then the eigenvectors (the Cartan–Weyl basis), and
the lowering and raising properties are the direct consequences of (1.36). The
relations (1.36) generalize (1.6). So, the hyperspherical harmonics form the
basis of a representation of the Lie algebra of rank l.

The transition from the angular vector R to homogeneous components
of the Jacobi coordinates [404] is performed by means of recursive change
ri → ξi. The recursion looks as follows: a single vector

ξpq =

√
MpMq

Mp + Mq
(rp + rq)

is formed for a pair of the Jacobi vectors ξp and ξq of two subaggregates of
particles centered at rp and rq with masses Mp and Mq. The construction is
called a timber transformation by association with the Jacobi tree. For the
comprehensive outlook, details, and examples, see again [150].

1.5 Laplace transformations

The general (hyperbolic) Laplace equation

φxy + α(x, y)φx + β(x, y)φy + γ(x, y)φ = 0

goes to
ψxy + aψy + bψ = 0 (1.37)
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after the gauge transformation

φ = gψ, g = exp
(∫ x

[a(x′, y)− β(x′, y)]dx′ −
∫ y

α(x, y′)dy′
)
,

if the Laplace invariants of both equations have the same values [168], or
−αx = ay − βy = b− γ +αβ. The Laplace transformation (LT) for (1.37) has
the form

a→ a−1 = a− ∂x ln(b− ay), b→ b−1 = b− ay, ψ → ψ−1 = ψx + aψ,

a→ a1 = a + ∂x ln b, b→ b1 = b + ∂y (a + ∂x ln b) , ψ → ψ1 =
ψy
b

and can be taken as a starting point in the theory of soliton equations in 2+1
dimensions [34, 168]. The LT is also a kind of a dressing procedure; it leads
to a “partial” factorization of the operator of (1.37) and in the case of zero
Laplace invariants at some step of the LT iterations allows us to build explicit
solutions.

Important progress in the development of the LT theory was achieved in
[431]. Consider the operator

L =
2∑

i=0

piD
i
xD

2−i
y + a1(x, y)Dx + a2(x, y)Dy + c(x, y)

with arbitrary pi = pi(x, y). Solutions of the characteristic equation m2
i p0 −

minip1 + n2
i p2 = 0 define the first-order characteristic operators Xi =

mi(x, y)Dx + ni(x, y)Dy, which are strictly hyperbolic if the roots are dif-
ferent. The equation Lu = 0 can be rewritten in the characteristic form

(X1X2+α1X1+α2X2+α3)u = 0, (X2X1+β1X1+β2X2+α3)u = 0, (1.38)

where αi = αi(x, y) and βi = βi(x, y), the coefficients of the first-order char-
acteristic operators Xi, can be found [up to a rescaling Xi → γi(x, y)Xi].
Since the operators Xi do not commute, we have to take into consideration
the commutation rule

[X1, X2] = X1X2 −X2X1 = P (x, y)X1 + Q(x, y)X2. (1.39)

Using the Laplace invariants of (1.38),

h = X1(α1) + α1α2 − α3, k = X2(β2) + β1α2 − α3,

we represent the original operator L in two partially factorized forms

L = (X1 + α2)(X2 + α1)− h = (X2 + β1)(X1 + β2)− k. (1.40)
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Each of them allows us to introduce the LT and leads to a factorization if
either h or k equals zero. Note also that the equation Lu = 0 is equivalent to
any of the first-order systems (for this idea see also [34, 35])

{
X2u = −α1u + v,
X1v = hu− α2v

⇔
{
X1u = −β2u + w,
X2w = ku− β1w.

(1.41)

Making use of the matrix nomenclature, we read a pair of u and w as columns,
introducing the coefficient matrices αik, αik for the right-hand side of (1.41).
The generalization of the classical LT originates from the central idea of swap-
ping the operators X1 and X2: after using the commutator (1.39), the coeffi-
cients of the first-order operators are changed, which produces the transformed
operator L[1]. The explicit procedure is described in [431] and is summarized
in the following steps:

1. If we have to solve an equation Lu = 0, transform it into the characteristic
form (1.41).

2. If the matrix [αij(x, y)] of the characteristic system is upper- or lower-
triangular, solve the equations consecutively.

3. If the matrix is block-triangular, the system factors into several lower-order
systems; try for each subsystem step 2.

4. In the general case of a nontriangular matrix [αij(x, y)], perform several
(consecutive) generalized LTs , using different choices of the pivot element
αik �= 0. The goal is to obtain a block-triangular matrix for one of the
transformed systems.

In [405] the general hyperbolic quasilinear equation uxy = F (x, y, u, ux, uy)
is treated from the Laplace theory point of view. The Laplace invariants Hi

are introduced via the recurrence

DxDy[logHi] = Hi+1 + Hi−1 − 2Hi, i ∈ Z,

where Dx,y are total derivatives and the first terms of the recurrence are [359]

H0 = Dx(Fux)− FuxFuy − Fu, H1 = Dy(Fuy )− FuxFuy − Fu.

The recurrence obviously simplifies in the case of (1.37). The following theorem
is the result of joint efforts of the authors of [22] and [405].

Theorem 1.5. A break off of the recurrent sequence at both sides, i.e., ∃n,m,
such as Hn = Hm = 0 means the Darboux integrability, i.e., there exists a
pair of functions P and Q on prolonged space such that Py = 0 and Qx = 0.

The famous example of such a (nonlinear) equation is the Liouville equation
uxy = exp(u). The other one is concerned with the linear equation (1.37).

Recent important results are reported in [431], where a matrix version of
the classical LT is given. Let us reproduce the main proposition of [431]:
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Proposition 1.6. Suppose the linear partial differential equation of order
n ≥ 2,

Lu =
∑

i+j≤n
pi,j(x, y)Di

xD
j
yu = 0 (1.42)

is strictly hyperbolic, i.e., the characteristic equation
∑

i+j=n

pi,jλ
i = 0 has n

simple real roots λk(x, y). Any strictly hyperbolic linear partial differential
equation (1.42) is equivalent to an n × n first-order system in characteristic
form

Xiui =
∑

k

αik(x, y)uk. (1.43)

This statement opens the way for a generalization of the Laplace theory by
means of the procedure described above by steps 1–3.

The recurrences introduced in this section are a kind of dressing in the
sense of a procedure that algebraically connects equations of the same form
with different coefficients. It resembles the Schlesinger transformation (degen-
erate elementary DT) that we will deal with in Chap. 3.

1.6 Matrix factorization

In this section we establish the link between the matrix factorization and the
intertwining relations and recall basic facts of matrix factorization in terms
of dressing procedures.

1.6.1 Example

It was shown that a factorization (1.5) yields the intertwining relation (1.1)
automatically. Taking the simplest example of 2× 2 matrices, let us consider
a Hermitian matrix L as a product of mutually conjugate matrices A and A+:

L = A+A =
(
a∗ c∗

b∗ d∗

)(
a b
c d

)
=

( |a|2 + |c|2 a∗b + c∗d
b∗a + d∗c |b|2 + |d|2

)
.

Introducing the column vectors ψ =
(
a
c

)
and φ =

(
b
d

)
, we obtain the

following relations for these vectors:

|ψ|2 = L11, |φ|2 = L22, (ψ, φ) = L12.

It is easy to check that the n × n matrix can be factorized in the similar
way. For a diagonal matrix L, the scalar product (ψ, φ) is zero and one has
an orthogonal set of vectors. The matrix A made of the orthogonal vectors
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intertwines the diagonal matrix L = A+A and the matrix AA+ built from
norms of the row vectors and their scalar products:

(
a b
c d

)(
a∗ c∗

b∗ d∗

)
=

( |a|2 + |b|2 ac∗ + bd∗

cb∗ + db∗ |c|2 + |d|2
)
.

Generally, for an n×n matrix it is a set of n columns ψi that forms factorizing
matrices.

1.6.2 QR algorithm

Another example of the factorization of an (invertible) n×n matrix M into a
product of an orthogonal matrix Q and an upper-triangular
matrix R,

M = QR, (1.44)

is well known because it produces an algorithm for computing eigenvalues of
the matrix M [403]. A proof is provided by the Gramm–Schmidt orthogonal-
ization procedure [453].

The algorithm is the following. We start from (1.44) and factorize the
result of the transposition

M1 = RQ = Q−1MQ = QTMQ

as M1 = Q1R1, which allows us to construct M2 = QT
1 M1Q1. The repetition

of the factorization produces the chain

Mk+1 = QT
kMkQk. (1.45)

This iterative process (which is also named as “dressing”) is applied in the
theory of integrable Toda systems.

1.6.3 Factorization of the λ matrix

A λ matrix is determined as the polynomial

L(λ) =
n∑

k=0

Lkλ
k (1.46)

with matrix coefficients. Among the problems connected with operators of
the form (1.46), there are the eigenvalue problem for the equation L0ψ +
λL1ψ = 0 when n = 1 and “bundle” problems [338] with arbitrary n. A special
factorization

L(λ) = M(λ)Dλ (1.47)
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introduces a right divisor of the matrix L with respect to the first-order poly-
nomial Dλ = Aλ + B, where

M(λ) =
n−1∑

k=0

Mkλ
k.

The substitution of Dλ and M(λ) into (1.47),
n−1∑

k=0

MkAλk+1 +
n−1∑

k=0

MkBλk =
n∑

k=0

Lkλ
k,

yields the recurrence

Mk−1A + MkB = Lk, k = 1, . . . , n− 1, M0B = L0, Mn−1A = Ln.
(1.48)

To calculate recurrently Mk by means of (1.48), the existence of A−1 and B−1

is necessary.

1.7 Elementary factorization of matrix

For future use of the theory, the special (idempotent) case of the degenerate
matrix Dλ necessitates special attention. Namely, let two orthogonal idempo-
tents p and q be given by p2 = p, q2 = q, and p+q = e, where e is the identity
element. Hence, the space A of the matrices allows a natural splitting into
the column subspaces Ap and Aq. The splitting is realized by the following
identity for an arbitrary matrix M : M(p+q) = Mp+Mq. Consider a λ matrix
Dλ = pλ− σ that intertwines the polynomials of the first order:

(A1λ + B1)(pλ− σ) = (pλ− σ)(Aλ + B).

It leads to the conditions

A1p = pA, B1p−A1σ = −σA + pB, B1σ = σB.

The equivalent set corresponding to the decomposition of the unit matrix by
the projectors p and q looks as follows:

pAp = pA1p, qA1p = 0, pAq = 0 , (1.49)

pB1p− pA1(p + q)σp = −pσ(p + q)Ap + pBp, (1.50)
qB1p− qA1(p + q)σp = −qσ(p + q)Ap, (1.51)
−pA1(p + q)σq = −pσqAq + pBq, (1.52)

−qA1qσq = −qσqAq , (1.53)
pB1(p + q)σp = pσ(p + q)Bp, qB1(p + q)σp = qσ(p + q)Bp , (1.54)

(pB1p + pB1q)σq = pσ(pBq + qBq), (qB1p + qB1q)σq = qσ(pBq + qBq).
(1.55)



1.7 Elementary factorization of matrix 17

Let us consider the particular case of A = A1 = ap + bq, a, b ∈ C and
commuting elements of σ, B, and B1. The conditions (1.49) and (1.53) hold
automatically, while (1.50) gives

pB1p = pBp. (1.56)

Then (1.51) and (1.52) connect elements of B, B1, and σ:

qB1p = (b − a)qσp, (1.57)

pσq = (b− a)−1pBq. (1.58)

Equations (1.56) and (1.57) can be read as a part of the transformation
B → B1 for which we are searching.

Excluding pB1p from (1.54) yields

pBp σp + pB1qσp = pσpBp + pσqBp. (1.59)

Plugging the transform (1.57) and the link (1.58) into the second relation of
(1.55) produces

(b− a)qσp σp + qB1qσp = qσpBp + qσqBp. (1.60)

In the case of Abelian elements, the condition (1.59) is simplified:

pB1qσp = pσqBp. (1.61)

If (1.55) and (1.61) can be solved with respect to elements of B1 [we assume
∃(qσp)−1], then (1.61) accomplishes a construction of the transformation
B → B1, together with (1.56) and (1.57).

An important case of intertwining operators with degenerate coefficients
was mentioned in the previous section. Indeed, let there exist matrices φp ∈ Ap
such that ∃ p φ−1

p . Let us fix the kernel of Dλ0 by means of the elements
of φp as

(pλ0 − σ)φp = 0. (1.62)

It can be read as

p σ(p + q)φp = λ0pφp, qσ(p + q)φp = 0.

These equations connect the matrix elements of σ with elements of φp:

p σp = λ0p φp − (b − a)−1pBqφp, q σp = −qφp(pφp)−1, (1.63)

where (1.58) for pσq was used.
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Plugging the second equation in (1.63) into (1.57) gives the expressions
for qB1p:

qB1p = (a− b)qφp(pφp)−1, pB1q = −(b− a)−1pB1qBpφp(qφp)−1. (1.64)

The equation (1.60), after substitutions from (1.64), determines qB1q, the last
element of B. For the Abelian elements, we have

−qφp(pφp)−1[λ0(b− a)pφp − pBqφp + qB1q − pBp ] = qσqB1p.

Finally,

qB1q = −λ0(b − a)pφp + pBqφp + pBp− (pφp)(qφp)−1qσqBp. (1.65)

The matrix elements of B1 are expressed through elements of B and elements
of φp, up to the “free parameter” q σq.

The general setting of the elementary DT theory is as follows:

1. One begins with
(Aλ0 + B0)φp = 0 (1.66)

and note that owing to (1.62) the intertwining relation is valid identically.
2. For any λ and ψ(λ), if

(Aλ + B)ψ(λ) = 0, (1.67)

the intertwining relation means that

(Aλ + B1)Dλψ(λ) = 0, (1.68)

where B1 is determined by a solution of (1.66) and the parameter qσq
is given via (1.56), (1.64), and (1.65). This procedure links the known
problem (1.66) with another one (1.68) in a “covariant” way.

Remark 1.7. All matrices in this section could be considered as elements of a
ring as in Chaps. 2 and 3.

Remark 1.8. The case of higher polynomials in λ is studied similarly.

1.8 Matrix factorizations and integrable systems

The title of this section coincides with the title of the paper [111]. We give here
a concise overview of this paper and two preceding ones [109, 110] devoted
to the Toda lattice [152] and its applications in algorithms for computing
matrix eigenvalues [189]. The main idea of the QR algorithm is based on the
factorization of a matrix. Namely, if the chain of factorizations (1.45) yields

Mk+1 = Qt
kMkQk, (1.69)
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it is realized as a transformation that could be interpreted as a shift along
an auxiliary axis, say t [419]. The next idea goes back to the Moser theorem
[338] that states that a nondiagonal part of an initial matrix tends to zero
if this t-transition is considered. More exactly, if a flow is generated by the
Hamiltonian

HQR = −tr(M logM −M) (1.70)

on (R2n, ω), where ω = 1
4

∑n
i=1 dpi ∧ dqi, then

MQR(k) = Mk, k = 1, 2, . . . .

An important role in this theory is played by the Toda chain written in the
Flashka form

Mt = [B(M),M ], (1.71)

where M is a tridiagonal matrix

M =

⎛

⎜⎜⎝

a1 b1 0 .
b1 .

. bn−1

bn−1 an

⎞

⎟⎟⎠ (1.72)

and B(M) contains zeros at the diagonal:

B(M) =

⎛

⎜⎜⎝

0 −b1 0 .
b1 0

. −bn−1

bn−1 0

⎞

⎟⎟⎠ (1.73)

Let us rephrase the theorem given in the introduction of [111]:

Theorem 1.9. (The QR dressing chain integrability). The Hamiltonian (1.70)
generates an integrable flow (1.71) that interpolates the QR dressing chain at
integer t.

The statement about asymptotic values of the off-diagonal part of the matrix
M reads

Theorem 1.10. (Moser Toda chain theorem). The matrix elements bk(t) go
to zero at both infinities t→ ±∞.

This theorem could be applied directly to many problems of difference ap-
proximations of the Schrödinger equation [202].

The QR algorithm deals with invertible matrices only, but the question of
integrability of the flow (1.71) with

B(M) = (M+)t −M+,

where M+ is strictly an upper part of M , is solved positively for the sym-
metric initial M0. Adler [16] and Kostant [250] proved that the Hamiltonian
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HI(M) = (trM2)/2 yields the equations of motion (1.71) on the symplectic
manifold and Deift et al. [110] found expressions for conservation laws as the
eigenvalues of the problems:

M̃kβrk = λrkβrk, k = 0, . . . , [n/2], r = 1, . . . , n− 2k,

where M̃k is the result of deleting the first k rows and the last k columns of
M .

Further generalization was achieved by Deift et al. [111] in the form of the
integrability theorem for a generic matrix M by means of the Lax represen-
tation with

B(M) = [(M t)+]t − (M t)+.

The additional (to the symmetric case) (n− 1)2/4 integrals of motion Jrk are
extracted from the invariant spectral curve by means of the identity transfor-
mation

det[(1 − h)M + hM − z] =
∑

r,k

[h(1− h)]kzM−rJrk.

The explicit expressions for the corresponding solutions of the flow (1.71) are
given in terms of theta functions.

The paper [111] also contains proofs of the integrability theorems for the
other types of factorization using the Cholesky algorithm

Mt = [((M t)− + (M t)0/2)t,M ] (1.74)

and LU flow (the LU factorization algorithm, where L is the lower triangular
matrix with unit diagonal entries and U is the upper triangular matrix)

Mt = [((M t)− + (M t)0)t,M ], (1.75)

where M− is the lower part of the matrix M and M0 is the diagonal one, as
well as algorithms based on the factorization [189]. The possibility of blowing
up in finite time [447] should also be mentioned, as this is important for
applications.

Deift et al. [111], extending the results of the previous paper [110], used
the Lie group theory to construct orbits and symplectic structures on the basis
of the unique QL factorization

g = g0gL, g0 ∈ O+(n,R), gL ∈ L+(n,R).

1.9 Quasideterminants

This section contains a novel tool to manage block matrices (supermatrices)
which appears in the dressing theory. The history of the classical theory of
determinants and its extension related to the notion of quasideterminants
are reviewed in the excellent and profound paper [174]. Let us start with a
quotation from [174]:



1.9 Quasideterminants 21

Our experience shows that in dealing with noncommutative objects
one should not imitate the classical commutative mathematics, but
follow “the way it is” starting with basics.

The purpose of this section is to give a brief introduction to the theory of
quasideterminants based on the text of [174] (see also [191]).

1.9.1 Definition of quasideterminants

Let A be a matrix with numbers as entries. We write

|A|ij =

∣∣∣∣∣∣∣∣∣∣

a11 . . . a1j . . . a1n

. . . . . .
ai1 . . . aij . . . ain

. . . . . .
an1 . . . anj . . . ann

∣∣∣∣∣∣∣∣∣∣

. (1.76)

For a 2×2 block matrix A = (aij), i, j = 1, 2, there are four quasideterminants:

|Â|11 = a11 − a12 · a−1
22 · a21,

|Â|12 = a12 − a11 · a−1
21 · a22,

|Â|21 = a21 − a22 · a−1
12 · a11,

|Â|22 = a22 − a21 · a−1
11 · a12.

We see that each of the quasideterminants |Â|11, |Â|12, |Â|21, and |Â|22 is de-
fined whenever the corresponding elements a22, a21, a12, and a11 are invertible.

For a generic n × n matrix (in the sense that all square submatrices of
A are invertible) there exist n2 quasideterminants of A. A nongeneric matrix
may have k quasideterminants where 0 ≤ k ≤ n2.

Generally, the definition of quasideterminants is given over a ring R with
a unit element. Let A = (aij), i ∈ I, j ∈ J , be a matrix over R. Denote by rji
the row submatrix of length n− 1 obtained from the ith row of A by deleting
the element aij , and by cij the column submatrix of height n − 1 obtained
from the jth column of A by deleting the element aij .

Denote by Aij , i ∈ I, j ∈ J the submatrix of A obtained from A by
deleting its ith row and jth column. Then we can formulate the following.

Definition 1.11. Let I and J be finite sets with the same number of elements.
If I = {i}, J = {j}, put |Â|ij = aij . If |I|, |J | > 1, the quasideterminant |A|ij
is defined whenever the submatrix Aij is invertible over R and in this case put

|Â|ij = aij − rji (A
ij)−1cij .

The term “quasideterminant,” as it is used in, e.g., [191], denotes rather a
fraction of determinants.

In the context of our book, it is important to note that it is the iterated
non-Abelian DT that is written in terms of quasideterminants .
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1.9.2 Noncommutative Sylvester–Toda lattices

Let R be a division algebra with a derivation D : R→ R. Let φ ∈ R and the
quasideterminants

T̂n(φ) =

∣∣∣∣∣∣∣∣

φ Dφ . . . Dn−1φ
Dφ D2φ . . . Dnφ
. . . . . . . . . . . .

Dn−1φ Dnφ . . . D2n−2φ

∣∣∣∣∣∣∣∣

are defined and invertible. Set φ1 = φ and φn = Tn(φ), n = 2, 3, . . ..

Theorem 1.12. Elements φn, n = 1, 2, . . . satisfy the following equations:

D[(Dφ1)φ−1
1 ] = φ2φ

−1
1 , D[(Dφn)φ−1

n ] = φn+1φ
−1
n − φnφ

−1
n−1. (1.77)

If R is commutative, the determinants of the matrices used in T̂n(φ) satisfy
a nonlinear system of differential equations. In the modern literature this
system is called the Toda lattice [356] but in fact it was discovered by Sylvester
[416] in 1862 and probably, should be called the Sylvester–Toda lattice. Our
system can be viewed as a noncommutative generalization of the Sylvester–
Toda lattice. Theorem 1.12 appeared in [177, 178] and was generalized in
[372]. The following theorem is a noncommutative analog of the famous Hirota
identities.

Theorem 1.13. For n ≥ 2

Tn+1(φ) = Tn(D2φ)− Tn(Dφ) · [(Tn−1(D2φ)−1 − Tn(φ)−1]−1 · Tn(Dφ).

The proof follows from the noncommutative Sylvester identity [174].

1.9.3 Noncommutative orthogonal polynomials

The results described in this subsection were obtained in [175]. Let S0, S1,
S2, . . . be elements of a skew field R and x be a commutative variable. Define
a sequence of elements Pi(x) ∈ R[x], i = 0, 1, . . . by setting P0 = S0 and

Pn(x) =

∣∣∣∣∣∣∣∣

Sn . . . S2n−1 xn

Sn−1 . . . S2n−2 xn−1

. . . . . . . . . . . .
S0 . . . Sn−1 1

∣∣∣∣∣∣∣∣

for n ≥ 1. The expansion of the right column implies that Pn(x) is a poly-
nomial of degree n. If R is commutative, then Pn, n ≥ 0, are orthogonal
polynomials defined by the moments Sn, n ≥ 0. We are going to show that if
R is a free division algebra generated by Sn, n ≥ 0, then polynomials Pn are
indeed orthogonal with regard to a natural noncommutative R-valued product
on R[x].
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Let R be a free skew field generated by cn, n ≥ 0. Define on R a natural
anti-involution a �→ a∗ by setting c∗n = cn for all n and extend the involution
to R[x] by setting (

∑
aix

i)∗ =
∑

aix
i. Define the R-valued inner product on

R[x] by setting 〈∑
aix

i,
∑

bjx
j
〉

=
∑

aici+jb
∗
j .

Theorem 1.14. For n �= m we have

〈Pn(x), Pm(x)〉 = 0.

1.10 The Riemann–Hilbert problem

This section is devoted to a brief review of basic facts concerning the RH
boundary value problem which will be used in this book. More detailed expo-
sition of the RH problem can be found in [4, 167, 375, 464].

1.10.1 The Cauchy-type integral

Let us consider a class of complex functions f(�)

1. Which are defined for all � belonging to a contour γ. The contour γ is
a smooth closed counterclockwise oriented curve dividing the extended
complex k-plane C (including the infinite point ∞) into two domains C+

and C−.
2. Which obey the Hölder condition on γ:

|f(�2)− f(�1)| ≤ A|�2 − �1|μ, A = const, 0 < μ ≤ 1. (1.78)

3. Where f(�)→ 0 at �→∞.

Consider a point k in the k-plane and define a function (the Cauchy-type
integral)

φ(k) =
1

2πi

∫

γ

d�
f(�)
�− k

. (1.79)

The function φ(k) is analytic in C, except for points on γ, and tends to zero
at k →∞. For simplicity we choose γ to be the real axis of the k-plane. Then
C+(C−) corresponds to the upper (lower) half planes of C. It should be noted
that it is the Hölder condition that ensures the existence of the integral (1.79).
Indeed, we can write (1.79) as

1
2πi

∞∫

−∞
d�

f(�)
�− k

=
1

2πi

∞∫

−∞
d�

f(�)− f(k)
�− k

+
f(k)
2πi

∞∫

−∞

d�
�− k

. (1.80)

The last integral on the right-hand side of (1.80) is well defined, while the
first integral exists owing to the Hölder condition.
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k

C
+

Re k

C

λ

-

Fig. 1.1. Contour of integration (bold line) when the point k reaches the real axis

An important question is how to define the function φ(k) for real k, i.e.,
when k belongs to the contour γ. Suppose k ∈ C+ tends to the point λ on the
real axis Imk = 0, being still left in C+ (Fig. 1.1). Then φ(k) tends to φ+(λ).
To evaluate φ+(λ), we deform the contour in such a way that it passes the
point λ from below. Then

φ+(λ) =
1

2πi
lim
ε→0

⎛

⎝
λ−ε∫

−∞
d�

f(�)
�− k

+

∞∫

λ+ε

d�
f(�)
�− k

⎞

⎠ +
1

2πi

λ+ε∫

λ−ε

d�
f(�)
�− k

.

The first term in the parentheses defines the principal value of the Cauchy
integral v.p.

∫∞
−∞ d�f(�)/(�− λ) and the last integral is easily calculated after

a change �− λ = ε exp(iθ) and integrating in θ from π to 2π. The result is

φ+(λ) =
1

2πi
v.p.

∫ ∞

−∞
d�

f(�)
�− λ

+
1
2
f(λ), Imλ = +0. (1.81)

Similarly, we can calculate the function φ−(λ), which is the limit of φ(k) when
k located in C− tends to λ ∈ Imk = −0:

φ−(λ) =
1

2πi
v.p.

∫ ∞

−∞
d�

f(�)
�− λ

− 1
2
f(λ). (1.82)

Hence, we derive the Sokhotsky–Plemelj formulas (1.81) and (1.82), which are
usually written as

φ+(λ) − φ−(λ) = f(λ), Imλ = 0, (1.83)

φ+(λ) + φ−(λ) =
1
πi

v.p.
∫ ∞

−∞
d�

f(�)
�− λ

. (1.84)

Therefore, the Cauchy-type integral defines a sectionally continuous function
which is regular off the contour and continuous when tending to the contour
both from above and from below.

To recognize analytic properties of φ(k), we allow the point k ∈ C+ to
move to the point λ on the real axis, to cross the axis,and to move below the
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Re k

C

λ

-
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Fig. 1.2. Contour of integration (bold line) when the point k crosses the real axis

axis to the point λ− iε, ε > 0. To evaluate φ+(λ− iε), we deform the contour
γ as in Fig. 1.2. The calculation yields

φ+(λ − iε) =
1

2πi

∫ ∞

−∞
d�

f(�)
�− λ + iε

+ f(λ− iε) = φ−(λ− iε) + f(λ− iε).z

Note that the last term does not contain the factor 1/2 because the contour
encloses the point λ − iε almost entirely. We see that φ+(λ − iε) does not
coincide with φ−(λ − iε). Therefore, the Cauchy-type integral defines two
different analytic functions: φ+(k), k ∈ C+ and φ−(k), k ∈ C−. Accordingly,
we can write

φ+(k) =
1

2πi

∫ ∞

−∞
d�

f(�)
�− k

, k ∈ C+,

φ+(k) =
1

2πi

∫ ∞

−∞
d�

f(�)
�− k

+
1
2
f(k), Imk = +0, (1.85)

φ+(k) =
1

2πi

∫ ∞

−∞
d�

f(�)
�− k

+ f(k), k ∈ C−.

Several conclusions follow from (1.85). First, φ+(k) can be analytically con-
tinued to C− if f(k) allows such a continuation. Second, the function φ+(k),
being regular in C+, acquires singularities in C−, otherwise it will be con-
stant in entire C as a regular analytic function everywhere, in accordance
with the Liouville theorem. Third, if we know a jump Δ(k) = φ+(k)− φ−(k)
of analytic functions φ± across the real axis Imk = 0, we can restore φ± as
φ±(k) = (P±Δ) (k), where projectors P± act as follows:

(P±Δ) (k) =
1

2πi

∞∫

−∞

d�
�− (k ± i0)

Δ(�). (1.86)
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If φ± tend to some limits as |k| → ∞, these limits should be added to the
integral (1.86).

1.10.2 Scalar RH problem

The scalar RH problem can be formulated as a problem of analytic factoriza-
tion of a scalar function g(k) given on a contour γ,

φ−(k)φ+(k) = g(k), k ∈ γ, (1.87)

in a product of functions φ±(k) analytic in C±. A solution of this problem
is not unique: functions φ̃+ = φ+r+ and φ̃−/r+, when r+(k) is a rational
function with all zeros being in C+ and all poles being in C−, are solutions
of (1.87) as well. To fix the solution, we shall pose a normalization condition.
The condition φ−(∞) = 1 is called the canonical normalization.

Now we define the index of the RH problem:

indγ{g(k)} =
1

2πi

∫

γ

d{ln g(k)}.

The index measures a change of the phase of g(k) over the contour γ. For
analytic functions the index gives the difference between the number of zeros
and poles of this function (accounting for their multiplicities) in the domain
bounded by the contour. If the index is zero, both functions φ±(k) have the
same number of zeros in their domains of analyticity.

The scalar RH problem with zero index can be easily solved. Let kj and
k̄j , j = 1, . . . ,N be simple zeros of φ+(k) and φ−(k), respectively. First we
regularize these functions. This means that the functions

φ
(0)
+ (k) = φ+(k)

N∏

j=1

k − k̄j
k − kj

, φ
(0)
− (k) = φ−(k)

N∏

j=1

k − kj

k − k̄j
(1.88)

solve the same RH problem and obey the same normalization condition
as φ±(k) but have no zeros. The regularized RH problem subjected to a
given normalization condition has a unique solution. Indeed, for the functions
p±(k) = ± lnφ

(0)
± (k) equation (1.87) is written as

p+(k)− p−(k) = ln g(k), k ∈ γ.

Hence, we have two holomorphic functions in C± which are both zero at
infinity and have the jump ln g(k) across the contour γ. Using the Sokhotsky–
Plemelj formula (1.83) and assuming the Hölder condition for ln g(k), we get
the solution

p(k) =
1

2πi

∫

γ

d�
�− k

ln g(�).

Accordingly,

φ
(0)
± (k) = exp

(±1
2πi

∫

γ

d�
�− k

ln g(�)
)
, k ∈ C±.
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Therefore, the general solution to the scalar RH problem has the form

φ±(k) =
N∏

j=1

(
k − kj

k − k̄j

)±1

exp
(±1

2πi

∫

γ

d�
�− k

ln g(�)
)
, k ∈ C±. (1.89)

1.10.3 Matrix RH problem

Consider the problem of analytic factorization of a matrix function G(k)
given on a contour γ such that detG(k) �= 0, G(∞) = 11 if ∞ ∈ γ, and
indγ{detG(k)} = 0, in a product of two analytic functions Φ+(k) and Φ−1

− (k)
in C+ and C−, respectively:

Φ−1
− (k)Φ+(k) = G(k), k ∈ γ, (1.90)

with the normalization condition Φ(∞) = 11 (i.e., one or both of Φ± obey this
condition). The zero index condition ensures that detΦ+(k) and detΦ−1

− (k)
have an equal number of zeros in C+ and C−. A regularization of the matrix
RH problem is performed by some matrix functions rational in k. The regu-
larized matrix RH problem has a unique solution similar to the scalar case.
The significant difference, however, lies in the fact that the matrix case does
not allow an explicit general solution. The investigation of the solvability of
the regularized matrix RH problem can be reduced to that of some matrix
linear integral equation of the Fredholm type. Indeed, let Φ

(0)
± (k) be matrix

functions analytic in C± that determine the regularized RH problem:

Φ
(0)−1
− Φ

(0)
+ = G(k). (1.91)

Then the Sokhotsky–Plemelj formula (1.83) can be applied to Ψ± = Φ
(0)
± − 11,

giving

Ψ±(k) =
±1
2πi

∫

γ

d�
�− k

Ψ±(�). (1.92)

In terms of Ψ± the problem (1.91) is written as

Ψ+(k) = Ψ−(k)G(k) + G(k)− 11, k ∈ γ. (1.93)

Then we obtain from (1.92) and (1.93) the following equation for Ψ−(k) for
k ∈ γ:

Ψ−(k) =
1

2πi

∫

γ

d�Ψ−(�)K(�, k) + H(k). (1.94)

The kernel K(�, k) and inhomogeneous term H(k) have the forms

K(�, k) =
G(�)G−1(k)− 11

�− k
(1.95)
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and
H(k) =

1
2
[
G−1(k)− 11

]
+

1
2πi

∫

γ

d�
�− k

[G(k)− 11]G−1(k).

Note the kernel K(�, k) (1.95) is regular for � = k; hence, the integral equation
(1.94) is of the Fredholm type. Gohberg and Krein [188] have formulated
the sufficient condition for the solvability of the matrix RH problem. Let us
introduce “real” and “imaginary” parts of the matrix G,

GR(k) =
1
2
[
G(k) + G†(k)

]
, GI(k) =

1
2i

[
G(k)−G†(k)

]
,

where G† stands for the Hermitian conjugation. Then the regularized matrix
RH problem has a solution if the real or the imaginary part of G(k) is positive
(or negative) definite. The definiteness of G means that x†Gx is real and sign-
definite for all nonzero vectors x. Our choice of the normalization of the RH
problem is compatible with positive definiteness. In applications to the soliton
theory we will encounter only the solvable matrix RH problems.

1.11 ∂̄ Problem

The analytic function f(x, y) = u(x, y) + iv(x, y) defined on the extended
complex plane (the Riemann sphere) C with the coordinates x and y obeys
the Cauchy–Riemann condition

ux = vy, uy = −vx. (1.96)

In the complex coordinates z = x + iy and z̄ = x− iy equation (1.96) takes a
compact form

∂̄f(z, z̄) = 0,

where ∂̄ ≡ ∂z̄ = (1/2)(∂x + i∂y). The Cauchy–Riemann operator ∂̄ measures
the “departure from analyticity” for the function f(z, z̄) and the equation

∂̄f(z, z̄) = g(z, z̄) (1.97)

is referred to as the ∂̄ problem. The Cauchy formula (1.79) for analytic func-
tions is generalized to the case of nonanalytic functions which satisfy (1.97)
as

f(z, z̄) =
1

2πi

∫

γ

dζ
ζ − z

f(ζ, ζ̄) +
1

2πi

∫ ∫

D

dζ ∧ dζ̄
ζ − z

g(ζ, ζ̄). (1.98)

Here f(z, z̄) is any function which has smooth derivatives with respect to
both z and z̄ in some domain D in the complex plane and is continuous in
the closed domain D ∪ γ with a counterclockwise-oriented boundary γ. The
exterior product dz ∧ dz̄ is skew-symmetric, dz ∧ dz̄ = −dz̄ ∧ dz, and can
be written as dz ∧ dz̄ = −2idxdy. If the domain D is the entire complex



1.11 ∂̄ Problem 29

plane, then the boundary γ can be taken as a circle with arbitrarily large
radius. For the canonically normalized function f(z, z̄) → 1 at |z| → ∞ the
Cauchy–Green formula (1.98) is reduced to

f(z, z̄) = 1 +
1

2πi

∫ ∫

D

dζ ∧ dζ̄
ζ − z

g(ζ, ζ̄). (1.99)

Evidently, the function

f(z, z̄) = a(z) +
1

2πi

∫ ∫

D

dζ ∧ dζ̄
ζ − z

g(ζ, ζ̄)

with arbitrary analytic function a(z) is a solution to the ∂̄ problem (1.97) as
well.

Acting on (1.98) with the ∂̄ operator, we encounter the expression
∂̄(z − ζ)−1. It is seen from (1.98) that we should put

∂̄

(
1

z − ζ

)
= πδ(z − ζ), (1.100)

where δ(z − ζ) = δ(x − ζR)δ(y − ζI) is the Dirac delta function. Hence, the
integral with the delta function gives

∫∫

C
dz ∧ dz̄f(z, z̄)δ(z − z0) = −2if(z0, z̄0). (1.101)

We know from Sect. 1.10.1 that the Cauchy-type integral

f(z) =
1

2πi

∫ ∞

−∞
dζ

g(ζ)
ζ − z

determines a sectionally analytic function with a jump across the real axis
Imz = 0. Applying the ∂̄ operator to this integral gives in accordance with
(1.100) and (1.83)

∂̄f(z) = ∂̄
1

2πi

∞∫

−∞
dζ

g(ζ)
ζ − z

=
i
2

∞∫

−∞
dζg(ζ)δ(ζ − z) =

i
2
g(x)δ(y)

=
i
2

[f+(x) − f−(x)] δ(y).

Hence, for the case of sectionally analytic functions with a jump discontinuity
the ∂̄ problem reduces to the conjugation (RH) problem.

In the theory of nonlinear equations, a nonlocal ∂̄ problem

∂̄f(z, z̄) =
∫∫

C
dζ ∧ dζ̄f(ζ, ζ̄)R(ζ, ζ̄, z, z̄) (1.102)
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plays the key role. The functions f and R can be scalar or matrix ones.
Following (1.99), a solution of the nonlocal ∂̄ problem (1.102) is given by

f(z, z̄) = 1 +
1

2πi

∫∫

C

dζ ∧ dζ̄
ζ − z

∫∫

C
dζ′ ∧ dζ̄′f(ζ′, ζ̄′)R(ζ′, ζ̄′, ζ, ζ̄). (1.103)

A non-canonical normalization of the function f , f(z, z̄) �= 1 at |z| → ∞,
leads to an inhomogeneous ∂̄ problem [56] .

For particular structures of the kernel R(ζ, ζ̄, z, z̄) the nonlocal ∂̄ problem
allows explicit solutions. Namely, the kernel R is called degenerate if it can
be represented in a factorized form

R(ζ, ζ̄, z, z̄) =
N∑

j=1

μj(ζ, ζ̄)νj(z, z̄)

with arbitrary functions μj and νj . Various particular choices of the functions
μj and νj are considered in the book by Konopelchenko [241].



2

Factorization and classical
Darboux transformations

In this chapter we describe the algebraical factorization-based method to dress
solutions of (1+1)-dimensional equations. We also show how the Darboux
transformation (DT) theory appears in this framework.

First, in Sect. 2.1, we introduce the non-Abelian Bell polynomials and
then generalize them in Sect. 2.2 to formulate in Sect. 2.3 a problem of fac-
torization of a polynomial differential operator in the form of division by a
monomial from the right and from the left. The relation between the factor-
ization rules and the classical Darboux theorem [102] generalized in [314] is
described in Sect. 2.4: the formalism produces a compact form of the DT for
non-Abelian coefficients of linear operators, polynomial in a differentiation
on a ring. Section 2.5 is devoted to a representation of the iterated DTs in
terms of quasideterminants. As a highly nontrivial example of the iterated
DT formalism, we describe positon solutions of the Korteweg–de Vries (KdV)
equation discovered by Matveev [318, 319].

The growing interest in discrete models appeals to wider classes of sym-
metry structures of the corresponding nonlinear problems [149, 196, 255,
256, 339]. Very recently a suitable basis for new searches in the field of
differential-difference and difference-difference equations was discovered [321]
in the framework of the classical DT theory such that the difference opera-
tor is replaced by an arbitrary automorphism transformation. In Sect. 2.6 we
present the dressing method via factorization for such a kind of generaliza-
tions. Like in the case of differential operators, this approach demonstrates
links with the Hirota bilinearization method [260] and the factorization the-
ory [271], with similar applications. We reformulate the Darboux covariance
theorem from the paper of Matveev [321] and introduce a kind of difference
Bell polynomials. These polynomials correspond naturally to the differential
(generalized) Bell polynomials in their non-Abelian version of Sect. 2.2.

The joint covariance principle is formulated in Sect. 2.7 for Abelian and in
Sect. 2.8 for non-Abelian differential rings. The same construction for a pair of
difference equations is elaborated in Sect. 2.9. The form of the DT presented
here allows us to develop a classification scheme with respect to the DTs in

31
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connection with the generalized Bell polynomials [187, 260, 467]. If a pair of
such operators determines the Lax equations, the joint covariance with respect
to the DTs produces a symmetry for the compatibility condition [314, 324]. In
Sects. 2.10 and 2.11 we illustrate the possibilities of the method by examples
of specific nonlinear equations: the non-Abelian Hirota system [210] having
promising applications [149], and the Nahm equations [344]. We introduce
a lattice Lax pair for the Nahm equations which is covariant with respect to
combined Darboux-gauge transformations that generate the dressing structure
for the equations. Finally, in Sect. 2.12 we illustrate the formalism developed,
solving a particular case of the Nahm equations.

2.1 Basic notations and auxiliary results.
Bell polynomials

Let K be a differential ring of the zero characteristics with unit e (i.e., unitary
ring) and with an involution denoted by a superscript asterisk. The differenti-
ation is denoted as D. The differentiation and the involution are agreed with
operations in K:

1. (a∗)∗ = a, (a + b)∗ = a∗ + b∗, (ab)∗ = b∗a∗, a, b ∈ K.
2. D(a + b) = Da + Db, D(ab) = (Da)b + aDb.
3. (Da)∗ = −Da∗.
4. Operators Dn with different n form a basis in a K-module Diff(K) of

differential operators. The subring of constants is K0 and a multiplicative
group of elements of K is G.

5. For any s ∈ K there exists an element ϕ ∈ K such that Dϕ = sϕ; this
also means the existence of a solution of the equation

Dφ = −φs, (2.1)

owing to the involution properties.

There are lots of applications of the rings of square matrices in the theory
of integrable nonlinear equations, as well as in classical and quantum linear
problems. In this case matrices are parameterized by a variable x and D can be
a derivative with respect to this variable or a combination of partial derivatives
that satisfies conditions 1 and 2. If D is the standard differentiation, then
the involution (asterisk) may be the Hermitian conjugation. In the case of
a commutator, the operator D acts as Da = [d, a] and (Da)∗ = −[d∗, a].
Having in mind this or similar applications, we shall refer to the involution
as conjugation. We do not restrict ourselves to the matrix-valued case; an
appropriate operator ring is also suitable for our theory.

Below we introduce left and right non-Abelian Bell polynomials (see also
[388]) and formulate the statements for them. The differential Bell polynomials
are defined in Definition 2.1:
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Definition 2.1. The left and right non-Abelian Bell polynomials Bn(s) are
defined by the recurrence relations

Bn(s) = DBn−1(s) + Bn−1(s)s, n = 1, 2, . . . (2.2)

for left Bell polynomials and

B+
n (s) = −DB+

n−1(s) + s, n = 1, 2, . . . (2.3)

for right Bell polynomials with the “initial condition”

B0(s) = e. (2.4)

Proposition 2.2. If an element ϕ ∈ G satisfies the equation Dϕ = sϕ, then

Dnϕ = Bn(s)ϕ, n = 0, 1, 2, . . . .

Proposition 2.3. If an element φ ∈ G satisfies (2.1), then

Dnφ = (−1)nφB+
n (s), n = 0, 1, 2, . . . .

Proposition 2.4. The left and right Bell polynomials are connected by the
following relations:

Bn(s)∗ = B+
n (s∗), B+

n (s)∗ = Bn(s∗).

If the ring is Abelian, left and right polynomials coincide.

Remark 2.5. Proposition 2.4 means that a duality takes place for the Bell
polynomials: any relation for right polynomials can be transformed to the
corresponding relation for left ones, and vice versa.

Let us denote
Ls = D − s. (2.5)

Note that the recursion (2.3) may be written by means of Ls (2.5) as

B+
n+1(s) = −LsB+

n (s), n = 0, 1, 2, . . . ,

with the simple corollary

B+
n (s) = (−1)nLns e, n = 0, 1, 2, . . . .

2.2 Generalized Bell polynomials

In the next section a problem of division of an arbitrary operator L by the
operator Ls will be studied. To this aim, for the right division we introduce
here auxiliary operators Hn by means of Definition 2.6:



34 2 Factorization and classical Darboux transformations

Definition 2.6. The operators Hn are defined by the recurrence relation

Hn = DHn−1 + Bn(s), n = 1, 2, . . . , H0 = e. (2.6)

Proposition 2.7. The following identity holds:

Dn = Hn−1Ls + Bn(s), n = 1, 2, . . . .

Coefficients of the operators Hn are expressed via the generalized Bell poly-
nomials that are defined in Definition 2.8:

Definition 2.8. Generalized Bell polynomials are defined by the “initial con-
ditions”

Bn,0(s) = e, n = 0, 1, 2, . . .

and by the recurrence relations

Bn,k(s) = Bn−1,k(s) + DBn−1,k−1(s), k = 1, 2, . . . n− 1, n = 2, 3, . . . ,
(2.7)

Bn,n(s) = DBn−1,n−1(s) + Bn(s), n = 1, 2, . . . . (2.8)

Proposition 2.7 is proved by acting with D from the left to (2.7) n + 1 times
and substituting (2.2) and (2.6) into the resulting equation because

Dn+1 = HnLs + Bn+1 = DHn−1Ls + DBn

= (DHn−1)Ls + Hn−1DLs + B′
n + BnD.

Proposition 2.9. Generalized Bell polynomials are coefficients in the decom-
position of the operators Hn, i.e.,

Hn =
n∑

k=0

Bn,n−k(s)Dk, n = 0, 1, 2, . . . . (2.9)

Since the recurrence relation (2.6) defines the operators Hn uniquely, (2.9)
easily follows. Equations (2.7) and (2.8) are simple but not useful for evalua-
tion of Bn,k(s); therefore, we suggest a practically easier algorithm. For this
reason we put (2.9) into (2.7). The following formulas are extracted:

Bn,n−k+1(s) =
n∑

i=k

(
i

k

)
Bn,n−i(s)Di−ks, k = 1, 2, . . . , n, n = 0, 1, 2, . . .

(2.10)
and

Bn+1(s) =
n∑

i=0

Bn,n−i(s)Dis, n = 0, 1, 2, . . . . (2.11)
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Equation (2.11) expresses the standard (non-Abelian) Bell polynomials via
the generalized ones:

Bn+1(s) =
n∑

i=0

Bn,i(s)Dn−is, n = 0, 1, 2, . . . .

Rearranging the summation in (2.10) as k → n − k + 1 yields after simple
calculation

Bn,k(s) =
k−1∑

i=0

(
n− i

n− k + 1

)
Bn,i(s)Dk−i−1s, k = 1, . . . , n, n = 0, 1, . . . .

(2.12)
Evaluation of the generalized Bell polynomials by (2.10) gives (s′ = Ds)

Bn,1(s) = s, Bn,2(s) = s2+nDs, Bn,3(s) = s3+ns′s+(n−1)sDs+
(
n

2

)
D2s,

Bn,4(s) = s4 + ns′s2 + (n− 1)ss′s + (n− 2)s2Ds

+
(
n

2

)
s′′s + n(n− 2)(Ds)2 +

(
n− 1

2

)
sD2s +

(
n

3

)
D3s.

To solve the problem of the left division of L by Ls, a similar but somewhat
simpler consideration is needed. The analog of Proposition 2.9 is as follows:

Proposition 2.10. The following identity is valid:

Dn = LsH
+
n−1 + B+

n (s), n = 1, 2, . . . , (2.13)

where

H+
n =

n∑

k=0

B+
n−k(s)D

k, n = 0, 1, 2, . . . . (2.14)

2.3 Division and factorization of differential operators.
Generalized Miura equations

Let

L =
N∑

n=0

anD
n, an ∈ K (2.15)

be a differential operator of order N . We shall study the right and left divisions
of L by the operator Ls defined by (2.5). Suppose

L = MLs + r, L = LsM
+ + r+, (2.16)
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where M and M+ are the results of right and left divisions, r and r+ being
the remainders. Propositions 2.9 and 2.10 allow us to solve the problem of
division in a simple way.

Proposition 2.11. If the representation (2.16) is valid, then the remainder
r and the result of division M are written as

r =
N∑

n=0

anBn(s),

M =
N∑

n=1

anHn−1 =
N−1∑

n=0

bnD
n, (2.17)

where

bn =
N∑

k=n+1

akBk−1,k−n−1(s), n = 0, 1, . . . , N − 1. (2.18)

For the proof it is enough to check

L = a0 +
N∑

n=1

an[Hn−1Ls + Bn(s)] =
N∑

n=1

anHn−1Ls + a0 +
N∑

n=1

anBn(s)

by the equality from Proposition 2.7 and to account for Hn−1 given by (2.9).
As a corollary we get the following:

Proposition 2.12. For the linear operator L to be right-divisible by Ls with-
out remainder, it is necessary and sufficient that s be a solution of the differ-
ential equation

N∑

n=0

anBn(s) = 0. (2.19)

If this condition holds, the operator L factorizes as L = MLs, where M is
given by (2.17) and (2.18).

Equation (2.19) is nonlinear. For N = 2 it is the Riccati-type equation
known in the theory of the KdV equation as the Miura map. Therefore, it is
natural to term it as a generalized right Miura equation . It links the function
s and coefficients of the operator L. The left Miura equation is generalized by
means of Proposition 2.2, giving the following theorem:

Theorem 2.13. Let an invertible function ϕ be a solution to the linear dif-
ferential equation

N∑

n=0

anD
nϕ = 0. (2.20)

Then the operator L, defined by (2.15), is right-divisible by Ls, where s =
ϕ′ϕ−1 and ϕ′ ≡ Dϕ. Moreover, s is a solution of the right Miura equation
(2.19).
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To solve the left division problem, let us write the result of division in the
form

M+ =
N−1∑

n=0

b+nD
n. (2.21)

Now we should determine b+n , n = 0, 1, . . . , n − 1. To this aim we substitute
(2.21) into the right-hand side of the second equation of (2.16). Following the
lines of Proposition 2.11, we obtain

b+N−1 = aN , (2.22)

b+n = an+1 − Lsb
+
n+1, n = 0, 1, . . . , N − 2, (2.23)

and
r+ = a0 − Lsb

−
0 . (2.24)

Solving subsequently equations (2.23) and (2.24), we arrive at

b+n =
N∑

k=n+1

(−1)k−n−1Lk−n−1
s ak, n = 0, 1, . . . , N − 1 (2.25)

and

r+ =
N∑

k=0

(−1)kLksak. (2.26)

The entities b+n , n = 0, 1, . . . , N − 1, and r+ can be expressed in terms of the
right Bell polynomials if we use (2.5) and take into account

Lksa = Lksea = (−1)kB+
k (s)a.

Hence, (2.25) and (2.26) transform to

b+n =
N∑

k=n+1

B+
k−n−1(s)ak, n = 0, 1, . . . , N − 1 (2.27)

and

r+ =
N∑

k=0

B+
k (s)ak. (2.28)

Formulas (2.16), (2.21), (2.25), and (2.26) give a solution of the left division
problem of division of L by Ls. So, the following is proved:

Theorem 2.14. For the operator L to be left-divisible by the operator Ls
(without remainder), it is necessary and sufficient that s be a solution of the
differential equation

N∑

k=0

Bk(s)+ak = 0. (2.29)
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If this condition holds, the operator L factorizes as L = LsM
+, where M+ is

given by (2.21) and (2.25) [or (2.27)]. For the reminder r+ and the result of
division M+ equations (2.28) [or (2.26)] and (2.21) exist.

The nonlinear equation (2.29) is called the generalized left Miura equation,
which is obviously linearized by Proposition 2.4. As a result, we have the
following:

Proposition 2.15. Let an invertible element ϕ satisfy the linear differential
equation

N∑

n=0

(−1)nBn(s)+anD
nϕ = 0.

Then the operator L determined by (2.15) is left-divisible by the operator Ls,
where s = −ϕ−1ϕ′. The function s is a solution to the generalized left Miura
equation (2.29).

2.4 Darboux transformation. Generalized
Burgers equations

The problem of the operator division is directly connected to the DT. To clar-
ify this point, suppose that in the ring K there exists one more differentiation
D0 which commutes with the operator D. It may be a differentiation in a
parameter t.

Let us introduce an auxiliary commutation relation

Lsr = rLs + r′ + [r, s]. (2.30)

Indeed,

Lsr − rLs = (D − s)r − r(D − s) = Dr − sr − rD + rs

= rD + Dr − sr − rD + rs = r′ + [r, s].

Taking into account the equalities (2.30) and (2.16), we arrive at the relation

Ls(D0 − L) = (D0 − L̃)Ls + D0s− r′ − [r, s], (2.31)

where
L̃ = LsM + r. (2.32)

As the result, the following important conclusion can be drawn:

Proposition 2.16. If a function s satisfies the equation

D0s = r′ + [r, s], (2.33)

the operator Ls intertwines the operators D0 − L and D0 − L̃,

Ls(D0 − L) = (D0 − L̃)Ls. (2.34)
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The explicit expression for L̃ can be obtained in terms of (2.32) and (2.16)
and has the form

L̃ = a0 +
N∑

n=1

(a′nHn−1 + anHn − sanHn−1). (2.35)

Let us write (2.33) explicitly using (2.16). It is established that for the
intertwining relation (2.34) to be valid, it is necessary and sufficient that s be
a solution of the equation

D0s =
N∑

n=0

[a′nBn(s) + anBn+1(s)− sanBn(s)]. (2.36)

Remark 2.17. Equation (2.36) is nonlinear but linearizable. This equation (in
a different form) was introduced in [388]. The form we suggest here is the most
compact and convenient for further investigations, e.g., in the framework of
the bilineraization technique of Hirota [210].

In the case of scalar functions and L = D2 equation (2.36) is known as the
Burgers equation. For this reason and owing to the integrability of (2.36) by
the Cole–Hopf transformation, it is natural to refer to (2.36) as a generalized
Burgers equation.

Proposition 2.18. Suppose an invertible function ϕ is a solution to the linear
differential equation

D0ϕ = Lϕ.

Then the function s satisfies the generalized Burgers equation (2.36).

The obvious corollary of the intertwining relation (2.34) and Proposition 2.18
is as follows:

Theorem 2.19. Let functions ψ and ϕ be solutions of the equations

D0ψ = Lψ, D0ϕ = Lϕ (2.37)

for an invertible function ϕ. Then the function

ψ̃ = Lsψ = Dψ − sψ, s = (Dϕ)ϕ−1 (2.38)

is a solution of the equation
D0ψ̃ = L̃ψ̃. (2.39)

The last statement accomplishes the proof of the Matveev theorem for
differential polynomials [314] in its non-Abelian version.
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The equality (2.35) gives a representation of the transformed operator in
terms of the generalized Bell polynomials. The explicit expressions for the
transformed coefficients are

aN [1] = aN , (2.40)

ak[1] = ak +
N∑

n=k+1

[anBn,n−k + (a′n − san)Bn−1,n−1−k], (2.41)

k = 0, . . . , N − 1.

2.5 Iterations and quasideterminants
via Darboux transformation

Here we would like to revisit the non-Abelian iterated DT formulas following
the ideas of the pioneering paper of Matveev [313], where the basic formulas
were derived. Their Abelian counterpart is demonstrated in [324] and dis-
cussed also in [316, 322]. In fact, this approach goes back to the famous paper
of Crum [94]. We will see, in the framework of a general non-Abelian DT
theory, that the dressing procedure naturally produces the quasideterminants
(Sect. 1.9). In the paper [191] this procedure is also properly analyzed for the
matrix Schrödinger operator.

2.5.1 General statements

Let R be a differential algebra with a derivation D : R → R and φ ∈ R be
an invertible element. Recall that we denote D(g) = g′ and Dk(g) = g(k). In
particular, D(0)(g) = g.

For ψ ∈ R define D(φ;ψ) = ψ′ − φ′φ−1ψ. Following [321], we call D(φ;ψ)
the DT of ψ defined by φ.

Theorem 2.20. Let φ1, . . . , φN ∈ R. Define by induction the iterated DT
D(φN , . . . φ1;ψ) as follows. For N = 1, it coincides with the DT defined above.
Assume N > 1. The expression D(φN , . . . , φ1;ψ) is defined if D(φN , . . . , φ2;ψ)
is defined and invertible and D(φN ;ψ) is defined. In this case,

D(φN , . . . φ1;ψ) = D[D(φk, . . . φ2;ψ);D(φ1;ψ)].

Theorem 2.21. If all square submatrices of matrix (φ(j)
i ), i = 1, . . . , N ,

j = k − 1, . . . , 0 are invertible, then the Vandermond supermatrix defines the
quasideterminant:

D̂(φN , . . . , φ1;ψ) =

∣∣∣∣∣∣

ψ(k) φ
(k)
1 . . . φ

(k)
k

. . . . . . . . . . . .
ψ φ1 . . . φk

∣∣∣∣∣∣
.
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Recall that we use the “hat” symbol to denote the quasideterminant. This
general statement first appeared in [313].

Proof. Iterations of the DT yield

ψ[N ] = ψ(N) +
N−1∑

m=0

smψ(m), (2.42)

which is a replica of an expression in [313, 322, 324] for the Abelian case.
The iterated DT (2.42) as a function of ψ sends to zero any φi on which the
transformation is constructed:

φp[N ] = φ(N)
p +

N−1∑

m=0

smφ(m)
p = 0, p = 1, . . . , N. (2.43)

The successive excluding of sm as a function of the derivatives ψ
(m)
p from the

system (2.43) yields the algorithm that results in the evaluation of sm; the
procedure was pointed out already in [314], applied in [277] and, as it is
seen from a comparison with the quasideterminant definition, could define
the Vandermond quasideterminant.

Let us illustrate the scheme with the case of N = 2. The first iteration is
based on a set of φp, p = 1, 2. The equations for si, i = 0, 1

φ
(2)
1 + s0φ1 + s1φ

′
1 = 0, φ

(2)
2 + s0φ2 + s1φ

′
2 = 0 (2.44)

yield
s0 = −φ(2)

1 φ−1
1 − s1φ

′
1φ

−1
1 .

Inserting this into the second relation of (2.44) produces the equation for s1:

s1(φ′
2 − φ′

1φ
−1
1 φ2) = −φ(2)

2 + φ
(2)
1 φ−1

1 .

It is solved as

s1 = (−φ(2)
2 + φ

(2)
1 φ−1

1 )(φ′
2 − φ′

1φ
−1
1 φ2)−1,

and
s0 = −φ(2)

1 φ−1
1 − (−φ(2)

2 + φ
(2)
1 φ−1

1 )(φ′
2 − φ′

1φ
−1
1 φ2)−1φ′

1φ
−1
1 ,

both recognized as quasideterminants. The final expression for ψ[2] is given
by (2.42).

As mentioned in [322], the comparison of the resulting formula for ψ[N ]
(2.42) and the formula for the DT

D(φN−1, . . . , φ1;ψ[N−1]) = ψ[N−1]′−φ[N−1]′φ[N−1]−1ψ[N−1], (2.45)

where φ[N − 1] = ψ[N − 1]|ψ=φN , yields the non-Abelian Jacobi identity for
quasi-Wronskians “for free.” Recall that Crum [94] used the Jacobi identity
to prove the determinant formulas for the iterated DT for Abelian entries.
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Remark 2.22. The non-Abelian algorithm to exclude sms hints at the defini-
tion of quasideterminants as a function of submatrices apm (compare with the
results in Sect. 1.9.1). Namely, it is enough to change ψ

(m)
p → apm.

The solution of the system (2.43) with respect to sp may be reinterpreted
as the Vandermond-quasideterminant representation of the iterated DT for
solutions (2.42) (with inserted sm) and, next, linked to the DT for the poten-
tials ak[N ].

To check this proposition, let us substitute (2.42) into the evolution equa-
tion (2.37) for ψ[N ] (see Theorem 2.19):

ψ[N ]t =
n∑

k=0

a[N ]kψ(N+k) +
n∑

k=0

a[N ]k
N−1∑

m=0

(smψ(m))(k). (2.46)

On the other hand,

ψ[N ]t = ψ
(N)
t +

N−1∑

m=0

(sm,tψ(m) + smψ
(m)
t ) (2.47)

=
n∑

k=0

(akψ(k))(N) +
N−1∑

m=0

sm,tψ
(m) +

N−1∑

m=0

sm

n∑

k=0

(akψ(k))(m).

Equating terms with the highest derivative ψ(N+n) gives

a[N ]n = an,

and, subsequently, for ψ(N+n−1) produces

a[N ]n−1 = an−1 + Na′n + sN−1an − ansN−1.

For ψ(N+n−2) we obtain

a[N ]n−2 = an−2 + Na′n−1 +
N(N + 1)

2
a′′n − an(sN−2 + ns′N−1) (2.48)

−a[N ]n−1sN−1 + (N − 1)sN−1a
′
n + sN−1an−1 + sN−2an,

preserving the order of differentiation in (2.47) to keep the non-Abelian char-
acter. Substituting here a[N ]n−1 yields the explicit form of a[N ]n−2:

a[N ]n−2 = an−2 + Na′n−1 +
N(N + 1)

2
a′′n + [sN−1, an−1] + [sN−2, an]

−nans′N−1 − (Na′n + [sN−1, an])sN−1. (2.49)

One could compare the resulting expression (2.49) for commuting entries and
for a′n = a′n−1 = 0,

a[N ]n−2 = an−2 − nans
′
N−1, (2.50)

with (2.37) [322] when taking into account that sN−1 = − lnxxW (ϕ1, . . . , ϕN ),
with ϕj being solutions of (2.38).
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Corollary 2.23. [321] In the commutative case, the iterated Darboux trans-
formation is a ratio of two Wronskians, as follows by direct application of the
Kramer rule to (2.43):

D(φk, . . . , φ1;ψ) =
W (φ1, . . . φk, ψ)
W (φ1, . . . , φk)

. (2.51)

All these results are naturally generalized to the cases when the main prop-
erties of the DTs are valid: the n-iterated transform is a linear function of
T nψ and there is an n-dimensional kernel of the transformation operator.
This remark relates first of all to the next section (see also [321]) and to
the Moutard/Goursat transformations (Chap. 6). The algorithm of the con-
struction given here is easily transferred to the iterated Moutard/Goursat
transformation because the “kernel property” (2.43) is also valid.

2.5.2 Positons

An interesting illustration of the application of (2.51) is concerned with posi-
tons. Positons were introduced by Matveev [318, 319] as a class of singular
solutions of the KdV equation,

ut − 6uux + uxxx = 0, (2.52)

that lead to a trivial scattering matrix for the associated spectral problem

−ψxx + uψ = λψ. (2.53)

Here we consider this topic in more detail, following [323].
The KdV equation can be written as the compatibility condition [13] of

the linear system of equations comprising the spectral problem (2.53) and the
evolutionary equation

ψt = −4ψxxx + 6uψx + 3uxψ. (2.54)

Note that the spectral problem (2.53) is a representative of the general equa-
tion (2.37).

Let φ(λ) solve the spectral equation (2.53). Differentiation in λ produces
(in general, linearly independent) solutions φ[m] = ∂mφ(λ)/∂λm of the same
equation. The set of solutions φ1, . . . , φ

[m1]
1 , φ2, . . . , φ

[m2]
2 , . . . , φn, . . . , φ

[mn]
n ,

mi are integers, generated by the λ-derivatives in the points λ1, λ2, . . . , λn,
yields the iterated DT, which is the Abelian specification of the transform
(2.42) and the quasideterminant formula (2.43).

Proposition 2.24. Let u(x, t) be a solution of the KdV equation (2.52). The
Wronskians

W1 = W (φ1, . . . , φ
[m1]
1 , φ2, . . . , φ

[m2]
2 , . . . , φn, . . . , φ

[mn]
n )
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and
W2 = W (φ1, . . . , φ

[m1]
1 , φ2, . . . , φ

[m2]
2 , . . . , φn, . . . , φ

[mn]
n , ψ)

produce the DT

u[N ] = u− 2∂2
x lnW1, ψ[N ] = W2/W1. (2.55)

The Lax pair equations (2.53) and (2.54) are covariant with respect to the
DT (2.55). In other words, the function ψ[N ] satisfies (2.53) and (2.54) with
u→ u[N ] and ψ → ψ[N ] and u[N ] is a new solution of the KdV equation.

Now we apply the DT (2.55) to dress the simplest seed solution u = 0
with the choice ψ = exp(ikx + 4ik3t), k2 = λ. As a solution of the spectral
equation with zero potential we choose an oscillating function

φ = sinκ(x + x1(κ) + 4κ2t) ≡ sin θ.

Here κ is a real parameter and x1(κ) is an analytic function in the vicinity of
the point κ. Therefore, a new solution to the KdV equation is given by

u[1] = −2∂2
x lnW (φ, ∂κφ) (2.56)

and is written explicitly as

u = 32κ2 sin θ − κγ cos θ
(sin 2θ − 2κγ)2

sin θ, (2.57)

where

γ = ∂κθ = x + x2 + 12κ2t, x2 = x1 + κ∂κx1, W (φ, ∂κφ) = sin 2θ − 2κγ.
(2.58)

The solution (2.57) is determined by three real parameters x1, x2, and κ
and has a second-order pole in x. The precise pole position is found by solu-
tion of the nonlinear functional equation W (φ, ∂κφ) = 0. The corresponding
solution of the Lax pair [or of (2.51)] takes the form

ψ(x, k) =
W [φ, ∂κφ, exp(ikx + 4ik3t)]

W (φ, ∂κφ)
(2.59)

=
(
−k2 +

4ikx sin2 θ

sin 2θ − 2κγ
− κ2 sin 2θ + 2κγ

sin 2θ − 2κγ

)
eikx+4ik3t.

In the point k = κ, this solution is simplified:

ψ(k, x) = −4κ2 sin θ

sin 2θ − 2κγ
. (2.60)

We see from (2.60) that the function ψ is localized near its pole but is
not square-integrable on the whole x-axis. The point κ2 is called the Wigner–
von Neuman resonance [320].1 Because κ2 > 0, the solution (2.57) is called
positon, as distinct from the soliton solution for which κ2 < 0 (Sect. 8.7).
1 Generic aspects of the scattering theory of the potentials leading to the Wigner–

von Neumann resonances are discussed in [312, 311].
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Asymptotic behavior of the function ψ is given by

ψ → (−k2 + κ2)eikx+4ik3t[1 + o(1)], x→ ±∞. (2.61)

Let us compare (2.61) with the standard Jost solution J(x, k, t) asymptotic
of the linear Schrödinger equation with a decreasing potential:

J(x, k, t)→ eikx(1 + o(1)), x→ +∞,

J(x, k, t)→ a(k, t)eikx + b(k, t)e−ikx, x→ −∞,

where a(k, t) and b(k, t) are the transmission and reflection coefficients. For
the positon potential we obtain

a(k, t) = 1, b(k, t) = 0.

Potentials for which b(k, t) = 0 are called reflectionless. The well-known exam-
ple of the reflectionless potentials is provided by solitons. However, for solitons
we have a(k, t) �= 1. Hence, positons give a unique example of supertranspar-
ent (or superreflectionless) long-range potentials.

A two-positon solution is generated by the evident extension of (2.56),

u = −2∂2
x lnW (φ1, ∂κ1φ1, φ2, ∂κ2φ2),

with
φ1 = sinκ1(x + x1 + 4κ2

1t), φ2 = sin(x + x2 + 4κ2
2t),

and is determined by six real parameters. For x→∞ the two-positon solution
is decomposed into a sum of two free positons. It should be stressed that the
positon scattering is not accompanied with a phase shift typical for the soliton
scattering.2

Interesting suggestions concerning physical applications of positons can by
found in the paper by Matveev [323].

2.6 Darboux transformations at associative
ring with automorphism

In this section we reformulate and analyze the results from the paper of
Matveev [321] for further use in the derivation of chain equations and joint
covariance of operator pairs [265, 267, 271]. We begin with general notations.
Let R be an associative ring with an automorphism, implying that there exists

2 For singular potentials the scattering data are not uniquely defined. Different
self-adjoint extensions of the same differential operators might lead to different
scattering operators. The definition of the scattering coefficients given above is in
agreement with the nonlinear picture of interaction between positons and solitons,
although the latter can be analyzed independently of this definition.
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a linear invertible map T, R→R such that for any ψ (x, t) and ϕ (x, t) ∈ R,
x ∈ Rn, t ∈ R we have

T (ψϕ) = T (ψ)T (ϕ), T (1) = 1. (2.62)

The automorphism with the defining property (2.62) allows us to write down
a wide class of functional-differential-difference and difference-difference equa-
tions starting from

ψt (x, t) =
N∑

m=−M
UmTmψ, (2.63)

where M and N are integers. For example, the operator T can be chosen as

Tψ(x, t) = ψ(qx + δ, t),

where q ∈ GL(n,C), δ ∈ Rn. Another choice gives

Tψ (x) = Wψ(x)W−1 , W ∈ GL(n,C).

We will save the notations and conditions of the paper [321] discussing other
potentials until the end of Sect. 4.9.

Let us consider two DTs for solutions of (2.63),

D±f = f − σ±T±1f, σ± = ϕ
(
T±1ϕ

)−1
, (2.64)

where ϕ is a particular solution of the same equation (2.63). For the case of
a differential ring and for Tf (x, t) = f (x + δ, t), x, δ ∈ R the limit ∂f =
limδ→0

1
δ (T − 1)f (x, t) gives the link to the classical DT.

To derive the DT of potentials Um, it is necessary to evaluate the deriva-
tive of the elements σ± with respect to the variable t (say, time). We shall do
it by introducing the special functions (analog of the differential Bell polyno-
mials), similar to [467]. Let us start from the first version of the DT definition
D+, expressing Tϕ from (2.64) ; hence, Tϕ = (σ+)−1

ϕ. Acting on this re-
lation by T and taking into account (2.62) yields T 2ϕ = T

[
(σ+)−1

]
Tϕ =

T
[
(σ+)−1

]
(σ+)−1

ϕ . Repeating the action, we arrive at

Tmϕ =
m−1∏

k=0

[T k
(
σ+

)
]−1ϕ = B+

m

(
σ+

)
ϕ. (2.65)

Here and below the product is ordered by the index k running from right to
left.

Definition 2.25. Equation (2.65) defines the function

B+
m (σ) =

m−1∏

k=0

[
T k (σ)

]−1
.
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It is convenient to write down the t-derivative of σ by means of the functions
B+
m (σ+) that are connected with the generalized Bell polynomials [467, 271]:

σ+
t =

N∑

m=−M

[
Um B+

m

(
σ+

)
σ+ − σ+T (Um )B+

m+1

(
σ+

)
σ+

]
. (2.66)

The resulting equation (2.66) is a nonlinear equation associated with (2.63)
that is reduced to a generalized Miura transformation in the stationary case
(Sect. 2.3).

The Matveev theorem for polynomials of the automorphism T provides
far-reaching generalizations of the conventional Darboux theorem proved orig-
inally for the second-order differential equation (for generalizations see [324]
as well) and can be formulated by means of the introduced entries in the
following way:

Theorem 2.26. Let the functions ϕ ∈R and ψ ∈R satisfy (2.63). Then the
function ψ+ = D+ψ satisfies the equation

ψ+
t (x, t) =

N∑

m=−M
U+
mTmψ+,

where the coefficients are evaluated from the recurrence relations

U+
−M = U−M , (2.67)

U+
1 − U+

0 σ+ = U1 − σ+TU0 − σ+
t , (2.68)

U+
m − U+

m−1T
m−1σ+ = Um − σ+TUm−1, (2.69)

U+
N = σ+ (TUN)

(
TNσ+

) −1. (2.70)

Equations (2.67)–(2.70) define recursively the DTs of the coefficients (po-
tentials) of the differential equation (2.63). Solving the recurrence (2.69) by
means of (2.65) yields

U+
m =

m+M∑

l=0

U−M+l − σ+ (TU−M+l−1)B+
−M+l

(
σ+

) [
B+
m

(
σ+

)]−1 (2.71)

U+
N = σ+ (TUN)

(
TNσ+

)−1
. (2.72)

Proof. For the proof it is necessary to check the additional equality that ap-
pears from the term Tmψ with essential use of the expression for σ+

t from
(2.66).

This theorem establishes the covariance (form invariance) of (2.63) with
respect to the DT (2.64).
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The formalism for the second DT from (2.64) may be similarly constructed
on the ground of the identity

Tmϕ =
m∏

k=0

T k
(
σ−)T−1ϕ = B−

m

(
σ−)T−1ϕ. (2.73)

The definition of the lattice Bell polynomials of the second type B−
m (σ−) can

be extracted from (2.73). The evolution equation for σ− is similar to (2.66):

σ−
t =

N∑

m=−M

[
Um B−

m

(
σ−)− σ−T−1 (Um )B−

m−1

(
σ−)] .

It may be considered as a further generalization of the Burgers equation (2.36)
and gives the second generalized Miura map for stationary solutions of (2.63).
Explicit formulas for U−

m are similar to (2.68)–(2.72).

2.7 Joint covariance of equations and nonlinear
problems. Necessity conditions of covariance

If a pair of linear problems is simultaneously covariant with respect to a
Darboux transformation, it generates Bäcklund transformations of the corre-
sponding compatibility condition, or a nonlinear integrable equation. In the
context of such an integrability, the joint covariance principle, used to con-
struct solutions of nonlinear problems from the very beginning [313], can be
considered as the origin of a classification scheme [265, 267]. In this book,
we examine realizations of this scheme and seek the covariant form of equa-
tions and an appropriate basis with the simplest transformation properties.
Note that a proof of the covariance theorems for the linear operators incor-
porates the generalized Burgers equations that in stationary versions reduce
to the generalized Miura transformation. We give and examine the explicit
form of the Miura equality in both the general and the stationary cases (see
also [270]). This equality gives an additional nonlinear equation that is auto-
matically solved by the Cole–Hopf substitution and is used to generate dress-
ing t-chain equations [79]. We show how the form of the covariant operator
can be found by comparing some kind of Frechét derivatives of the operator
coefficients and the transforms.

2.7.1 Towards the classification scheme: joint
covariance of one-field Lax pairs

The basis of the formalism introduced here has been elaborated in [265, 267]
and the compact formulas with the generalized Bell polynomials are given in
Sect. 2.2. The formalism is valid for non-Abelian coefficients an as well, and
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for solutions of (2.37); φ and ψ can be considered as matrices or operators.
For simplicity, we start with the scalar case.

First we consider particular examples of the theory to derive the explicit
expressions and show some details. We begin with a very simple analysis
to clarify the integrability notion we introduce. Note first that the higher
coefficients an (with n = N and n = N − 1) are transformed almost trivially.
It follows that the coefficients, in general, do not play the role of potentials
to be dressed, or solutions of the nonlinear equation being the compatibility
condition.

If N = 2, the general transformation (2.40) and (2.41) reduces to

a2[1] = a2 ≡ a(x, t), a1[1] = a1(x, t) + Da(x, t),

a0[1] = a0 + Da1(x, t) + 2a(x, t)Dσ + σDa(x, t).
(2.74)

Only the Abelian case is considered at this stage. The explicit form of the
transformations clearly shows a difference between the coefficients a(x, t) and
a1(x, t), which transform irrespectively to solutions, on the one hand, and
a0 = u(x, t), which will stand for an unknown function in a forthcoming
nonlinear equation, on the other hand. We call a0 = u(x, t) the potential in
the context of the Lax representation. The KdV case can be easily recognized
here. Namely, when a = const and a1 = 0, a0 plays the role of the only
unknown function in the KdV equation (we call this situation the one-field
case). We can therefore formulate the following:

Proposition 2.27. The Abelian case with N = 2 is the first nontrivial exam-
ple of a set of covariant operators with coefficients a1,2 that depend only on x
and an additional parameter (e.g., t), but their transformations contain only
the functions a1,2 and is hence said to be trivial. The transformation (gener-
alized DT) for u is given by the last equation in (2.74) and depends on both
a1,2 and solutions of (2.36) via σ.

Let us consider the third-order operator as the second one in the Lax pair.
Letting N = 3 in (2.40) and (2.41) and changing ai → bi, we have

b3[1] = b3, b2[1] = b2 + Db′3, b1[1] = b1 + Db2 + 3b3Dσ + σDb3,

b0[1] = b0 + Db1 + σDb2 + [σ2 + (2Dσ)]Db3 + 3b3(σDσ + D2σ). (2.75)

We consider (2.74) and (2.75) as coefficients of the Lax pair of operators,
both of which depend on the only variable u, and suppose that the coefficients
of the operators and their derivatives with respect to x are analytic functions
of u. We now choose D → ∂

∂y and L→ L1 in (2.37) corresponding to the case
(2.74) and leave the parameter t, i.e., D0 → ∂

∂t for the second case, forming
the Lax pair

ψy = L1ψ, (2.76)

ψt = L2ψ. (2.77)
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Here L2 =
∑2

i=0 biD
i.

Recall the KdV case. The general stationary version of (2.33) for N = 2 is

2∑

n=0

anBn = c = const,

which yields
σ2 + σ′ + u = c. (2.78)

Note that (2.33) for N = 3 is still valid for the same σ = φxφ
−1 if φ is a

solution of the Lax pair (2.76) and (2.77). If we restrict ourselves to the case
b2 = 0 and b3 = b = const in (2.75), we obtain the second equation in the
KdV Lax pair.

Returning to the general case and taking into account the triviality of
transforms of b3 = b(x, t) and b2 in the aforementioned sense, we find that
the first nontrivial potential is b1 = F (u, u′, . . .). Suppose that the covariance
principle holds or, equivalently, take the following equation for F :

b1[1] = F (u[1]) = F (u + Da1 + 2aDσ + σDa)
= F (u) + Db2 + 3bDσ + σDb. (2.79)

The analyticity of F permits us to expand the left-hand side of (2.79) in a
Taylor series:

F (u[1]) = F (u) + Fu(2aDσ + Da1 + σDa) + FDu(. . .) + . . . . (2.80)

Compare the transformation (2.79) with the Frechét differential (2.80) of the
function F . Both equations are identical if the coefficients of σ, Dσ, and the
free term in both equations are the same. Introducing Fu = c(x, t) yields

2ac = 3b, (2.81)

or
F (u) =

3bu
2a

with the additional conditions

cDa1 = Db, (2.82)
cDa = Db. (2.83)

Substituting c from (2.81) in (2.83), we pass either to 3D(lna) = 2D(ln b) and
obtain b = a3/2c1(t), or to Da = Db = 0. In the last case, (2.83) is valid with
an arbitrary c or mutually independent b(t) and a(t), while (2.82) yields the
equation for a1 for both cases, 3Da1 = 2aDb/3b with an arbitrary c1(t).
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Further conditions follow from the last equation in (2.75), i.e., if we in-
troduce a new analytic function G and set b0 = G(u, u′, . . .), the transformed
b0 gives

G(u + Da1 + 2aDσ + σDa) = G(u) + Gu(Da1 + 2aDσ + σDa)

+GDuD(Da1 + 2aDσ + σDa) + . . . . (2.84)
The DT formula for the potential u is obviously used. The DT for the last
coefficient b0 [see (2.75)] yields

b0[1] = G(u) + Db1 + σDb2 + [σ2 + 2(Dσ)]Db + 3bD
(
σ2

2
+ Dσ

)
. (2.85)

We now consider a general version of the Miura transformation (2.78)
which has the form

2∑

0

anBn = u + a1σ + a(σ2 + Dσ) ≡ μ,

and can be used to express σ2 in (2.85). Doing this and equating (2.84) and
(2.85) yields

D
3bu
2a

+ σDb2 +
(
μ− u− a1σ

a
+ Dσ

)
Db + 3bD

(
μ− u− a1σ

2a
+ Dσ

)

= Gu(Da1 + 2aDσ + σDa) + GDuD(Da1 + 2aDσ + σDa). (2.86)

From (2.86) we obtain the coefficients

Gu(Du)2a = 3b (2.87)

for D2σ,

Gu2a +
9b(Da)

2a
=

Db− 3ba1

2a
(2.88)

for Dσ taking (2.87) into account, and

GuDa +
3b
2a

D2a(x, t) = Db2 − a1

a
− 3bD

(a1

2a

)
(2.89)

for σ. The free term is

D
3bu
2a

+
(
μ− u

a

)
Db + 3bD

(
μ− u

2a

)
= GuDa1 +

3b(D2a1)
2a

. (2.90)

From (2.87) and (2.88) we obtain

Gu =
Db

2a
− 3ba1

4a2
− 9b(Da)

4a2
. (2.91)

If Gu is nonzero, then it follows from (2.89) that
(
Db

2a
− 3ba1

4a2
− 9b(Da)

4a2

)
Da +

3b
2a

D2a = Db2 − a1

a
− 3bD

(a1

2a

)
.
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The free term (2.90) gives

u
Db

2a
+μ

Db

a
− 3bDa

2a2
=

(
Db

2a
− 3ba1

4a2
− 9bDa

4a2

)
Da1(x, t)+

3b(D2a1)
2a

. (2.92)

If u is linearly independent of σ and its derivatives and we do not take into
account higher terms in the Frechét differential, then the only choice Db = 0
eliminates the term with u, and (2.92) simplifies to

D2a1 − a1(Da1)
2a

= 0.

The condition Da = 0 as a consequence of (2.83) has been used. Equation
(2.89) also simplifies to

Db2 − a1

a
− 3b(Da1)

2a
= 0

and integration gives the expression for b2.
Another possibility is Gu = 0, which gives

9b(Da)
2a

=
Db− 3ba1

2a
,

instead of (2.91). The free term transforms as

u
Db

2a
+ μ

(
Db

a
− 3bDa

2a2

)
=

3b(D2a1)
2a

and gives the conditions Db = Da = 0 for the same reasons. In turn, this
means that a1 = 0 and, finally, from (2.89), Db2 = 0. Hence, this case contains
the KdV equation with the (possibly, t-dependent) a(t), b(t), and b2(t).

Remark 2.28. The results for the single isolated equation (2.76) contain a
rather wide class of coefficients, in comparison with the joint covariance of
(2.76) and (2.77). Namely, a and a1 are arbitrary functions of x and t. This
may be useful for constructing potentials and solutions (e.g., special functions)
for the linear Schrödinger equation and evolution equations in one-dimensional
quantum mechanics [214].

The KdV case can be described separately (again using the notation
f ′ = Df):

Guσ
′ + Gu′σ′′ =

3b(1− a)u′

4a2
+

3bσ′′

4a
.

The only possible choice, if we consider σ, σ′, and u′ as independent variables,
is

Gu = 0, Gu′ =
3b
4a

,
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or taking into account the condition of zero coefficient for u′, a = 1, we obtain

G(u, u′, . . .) =
3bu′

4
.

This result leads directly to one of the equivalent Lax pairs for the KdV
equation.

2.7.2 Covariance equations

First we reproduce the “Abelian” scheme, generalizing the study of the Boussi-
nesq equation [270]. To start with, we should fix the number of fields. Let us
consider the third-order operator (2.20) with coefficients bk, k = 0, 1, 2, 3, re-
serving ak for the coefficients in the second operator in a Lax pair. Suppose,
both operators depend on the only potential function w. The problem we con-
sider now can be formulated as follows: to find restrictions on the coefficients
b3(t), b2(x, t), b1 = b(w, t), and b0 = G(w, t) compatible with the DT rules of
the potential function w induced by the DT for bi. The classical DT for the
third order operator coefficients (Matveev generalization [314]) yields

b2[1] = b2 + b′3, (2.93)

b1[1] = b1 + b′2 + 3b3σ′, (2.94)

b0[1] = b0 + b′1 + σb′2 + 3b3(σσ′ + σ′′), (2.95)

having in mind that the highest coefficient b3 does not transform. Note also
that b′3 = 0 yields invariance of b2.

The general idea of the DT form invariance can be realized considering
transformations of the coefficients consistent with respect to the fixed trans-
form of w. Generalizing the analysis of the third order operator transformation
[270], we arrive at the equations for the functions b2(x, t), b(w, t), and G(w).
The covariance of the spectral equation

b3ψxxx + b2(x, t)ψxx + b(w, t)ψx + G(w, t)ψ = λψ (2.96)

can be considered separately and leads to the link between bi only. We, how-
ever, study the problem (2.96) in the context of the Lax representation for
some nonlinear equation; hence, the covariance of the second Lax equation is
taken into account from the very beginning. We refer to such an approach as
the principle of joint covariance [265, 267]. The second (evolution) equation
is written as

ψt = a2(x, t)ψxx + a1(x, t)ψx + wψ, (2.97)

with the operator on the right-hand side having again the general polynomial
form of (2.20).

If we consider the operators L and A of the form
∑

aiD
i, specified in

equations (2.96) and (2.97) as the Lax pair equations, the DT of w implied
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by the covariance of (2.97) should be compatible with DT formulas of both
w-dependent coefficients of (2.96):

a2[1] = a2 = a(x, t), a1[1] = a1(x, t) + Da(x, t),

a0[1] = w[1] = w + a′1 + 2a2σ
′ + σa′2.

The following important relations being in fact the identities in the DT theory
[467] are the particular cases of the generalized Burgers equation for σ (2.36):

σt = [a2(σ2 + σx) + a1σ + w]x (2.98)

for the problem (2.97) and

b3(σ3 + 3σxσ + σxx) + b2(σ2 + σx) + b(w, t)σ + G(w) = const

for (2.96), where φ is a solution of both Lax equations.
Suppose now that the coefficients of the operators are analytic functions of

w together with its derivatives (or integrals) with respect to x (such functions
are named functions on the prolonged space [33]). For the coefficient b0 =
G(w, t) this means

G = G(∂−1w,w,wx, . . . , ∂
−1wt, wt, wtx, . . .). (2.99)

The covariance condition is formulated for the Frechét derivative of the func-
tion G on the prolonged space. In other words, the first terms of a multidi-
mensional Taylor series for (2.99) read

G(w + a′1 + 2a2σ
′ + σa′2) = G(w) + Gwx(a′1 + 2a2σ

′ + σa′2)
′ + . . . . (2.100)

We show only the terms which enter the “minimal” equations of the hierarchy.
In full analogy with (2.94) and (2.100), quite similar expansion arises for

the coefficient b1 = b(w, t). Equating the DT and the expansion, we obtain
the condition

b′2 + 3b3σ′ = bw(a′1 + 2a2σ
′ + σa′2) + bw′(a′1 + 2a2σ

′ + σa′2)
′ . . . . (2.101)

We call this equation as the (first) joint covariance equation that guarantees
consistency between transformations of the coefficients of the Lax pair (2.96)
and (2.97). In the frame of our choice a′2 = 0, the equation simplifies and
linear independence of the derivatives σ(n) yields two constraints

3b3 = 2bwa2, b′2 = bwa
′
1,

or, solving the second and plugging into the first, results in

bw = 3b3/2a2, b′2 = 3b3a′1/2a2. (2.102)
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So, if one wants to save the form of the standard DT for the variable w (poten-
tial), simple comparison of both transformation formulas gives the following
connection for b(w) [with arbitrary function α(t)]:

b(w, t) = 3b3w/2a2 + α(t). (2.103)

Equating the expansion (2.100) with the transform of the b0 = G(w, t)
yields

b′1 + σb′2 + 3b3(σ2/2 + σ′)′ (2.104)

= Gwx(a′1 + 2a2σ
′ + σa′2)

′ + G∂−1wt
[a1t + 2∂−1(a2σ

′
t) + ∂−1(σa′2)t] + . . . .

This second joint covariance equation also simplifies when a′2 = 0 and (2.103)
is accounted for:

3b3w′/2a2 + σb′2 + 3b3(∂−1σt − w)′/2a2 + 3b3σ′′/2 (2.105)

= Gwx(a′1 + 2a2σ
′)′ + G∂−1w(a1 + 2a2σ) + G∂−1wt

(a1t + 2a2σt) + . . . .

Note that the “Miura” transform (2.98) is used on the left-hand side of (2.105)
and linearizes the Frechét derivative with respect to σ; therefore, the deriva-
tives of the function G,

Gwx = 3b3/4a2, G∂−1wt
= 3b3/4a2

2, G∂−1w = b′2/2a2,

are accompanied by the constraint

a1t + a2a
′′
1 + a1a

′
1 = 0, (2.106)

which acquires the form of the Burgers equation after using (2.102). Finally,
the integration of (2.102) gives

b2 = 3b3a1/2a2 + β(t) (2.107)

and the “lower” coefficient of the third-order operator is expressed by

G(w, t) = 3b3wx/2a2 + 3b3a′1∂
−1w/2(a2)2 + 3b3∂−1wt/2a2

2.

Proposition 2.29. The expressions (2.97), (2.96), (2.103), and (2.107) define
the covariant Lax pair when the constraints (2.102) and (2.106) hold.

Remark 2.30. We cut the Frechét differential formulas on the level that is
necessary for the minimal flows. The account of higher terms leads to the
whole hierarchy, similarly to [260, 261].



56 2 Factorization and classical Darboux transformations

2.7.3 Compatibility condition

In the case a′2 = 0 the Lax system (2.96) and (2.97) produces the following
compatibility conditions:

2a2b
′
3 = 3b3a′2,

b3t = 2a2b
′
2 − 3b3a′′1 ,

b2t = a2b
′′
2 + 2a2b

′
1 + a1b

′
2 − 3b3a′′1 − 2b2a′1 − 3b3a′0, (2.108)

b1t = a2b
′′
1 + a1b

′
1 − b3a

′′′
1 − b2a

′′
1 − b1a

′
1 − 3b3a′′0 − 2b2a′0 + 2a2b

′
0,

b0t = a1b
′
0 + a2b

′′
0 − b1a

′
0 − b2a

′′
0 − b3a

′′′
0 .

In the particular case a2 = 0 we derive from the first of the equalities (2.108)
the constraint b′3 = 0. The direct consequence of (2.107) is b3t = 0. In the rest
of the equations the links (2.108) and (2.107) are taken into account. Hence,
(2.106) in combination with the expression for b2t produces βt = −2βa′1 with
β(t) from (2.107). The last two equations (for b3 = 1 and a2 = −1) become

αw + αt + 3a′′1∂
−1w/2 + (2β − 3a1/2)w′ + a′′′1 + 3a1a

′′
1/2 = 0,

3∂−1(wt + a1w)t/4 = (α− 3w/2)w′ − w′′′/4 + 3a1wt/4

+3a1a
′′
1∂

−1w/4 + 3a1a
′
1w/4− 3a′1w

′/4 + (β + 3a1/4)w′′.

In the simplest case of constant coefficients (b′2 = a′1 = 0), one goes down to

3b3(wt + a1w)t/4a2
2 (2.109)

− [
(3b3w/2a2 + α)w′ − b3w

′′′/4 + 3b3a1wt/4a2
2 + (β − 3b3a1/4a2)w′′]′ .

This equation reduces to the standard Boussinesq equation when b1 = a1 = 0,
b3 = 1, and a2 = −1.

We should stress once again that the results given in Sect. 2.2 have been
simplified to show more clearly the algorithm of the derivation of the covariant
Lax pair. A more general study can be developed if a′2 �= 0.

2.8 Non-Abelian case. Zakharov–Shabat problem

In this section we consider linear equations comprising the Lax pair with
the coefficients from the non-Abelian differential ring A (for details of the
definitions of the mathematical objects, see [467]) and apply for them the
joint covariance principle.
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2.8.1 Joint covariance conditions for general
Zakharov–Shabat equations

Let us change the notations for the first-order (n = 1) equation (2.39) as
follows:

ψt = (J + u∂)ψ. (2.110)

Here the operator J ∈ A does not depend on x, y, t and the potential a0 ≡
u(x, y, t) ∈ A is a function of the variables indicated. The operator ∂ = ∂/∂x
can be considered as a general differentiation, as in [467]. The transformed
potential

ũ = u + [J, σ], (2.111)

where σ = φxφ
−1 and φ is another solution of (2.110), is defined by the same

formula as before, but the order of the elements is important. The covariance
of the operator in (2.110) follows from the general transformations of the
coefficients in the polynomial (2.41). The coefficient J is not transformed.

Suppose the second operator of a Lax pair has the same form but with
different entries and derivatives:

ψy = (Y + w∂)ψ, Y ∈ A, (2.112)

where the potential w = F (u) ∈ A is a function of the potential of the first
equation (2.110). The principle of joint covariance [265, 267] hence reads

w̃ = w + [Y, σ] = F (u + [J, σ]),

with the direct consequence

F (u) + [Y, σ] = F (u + [J, σ]). (2.113)

So, the joint covariance equation (2.113) defines the function F (u). In the
case of the Abelian algebra we use the Taylor series (generalized by use of
the Frechét derivative) to determine this function. Now some generalization
is necessary. Let us make some remarks.

An operator-valued function F (u) of an operator u in a Banach space may
be considered as a generalized Taylor series with coefficients that are expressed
in terms of Frechèt derivatives. The linear in u part of the series approximates
(in a sense of the space norm) the function

F (u) = F (0) + F ′(0)u + . . . .

This representation is not unique and a similar expression

F (u) = F (0) + uF̂ ′(0) + . . .

may be introduced (definitions are given similarly to those in [33]). Both
expressions, however, are not Hermitian; hence, they are not suitable for the
majority of physical models. It means that the class of such operator functions
is too restrictive. To explain how a more general class of functions could be
introduced, let us consider some examples.
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2.8.2 Covariant combinations of symmetric polynomials

The first natural example is the generalized Euler top equation with the
Hamiltonian Hu+uH which is discussed in Sect. 3.9. The covariant Lax pair
for this case consists of two equations (2.110) and (2.112); the entries of the
operators satisfy the joint covariance condition (2.113) and the compatibility
condition if J = H and Y = H2.

The next example is related to the operator polynomial

P2(H,u) = H2u + HuH + uH2,

whereas the choice F (u) = P2(H,u) satisfies the link (2.113). The direct
substitution in the covariance and compatibility equations leads to a covariant
constraint that turns out to be the identity if Y = H3 and J = H .

More general connection Y = Jn and J = H leads to the covariance of
the function

Pn(H,u) =
n∑

p=0

Hn−puHp.

This observation was exhibited in [276]. For further generalization let us con-
sider combinations of polynomials,

f(H,u) = Hu + uH + S2u + SuS + uS2. (2.114)

Plugging (2.114) as F (u) = f(H,u) into (2.113) hints at a choice Y = AB +
CDE that yields

A[B, σ] + [A, σ]B + CD[E, σ] + C[D,σ]E + [C, σ]DE

= H [J, σ] + [J, σ]H + S2[J, σ] + S[J, σ]S + [J, σ]S2.

The last expression turns out to be the identity if A = B = J = H , C = αH ,
D = αH , D = αH , S = βH , and [α,H ] = 0, [β,H ] = 0 with the link α3 = β2.
Continuing this analysis, we arrive at the following:

Proposition 2.31. The joint covariance principle defines a class of homoge-
neous polynomials Pn(H,u), symmetric with respect to cyclic permutations, as
possible Hamiltonians h(ρ) = Pn(H,u) for the Liouville–von Neumann type
evolution (Sect. 3.9). A linear combination of polynomials

∑N
n=1 βnPn(H,u)

with the coefficients commuting with u and H also yields the covariant pair if
the conditions Y =

∑N
n=1 αnH

n+1, α1 = β1 = 1, αn+2
n = βn+1, and n �= 1

hold.

A proof could be performed by induction that is based on homogene-
ity of Pn and linearity of the constraints with respect to u. The functions
FH(u) =

∑∞
0 anPn(H,u) also satisfy the constraints if the corresponding

series converges.
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2.9 A pair of difference operators

Let us consider a pair of equations of the same type (2.63) for a function ψ:

ψt(x, t) =
N∑

m=−M
UmTmψ, (2.115)

ψy(x, t) =
N ′∑

m=−M ′
VmTmψ. (2.116)

The compatibility condition for them is the nonlinear equation

Usy − Vst =
∑

k

[
VkT

k (Us−k)− Us−kT s−k (Vk)
]

(2.117)

for s = −M−M ′, ..., N+N ′, k ∈ {k′ = −M ′, ..., N ′}∩{s−k = −M , ..., N }.
In the simplest case of the Zakharov–Shabat operators in both (2.115)

and (2.116) with the subclass of stationary in y solutions we obtain three
conditions:

U0t = V0U0 − U0V0,

U1t = V0U1 − U0V1 + V1T (U0)− U1T (V0) ,

and
V1T (U1) = U1T (U1) .

The connection with polynomials of a differential operator and hence with
the theory of classical Bell polynomials can be revealed if we change the
definition of potentials. It is clear that if the automorphism T is the shift
operator Tf(x) = f(x+ δ), the coefficients of the polynomials in T should be
arranged as follows:

ψt(x, t) =
N∑

m=−M

um
δm

m∑

r=0

(
m

m− r

)
(−1)m−rT rψ. (2.118)

The recursion equation that defines classical differential Bell polynomials in
commutative variables y1, y2, . . . [388],

Bm+1 =
m∑

r=0

(
m

r

)
Bm−ryr+1,

together with the definition (2.65) of B+
m, connects these special functions.

Let us remark that the transformations for Um found in Sect. 2.6 give the
transforms for um defined by (2.118). The possibility of inverse transition
depends on the independence of functions (T −1)nf for a given T and the set
of functions ψ under consideration. The joint covariance of the system (2.115)
and (2.116) hence may be investigated along the guidelines of [260] and [270],
where the so-called binary Bell polynomials are used to form a convenient
basis.
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2.10 Non-Abelian Hirota system

Let us consider a pair of the Zakharov–Shabat type equations,

ψt (x, y, t) = (V0 + V1T )ψ (2.119)

and
ψy (x, y, t) =

(
U0 + U−1T

−1
)
ψ. (2.120)

It differs from that used in the previous section by the change T → T−1 on
the right-hand side of (2.120).

In a t-lattice version of equation (2.63) with j ∈ Z we go to

f (x, j + 1) =
N∑

m=−M
UmTmf(x, j).

The case of a lattice in all variables is generated by the transition to
the discrete variables x, y, t → n, j, r ∈ Z, f(x, y, t) → fn(j, r), defined as
in [321]. The operator T acts as the shift of n: Tfn(j, r) = fn+1(j, r). The
corresponding equations (2.119) and (2.120) are written as

fn(j − 1, r) = fn+1(j, r) + v(n, j, r)fn(j, r) (2.121)

and
fn(j, r − 1) = fn(j, r) + u(n, j, r)fn−1(j, r) (2.122)

with the potentials indicated. The compatibility condition of the linear equa-
tions (2.121) and (2.122) has the form

u(n, j − 1, r)− u(n + 1, j, r) = v(n, j, r − 1)− v(n, j, r),

v(n, j, r − 1)u(n, j, r) = u(n, j − 1, r)v(n− 1, j, r). (2.123)

The second equation in (2.123) is automatically valid if

u(n, j, r) = τn+1(j, r − 1)τ−1
n (j, r − 1)τn−1(j, r)τ−1

n (j, r),
v(n, j, r) = τn+1(j − 1, r)τ−1

n (j − 1, r)τn(j, r)τ−1
n+1(j, r). (2.124)

It should be stressed that the order of the entries in these expressions is im-
portant. The substitution of (2.124) in the first equation in (2.123) leads to
the generalized Hirota bilinear equation [210] (compare also with the gener-
alizations in [336]):

τn+1(j − 1, r − 1)τ−1
n (j − 1, r − 1)τn−1(j − 1, r)τ−1

n (j − 1, r)

−τn+1(j − 1, r − 1)τ−1
n (j − 1, r − 1)τn−1(j, r − 1)τ−1

n (j, r − 1)

−τn+2(j, r − 1)τ−1
n+1(j, r − 1)τn(j, r)τ−1

n+1(j, r)

+τn+1(j − 1, r)τ−1
n (j − 1, r)τn(j, r)τ−1

n+1(j, r) = 0. (2.125)
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In the scalar case the system reduces to the Hirota bilinear equation [321]

τn(j + 1, r)τn(j, r + 1)− τn(j, r)τn(j + 1, r + 1)

+τn+1(j + 1, r)τn−1(j, r + 1) = 0. (2.126)

Using (2.124) and the DT formalism, we could elaborate a non-Abelian
version of these equations that can be useful for applications in the theory of
quantum transfer matrices for fusion rules [255, 256] and of quantum corre-
lation functions [36, 37]. Note that the non-Abelian Hirota–Miwa equation is
discussed by Nimmo [351].

Let us return to the DT theory. Equations (2.119) and (2.120) are jointly
covariant; hence, solving equations (2.123) or (2.125) is based on the symmetry
that is generated by the joint covariance of (2.121) and (2.122) with respect
to the transformations of the type (2.111), namely,

ψ−(j, r) = ψ − σ−T−1f, σ− = ϕ
(
T−1ϕ

)−1
.

As can be easily seen, the form of both linear equations (2.121) and (2.122)
represents reductions of (2.119) and (2.120) with V1 = 1, V0 = v, U0 = 1, and
U−1 = u. We show further some details in the proof of the covariance theorem
because it demonstrates important features in the procedure of the derivation
of the chain equation. Let us start, say, from (2.122). The covariance conditions
are obtained from the coefficients by ψ, T−1ψ, and T−2ψ. The first one is valid
automatically,

u− = u− σ− (r − 1) + σ− (r) , (2.127)

u−T−1σ− (r) = σ− (r − 1)u. (2.128)

2.11 Nahm equations

The Nahm equations [344] appear in conformal field theory in connection with
the monopole problem. They are solved by the variational method in [129],
producing a parameterization of the Bogomolny equations. Their generaliza-
tions attract great attention in mathematical physics [101, 345].

In the following example, we change the DT formulas a bit, showing the
alternative version, similar to [381]. We stress, however, that the formulas
from Sect. 2.1 give an equivalent result. Some generalization will be needed
within the reduction constraints related to an additional (gauge) transforma-
tion denoted by g. This is expressed by the following:

Theorem 2.32. The equation

ψy = uTψ + vψ + wT−1ψ (2.129)
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is covariant with respect to the combined gauge–DT

ψ[1] = g(T − σ)ψ. (2.130)

Here σ = (Tφ)φ−1, where φ is a solution of the same equation (2.129) and g
is an invertible element of the ring. The transforms of the equation coefficients
are

u[1] = gT (u)[T (g)]−1, (2.131)
v[1] = gT (v))g−1 − gσug−1 + gT (u)T (σ)g−1 + gyg

−1, (2.132)
w[1] = gσw[T−1(gσ)]−1. (2.133)

Proof. The substitution of (2.130) into the transformed equation (2.129) gives
four equations assuming T nψ are independent. Three of them yield trans-
formed potentials (2.131)–(2.133). The fourth equation after use of the trans-
forms takes the form

σy = σF − (TF )σ, (2.134)

where
F = uσ + v + w[T−1(σ)]−1.

One can check the condition (2.134) by direct substitution of the operator σ
and by use of the equation for φ.

Remark 2.33. Theorem 2.32 is evidently valid for the spectral problem

λψ = uTψ + vψ + wT−1ψ (2.135)

with the only correction being that the last term for the transform v[1] is
absent. The equation goes to the “Riccati equation” analog for the function
σ:

μ = uσ + v + w[T−1(σ)]−1. (2.136)

Note that inserting the element σ = (Tφ)φ−1 into (2.136) transforms it to the
spectral problem for φ (2.135) with the spectral parameter μ.

The Nahm equations can be written by means of the Lax representation
using the spectral equation (2.135) and the evolution equation

ψy = (q + pT )ψ (2.137)

with potentials p and q. The covariance of this equation with respect to the
DT (2.130) can be established similarly to Theorem 2.32 with account of the
y-evolution of σ(y):

σy = T (q)σ − σpσ + T (p)T (σ)σ − σq = 0, (2.138)

which proves the following transformation formulas for the coefficients in
(2.137):

p[1] = gT (p) [T (g)]−1
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and
q[1] = g [T (q)− σp + T (p)T (σ)] g−1 + gyg

−1.

The joint covariance principle (Sect. 2.7 and [265]) defines the connection
between potentials p and q and u and v:

p = u + βI, q = v/2. (2.139)

Hence, the joint DT covariance means integrability of the compatibility con-
dition of equations (2.137) and (2.129), e.g., of the Nahm equations:

uy =
1
2
[uT (v)− vu] + β[T (v)− v],

vy = uT (w)− wT−1u + β[T (w)− w],

wy =
1
2
vw − wT − 1(v).

One more possible specification is the use of periodic potentials in the
problem (2.137) with the evolution (2.129) with account for the connections
(2.139) that result in the appearance of commutators on the right-hand sides
of the equations. Some linear transformations and rescaling

u = α(−iϕ1/2− ϕ3), v = ϕ3,

w = α−1(−iϕ1/2 + ϕ3), q = ϕ3/2,
p = α(−iϕ1/2− ϕ3) + βI

produce the Nahm equations for the periodic functions Tϕi = ϕi [periodicity
of ϕi does not mean a periodicity of solutions ψ and φ of the Lax pair and
the corresponding σ = (Tφ)φ−1]:

ϕiy = iεikl[ϕk, ϕl]. (2.140)

α and β are free parameters. This system is covariant with respect to the
combined DT–gauge transformations if the gauge transformation g = expG
is chosen as follows:

Gy = α [(ϕ3 + ϕ1/2)T (σ)− σ(ϕ3 + ϕ1/2)] /2. (2.141)

Finally, the following theorem can be formulated:
Theorem 2.34. For Tϕi = ϕi the system (2.140) is invariant with respect to
the transformations

ϕ1[1] = g
[
(ϕ1/2− iϕ3)T (g)−1 + σ(ϕ1/2 + iϕ3)[T−1(gσ)]−1

]
,

ϕ2[1] = g [ϕ2 + α(iσϕ1/2− iϕ1T (σ)/2 + σϕ3 − T (ϕ3σ))] g−1, (2.142)
ϕ3[1] = g

[
(−iϕ1/2− ϕ3)T (g)−1 + σ(−iϕ1/2 + ϕ3)[T−1(gσ)]−1

]

with the function g = expG, where G is obtained by integrating (2.141), if the
element σ is a solution of the system

μ = α(−iϕ1/2− ϕ3)σ + ϕ3 + α−1(−iϕ1/2 + ϕ3)[T−1(σ)]−1, (2.143)

σy = [ϕ3, σ]/2− σ[α(−iϕ1/2−ϕ3)+ βI]σ + [α(−iϕ1/2−ϕ3)+ βI]T (σ)σ = 0.
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The system (2.143) follows from (2.138) and (2.136).

Remark 2.35. A similar statement can be formulated for the discrete version
[342] of the Nahm system (2.140), as may be seen from the previous section.

2.12 Solutions of Nahm equations

Making use of the construction described in the previous section, we consider
a simple example. Let T be a shift operator Tψ(x, y) = ψ(x+1, y). As a seed
solution of the Nahm equations (2.140) take commuting constant matrices
ϕi = Ai, i = 1, 2, 3, which means constant u, v, and w. First of all we should
generate a solution of the Lax pair (2.135) and (2.137) that can be found
in the form φ = ξ(t)Φ(x) (all elements are supposed to be invertible). The
equation for ξ is obtained as

ξt = [v/2 + (u + βI)T ]ξ = Zξ,

which is solved by
ξ = exp(Zt)ξ0.

Plugging Φ into (2.135) yields the spectral problem for the difference shift
operators:

μΦ(x) = ξ−1[uξΦ(x + 1) + vξΦ + wξΦ(x − 1)].

Separating variables again, a class of particular solutions is built as

Φ = η exp(Σx) ;

hence, we arrive at the matrix spectral problem for η:

μη = ξ−1 [uξη exp(Σ) + vξη + wξη exp(−Σ)] ,

with the operator on the right-hand side and, therefore, spectral parameter μ
parameterized by t. Finally, the matrix σ is composed as

σ = ξ(t)η exp(Σ)η−1ξ−1(t).

An appropriate choice of commutator algebra for Ai, Σ, and η allows us to
obtain an explicit form of σ and, hence, to construct and solve the following
equation for G:

Gt =
α

2

[(
ϕ3 +

1
2
ϕ1

)
ξ(t)η exp(Σ)η−1ξ−1(t)

−ξ(t)η exp(Σ)η−1ξ−1(t)
(
ϕ3 +

1
2
ϕ1

)]
.
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Its exponent (the matrix g) is necessary for the dressing formulas (2.142). We
would like to stress that the matrices σ and g do not depend on x; hence, the
dressed ϕ[i] also does not.

Starting from the known solution of (2.140), we arrive at the Euler system
for fi(y) that is solved in the Jacobi functions [129]. The solutions are dressed
by the transformations (2.142). A more general possibility is a direct series
solution of (2.138).





3

From elementary to twofold elementary
Darboux transformation

In this chapter we extend the results of Chap. 2 related to the classical Dar-
boux transformation (DT), by means of more detailed analysis of algebraic
aspects of general theory. Indeed, already in the pioneering paper by Matveev
[314] it was shown that the DT represents a universal algebraic operation. We
start from the intertwining relations (Sect. 1.1) and formulate in Sect. 3.1 a
general definition of the DT, as well as its connection with gauge transforma-
tions. We introduce a concept of the elementary DT (eDT) [278] which will
play a similar role for constructing particular solutions of nonlinear equations
as the classical DT does (for a comprehensive study of the method see [433]).
In Sect. 3.2 we begin the development of a purely algebraic construction of
a matrix DT on the basis of two projectors [289]. The extension of the eDT
covariance based on the existence of idempotents and skew fields in an as-
sociative differential ring is discussed in Sect. 3.3 using an example of three
basic projectors [267]. We stress that the twofold DT widely used as a dress-
ing tool represents a sequence of two eDTs defined for mutually conjugated
Zakharov–Shabat (ZS) problems. After a detailed consideration of particular
cases in the preceding sections, we formulate in Sect. 3.4 the definitions of
the eDTs and twofold DTs for an arbitrary number of projectors [269]. Ex-
plicit formulas are given for both eDTs and twofold DTs. A special case of the
Schlesinger transformation is defined in Sect. 3.5. The usefulness of this trans-
formation lies in the fact that it directly connects the seed and transformed
potentials. In Sect. 3.6 we demonstrate a generalization of the known Bianchi–
Lie formula to the non-Abelian case. Section 3.7 is devoted to the non-Abelian
N -wave equations with linear terms for illustrating the general case of an ar-
bitrary number of idempotents. We describe reduction constraints and soliton
solutions for N = 3 that account for damping and space asynchronism. In
Sect. 3.8 we show that a particular form of the twofold DTs determines a Lie
group. Hence, we can determine infinitesimal transforms for the iterated DTs
which can be applied to study the stability of soliton solutions. In Sect. 3.9
we demonstrate an interesting example of using the Darboux-integration tech-
nique for solving a class of nonlinear von Neumann equations. In particular,

67
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we show that the existence of self-scattering solutions to these equations rep-
resents a generic consequence of the nonlinearities involved. In Sect. 3.10 we
introduce a notion of a compound eDT joining the structures of the classical
DTs and the eDTs. As an example, in the framework of this approach we pro-
duce explicit solutions to the integrable Korteweg–de Vries (KdV)–modified
KdV (MKdV) system.

3.1 Gauge transformations and general definition
of Darboux transformation

When dealing with general dressing procedures, two prolonged spaces are
usually used on which the problem can be posed: the first one is spanned by
the derivatives ψ(n), while the second space is determined by the successive
action of automorphism powers T nψ. Both constructions were used in the
previous chapter. Here we restrict ourselves to the first type of prolonged
space.

Let again A be a differential ring with a differentiation D. The generic
transform [466]

f = εDψ + Σψ , ε, Σ, ψ ∈ A (3.1)

gives the classical DT in the case of ε = 1, the gauge transformation if ε = 0,
and the combination of the DT and gauge transformation if Σ = εσ. The first
two cases have been well studied; the third one has been used for integration
of the Nahm system (Sect. 2.11). In this chapter we will consider a degenerate
operator ε which is proportional to a projector (idempotent). In Sects. 3.2–3.5
such a case is studied under the name of eDT. Next, a definite combination
of the eDTs produces a twofold DT, or more complicated transformations
(Sects. 3.6–3.9). In Sect. 3.10 the whole space is taken, so the form of the DT,
named a combined eDT, looks like a generic transform (3.1), with ε being a
projector.

Following [466], we assume a covariance of the evolution equation

ψt =
n∑

0

ukD
kψ , (3.2)

with respect to the transformation (3.1). The transformed potentials for the
ZS problem (n = 1)

u1[1] = εu1ε
−1 ,

u0[1] = ε[u0 + u′
1 + [σu1]− u1ε

−1ε′ + εt]ε−1 (3.3)

demonstrate new possibilities of the combined transformations. Additional
transformation of the independent variable leads to a possibility to widen the
class of covariant operators. The combinations of this sort will be used in
Chap. 4 for studying the shape-invariant potentials.
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Further, if ε depends on a solution of (3.2), e.g., ε = AφBφ−1D, where A,
B, and D are constants [466], the transform of the potentials uk, k �= 0, 1 for
arbitrary n looks like a recurrence

uk−1[1] = ε(uk + u′
k−1)ε

−1 +

⎛

⎝σuk −
n∑

p=k

up[1](C
k
pσ

(p−k) −Ck−1
p ε(p−k−1))

⎞

⎠ε−1 ,

u0[1] = ε(u0 + u′
1)ε

−1+

(
σu1 −

n∑

p=1

up[1](C1
pσ(p−1) − C0

pε(p))

)
ε−1+ εtε

−1 .(3.4)

This recurrence reduces to the known Matveev formulas from [314] when
A = B = D = 11. Let us also mention the search for a general dressing scheme
performed in [478] along the lines of the ZS method.

3.2 Zakharov–Shabat equations for two projectors.
Elementary Darboux transformation

In the algebra A we fix the element

J = a1p + a2q , a1 �= a2 ,

where a1 and a2 belong to the field K and p and q are projectors (p2 = p,
q2 = q, pq = qp = 0, p + q = e, e is the identity). It is easy to verify that

pJ = Jp = a1p , qJ = Jq = a2q . (3.5)

Moreover, for every element x ∈ A the following equality holds:

[J, x] = a(x12 − x21) ∈ A12 ⊕A21 , a = a1 − a2 . (3.6)

Here A12 = pAq and A21 = qAp in accordance with the decomposition
A = pAp + pAq + qAp + qAq.

Definition 3.1. The ZS operator in a module M is a K-linear operator

Lu : ψ → Dψ − (λJ + u)ψ ,

where λ ∈ K, u ∈ A, and ψ ∈M .

In the same way, the ZS operators are defined in modules Ap and Aq,
where Ap = App ⊕ Aqp and Aq = Apq ⊕ Aqq . Taking into account standard
applications (spectral problems for linear operators and nonlinear evolution
equations of mathematical physics), we shall refer to λ as a spectral parameter
and u as a potential.
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Let us suppose that the potential u of the ZS operator satisfies the
restriction

upp = pup = 0, uqq = quq = 0 , (3.7)

i.e., u ∈ Apq ⊕Aqp.
It is not necessary to pose this restriction at the very beginning; instead it

can be realized by means of an appropriate “gauge” transformation (see the
previous section).

Definition 3.2. For the potential u let there exist a new potential ũ, satisfying
the condition (3.2), and the elements σ ∈ A such that for all λ ∈ K the
following intertwining relation holds:

�Lu = Lũ�, (3.8)

where the action of a K-linear operator � in module M is determined by the
equality

�ψ = (λp− σ)ψ , ψ ∈M .

Then the transformation

u→ ũ , ψ → ψ̃ = �ψ (3.9)

is referred to as the elementary DT (eDT) connected with the projector p.

The simplest consequence of the intertwining relation (3.8) represents the
well-known fact that if ψ is a solution (partial or general) of the ZS equation
Luψ = 0, then ψ̃ (3.9) is a solution of the transformed equation Lũψ̃ = 0.
Evidently, the significance of the DT is not exhausted by this property.

Taking into account (3.5), we can easily verify the identity

(�Lu−Lũ�)ψ = λ(ũp− pu− [J, σ])+ (∂σ− ũσ + σu))ψ , ψ ∈M . (3.10)

From this and the condition of nondegeneracy of the module M we have the
following:

Lemma 3.3. The intertwining relation (3.8) identically holds for all λ ∈ K
and ψ ∈M if and only if

ũp = pu + [J, σ] , ∂σ = ũσ − σu .

For the proof of this assertion it is sufficient to derive the identity (3.10)
or to calculate

�Lu = (λ− σ)(D − λJ − u) = λpD − σD − λ2pJ − λpu + σu ,

accounting for the definition of the differentiation D and the equality (3.5).
The equalities from the statement of Lemma 3.3 nullify the right-hand side
of (3.10) identically; therefore, (3.8) holds. The left-hand side of (3.10) is
obviously reconstructed from the equalities of Lemma 3.3.
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The problem of constructing the eDT and intertwining operators is
therefore reduced to the solution of the equations of Lemma 3.3 with respect to
ũ and σ̃. Splitting them with account of (3.6), we obtain after simplifications

ũqp = −aσqp , σpq = −a−1upq , (3.11)

∂σpp = ũpqσqp + a−1upquqp , ũpqσqq = σppupq − a−1∂upq ,

∂σqp = −aσqpσpp − σqqupp , ∂σqq = 0 . (3.12)

Two cases should be discriminated:

1. σqq �= 0. Designate σqq = c and suppose that c ∈ kerD \ {0}. Then (3.11)
and (3.12) are transformed to the following equations:

ũpq = (∂σpq + σppupq)c−1 , (3.13)

∂σpp = (σppupq − a−1∂upq)c−1σqp + a−1upquqp ,

∂σqp = −aσqpσpp − cuqp . (3.14)

Now we consider the auxiliary ZS problem in a module Ap:

∂ϕ = (λ0J + u)ϕ , λ0 ∈ K , ϕ ∈ Ap . (3.15)

Lemma 3.4. Assume that the ring A contains the division ring B and
denote C = B

⋂
ker ∂, i.e., C � 0 is the set of invertible constants of the

ring A. Let the element ϕ ∈ Ap satisfy (3.15) and ϕp = pϕ ∈ Bp \ {0},
i.e., ϕp has the inverse element ϕ−1

p in algebra App. Then the element
ξ = ϕqϕ

−1
p , ϕq = qϕ satisfies the Riccati equation

∂ξ = −ξupqξ − aλ0ξ + uqp . (3.16)

Proof. Using once again the definition of D and equalities that directly
follow from the ZS equation (3.15) in module Ap,

∂ϕq = (qλ0J + qu)ϕ

and similarly with p, we calculate

∂ξ = (qλ0Jϕ)ϕ−1
p + (quϕ)ϕ−1

p − ϕqϕ
−1
p (pλ0Jϕ)ϕ−1

p − ϕqϕ
−1
p (puϕ)ϕ−1

p .

As [q, λ0] = 0 and qJ = a2q [see (3.6)], it follows that

∂ξ = λ0a2ξ + (qu(q + p)ϕ)ϕ−1
p − ξλ0a1 − ξpu(q + p)ϕϕ−1

p ,

where p + q = e is inserted. Taking into account the definition of the
potential uqp = puq and gauge conditions (3.2), we go to the statement of
Lemma 3.4.
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Theorem 3.5. Let the condition of Lemma 3.4 be valid. Then the
formulas

σpp = λ0 + a−1upqξ and σqp = −cξ (3.17)

give a solution of equations (3.14).

The proof of Theorem 3.5 can be performed by a direct substitution of
(3.17) in (3.14) with account for (3.16).
Substituting (3.17) in (3.13) and (3.11), we obtain the transformed
potential ũ in the form:

ũ = acξ + a−1(aλ0upq + upqξupq − ∂upq)c−1. (3.18)

Taking together (3.11) and (3.16), we get

σ = λ0 + a−1upqξ − a−1upq − cξ + c . (3.19)

Thus, transformations (3.9), where ũ and σ are defined by (3.18) and
(3.19), give a (one possible) DT that corresponds to the projector p.
Interchanging p and q, we obtain the DT corresponding to the projec-
tor q.

2. σqq = 0. Now equations (3.12) take the following form:

σppupq = a−1∂upq , ∂σqp = −aσqpσpp , (3.20)

and
ũpqσqp = ∂σpp − a−1upquqp . (3.21)

If there exists the reciprocal element u−1
pq , then the solution of (3.20) is

given by the formulas

σpp = a−1(∂upq)u−1
pq , σqp = c0u

−1
pq , c0 ∈ Cq \ {0} .

Substituting them in (3.21) and taking into account (3.11), we go to
Theorem 3.6:

Theorem 3.6. Let the condition σpp = 0 for a definition of l hold. Then
the transformed potential of the ZS operator Lu is given by

ũpq = a−1(∂2upq − u−1
pq ∂upqu

−1
pq − upquqpupq)c−1

0 ,

ũqp = −ac0u−1
pq . (3.22)

The proof of the theorem is a chain of equalities before its formulation.

Hence, in case 2 we have built once again the DT corresponding to the projec-
tor p. Its peculiarity is that in this case it is not necessary to use a solution of
the auxiliary ZS equation (3.15) and the transformed potential ũ is expressed
explicitly via the seed potential u (unlike the DT in case 1), as the formu-
las (3.22) show. The relations (3.22) generalize the well-known Schlesinger
transformation [389].
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Both cases may be effectively used when we go down from the abstract
level to specific examples. Such examples can be explicitly constructed for the
differential rings of matrices. If matrix elements are functions of parameters,
differentiation may be defined as a derivative with respect to a parameter.
Such a matrix realization of the eDT was introduced and applied in [278] for
an arbitrary matrix dimension. Similar realizations were used in [281] and the
combinations of the eDTs leading to a binary DT were constructed and used
to obtain multisoliton formulas.

3.3 Elementary and twofold Darboux transformations
for ZS equation with three projectors

We continue to develop a rather abstract extension of the eDT covariance
based on the existence of idempotents and division rings (skew fields) in an
associative differential ring A over the field K [267]. Let D be the differ-
entiation map on A and let us fix orthogonal (pq = qp = 0) idempotents
(projectors) p and q, such that p, q ∈ kerD. Then the element s = e − p − q
is the third orthogonal projector. We choose here the case of three basic pro-
jectors for it covers features of a general formulation but nevertheless has a
clear explicit form.

For every x ∈ A we denote xαβ = αxβ, where α, β ∈ p, q, s, so we split
the ring into the direct sum

A = ⊕α,βAαβ .

We fix the element J = a1p + a2q + a3s, a1, a2, a3 ∈ K, a1 �= a2 �= a3 �= a1.
The degenerate case of equal ai can be considered in a similar manner [278].

Definition 3.7. The ZS operator Lu is the linear operator in A,

Lu : ψ → Dψ + (λJ − u)ψ ,

where λ ∈ K, u, ψ ∈ A.

Suppose the potential u of the ZS operator satisfies the gauge restrictions
upp = pup = 0, uqq = quq = 0, uss = sus = 0.

Definition 3.8. Let for the potential u there exist a new potential ue and the
element σ ∈ A such that for all λ ∈ K the following intertwining identity
holds

ELu = LueE , (3.23)

where the action of a K-linear operator E is determined by the equality

Eψ = (λp + σ)ψ . (3.24)
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Then the transformation

u→ ue , ψ → ψe = Eψ

is referred to as the eDT connected with the projector p.

It follows from (3.23) that

Dσ = ueσ − σu (3.25)

and
uep = pu + [J, σ] . (3.26)

Let a solution of the ZS equation for λ = μ be ϕ and ϕpp = pϕp ≡ ϕp has
the inverse element ϕ−1

p in App . Then the elements ξ = ϕqϕ
−1
p and η = ϕsϕ

−1
p

with ϕq = qϕ and ϕs = sϕ satisfy the system of the Riccati-type equations
[240] and the following theorems may be proved as in [324].

Theorem 3.9. Let σqq = c �= 0, σss = d �= 0, c, d ∈ kerD. Then for the
transformed potential ue the following formulas are valid:

uepq = (σppupq − b−1upsusq − a−1Dupq)c−1 , ueqp = −aσqp ,

ueps = (σppups − a−1upquqs − b−1Dups)d−1 , uesp = −bσsp ,

ueqs = [(1− a/b)σqpups + cuqs]d−1 ,

uesq = [(1− b/a)σspupq + dusq]c−1 , (3.27)

where a = a1 − a2 and b = a1 − a3, and the relations

σpp = −μp + a−1upqξ + b−1upsη ,

σpq = −a−1upq , σqp = −cξ , (3.28)

σps = −b−1ups , σsp = −dη , σqs = σsq = 0

define the eDT. Each additional projector introduces an eDT (obviously a
different one) in a similar way.

We mention here additional possibilities of the Schlesinger transformations
[389] in the case of the constraints σqq = 0 or σss = 0. For the Schlesinger
transformations it is not necessary to use the auxiliary solutions of the ZS
equation: the transformed potential ue is directly expressed via the seed po-
tential u. The choice σqq = 0 and σss = 0 introduces constraints for the
potential u [240].

For the conjugate problem

D∗φ + φ(κJ − u) = 0 (3.29)
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the equations for σc and uc determine the transform (the upper index c labels
the conjugate transform)

φc = φEc , Ec = κp− σc . (3.30)

The equations for σc and uc differ from (3.25) and (3.26) only in the order of
the operators and the form of D∗.

The solution of these equations is determined again by solutions with pro-
jectors multiplied from the right, φp = φp and so on, with the spectral pa-
rameter μ. Namely,

Theorem 3.10. Let σqq = c∗ �= 0, σss = d∗ �= 0, and φ−1
p = (pφp)−1 ∈ App

exists. Then the transform (3.30) is determined by the elements

σcpp = −μ + a−1φ−1
p φquqp + b−1φ−1

p φsusp ,

σcpq = −φ−1
p φqc∗ , σcqp = −a−1uqp , (3.31)

σcps = −φ−1
p φsd∗ , σcsp = −b−1usp , σcsq = σcqs = 0 .

The set of formulas (3.31) in turn defines the eDT of eigenfunctions (3.30) for
the conjugate problem (3.29) via constants c∗, d∗ ∈ kerD entering equations
(3.31).

The potential is transformed similarly to (3.27):

ucpq = −aσcpq , ucps = −bσcps ,
ucqp = c−1

∗ (uqpσcpp − b−1uqsusp − a−1Duqp) ,

ucsp = d−1
∗ (uspσcpp − a−1usquqp − b−1Dusp) ,

ucqs = c−1
∗ [ucpσcps(1 − b/a)− uqsd

−1
∗ ] ,

ucsq = d−1
∗ [uspσcpq(1− a/b)− usqc

−1
∗ ] . (3.32)

We consider the case D∗ = −D; hence, ζE−1, where ζ stands for another
solution of the ZS spectral problem, is the solution of the conjugate equation
(3.29) and the transformed potential is identical to ue. Namely, this point
allows us to carry out the twofold transformations. Elements of E−1 associated
with the corresponding projectors can be subsequently calculated. After that
the twofold DT is constructed and the respective theorem may be proved. We
introduce the twofold transformation as a sequence of two elementary ones
in both spaces. In the case of the conjugate space, the first transformation
is made by the inverse operator to E with the spectral parameter μ and the
respective solution ϕ of the direct problem. The second map is generated
by the resulting function χe expressed in the same way but from a linearly
independent seed solution χ of the equation (3.29) with the parameter ν . For
the direct case, the order is the opposite. The final formulation is given by
Theorem 3.11:
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Theorem 3.11. Let the inverse of the element pχϕp exist. The twofold DTs
for solution of the direct ZS problem and for the conjugate one (3.29) with
D∗ = −D are given by the following equalities:

ψec = (p + c−1
∗ c + d−1

∗ d)
(
ψ +

ν − μ

λ− ν
ϕ(χ, ϕ)−1

p χψ

)
(3.33)

and

ζec = ζeEce = ζe(κp+ σce) =
(
ζ − ν − μ

κ− μ
ζϕ(χ, ϕ)−1

p χ

)
(p+ c−1c∗ + d−1d∗) .

(3.34)

As regards the potentials, we have for example

ucepq = upqc1 + aϕp(χ, ϕ)−1
p χqc1(ν − μ)

and

uceqp = c−1
1

[
uqp + aϕq(χ, ϕ)−1

p χp
]
(ν − μ) , (3.35)

where c1 = c−1c∗ (for other elements it is sufficient to change the relevant
indices).

The proof of (3.34) may be provided by the substitution of σec from for-
mulas for the conjugate problem (3.31) and (3.32) with u→ ue and φ→ χe.
The derivation of (3.33) is performed first by (3.27) and (3.28) and then by
the inverse of the transformation (3.31) based on the results of the previous
step. For (3.35) the Riccati-like system for ξ and η is useful. Here the scalar
product analog is introduced as

(ζ, ϕ)p = pζϕp ∈ App

and c1,2 appear owing to an arbitrary choice of the constant diagonal elements
of σ for both elementary transformations (Theorems 3.9 and 3.10).

It is easy to check that the transform of the potential may be rewritten in
terms of idempotents

P = φ(χ, ϕ)−1
p χ (3.36)

up to the choice c1 = 1. Hence,

u[1] = u + δ[J, P ] . (3.37)

The twofold-like DT has been used to create multisolitons and other solu-
tions of nonlinear evolution equations [35, 240, 314, 354].
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3.4 Elementary and twofold Darboux transformations.
General case

Let D be the differentiation map on an associative differential ring A over the
field K and assume there are idempotents (projectors) pi ∈ kerD such that∑
i pi = e and pipk = pkpi = 0. For every x ∈ A we denote xik = pixpk, so

we can split the ring into the direct sum of Aik, xik ∈ Aik.
Let us fix the element J =

∑
i aipi, ai ∈ K, ai �= ak. The degenerate

case of equal ai is considered in a similar manner (see [449] where the matrix
example is studied).

Definition 3.12. The ZS operator is the linear operator in A acting in ac-
cordance with

Lu : ψ → Dψ + (λJ − u)ψ ,

where λ ∈ K, ψ, u ∈ A.

Suppose the potential u of the ZS operator satisfies the restriction uii = 0.

Definition 3.13. Let for the potential u there exist a new potential ue and
the element σ ∈ A such that for all λ ∈ K the following intertwining relation
holds:

ELu = LueE , (3.38)

where the action of a K-linear operator E is determined by the equality

Eψ = (λp + σ)ψ .

Then the transformation

u→ ue, ψ → ψe = Eψ ,

where ψ is a solution of the equation

Dψ + (λJ − u)ψ = 0 , (3.39)

is referred to as the eDT connected with the projector p.

It follows from (3.38) that

Dσ = ueσ − σu (3.40)

and
uep = pu + [J, σ] . (3.41)

Theorem 3.14. Let ϕ be a solution of the auxiliary ZS equation for λ = μ
and ϕpp = pϕp := ϕp has the inverse element ϕ−1

p in App. Assume also that
σii = ci ∈ Aii and c−1

i exists (this means that cic
−1
i = c−1

i ci = p). Then the
operator of the eDT is defined by

σ = −μp +
n∑

i=2

{[
(a1 − ai)−1u1i − cipi

]
ξi − (a1 − ai)−1u1i

}
, (3.42)
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where ξi = ϕiϕ
−1
p . For the elements of the transformed potential ue the

following formulas are valid:

ue1i =

(
σppu1i −

n∑

k=2

(a1 − ak)−1u1kuki − (a1 − ai)−1Du1i

)
c−1
i ,

uei1 = (a1 − ai)ciξi , ueik = ci

(
uik +

ai − ak
ak − a1

ξiu1k

)
c−1
k . (3.43)

The expressions (3.43) define the eDT, i, k = 2, . . . , n. Of course, any other
projector introduces the eDT in a similar way. First we note that ci ∈ kerD
and the expressions for ue can be found in the spirit of the original Darboux
approach. Then the elements ξi = ϕiϕ

−1
p with ϕi = piϕ, i = 2, . . . , n satisfy

the system of the Riccati-type equations and the relevant theorems may be
proved along the lines of [314].

For the conjugate problem

D∗φ + φ(κJ − u) = 0 (3.44)

the analog of Theorem 3.14 can be formulated and equations for σc and uc

differ from (3.40) and (3.41) only in the order of the operators. Hence, similarly
to (3.30) we define

φc = φEc , Ec = κp− σc , (3.45)

where

σc = −μp +
n∑

i=2

[
(a1 − ai)−1(ξ∗i − 1)ui1 − ξ∗ic∗ipi

]
, (3.46)

and

uci1 = c−1
∗i

(
ui1σ

c
pp −

n∑

k=2

(a1 − ak)−1uikuk1 + (a1 − ai)−1D∗ui1

)
,

uc1i = (a1 − ai)ξ∗ic∗i , ucik = c−1
∗i (uik +

ai − ak
ak − a1

u1kξ∗i)c∗k , (3.47)

with the same ai, c∗i = σcii, but ξ∗i = φ−1
p φi, φi = φpi; the existence of c−1

∗i
and φ−1

p in Aii is implied.
For the constraints σii = 0, for all or some i, the transformed potential ue

is expressed via the seed potential u only. We denote this additional possibility
as the Schlesinger transformation. The case n = 2 was described by Matveev
[314].

It is important to note that ζE−1 is the solution of the conjugate equation
(3.44) when D∗ = −D and the eDT-transformed potential is identical to ue.
The inverse operator of E can be written in terms of projectors piE−1pi = E−1

ii

so that for the first idempotent p = p1 we have

E−1
pp = (λ− μ)−1p ,
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and the remaining ones are subsequently found:

E−1
i1 = (λ− μ)−1ξi , E−1

1i = (λ− μ)−1u1ici/ai , E−1
ik = ξiu1kc

−1
k . (3.48)

Now the twofold transformations and the respective DT theorem can be
written and formulated. We introduce the twofold transformation as a se-
quence of two elementary ones in conjugate spaces. The first one is made by
the inverse operator to E with the spectral parameter μ and the relevant so-
lution ϕ of the direct problem. The second map is generated by the resulting
function χe expressed in the same way but from a linearly independent seed
solution χ of the equation (3.44) with the parameter ν. Another possibility
exists for the opposite order of actions. The formulation of the results is given
by Theorem 3.15:

Theorem 3.15. If the scalar product

(ζ, ϕ)p = pζϕp ∈ App (3.49)

and ci, c∗i are invertible in the subalgebra App, and P is defined by

P = ϕ(χ, ϕ)−1
p χ , (3.50)

then the twofold DTs for solutions of the direct ZS problem and for the con-
jugate one (3.29) with D∗ = −D are given by the following equalities:

ψec =

(
p +

n∑

2

c−1
∗i ci

)(
ψ +

ν − μ

λ− ν
Pψ

)
(3.51)

ζec = ζeEce = ζe(κp + σce) =
[
ζ − ν − μ

κ− μ
ζP

](
p +

n∑

2

c−1
i c∗i

)
. (3.52)

The potentials are given by

uec =

(
p +

n∑

2

c−1
∗i ci

)
(u + (ν − μ)[J, P ])

(
p +

n∑

2

c−1
i c∗i

)
. (3.53)

Note that the operator P is a projector.
The proof of covariance of the ZS equations can be performed by substitu-

tion of σec from formulas for the conjugate problem analogous to (3.46) with
u → ue and φ → χe. The structure of the twofold DT (3.51)–(3.53) in the
Abelian case and for ci = pi resembles the known results [354]. This means
that the iterated bDTs give a solution of the Riemann–Hilbert problem with
zeros. The iterations are generated by combinations of (3.51) and (3.52). By
the direct computation, the product of them provides

(ζec, ψec) = pζecψecp = (ζ, ψ) +
(ν − μ)(κ− λ)
(κ− μ)(λ − ν)

ζφ(χφ)−1
p χψ . (3.54)

This formula facilitates the iteration process.
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One of the main purposes for the introduction of the twofold DT directly
is concerned with the problem of reductions [331]. The properties of the ZS
problem and its conjugate allow us to establish a class of reductions solving the
simple conditions for the eDT parameters that enter the binary combination
[280, 278, 281, 433] or go to the Lie algebra level [181, 361]. Combinations of
the twofold DTs were used to obtain multisolitons and other solutions of the
three-level Maxwell–Bloch equations [449]. A straightforward generalization
can be obtained by replacing matrix elements by appropriate matrices. The
most promising applications of the technique are related to operator rings.
Such an example was developed in [265].

3.5 Schlesinger transformation as a special case
of elementary Darboux transformation. Chains
and closures

We begin with recalling the definition of the eDT and its combinations. The
form we choose [265] combines results of the n×n matrix representation with
a somewhat abstract extension of it based on the existence of idempotents and
the respective division ring (skew field) B in the associative differential ring
A over the field K. Let D be a differentiation map on A and two idempotents
(projectors) p, q = e−p, e = id ∈ A be fixed by p = p2, p q = 0. The projectors
are rather general and all we should know about them is that both do not
depend on the parameters of the theory and commute with D.

Consider the ZS problem Luψ = (D+λJ−u)ψ = 0, where λ ∈ K,u, ψ ∈ A,
connected with the element J = a1p+ a2q, a1− a2 = a �= 0. The general eDT
ψ → ψ[1] = Eψ = (λp− σ)ψ is defined by the element σ ∈ A via intertwining
relation ELu = Lu[1]E. Analyzing the operator equations that follow from the
intertwining relation, one arrives at the important consequence qσq = c. It
can be shown that within this choice of the eDT (another eDT appears if one
interchanges p → q in the definition of the operator E) the element qσq = c
commutes with D; therefore, c is a constant. Denote

puq = upq = vn , qup = uqp = wn . (3.55)

Here the index n marks the iteration number. We will consider equations
(3.55) as determining the chain equations. This chain is infinite; therefore,
the choice of origin (n = 0) is arbitrary. Suppose there is a solution of the ZS
problem φ ∈ Ap = pAp⊕ qAp, p φ = φp ∈ B, that corresponds to the spectral
parameter μ; suppose next that ∃φ−1

p and the gauge c = qeq are adopted.
The transforms

vn+1 = acξn + μnvn + vnξnvn −Dvn , wn+1 = aξn , (3.56)

and the additional “Miura” equation

Dξn = −ξnvnξn − μnaξn + wn (3.57)
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form a closed set of connections defining the chain. It is enough to substi-
tute the eDT connections (3.56) into the Miura links (3.57) and express the
potentials vn via ξ. We obtain the potentials

vn = aξ−1
n ξn−1ξ

−1
n − aξ−1

n μn − ξ−1
n (Dξn)ξ−1

n , wn = aξn−1 , (3.58)

which yield the chain equation

aξ−1
n+1ξnξ

−1
n+1 − aξ−1

n+1μn+1 − ξ−1
n+1(Dξn+1)ξ−1

n+1

= acξn + μn[aξ−1
n ξn−1ξ

−1
n − aξ−1

n μn − ξ−1
n (Dξn)ξ−1

n ]
+ [aξ−1

n ξn−1ξ
−1
n − aξ−1

n μn − ξ−1
n (Dξn)ξ−1

n ]ξn
× [aξ−1

n ξn−1ξ
−1
n − aξ−1

n μn − ξ−1
n (Dξn)ξ−1

n ]
− D[aξ−1

n ξn−1ξ
−1
n − aξ−1

n μn − ξ−1
n (Dξn)ξ−1

n ] . (3.59)

Remark 3.16. A straightforward consequence of (3.58) and (3.59) leads to
a definite link between elements of the potential u. The link permits only
such constraints that are compatible with the definitions of ξ and φ. The
use of the second eDT (p ↔ q) immediately allows us to put constraints
with the whole powerful set of algebraic tools [181] based on automorphisms
of the underlying Lie algebra [331] with grading [361]. It is obvious that
the scope of the whole theory is much broader than what we can present
here.

The Schlesinger transformation for nonzero elements of the potential is
defined by the limiting case qσq = 0; this condition is degenerate for the
initial system of intertwining relations. Therefore one should solve the seed
equations from the very beginning [278, 289]. The advantage of employing the
Schlesinger transformation consists in the fact that in this case there is no
need to use the solution of the auxiliary ZS problem, since the transformed
potential ue is expressed via the seed potential u only. Finally, the elements
of u are transformed by the Schlesinger transformation as

uspq = (D2upq −Dupqu
−1
pq Dupq − upquqpupq)(ac0)−1 , usqp = −ac0u−1

pq .
(3.60)

Suppose the inverse element u−1
pq exists. The 2×2 matrix ZS problem enters the

KdV and nonlinear Schrödinger (NLS) theories together with the appropriate
choice of the second (covariant) Lax operator. As an illustration denote u12 =
v, u21 = w. After the nth iteration we arrive at the chain system

vn+1 = [v′′n + (v′n)2/vn − v2
nwn]/ac0 , wn+1 = ac0v

−1
n . (3.61)

Reductions for the KdV and NLS theories are given by wn = 1 and vn = wn,
respectively. The simplest heredity condition vn+1 = wn+1 closes the chain
for the NLS case:

v′′ − (v′)2/v = v3 − ac0/v .
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This equation is integrated by the substitution v′ = F (v). In terms of s = F 2

we have
vsv/2− s = v4 − a2c20 .

Integrating, we arrive at

v′ =
√

v4 + a2c20 + c1v2 ,

where c0 and c1 are constants. The resulting differential equation is integrated
in elliptic functions. The study of a compatible Lax pair, e.g., for the NLS
equation, demands a “time” variable, additional to x. Let the “time” depen-
dence be defined via the second Lax equation of the same (ZS) form as the
spectral equation. Then one arrives at the t-chain equation of the form (3.61)
but with different constants. Combining both chains gives equations of a hy-
drodynamic type.

In the richer case of three projectors p, q, and s, we redefine J as J = a1p+
a2q + a3s. General equations for the eDT with the same form of intertwining
relations lead again to the constant elements qσq = c, sσs = d. In the generic
case of nonzero c and d the eDT transforms are determined in [269].

Consider now the Schlesinger transformations with restrictions to the po-
tential given by σqq = c �= 0, but σss = 0. The covariance theorem has the
following formulation:

Theorem 3.17. Let σss = 0 and assume u−1
ps and σ−1

sp exist and the condition
[c, σsp] = 0 holds. Then the equations for σ can be solved directly and the
transform of the potential of the ZS operator Lu u→ us is determined by

uspq = (Dupq/a + σppupq − upsusq/b)c−1 ,

usqp = −abcuqpu−1
ps /(a− b) , ussp = −bσsp ,

usps = −[(bσppupq−upsusq−bDupq/a)uqsu−1
ps +upquqp/a+upsusp/b−Dσpp]/σsp ,

ussq = (1− a/b)σspupqc−1 , usqs = [(1− a/b)σqpups + cuqs]d−1 ,

where

σpp = (Dups + upquqs)u−1
ps /b , σqp = bcuqsu

−1
ps /(a− b) ,

and σsp is found from the equation

σ−1
sp Dσsp = −

(
Dups +

b

a
uqs

)
u−1
ps +

(
1− a

b

)
c−1upq .

In general, where there are more than two projectors, we have the additional
possibility of nonzero σss.

The chain equations with the new possibilities to further construct solu-
tions may be derived by the algorithm that is described at the beginning of
this section and leads to the analog of (3.59). The simplest applications con-
cern 3× 3 matrix problems with known reductions to N -wave, KdV–MKdV,
Hirota–Satsuma, and Oikawa–Yajima equations [211, 269, 278, 458].
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3.6 Twofold Darboux transformation
and Bianchi–Lie formula

We have introduced the twofold transformation as a sequence of two elemen-
tary ones in conjugate spaces. The first transformation is performed by the
inverse operator to E with the spectral parameter μ and the corresponding
solution of the direct problem ϕ. The second map is generated by the resulting
functions χe = E−1χ expressed in the same way but from a linearly indepen-
dent seed solution χ of the conjugate ZS equation with the parameter ν. The
final form of the transformation is written as [269]

ψec = ψ + βϕ(χ, ϕ)−1
p χψ , β =

ν − μ

λ− ν
. (3.62)

The analog of a scalar product is introduced by

(χ, ϕ)p = pχϕp ∈ App = pAp

and the inverse exists in App. It is easy to check that the transform of the
potential may be rewritten in terms of the idempotent P = φ(χ, ϕ)−1

p χ as

Uec = U + (ν − μ)[J, P ] ,

for example,
uecpq = upq + aϕp(χ, ϕ)−1

p χq(ν − μ) .

Remember that J = a1p + a2q, a1 − a2 = a �= 0. An analog of the position
vector at the ring under consideration can be defined as before. Let us denote
γ(λ) = (λ−μ)(λ− ν)−1 and s = ψ−1Pψ. Then the solutions obtained by the
twofold transformations (3.62) yield

r1 = r +
∂γ(λ)
∂λ

γ−1s .

The element s is determined by the seed solution only. This formula generalizes
the Bianchi–Lie transformation for the non-Abelian entries. The existence of
the inverse element ψ−1 is supposed and the identity (1 + βP )−1 = 1− βP/
(β + 1) is taken into account.

As for the complete set of projectors, the form
∑
i piABpi = (A,B) =

(B,A) is symmetric; therefore, it may be regarded as an analog of the Killing–
Cartan metrics. The length of the vector s is then unity. The transform may
be generalized further for the case of the iterated twofold DTs as

r[n] = r +
n∑

i

γi,λs[i]/γi.

We conclude with the remark that dealing with a few projectors [269] may
produce various versions of the Schlesinger transformation whose non-Abelian
version seems interesting from the point of view of quantum problems.
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3.7 N -wave equations: example

The general dressing by the DT allows us to solve non-Abelian three-wave
systems when a linear term is added. Among these systems there is the matrix
equation that goes after reduction to the classical N -wave systems with linear
terms. The linear terms can account for such an important phenomenon as
asynchronism. In this case the so-called inclined solitons occur, with a loss of
symmetry between the leading and back wavefronts [269, 272], see the next
subsection for pictures. The classical (Abelian) three-wave system is discussed
in Sect. 8.5.

3.7.1 Twofold DT of N-wave equations with linear term

Let us consider the set of n idempotents pi. The elements ai, bk ∈ K define
combinations

M =
∑

i

aipi , N =
∑

i

bipi .

If elements of the ring are functions of parameters t and y, for arbitrary Ψ ∈ A
the internal derivative adxΨ = [x, Ψ ] may define the first-order problem via
the combined differential operators Dt,y. The general idea of the twofold DT
as a symmetry of a nonlinear system is demonstrated by two linear equations
called the Lax pair (3.63) for an auxiliary matrix function Φ(t, y),

DtΦ = −λMΦ +
[
H,M

]
Φ , (3.63)

DyΦ = −λNΦ +
[
H,N

]
Φ ,

with the following definitions of matrices (n =3):

M = diag{a1, a2, a3}, N = diag{b1, b2, b3},

R = diag{r1, r2, r3}, S = diag{s1, s2, s3}..
Matrix elements of the off-diagonal matrix H are identified as being propor-
tional to the components of the wavetrain envelopes. Operators Dt and Dy

are defined as

DtΦ = Φt + R
[
x, Φ

]
, (3.64)

DyΦ = Φy + S
[
z, Φ

]
(3.65)

with the constant diagonal matrices x and z. The compatibility condition for
the Lax pair (3.63) is the following (matrix) equation:

[
Ht, N

]− [
Hy,M

]
=

[[
H,M

]
,
[
H,N

]]− [
x,

[
RH,N

]]
+

[
z,

[
SH,M

]]
,

(3.66)
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which represents the general N -wave system. If, for N = 3, we use the (unre-
duced) system of equations (3.66), we get six equations. Assuming that matrix
H is Hermitian, the desired reduction to three equations is obtained. Finally,

(b1 − b2)H21,t + (a2 − a1)H21,y = [a3(b1 − b2) + a1(b2 − b3)

+a2(b3 − b1)]H∗
32H31 + [r2(b1 − b2)(x1 − x2)− s2(a1 − a2)(z1 − z2)]H21 ,

(b1−b3)H31,t+(a3−a1)H31,y = [a3(b2−b1)+a2(b1−b3)+a1(b3−b2)]H21H32

+[r3(b1 − b3)(x1 − x3)− s3(a1 − a3)(z1 − z3)]H31 , (3.67)

(b2 − b3)H32,t + (−a2 + a3)H32,y = [a3(b1 − b2) + a1(b2 − b3)

+a2(−b1 + b3)]H∗
21H31 + [r3(b2 − b3)(x2 − x3)− s3(a2 − a3)(z2 − z3)]H32 .

Equations (3.67) have the form of the three-wave system with asynchronism.

3.7.2 Inclined soliton by twofold DT dressing
of the “zero seed solution”

Plugging (3.64) and (3.65) into (3.63), we can write the Lax pair for (3.67):

Φt + R[x, Φ] = −λMΦ + [H,M ]Φ , (3.68)

Φy + S[z, Φ] = −λNΦ + [H,N ]Φ .

Taking into account the explicit forms of matrices R, S, x, and z, we obtain

φij,t + ri(xi − xj)φij = −λaiφij + (aj − ai)Hijφjk , (3.69)

φij,y + si(zi − zj)φij = −λbiφij + (bj − bi)Hijφjk ,

where φij are matrix elements of Φ. The general formula for the twofold DT
(the dressing formula) takes the form

H [1] = H + (μ + μ∗)χ , (3.70)

where χij = φ∗
jφi/(φ, φ) is built from the columns φj of the matrix Φ and

(φ, φ) is a scalar product. With H = 0 as a trivial solution of the three-wave
system, i.e., “zero seed solution,” the “dressed” solution of (3.69) is given by

φij = Dij exp [−λ(ait + biy)− ri(xi − xj)t− si(zi − zj)y] , (3.71)

where Dij are constants.
We get a soliton solution using the first column of Φ:

φi1 = Di1 exp [−λ(ait + biy)− ri(xi − x1)t− si(zi − z1)y] . (3.72)
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Fig. 3.1. Generation of the third wave with account for asynchronism for the time
t = 0, 1, 2, 3 (in dimensionless units)

When we have a solution of the twofold DT in the form of

Hij = (λ + λ∗)
φ∗
jφi

(φ, φ)
,

we can numerically analyze the three-wave interaction. Because the matrix H
is Hermitian it is enough to consider only the coefficients H21, H31, and H32.
Taking the parameters as λ = 1, a1 = −1, a2 = 1, a3 = 0, b1 = 1, b2 = −1,
b3 = 0, r1 = 0.2, r2 = −0.5, r3 = 0.6, s1 = 1, s2 = 0.5, s3 = 0, x1 = 0.45,
x2 = 0.1, x3 = 0.6, z1 = −0.54, z2 = 1, and z3 = 0.6, we get a simulation
of the three-wave interaction in one dimension by the explicit formula (3.72)
(Fig. 3.1). Here y stands for the propagation direction.

It is worth noting that the most important parameter to determine
the properties of the solution is λ, the spectral parameter. Physically, λ has
the meaning of an amplitude. Much smaller contributions are provided by the
other coefficients (ai, bi, ri, zi, xi, and si). Let us stress once again that the
interaction without asynchronism produces only symmetric envelope pulses.
For more details see [272].

3.7.3 Application of classical DT to three-wave system

Let us compare the above results with those that can be obtained by the
method in the previous chapter. Consider an n×n matrix set {A} and choose
n projectors p2

i = pi ∈ {A}, pipk = 0, i, k = 1, 2, . . . , n. The simplest example
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of such a matrix is a diagonal one with the only ith nonzero element that is
equal to 1. A choice of numbers ai, bk defines matrices

M =
∑

i

aipi , N =
∑

i

bipi .

The representation of this form is convenient for generalizations to the op-
erator case [267]. The nonlinear equations for interacting waves appear as a
compatibility condition if we start from the pair of ZS equations of the form

Ψt = MDΨ + [H,M ]Ψ ,

Ψy = NDΨ + [H,N ]Ψ , (3.73)

where the operator D can play the role of abstract differentiation, realized here
as the commutator with some constant matrix x: DΨ = [x, Ψ ]. In analogy
with [354] we represent the potentials of the ZS equations as commutators
[H,M ] and [H,N ]. Consider first the standard DT [324]. The existence of the
classical DT may restrict the choice of the matrices x, M , and N . For elements
Hik = piHpk and the obvious choice x =

∑
i xipi, we obtain the system

(ak − ai)Hik,y − (bk − bi)Hik,t (3.74)

= [(as−ai)(bk−bs)−(bs−bi)(ak−as)]HisHsk−(Hikxi−xkHik)(biak−aibk) ,

which differs from (3.67) in the last (linear) terms for non-Abelian matrix
elements. The solutions of the system may be constructed by means of the
following proposition [272]:

Proposition 3.18. The system (3.74) is integrable by means of the matrix
DT

Ψ [1] = DΨ − (DΦ)Φ−1Ψ ,

if Φ and Ψ are solutions of (3.73), when the equality MN = NM holds.
The DT of the matrix H in combination with some gauge transformation is
written as

H [1] = H + (DΦ)Φ−1 + A , (3.75)

where A is a matrix that commutes with both matrices M and N . This matrix
is the gauge one guaranteeing Hii[1] = 0. The possible choice of A for diagonal
matrices M and N consists of

A = −diag(DΦ)Φ−1 .

Proof. The standard transforms for the potentials [H,M ] and [H,N ] are
[H,M ] + [(DΦ)Φ−1,M ] and [H,N ] + [(DΦ)Φ−1, N ], with the obvious pos-
sibility to add A to H .
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If one treats the simplest three-wave case, the compatibility condition
(3.74) is written with more detail. For example, the first equation is

H12,t − v12H12,y = n12H13H32 − k12H12

and similar expressions exist for the others, with group velocity v12 = (b2−b1)/
(a2−a1) and nonlinear constant n12 = [(a3−a1)(b2−b3)/(a2−a1)−(b3−b1)].
The coefficient k12 = (x2−x1)(b1a2−a1b2)/(a2−a1) either defines attenuation
or can be identified with the asynchronism parameter Δk = k1 − k2 − k3

[266, 358]. The last term seems to be interesting for N -wave systems even in a
matrix case. For example, such a linear term may account for the stimulated
Brillouin scattering/stimulated Raman scattering effects and phase differences
of waves that appear from the wave asynchronism. Some damping may be
accounted for as well.

The physical systems mentioned appear if the reduction constraint is cho-
sen as H+ = H . To preserve the reduction constraint during the process
of iterations, we should provide the existence of the hereditary property of
iterations. In other words, Φ should be chosen to satisfy the condition

x− x+ = ΦxΦ−1 − (Φ+)−1x+Φ+ . (3.76)

For the unitary matrix Φ+Φ = I, the condition (3.76) simplifies:

x− x+ = Φ(x− x+)Φ−1 , (3.77)

which is satisfied when the matrix x is Hermitian. If, further, DΦ = ΦΛ, then

H [1] = H + ΦΛΦ−1 + A . (3.78)

Another choice of the matrix Φ is possible via stationary solutions of the basic
Lax equations with a matrix spectral parameter Λ = diag{λ1, . . . , λn} so that
Φt = ΦΛ.

The one-step transformation generates solutions that are illustrated by
Figs. 3.2 and 3.3, which give Hik(t) for different values of the parameters xi.

3.8 Infinitesimal transforms for iterated Darboux
transformations

The linear dependence on the spectral parameter difference δ = μ − ν [see
(3.53)] offers an interesting possibility to generate new hierarchies of a com-
bined nonlinear system of potentials and eigenfunctions. The corresponding
equations are obtained by the limiting procedure δ → 0, e.g.,

uδ = [J, P0] , Ψδ =
P0Ψ

λ− μ
, ζδ =

ζP0

κ− μ
, (3.79)
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Fig. 3.2. The “inclined” solitons of a three-wave system. Plots are given for the
components H12, H23, and H31 as functions of t at y = 0. The parameters of the
equations are a1 = 1, a2 = −1, b1 = 1, b2 = −1, b3 = 0, and a3 = 0. The bottom
plot shows the component H12 with different (real) values of the parameter k12.
The symmetric one has k12 = 0. The asymmetric one corresponds to x2 = 0.5 and
x3 = 0.6

where P0 = limδ→0 P and ζ and κ are solution and spectral parameters of the
conjugate equation. This system can be studied within the DT technique
as the formalism contains its solutions. It results in some hierarchy after
the expansion of P0 in the Laurent series with respect to free parameters λ
and κ [269].

-4
-2

0

2

4
-4

-2

0

2

4

-0.2

0

0.2

Fig. 3.3. The dependence of the perturbed H12 component on both variables
(ty-plane)
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Following the results of [267, 434], we take the transform of solutions of
the ZS problem with intermediate function ϕ and conjugate function χ that
both correspond now to μ, and consider the difference δ = ν − μ as a small
parameter. The expression (3.51) takes the form

Ψ [1] = Ψ + δPΨ/(λ− μ) . (3.80)

From (3.53) with the choice of ci = pi, the infinitesimal transformation of the
potential element follows:

u[1] = u + δ [ J , P0 ] . (3.81)

If the nonzero scalar product (ϕ, χ)p can be normalized in App, we may
simplify the projector as P (0) = ϕpχ, with ϕ and χ being solutions of the
direct and conjugate (3.44) problems with the same spectral parameter μ,
such that (χ, ϕ)p = p.

Theorem 3.19. Let the solutions ϕ(i) and χ(i) of the direct and conjugate
problems corresponding to the spectral parameters μi, νi, and (ϕ(i), χ(i))−1

p

exist. For the iterated twofold DT with the parameters νi = μi + δi we have

U [N ] = U +

[
J,

N∑

i=1

δiϕ
(i)pχ(i)

]
,

if
δi = O (δ1) , i = 1, . . . , N , |δ1| << |μk| , |λ− μk| .

The proof can be performed by induction using (3.79) and (3.81).
The dependence of the solution on an arbitrary function gives the possibil-

ity to use it for the construction of general solutions of initial-boundary prob-
lems, looking for a sequence of infinitesimal symmetries. One can also study
the stability of soliton solutions of the corresponding nonlinear equations.

The main observation that allows us to develop the technique, is that the
binary combination of the nonzero eDTs (3.45)–(3.47) can generate a new
potential that coincides with the seed one. Namely, this transform is u[1] = u
if ν = μ and (χ, φ) �= 0. This means that the twofold DTs determine a Lie
group and a corresponding Lie algebra, according to the linear appearance of
the parameter μ− ν in the one-parametrical subgroups. All iterated solutions
of the ZS problem determine independent elements of the Lie algebra.

All items in (3.79) have poles of the first order. Hence, going from sums
to integrals, we obtain the following representations of the linear part of the
iterated potential:

u(1) =
[
J ,

∫

S

ψ(λ)pφ(λ)dα(λ)
]
.
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Here S and dα are the path of integration in the α-plane and the measure,
respectively.

We mentioned before the possibility to analyze the stability of soliton
solutions. Going down to the usual matrix case for illustration, e.g., to the
classic three-wave problem (3.67) with the asynchronism, let us consider the
second iteration formula for the perturbed soliton. The solutions of the linear
system (3.69) (over zero seed potential) are given by (3.51) and (3.52) from
Sect. 3.4. The perturbation of the soliton solution H[1] [see (3.70) for H = 0] is
given by −(2Reλ)P and contains the projector Pij = φ∗

jφi/(φ, φ) multiplied
by δ = 2Reλ, which can be chosen as a small parameter.. The analysis shows
the stability of the soliton solution in this class of perturbations (Fig. 3.4).

3.9 Darboux integration of iρ̇ = [H, f(ρ)]

The Darboux-type method of solving a class of nonlinear von Neumann equa-
tions iρ̇ = [H, f(ρ)] is exposed below following [437]. The explicit construc-
tion demonstrates that the presence of self-scattering solutions constitutes a
generic property of the nonlinearities considered. A solution for an infinite-
dimensional case is presented as well.

3.9.1 General remarks

The equation
iẊ = [Y, f(X)] (3.82)

plays an important role in different branches of quantum and classical physics.
First, if f(x) (x ∈ R) satisfies f(0) = 0, f(1) = 1 and X = X† = X2, then
f(X) = X and the equation is simply the linear von Neumann equation. In
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addition, if X = |ψ〉〈ψ| and Y = H is a Hamiltonian, (3.82) with nonlinear
functions f(X) obeying the above properties is physically equivalent to the
Schrödinger equation

i|ψ̇〉 = H |ψ〉 . (3.83)

Second, equation (3.82) can be written for a large class of nonlinearities
in the form of the Heisenberg equation of motion

iẊ = [X,h(X)] (3.84)

with Hamiltonian h(X). [Assuming, to take an example, f(X) = −Xn, we
obtain h(X) = Xn−1Y +Xn−2Y X+ ...+Y Xn−1]. The equations of this form
are often used in nonlinear quantum optics.

Third, it is known that the linear von Neumann equation can be associated
with a Lie–Poisson Hamiltonian system. In the case of the usual “extensive”
statistics, the Hamiltonian function is the average energy H1 = tr(Hρ). Yet,
there are statistical problems that are naturally described by nonextensive
statistics in terms of the Tsallis q �= 1 entropies and q-averaged energies
Hq = tr(Hρq)/trρq [426, 427]. One of the remarkable properties of q-
statistics is the q-independence of standard geometric structures associated
with equilibrium thermodynamics. Extending this observation from equilibria
to nonequilibria, one finds that Hq is a Hamiltonian function for Lie–Poisson
dynamics [99, 347]

iρ̇ = [H, f(ρ)], (3.85)

where f(ρ) = Cq(ρ)ρq and Cq(ρ) is a Casimir function satisfying
C1(ρ) = 1. The von Neumann equation (3.85) with arbitrary nonlinearity
is Lie–Poissonian with the Hamiltonian function Hf = tr[Hf(ρ)

)
].

Fourth, the equation
iẊ = [Y,X2] (3.86)

appears in several contexts. The most familiar physical example
(with Ykl = δkl/Il, Xkl = iεkmlJm) is the Euler equation of a freely rotating
rigid body. Less known and often more abstract versions of this equation are
related to the Lie–Poisson equations occurring in fluid dynamics [32, 309],
the Nahm equations in non-Abelian gauge theories [212], and the N -wave
equations for electromagnetic waves in nonlinear media [471, 472].

Quite recently the equation

iẊ = [Y,X3] (3.87)

was discovered in connection with symmetries of (3.86) [420].
Further, general equations of the form (3.85) appeared in the context of

nonlinear Nambu-type theories [95]. Nonlinear Lie–Poisson density matrix
equations were applied in quantum mechanics with mean-field backgrounds
[74, 72, 73] and nonlinear quantum mechanics [75, 76, 222]. Solutions of these
equations were used as models of non-completely-positive nonlinear maps
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which nevertheless satisfy physical conditions widely believed to be equiv-
alent to complete positivity [97]. Finally, the Lie–Poisson density matrix tech-
niques for extending the nonlinear evolutions of subsystems to entangled states
proved to have applications in quantum information theory [15].

Although the literature devoted to the Euler equation is quite extensive
[18, 32, 309, 371], analytical methods were only recently applied to its density
matrix analog (Euler–von Neumann equation) [96, 98, 254, 276]. The con-
straints imposed on density matrices (ρ† = ρ, ρ ≥ 0, trρ = 1) and Hamil-
tonians (H† = H , H ≥ 0, unboundedness) require techniques which are
not based on standard integration via quadratures and the similar, since the
systems in question are generically infinite-dimensional. The technique used
in [96, 98, 254, 276] is an appropriate modification of the dressing method
[87, 88, 354] or, rather, of its twofold elementary DT version [267, 434].

The Darboux-type method of integration of the Euler–von Neumann
equation

iρ̇ = [H, ρ2] (3.88)

introduced in [276] led to discovery of the so-called self-scattering solutions
[96, 98]. The process of self-scattering continuously interpolates between two
asymptotically linear evolutions. Equation (3.88) possesses a class of solutions
of the form ρ(t) = e−iHtρ(0)e−iHt which occur whenever [H, f(ρ)] = [H, ρ].
We regard such solutions as “trivial” solutions of (3.88) constructed by means
of the dressing method.

A problem remained open in all the previous papers was how to obtain so-
lutions of (3.85) with other values of the Tsallis parameter q. In fact, the case
q = 2 was not very interesting from the point of view of nonextensive statis-
tics applications, since the parameters involved in analysis of actual physical
situations were either close to 1 or 0 < q < 1. The case q = 1/2 turned out
to be of special interest owing to its significance in plasma physics. Next we
present an extension of the Darboux technique to a wide class of nonlinear
von Neumann equations.

3.9.2 Lax pair and Darboux covariance

We begin with the overdetermined linear system (Lax pair)

zλ〈ψ| = 〈ψ|(ρ− λH) , (3.89)

−i〈ψ̇| = 1
λ
〈ψ|A . (3.90)

Here A, ρ, and H are operators acting on a “bra” vector 〈ψ| associated with
an element of a Hilbert space; the dot denotes the time derivative d/dt, and
complex numbers λ and zλ are independent of t. The operators ρ and H will
typically play the roles of density matrices and Hamiltonians, respectively,
but one can also think of them as just some operators without any particular
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quantum-mechanical connotations. The system (3.89) and (3.90) is compati-
ble, if the equations

iρ̇ = [H,A] , (3.91)

Ḣ = 0 , [A, ρ] = 0
are fulfilled. Equation (3.91) reduces to (3.85) if A = f(ρ). A generalization
of the von Neumann equation that includes a class of “non-Abelian nonlin-
earities” (i.e., [ρ, f(ρ)] �= 0) was discussed in the previous chapter; see also
[89, 436].

For further consideration we introduce two additional Lax pairs

zν〈χ| = 〈χ|(ρ− νH) , (3.92)

−i〈χ̇| = 1
ν
〈χ|A , (3.93)

zμ|ϕ〉 = (ρ− μH)|ϕ〉 , (3.94)

i|ϕ̇〉 =
1
μ
A|ϕ〉 . (3.95)

The method of solving (3.85) is based on the following theorem establishing
the Darboux covariance of the Lax pair (3.89) and (3.90).

Theorem 3.20. Assume 〈ψ|, 〈χ|, and |ϕ〉 are solutions of (3.89), (3.90), and
(3.92)–(3.95) and 〈ψ1|, ρ1, A1 are defined by

〈ψ1| = 〈ψ|
(
1 +

ν − μ

μ− λ
P
)
, (3.96)

ρ1 =
(
1 +

μ− ν

ν
P
)
ρ
(
1 +

ν − μ

μ
P
)
, (3.97)

A1 =
(
1 +

μ− ν

ν
P
)
A
(
1 +

ν − μ

μ
P
)
, (3.98)

P =
|ϕ〉〈χ|
〈χ|ϕ〉 . (3.99)

Then

zλ〈ψ1| = 〈ψ1|(ρ1 − λH) , (3.100)

−i〈ψ̇1| = 1
λ
〈ψ1|A1 . (3.101)

Proof. Equation (3.100) is checked immediately. To prove (3.101), one first
notices that the operator P given by (3.99) satisfies the nonlinear equation

iṖ =
1
μ

(1 − P )AP − 1
ν
PA(1 − P ) (3.102)

and (3.101) follows from a straightforward calculation.

Lemma 3.21. If A = f(ρ), then

iρ̇1 = [H, f(ρ1)] . (3.103)
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Proof. The statement is a consequence of equations (3.97) and (3.102), if one
takes into account

f(ρ1) = A1 =
(
1 +

μ− ν

ν
P
)
f(ρ)

(
1 +

ν − μ

μ
P
)
. (3.104)

Remark 3.22. Having a solution ρ, we can generate a new solution ρ1 of
the nonlinear von Neumann equation (3.85). The procedure can be fur-
ther iterated, ρ → ρ1 → ρ2 → . . ., in direct analogy to the Darboux
method of generating multisoliton solutions [324] or supersymmetric quantum
mechanics [93].

Remark 3.23. If ρ is a density matrix and μ = ν̄, one can put |ϕ〉 = |χ〉 = 〈χ|†.
In this case ρ1 is also a density matrix and the spectra of ρ and ρ1 are identical.

3.9.3 Self-scattering solutions

We will now show that self-scattering solutions obtained in [276] for (3.88) are
a generic property of the nonlinear von Neumann equations considered here.

We begin with a seed solution obeying the condition

f(ρ)− aρ = Δa ,

where [Δa, H ] = 0 and Δa is not a multiple of the identity. The solution
satisfies

iρ̇ = [H, f(ρ)] = a[H, ρ]

and
ρ(t) = e−iaHtρ(0)eiaHt .

Taking the Lax pairs with μ = ν̄ and repeating the construction from [96, 98,
276], we get the self-scattering solution

ρ1(t) = e−iaHt
(
ρ(0) + (ν̄ − ν)Fa(t)−1e−iΔat/ν̄

= ×[|χ(0)〉〈χ(0)|, H ]eiΔat/ν
)
eiaHt, (3.105)

where
Fa(t) = 〈χ(0)| exp

(
i
ν̄ − ν

|ν|2 Δat
)
|χ(0)〉 (3.106)

and 〈χ(0)| is an initial condition for the solution of the Lax pair equations.
As an example, let us consider the harmonic oscillator Hamiltonian H =

ω
∑∞

n=0 n|n〉〈n| and
f(ρ) = ρq − 2ρq−1 (3.107)

with q ∈ R. To construct the operator Δa we first note that for any q the
equation

xq − 2xq−1 − x + 2 = (xq−1 − 1)(x− 2) = 0 (3.108)
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has two positive solutions, x = 1 and x = 2, which will be used in the con-
struction of an appropriate seed ρ. Putting a = 1, we define

Δ1 = f(ρ)− ρ = ρq − 2ρq−1 − ρ . (3.109)

The next task is to choose a seed ρ such that [ρ,H ] �= 0 and [Δ1, H ] = 0.
We do this as follows. Take any three eigenstates of H corresponding to three
equally spaced eigenvalues. For example, let |0〉, |1〉, |2〉 be the three lowest
energy eigenstates of H . Taking

ρ(0) =
3
2

(
|0〉〈0|+ |2〉〈2|

)
= +

7
4
|1〉〈1| = −1

2

(
|2〉〈0|+ |0〉〈2|

)
, (3.110)

we find [ρ(0), H ] �= 0 and

Δ1 = −2
(
|0〉〈0|+ |2〉〈2|

)
=

(
− 2 + 1

4

[
1− (

4
7

)1−q])|1〉〈1| .

Take ν = −i
√

3/(4ω). The left eigenvalues of ρ − νH are 5/4 − i
√

3/4 and
7/4 − i

√
3/4, the latter being twice degenerated. The initial condition for

the solution of the Lax pair is chosen to be a linear combination of the two
orthonormal eigenvectors corresponding to 7/4− i

√
3/4:

〈χ(0)| =
√

3− i
4
〈0|+ 1√

2
〈1| −

√
3 + i
4
〈2| . (3.111)

As a rule, the self-scattering solutions can occur only for 〈χ(0)| which is not
an eigenvector of Δa. Here this means that q �= 1, which is consistent with
the fact that for q = 1 the von Neumann equation is linear.

We are now in position to explicitly write the self-scattering solution for
any real q. We start with the seed solution

ρ(t) = e−iHtρ(0)eiHt (3.112)

and, combining (3.105), (3.110), and (3.111), obtain

ρ1(t) = e−iHtρint(t)eiHt, (3.113)

where

ρint(t) =
2∑

m,n=0

r(t)mn|m〉〈n| ,

⎛

⎝
r00 r01 r02
r10 r11 r12
r20 r21 r22

⎞

⎠ =

⎛

⎝
3/2 −ξ(t) ζ(t)
−ξ̄(t) 7/4 ξ(t)
ζ̄(t) ξ̄(t) 3/2

⎞

⎠ ,

ξ(t) =
(−3i +

√
3)eωqt

4
√

2
(
1 + e2ωqt

) , ζ(t) =
1− i
√

3− 2e2ωqt

4
(
1 + e2ωqt

) ,
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ωq = [(4/7)1−q − 1]ω/
√

3, ωq ≥ 0 for q ≥ 1, ωq ≤ 0 for q ≤ 1. The self-
scattering asymptotics are

ξq 	=1(±∞) = 0 ,

ζq>1(+∞) = ζq<1(−∞) = −1/2 ,

ζq>1(−∞) = ζq<1(+∞) = (1− i
√

3)/4 .

Let us note that the seed solution ρ(t) we started with reappears in the asymp-
totic states

ρ1 → ρ , for q > 1, t→ +∞ ,

ρ1 → ρ , for q < 1, t→ −∞ .

It is interesting that, somewhat counterintuitively, the equations with very
different q may lead to evolutions which are practically indistinguishable. In-
deed, for q → +∞ we get ωq → ∞ and, therefore, the transition around
t = 0 between the asymptotic linear evolutions takes less time the greater the
value of q. By the same method but with a different choice of 〈χ(0)| one can
generate solutions whose self-scattering takes place in the neighborhood of an
arbitrarily chosen t = t0 (for details see the discussion of the case f(ρ) = ρ2

given in [96]).
The time scales involved in self-scattering are best illustrated by the aver-

age position of the harmonic oscillator as a function of time. Figure 3.5 shows
the evolution of 〈x〉 = tr(x̂ρ1)/trρ1, x̂ = (a + a†)/

√
2 for different values of

q. In Figs. 3.5 and 3.6 the self-scattering is explicitly seen in the contour plot
of a Harzian [420], a 3D surface representing the self-scattering probability
density in position space as a function of time.

3.9.4 Infinite-dimensional example

It should be stressed that the technique presented in previous sections is not
limited to matrix cases. The example given below is, perhaps, rather artificial
but at least clearly demonstrates the possibility of constructing self-scattering
solutions involving infinite-dimensional subspaces. We are not interested in the
reducible, trivial situation of the dynamics decomposable into a direct sum of
finite-dimensional evolutions.

Let the spectrum of the Hamiltonian H contains a discrete part {En}∞n=1.
One of the technical assumptions we will need1 is concerned with the symmetry
of this part of the spectrum. Namely, assume that the spectral representation
of the Hamiltonian has the form

H =
∞∑

n=1

En
(|n,+〉〈n,+| − |n,−〉〈n,−|) + . . . , (3.114)

1 The assumption is caused by the 2 × 2 block-diagonal form of H . Taking higher-
dimensional blocks (say 3 × 3), we do not need this restriction anymore.
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Fig. 3.5. 〈x〉 for q = 1 (dashed line), q = 21/2 (thin solid line), q = π (dotted
line), and q = −2 (thick solid line). All evolutions for q > 1 (q < 1) have identical
asymptotic states and the same initial condition (all curves intersect at t = 0). The
solution for q = 1 satisfies the same linear equation as the asymptotic states for
q �= 1

where the dots represent the remaining part of the spectrum. Also suppose in
the sequel that f(−x) = f(x). [For the Tsallis-type description one can put
f(x) = xq, where q = 2n/(2n± 1), n ∈ N, and the root is arithmetic].
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Fig. 3.6. Contour plot of a 3D surface representing probability density in position
space 〈x|ρ1|x〉 as a function of time for q = 1/2, ω = 1/2, and −60 < t < 60. A
continuous transition (self-scattering) between two solutions of the linear equation
is clearly visible. To make the plot clearer, we have illustrated the effect by ρ1 which
has nonvanishing matrix elements in the subspace spanned by |2〉, |3〉, and |4〉
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Under the above conditions we can take the seed solution ρ in the form of
an infinite-dimensional matrix

ρ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 0 0 0 0 0 . . .
0 −a1 0 0 0 0 . . .
0 0 a2 0 0 0 . . .
0 0 0 −a2 0 0 . . .
0 0 0 0 a3 0 . . .
0 0 0 0 0 −a3 . . .
...

...
...

...
...

...
. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and the Hamiltonian as

H =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1 c1 0 0 0 0 . . .
c̄1 −b1 0 0 0 0 . . .
0 0 b2 c2 0 0 . . .
0 0 c̄2 −b2 0 0 . . .
0 0 0 0 b3 c3 . . .
0 0 0 0 c̄3 −b3 . . .
...

...
...

...
...

...
. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Any Hamiltonian with eigenvalues Ek = ±√b2k + |ck|2 can be written in this
way in some basis. Let us note that for ck �= 0 one finds [ρ,H ] �= 0 but,
nevertheless, [f(ρ), H ] = 0, which means that the seed solution ρ is stationary.
The next step is to choose the parameters ak and ν in a way guaranteeing that
the projector P given by (3.99) will have nonzero matrix elements between
any two eigenvectors of H . By construction, the same will hold for ρ1 and
the nonlinear evolution will be infinite-dimensional and irreducible, i.e., will
involve the transitions between all the eigenvectors of H spanning the infinite-
dimensional subspace.

Take two real constants α and β satisfying bk = αak and |ck|2 = β2a2
k.

Then the eigenvalues of H are E±
k = ±ak

√
α2 + β2. It turns out that with

the above choice of ρ the condition of infinite dimensionality and irreducibility
can be fulfilled only if zν = 0. In this case ν has to satisfy

(α2 + β2)ν2 − 2αν + 1 = 0 ,

which gives ν± = (α ± iβ)/(α2 + β2).
The eigenvector 〈χ| corresponding to zν = 0 is

〈χ| = (u1w, u2w, . . . , ukw, . . .) , (3.115)
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with w = (1/
√

2) (1, i) and un ∈ C,
∑∞

n=1 |un|2 <∞. We finally obtain

ρ1 =

⎛

⎜⎜⎜⎝

ρ1,11 ρ1,12 ρ1,13 . . .
ρ1,21 ρ1,22 ρ1,23 . . .
ρ1,31 ρ1,32 ρ1,33 . . .

...
...

...
. . .

⎞

⎟⎟⎟⎠ ,

where

ρ1,kl = akδkl

(
1 0
0 −1

)
= +

βFkl
G

[
ak

α− iβ

(
i 1
1 −i

)
+

al
α + iβ

(−i 1
1 i

)]
,

G =
∞∑

n=1

|un|2e2βf(an)t , (3.116)

Fkl = ukūl exp (−iα[f(ak)− f(al)]t + β[f(ak) + f(al)]t) .

3.9.5 Comments

We have shown that:

1. The eigenvalues of ρ1 are the same as those of ρ.
2. The definitions of G and Fkl imply that ρ1 is again a self-scattering so-

lution. To our knowledge, this is the first example of infinite-dimensional
and irreducible nonlinear dynamics one can find in the literature. The
formalism can be applied to genuinely infinite-dimensional systems.

3. Physically nontrivial solutions of the von Neumann equations with a large
class of f -nonlinearities can be obtained by the dressing method.

4. These nonlinear equations possess self-scattering solutions whose behavior
is qualitatively similar for different nonlinearities.

5. The nonlinear effects in the evolution of these solutions are well localized
in time; transiently and asymptotically the solutions correspond to those
of linear von Neumann equations.

6. Even large modifications of nonlinearity can lead to small and very short-
lived modifications of standard linear dynamics for a given initial state.

7. All nonlinearities ∼ ρq which are expected to be related to nonextensive
statistics can be treated within the proposed formalism.

In light of these findings one may wonder whether is it possible to experi-
mentally distinguish between a general f and a linear f . Indeed, the fact that
some experimental data are well fitted by linear dynamics may only mean
that a self-scattering has taken place in the past, or will take place in the
future. If, in addition, the state is pure, then its dynamics is given by the
linear von Neumann (or Schrödinger) equation even in case of a highly non-
linear function f . It follows that not only the results we have reported may
prove useful as a technical tool in many branches of classical and quantum
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physics, but they may also shed new light on the negative results of experi-
ments searching for quantum nonlinearity.

Applications to the dynamics of biological molecules appear in a well-
illustrated article [19] with some more references therein.

3.10 Further development. Definition and application

of compound elementary DT

In this section we combine the structures of the classical and elementary DTs,
preserving the main ideas of the method: the intertwining relation that leads
to incorporation of dressing and the assumption of the existence of a nonzero
kernel of the transformation operator.

3.10.1 Definition of compound elementary DT

The general extensions of the DT definition are described in Sect. 3.1. Here we
study the case when a degenerate operator (idempotent projector) stands for
the operator of a derivative. Such a transformation was introduced in [278];
we will name it the compound eDT. We restrict ourselves to the example of
a differential equation of the second order with 2× 2 matrix coefficients (gen-
eralizations are produced as in Sects. 3.2–3.5). Let us consider the equation

Φxx + FΦx + UΦ = λσ3Φ, (3.117)

where the spectral parameter is λ and the vector Φ = (ϕ1, ϕ2)
T is a solution.

The matrix potentials are U = {uij}, F = {fij , fii = 0}, i = 1, 2 and σ3 is
the Pauli matrix.

Following [200], we perform the compound eDT for the differential equa-
tion (3.117) as

Φ[1] = P Φx + KΦ , (3.118)

where P 2 = P is a projection operator, say, P =
(

1 0
0 0

)
. The matrix

K =
(
k11 k12

k21 1

)
represents a matrix potential function, which is defined by

the corresponding intertwining relation and the auxiliary condition of exis-
tence of a nonzero kernel

∃Ψ : PΨx + KΨ = 0 . (3.119)

On the right-hand side of (3.118) we see a combination of the differentiation
with respect to x as in the classical DT (Chap. 2) and of the projector P
intrinsically related to the eDT, the central notion of this chapter (Sect. 3.1).
The condition (3.119) implements the auxiliary solutions in the transformation
and is necessary when the iterative Crum-like formulas are derived [278].



102 3 From elementary to twofold elementary Darboux transformation

Replacing Φ in (3.117) by Φ[1] and collecting coefficients of similar terms,
we arrive at the intertwining relation for the operators entering (3.117) and its
transform. Taking into account the condition for the transformation (3.119),
we get the first eDT:

ϕ1[1] = ϕ1x + k11 ϕ1 + k12 ϕ2 ,
ϕ2[1] = ϕ2 + k21 ϕ1 ,
ψ1[1] = (∂x + k11)ψ3 + k12 ψ4 ,
ψ2[1] = ψ4 + k21 ψ3 ,
k11 = − (

ψ1x + 1
2f12 ψ2

)
/ψ1 ,

k12 = f12/2 ,
k21 = − ψ2/ψ1 ,

(3.120)

where (ψ1, ψ2)
T and (ψ3, ψ4)

T are two solutions of (3.119) corresponding to
different values of the spectral parameter λ→ μ1,2.

The new potentials are found to have the following expressions:

f12[1] = u12 + f12 k11 ,
f21[1] = −2 k21 ,
u11[1] = u11 − 2k11x − f12[1] k21 − f21 k12 ,
u12[1] = u12x − k12xx + k11 u12 − k12 (u11[1] + u22) ,
u21[1] = f21 − 2k21x − f21[1] k11 ,
u22[1] = u22 − k21 u12 − u21[1] k12 − f21[1] k12x .

(3.121)

The second eDT

Φ[1] = QΦx + K Φ , Q =
(

0 0
0 1

)

is performed after the first one by similar formulas (only the interchange of
indices 1 � 2 is necessary, see again [278]) and is found to have the following
potentials and transformed K:

f21 [2] = u21[1] + f21[1] k22[1] ,
f12[2] = −2 k12[1] ,
u22[2] = u22[1]− 2k22x[1]− f21[2] k12[1]− f12[1] k21[1] ,
u21[2] = u21x[1]− k21xx[1] + k22[1]u21[1]− k21[1] (u22[2] + u11[1]) ,
u12[2] = f12[1]− 2k12x[1]− f12[2] k22[1] ,
u11[2] = u11[1]− k12[1]u21[1]− u12[2] k21[1]− f12[2] k21x[1] ,
k12[1] = − ψ1[1]/ψ2[1] ,
k21[1] = f21[1]/ 2 ,
k22[1] = − (

ψ2x[1] + 1
2f21[1]ψ1[1]

)
/ψ2[1] .

(3.122)

Such a combination of two compound eDTs allows us to account for reductions
similarly to the twofold DT theory.
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3.10.2 Solution of coupled KdV–MKdV system via compound
elementary DTs

The spectral equation (3.117) is considered as the first equation of the Lax
pair. Take the second one as

Φt = Φxxx + BΦx + CΦ , (3.123)

where
B =

3
2
diagU +

3
2
Fx +

3
4
F 2 ,

C =
3
2
Ux − 3

4
diagUx − 3

4
(f12u21 + f21u12)I

+
3
8
(f12,xf21 − f12f21,x)σ3 +

3
4
(u11 − u22)σ3F .

Equation (3.123) is also covariant under transformations (3.120) and (3.121).
The compatibility conditions have the following form

Ft − F3x + B2x − 3U2x + 2Cx + FBx − σ3Bσ3Fx + UB

−σ3Bσ3U + FC − σ3Cσ3F = 0 ,

Ut − U3x + C2x + UC − σ3Cσ3U + FCx − σ3Bσ3Ux = 0 (3.124)

and the transformations (3.120) and (3.121) determine a discrete symmetry
of (3.124). The existence of different kinds of automorphism causes special

constraints [181]. Multiplying (3.117) by σ1 =
(

0 1
1 0

)
to get

σ1Φxx + σ1FΦx + σ1UΦ = λσ1σ3Φ , (3.125)

and accounting for σ1σ3 = −σ3σ1, as well as considering the conditions σ1

F = Fσ1 and σ1U = Uσ1, we obtain

f12 = f21 = f , u11 = u22 = u , u12 = u21 = v . (3.126)

So (3.125) becomes

(σ1Φ)xx + F (σ1Φ)x + U (σ1Φ) = −λσ3 (σ1Φ) .

The above automorphism Φ (λ) ← σ1Φ (−λ) relates two pairs of solutions
(ψ1, ψ2) and (ψ3, ψ4) of (3.117) corresponding to different values of the spec-
tral parameter λ and −λ as

(
ψ3(−λ)
ψ4(−λ)

)
= σ1

(
ψ1(λ)
ψ2(λ)

)
=

(
ψ2(λ)
ψ1(λ)

)
.
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Using this result in the compound eDTs (3.120)–(3.122), one obtains the ex-
pressions for new potentials f , u, and v. Here we study combinations of such
transforms that do not coincide with twofold ones (see the previous chapter),
to produce explicit solutions to the integrable coupled KdV–MKdV system of
the form

ft +
1
2
fxxx +

3
2
(uf)x − 3

4
fxf

2 = 0 , (3.127)

ut − 1
4
uxxx − 3

2
uxu + 3vvx +

3
4
uxf

2 − 3
2
(fxv)x = 0 ,

vt +
1
2
vxxx +

3
2
vxu− 3

4
(vf2)x +

3
4
uxxf +

3
2
uxfx = 0 .

The Lax pair of this system is given in [278]. Equations (3.127) exhibit two
integrable reductions, the Hirota–Satsuma equation [118, 211] and a two-
component KdV–MKdV system [278].

In this section we derive explicit two-parameter solutions of the system
(3.127) that were been specified in [278]. We demonstrate the use of two
arbitrary eDTs and the special choice that holds the heredity of the reduction
to build an infinite set of explicit solutions to the KdV–MKdV system (3.127).
The influence of choosing the parameters on the solution properties will be
demonstrated as well.

In the case of zero seed potential, these new potentials have the following
forms:

f = 2
ψ1(ψ2)x − ψ2(ψ1)x

(ψ1)2 − (ψ2)2
,

u =
(

(ψ2
1)x − (ψ2

2)x
(ψ1)2 − (ψ2)2

)

x

+ 2
(
ψ1(ψ2)x − ψ2(ψ1)x

(ψ1)2 − (ψ2)2

)2

, (3.128)

v = 2
(
ψ1(ψ2)x − ψ2(ψ1)x

(ψ1)2 − (ψ2)2

)

x

+
[(ψ1(ψ2)x − ψ2(ψ1)x]

[
(ψ2

1)x − (ψ2
2)x

]

[(ψ1)2 − (ψ2)2]
2 ,

where ψ1 and ψ2 are the seed solutions of the system (3.117) and (3.123):

ψ1 = c1eax+a
3t+c2e−(ax+a3t), ψ2 = d1eiax+(ia)3t+d2e−[iax+(ia)3t] , (3.129)

and c1, c2, d1, and d2 are arbitrary constants, and a =
√
λ. The above expres-

sions are solutions of the system (3.124) that is reduced under the reduction
conditions (3.126) to (3.127). The appearance of the imaginary unit in ψ2

allows us to obtain combined (hyperbolic-oscillatory) behavior in the denom-
inators of (3.128), hence demonstrating new specific features of the solitonic
solutions.

The choice of arbitrary constants (c1, c2, d1, d2) affects the behavior of
the solution (3.128). For example, choosing equal constantsc1 = c2 = d1 =
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d2 = 0.5 (we choose the value 0.5 to simplify the resulting formula, but other
values could be chosen as well), we obtain the solutions in the form

f = 2a
sin η1 cosh η2 − cos η1 sinh η2

cosh2 η2 − cos2 η1

, (3.130)

u = 2a2 sin η1 cosh η2 + cos η1 sinh η2)2

(cosh2 η2 − cos2 η1)2
,

v = 2a2

×cos 3η1 cosh η2 − 2 sin η1 sinh η2(cos 2η1 + cosh 2η2 + 2)− cos η1 cosh 3η2

(cosh2 η2 − cos2 η1)2
,

where η1 = a3t−ax, η2 = a3t+ax, and a =
√
λ is real. We see that (3.130) is

singular at η2 = 0, η1 = nπ, n = 0, 1, 2, . . .. Hence, the solution has singularity
at x = (nπ)/(2a), t = (nπ)/(2a3).

To obtain continuous solutions we can choose c1 = c2, d1 = d2 = rc1, and
r is a real constant. We again choose c1 = 0.5 (for simplification), so potentials
(3.128) have the form

f = 2ar
cosh η2 sin η1 − cos η1 sinh η2

cosh2 η2 − r2 cos2 η1

,

u = a2 1− r4 − r4 cos 2η1 + cosh 2η2 + r2 sin 2η1 sinh 2η2
(
cosh2 η2 − r2 cos2 η1

)2 ,

v = 2a2r{[(−7 + 6r2 + 2r2 cos 2η1) cos η1 cosh η2 − cos η1 cosh 3η2]− 2(1 + r2

+r2 cos 2η1 + cosh 2η2) sin η1 sinh η2)}/(−1 + r2 + r2 cos 2η1 − cosh 2η2)2 ,
(3.131)

where a, η1, and η2 are the same as in (3.130).
Choosing r < 1 gives real nonsingular solutions, but for r ≥ 1 poles appear.

This behavior is illustrated in Figs. 3.7 and 3.8.
In transition from the continuous solution to the singular one, the first

mode u is the most sensitive and is firstly affected as Figs. 3.9 and 3.10
clearly show for r = 1 and r = 2, respectively. Formula (3.131) is built from
hyperbolic and periodic functions, so solutions do not preserve their shape
but remain localized. Figure 3.11 shows the result of the evolution of the
configuration that corresponds to Fig. 3.7, for t = 2.

Moreover, the choice of these arbitrary constants (c1, c2, d1, d2) as well as
the spectral parameter λ affects the reality of the resulting solution. Indeed,
for λ = −2im2 with real m and choosing c1 = c2 = d1 = d2 = 0.5, we get the
real solution

f = 4m
cos 2ζ1 sinh ζ2 − sinh ζ2 − sin ζ1 cosh 2ζ2 + sin ζ1

(cosh 2ζ2 − 1)(1− cos 2ζ1)
,
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Fig. 3.7. Nonsingular solutions f , u, and v (r = 0.5, a = 2, t = 0)
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Fig. 3.8. Nonsingular solutions f , u, and v (r = 0.99, a = 2, t = 0)
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Fig. 3.9. Solutions f , u, and v for r = 1 (a = 2, t = 0). The solution u firstly
demonstrates singular behavior
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Fig. 3.11. Propagation of solutions f , u, and v (3.131) at r = 0.5, a = 2, and
t = 2. The solitonic solutions are built from elliptic and periodic functions so do not
preserve their shape with time

where ζ1 = 2mx + 4m3t and ζ2 = 2mx − 4m3t, while choosing c1 = c2 = 1
and d1 = d2 = 2 gives the following complex solution:

f = −8m
[
5 sin ζ1(cosh 2ζ2 − 1) + 5 sinh ζ2(1− cos 2ζ1)

+3i(2 sin ζ1 + 2 sinh ζ2 + cos ζ1 sinh 2ζ2 + sin 2ζ1 cosh ζ2)
]

×(17 cosh2ζ2 + 10 + 36 cos ζ1 cosh ζ2 − 8 cos 2ζ1 cosh 2ζ2 + 17 cos 2ζ1)−1 .

Some generalized KdV–MKdV systems have solitary wave solutions with the
property that increasing nonlinearity of one variable affects the very existence
of solitary waves [253]; for explicit solutions in terms of the Jacobi elliptic
functions see [198].

The general coupled KdV–MKdV system arises in many problems of
mathematical physics. Some integrable systems are associated with a poly-
nomial spectral problem and have the Virasoro symmetry algebras [303].
A dispersive system describing a vector multiplet interacting with the KdV
field is a member of the bi-Hamiltonian integrable hierarchy [257]. Multisym-
plectic geometry connected with the systems under consideration is studied
in [166]. See [200] for a convergent stable numerical scheme and a comparison
of analytical and numerical results.



4

Dressing chain equations

One very promising approach to solving integrable systems is based on the
notion of a dressing chain [395, 438, 448]. This method covers soliton, finite-
gap, rational, and other important solutions [423, 438] within the universal
scheme, reducing the starting problem to a solution of closed sets of nonlinear
ordinary equations with the bi-Hamiltonian structure [438]. Here we derive
the dressing chain equations and study the above classes of solutions.

A scheme to reconstruct the potential entering an associated linear prob-
lem depends on a class to which solutions of the inverse problem belong [378].
The coefficients (potentials) of the linear equation are elements of some alge-
braic structure. Such a structure is generated by transformations that preserve
the functional form of the equation. Hence, a general set of potentials splits
into subsets invariant with respect to the action of the transformations. These
transformations, for example, the Darboux (Schlesinger, Moutard) transfor-
mations, are generated by transformations of eigenfunctions φ of a given
differential operator. As a general remark, note that it is possible to approx-
imate locally solutions of the linear problem by a sequence of the Moutard
and Ribacour transformations [170]. The Darboux transformation (DT) pro-
duces naturally an intermediate object σ = (Dφ)φ−1, where D is the differ-
ential operator, which is related to the potential by the generalized Miura
transformation and satisfies the Riccati equation (compare with [164]). The
main ideas of Darboux permit us, in principle, to determine the form of the
transformation [102] by means of a factorization of the operator under con-
sideration. The structure of the transformation depends on the ring to which
the operator coefficients belong, as well as on the realization of an abstract
differentiation operation [265, 321]. The DT and Miura transformations for
non-Abelian entries (differential ring) are studied in [467]. This method allows
us to operate effectively with the spectral data. Here we restrict ourselves to
one-dimensional problems, but steps towards multidimensions have already
been made [378].

If we substitute the potentials expressed in terms of σ in any iteration
of the DT, we get the chain equations in the form of differential-difference

109
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equations. They can be equally well treated as the transformed form of the
spectral problem we start with. This fact was established for the simplest
one-dimensional problem in [448] and extended in [395]. Section 4.1 contains
simple but instructive examples of the appearance of dressing chains and their
usefulness in applications. The dressing chain formalism opens new possibil-
ities to produce explicit solutions as well as to study difficult questions of
a uniform approximation of the potentials [355]. The technique of dressing
chains is directly connected to the quantum inverse problem [84] and integra-
tion of soliton equations. In Sect. 4.2 we consider a general spectral problem,
polynomial in differentiation. We start from an appropriate evolution equation
and reduce the consideration to the stationary case that generates a spectral
problem.

The solution of the chain equation can be analyzed from the point of
view of the bi-Hamiltonian structure [53, 438]. Some important structures
connected to the chain equations were studied in [165]. The symmetry of the
system is naturally related to the DT and generates a finite group that we use
to simplify the problem. In Sect. 4.3 we introduce projection operators for the
irreducible subspaces of the symmetry group and the corresponding variables.
Section 4.4 is devoted to symmetry (in particular, permutation symmetry)
of the dressing chain equations. In Sect. 4.5 we concretize the results for the
specific number of iterations in the dressing chain system.

In Sects. 4.6–4.8 we discuss a class of periodic or quasiperiodic potentials
and associate with them a notion of the spectral curve, Dubrovin equations
and general finite-gap potentials. We consider a transition to new variables
in which solutions of the chain equations are expressed in quadratures. Note
also that an important application of the dressing theory is concerned with
the possibility to combine the finite-gap [45] and localized (solitonic) solutions
(see the discussion in [324]). This idea, following the Shabat scheme [393],
was implemented first by Kuznetsov and Mikhailov [258] using an example of
dressing the cnoidal wave (stationary two-zone solution of the KdV equation)
with N solitons. By means of the finite-gap integration theory, solutions of this
type were also obtained in [24, 216, 251]. In Sect. 4.9 we formulate the DT
for the non-Abelian Zakharov–Shabat (ZS) problem. Section 4.10 contains
a derivation of the dressing chain equations produced by DT of operators
polynomial in an automorphism of a ring. Taking this result, we build in Sect.
4.11 a dressing chain equation for the non-Abelian Hirota model. Section 4.12
contains some comments.

4.1 Instructive examples

As shown in Chap. 2, the operator of the classical DT has the universal form

Lσ = D − σ

and intertwines, for example, the operators of the equation

−ψxx + uiψ = λψ. (4.1)
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The potential ui is linked to ui+1 by

ui+1 = ui − 2σ′
i, (4.2)

with σi satisfying
σ′
i + σ2

i + μi = ui, (4.3)

where μi is an eigenvalue. Equation (4.3) is solved by σi = φ′
iφ

−1
i , where φi

is a solution of the problem (4.1) with the eigenvalue μi. Substitution of ui
from (4.3) into (4.2) yields the so-called dressing chain:

(σi + σi+1)′ = σ2
i − σ2

i+1 + μi − μi+1. (4.4)

The important problems of quantum mechanics can be solved by the
dressing chain formalism. Let us look for solutions of (4.4) in the form
[395]

σj = ξja(x) + ηj , j = 0,±1, . . . . (4.5)

Plugging (4.5) into (4.4) produces the Riccati equation for a(x):

(ξj+1+ξj)a′ = (ξ2
j−ξ2

j+1)a
2−2(ξj+1ηj+1−ξjηj)a−η2

j+1+η2
j+μj−μj+1. (4.6)

The solutions a(x) via the relation (4.3) (known as the Miura transformation,
see Chap. 2) produce the potentials

uj = ξja
′(x) + (ξja(x) + ηj)2 + μj .

The case a = x means ξj+1 = ±ξj , ηj+1 = ±ηj , j = 0, 1, . . ., and the relation
(4.6) reads as the recurrence for the eigenvalues,

μj+1 = μj + 2ξj, (4.7)

and gives the equidistant spectrum for the choice ξj+1 = ξj = ξ, ηj+1 = ηj =
η. The harmonic oscillator potential for x ∈ (−∞,∞) is directly obtained in
such a way:

ui = −ξ + ξ2x2 + 2ξηx + η2 + μi.

The ground state φ0 is annihilated by the DT:

(D − σ)φ0 = 0; φ′φ−1
0 = ξx + η.

This fundamental property of the DT defines the explicit form of the func-
tion φ0 and hence of all the dressed ones. Another choice ξj+1 = −ξj =
−(−1)jξ, ηj+1 = −ηj = −(−1)jη does not produce essentially new poten-
tials.

The radial Schrödinger equation in atomic units,
(
−1

2
d2

dr2
− 1

r

d
dr

+
l(l + 1)

2r2
+ ul − E

)
ψl(r) = 0 (4.8)

(for the scattering problem see Sect. 6.2.3), is transformed to (4.1) by ψl =
ψ/r, r → x and hence the corresponding chain equation is equivalent to
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(4.4). Equation (4.6) for the choice a = 1/r yields two constraints for the
constants:

(ξj+1 + ξj)(ξj+1 − ξj − 1) = 0, ξj+1ηj+1 − ξjηj = 0.

The next choice
ξj+1 = ξj + 1, ξ0 = 0

yields for j = 1, 2, . . .

ηj+1 =
ξjηj
ξj+1

,

which results in
ηj =

η

j
.

The spectrum is determined by

μj+1 − μj = η2
j − η2

j+1

with the obvious solution

μj = −η2
j = −η2

j2
.

This means that (4.7) and

ψ0(r) =
C

r
exp

(∫ r

1

σ(x)dx
)

solve the Coulomb quantum problem for l = j − 1 and arbitrary principal
number j. More details and two more potentials linked to the solutions of
(4.6), namely, expx and tanx are considered in Sect. 6.2.3.

4.2 Miura maps and dressing chain equations
for differential operators

4.2.1 Linear problems

Reproducing for convenience the general conjectures from Chap. 2, let us take
the differential operator

L =
N∑

n=0

anD
n (4.9)

on a differential ring A with coefficients (potentials) an ∈ A, and the evolution
equation

ψy = Lψ, ψ ∈ A. (4.10)
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Here the operator D is a differentiation with respect to some variable (maybe,
the abstract one) and ψy is the derivative with respect to another variable (see
[271, 321] for details and generalizations). Denote Dψ = ψ′. The transforma-
tion of the solutions is taken in the standard Darboux form

ψ[1] = Dψ − σψ,

where
σ = φ′φ−1 (4.11)

with a linearly independent invertible solution φ of (4.10).
The transformation of the coefficients of the resulting operator

L[1] =
N∑

n=0

an[1]Dn

is determined by
aN [1] = aN (4.12)

and for all the other n = 0, . . . , N − 1 by

an[1] = an +
N∑

k=n+1

[akBk,k−n + (a′k − σak)Bk−1,k−1−n] (4.13)

that yields the covariance principle. This means that the function ψ[1] is a
solution of the equation

ψy[1] = L[1]ψ[1].

This result is a compact reformulation of the Matveev theorem [321].
The functions Bm,n were introduced in [467] and represent the generalized

Bell polynomials defined in Sect. 2.2.

Proposition 4.1. If the function σ satisfies the equation

Dyσ ≡ σy = Dr + [r, σ], (4.14)

where r =
∑N

n=0 anBn(σ), the operator Lσ = D−σ intertwines the operators
Dy − L and Dy − L[1].

For the derivation of the dressing chain equations we consider the station-
ary solution of the evolution equation (4.10):

Dyφ = φμ.

This gives Dyσ = 0. For example, in the matrix case μ = diag{μ1, . . . , μn}.
Note that (4.14) for σ taken from (4.11) becomes the identity. The param-

eters μi have the sense of eigenvalues of the operator L.
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Hence, the consequence of (4.14),

Dr + [r, σ] = 0, (4.15)

is the analog of the Riccati equation that we call the generalized Miura map.
It connects the potentials [coefficients of the operator L (4.9)] and σ at every
step i of the DT iterations. Further we will supply the functions with the
upper index i to show the number of iterations made. In the scalar case the
commutator is zero and (4.15) reads

N∑

n=1

ainBn(σi) = c = const. (4.16)

If we have the single potential a0 with the other ones being invariant, ain =
ai+1
n , n �= 0, then the expression for the iterated potential is given by

ai0 = −
N∑

n=1

ainBn(σi) + ci. (4.17)

In this case the derivation of the chain equation is made by the substitution
of (4.17) into (4.13) for n = 0 and with the indices i and i + 1. Equation
(4.17) for N = 2 gives the link between σi and the potential ui that enters
the second-order operator

L = −D2 + ui . (4.18)

Supplying (4.16) for N = 2 with indices, we obtain

σi,x + σ2
i + ci = ui. (4.19)

The next choice N = 3 leads to the generalized Miura transformation

σi,xx +
3
2
(σ2
i )x + σ3

i + uiσi + wi = μi, (4.20)

where wi = ai0 and ui = ai1. It connects the coefficients ui and wi with σi. For
both cases the DT has a similar form

ui+1 = ui − 2σi,x (4.21)

(for N = 3 we have a3 = 1; hence −2 in the DT should be changed to +3).
Finally, if one starts from the second-order Sturm–Liouville equation (4.18),
the associated dressing chain equation is written as

σi+1,x + σ2
i+1 + μi+1 = −σi,x + σ2

i + μi. (4.22)

This dressing chain equation was studied in Sect. 4.1.
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Further generalization is concerned with a nonisospectral DT. Such a DT
has the same form as (4.21) but it links different λ-subspaces:

ψi+1(λ + αi) = (D − σi)ψi(λ). (4.23)

It specifies the factorization condition as

ui+1 = ui − 2σi,x + αi (4.24)

and shifts the eigenvalue by αi. Substitution of (4.19) into (4.24) yields

σi+1,x + σi,x = σ2
i − σ2

i+1 + αi + ci − ci+1. (4.25)

Note that ci are arbitrary integration constants and could be fixed as, e.g.,
in the instructive example of Sect. 4.1, where αi = 0 and ci = μi, that
corresponds to the choice of σi = φ′/φ (check by direct substitution!). In
Sects. 4.6–4.8, where the dressing chain equation is studied and used to build
finite-gap solutions [422, 438], ci = 0 is chosen to simplify the dressing chain
equation Lax pair.

For the third-order operator, if wi = 0, the dressing chain equation is
written as

(σi+1,xx − μi+1)/σi+1 + 3σi+1,x + σ2
i+1 = (σi,xx − μi)/σi + 6σi,x + σ2

i . (4.26)

The case of zero wi is obviously a reduction for the space of solutions of the
linear problem and some modification of the DT formula for the eigenfunctions
is necessary [281]. Important connections with the Hamiltonian structures of
some third-order problems (related to the Sawada–Kotera/Gibbon and Kaup–
Kupershmidt equations) were studied in [164].

4.2.2 Lax pairs of differential operators

As regards a Lax pair of a nonlinear system, one should consider an additional
operator, say,

A =
M∑

n=0

bnD
n, (4.27)

leading to the evolution equation

ψt = Aψ. (4.28)

The coefficients of both equations (4.9) and (4.27) depend on a set of potentials
u1, . . . , un, eventual solutions of nonlinear equations. In accordance with the
joint covariance property [270, 271], the DTs of the coefficients induce the
DTs of the potentials (Sect. 2.7). We can formulate a proposition similar to
Proposition 4.1:
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Proposition 4.2. If a function σ satisfies (4.14) and the equation

Dtσ ≡ σt = Dq + [q, σ], (4.29)

where q =
∑M
n=0 bnBn(σ), then the operator Lσ = D − σ intertwines the

pairs of operators (Dy − L,Dt − A) and (Dy − L[1], Dt − A[1]). This means
the integrability of the compatibility condition of (4.1) and (4.28) in the
sense of the symmetry existence with respect to the DT ui → ui[1] of the
potentials.

The compatibility condition of (4.14) and (4.29) yields the extra equation

Dqy + [qy, σ] + [q, Dr + [r, σ]] = Drt + [rt, σ] + [r, Dq + [q, σ]], (4.30)

which links the potentials and the element σ. In the case of the single potential
u, it is possible to express it as a function of σ [273]. Considering the iterated
potentials

ui = fi(σi)

(now the index is again a number of iterations) allows us to produce the
dressing chain equation substituting the function into the DT formula ui[1] =
ui+1.

The scalar case is much simpler. From (4.30) it follows that D(qy−rt) = 0,
or

qy−rt =
M∑

n=0

[bny Bn(σ)+bnB
′
n(σ)Dq]−

N∑

n=0

[antBn(σ)+an B′
n(σ)Dr] = const.

(4.31)
The good example of this case is the Kadomtsev–Petviashvili equation and
its dressing chain [273], whence the potential is extracted from (4.31). In the
theory of solitons (4.26) generates the Sawada–Kotera equation, while (4.20)
corresponds to the famous KdV equation (see also Sect. 8.7). From the point of
view of the derivation of the dressing chain equation, other reductions are more
complicated: it is necessary to express the potential from (4.20). For the chain
equation associated with the reduction of the Boussinesq equation see [281].

4.3 Periodic closure and time evolution

The periodic closure of the dressing chain equation (4.22) for the KdV equa-
tion produces a finite system of equations that possesses the bi-Hamiltonian
structure [438]. As Veselov and Shabat [438] wrote about the case N = 3
(one-gap potentials), “it is a useful exercise to derive explicit formulas for
σi directly from equations of the chain.” Below we briefly show how to do
that and give the formula. There is an important question that occurs from
this direct way: How does one extract the dependence of the potential on the
additional parameter t from the Lax pair?
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We propose to specify the “time” evolution via the t-dependence of x-
conserved quantities [274]. In this section we begin to study this problem in
terms of the same chain variables supplied with a time dependence. Let us
start from the system for three functions σi for the simplest nontrivial closure

(d/dx)σ1(x) = σ2
3(x)− σ2

2(x) + μ3 − μ2,
(d/dx)σ2(x) = σ2

1(x)− σ2
3(x) + μ1 − μ3,

(d/dx)σ3(x) = σ2
2(x)− σ2

1(x) + μ2 − μ1.
(4.32)

This direct way to produce the bi-Hamiltonian formalism was initiated in
[438] by introducing a generating function and extracting conserved quantities
(integrals). In this simplest example we take the integrals to solve the problem
completely. If we express the third variable σ3 as the linear combination of the
other ones by means of the first integral (Casimir function) c = σ1+σ2+σ3 and
substitute it into the other equations of (4.32), then, after use of the second
integral A, we arrive at the differential equation of the first order for elliptic
functions. It is convenient to show this fact in terms of other variables [438]:

g1(x) = σ1(x) + σ2(x), g2(x) = σ2(x) + σ3(x), g3(x) = σ3(x) + σ1(x).

Now we exclude g3(x) by the relation g3(x) = 2c− g1(x) − g2(x). Further, if
we omit the argument x, the inverse transformations become

σ1 = −g2 + c, σ2 = −c + g1 + g2, σ3 = c− g1.

Inserting the transforms into the system (4.26), we obtain two differential
equations for new variables:

d
dx

g1 = μ1−μ2 + 2cg1− g2
1 − 2g1g2,

d
dx

g2 = −2cg2 + 2g1g2 + g2
2 +μ2−μ3.

The second integral of motion in terms of gi is more compact than in σis:

A = g1g2g3 + μ2g3 + μ1g2 + μ3g1. (4.33)

It allows us to express g2 as a function of g1. Therefore,

d
dx

g1(x) = −μ2 + μ1 + 2cg1 − g2
1 − 2

[−g2
1 + μ2 − μ1 + 2g1c

+(g4
1 − 4g3

1c + 2g2
1μ1 + 2c2 − 2μ3 + μ2 (4.34)

+4A− μ2c− μ1cg1 + μ2
1 + μ2

2 − 2μ2μ1)1/2
]
.

The next problem is to solve (4.34) in elliptic functions. The Weierstrass
or Legendre canonical form of the integral yields a solution of the problem
after the Abel transformation [208] and use of the algebraic formulas that give
σ2,3. Finally, we have the explicit dependence of σi on x and parameters c and
A [275]; see also Sect. 4.5.
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Let us turn to the problem of a time evolution arising from the Lax repre-
sentation for some nonlinear equation. The main instruction from the above
example is to search for the time dependence of the x-independent entries c
and A. Let us consider a DT-covariant “time” evolution. In the KdV case the
second Lax operator has the form of (4.9). The account of a connection (4.19)
between the potential and σ produces the modified KdV (MKdV) equation
for the function σ. The substitution into the equation of the x-derivatives
from the system (4.32) yields

∂

∂t
σ3(x, t) =

1
2
(μ1 + μ2 − 5μ3 − F )

∂

∂x
σ3(x, t),

F = (σ1 + σ2 + σ3)2 = c2. (4.35)

The equations for σ1,2 are written similarly if we use the cyclic symmetry in
the indices. Such equations are general; we will call them the t-chain equations
(for t-chains see also [313]). The form of the equations is typical for the so-
called hydrodynamic-type equations. The system is diagonal and Hamiltonian,
it can be integrated by the hodograph method [428]. The final step of this
direct construction is the use of (4.35) and similar equations for σ1,2. First we
can check that

∂

∂t
c = −3σ2

2μ3 + 3σ2
3μ2 − 3σ2

3μ1 + 3σ2
1μ3 − 3σ2

1μ2 + 3σ2
2μ1 = 3cx,

which is zero if the x-dependence of σi is governed by (4.32). If one plugs the
t-derivatives of σi from formulas like (4.35) into the derivative At, this gives

At = g2
2g

2
1(3μ1 − 3μ3) + g2

2g
2
3(3μ2 − 3μ1) + g2

1g
2
3(3μ3 − 3μ2)

+g2g1(6μ3μ2 − 6μ1μ2) + g2g3(6μ3μ1 − 6μ3μ2) + g1g3(6μ1μ2 − 6μ3μ1)

+3 (μ1 − μ3) (μ2 − μ3) (μ2 − μ1) .

Further analysis leads to Proposition 4.3:

Proposition 4.3. If a common period X exists for all gi, the x-independent
polynomial c does not depend on t, and A is a linear function of t.

For the proof it is enough to notice that the second-order combination
g2g1(6μ3μ2− 6μ1μ2)+ g2g3(6μ3μ1− 6μ3μ2)+ g1g3(6μ1μ2− 6μ3μ1) is a linear
combination of the x-derivative and constant because, for example,

g1 (g2 − g3) =
d
dx

g2(x) +
d
dx

g3(x) + μ2 − μ1.

After integration of this equation in x over the period X and use of the
conservation laws for the KdV and MKdV equations in combination with
(4.26), we arrive at the linear dependence of AX on t. The coefficient may be
recognized in the expression for At: it is a combination of the eigenvalues μi.
For example, the

∫
σi,

∫
σ2
i , i = 1, 2, 3 and other more complicated conserved

quantities [443] should be accounted for, and the integrals over X of the
combinations are zero. The resulting formula for A should be substituted into
the solution of (4.34).
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4.4 Discrete symmetry

4.4.1 General remarks

One can easily check the invariance of every conserved quantity (e.g., the
above c and A) against the permutations of the elements σi, as well as the
covariance of the systems (4.32) and (4.35). The symmetry with respect to
the cyclic permutation of the variables (or indices) is obvious if one recalls
its DT origin; hence, this observation is general. For the illustration we again
exploit the simplest KdV case starting from the representation of [438] (for
the additional symmetry with respect to reflections see [165]). Let us consider
the periodically closed dressing chain equation of the odd step N = 2g + 1
and introduce vectorial notations, namely

Σ = (σ1, ..., σN )T, μ = (μ1, ..., μN )T

and
Σ2 = (σ2

1 , ..., σ
2
N )T.

The closed chain equation (4.22) can be rewritten either in the form

(1 + S)Σx = (1− S)(Σ2 + μ)

or in the form

Σx =
N−1∑

k=1

(−1)kSk(Σ2 − μ), (4.36)

where the operator of permutation is represented as the matrix S [438]. Both
forms are obviously invariant with respect to the S-transformation because
the matrix S and operators in (4.36) commute. The same statement is valid
for the equations of the time evolution.

Let us emphasize that the right-hand side of (4.36) is tensorial with re-
spect to the components of Σ, so the action of the group transformation is
the tensor (direct) product of the group representations in the corresponding
vector spaces.

If we introduce the cyclic permutation operator Ts, its action determines
the matrix S as

Tsσi = Sikσk = σi+1(modN).

The powers of the matrix of the previous section produce the group, Sk ∈
Cn ⊂ Sn and give a basis for integration of the covariant equations. The
technique uses the Poisson representation of the system (4.36),

ψx(Σ,μ) = {H(Σ,μ), ψ(Σ,μ)},
where the operator

H(Σ,μ) =
N∑

i=1

(
1
3
σ3
i + μiσi

)
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is invariant with respect to the group transformations and defines a linear
operator adH with respect to the Poisson bracket

{σi, σk} = (−1)k−i(1− δik), k ≤ i.

It is easy to check that

{H(Σ), σj} =
n∑

k=1

(
1
3
{σ3

k, σj}+ μk{σk, σj}
)

=
n∑

k=1

(σ2
k + μk){σk, σj},

which yields the system (4.36).
The integration of the system can be understood in a “quantum-mechanical”

language, introducing first the “commuting” functions Ci(Σ) from the kernel
Ci ∈ K:

adHCi = 0. (4.37)

Next, the eigenvalue problem for ψ(Σ,μ) outside the kernel can be considered
as a matrix one in some basis:

adHψi = λiψi, (4.38)

where i = 1, . . . , g, N = 2g + 1. The symmetry of (4.37) and (4.38) with
respect to the transformations Ts (4.18) follows from the obvious relation

H(TsΣ, Tsμ) = H(Σ,μ).

This means that matrices of a representation of the symmetry group commute
with the matrix of adH on the corresponding subspace with constant Casimir
operator.

4.4.2 Irreducible subspaces

The symmetry and the tensor structure of the right-hand side of (4.36) show
that the system may be simplified in the framework of the Wigner–Eckart
theory [452]. In accordance with the Wigner theorem applied to equations
(4.37) and (4.38), the operator adH has the quasidiagonal structure in the
basis of irreducible representations. The projective operators pi acting on the
irreducible subspaces are defined in the subspaces produced by chains that
appear as the sum over the transformation group action on some basic element.
In the case of the commutative group, chosen for simplicity, the irreducible
matrices are one-dimensional, and the basis is defined by the set of projectors

pi =
∑

s∈G
NiD

i(s)Ts,

where Ni are normalizing constants, Di(s) are irreducible representations of
the symmetry group, and Ts is the group transformation operator in the space
under consideration.



4.4 Discrete symmetry 121

In our case the operator Ts coincides with that introduced in the previous
section and in the case of the cyclic permutation group Cn the irreducible ma-
trices are one-dimensional. Namely, Dj(e) = 1, Dj(s) = aj , Dj(s2) = a2

j , . . .
with aj = exp(j2πi/N), where the integer N is the group order.
Hence,

Tssj = ajsj . (4.39)

For N = 3 we project the system (4.36) or, originally, (4.26) onto each
subspace, having three equivalent equations. Let a = exp(2πi/3); e.g., the
second of the resulting equations gives

s2x = n1 + an2 + a2n3 (4.40)

= σ2
3 − σ2

2 + μ3 − μ2 + a
(
σ2

1 − σ2
3 + μ1 − μ3

)
+ a2

(
σ2

2 − σ2
1 + μ2 − μ1

)
.

Here ni denotes the right-hand side of (4.26).
The inverse transform from original variables to the basis of irreducible

representations reads
σ1 = s1 + s2 + s3,

σ2 = s1 + as2 + a2s3,

σ3 = s1 + a2s2 + as3.

Inserting them into (4.40) yields

d
dx

s1(x) = 0,

d
dx

s2(x) = − (a− 1)
[

3a
(
s2
2 + 2s1s3

)− aμ2 + aμ1 − μ2 + μ3

]
,

and
d
dx

s3(x) = (a− 1)
[

3a
(
s2
3 + 2s1s2

)− aμ3 + aμ1 + μ2 − μ3

]
.

The second conservation law (4.33) in terms of si allows us to express
the Hamiltonian as a function of the only variable s3. The conservation
laws are obviously the combinations of the irreducible polynomials σi. To-
gether with the Hamiltonian (=λ) conservation it leads to the spectral curve
definition.

Returning to the general problem needs the tensor product space of the
vectors Σ and μ. The problem of solution of (4.37) and (4.38) simplifies if we
use the above symmetry written in terms of

si =
∑

s∈G
NiD

i(s)Tsσ1 = N−1
N∑

k=1

ak−1
i−1 σk.
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Proposition 4.4. By direct application of the operator Ts it can be checked
that the tensor products of si [see (4.39)]

sisk . . . sj (4.41)

form a basis of irreducible tensors in the space of polynomials, and the result
of the Ts operator action differs from (4.41) by a constant factor aiak . . . aj.

The further computations are conveniently made via the Poisson bracket

{sj, sl} = N−2
∑

ik

ai−1
j−1a

k−1
l−1 {σi, σk}. (4.42)

Particularly it is shown that the Ci can be chosen as a combination of
irreducible polynomials (one can check this statement for the examples in
[438]), and the conservation laws presented are combinations of the irreducible
polynomials of σi.

Next, the t-dependence may be introduced via the scheme of Sect. 4.3.
Other nonlinear systems are treated similarly. The widened symmetry, e.g.,
from [165], includes reflections at the (Σ,μ) tensor product space and could
give more information about solutions.

4.5 Explicit formulas for solutions of chain equations
(N = 3)

Let us return to equations (4.32),

σ′
1 = σ2

3 − σ2
2 + μ3 − μ2,

σ′
2 = σ2

1 − σ2
3 + μ1 − μ3,

σ′
3 = σ2

2 − σ2
1 + μ2 − μ1,

(4.43)

that are equivalent to the system (4.25) under the condition α = 0 with N = 3.
We use two integrals

c = σ1 + σ2 + σ3,
A = g1g2g3 + μ2g3 + μ1g2 + μ3g1 =

(σ1 + σ2)(σ2 + σ3)(σ3 + σ1)+
μ2(σ3 + σ1) + μ1(σ2 + σ3) + μ3(σ1 + σ2).

(4.44)

From (4.43) we obtain

σ′
1
2 = (σ2

3 − σ2
2 + μ3 − μ2)2.

Using the first equation in (4.44) as σ3 = c− σ1 − σ2, we obtain the equation
containing σ′

1 and σ2. Then we eliminate the remaining variable σ2 with the
help of both integrals in (4.44). Thus, we get the equation

σ′
1
2 = σ4

1 − 2(c2 + μ3 + μ2 − 2μ1)σ2
1

− 4(2μc−A)σ1 + c4 + 2(μ2 + μ3 + 2μ1)c2 − 4Ac + (μ3 − μ2)2.
(4.45)
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This equation has the following structure:

(
dσ1

dx

)2

= σ4
1 − 6aσ2

1 + 4bσ1 + d, (4.46)

where a, b, and d are constants determined by (4.45). The extra multipliers
6 and 4 have been included for convenience. The relation (4.46) is an elliptic
curve in variables (σ′

1, σ1) and therefore it is uniformized by elliptic func-
tions. Let us build the invariants (capital letters are chosen to distinguish the
invariants from variables gj of the chain)

G2 = d + a2, G3 = a3 − b2 − ad.

So, the pair (b, a) is a point on a curve

b2 = 4a3 −G2a−G3.

Therefore, there exists a parameter ν such that the following equations occur:

b = ℘′(2ν), a = ℘(2ν),

where ℘ (2ν) is the Weierstrass elliptic function. This means that we take
three new parameters G2, G3, and ν instead of the old ones a, b, and d which
in turn depend on five parameters of the chain: (μ1, μ2, μ3, A, c); hence, we
write (

dσ1

dx

)2

= σ4
1 − 6℘(2ν)σ2

1 + 4℘′(2ν)σ1 + [G2 − 3℘(2ν)],

which yields

σ1(x) = ζ(x + ν + x0;G2, G3)− ζ(x− ν + x0;G2, G3)− ζ(2ν;G2, G3).

Note that σ1 is not the Weierstrass σ-function in the theory of elliptic func-
tions, but ζ is the standard Weierstrass ζ-function. The solution σ1(x) depends
on three arbitrary constants [according to the third order of equations (4.43)]
G2, G3, and x0 which are in turn defined by five constants μj , A, and c in
explicit but transcendental way. Parameter ν is not exceptional,

ν =
1
2
℘−1

(
μ3 + μ2 − 2μ1 + c2

3

)
,

where ℘−1 denotes the elliptic integral of the first kind (inversion of the elliptic
function ℘).

Remark 4.5. The solution obtained is exactly the logarithmic derivative of the
Ψ -function for the one-gap Lamé potential,

Ψ ′′ − 2℘(x)Ψ = λΨ, Ψ =
σ(α − x)
σ(α)σ(x)

eζ(α)x, λ = ℘(α),
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and is distinguished from the solution

Ψ ′

Ψ
= ζ(α− x) − ζ(α) − ζ(x)

by a shift of the spectral parameter α.

Remark 4.6. If one is interested in σi (4.46) in connection with the KdV equa-
tion theory, the dependence on time can be obtained using the t-chains [274]
obtained by means of the MKdV equation for σ and conservation laws [443]
(see the previous sections).

4.6 Towards the spectral curve

It is known that there exists a class of periodic or quasiperiodic potentials
of the operator (4.18) for which the spectral problem in L2 leads to the con-
tinuous spectrum with the finite number of gaps, i.e., intervals at which the
values of the parameter λ do not belong to the spectrum [45]. Potentials of
this kind exemplified in Sect. 4.5 correspond to solutions of the KdV equa-
tion, if time dependence is introduced by means of the Lax pair [215, 353].
The important explicit formulas for eigenfunctions of the operator (4.18) were
obtained in [215]. As mentioned already, the chain equations closed (period-
ically) on an odd step 2g + 1 produce the finite-gap solutions [438, 448]. We
have demonstrated already that for g = 1 the potentials are expressed in the
elliptic Weierstrass or Jacobi functions.

Further development allows us to include an additional evolution variable
y [45, 55].

As shown in Sect. 4.2, especially the comments on Proposition 4.1, the
value of the parameter α depends on the interpretation of σ. The case α = 0
corresponds to σ = φxφ

−1, where φ is the eigenfunction of the operator (4.18)
with the eigenvalue μ; it differs from that for α �= 0. For general statements
and some applications see [284].

Let us consider the periodically closed (σn+N = σn, αn+N = αn) chain
(4.25). Below we follow [17, 438] for the formalism of the 2 × 2 Lax pair
(denoted as U and V ) and [422, 423] for the link to the spectral curve and the
Dubrovin equations concentrating mostly on the case of finite-gap solutions
for N = 2g + 1.

As follows from (4.19), the link of the variable σ to the potential un con-
nects the corresponding matrix operators. Let us start from the spectral equa-
tion

−ψ′′
n + unψn = λψn. (4.47)

With the first-order dressing chain equation in mind, it is useful to rewrite
(4.47) in the matrix form. Speaking in physical language, we introduce the
column of “state”

Φn =
(
ψn
ψ′
n

)
,
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which is a solution of
Φ′
n = Un(μ)Φn. (4.48)

Un is easily found from (4.47). Differentiation of the DT (4.23) gives

ψ′
n+1(λ + αn) = (un − λ)ψn(λ)− σ′

nψn(λ)− σnψ
′
n(λ), (4.49)

or, using (4.19) with the choice ci = 0, gives

ψ′
n+1(λ + αn) = (σ2

n − λ)ψn(λ)− σnψ
′
n(λ).

In terms of the column Φn the result may be written as

Φn+1(λ + αn) = Vn(λ)Φn. (4.50)

The first row of this vector relation is simply (4.23) and the second line follows
from (4.49) after use of the Miura link (4.19). Both (4.48) and (4.50) form the
Adler Lax pair [17]

Vn(λ) =
( −σn 1
σ2
n − λ −σn

)
, Un(λ) =

(
0 1

un − λ 0

)
. (4.51)

The operators satisfy the differential equation (Lax compatibility condition)
with a shifted spectral parameter that is equivalent to the chain equation

V ′
n = Un(λ + αn)Vn(λ) − Vn(λ)Un(λ). (4.52)

Now we can reformulate the chain closure condition in terms of the operators
Vn. The operator V1(λ) maps the state Φ1 onto the space Φ2(λ + α1), the
operator V2(λ + α1) maps Φ2 onto Φ3(λ + α1 + α2) and so on, till

ΦN+1(λ + α) = (−1)NT (λ)Φ1(λ),

where the transition operator

T (λ) =
N∏

n=1

Vn(λ + βn−1) (4.53)

is introduced, whence

βn =
n∑

i=1

αi, β0 = 0, βN = α.

Equation (4.52) yields the x-evolution equation for T (λ):

T ′(λ) = U1(λ + α)T (λ) − T (λ)U1(λ).

Let the eigenvalue of the operator T (λ) be denoted as z, then the condition

det[zI − T (λ)] = z2 − P (λ)z + Q(λ) = 0 (4.54)
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introduces the hyperelliptic spectral curve in the complex (λ, z)-plane. The
spectral invariant

Q(λ) = detT (λ) = (−1)N
N−1∏

n=0

(λ + βn) (4.55)

is evaluated via (4.53). Note that det V (λ+βn) = λ+βn. The coefficient P (λ)
is given by

P (λ) = trT (λ) = A(λ) + D(λ),

for

T (λ) =
(
A B
C D

)
, (4.56)

where, for the case of N = 2g + 1,

A = (−1)g+1cλg + a1λ
g−1 + . . . , B = b0λ

g + b1λ
g−1 + . . . ,

C = (−1)g+1λg+1 + c1λ
g + . . . , D = (−1)g+1cλg + d1λ

g−1 + . . . ,

b0 = (−1)g, c =
∑N
k=1 σk(−1)g, which may be proved by induction using the

definitions (4.53) and (4.51) of the matrices T and V . One starts with g = 1,

V1V2V3 =
( −σ1 1
σ2

1 − λ −σ1

)( −σ2 1
σ2

2 − λ− β1 −σ2

)( −σ3 1
σ2

2 − λ− β2 −σ3

)

and applies the induction. This results in

P (λ) =
g∑

n=0

Inλ
g−n. (4.57)

Substitution of (4.56) into (4.52) yields

A′ = C − (λ + u1)B, (4.58)
B′ = D −A, (4.59)
C′ = (λ + α + u1)A− (λ + u1)D, (4.60)
D′ = (λ + α + u1)B − C. (4.61)

Using (4.58) and (4.61), one can check that

P ′(α) = αB(λ);

hence, when α = 0, the coefficients Ig of the polynomial P (λ) are constants
of motion. We can compare the results that follow from (4.42) and the con-
servation laws from Sect. 4.3 and (4.44).

The transformation of the spectral curve (4.54) to the normal form [208]
is performed by the substitution

z =
P (λ) + y

2
,

which yields
y2 = P (λ)2 − 4Q(λ). (4.62)
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4.7 Dubrovin equations. General finite-gap potentials

Let us introduce a system of moving points on the hyperelliptic spectral curve
(4.54) and (4.62). Namely, note that at the points λ = λj such that

B(λ) =
g∏

j=1

(λj − λ), (4.63)

the transition matrix T is triangular

T (λj) =
(
A(λj) 0
C(λj) D(λj)

)
. (4.64)

This allows us to choose the eigenvalue

zj = A(λj),

which means the g-tuple of points (λj , zj) of the (λ, z)-plane belongs to the
spectral curve

z2
j − P (λj)zj + Q(λj) = 0. (4.65)

The Abel–Jacobi mapping AJ: Γ (g) → Jac(Γ ) sends the degree g divisor

Di = (λ1, z1) + ... + (λg, zg)

of Γ , i. e., an element of the g-fold symmetric product Γ (g) of Γ , to a point
of the Jacobi variety Jac(Γ ).

Let us show that the x-motion of the g-tuple of points follows from (4.56),
which means that a dependence of λj on x is linearized on Jac(Γ ). The motion
is extracted from the derivative of B(λj) = 0 [see (4.63)],

B′(λj) + Bλ(λj)λ′
j = 0.

Taking (4.59) for B′ = A(λj) − D(λj) =
√

P (λj)2 − 4Q(λj) and using the
identity

P (λj)2 − 4Q(λj)2 = [A2 + 2AD + D2 − 4AD]λ=λj

yields from (4.64) and (4.57) the generalized Dubrovin equations

λ′
j =

√
P (λj)2 − 4Q(λj)

Bλ(λj)
. (4.66)

Here the numerator is expressed as the difference of the roots of quadratic
equation (4.65) (eigenvalues of the matrix T ). The equations (4.66) appeared
(perhaps for the first time) in the paper of Drach [130]. The comprehensive de-
scription of the finite-gap potentials in the context of algebrogeometric theory
is given in [45]; see also [78] with the historical remarks on the theory.
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The Lagrange interpolation formula reads

F (λ)
B(λ)

=
g∑

j=1

F (λj)
Bλ(λj)(λ − λj)

+ G(λ), (4.67)

where F (λ) and G(λ) are polynomials. In particular, if F (λ) = λk, k =
0, ..., g − 1, the application of (4.67) gives

λl

B(λ)
=

g∑

j=1

λlj
Bλ(λj)(λ − λj)

.

Let us take (4.63) for distinct λjs and pick out the residue of both sides at
λ =∞:

g∑

j=1

λkj
Bλ(λj)

= δk,g−1, k = 1, . . . , g. (4.68)

Substitution of the formula for Bλ(λj) yields
g∑

j=1

λkjλ
′
j√

P (λj)2 − 4Q(λj)
= δk,g−1.

Integration of the equations is realized on a complex torus Cg/L that repre-
sents the Jacobi variety of the image AJ(Di) of the divisor Di:

g∑

j=1

∫ λj λkdλ√
P (λ)2 − 4Q(λ)

= δk,g−1x + const. (4.69)

Let us trace the technical details of integration of the dressing chain equations,
starting from the Drach–Dubrovin equations (4.66) for g = 2. Namely, the
system

dλ1

dx
=

ν1

λ1 − λ2
,

dλ2

dx
=

ν2

λ1 − λ2
,

with νi =
√

P (λi)− 4Q(λi) is equivalent to

dλ1

ν1
=

dx
λ1 − λ2

,
dλ2

ν2
= − dx

λ1 − λ2
,

which yields (4.68)

dλ1

ν1
+

dλ2

ν2
= 0,

λ1dλ1

ν1
+

λ2dλ2

ν2
= dx.

Integration leads to quadratures:
∫ λ1 dλ

ν
+

∫ λ2 dλ
ν

= a1,

∫ λ1 dλ
ν

+
∫ λ2 dλ

ν
= x + a2,

where ν = ±√P (λ) − 4Q(λ); see again (4.55) and (4.57).
In the case α = 0 the algebrogeometric method [45] applies the Lagrange

interpolation formula to the system (4.66).



4.8 Darboux coordinates 129

4.8 Darboux coordinates

We continue to study the case N = 2g + 1. Differentiation of the equation for
the spectral curve (4.54) in x yields

z′j =
Pλ(λj)zj −Qλ(λj)

Bλ(λj)
. (4.70)

The general conservation law P ′(λj) = 0 is taken into account. Equation
(4.66) for λi may be rewritten as

λ′
i =

zi −Q(λi)z−1
i

B′(λi)
. (4.71)

Let us solve the spectral curve equation (4.65) with the plugged P (λj) for
Is:

Is =
g∑

j=1

zj + Q(λj)z−1
j − I0λ

g
j

Bλ(λj)
∂bs
∂λj

. (4.72)

This gives a new interpretation of the conserved quantities Is as functions of
the double set of variables λ1, . . . , λg and z1, . . . , zg. The Darboux coordinates
[103] are λi and log zi, as follows from [423].

Proposition 4.7. Equations (4.71) and (4.70) can be considered as the Hamil-
tonian system

λ′
j = zj

∂H

∂zj
, z′j = zj

∂H

∂λj
(4.73)

with the Hamiltonian

H = I1/b0 =
g∑

j=1

zj + Q(λj)z−1
j − I0λ

g
j

Bλ(λj)
. (4.74)

For a proof, (4.71) is checked by the differentiation of (4.74) in zj and λj . The
first differentiation gives

zj
∂H

∂zj
=

zj −Q(λj)z−1
j

Bλ(λj)
,

and the second one yields

zj
∂H

∂λj
= −zj

b0

∂I1
∂λj .

.

The derivatives (∂I1/∂λj) can be extracted from the result of differentiating
the spectral curve (4.54) in λj , if the variables zj are considered as functions
of Il via (4.72).
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The differentiation of I1 from (4.72) and use of (4.65) gives

∂I1
∂λk

=
g∑

j=1

[−P (λk)zj + Q′(λk)]δkj
zkBλ(λj)

(−b0), (4.75)

the link b1 = −b0(λ1 + ... + λg) is also used, while

∂b1
∂λj

= −b0

and (4.75) yield the second part of (4.73).

4.9 Operator Zakharov–Shabat problem

In this section we discuss the non-Abelian ZS problem. We formulate the DT
and the corresponding dressing chain equations. As an example, we consider
the operator nonlinear Schrödinger (NLS) equation.

4.9.1 Sketch of a general algorithm

We consider a general equation with non-Abelian entries,

a0Ψ + a1DΨ = Ψt, (4.76)

that has the (first order in D) form of the operator L with Ψ being treated as a
matrix or, more generally, as an operator. The potential a0 may be expressed
in terms of s from (4.17),

Dai0 + [ai0, si] = −Da1 − [a1, si]si,

or, in terms of ads = [s, .],

ai0 = (D − adsi)
−1 {−Da1 − [a1, si]si} . (4.77)

The existence of the inverse operator in (4.77) imposes some restriction for
the expression in curly brackets. Namely, the expression should be outside the
kernel of the operator D + adsi . The DT is simple in this case. Namely, a1 is
not transformed owing to (4.13) but

ai+1
0 = ai0 + [a1, si]. (4.78)

Substituting (4.77) for i and i + 1 into (4.78) gives the chain equations. One
could also express the matrix elements of a0 in terms of the elements of the
matrix s and plug them into the Darboux transform (4.78) separately. Similar
tricks give results in the case of the alternative DT (see [324]).
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4.9.2 Lie algebra realization

Let us reformulate the general scheme to derive the dressing chain in the
non-Abelian case [270], starting again from the evolution (4.76),

uΨ + JDΨ = Ψt, (4.79)

with the polynomial operator L(D). This case provides the nontrivial example
of a general equation (4.10) with operator entries J and u (y is changed to
t ). As a result, the form of the evolution operator (Hamiltonian) is fixed in
the form JD + u. Within this scheme, the one-dimensional Dirac equation
arises that can be applied for consideration of a multilevel system interacting
with a quantum field [254]. We treat Ψ (and the other solution Φ necessary
to construct the DT) as operators. The Dirac equation in the form of the ZS
spectral problem enters the Lax pair of some integrable nonlinear equations
as the NLS and Manakov equations.

The potential u is expressible in terms of σ (4.14) that we rewrite as

−σt + Jσx + [Jσ, σ] = [σ, u]. (4.80)

The structure of this equation determines the algebraic properties of the ad-
missible dressing construction.

For the x-independent version, when ux = σx = 0, (4.80) yields

−σt + [Jσ, σ] = [σ, u], (4.81)

which means [tr(σ)]t = 0 and the choice of traceless σ. The structure of σ
implies also the restriction

detσ = detM =
∏

μi. (4.82)

Namely, introducing the iteration index i, we have the link

ui = (adσi −D)−1 (DJ + [J, σi]σi). (4.83)

In the subspace ker(D − adσi) = 0, where the Lie product is zero, (4.83)
trivializes. The DT (4.78) is reproduced as

ui+1 = ui + [J, σi]. (4.84)

Note that J is not changed under the DT; see (4.12). Substituting (4.83) for
i and i + 1 into (4.84), we arrive at the chain equations. We can also express
matrix elements of u in terms of the entries of σ and plug them into the
Darboux transform (4.84) separately.

Let us give more details of the construction in the stationary case, re-
stricting ourselves to DJ = 0; note that Ψ and Φ correspond to λ and μ,
respectively. There are two possibilities for stationary equations that follow
from the non-Abelian equation (4.79): either Ψt = λΨ or Ψt = Ψλ. The first of
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the possibilities leads to the essentially trivial connection between solutions
and potentials from the point of view of DT theory [321]. In the second case
we write

σ = ΦxΦ
−1 = J−1(ΦμΦ−1 − u)

and the DT takes the following form in terms of si:

ui+1 = J−1uiJ − J−1[si, J ],

where s = ΦμΦ−1; hereafter iteration number indices are omitted. The poten-
tials ui can be excluded from (4.14) for this case:

σt = Dr + [r, σ],

with
r = Jσ + u = s. (4.85)

The stationary case, after plugging ui from (4.85) and reentering indices, gives

si+1 = si + Jσi+1 − σiJ, (4.86)

while the relation
Dsi + [si, σi] = 0 (4.87)

links the derivative of s and the internal derivative of σ. The formal transfor-
mation that leads to the chain equations is similar to (4.83) and follows after
substitution of σi = −ad−1

si
Dsi into (4.86).

Further progress in the explicit realization of this program is connected
with the choice of the additional algebraic structure over the differential ring
we consider. For example, if the elements si and σi belong to a Lie algebra
with structure constants Cγ

αβ , then we introduce the expansion (summation
over the Greek indices is implied) in the basis elements eα for si = ξiαeα and
σi = ηiαeα. Plugging into (4.87) gives the differential equation

Dξiα + Cα
γβξ

i
γη
i
β = 0.

In terms of the matrix B,
Bβα = Cα

γβξ
i
γ , (4.88)

we have for vectors outside of the kernel of B

ηiβ = −B−1
βαDξiα. (4.89)

By the definition of the Cartan subalgebra C the corresponding subspace does
not contribute to the Lie product of (4.87).

Proposition 4.8. Let J belongs to a module over the Lie algebra, Jeα =
Jβαeβ, and let there exist an external involutive automorphism τ [e. g.,
(ab)τ = bτaτ ]. Then the chain equation for the variables ξiα takes the form

ξi+1
α = ξiα −B−1

βγ (Dξi+1
γ )Jβα + (JταβB

−1
βγDξiγ)

τ ,
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where the matrix B is defined by (4.88) and the components eα lie outside the
Cartan subalgebra C. Otherwise,

Dξiγ = 0,

if eγ ∈ C.

This proposition demonstrates in fact the DT in the form of (4.86) written in
the basis of eα, in which (4.89) is used. The subspace of C gives the second
case. The system of differential equations is hence nonlinear as the matrix B
depends on ξiγ .

4.9.3 Examples of NLS equations

Split NLS dressing chain

The split NLS equation is associated with the 2× 2 matrix spectral problem

Ψx = i

(
λ p
q −λ

)
Ψ

under the reduction p = q̄ and the choice J = σ3. Let

σ = ηiσi, u = u1σ1 + u2σ2 ∈ sl(2,C)

with the Pauli matrices σi,

[σi, σk] = 2iεiksσs,

as generators of the algebra sl(2,C). The “Miura” connection (4.81) is spec-
ified by

Jσ = iσ2η1 − iσ1η2 + η3σ3.

Inserting this result, as well as u and σ into (4.81), we arrive at the equations

η′1 + 2η1η3 = 2ıη3u2, η′2 + 2η2η3 = −2ıη3u1, (4.90)

η′3 − 2η2
1 − 2η2

2 = 2ıη2u1 − 2ıη1u2.

It follows from (4.82) that

η3 =
√

μ1μ2 − η2
1 − η2

2 , (4.91)

in accordance with (4.90). Hence, the chain equations are

ui+1
1 = ui1 − 2iηi2, ui+1

2 = ui2 + 2iηi1, (4.92)

where
u1 = −(η′2/η3 + 2η2)/2i, u2 = (η′1/η3 + 2η1)/2i,

and η3 is the function (4.91). The structure of the matrix elements of the
potential u is such that q = u1 + iu2, so the reduction to the NLS case means
the reality of both ui. The repulsive NLS equation corresponds to p = −q̄.
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The simplest chain closures and solutions

The simplest version of a periodic closure is

ηi+1
s = αsη

i
s, η1

1 = x, η1
2 = y, η1

3 = z,

with the conditions

−μ1
1μ

1
2 = x2 + y2 + z2, −μ2

1μ
2
2 = α2

1x
2 + α2

2y
2 + α2

3z
2

providing restrictions for the constants

−μ1
1μ

1
2 = x2 + y2 − (μ2

1μ
2
2 − α2

1x
2 − α2

2y
2)/α2

3

or
α2

3 = α2
1 = α2

2, μ1
1μ

1
2α

2
3 = μ2

1μ
2
2.

Hence,
α1 = ±α3, α2 = ±α3. (4.93)

Equations (4.92) yield
(
α1

α3
− 1

)
xt
z

= 2(α1 + 1)y,
(
α1

α3
− 1

)
xt
z

= 2(α1 + 1)x.

Excluding z,
α2 − α3

1 + α2
(ln y)t =

α3 − α1

1 + α2
(lnx)t ,

gives nontrivial conditions for constants (4.93),

α1 = −α3, α2 = −α3.

In this case (ln y)t = −(lnx)t or y = c/x,

xt/x = −(1− α3)
√
−μ1

1μ
1
2 − x2 + y2,

which is again solved in elliptic functions [208]. If the coefficients are chosen as

(xt)2 = −(1− α3)(−μ1
1μ

1
2x

2 − x4 − c2) = (1− x2)(k2x2 + k′2),

then x = cn(t, k) is the Jacobi elliptic function.
The t-chains are obtained in a way similar to that in Sect. 4.3 using the

second Miura map.
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4.10 General polynomial in T operator chains

4.10.1 Stationary equations as eigenvalue problems and chains

Let again A be an operator ring with the automorphism T . If for any two
elements f, g ∈ A

T (fg) = T (f)T (g),

general formulas for the DT for polynomial in T operators exist [321]; see also
[271]. Here we continue to study the versions of the ZS problem. We call the
operator T a shift operator but it could be general as defined above.

The stationary equation that corresponds to the evolution generated by a
polynomial in the automorphism T (see the previous chapter) appears when
the solutions of the constraint equations ψt (x, t) = λψ and ψt (x, t) = ψλ are
considered, or, in the first case,

N∑

m=−M
UmTmψ = λψ . (4.94)

Hence, there are two versions of the scheme depending on the position
of λ. Let us rewrite the first version of the Miura equation from Sect. 4.2,
omitting the index + which denotes the first version:

σt =
N∑

m=−M
[Um Bm (σ) σ − σT (Um )Bm+1 (σ) σ] . (4.95)

The derivative is written as

σt = ϕt(Tϕ)−1 − ϕ(Tϕ)−1(Tϕ)t(Tϕ)−1 = μσ − σμ. (4.96)

It is zero if σ and μ commute. Recall that ϕ ∈ {ψλ=μ}.
The connection between potentials and σ follows as a consequence of (4.95)

in the stationary case of (4.96). For a similar link in the case of differential
operators see Sect. 4.2. When the reduction is such that all the coefficients in
(4.94) are functions of some unique potential u, this connection allows us in
principle to express the potential u as a function of σ. This connection has the
same form for the dressed potential. If we take connections for both potentials
with the corresponding elements σi and plug the result into the DT formulas,
the chain equations result.

This algorithm is illustrated next for particular examples.
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4.10.2 Nonlocal operators of the first order

Let us take the general equation (4.94) for N = 1:

ψt (x, t) = (J + UT )ψ. (4.97)

There are two types of DT in this case [271], denoted by the indices ±; see
Chap. 3. The DT of the first kind (+) leaves J unchanged. We rewrite the
transform of U as

U+ = σ+ (TU)
(
Tσ+

)−1
, (4.98)

where σ+ = φ(Tφ)−1; further the superscript + is omitted.
For the spectral problem corresponding to (4.97), the nontrivial trans-

formations appear if in the stationary equation we introduce the constant
element μ that does not commute with ϕ and σ:

(J + UT )ϕ = ϕμ. (4.99)

The formula for the potential is then changed to

U = ϕμ(Tϕ)−1 − Jσ. (4.100)

Let us derive the identity that links the potential U and σ, doing so in a
different manner from that in [271] or in Sect. 4.6. We start from

T (σ)T 2(ϕ) = T (ϕ),

and insert it into the shifted equation (4.99):

T (U)T 2(ϕ) = T (ϕ)μ− JT (ϕ).

One has a Miura-like link

σT (U)σ = U + [J, σ], (4.101)

where T (σ) = σ−1 is accounted for. Comparing with (4.98) yields a new form
of the DT that coincides with

U + [J, σ] = U+.

Direct use of (4.99) for expressing U in terms of τ = ϕμϕ−1 and σ gives

U = τσ − Jσ. (4.102)

The element τ is useful as well, for

T (U) = σ−1τ − Jσ−1. (4.103)

Inserting (4.103) and (4.102) into (4.101), we arrive at the identity. The al-
gorithm of the explicit derivation of the chain equations begins from (4.101)
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solved with respect to U in an appropriate way. For matrix rings, it may be
a system of equations for matrix elements, which could be effective in low
matrix dimensions of the “Miura” link (4.101).

The role of σ+ can be played also by the function s = ϕμ(Tϕ)−1. Equa-
tion (4.100) connects U and σ. Let us rewrite (4.101) and the DT in terms
of s, excluding U from (4.100) and denoting the number of iterations by
index n:

U [n] = sn − Jσn.

Equation (4.101) reduces to

sn = σnT (sn)σn. (4.104)

This result gives for the DT

sn+1 − sn = Jσn+1 + σnJ.

Then, solving (4.104) with respect to s, we obtain the chain system. This
could be done similarly to the method in the previous section by means of the
Lie algebra representation.

Let us mention that the chain equations for the classical ZS problem and
two types of the DT were introduced in [396]. The closure of the chain equa-
tions specifies classes of solutions.

4.10.3 Alternative spectral evolution equation

Let us take (4.94) in the alternative version of the spectral problem (left
position of the parameter μ):

(U0 + U1T )ϕ = μϕ. (4.105)

The connection between the unique potential U1 and σ+ (recall that + denotes
the first version considered in 4.10.1) is obtained from (4.95) and (4.96), or
directly from (4.105) ,

U1 = (μ− U0)σ+ . (4.106)

Introducing the number of iterations n for U1 and n + 1 for U+
1 yields

U1 [n + 1] = (μn − U0)σ+[n + 1] = σ+ [n]T
{
(μn − U0)σ+ [n)

} (
Tσ+ [n]

)−1
.

(4.107)
This should be the chain equation for the generalized ZS problem. We rewrite
the chain equation (4.107) in a more compact form changing the notations as
follows U0 → J, U1 → U, σ+ [n] → σn and supposing that T (J) = J . We
arrive at

σn+1 = (μn − J)−1σn (μn − J).

This dressing is, however, almost trivial. Such a phenomenon is well known for
the differential operators [324]. The alternative and effective transformations
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appear if in the stationary equation (4.105) we introduce the element μ that
does not commute with σ and changes the order of the elements μ and ϕ on
the right-hand side. (It is the second case mentioned at the beginning of this
section). We get

(J + UT )ϕ = ϕμ.

The formula for the potential is changed to

U = ϕμ(Tϕ)−1 − Jσ (4.108)

and the role of σ+ is played by the function s = ϕμ(Tϕ)−1. Equation (4.95)
connects U and σ:

Jσ + U − σJσ + σT (U)(Tσ)−1 = [μ, σ]. (4.109)

The algorithm of the explicit derivation of the chain equations begins from
(4.109) solved with respect to U in the appropriate way. For matrix rings, it
may be a system of equations for matrix elements that could be effective in
low matrix dimensions of (4.109), as in [396]. Otherwise it leads to a problem
of the adequate choice of basis. Let us rewrite (4.109) and the DT (4.107) in
terms of s, excluding U from (4.108) and denoting the number of iterations
by the index n: U [n] = sn − Jσn. Equation (4.109) is transformed as

s− σJσ + σT (s)(Tσ)−1 + σJ = [μ, σ].

This result gives for the DT

sn+1 − sn = Jσn+1 + σnJσn − [μ, σn]. (4.110)

Then, taking (4.110) for two indices (e. g., they could be n and n + 1) we
have the chain system. In the next section we give the explicit example for
the bilinear Hirota equation.

4.11 Hirota equations

In this section we build dressing chain equations for the non-Abelian analog
of the Hirota equations. Performing periodic closure, we obtain a solution of
the equations.

4.11.1 Hirota equations chain

Let us return to the Hirota equations and to their non-Abelian analog from
Sect. 2.10. Excluding the transformed potential from (2.127) and (2.128), we
arrive at the equation that links the potential and the function σ− (r):

u T−1σ− (r)− σ− (r − 1)u =
[
σ− (r − 1)− σ− (r)

]
T−1σ− (r) . (4.111)
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Note that the expressions in (2.127), (2.128), and (4.111) are still general
(non-Abelian) and may be used in the simplest (but sufficiently rich) closures
(e. g., σ−

n+1 = σ−
n ). For the Lie-algebraic approach to the non-Abelian chains

see [270].
In the scalar (Abelian) case we can easily solve (4.111) for the potential:

u =
[σ− (r − 1)− σ− (r)]T−1σ− (r)

T−1σ− (r) − σ− (r − 1)
. (4.112)

Supplying the entries of (4.112) with the index N (iteration number) and
substituting into (2.127) and (2.128), we obtain two equivalent forms of the
chain equations. For example,

uN+1 = uN − σ−
N (r − 1) + σ−

N (r)

yields

[
σ−
N+1 (r − 1)− σ−

N+1 (r)
]
T−1σ−

N+1 (r)
T−1σ−

N+1 (r)− σ−
N+1 (r − 1)

=

[
σ−
N (r − 1)− σ−

N (r)
]
σ−
N (r − 1)

T−1σ−
N (r)− σ−

N (r − 1)
.

(4.113)
Equation (4.113) generates the chain equation for the specific case of the
system (2.123) by the choice x→ n, Tfn(j, r) = fn−1(j, r). A solution of the
resulting chain equation generates the solution of the system (2.126) by use
of the connection formula (4.112) and the corresponding formula for v. The
transition to τn(j, r) is made by (2.124).

4.11.2 Solution of chain equation

Let us denote

sN =

[
σ−
N (r − 1)− σ−

N (r)
]

T−1σ−
N (r)− σ−

N (r − 1)
,

then the dressing chain equation (4.113) reads

sN+1 = sN
σ−
N (r − 1)

T−1σ−
N+1 (r)

.

Iterating this recurrence q times yields

sN+q = sN

∏q−1
s=0 σ−

N+s (r − 1)
∏q
s=1 T

−1σ−
N+s (r)

.

In analogy with the continuous case, let us consider the periodic closure of
the chain (4.113), starting from the simplest case q = 0, which means σN+1 =
σN = σ. As sN+1 = sN ,

Tσ− (r − 1) = σ− (r) .



140 4 Dressing chain equations

This means σ− (r + p) = T pσ− (r) . If a boundary condition in the point
r = 0 is given, then

σ− (p) = T pσ− (0) .

The equation for ϕ(p, x) is then

Tϕ(p, x) = T [σ(p, x)]ϕ(p, x).

The solution depends on the choice of T . If Tϕ(p, x) = ϕ(p, x + δ), then

ϕ(p, x) = exp (Ax) ,

with A from
Aδ = ln

[
T p+1σ− (0)

]
.

4.12 Comments

Let us mention that the KdV chain equations were introduced by Weiss [448]
and for the classical ZS problem and two types of the DT were proposed
by Shabat [396]. The closure of the chain equations specifies classes of solu-
tions. The periodic closure of the chains produces integrable bi-Hamiltonian
finite-dimensional systems and, in some special cases, the finite-gap poten-
tials [438, 448]. We expect that the technical elements we develop are general
enough. Derivation of the chain equations represents simply the result of sub-
stitution of a potential as the function of σ into the DT formulas, but the
problem of the explicit form of the function could be nontrivial. The periodic
closures of a chain for arbitrary N for the KdV and other equations are studied
similarly and lead to the expressions for σi and, consequently, for the poten-
tials in hyperelliptic functions by the algebraic construction [45]. Important
dressing theory applications mentioned in [324] concern the possibility to com-
bine the finite-gap [45] and localized (solitonic) configurations; see also [24].
The interpretation in terms of the finite-gap integration theory may be found
in [216, 251]. We also believe that the finite closures for the chain equations
may produce the solutions by accounting for a symmetry analysis, by means
of the Wigner–Eckart theorem for both x and t evolutions. The development
of the technique for infinite chains does not look impossible as well.
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Dressing in 2+1 dimensions

In this chapter we speak again about the origin of the dressing technique, now
in multidimensions. The important step was realized in the Moutard papers
[340, 341] that the stabilization of the Laplace transformation chain can gen-
erate solutions. Notice again (see Chap. 1) that the net of points generated by
the transform of the invariants of the gauge transformations has two possible
symmetry reductions: the first reduction corresponds to the Moutard case and
the second one was discovered by Goursat [192, 193]. The dressing procedure
in two spatial dimensions opened a way to apply the Laplace equation in Lax
pairs to solve some nonlinear 2+1 equations because their associated spectral
problems are expressed in terms of the Laplace equation.

The celebrated 2+1 Kadomtsev–Petviashvili (KP) equation for surface
water waves (there are lots of other applications [228]; see Chaps. 9, 10) and
the corresponding dressing based on the direct extension of the Darboux the-
ory (linear Schrödinger evolution as the first operator in the Lax pair) [313]
have been the subject of intense studies [324]. The dressing methods for the
Davey–Stewartson (DS) equation were introduced in [277], where, by means
of eight Ablowitz–Kaup–Newell–Segur (AKNS) type pairs, ordinary and two-
fold elementary Darboux transformations (DTs) were studied and used for
construction of multisoliton solutions of both types (DS I and DS II) of the
DS equation. The dressed potentials were expressed in terms of quasidetermi-
nants studied previously in [176]. It was proved that nonlinear superposition
formulas have a symmetry structure that gives a possibility to build networks
of DTs that can be used to solve boundary problems via the construction pro-
posed in [199]. An important class of solutions of a general Zakharov-Shabat
(ZS) hierarchy that was not mentioned in [324] is generated by the dressing
formulas from [313, 314]. In particular, solutions of the KP equations are given
by the relation [313]

u = −2∂2 lnW (ϕ1, . . . , ϕs),

141
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where the Wronskian W is formed by the dressing functions ϕj depending on
a parameter k and arbitrary function g(k):

ϕj = [∂k + g(x)] exp(kx + k2y + k3t)|k=kj .

This class of solutions contains the so-called general position solutions derived
by Krichever [252] via the finite-gap formalism. Note also that these solutions
generate the Calogero–Moser potentials

u = 2
∑

j

1
x− xj(y, t)

,

which can be extracted from the dressing formulas. For the N -particle prob-
lems and polynomial solutions of the ZS hierarchy we refer to [315]. The 2+1
theory of generalized AKNS equations, including the DS, the Boiti–Leon–
Manna–Pempinelli (BLMP1 and BLMP2) [58, 65], and some other equations,
is studied in [140, 141, 143, 144, 142].

Here we concentrate on studying a general theory of dressing based on
combinations of the following transformations: Laplace, Darboux (Sects. 5.1,
5.2), Goursat (Sect. 5.3), and Moutard (Sect. 5.4). Among other things, we
derive a new integrable equation (5.19) which can be treated as the two-
dimensional generalization of the sinh–Gordon equation. Sections 5.5 and 5.6
illustrate applications of this theory to the two-dimensional Korteweg–de Vries
(KdV), two-dimensional modified KdV (MKdV), Nizhnik–Veselov–Novikov,
and BLMP1 equations.

5.1 Combined Darboux–Laplace transformations

In this section we formulate constraints to coefficients of the Laplace equation
which reduce it to the Moutard and Goursat equations. We show that a num-
ber of integrable nonlinear equations arise as a consequences of the reduction
equations for the DTs. The content of this section is based on [287].

5.1.1 Definitions

For the Laplace equation

ψxy + aψy + bψ = 0 (5.1)

the following were introduced:

1. The Laplace transformations (LTs) (Sect. 1.5)

a→ a−1 = a− ∂x ln(b− ay), b→ b−1 = b− ay, ψ → ψ−1 = ψx + aψ,
(5.2)

a→ a1 = a+∂x ln b, b→ b1 = b+∂y (a + ∂x ln b) , ψ → ψ1 =
ψy
b
.

(5.3)
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2. The DTs

a→ a1 = a−∂x ln(a+σ), b→ b1 = b+σy, ψ → ψ1 = ψx−σψ, (5.4)

a→ 1a = −(σ + bρ), b→ 1b = b− (bρ)y, ψ → 1ψ = ρψy − ψ.
(5.5)

where σ = σ(x, y) = φx/φ, ρ = φ/φy , and ψ and φ are particular solutions
of (5.1) with predetermined a and b. We refer to φ as the support function
of the DT.

5.1.2 Reduction constraints and reduction equations

A constraint for the coefficients a and b of (5.1) fixes a particular class of
equations which we are interesting in. Namely, the condition

a = 0, b = u (5.6)

yields the Moutard equation

ψxy + u(x, y)ψ = 0, (5.7)

while
a = −1

2
∂x lnλ, b = −λ (5.8)

leads to the Goursat equation

ζxy = 2
√

λ ζxζy. (5.9)

After the substitution ψ =
√
ζx and χ =

√
ζy we get

ψy =
√
λχ, χx =

√
λψ

or, in the form of the Laplace equation,

ψxy =
1
2
(lnλ)xψy + λψ (5.10)

and a similar equation for χ; see also Sect. 5.1.3. The functions u and λ are
solutions of the special equations which we call the reduction equations. In
this section we will derive these equations for the LT and the DT. We study
mostly the example of the Goursat equation, but the approach is directly
reformulated for the Moutard equation.

Let us consider the LTs (5.2). The invariance of the reduction constraint
(5.8) means

λ−1 = λ− 1
2
∂x∂y lnλ =

C

2λ
, C = const. (5.11)

It is obvious that (5.11) is valid for the LT (5.3) as well because the last one
is inverse to (5.2).
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The reduction equation for this transformation is the well-known sinh–Gordon
equation

∂x∂y lnλ = 2λ− C

λ
, (5.12)

and the new potential λ−1 is a solution of (5.12) too. In the case C = 0 we
obtain λ−1 = 0 and the Liouville equation, instead of (5.12). The general
integral for the Liouville equation is well known:

λ =
f ′g′

(f + g)2
,

where f = f(x) and g = g(y) are arbitrary differentiable functions. The
Goursat equation is integrated as

ζ = − 1
C2

1

∂y ln(f + g) + V, C1 = const.

The function V = V (y) is determined by the equation

V ′ =
(

1
2C1

(ln g′)′
)2

=
1

4C2
1

(
g′′

g′

)2

and

ψ =
√
f ′g′

C1(f + g)
, χ =

1
2C1

∂y ln
(
−∂y 1

f + g

)
.

Proposition 5.1. Let M and L be two Laplace invariants of (5.1). This
means that

M =
1
2
∂x∂y lnλ− λ, L = −λ.

Using the reduction equation (5.12) yields

M = − C

2λ
, L = −λ

and
M−1 = M1 = L, L−1 = L1 = M.

Now we take the DT (5.4). Inserting both transforms into the reduction
condition (5.8), we get

λ1 = λ− σy = λ

(
σ − λx

2λ

)
. (5.13)

Denote α = lnφ and Λ = lnλ. Since

λ− σy =
(
−1

2
Λx + αx

)
αy
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and σ = αx, we obtain from the transform (5.13) the condition for Λ:
(
αx − 1

2
Λx

)[
αy − exp(Λ)

(
αx − 1

2
Λx

)]
= 0. (5.14)

Equating to zero the first parentheses yields

Λxy = 2 exp(Λ)

and α = Λ/2 − c(y), where c(y) is an arbitrary function. But in this case
we get λ1 = 0, and the Liouville equation is in the realm of the reduction
equation.

Equating to zero the brackets in (5.14), we arrive at the equation

[exp(−2α)λ]x = [exp(−2α)]y ; (5.15)

therefore,

θx = ψ2 =
1

Fx + C2
, λ =

Fy + C1

Fx + C2
,

where F = F (x, y) is any differentiable function and C1,2 = const. Substituting
(5.15) into (5.10) yields

2(C2 + Fx)C2
1 + [(Fyxx + 4Fy)C2 + FxFyxx + 4FyFx − FxxFyx]C1 + 2F 2

yFx

+
(
FyxxFy − 1

2
F 2
yx + 2F 2

y

)
C2 − 1

2
F 2
yxFx − FyFxxFyx + FxFyFyxx = 0.

(5.16)
Define new fields P and Q as

Fx = P − C2, Fy = Q− C1.

Then (5.16) can be split into the system

2QxQPx − (2QxxQ−Q2
x + 4Q2)P = 0, Py = Qx. (5.17)

After integration of the first equation we get

P =
C3Qx√

Q
expG, Gx = 2

Q

Qx
,

where C3 is the third constant of integration. It is necessary to obey the second
equation in (5.17). Let

Q = n2(x, y), G = lnm(x, y).

Then the reduction equation is simplified:
(
n2

)
x

= 2C (mnx)y , mxnx = mn. (5.18)

This system can be rewritten in more convenient form. Let

nx = n expS, mx = m exp(−S),
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S = S(x, y). After substituting into (5.18) we get

Sy =
1
C

n

m
− ∂y ln(mn);

therefore,
Sxy = 4(sinhS) ∂y∂−1

x coshS. (5.19)

Equation (5.19) is the reduction equation for the DT (5.4). It looks like (5.12)
and it is a generalization of the d = 2 sinh–Gordon equation. The Lax pair
for (5.19) is introduced by means of the following:

Proposition 5.2. The (L,A) pair for (5.19) is written as

Kψ = 0, K1Dψ = 0,

where

D = ∂x − σ, K = ∂x∂y − 1
2
λx
λ

∂y − λ, K1 = ∂x∂y − 1
2
λ1,x

λ1
∂y − λ1,

and the variables λ and λ1 are determined by

λ =
(Sx + 2 coshS)y

4 sinhS
exp(−S), λ1 =

(Sx + 2 coshS)y
4 sinhS

expS, (5.20)

and σy ≡ λ− λ1.

This statement is checked by direct substitution. Thus, the reduction equa-
tions for the DT (5.4) have either the form of (5.19) or the form of the Liouville
equation.

The reduction equations for the DT (5.5) are obtained similarly. As a
result, we get

λ = C1φy expF, 1λ = −C1C2φ
2

φy
expF, (5.21)

where φ is the support function of the DT (5.5) and the reduction equation
can be written in the form of a system

φxy = φy[Fx + 2C1φ expF ], Fyφy = C2φ.

Proposition 5.3. By the construction (5.20) for the DT (5.4) we get

M = −λ1, L = −λ

and
M1 = M exp(−2S), L1 = L exp(2S).
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Similarly for the DT (5.5) the use of (5.21) gives

M = −C2(−φx + φFx + C1φ
2 expF )

φy
, L = −C1φy expF

and

1M = − φ2
y

C2φ2
M, 1L = −C2φ

2

φ2
y

L.

The product of the Laplace invariants ML is invariant in both cases. Combi-
nations of LT and DT generate new equations and their Lax pairs.

5.1.3 Goursat equation, geometry, and two-dimensional
MKdV equation

As shown in Sect. 5.1.2, the Goursat equation (5.9) is connected to the par-
ticular case of (5.1) with two potentials a = a(x, y) and b = b(x, y) = λ(x, y).
We refer to λ as the potential function. The reduction (5.8) is valid only for
special types of potentials if the form of the Laplace equation is maintained
while transformations are performed. Our interest in the Goursat equation
is caused by applications of this equation in geometry and in the soliton
theory:

1. As regards geometry, let x be the complex coordinate, y = −x,
√
λ is the

real-valued function, and ψ or χ as solutions of (5.10) are complex-valued
functions. Then we define three real-valued functions Xi, i = 1, 2, 3 which
are the coordinates of a surface in R

3 [242]:

X1 + iX2 = 2i
∫

Γ

(
ψ2dy′ − χ2dx′

)
,

X1 − iX2 = −2i
∫

Γ

(
ψ2dy′ − χ2dx′),

X3 = −2
∫

Γ

(
ψχdy′ + χψdx′),

(5.22)

where Γ is an arbitrary path of integration in the complex plane. The
corresponding first fundamental form, the Gaussian curvature K, and the
mean curvature H yield:

ds2 = 4U2dxdy, K =
1
U2

∂x∂y lnU, H =

√
λ

U
.

Here U =| ψ |2 + | χ |2 and any analytic surface in R
3 can be globally

represented by (5.22) [244].
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2. As an example of soliton equations, consider the system of the two-
dimensional MKdV equations introduced by Boiti, Leon, Martina, and
Pempinelli [58, 65]:

4λ2(λt −Aλx + Bλy − λxxx − λyyy) + 4λ3 [(2λ + B)y + (2λ−A)x] +

+6λ(λyλyy + λxλxx)− 3(λ3
x + λ3

y) = 0,

Bx = 3λy − λx, Ay = λy − 3λx.
(5.23)

Here λ = λ(x, y, t), A = A(x, y, t), and B = B(x, y, t). If we introduce the
function u =

√
λ, then we can rewrite (5.23) in the more customary form

ut + 2u2(ux + uy) + 1
2 (By −Ax)u + Buy −Aux − u3y − u3x = 0,

Bx = (3∂y − ∂x)u2, Ay = (∂y − 3∂x)u2.
(5.24)

The reduction conditions A = −B = −2u2 and uy = ux lead to the MKdV
equation,

ut + 12u2ux − 2u3x = 0,

(here u3x ≡ uxxx) so we call (5.24) the two-dimensional MKdV equations.
The two-dimensional MKdV equations (5.24) are the compatibility con-
dition of the linear system comprising (5.10) and

ψt = ψ3x+ψ3y−3
2
λy
λ

ψyy+

[
3
4

(
λy
λ

)2

− λ−B

]
ψy+(A−λ)ψx+

1
2
(Ax−λx)ψ.

We will study (5.24) in Sect. 5.6.

Remark 5.4. Zenchuk [477] studied the chains of discrete transformations
(5.2)–(5.5) of solutions and potentials in the general case of the linear second-
order partial differential equation with two independent variables. Consider-
ing the simplest (k = 2) closed chains of these transformations, he obtained a
novel integrable equation

1
2
Sxy − eS − e−S

[
C1 − C2∂

−1
x

(
e−S

)
y

]
= 0,

where C2 > 0.

In the present chapter we use the reduction restriction (5.8) as a (weak)
condition of closure. In Sect. 5.1.2 we derived a new integrable equation (5.19),
the two-dimensional generalization of the sinh–Gordon equation. In the next
section we employ the Goursat transformation and the binary Goursat trans-
formation to construct explicit solutions of the Goursat equation. These trans-
formations allow us to obtain new solutions of the Goursat equation without
solving the reduction equation. We also discuss the transformation for Laplace
invariants.
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5.2 Goursat and binary Goursat transformations

An analogy of the Moutard transformation for the Goursat equation was
studied by Ganzha [169]. Such a Goursat transformation is valid without
a reduction restriction and reduction equations. Many useful details can be
found in the textbook of Ganzha and Tsarev [171], where the transformation
is defined via two solutions of (5.9). The transformed function ψ[1] and the
potential λ[1] are extracted by quadratures [169, 197].

Theorem 5.5. Let the transform ψ[1] be introduced by the relations

(z1ψ[1]/ψ1)x = z1(ψ2/ψ1)x, (5.25)

(z1ψ[1]/ψ1)y = [z1z1xy − 2z1xz1y/z1xy](ψ2/ψ1)y,

where z1,2 are solutions of (5.9) and ψ1,2 = √z1,2x solve (5.10). Then ψ[1] is
a solution of the (transformed) equation (5.10) with the potential

λ[1] = λ− (ln z1)xy

and the transform z[1] is found by a quadrature from

z[1]x = ψ2[1], z[1]y = (ψ[1]y)2/λ[1]. (5.26)

This transformation preserves the form of the Laplace–Goursat equation
(5.10), e.g., possesses the covariance property. Below we introduce a twofold
eDT for the Goursat equaton with the same property.

We introduce new variables ξ = x+ y and η = x− y and rewrite (5.10) in
matrix form,

Ψη = σ3Ψξ + UΨ. (5.27)

Here

Ψ =
(
ψ1 ψ2

χ1 χ2

)
, U =

√
λσ1, (5.28)

where ψk = ψk(ξ, η) and χk = χk(ξ, η), k = 1, 2 are particular solutions of
(5.10) with some λ(ξ, η), and σ1,3 are the Pauli matrices. Let Ψ1 be some
solution of (5.27) and Ψ �= Ψ1. We define a matrix function σ ≡ Ψ1,ξΨ

−1
1 .

Equation (5.27) is covariant with respect to the classical DT:

Φ[1] = Φξ − σΦ, U [1] = U + [σ3, σ]. (5.29)

It is a particular case of the general classical non-Abelian formula from Chap.
2, the Matveev Theorem 2.19.

Remark 5.6. It is not difficult to check that the DT (5.29) is the superposition
formula for two simpler DTs given by (5.4) and (5.5).
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Remark 5.7. Equation (5.27) is the spectral problem for the DS equation
[13, 277]. The LT produces explicitly invertible Bäcklund autotransformations
for the DS equation. It is shown in [459] that these transformations permit
solutions to the DS equation to be constructed that fall off in all directions in
the plane according to exponential and algebraic laws.

Next we consider a closed 1-form

dΩ = dξ ΦΨ + dη Φσ3Ψ, Ω =
∫

dΩ,

where a 2× 2 matrix function Φ solves the equation

Φη = Φξσ3 − ΦU. (5.30)

Let us apply the DT. It can be verified by immediate substitution that (5.30)
is covariant with respect to the transformation

Φ[+1] = Ω(Φ, Ψ1)Ψ−1
1 .

We can alternatively affect U (5.28) by the following transformation:

U [+1,−1] = U + [σ3, Ψ1Ω
−1Φ].

The particular solution of (5.30) has the form

Φ1 =
(
s1ψ1 + s2ψ2 −s1χ1 − s2χ2

s3ψ1 + s4ψ2 −s3χ1 − s4χ2

)
, (5.31)

where sk = const (k = 1, . . . , 4). It is convenient to choose Φ1 in the form

Φ1 = ΨT
1 σ3, (5.32)

where the superscript T stands for the transpose. Equation (5.32) is the par-
ticular case of (5.31). In this case

U [+1,−1] = U − 2AF , (5.33)

where AF is the off-diagonal part of the matrix A = Ψ1Ω
−1ΨT

1 , Ω = Ω(Φ1, Ψ1)
and

AT
F = AF = fσ1. (5.34)

Here f = f(ξ, η) is some function. Using (5.29), (5.33), and (5.34), we see that
U [+1,−1] has the same form as for the initial matrix U ,

U [+1,−1] ≡
(

0
√

λ[+1,−1]√
λ[+1,−1] 0

)
=

(
0

√
λ− 2f√

λ− 2f 0

)
;

thus, the reduction restriction is valid without the reduction equations.
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The new function Φ[+1,−1] has the form

Φ[+1,−1] = Φ−Ω(Φ, Ψ1) [Ω(Φ1, Ψ1)]
−1 Φ1, (5.35)

where Φ is an arbitrary solution of (5.30).
Using the twofold DT (5.33) and (5.35), we can construct a new solution

of the Goursat equaton by means of dressing a particular solution. As a result,
we get the following theorem (returning to the former variables x and y):

Theorem 5.8. Let

ψk,y =
√
λχk, χk,x =

√
λψk,

αk,y = −
√
λβk, βk,x = −

√
λαk,

where k = 1, 2. Then new functions

α′
1 = α1 − A1ψ1 + A2ψ2

D
, β′

1 = β1 +
A1χ1 + A2χ2

D

are solutions of the equations

α′
1,y =

√
λ′ β′

1, β′
1,x =

√
λ′ α′

1,

where

√
λ′ = −

√
λ +

ψ1χ1Ω22 + ψ2χ2Ω11 − (ψ1χ2 + ψ2χ1)Ω12

D

and

Ω11 =
∫

dxψ2
1 + dyχ2

1, Ω12 = Ω21 =
∫

dxψ1ψ2 + dyχ1χ2,

Ω22 =
∫

dxψ2
2 + dyχ2

2, D = Ω11Ω22 −Ω2
12,

Λ11 =
∫

dxα1ψ1 + dyβ1χ1, Λ12 =
∫

dxα1ψ2 + dyβ1χ2,

Λ21 =
∫

dxα2ψ1 + dyβ2χ1, Λ22 =
∫

dxα2ψ2 + dyβ2χ2,

A1 = Λ11Ω22 − Λ12Ω12, A2 = Λ12Ω11 − Λ11Ω12.

Here
∫

=
∫
Γ , where Γ is an arbitrary path of integration in the plane. The

explicit expressions for the functions α′
2 and β′

2 are obtained by the direct
picking up of the relations indicated.

Thus the twofold eDT allows us to construct explicit solutions of the Goursat
equation without solving the reduction equation.
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5.3 Moutard transformation

The Moutard transformation [340, 341] is a map of the DT type: it connects
solutions and the coefficient u(x, y) of the equation (5.7) so that if ϕ and ψ
are different solutions of (5.7), then the solution of the twin equation with
ψ → ψ[1] and u(x, y) → u[1](x, y) can be constructed by the solution of the
system

(ψ[1]ϕ)x = −ϕ2(ψϕ−1)x, (ψ[1]ϕ)y = ϕ2(ψϕ−1)y.

In other terms,
ψ[1] = ψ − ϕΩ(ϕ, ψ)/Ω(ϕ,ϕ), (5.36)

where Ω is the integral of the exact differential form

dΩ = ϕψxdx + ψϕydy. (5.37)

The transformed coefficient (potential in mathematical physics) is given by

u[1] = u− 2(logϕ)xy = −u + ϕxϕy/ϕ
2.

The proof is straightforward; see [298] for details.
The important feature of the Moutard transformation is general for the

DTs: the transform is parameterized by a pair of solutions of the equation
and the transform vanishes if the solutions coincide. The Moutard equa-
tion is obviously transformed to the two-dimensional Schrödinger equation
and studied in connection with the central problems of classical differential
geometry [197].

In the soliton theory the Moutard equation enters the Lax pairs for non-
linear equations such as the KP equation [35, 168, 298, 430] (see Chaps. 9, 10
for more details).

5.4 Iterations of Moutard transformations

Analysis of the iteration sequences for the transformations of the form (5.36),
where, in accordance with (5.37),

Ω(ϕ,ϕ) =
∫

Δ2(ϕ,ϕ)dxi + cφ = φ2/2 (5.38)

by the appropriate choice of the constant cφ, is performed similarly to the
algorithm given in [324] for the classical DT. Suppose the result of N iterations
is a linear combination of the integrals Ω(ϕi, ψ) of (5.37):

ψ[N ] = ψ +
∑

i

siΩ(ϕi, ψ). (5.39)
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This formula is proved by induction. The main property of the Mourtard
transformation can be written as

ϕk +
∑

i

siΩ(ϕi, ϕk) = 0 (5.40)

and gives
si = Δi/Δ (5.41)

by Kramer’s rule. Denoting

Ωi ≡ Ω(ϕi, ψ) and Ωik ≡ Ω(ϕi, ϕk),

we get Δ = det[Ωik], and Δi is obtained from Δ by the known rule of action
with the ith row. Hence, the results of the iterations can be presented in the
compact determinant form as in the classical Crum case [324].

Differentiating (5.39) yields

ψxy[N ] = ψxy + (siΩi)xy = −u[N ]ψ[N ] (5.42)

= −uψ + (sixΩi + siΩix)y = −u[N ](ψ + siΩi),

and using the definition of the determinant Δ together with the properties
Ωix = ϕiψx, six = −si lnx ϕi gives the DT for the iterated potential

u[N ] = u + 6(lnΔ)xx, (5.43)

that is used for multikink (see the next section) and multidromions [145, 146]
construction.

5.5 Two-dimensional KdV equation

Applications of the Moutard transformations for solution of the KP and DS
equations are well known [324]; for the Nizhnik–Veselov–Novikov equation see
[278]. Here we follow [145] concerning the equation

mty = (mxxy + mymx)x, (5.44)

which is the 2+1 version [281] of the KdV-like Hirota–Satsuma equation
[211]. Equation (5.44) was integrated by inverse spectral transform in [58, 65].
Details of multisoliton (multikink) construction and asymptotic behavior are
given in the next section. We also use this example in Sect. 7.3 to show how
the singular manifold method generates the Moutard transformation.
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5.5.1 Moutard transformations

Here we consider the asymptotic behavior of iterated solutions and the
simplest example of repeated iterations from the zero seed potential that
demonstrates the interaction of kinks. The formula for the N -times iterated
solution is

m = 6(lnΔ)x, (5.45)

where, again, Δ = det[Δik] and, like [277], the one-step transform was
performed,

Δik =
∫

dΩ(φk, φi) + Cik, Cik + Cki = φk(0)φi(0),

Ω(φk, φi) = −2
∫

[δ1dx + δ2dy + δ3dt], (5.46)

δ1 = φkφix, δ2 = φkyφi, δ3 = φkφit − φkxφixx + φkxxφix.

This way we fix the constants of integration. A similar combination of solutions
leads to multidromions [145], the localized solitons in two dimensions (first
appeared in [62]).

5.5.2 Asymptotics of multikink solutions of two-dimensional
KdV equation

To demonstrate the possibilities of the technique in 2+1 dimensions, we con-
sider the example of kink interaction and choose the seed Lax pair solution
as

φk = Ak exp(akx + a3
kt) + Bk exp(bky). (5.47)

Introducing the notations

αik =
ai

ai + ak
, βik =

bi
bi + bk

,

ξk = akx + a3
kt, ξi0 = aix0 + a3

i t0, Ai/Bi = pi,

we perform integration from x0, y0, t0 to x, y, t and obtain

Δik = Cik + αikpipk[exp(ξi + ξk)− exp(ξi0 + ξk0)]+ (5.48)

+pi [exp(ξi + bky)− exp(ξi0 + bky0)] + βik [exp(bi + bk)y − exp(bi + bk)y0] .

We would stop at kinks within the choice ai > 0, bi > 0 for x0, y0, t0 → −∞;
hence,

Δik = [αikpipk exp(χi + χk) + pi exp(χi) + βik] exp[(bi + bk)y] + Cik, (5.49)
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where χi = aix + a3
i t− biy. Notice that it is impossible to represent Δik as a

sum of two exponents with the opposite powers like for the multisoliton de-
terminant representation for the KP equation [324]. Hence, we should develop
an asymptotic calculation technique.

Let us consider the case

0 < Re(a2
1) < . . . < Re(a2

N )

and go to the reference frame of the sth kink that means fixing the phase χs.
Running at the level y, we shall derive the asymptotic at t → ±∞. We shall
also put Cik = 0 and Δ′

ik = Δik exp(bi + bk)y and account for the relation
(lnΔ)′x = (lnΔ)x. Finally, let us investigate

Δ′
ik = αik exp(χ′

i + χ′
k) + exp(χ′

i) + βik, (5.50)

where
x = −a2

st + bsy/as + χs/as, (5.51)

χ′
k = ak(a2

k − a2
s)t + (akbs/as − bk)y + χk/as + ln[pk].

Therefore, at t→∞ and χs = const,

χk =
{−∞, k < s

+∞, k > s

and the elements of the determinant matrix have the following asymptotic
values:

1. Δik → βik, i, k < s
2. Δik → αik exp(χ′

i + χ′
k), i, k > s

3. Δik → expχ′
i, i > s, k < s

4. Δik → αik exp(χ′
i + χ′

k) + βik, i < s, k > s

It can be shown that only the first term contributes to the determinant
asymptotic. We list below the special cases:

i = s
k < s, Δsk = exp(χs) + βsk,

k = s, Δss = [αss exp(χs) + 1] exp(χs) + βsk,
k > s, Δsk = αsk exp(χ′

s + χ′
k).

k = s
i < s, Δis = βis,

i > s, Δis = αis[exp(χs) + 1] exp(χi) exp(χi).

It is convenient to present the explicit form of the determinant via the super-
matrix
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k < s k = s k > s
i < s βik βik αik exp(χ′

i + χ′
k)

i = s Δsk = exp(χs) + βsk Δss αsk exp(χs + χk)
i > s exp(χi) exp(χi)[αis exp(χs) + 1] αik exp(χi + χk)

In this asymptotic determinant it is possible to extract expχ from rows i > s
and from columns k > s, i.e.,

Δ = exp

(
n∑

i=1

χi − χs

)
Δ1. (5.52)

Then

Δ1 =

∣∣∣∣∣∣

βik βis 0
exp(χs) + β Δss αskχs

1 αis exp(χs) + 1 αik

∣∣∣∣∣∣
,

where 0 and 1 are matrices with zero and unit elements. Obviously, it follows
from (5.45) that

m =

[
n∑

i=1

χi − χs

]

x

+ (lnΔ1)x =
n∑

i=1

ai − as + (lnΔ1)x. (5.53)

A Lagrange expansion by the row of number s,

[0, . . . , 0, αss exp(2χs), 0, . . . , 0] + [1, . . . , 1, αs,s+1 exp(χs+1), 1, . . . , 1] + . . .

+(βs1, . . . , βss, 0, . . . , 0)

allows us to present the result for the asymptotic Δ1 in a “kink” form:

Δ1 = αss exp(2χs)

∣∣∣∣∣∣

βik βis 0
0 1 0
1 αis exp(χs) + 1 αik

∣∣∣∣∣∣

+ exp(χs)

∣∣∣∣∣∣

βik βis 0
1 1 αsk
1 αis exp(χs) + 1 αik

∣∣∣∣∣∣
+

∣∣∣∣∣∣

βik βis 0
βsk βss 0
1 αis exp(χs) + 1 αik

∣∣∣∣∣∣
.

(5.54)

The first determinant is arranged via a sum of the columns with the num-
ber s terms: ∣∣∣∣∣∣

βik
1
1

∣∣∣∣∣∣
+

∣∣∣∣∣∣

0
0

αis exp(χs)

∣∣∣∣∣∣
.

The second determinant is zero because it has a zero row. Finally,

Δa = exp(2χs)(αssΔ1 + Δ2) + exp[χs](Δ3 + Δ4) + Δ5, (5.55)
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where

Δ1 =

∣∣∣∣∣∣

βik βis 0
0 1 0
10 10 αik

∣∣∣∣∣∣
, Δ2 =

∣∣∣∣∣∣

βik 0 0
10 1 αsk
10 αis αik

∣∣∣∣∣∣
, (5.56)

Δ3 =

∣∣∣∣∣∣

βik βis 0
10 1 αsk
10 10 αik

∣∣∣∣∣∣
, Δ4 =

∣∣∣∣∣∣

βik βis 0
βsk βss αsk
10 αis αik

∣∣∣∣∣∣
, (5.57)

Δ5 =

∣∣∣∣∣∣

βik βis 0
βsk βss 0
10 10 αik

∣∣∣∣∣∣
. (5.58)

The determination of the phase of the sth kink is performed in the following
way. If we introduce the phase χ and rewrite Δa as

Δa = (expχ + a)2 + b, (5.59)

then

m = (lnΔa)x = Δa
x/Δ

a = 2[expχ + a]α/[(expχ + a)2 + b], (5.60)

where α = χx. As a result,

m = 0, χ→∞, (5.61)
m = 2aα/(a2 + b), χ→ −∞. (5.62)

Equating powers of exponential terms,

2χ = 2χk + ln(αssΔ1 + Δ2), (5.63)

2a exp
[
1
2

ln(αssΔ1 + Δ2)
]

= Δ3 + Δ4, (5.64)

a2 + b = Δs, (5.65)

we immediately determine the phase χ and asymptotic value of the sth kink
taking into account (5.53), (5.60), and (5.45).

Concluding, though this note is rather technical, it contains ideas about
a development of asymptotic construction in the “dromionic” case of 2+1
equations, as well as symmetry reductions of explicit solutions or the two-
step equation reduction. It follows from Sects. 5.1 and 5.2 that there exists a
direct possibility to construct solutions of (5.10) or (5.7) via forms like (5.37).
More general asymptotic behavior can be analyzed similarly. For example,
equating the phases of (5.53) and (5.48) and linear combinations of ξ and η
of the form (5.50) and (5.51) with Y = const yields

aix + a3
i t− biy = Aiξ + Biη,

Ai = aic2, Bi = aic2 − a3
iT = Y bi.

The three-phase solutions are possible with one determinant condition on the
parameters ai and bi, and so on.
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5.6 Generalized Moutard transformation
for two-dimensional MKdV equations

In this section we generate solutions of the two-dimensional MKdV equations,
giving one more example of efficient applications of the technique which ex-
ploits the generalized Moutard transformation.

5.6.1 Definition of generalized Moutard transformation
and covariance statement

The Lax pair for the two-dimensional MKdV equations (5.23) has the form

ψxy =
ux
u

ψy + u2ψ, (5.66)

ψt = ψxxx + ψyyy − 3
uy
u
ψyy +

[
3
(uy

u

)2

− u2 −B

]
ψy

+
(
A− u2

)
ψx +

1
2
(
A− u2

)
x
ψ.

Ganzha [169] studied one type of the Moutard transformation for the
Goursat equation. To use this transformation for obtaining exact solutions
of (5.23), we should complete the definition of the Moutard transformation.
It is easy to do that. Let φ be the second solution of (5.66) (the support
function). Then we have a closed 1-form

dθ = dx θ1 + dy θ2 + dt θ3, θ =
∫

dθ,

where

θ1 = φ2, θ2 =
(
φy
u

)2

, θ3 = (A− u2)φ2 − φ2
y − φ2

x + 2φφxx+

+u−4
[
(2φ3yφy − φ2

yy −Bφ2
y)u

2 − 2uφy(uyφy)y + 3 (uyφy)
2
]
.

We define the generalized Moutard transformation in the following way:

u→ ũ = u−
√

(ln θ)x(ln θ)y , A→ Ã = A− (∂x∂y − 3∂2
x) ln θ,

B → B̃ = B + (∂x∂y − 3∂2
y) ln θ, ψ → ψ̃ =

φQ

θ
,

(5.67)

where
Q ≡

∫
dQ, dQ = dxQ1 + dy Q2 + dtQ3,
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and (w = ψ/φ)

Q1 = θwx, Q2 = −θ3(1/θ)xywy
θxy

,

Q3 = θwxxx + c1wyyy + c2wxx + c3wyy + c4wx + c5wy

with

c1 = − θxy
2u2

+ θ, c2 =
3
2
θ(ln θx)x − θx,

c3 =
uyθxy
2u3

+
φφyy
u2
− 3uyθ

u
+ 3

(
θ

2
(ln θx)y − θy

)
,

c4 =
(

3φxx
φ

+ A− u2

)
θ − θxx

2
,

c5 = −3u2
yθxy

2u4
+ +

1
u3

(θxyuyy + uyφφyy)

+
1
u2

[
3θu2

y − φφ3y +
1
2

(
B − φyy

φ

)
θxy

]

+
(

3φyy
φ
−B

)
θ +

uy
u

(
2θy − 3θθxy

θx

)
+

θxy
2
− u2θ.

The 1-form dQ is closed,

Q1,y = Q2,x, Q1,t = Q3,x, Q2,t = Q3,y.

It is easy to verify that the (L,A) pair (5.66) is covariant with respect to the
generalized Mourtard transformation (5.67).

5.6.2 Solutions of two-dimensional MKdV (BLMP1) equations

Now we use these transformations to construct exact solutions of the two-
dimensional MKdV equations (5.24). Let us choose u = const and A = B = 0.
We will consider two examples.

1. If we take the solution of (5.66) as φ = sinh ξ, where

ξ = ax +
u2

a
y +

(u2 − a2)(u4 − a4)
a3

t (5.68)

with real a = const, then using (5.67) we get a new solution of the two-
dimensional MKdV equations,

ũ =
u
[
2η − a3 sinh(2ξ)

]

2η + a3 sinh(2ξ)
, Ã =

16a3 sinh ξ
[
3a5 sinh ξ − (u2 − 3a2)η cosh ξ

]

[2η + a3 sinh(2ξ)]2
,

B̃ =
16av2 cosh ξ

[
3a3u2 cosh ξ − (3u2 − a2)η sinh ξ

]

[2η + a3 sinh(2ξ)]2
,
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where
η = a2(u2y − a2x) + (u2 − a2)(3u4 + 3a4 + 2a2u2)t . (5.69)

2. To construct the algebraic solutions of (5.44), we choose the solutions of
(5.66) as

φ = (−1)n
∫ β

α

dkζ(k) exp[ξ(k)]
dn

dkn
δ(k − k0),

with ξ(k) from (5.68), a = a(k), and β > k0 > α > 0, where ζ(k) is an
arbitrary differentiable function. For n = 1, ζ = 1 we get

ũ =
u(a6 − 2η2 − 2a3η)

2η2 + 2a3η + a6
, Ã = −8a6(u2 + 3a2)η(η + a3)

(2η2 + 2a3η + a6)2
,

B̃ =
8u2a4(3u2 + a2)η(η + a3)

(2η2 + 2a3η + a6)2
,

(5.70)

with η from (5.69) and a = a(k0). Equation (5.70) is a simple nonsingular
algebraic solution of the two-dimensional MKdV equations.

There is a group of equations for which the dressing technique is directly
applied. The BLMP2 equation is a generalization of the Nizhnik–Veselov–
Novikov equation [58]. There is another new integrable equation that is usually
called the Boiti–Leon–Pempinelli (BLP) equation. It was proposed and stud-
ied in [65]. An integrable generalization of the sine and sinh–Gordon equations
in two spatial dimensions was proposed in [64].
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Applications of dressing to linear problems

The dressing procedures, following our “extended” understanding of this
ideology, have been used for years to solve linear problems. In this chapter
we concentrate on some recent results obtained along these lines. We observe
considerable reciprocal influence of the nonlinear theory on linear methods,
in particular via a systematic application of the Lax representation developed
previously when studying nonlinear systems.

We show how to dress a seed solution of a one-dimensional second-order
linear differential equation when the corresponding operator allows explicit
factorization. We also show how the Darboux transformation (DT) theory
appears in this framework and produces the so-called integrable or solvable po-
tentials entering linear differential equations. The important and far-reaching
example of solvable potentials is represented by the famous regular shape-
invariant potentials introduced by Gendenstein [179] (see also [412] and refer-
ences therein). We could mention as well other classes of potentials, like those
obtained by algebraic deformations [190], singular (pointlike of the Coulomb
type or zero-range) potentials [284], and matrix potentials on the whole axis
or half-axis.

There is an excellent book [367] on applications of the Lax representation
to classical mechanics. The integrability is established and exploited by means
of the Lie algebra technique. Here we point out some possibilities directly
related to the dressing scheme we develop; see also the recent book [368].
Generally, an evolution equation

ẋi = Fi(x), (6.1)

can be written in the form of the Lax representation (by means of the L–M
pair [367]), so that (6.1) is equivalent to

L̇ = [M,L]. (6.2)

Such an idea of Lax [263] is traced throughout the previous chapters of this
book. He showed that the spectrum of the matrix operator L does not depend

161
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on time, when L evolves as L(t) = UL(0)U−1, U+U = 11 (hence the name
isospectral representation [338]). Such an approach constitutes the main algo-
rithm of seeking for integrability: eigenvalues λ of the matrix L are conserved
quantities (λ̇ = 0). Historically, the Lax representation was found “experi-
mentally” [152].

There are also attempts to apply these ideas to 2+1 dimensions by means
of the Moutard transformations [288, 369]. Specific results of the application
are still rather poor [30, 290]. In higher dimensions the search was launched
by [25] with increased efforts till now [28, 29].

In Sect. 6.1 we introduce the gauge–Darboux transformation (GDT) and
the auto-gauge–Darboux transformation (auto-GDT) as a manifestation of the
covariance property of the linear equation under consideration. These trans-
formations permit us to derive recurrent relations between solutions of a given
equation with different values of the set of parameters. Quantum-mechanical
integrable potentials are discussed in Sect. 6.2 from the point of view of dress-
ing. We consider shape-invariant nonsingular potentials of the Schrödinger
equation and their algebraic deformations, as well as the Coulomb-like singu-
lar potentials and their shape-invariant iterations. A new approach to solve
the Schrödinger equation with a zero-range potential (ZRP) is described in
Sect. 6.3. We show that dressing of such a potential by means of a special DT
improves the ZRP model, especially for low-energy scattering. Further devel-
opment of this method is illustrated in Sects. 6.4 and 6.5 by solving the prob-
lem of multicenter scattering. We perform a detailed analysis of the electron–
CH4 scattering and clarify the nature of the Ramsauer–Townsend minimum
in the cross-section spectrum. In Sect. 6.6 we use the dressing technique to
construct Green functions for a wide class of multidimensional differential op-
erators with reflectionless potentials. Finally, in Sect. 6.7 we demonstrate the
possibility to construct supersymmetric quantum-mechanical potentials with
a preassigned discrete spectrum by means of the DTs. We explicitly manage
the spectrum by deleting or adding energy levels.

6.1 General statements

In Sect. 2.4 general dressing formulas for coefficients of operators polynomial
in D were derived. In Sect. 3.1 the origin of the DT and gauge transforma-
tions (GT) were discussed. We outline now the algorithm of eigenfunction
construction on the basis of these results. The theory goes back to the book
[324], where the simplest case of a quantum harmonic oscillator is discussed
from this point of view. The combined GDT was introduced in [466], where
the covariance theorem (including dressing formulas for potentials) for a wide
class of operators was proved. A development of this technique was given in
[381]. Recall that in Sect. 2.11 a combination of GT and DT was applied to
solve a linear differential-difference problem that enters the Lax pair for the
Nahm equations.
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6.1.1 Gauge–Darboux and auto-gauge–Darboux transformations

Following [466] and [380], we consider the linear equation

ψxx+p(x; ν1, ..., νn)ψx+ q(x; ν1, ..., νn)ψ = λh(x; ν1, ..., νn)ψ+f(x; ν1, ..., νn).
(6.3)

The covariance of this problem with respect to a substitution (we call it a
GDT)

ψ → ψ̃ = s(ψx − σψ), (6.4)

where s and σ depend on x, means a form invariance of (6.4) with the only
change of the coefficients in accordance with

h→ h̃ = h, p→ p̃ = p− [ln(hs2)]x,

q → q̃ = q + px − [p + σ − (ln s)x](ln h)x + 2σx + (ln s)x[ln (hs2)]x − sxx/s,

f → f̃ = sfx − s [σ + s(lnh)x] . (6.5)

We call the GDT (6.4) and (6.5) as the auto-GDT if

p̃ (x; ν1, . . . , νn) = p (x; ν̃1, . . . , ν̃n), (6.6)
q̃ (x; ν1, . . . , νn) = q (x; ν̃1, . . . , ν̃n), (6.7)
f̃(x; ν1, . . . , νn) = f(x; ν̃1, . . . , ν̃n), (6.8)

i.e., the GDT action is equivalent to the transformation of the spectral pa-
rameters. This notion accumulates the shape-invariant potentials of quantum
theory that are discussed in the next section. In [190] the function σ is called
the factorization dressing function, while in [92] it is referred to as the super-
potential. The GDT allows us to obtain recurrent relations between solutions
with different values of the parameter set. In the particular case of special
functions of mathematical physics, these relations are exactly the recurrent
relations between them. Further discussion of this subject is given in Chap. 4.

The algorithm of working with the auto-GDT consists mainly of two steps:

1. We solve a differential equation (6.3) for λ = 0 and then, choosing h, find
a solution with λ �= 0.

2. By means of the transformation (6.5) we go to a solution of the same
equation (6.5) with λ = 0 which is a solution of the initial equation with
some other set of the parameters ν̃1, . . . , ν̃n.

Consider an example of the Gegenbauer equation

Gψ ≡ d2ψ

dx2
+

(2μ + 1)x
x2 − 1

dψ

dx
− n(2μ + n)

x2 − 1
ψ = 0.
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The choice of h = (x2 − 1)2 and of the fixed solutions of Gψ = λhψ as
φ1,2,3 = (x2 − 1)β1,2,3 with

β1 = n/2, β2 = −n/2− μ, β3 = 1/2− μ,

λ1,2 = 4β1,2(β1,2 − 1) + 2β1,2(2μ + 1), λ3 = 4μβ3 − n(2μ + n)

forms the GDT operators

D1,2,3 = (x2 − 1)
(

d
dx
− 2β1,2,3x

x2 − 1

)
,

by means of (6.4).
The transformed parameters take the form

ñ1 = n− 1, μ1 = μ,

ñ2 = n + 1, μ2 = μ,

ñ3 = n + 1, μ3 = μ− 1.

The first two GDTs correspond to the known operators that link the Gegen-
bauer functions.

6.1.2 Chains of shape-invariant superpotentials

The dressing chain equation (Chap. 4) is nothing more than the result of sub-
stitution of the Miura link in the DT formula. For convenience we reproduce
it here:

(σi + σi+1)′ = σ2
i − σ2

i+1 + μi − μi+1. (6.9)

There is a class of potentials of the Schrödinger one-dimensional equation that
are obtained by closure of the dressing chain (see Sect. 4.1), i.e., under the
condition posed to the j-times iterated function (superpotential) σj :

σj = ξja(x) + ηj , j = 0,±1, . . . . (6.10)

It is a kind of the superpotential parameterization. The compatibility of this
condition with the chain equation (6.9) yields the condition for the function
a(x) that fixes the shape of superpotentials and hence of the potential ui (here
we use notations from Sect. 3.1) by means of the Miura link

ui = σ′
i + σ2

i + μi. (6.11)

This procedure introduces one more (spectral) parameter μj into the scheme.
Now we can write the equation for a(x) in the standard Riccati equation form:

a′ + ψa2 + φa + χ = 0, (6.12)
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where

ψ =
ξ2
j+1 − ξ2

j

ξj+1 + ξj
, φ =

2(ξj+1ηj+1 − ξjηj)
ξj+1 + ξj

,

χ =
η2
j+1 − η2

j + μj+1 − μj

ξj+1 + ξj
. (6.13)

The differential equation (6.12) with constant coefficients is transformed to
the second-order linear equation

y′′ + Py′ + Qy = 0 (6.14)

with P = φ and Q = ψχ by the standard substitution (for nonzero ψ)

a =
(ln y)x

ψ
,

which can be used for a classification of the superpotentials. Indeed, the char-
acteristic equation for (6.14) is the quadratic equation, whose solutions

λ1,2 = −P

2
±

√
P 2/4−Q

yield the first class superpotentials as solutions of (6.12) with λ1 �= λ2:

a =
Aλ1 exp(λ1x) + Bλ2 exp(λ2x)
ψ[A exp(λ1x) + B exp(λ2x)]

. (6.15)

The second class corresponds to the coincidence of the roots of P 2/4−Q = 0,
i.e., to the condition for the parameters of the superpotential:

4ψχ = φ2.

Inserting here the definitions (6.13) of the Riccati equation coefficients leads
to

(ξj+1ηj − ξjηj+1)2 = (ξ2
j+1 − ξ2

j )(μj+1 − μj).

This relation links the neighbor eigenvalues μj . The shape of the potential in
this case is given by

a =
[ln(Ax + B)eλx]x

ψ
=

(x + B/A)−1 + λ

ψ
. (6.16)

Generally the coefficients in (6.14) can be complex; one recognizes the
elementary functions in the potential formula

uj = ξja(x)′ + [ξja(x) + ηj ]2 + μj . (6.17)

If the potential in the Schrödinger equation is real, it leads to some conditions
for coefficients.
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Remark 6.1. There are special cases of ψ = 0 and φ = 0:

1. The condition ψ = 0 implies ξj+1 = ±ξj. We distinguish two possibilities:
(a) ξj+1 = ξj (φ = ηj+1 − ηj �= 0) gives a linear equation for a(x):

a′ + φa + χ = 0 ;

hence,
a = C exp(−φx) − χ/φ.

This form corresponds to the Pöschl–Teller potential

u = −φξjC exp(−φx) + [ξjC exp(−φx)− ξjχ/φ + ηj ]2 + μj . (6.18)

(b) ξj+1 = −ξj results in the algebraic equation

ξja
2 + (ξj+1ηj+1 − ξjηj)a + η2

j+1 − η2
j + μi+1 − μi = 0

with a constant solution.
2. The second case corresponds to both zero coefficients φ = 0 and ψ = 0

and leads to the celebrated harmonic oscillator model a = χx; see the
details in Sect. 4.1.

6.2 Integrable potentials in quantum mechanics

In this section we discuss exactly solvable shape-invariant potentials entering
the Schrödinger equation and demonstrate the usefulness of their algebraic
deformations. The Coulomb potential is treated as a typical example of the
singular shape-invariant potential.

6.2.1 Peculiarities

Applications in quantum mechanics impose additional conditions on trans-
formations of the potentials. The constraints are stipulated by the demand
for the potentials to be real and to possess admissible singularities, as well
as by the specific definition of a spectrum in a Hilbert space H of solutions
of the Schrödinger equation. Consider first the case of the one-dimensional
Schrödinger equation

−1
2
ψxx + U(x)ψ = Eψ (6.19)

on a line x ∈ −∞,+∞ with a potential U(x) and

ψ(x,En) ∈ H
for the points En of the discrete spectrum [324, 461], while

∫ E+ΔE

E

ψ(x,E′)dE′ ∈ H

for the continuum spectrum.
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A rigorous treatment of the DT Dφ for (6.19) can be given within the
assumption of the semibounded self-adjoint Hamiltonian. Let us also assume
that the potential U(x) is bounded from below [190]. As we demonstrated in
Chap. 2, the unique factorization of the operator (6.19) leads to the dressed
(partner) operator U [1] = U + 2σx, σ = φx/φ, φ = φ(x,E1), where E1 �= E is
an eigenvalue. The partner potential is nonsingular if φ is nonvanishing. The
correspondence [165] ψ → ψ[1] maps spectral domains of the operators H and
H [1] with the following properties:

1. Direct transformation: the auxiliary (factorization [190]) function φ is
square-integrable and the operator ∂ − σ transforms each point of the
discrete spectrum to a point of the discrete spectrum excluding the low-
est one that is removed: the corresponding function goes to zero. The
continuum states rest on their places because of the same asymptotic be-
havior at infinities of the eigendifferential

∫ E+ΔE

E
ψ(x,E′)dE′ [155] and

its transform
∫ E+ΔE

E
ψ[1](x,E′)dE′ ∈ H.

2. Backward transformation: the inverse prop function φ(x,E′)−1, E′ <
Einf , is square-integrable (Einf is the infinium of the spectral values of
the Hamiltonian). The prop function is a combination of independent so-
lutions φ± of (6.19), growing at opposite infinities.

3. Isospectral transformation: both φ and φ−1 are not square-integrable;
eigenvalues E′ associated with eigenfunctions φ = φ± are out of the spec-
trum; the operator Dφ acts as an isomorphism.

Further development of the GDT consists in including transformations of
the independent variables [190]. Following [190], we will say that H is exactly
solvable by polynomials if it is equivalent to a second-order operator that
preserves the infinite flag of finite-dimensional modules,

M1 ⊂M2 ⊂M3 ⊂ . . . ,

because of the triangle form of the operator in such a basis. Integrability of
this kind strictly corresponds to shape-invariant potentials.

6.2.2 Nonsingular potentials

Shape-invariant potentials

The direct DT
u[1] = u + 2(lnσ)x (6.20)

shifts the potential in a constant value C if (lnσ)x = C, which yields

σ = exp(Cx + C1),

or the harmonic oscillator, Morse potential, and Pöschl–Teller potential. These
cases were mentioned in Sect. 6.1.2; see also [324]. Moreover, there are a lot
of papers whose titles begin with “On a shape-invariant . . . .”
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The class of shape-invariant potentials connected with the operator

P (z)
∂2

∂z2
+ Q(z)

∂

∂z
, (6.21)

where P and Q are the first- and the second-order polynomials, corresponds to
the exactly solvable Hamiltonians that preserve the infinite flag of polynomial
modules

P′ ⊂ P1 ⊂ . . . ⊂ Pn ⊂ . . . , Pn =< 1, z, . . . , zn > .

Rescaling x and shifting the spectrum leads to the canonical forms listed in
Table 6.1.

P (x) Q(x) z(x) U(x)

Ia -1 2z x x2

Ib −4z 4z − 2 x2 x2

II −z2 −(2A + 3)z + 1 expx exp(−2x)/4 − (A + 1/2) exp(−x)
III z(1 − z) (A − 3/2) + 1 − A cosh2(x/2) (1/4 − A2)sech2(x/2)/4

Table 6.1. Nonsingular shape-invariant potentials on the line

The Hamiltonian H is exactly solvable in polynomials if it is transformed
by a change of variable

x =
∫

(−P )−1/2dz

and a GT
φ = exp(p)fz=z(x) (6.22)

with

p =
∫ z 1

2P

(
Q− P ′

2

)
dz (6.23)

to a Hamiltonian with a potential among those listed in Table 6.1. The trans-
formed potential goes to

U =
(Q− P ′/2)(Q− 3P ′/2)

4P
+ R|z=z(x).

Owing to the presence of the polynomial P in the denominator, the number
and multiplicity of real roots ρ of P determine the singularity of U , if the
numerator is nonzero. Otherwise the potential is nonsingular, i.e., we can
formulate the following proposition:

Proposition 6.2. Let the range of z(x) be denoted as R. One of the following
possibilities holds:

1. P has no real roots, R = (−∞,∞), then U has no singularities.
2. There is a double root ρ. Then R = (−∞, ρ) or R = (ρ,∞), and U(x) is

nonsingular.
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3. There are two roots ρ1 < ρ2; the case of the only simple root ρ1 = ρ2 is in-
cluded as well. Then R = (−∞, ρ1] or R = [ρ2,∞), and U(x) is nonsingu-
lar. Both z(x) and U(x) are even functions. The potential is nonsingular,
iff

Q(ρ) = P ′(x)/2 or Q(ρ) = 3P ′(x)/2.

4. There are two roots ρ1 < ρ2 and R = [ρ1, ρ2]. Then both z(x) and U(x)
are periodic functions and U(x) is singular.

Scattering amplitudes for the shape-invariant potentials are calculated by
the dressing method; see also [236].

Algebraic deformations

Algebraic deformations of the shape-invariant potentials leave the potentials
and eigenfunctions in the class of elementary functions. They are a backward
DT which is generated by the factorization function φ that is a product of
exponential and rational functions. We use the notion of a function f of the
polynomial type, if (log f)′ is a rational function.

The prop (factorization [190]) function is

φ(x) = exp{ p[z(x)]}f [z(x)]. (6.24)

Owing to (6.22) and possibility 3, the function p is polynomial and the func-

tion f(z) is a hypergeometric function of the polynomial type.
As is seen from Table 6.1, in case Ib we obtain nontrivial deformation of

the oscillator potential if the solutions y(z) = Φ(a, c, z) of the equation

zy′′ + (c− z)y′ − ay = 0

are expressed in terms of the generalized Laguerre polynomials Lαm,m =

0, 1, 2, . . . [206]. Here a = −m and c = α + 1. One of the solutions is used
in the deformation of the harmonic oscillator potential [134, 135], namely, the
function

y3 = exp(z)Φ(−m, c,−z).
We will include a shift by x0 in the transform (6.24), or z = (x− x0)2, which

allows us to deform the potential in a nonsymmetric way.
The function

φ(x;λ,A,B) =
[
AΦ(1/4− λ/4, 1/2;x2) + BxΦ(1/4− λ/4, 3/2;x2)

]
exp(−x2/2)

produces a general solution of the equation

−φ′′ + x2φ = λφ.
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When λ = 2n + 1, we have bound states proportional to exp(−x2/2), and,
by the nodeless solutions (λ < 1), the prop (factorization, superpotential)
function is written as

φ(m) = φ(x;−1 − 4m, 1, 0) = exp(−x2/2)y3(x2). (6.25)

This produces a deformation of the harmonic oscillator potential (Fig. 6.1)

U (m) = x2 − 2
[
ln exp(−x2/2)

]
xx

y3(x2).

Similar results for the Morse potential deformation are demonstrated by
Fig. 6.2.

The regular solutions of the hypergeometric equation

z(1− z)f ′′(z) + [c− (a + b + 1)z]f ′(z)− abf(z) = 0

-3 -2 -1 1 2 3
x

10

-10

-20

-30

U

Fig. 6.1. The result of deformations in the case of the harmonic oscillator for
m = 0, 1, 2, 3 [190]

-3 -2 -1 1
x

-100

-200

100
U

Fig. 6.2. Deformations of the Morse potential for m = 0, 1, 2, 3 [190]
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Fig. 6.3. Algebraic deformations of the hyperbolic Pöschl–Teller potential,
m = 0, 1, 2, 3 [190].

are given by the Gauss hypergeometric function f(z) = F (a, b, c; z). This
function is of the polynomial type if a = −m (or b = −m), where m is
an integer [207]. In this case the solutions are given by the Jacobi polynomial
P

(α,β)
m (z) which is used in deformations of the Pöschl–Teller potential (Fig. 6.3).

Note that a bigger m corresponds to a deeper well.

6.2.3 Coulomb potential as a representative of singular potentials

The radial Schrödinger equation,
(
−1

2
d2

dr2
− 1

r

d
dr

+
l(l + 1)

2r2
+ u− E

)
ψl(r) = 0, (6.26)

is transformed to (6.19) by the transformation ψl = φl/r:
(
−1

2
d2

dr2
+

l(l + 1)
2r2

+ u− E

)
φl(r) = 0. (6.27)

Hence, the corresponding chain equation is equivalent to that obtained in the
one-dimensional case; see (6.9) and the instructive example in Sect. 4.1.

The general shape-invariant singular potential is given by (6.16). Equation
(6.17) for the iterated potential yields

uj =
ξj(ξj/ψ − 1)
(x + B/A)2ψ

+ 2
ξj(ξjλ/ψ + ηj)
(x + B/A)ψ

+ (ξjλ/ψ + ηj)2 + μj , (6.28)

where
λ

ψ
= − (ξj+1ηj+1 − ξjηj)

ξ2
j+1 − ξ2

j

, ψ = ξj+1 − ξj .
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The condition of existence of the representation (6.16) gives the following for
the spectrum:

μj+1 = μj +
(ξj+1ηj − ξjηj+1)2

ξ2
j+1 − ξ2

j

.

The choice B = 0 that corresponds to the choice of the form function
a(r) = (λr + 1)/r gives

uj =
ξj(ξj/ψ − 1)

r2ψ
− 2

ξj(ηj − ξjφ/2ψ)
rψ

+ (ηj − ξjφ/2ψ)2 + μj . (6.29)

Being the reduction of (6.28), this relation leads to

φ = 2
ξj+1ηj+1 − ξjηj

ξj+1 + ξj
.

Let us choose the potential u in the Coulomb form:

u = −Ze2/r.

The coincidence between the r-dependent parts (6.29) and the double poten-
tial part of (6.27) yields two constraints for the constants:

ξj
ψ

(
ξj
ψ
− 1

)
= l(l + 1),

ξj
ψ

ξj+1

ψ

ηj+1ξj − ηjξj+1

ξj+1 + ξj
= −Ze2.

The first relation gives ξj recursively as a function of l; the second one yields
ηj via l, Z, and e. This means that (6.11) and the dressing of the basic state
solve the Coulomb quantum problem, producing the spectrum of E in (6.27)
and eigenfunctions via reproducing the Rodrig-like formulas.

On the other hand, the classification of shape-invariant potentials includes
the Coulomb and related singular potentials [92, 100]; hence, the Coulomb
potential deformations can be considered along the lines of Sect. 6.2.

Remark 6.3. An interesting extension of the above results is available. Let us
add the so-called Manev potential [370] to the Coulomb field (α = −Ze2),

u =
α

r
+

β

r2
,

the angular momentum term being incorporated in the last term. The condi-
tions of coincidence of this potential with one of (6.29) yield constraints

ξj
ψ

(
ξj
ψ
− 1

)
= β,

ξj
ψ

ξj+1

ψ

ηj+1ξj − ηjξj+1

ξj+1 + ξj
= α.

Note also that [370] contains the paper of Todorov entitled “On Some Fac-
torization Statements and Applications” that relates to the ladder (named
staircase) operators in the case of infinite matrices with a finite number of
nonzero matrix elements in each row/column.
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6.2.4 Matrix shape-invariant potentials

For the case of the matrix Schrödinger equation we reproduce here in more
detail the general formalism from Chap. 2. The DT for the one-dimensional
matrix problem

a2
∂2ψ

∂2x
+ a1

∂ψ

∂x
+ a0ψ = Eψ (6.30)

has the form
ψ(1) = ψx − φxφ

−1ψ, (6.31)

where s = φxφ
−1 is constructed by matrix solution φ of (6.30) for a different

eigenvalue E′.
The transformation can be also defined by means of the covariance prop-

erty of the Schrödinger equation with respect to a transformation of a
wave function. The principal statement (on the covariance) formally yields
(∂ = ∂/∂x)

L(1)ψ(1) = Eψ(1), L(1) =
2∑

n=0

a(1)
n ∂n ; (6.32)

explicit expressions for a
(1)
n are given in [289] for an arbitrary-order operator.

We cite here the matrix Darboux dressing formulas for the second-order op-
erator. The coefficient a2 does not transform, so it is chosen as a2 = −1/2,
while the transform for a1 generally contains the commutator

a
(1)
1 = a1 + [a2, s], (6.33)

which for the given a2 is zero. Finally, slightly changing the notations, the
transforms are

ψ(1) = ψx − sψ, (6.34)

a
(1)
0 = a0 + a′1 + [a1, s] + 2a2s

′ + a′2s + [a2, s]s = a0 + a′1 − s′,

where the commutator [a1, s] = 0 and the primed function is the shortcut for
the derivatives in x. The functions ψ(1) and u(1) are again named “dressed”
ones, and the auxiliary solutions of the problem (6.30) are referred to as the
“prop” functions. The eigenfunction and the potential (ψ and u here) we start
with are called the “seed” ones. Let us mention that the proof of the Darboux
covariance relation includes a link that in the theory of solitons [324] is named
the (general) Miura transformation (Chap. 3) and is solved identically by the
substitution s = φxφ

−1. We, however, do not use this fact, and go in an
alternative way. Notice that in the case of the radial Schrödinger equation
a1 = −1/r, which also simplifies the transform (6.34).
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6.3 Zero-range potentials, dressing,
and electron–molecule scattering

Following Andrianov et al. [25], the Darboux formulas can be applied in multi-
dimensional space in combination with those for the radial Schrödinger equa-
tion [324, 391]. This approach makes it possible to use the DT technique to
work with an improved version of a ZRP model.

Our aim here is to dress the ZRP by means of a special choice of the DT
in order to widen the possibilities of the ZRP model. The DT modifies the
generalized ZRP boundary condition and creates a potential with arbitrarily
arranged discrete spectrum levels for any angular momentum l.

6.3.1 ZRPs and Darboux transformations

Our statement consists in the fact that generalized ZRPs [38] appear as a
result of the DTs applied to zero potential. In order to demonstrate this we
consider a radial Schrödinger equation

(
−1

2
d2

dr2
− 1

r

d
dr

+
l(l + 1)

2r2
+ ul − E

)
ψl(r) = 0 (6.35)

for partial wave ψl with orbital momentum l. The atomic units � = me = 1
are used throughout the present section. Here ul, l = 0, 1, 2, . . ., are potentials
for the partial waves with an asymptotic at infinity

ψl(r) ∼
sin(kr − lπ

2 + δl)
kr

,

where δl are partial phase shifts. Equation (6.35) describes scattering of a
particle with energy E and momentum k =

√
2E by the rapidly decreasing

potential ul. In the absence of the potential, partial shifts δl = 0 and partial
waves can be expressed via spherical functions ψl = jl(kr).

It is known that (6.30) with

a1 = −1
r
, a0 =

l(l + 1)
2r2

+ ul (6.36)

is covariant with respect to the DT (6.33) and (6.34). The prop function φ
plays an important role when applying the DT because it is used to calculate
s. The function φ is a solution of (6.35) at a particular value of energy E =
−κ2/2, where we assume κ is a real number. If κ is a complex number, then
the dressed potential will be a complex function in general.

Let us demonstrate how a generalized ZRP can be produced by the DT.
It is convenient to use a sequence of DTs (Crum formulas [94] with the wave
and prop functions multiplied by r), which for our equation look like

ψl → ψ
(1)
l = const · W (rψl, rφ1, . . . , rφ2l+1)

rW (rφ1, . . . , rφ2l+1)
, (6.37)

ul → u
(1)
l = ul − [lnW (rφ1, . . . , rφ2l+1)]′′. (6.38)
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Here W is the Wronskian, φm are prop functions, and the double prime stands
for ∂2/∂r2. The transformation (6.37) combines the solution ψl and 2l + 1
solutions φm. The Crum formulas result from the replacement of a sequence
of 2l+1 first-order transformations by a single (2l+1)th-order transformation
which happens to be more efficient in practical calculations. In order to obtain
the ZRP, we start from zero potential and use prop functions

φm = h
(1)
l (κmr), (6.39)

where κm are solutions of the algebraical equation κ2l+1
m = iαl. Here we assume

αl is a real number. The explicit form of the spherical functions h
(1)
l is

h
(1)
l (kr) = nl(kr) + ijl(kr), h

(2)
l (kr) = nl(kr)− ijl(kr). (6.40)

The spherical functions jl and nl are related to usual Bessel functions with
half-integer indices [30]. They obey the asymptotic at infinity r → ∞ of the
form

jl(kr) ∼
sin(kr − lπ

2 )
kr

, nl(kr) ∼
cos(kr − lπ

2 )
kr

. (6.41)

For our purpose, it is important that in the vicinity of zero the spherical
functions have asymptotic behavior

jl(kr) ∼ (kr)l

(2l + 1)!!
, nl(kr) ∼ (2l − 1)!!

(kr)l+1
. (6.42)

Note the double factorial (2l − 1)!! satisfies the relation (2l)! = 2ll!(2l− 1)!!
The asymptotic for h

(1,2)
l (kr) can be obtained by combining (6.42) in ac-

cordance with (6.40). For example, at infinity use of (6.41) leads to

h
(1)
l (kr) ∼ (−i)l

eikr

kr
, h

(2)
l (kr) ∼ il

e−ikr

kr
.

Direct substitution of (6.39) into the Wronskian gives

W (rφ1, . . . , rφ2l+1) = const.

This means that the dressed potential is again the ZRP, u
(1)
l (r > 0) = 0.

The transformation (6.38) allows us to calculate potential for r > 0. We state
that the DTs also yield a generalized ZRP at r = 0. In order to prove this,
we perform the transformation (6.37) and show that ψ

(1)
l is a solution for a

generalized ZRP. Since the potential is zero in the region r > 0, it is sufficient
to determine the asymptotic of the wave function. Substituting ψl = jl(kr)
into the Crum formulas, we obtain

ψ
(1)
l = const · W [rjl(kr), rφ1, . . . , rφ2l+1]

rW (rφ1 . . . , rφ2l+1)
∼

1
2i

(
(−i)l

eikr

kr

Δ(ik, κ1, . . . , κ2l+1)
Δ(κ1, . . . , κ2l+1)

− il
e−ikr

kr

Δ(−ik, κ1, . . . , κ2l+1)
Δ(κ1, . . . , κ2l+1)

)
,
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where Δ is the Vandermond determinant. Considering it as the product

Δ(ik, κ1, . . . , κ2l+1) = const ·
2l+1∏

m=1

(κm − ik),

we obtain an asymptotic which coincides with the asymptotic of the solution:

ψ
(1)
l = const · [h(1)

l (kr)e2iδl − h
(2)
l (kr)], exp(2iδl) =

2l+1∏

m=1

κm − ik
κm + ik

. (6.43)

It is easy to show that the wave function (6.43) describes a scattering of the
partial wave with orbital momentum l by the generalized ZRP . The potential
is conventionally represented as the boundary condition at r = 0 for the wave
function. This fact can be verified by direct substitution into the boundary
condition for the generalized ZRP:

(d/dr)2l+1 rl+1ψ
(1)
l

rl+1ψ
(1)
l

∣∣∣∣∣
r=0

= − 2ll!αl
(2l − 1)!!

, (6.44)

where αl is the inverse scattering length for the partial wave with orbital
momentum l. Recall that at low energies tan(δl) ∼ −alk2l+1 for a short-range
potential, where al is the scattering length. In the special case of l = 0 we
obtain (ln rψ)′ = −α. This generalized boundary condition can be obtained
from the asymptotic of the wave function in the vicinity of zero, which was
used in [38]. Let us consider the scattering matrix on the complex k-plane.
Each element exp(2iδl) has 2l + 1 poles at the points k = iκm, which lie on a
circle in the complex plane. Since the bound states correspond to the poles on
the imaginary positive semi-axis in the complex k-plane, a bound state exists
only if αl > 0 and l is an odd number or if αl < 0 and l is even. Otherwise
the ZRP has an antibound state.

The ideas of the ZRP approach were recently developed [38, 116, 282] to
extend the limits of the traditional treatment by Demkov and Ostrovsky [115]
and Albeverio et al. [21]. The advantage of the theory is the possibility of ob-
taining an exact solution of the scattering problem. The ZRP is conventionally
represented as the boundary condition on the wave function at some point.
Alternatively, the ZRP can be represented as a pseudopotential [77, 116].

There is some “generalization” of the ZRP theory, when the inverse scat-
tering length in the original boundary condition is replaced by −kcotδ for
l = 0. In such a model the ZRP may have two (or more) bound states with
nonorthogonal wave functions. This problem does not appears in our model
because our potential has only one bound state. However, we note that a
generalized ZRP has another problem: the bound state with orbital momen-
tum l > 0 does not belong to L2 (the zero-range effect). But we think that
this problem is not fatal because this model reasonably describes low-energy
scattering.
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Example 6.4. There is a simple example which proves our observation: the
ZRP can be produced by the DT. Let us consider transformation of the reg-
ular solution ψ = sin(kr)/r with the prop function φ = exp(αr)/r. Direct
calculation yields the wave function

ψ(1) = const · (ψ′ − sψ) =
sin[kr − arctan(k/α)]

kr
, (6.45)

which satisfies the original ZRP condition with the inverse scattering pa-
rameter α. Repeating the transformation with φ = exp(−αr)/r, we obtain
ψ(2) = ψ. This example shows a relation between the ZRP and the DT.

6.3.2 Dressing of ZRPs

We have shown the generalized ZRPs appear as a result of application of the
DT to the seed solution. In this connection we can raise a problem of subse-
quent dressing of the ZRP. In the particular case of only one prop function φ
the Crum formulas correspond to the usual DT:

ψ
(1)
l = const · (ψ′

l − sψl), s = (lnφ)′,

u
(1)
l ≡ a

(1)
0 −

l(l + 1)
2r2

= ul +
1
r2
− s′, (6.46)

where we suppose the potential ul describes the ZRP. The functions ψl and
φ are solutions of the Schrödinger equation (6.35). Since the potential ul(r >
0) = 0, the solution φ can be written as a linear combination of spherical
functions,

φ = Cnl(iκr) + C1jl(iκr), (6.47)

where C, C1, and κ are parameters. Note the dressed potential u
(1)
l is real

for real prop function φ; hence, the parameters should be real. The direct
application of (6.31) allows us to calculate the potential in the range r > 0,
but not at r = 0! In order to solve this problem, we consider φ in the vicinity
of zero. There are two different cases. The spherical function properties show
that in the case C = 0 the leading term in φ is rl and in the case C = 1 this
term looks like r−l−1. Therefore, the dressed coefficient a

(1)
0 has the following

asymptotic at zero:

l(l + 1)
2r2

+ u
(1)
l ∼

⎧
⎪⎪⎨

⎪⎪⎩

(l + 1)(l + 2)
2r2

, when C = 0,

l(l − 1)
2r2

, when C = 1.

As regards all the other possible cases, it is easy to see that they lead to
the above results. According to (6.46), the dressed potential u

(1)
l decreases

as exp(−2|κ|r) at infinity. Thus, the DT produces a short-range core of the
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centrifugal type (which depends on angular momentum l) in the potential.
In this situation the boundary conditions on the dressed wave functions ψ

(1)
l

require some modification. We believe that in the general case the dressed
ZRP is conventionally represented as the boundary condition

(d/dr)2m+1 rm+1ψ
(1)
l

rm+1ψ
(1)
l

∣∣∣∣∣
r=0

= const,

where m = l + 1 for C = 0 and m = l − 1 for C = 1. However, repeating
the DT for other values of κ and combining the results for C = 0 and 1, we
can remove the short-range core. In the absence of the short-range core the
boundary condition looks like (6.44). The sequence of N DTs leads to new
poles of the S matrix which do not depend on C1:

exp
(
2iδ(N)

l

)
=

αl − ik2l+1

αl + ik2l+1

N∏

m=1

κm − ik
κm + ik

. (6.48)

Thus, we can use the DT in order to add (or remove) poles of the S matrix. The
next step in the dressing procedure is the determination of the free parameters
of the solutions φ. Changing parameter C1, we obtain potentials with identical
spectra, called the phase-equivalent potentials. The transformation of this
kind is also known as the isospectral deformation.

Example 6.5. The simplest case l = 0 is instructive. Consider the original ZRP
at r = 0 with the wave function (6.45). We can choose the solution φ as

φ =
cosh(κr)

r
.

This choice corresponds to the parameters C = 1 and C1 = 0. For brevity we
omit the index l = 0. The DT (6.31) gives rise to the following property of
the dressed wave function:

(rψ(1))′

rψ(1)

∣∣∣∣
r=0

=
k2 + κ2

α
,

which slightly differs from the usual boundary condition in ZRP theory
(lnrψ)′ = −α. The dressed potential has the short-range tail:

u(1)(r > 0) = − κ2

cosh2(κr)
. (6.49)

Our investigations show that some particular values of C1 can give a long-
range interaction which decreases like ∼ r−2.

The model we study describes the scattering of an electron on a com-
pound particle. There were attempts to account for this important circum-
stance by means of matrix potentials to be applied not only to the well-known
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multichannel problem, but to composite particles as well [406]. The matrix
is a projection of a complicated basis that includes the orbital momenta; the
only possible place for them to exist is the potential, if we restrict ourselves
to the one-particle case. We will see in the next section that the DT-based
approach provides a constructive method to describe general multiparticle
systems, which is especially important in the multicenter problem.

6.4 Dressing in multicenter problem

The results of the previous section allow us to build a ZRP eigenfunction in
the multicenter problem. In a more general situation we can also consider a
system with a smooth potential plus a number of ZRPs. If the Green function
for the smooth potential is known, we can provide a solution for the problem
with the ZRPs added. This procedure was outlined in [115], where the case
of a single ZRP was considered. Generalization to an arbitrary number of
ZRPs is straightforward. In contrast, our general idea is to dress a multicenter
system without using the Green function. This method gives simple formulas
for partial phases and their corrections at low energies [284].

Let us consider a scattering problem for a nonspherical potential Û :
(
−1

2
∂2

∂r2
− 1

r

∂

∂r
+

L̂2

2r2
+ Û − E

)
ψ(r) = 0, (6.50)

where L̂2 is square of the angular momentum operator and E is the energy of
a particle. The asymptotic of wave function ψ(r) looks like

ψ(r) r→∞∼ exp(ik · r) + f(θ)
eikr

r
, (6.51)

where f(θ) is the scattering amplitude which depends on scattering angle θ.
The operator L̂2 commutes with all radial derivatives, in particular with
∂ = ∂/∂r. In the three-dimensional space the DT can be reduced to the
one-dimensional Heisenberg matrix (or operator) problem (6.30) with appro-
priately chosen variable x and with a basis of (orthogonal) functions of the
rest variables. In our case x = r, functions a2 and a1 are the same as in (6.36)
and

a0 =
L̂2

2r2
+ Û .

The radial DT for any solution of the Schrödinger equation is similar to that
obtained in Sect. 6.1, but s should be treated as a function of the operator
variable L̂2. The transformation of the potential is written as

Û → Û (1) = Û +
1
r2
− s′. (6.52)
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In order to find the operator s, we use the covariance principle for (6.50). The
covariance principle (6.32) formally yields an explicit constraint for s which
looks like

a′0 + [a0, s] + (a1s)′ + [a1, s]s + {a2(s′ + s2)}′ + [a2, s](s′ + s2)

= a′0 + (a1s)′ + {a2(s′ + s2)}′ = 0.

Integrating over r, we obtain the operator equation for s which in our case
can be written as

s′ +
2
r
s + s2 =

L̂2

r2
+ 2Û + C(L̂2). (6.53)

The integration “constant” C(L̂2) is a function of the operator variable L̂2

which does not depend on r [289]. The sense of this “constant” can be
understood from the asymptotic behavior of s at infinity r →∞, where (6.53)
goes to

s′ + s2 = C(L̂2).

The general solution of this (Riccati) equation for the asymptotic in r at
infinity gives either oscillations or s(∞) = K(L̂2), then C(L̂2) = K(L̂2)2.

The operator s may be found as a series
∑∞

n=0 snL̂
2n, where coefficients

sn depend only on r. It is easy to show that (6.53) leads to the recursion
relations for the coefficients sn:

s′0 +
2
r
s0 + s2

0 = 2Û + C(0),

s′1 +
2
r
s1 + s0s1 + s1s0 =

L̂2

r2
+ C′(0),

s′n +
2
r
sn +

n∑

k=0

sksn−k = C(n)(0), n ≥ 2.

For example, the first equation in the region where U = 0 looks like

s′0 +
2
r
s0 + s2

0 = K0,

where K0 is the zeroth coefficient in the expansion K =
∑∞

n=0 KnL̂
2n. Equa-

tion (6.52) gives a nonlocal (with respect to angles) potential which depends
on L̂2. Thus, we have the algorithm that determines the operator s and the
dressed potential via the operator K. To evaluate the cross section, we need
only partial phases or a scattering amplitude related to the operator K. In
order to find the partial phases for the dressed potential, we should apply
the DT to the wave function. However, a problem occurs: the DT in general
modifies the plane wave exp(ik · r). Thus, the DT applied to wave function
ψ(r) with the asymptotic (6.51) gives another asymptotic. In some particular
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cases, special choice of the operator K allows us to avoid such a problem. We
consider this choice as a condition in the formulation of a scattering problem.

Indeed, consider the partial wave asymptotic for a nonspherical poten-
tial [48]

ψJ(r) ∼ 1
2ikr

[
eikr+iδJΛJ(n)− e−ikr−iδJΛJ(−n)

]
, (6.54)

where n is the unit vector directed as r, δJ denotes partial shifts, and ΛJ(n)
are normalized eigenvectors of the S matrix operator (partial harmonics). The
simplest formulas for the shifts δ

(1)
J for the potential Û (1) result when partial

harmonics ΛJ are also eigenvectors of the operator K. For example, suppose
all partial harmonics ΛJ are eigenvectors of K but only Λ0 has nonzero eigen-
value κ,

KΛ0(n) = κΛ0(n).

The asymptotic dressing is reduced to the action of the operator ∂ − K on
asymptotic (6.54). It is easy to show by using the expression

ln
(
κ− ik
κ + ik

)
= −2i arctan(k/κ)

for real-valued variables k and κ that the DT changes only the partial shift δ0:

δ
(1)
0 = δ0 − arctan(k/κ). (6.55)

In this special case we add only one additional parameter. In the region k � |κ|
the second term of (6.55) practically does not contribute to the partial cross
section,

σJ =
4π
k2

sin2 δJ . (6.56)

It yields an essential contribution to the cross section when k ≈ |κ| and so it
can be considered as a correction at low energies.

In a general case the DT modifies all partial harmonics and partial shifts.
The DT allows us to construct new solvable models with additional parame-
ters. One of the most important problems of solvable models is to fit them to
some physically meaningful parameters. For example, in our case the parame-
ter κ can be related to the effective radius of the interaction or the scattering
length. It is well known that the scattering length is defined as derivative
A = −δ′(k) at k = 0. Considering (6.55) at low energies, we obtain “renor-
malized” scattering length

A(1) = A +
1
κ
. (6.57)

6.5 Applications to Xn and YXn structures

For the purpose of illustration we consider in this section the scattering prob-
lem for a dressed multicenter potential. The multicenter scattering within
the framework of the ZRP model was investigated by Demkov and Rudakov
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[114] (eight centers, cube), Szmytkowski and Szmytkowski [421] (four centers,
regular tetrahedron), and others. We analyze here electron scattering by the
Xn and YXn structures within the framework of the ZRP model. At the end
of this section we present a calculation of the electron–silane scattering cross
section with the corrections caused by the dressing integral.

6.5.1 Electron–Xn scattering problem

Suppose a structure Xn contains n identical scatterers placed at the points
rm, which involve only s waves. Let R denote the distance between any two
scatterers. There are three such structures in the three-dimensional space: a
line X2, a regular triangle X3, and a regular tetrahedron X4. The partial waves
ψJ(r) and phase shifts can be classified with respect to the symmetry group
representation for the structures Xn (n = 2, 3, 4), degeneracy being defined by
the dimension of the representation [48]. We use the partial waves for ordinary
ZRPs in a general form,

ψ(r) =
n∑

m=1

cm
sin(k|r− rm|+ δ)

|r− rm| . (6.58)

Our intention is to derive an algebraical equation for the partial phase. The
s-wave boundary condition at the points rm leads to an algebraical problem
for a n× n matrix with compatibility condition

[p + (n− 1)q](p− q)n−1 = 0,

where
p = akR + R tan δ, q = a[sin(kR) + cos(kR) tan δ].

Then it is easy to show that the phases are determined by the following
expressions:

tan δJ =

⎧
⎪⎪⎨

⎪⎪⎩

−a kR + (n− 1) sin(kR)
R + (n− 1)a cos(kR)

, J = 0,

−a kR− sin(kR)
R− a cos(kR)

, J = 1, . . . , n− 1.
(6.59)

In the special case n = 4 we obtain the phases of the regular tetrahedron
[421]. The integral cross section σ can be expressed as

σ = σ0 + (n− 1)σ1,

where partial cross sections σJ are given by (6.56). It is easy to relate a
scattering length for a molecule Xn with the boundary parameter a. At large
R the parameter a is reduced to the scattering length for an isolated atom.
Starting from the equation

δ(k) = − arctan
(
a
kR + (n− 1) sin(kR)
R + (n− 1)a cos(kR)

)
,
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we obtain
AXn = −δ′(0) =

naR

R + (n− 1)a
. (6.60)

Testing the result and taking n = 1 gives AXn = a for arbitrary R. The link
(6.60) defines the monotonic function saturated at a→∞.

6.5.2 Electron–YXn scattering problem

The structures YXn can be used, for instance, to study a slow electron scat-
tering by polyatomic molecules like H2O, NH3, and CH4. For the sake of
simplicity we suppose that the scatterers X are situated at the vertices of a
regular structure Xn. Let D denotes the distance between scatterers Y–X and
R denote the distance between scatterers X–X. In this case, the position of
the scatterer Y is perfectly fixed only if n = 4 (geometric center of the tetra-

hedron), and we have the constraint R = 2
√

2
3D. The partial waves can be

written as (6.58), where the summation should be performed from m = 0 to
n. The partial phases can be derived analytically. The result is given by the
expression

tan δJ = −ax
kR− sin(kR)
R− ax cos(kR)

, J = 2, . . . , n,

and t = tan δJ , J = 0, 1, obeys the quadratic equation

(t + ayk)
[

t

n− 1
+ ax

(
k

n− 1
+

sin(kR)
R

+ t
cos(kR)

R

)]

=
n

n− 1
axay

(
sin(kD)

D
+ t

cos(kD)
D

)2

, (6.61)

where ax and ay denote boundary parameters. For large distances we can
interpret these parameters as scattering lengths of isolated atoms. Thus, in the
limiting case when the distance D is very large, the expression for tan δ0 passes
to the first equation of (6.59) and tan δ1 ∼ −ayk. This situation corresponds
to independent scattering on a molecule Xn and atom Y. The substitution
ay = 0 reduces tan δ0 for the structure YXn to tan δ0 for the structure Xn.

Substitution t = −Ak, where A denotes the scattering length for a
molecule YXn, and passage to the limit k → 0 in (6.61) gives the quadratic
equation with the roots A = 0 and

AYXn = D
(ay + nax)RD + axay[(n− 1)D − 2nR]

[R + (n− 1)ax]D2 − naxayR
. (6.62)

The last root gives a monotonic function of the atomic length ax with the same
features as in the previous section. We believe that the scattering lengths for
isolated atoms do not change much if the atoms form a polyatomic molecule.
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6.5.3 Dressing and Ramsauer–Taunsend minimum

In the previous subsection we presented a detailed description of new solvable
models for low-energy scattering in the electron–polyatomic molecule system.
Now we compare the results of our model with other theoretical and exper-
imental data. Among all possible applications we will discuss the scattering
by the tetrahedral molecule SiH4 (silane) because it has the most interest-
ing point group, namely, the symmetry group of a tetrahedron. We focus our
attention on one distinct feature of the integral cross section, namely, the
Ramsauer–Townsend minimum around approximately 0.28 eV.

Jain et al. [219] classify the minimum as due to the s-wave scattering into
2A1 symmetry and attribute the main contribution to the cross section at the
minimum by the p-wave scattering. Also they state that the minimum is the
result of a balance between the attractive long-range and repulsive short-range
interactions.

The DT discussed in Sect. 6.4 allows us to correct cross sections at low
energies; thus, using (6.57) and (6.62), we obtain the “renormalized” scattering
length for a molecule YXn. A model calculation with (6.55) and (6.61) has
been performed to show that the Ramsauer–Townsend minimum appears as
a consequence of balance between the attractive short-range and zero-range
interactions.

The parameters used in calculation are as follows (in atomic units):

ax = 4.10, R = 4.51, κ = 0.185, ay = 1.88, D = 2.762,

which are regarded as constants in the range of interest. The equilibrium dis-
tances R and D were taken from ab initio calculation. The other parameters
were chosen so as to reproduce the realistic low-energy asymptotic of σ and the
position of the minimum. The result of our calculation is shown as the upper
curve in Fig. 6.4. The circles show the numerical calculation [219]; the tri-
angles and upper curve (least-squares fitting) describe the experimental data
[446]. Our results show that dressing leads to additional finite-range attractive
interaction which algebraically increases the partial phase (δ0 < 0) for partial
wave A1 for the YX4 structure, and causes the deep minimum near 0.35 eV.
Thus, our partial cross sections coincide well with the results obtained us-
ing other numerical data and coincide in shape with experimental data. The
novel feature of our model of electron–molecule scattering is the dependence
of the effective potential on electron momentum (spherical part of the Lapla-
cian). This way we obtain a richer dependence of the scattering parameters
on k, which improves the agreement with experiment in the low-energy region
(Fig. 6.5). It could be considered as an alternative to the Demkov–Rudakov
approach, with generalized partial waves introduced in each step of the dress-
ing procedure. Let us also remind that the model uses only s waves; accounting
for higher terms would extend the range of agreement.

We deal with the algebraical expressions for phases of the electron–Xn
(and –YXn) scattering problem. They are useful to study slow electron
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partial wave A1; circles denote the calculation for partial wave A1 [219]. The dashed
line illustrates the calculation performed in [186]
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scattering by a molecule. We also obtain expressions for scattering lengths
which are helpful to fit the parameters (if the scattering length is known).
Note that in our calculation we do not use scattering lengths of isolated atoms.

Among the most important aspects of the method is the demonstration of
the power of the DT as applied to a multicenter scattering problem and ZRP
theory. Namely, the ZRP is produced by the DT. Also, these transformations
allow us to correct the ZRP model at low energies.

An alternative approach is formulated for the Calogero–Sutherland model
in [172].

6.6 Green functions in multidimensions

This section is based on [290], where the dressing (factorization) ideas [412,
413, 414] are used to construct the simple poles expansion for the Jost func-
tion of the one-dimensional Schrödinger operator. The representation of the
resolvent of the Schrödinger operator with a reflectionless potential does not
contain an integral term. The expression of the potential has a free parameter
that, in turn, allows us to build Green functions for a wide class of multidi-
mensional differential operators. The explicit form of such a Green function
is given for heat conductivity and wave equations in 2+1 dimensions with an
arbitrary reflectionless potential.

6.6.1 Initial problem for heat equation
with a reflectionless potential

Consider the nth-order inhomogeneous differential equation

(D0 − L)Ψ = f(x). (6.63)

The operators and the elements Ψ and f of a differential ring K are defined
in Sect. 3.3. The following proposition is obtained as a consequence of the
results of Sects. 3.1–3.3:

Proposition 6.6. The functions Lsψ, where Ls = ∂ − φxφ
−1 is the dressing

operator, are solutions of the equation

(D0 − L̃)Ψ = Lsf(x),

where the DT-transformed operator L̃, the element s, and the equation for it
are given in Sect. 3.3.

Following this statement, we can define a Green function of the dressed oper-
ator L̃. Indeed, take the function f(x, x′) in (6.63) as a solution of

Lsf(x, x′) = δ(x− x′),
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and construct a solution of the same equation (6.63):

(D0 − L)Ψ = φ

∫ x

−∞
dx′′φ−1(x′′)δ(x′′ − x′) =

{
0, x < x′,
φ(x)φ−1(x′), x > x′. (6.64)

This results in a Green function that corresponds to the conditions which are
used while the integration on the right-hand side of (6.64) is performed. The
representation for the dressing operator Ls = ∂ − φxφ

−1 is used here.
In a similar way we can perform a manipulation with an initial condition

that is illustrated by the following example.
We proceed from the DT covariance of the heat equation for the function

ρ(τ, x, y),
−ρτ + ρxx + u(x)ρ = 0. (6.65)

The covariance means the form invariance with respect to the iterated DT
defined by the Wronskian W [φ1, ..., φN ] of the solutions of (6.65):

ρ→ ρ[N ] =
W [φ1, . . . , φN , ρ]
W [φ1, . . . , φN ]

, u→ u[N ] = u + 2(lnW [φ1, ..., φN ])xx.

(6.66)
Consider now a Cauchy problem for (6.65), where u(x) represents the

reflectionless potential [354] and the initial condition is

ρ(0, x, y) = δ(x− y). (6.67)

The problem described by (6.67) is rather general and can be applied as
a model of classical diffusion or heat conductivity. We, however, follow the
application in the theory of quasiclassical quantization, where the function ρ
is treated as a density matrix, whence τ stands for inverse temperature [104].

The algorithm to solve this problem consists in application of the dressing
procedure organized by the sequence of DTs from (6.66),

{
∂

∂x
− (lnφ1(x, y))x

}
ρ0(0, x, y) = g1(x, y),

{
∂

∂x
− (lnφ2[1](x, y))x

}
g1(x, y) = g2(x, y),

{
∂

∂x
− (lnφk[k − 1](x, y))x

}
gk−1(x, y) = gk(x, y),

gN(x, y) = δ(x − y), 2 ≤ k ≤ N, (6.68)

and the following theorem:

Theorem 6.7. The function ρ[N ] being built by (6.66) will be a solution of
the problem (6.65) and (6.67) with the potential u[N ], if ρ(τ, x, y) is a solution
of (6.65) with the initial condition ρ0(0, x, y).
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This result is used when static solutions of the φ4 model are quantized by
means of the Riemann ζ(s)-function [248] expressed via the Green functions
of (6.65) [285]. The one-loop correction to the action is obtained directly as
Sq = −ζ′(0).

Example 6.8. The most popular example of the kink is obtained in this scheme
by means of the DT applied to zero seed solution u = 0. The solution ρ of
(6.65) with ρ0 as the initial condition for this case is a simple heat equation
solution:

ρ(τ, x, y) =
1

2
√

πτ

∫ ∞

−∞
ρ0(z, y) exp

[−(x− z)2/4τ
]
dz.

The initial condition ρ0 is evaluated by direct integration in (6.68):

ρ0(x, y) = φ1(x)
{
φ−1

1 (y), x > y,
0, x < y.

(6.69)

The Green function ρ[2] (density matrix) for the kink solution as the potential
is built by the twofold DT in accordance with the Wronskian formula (6.66):

ρ[2](τ, x, y) = exp
(
− 1

2
√

πτ
(x− y)2

4ν(τ)

)
(6.70)

+
1
2

n∑

m=1

ρmψm(x)ψm(x0)
[
erf

(
x− y + 2bmτ

2
√
τ

)
− erf

(
x− y − 2bmτ

2
√
τ

)]
,

where erf(x) is the probability integral [206].

6.6.2 Resolvent of Schrödinger equation with reflectionless
potential and Green functions

Some analytic properties of the resolvent kernel from the previous subsection
give the possibility to generalize the construction. Let the operator

L = − d2

dx2
+ u(x) (6.71)

contain the function u(x) which corresponds to the reflectionless potential
[354]. The Jost function ψ(x, k) satisfies

lim
x→∞ψ(x, k) exp(−ikx) = 1.

It has n poles in the lower half k-plane that correspond to bound states
(discrete spectrum), i.e., eigenvalues of the operator (6.71): λm = −b2m, bm >
0, m = 1, . . . , n. Eigenstates ψm are normalized as

lim
x→∞ exp(bmx) = 1.
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These properties permit us to represent the Jost function ψ(x, k) as [354]

ψ(x, k) = exp(ikx)R(x, k), R(x, k) =
Pn(x, k)∏n

m=1(k + ibm)
. (6.72)

The k-polynomial Pn(x, k) has the leading term kn, so

lim
|k|→∞

R(x, k) = 1.

The simple decimal expansion for the function R(x, k) corresponds to the
expansion from Sect. 6.6.1 obtained by the DT,

R(x, k) = 1− i
n∑

m=1

ρmψm exp(−bmx)
k + ibm

, (6.73)

where ρ−1
m =

∫∞
−∞ ψ2

m(x)dx. Combining the Jost functions in a standard way,

2ikG(x, x0, k) =
{
ψ(x,−k)ψ(x0, k), x < x0,
ψ(x, k)ψ(x0,−k), x > x0,

(6.74)

we arrive at the resolvent kernel G(x, x0, k) that satisfies the equation

(L− k2)G(x, x0, k) = δ(x− x0). (6.75)

Analyzing the representation (6.72) for the Jost function at both parts of the
x-axis (6.74), we conclude that

G(x, x0, k) = − exp(ik|x− x0|)S(x, x0, k)/2ik,

where the factor S(x, x0, k) is symmetric with respect to x, x0, and a rational
function of k with the only simple poles at k = ±ibm, m = 1, . . . , n, owing to
(6.72) and limk→∞ S(x, x0, k) = 1. Hence,

Resk=±ibmS(x, x0, k) = ±iρmψm(x)ψm(x0) exp(bm|x− x0|). (6.76)

The resulting formula for the kernel takes the form

G(x, x0, k) = −exp(ik|x− x0|)
2ik

(6.77)

−
n∑

m=1

ρmψm(x)ψm(x0)
(

exp[(ik + bm)(x − x0)]
k − ibm

− exp[(ik − bm)(x − x0)]
k + ibm

)
.

Inserting the formula for G into the determining equation (6.75), we see that
the pole term disappears and the remaining one gives the expression for the
potential

u(x) = −4
d
dx

n∑

m=1

ρmψm(x)ψm(x0) sinh[bm(x− x0)]. (6.78)
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This result gives the known representation of the reflectionless potential by
squares of the eigenfunctions when x0 = 0.

Equations (6.78) and (6.77) are used now to build Green functions for a
wide class of multidimensional problems.

Theorem 6.9. Let L0 be a linear differential operator in an auxiliary variable
y with constant coefficients and let E(x, y) be the fundamental function of the
operator L0 − (∂2/∂x2), i.e., E(x, y) is the solution of the equation

(L0 − ∂2

∂x2
)E(x, y) = δ(x− y). (6.79)

Then the fundamental function of the operator L + L0, i.e., the solution of

(L0 + L)G(x, y, x0, y0) = δ(x− x0, y − y0), (6.80)

is given by the following sum:

G(x, y, x0, y0) = E(x− x0, y − y0) +
n∑

m=1

ρmψm(x)ψm(x0)Em(x− x0, y − y0),

(6.81)
where Em(x, y) is a solution of the equation

∂

∂x
Em(x, y) = −2 sinh(bmx)E(x, y). (6.82)

The verification of the representation (6.81) can be performed by the direct
substitution into (6.80) and use of (6.77), (6.79), (6.80), and (6.82).

Let us build the Green functions for two natural examples of heat and
wave equations.

1. The Green function for the operator (∂/∂t) + νL, ν > 0 is written as

G(x, t, x0, t0) = θ(t′)

{
exp

(
− 1

2
√
νt′

(x− x0)2

4ν(t′)

)
+

n∑

m=1

ρmψm(x)ψm(x0)

(6.83)

×
[
erf

(
x− x0 + 2νbmt′

2
√
νt′

)
− erf

(
x− x0 − 2νbmt′

2
√
νt′

)]}
.

2. The Green function for the operator (1/c2)(∂2/∂t2) + L is

G(x, t, x0, t0) = cθ(ct′ − |x− x0|) (6.84)

×
(

1
2

+
n∑

m=1

ρm
bm

ψm(x)ψm(x0) [cosh(cbmt′)− cosh(bmt′)]

)
,

Here t′ = t−t0. These relations are obtained by means of classical fundamental
solutions of the wave and heat equations for a homogeneous medium.
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Problems of heat/mass diffusion or wave propagation in a medium with
a model kink/soliton inhomogeneity may be solved by means of the Green
functions (6.83) and (6.84). Such an inhomogeneity can be induced by a soliton
propagation.

This method can be applied for any problem with a solvable operator
related to some simple operator by the factorization.

6.6.3 Dirac equations

As shown in [460], the DT works as well to describe a fermion in an external
field in two dimensions (r, t). The method of intertwining is used to construct
the DT between one-dimensional electric potentials or one-dimensional exter-
nal scalar fields for which the Dirac equation is exactly solvable. It is shown
that a class of exactly solvable Dirac potentials corresponds to soliton solu-
tions of the modified Korteweg–de Vries equation, just as certain Schrödinger
potentials are solitons of the Korteweg–de Vries equation. It is also shown that
the intertwining transformations are related to Bäcklund transformations for
the modified Korteweg–de Vries equation. The structure of the intertwining
relations is shown to be described by an N = 4 superalgebra, generalizing
supersymmetric quantum mechanics to the Dirac case.

6.7 Remarks on d = 1 and d = 2 supersymmetry theory
within the dressing scheme

Following [286], we review here the one-dimensional supersymmetric quantum
mechanics and discuss the two-dimensional problems.

6.7.1 General remarks on supersymmetric
Hamiltonian/quantum mechanics

Supersymmetric quantum mechanics realizes the quantum description of sys-
tems with double degeneracy of energy levels. When d = 1, the supersymmetry
incorporates the one–dimensional factorization method which is intrinsically
connected to the DT as shown in Chap. 3; see also [214, 324]. The DT groups
together two Hamiltonians h0 and h1 with equivalent spectra:

h0 = q+q + E0, h1 = qq+ + E0, q ≡ d
dx
− (lnϕ)′,

where q+ is the Hermitian conjugate of q and ϕ is a solution of the equation
h0ϕ = E0ϕ (support function). It is easy to see that h0 and h1 are intertwined
by q and q+:

q h0 = h1 q, h0 q
+ = q+ h1

(see Sect. 1.1), and therefore

ψ(1) = q ψ, ψ = q+ ψ(1), (6.85)
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if h0ψ = E1ψ, h1ψ
(1) = E1ψ

(1), and ϕ(1) = ϕ−1. For brevity, the normalizing
multipliers in (6.85) are omitted.

The DT is a tool to construct one-dimensional potentials with arbitrarily
preassigned discrete spectra. For example, if the support function ϕ(E0;x) is
the wave function of the ground state of h0, then the discrete spectrum of h1

coincides with the spectrum of h0 without lower level E0 [324]. In Sect. 6.2.1
it was explained how to add level E0 to the spectrum of h1. To this end, it is
sufficient to exploit a solution of h0φ = E0φ such that

ϕ→ +∞, x→ ±∞, (6.86)

and ϕ is a positively definite function for all values of x. It is convenient to
choose ϕ as (some rigorous conditions for that are discussed in Sect. 6.2.1)

ϕ = λϕ+ + (1− λ)ϕ−,

where ϕ+ and ϕ− are positively definite functions with the following asymp-
totic behavior:

ϕ+ →
{

+∞, for x→ +∞,
0, for x→ −∞,

, ϕ− →
{

+∞, for x→ −∞,
0, for x→ +∞,

(6.87)

and λ is a real parameter lying in the interval [0, 1]. If 0 < λ < 1, then level
E0 is the lower level of the spectrum of h1. If λ = 0 or λ = 1, level E0 is
missing in both spectra of h0 and h1 and the spectra of these Hamiltonians
coincide (isospectral case of Sect. 6.2.1).

All this relates to the one-dimensional supersymmetric quantum mechanics
based on the following commutation relations:

[Q,H ] = [Q+, H ] = 0, {Q,Q+} = H, (6.88)

where

Q = qσ+, Q+ = q+σ−, H = diag(h0 − E0, h1 − E0),

and σ± = (σ1±iσ2)/2, σ1,2 are Pauli matrices. This system can be interpreted
in terms of a two-level atom interacting with a one-mode electromagnetic field.

Let us remember that q and q+ are bosonic and σ− and σ+ are fermionic
creation–annihilation operators.If the spectra of h0 and h1 are identical except
for the single level, then (6.88) corresponds to the exact supersymmetry. If
level E0 is absent in the spectra of both operators, the supersymmetry is said
to be broken. It is easy to see that level E0 cannot simultaneously be present
in the spectra of h0 and h1. This means that if the lowest level in the spectrum
of the supersymmetric Hamiltonian is zero, it is degenerate.

Generally [454], the supersymmetry algebra contains N charges Qi that
commute with the Hamiltonian and their anticommutators make up a natural
generalization of the anticommutator in (6.88):

{Qi, Q
+
j } = δijHS .
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6.7.2 Symmetry and supersymmetry via dressing chains

Let us return again to the dressing chain equation for superpotentials σi
introduced in Sect. 6.1.2; see (6.9). For an illustration let us close the dressing
chain of the operators Li = ∂ − σi at the third step:

σ4 = σ1, α4 = α1.

Multiplying the intertwining relation

LL1 = L1L[1] (6.89)

from the left by the operator L2, and repeating the procedure with L3, we
arrive at

LL1L2L3 = L1L2L3L.

This means that A = L1L2L3 is a symmetry [268].
The supersymmetry, as mentioned, is the direct consequence of the inter-

twining relations of the type (6.89). The Darboux operators Ls and L+
s are

operators of supercharge and the super-Hamiltonian H = L ⊕ L[1] unifies
L and the transformed operator [265]. Moreover, H2 = L ⊕ L[1] ⊕ L[2] fits
the matrix supercharge constructed by the row (0, L1, L1L2), for the operator
L1L2 intertwines L and L[2]; hence,

Q1 =

⎛

⎝
0 L1 0
0 0 0
0 0 0

⎞

⎠ ,

Q2 =

⎛

⎝
0 0 L1L2

0 0 0
0 0 0

⎞

⎠ ,

Q3 =

⎛

⎝
0 0 0
0 0 L2

0 0 0

⎞

⎠ .

A similar observation holds for any A =
∏N

1 Li if αN+1 = α1 and
sN+1 = s1. This construction is purely algebraic and looks to be general. If the
chain concerns the one-dimensional Sturm–Liouville operator as in Sect. 4.5,
the superpotentials si are one-gap ones.

6.7.3 d = 2 Supersymmetry example

In contrast to d = 1, for d > 1 a connection between spectra of h0 and h1

constitutes an open problem; see the discussions in [49, 50, 51]. To clarify the
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assertion, let us stress that when d > 1, we have no formulas expressing wave
functions of h1 via those of h0 that could be similar to the one-dimensional
case.

However, the existence of Hamiltonians of a special form that allow the
connections between spectra is not forbidden. Moreover, there could be ex-
pressions that connect wave functions of the corresponding Hamiltonians h0,1

in a manner that does not relate to a physical spectrum. As we shall see, both
possibilities have the corresponding realization. We consider an example of
two-dimensional supersymmetric quantum mechanics [286] with such a prop-
erty. The explicit form of operators that satisfy the algebraic relations (6.88)
at d = 2 is determined by the expressions

Q =

⎛

⎜⎜⎝

0 0 0 0
q1 0 0 0
q2 0 0 0
0 q2 −q1 0

⎞

⎟⎟⎠ , Q+ =

⎛

⎜⎜⎝

0 q+
1 q+

2 0
0 0 0 q+

2

0 0 0 −q+
1

0 0 0 0

⎞

⎟⎟⎠ , (6.90)

H = diag(h0 − E0, h̃lm − 2δlmE0, h1 − E0), (6.91)

where

h0 = q+
mqm + E0, h1 = qmq+

m + E0, h̃lm ≡ hlm + Hlm − E0δlm (6.92)

and
hlm = qlq

+
m + E0δlm, Hlm = plp

+
m + E0δlm. (6.93)

Here ql = ∂l−∂l(lnϕ), pl = εlkq
+
k , εlk is the antisymmetric tensor, ∂l ≡ ∂/∂xl

with indices l = 1, 2, and the summation in repeated indices is implied.
The general coupling between the spectra exists for pairs h0, hlm and

h1, Hlm. Really, taking into account that h1 may be represented as h1 =
p+
mpm + E0, it is easy to verify the validity of the intertwining relations:

qlh0 = hlmqm, plh1 = Hlmpm, h0q
+
l = q+

mhml, h1p
+
l = p+

mHml.

Similar relations appear in a two-directional (full) Jaynes–Cummings model
(Sect. 1.2.3), in which two supercharges generate the Jaynes–Cummings
Hamiltonian. The Hamiltonian is a combination of generators of the orthosym-
plectic superalgebra Osp(2,2,R). By the same formulas the operator h̃lm is
intertwined with h0 and h1. Its spectrum coincides with the spectra of the
scalar Hamiltonians, excluding maybe level E0.

In [25, 49, 50, 51] the supersymmetry defined by operators (6.90) and
(6.91) was studied, with the assumption that ϕ is a wave function of the basic
state of the Hamiltonian h0. It was shown that such a choice of ϕ leads to the
assertion that level E0 is absent in the physical parts of spectra of h̃lm and
h1, or to unbroken supersymmetry. Here we study the inverse problem: the
addition of level E0, which is absent in the spectrum of h0, to the spectra of
both operators. We will show that the resulting supersymmetric Hamiltonian
possesses a doubly degenerate level with E = 0. This situation cannot be
realized for d = 1 in general and for d = 2 within the “level-deleting” case.
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6.7.4 Level addition

Let the function u = u(x, y) be an integrable potential, i.e., it is supposed
that we are able to solve the Schrödinger equation h0ψ ≡ (−Δ + u)ψ = Eψ
explicitly for any spectral parameter value E. Unlike the one-dimensional case,
the potential

u(1) = u− 2Δ lnϕ,

where ϕ is the support function, is not integrable. Suppose that the spectral
parameter value E0 lies below the ground-state energy of the Hamiltonian
h0. The following question is important: How does one choose the support
function ϕ in order for level E0 to appear in the physical part of the spectra
of h1 and h̃lm?

For a scalar Hamiltonian the answer to this question is not difficult. Really,
it is easy to verify that the function ϕ−1 satisfies the equation

h1
1
ϕ

= E0
1
ϕ
.

Therefore, it is sufficient to choose ϕ as a positive function for all x and y that
grows exponentially in all directions in the (x, y)-plane. The situation coincides
literally with the one-dimensional case of Sect. 6.2.1 (if such a solution exists,
i.e., we do not consider the excited levels).

For the matrix Hamiltonian, a more advanced consideration is necessary.
First of all, note that if the function ψ is the second solution of the Schrödinger
equation with the eigenvalue E0, then the function

ψ̃m = qmψ (6.94)

satisfies the equation
h̃lmψ̃ = E0ψ̃.

Show now that for rapidly decreasing ψ̃ the representation (6.94) is not only
sufficient but necessary as well.

To start with, we prove the following:

Theorem 6.10. Level E0 belongs to the spectrum of h̃lm, iff the corresponding
normalized wave function ψ̃m satisfies the condition

hlmψ̃m = Hlmψ̃m = E0ψ̃m. (6.95)

Proof. Let the function ψ̃m exist such that

h̃lmψ̃m = E0ψ̃m, (ψ̃m, ψ̃m) = 1.

Define the functions ρm and σm by equalities

ρm ≡ hlmψ̃m, σm ≡ Hlmψ̃m. (6.96)
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It follows from (6.92) and (6.93) that σ + ρ = 2E0ψ̃ (indices omitted), i.e.,

(ρ + σ, ρ + σ) = 4E2
0 , (6.97)

if ρ and σ are normalizable. Otherwise, we can check that

hmkHkl = Hmkhkl = E0h̃ml.

It follows from (6.96) that

hlmσm = Hlmρm = E2
0 ψ̃l.

Hence,
(ψ̃m, hlmσl) = (hlmψ̃m, σl) = (ρm, σm) = E2

0 . (6.98)

Combining (6.98) and (6.97), we obtain (ρ − σ, ρ − σ) = 0; therefore, σm =
ρm = E0ψ̃m. Finally, we go from (6.96) to (6.95).

Thus, for level E0 to lie in the physical spectrum h̃lm, it is necessary to
find a normalizable solution of (6.95). Let ψ̃m be such a function. Allowing
h̃lm to act on it, we get the equation

q+
mψ̃m = p+

mψ̃m = 0.

This means that there exist two functions ψ and ψ(1) such that

ψ̃m = qmψ = pmψ(1) (6.99)

and that satisfy the equations

h0ψ = E0ψ, h1ψ
(1) = E0ψ

(1). (6.100)

Solving (6.99) with respect to ψ(1), we get the important relation that couples
ψ and ψ(1):

ψ(1) =
1
ϕ

∫
dxkεkm(ϕ∂mψ − ψ∂mϕ), (6.101)

which is known as the Moutard transformation [324]. It remains to note that
from the established connections between ψ̃m, ρm, and σm, the formula (6.94)
obviously follows.

Thus, for the presence of level E0 in the spectrum of h̃lm there should be
two normalized solutions ψ, ϕ of the Schrödinger equation with a potential
u and the spectral parameter E = E0 for the function ψ̃m = qmψ to be
normalizable. In the next section we will exemplify this procedure.
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6.7.5 Potentials with cylindrical symmetry

Let ψ and ϕ > 0 be the solutions described at the end of the previous subsec-
tion. For the construction of matrix potentials with level E0 it is convenient
to introduce an auxiliary function f = ψ/φ that satisfies the equation

∂m(ϕ2∂mf) = 0. (6.102)

Then
ψ̃m = ϕ∂mf. (6.103)

Consider the case when the seed potential possesses cylindrical symmetry,
u = u(r). Integrating (6.102) and substituting into (6.103), we get

ψ̃m =
xm
r2ϕ

. (6.104)

The normalizing integral for (6.104) converges if ϕ grows at infinity as a
polynomial function and in the vicinity of zero it behaves as r−k, k > 0. If we
require that the asymptotic behavior of ϕ is determined by the conditions

ϕ→
{
ra, for x2 + y2 →∞,
rb, for x2 + y2 → 0, (6.105)

where a > 1 and b < 1, then the normalizing integral of ϕ−1 should converge
as well. This means that level E0 exists in spectra of both operators h1 and
h̃lm simultaneously.

It was shown in [49, 50, 51] that such a situation cannot take place for
the Hamiltonians h0 and h̃lm. It is easy to see the difference between these
couples. For example, using as the support function 1/ϕ, it is possible to
construct a new supersymmetric Hamiltonian

Ĥ = diag(h1 − E0, ĥlm − 2δlmE0, h0 − E0). (6.106)

The operator ĥlm differs from h̃lm by the intertwining property. Namely, ĥlm
is intertwined with h1 not by the operators pm but by the dual ones q+

m.
Respectively, level E0 does not exist in its spectrum, whereas for the rest of
these operators the spectra coincide. Note that such “equivalent by spectrum”
matrix operators were considered in [27].

The spectrum of the supersymmetric Hamiltonian (6.91) consists of the
levels {Ei − E0, E

(1)
i − E0}, where Ei and E

(1)
i are the levels of the discrete

spectrum parts of h0 and h1, respectively. Now it is seen that if the condition
(6.105) is satisfied, then in the spectrum of (6.91) there exists the doubly
degenerate level E = 0 with the following eigenfunctions:

Ψ1 =

⎛

⎜⎜⎝

0
0
0

1/ϕ

⎞

⎟⎟⎠ , Ψ2 =

⎛

⎜⎜⎝

0
ϕ∂1f
ϕ∂2f

0

⎞

⎟⎟⎠ . (6.107)
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Using the explicit form of the odd supersymmetric operators (6.90) proves the
validity of the relations for the wave functions for the zero level:

QΨ1,2 = Q+Ψ1,2 = 0.

As an example, choose ϕ = exp(br)/rk, where b > 0 and k > 0. This
function satisfies the necessary asymptotic (6.105). As a result, we obtain two
scalar potentials of the Hamiltonians h0 and h1:

u =
k2

r2
− b(2k − 1)

r
, u(1) =

k2

r2
− b(2k + 1)

r
. (6.108)

The additional level corresponds to the energy E0 = −b2. It may be verified
that the potentials are integrated by means of the confluent hypergeometric
function. The discrete spectra are determined by

E
N

= − b2(2k ∓ 1)2

(1 + 2[N +
√
m2 + k2])2

, (6.109)

where the minus sign corresponds to u, the plus sign corresponds to u(1), N
is the principal quantum number, and m stands for the magnetic quantum
number.

The constructed potentials are interesting as an example that exhibits
a difference between the DTs in multidimensions and their one-dimensional
counterpart. Specifically, the comparison of the spectra of Hamiltonians h0

and h1 shows that the addition of the lowest level shifts all the spectrum. If
we consider the potentials (6.108), it can be seen that when

k =
(N + 1)2 −m2

2(N + 1)
,

the addition of the level E0 = −b2 does not move the excited level with the
number N and fixed m. In general, the levels of the Hamiltonian h1 go down
in respect of the levels of h0. This displacement is maximal in the lowest part
of the well and decreases as 1/N2 in the higher part of the spectrum. In turn,
the spectrum of the supersymmetric Hamiltonian (6.91) is doubly degenerate,
including the level E = 0. Its normalizable vacuum wave functions are given
by the expressions (6.107), and

1
ϕ

= rk exp(−br), ∂mf =
xm

(rϕ)2

yield their explicit form.
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Important links

In this chapter we sketch some important links between ideas of the dress-
ing Darboux transformation (DT), Bäcklund transformation (BT), etc. with
related mathematical constructions. Firstly, it is the Hirota representation
which originally produced many of the known families of multisoliton solu-
tions, and these have often led to a disclosure of the underlying Lax systems
and infinite sets of conserved quantities [209, 385]. In Sect. 7.1 we demon-
strate a systematic derivation of the bilinear BTs from the so-called Y-systems
which are formulated in terms of the binary Bell polynomials. Taking as the
example equations with the “sech2” soliton solutions, we illustrate how to
obtain the binary BTs for different weights of the Y-polynomials. In Sect. 7.2
we represent the Darboux covariant Lax pairs in terms of the Y-systems. In
Sect. 7.3 we explain how to construct BTs from the explicit dressing formu-
las and, using the Noether theorem, how to derive discrete and continuous
conservation laws. Next, in Sect. 7.4 the main formulas of the dressing theory
are retrieved within the Weiss–Tabor–Carnevale procedure [449] of Painlevé
analysis for partial differential equations (PDEs). In addition, we comment
on a historical point connected with the appearance of the dressing method
in the Zakharov–Shabat theory. Namely, we suggest in Sect. 7.5 an original
revisiting of the technique of inverse scattering transform (IST) in terms of
the Gel’fand–Levitan–Marchenko integral equation. Notice in connection with
this that the search for perhaps the most general dressing scheme within the
framework of the Zakharov and Shabat ideas is represented in [478].

7.1 Bilinear formalism. The Hirota method

A striking feature of the bilinear formalism is the ease with which direct in-
sight can be gained into the nature of the eigenvalue problem associated with
soliton equations (such as the KdV, Boussinesq, or Sawada–Kotera equations)
derivable from the bilinear Hirota equation (representation) for a single Hi-
rota function. The key element is the bilinear form of the BT which can be

199
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straightforwardly obtained from the Hirota representation of these equations,
through decoupling of a related “two-field condition” by means of an appropri-
ate constraint of minimal weight [262]. The main point is that bilinear BTs are
obtained systematically, without the need for tricky exchange formulas [209].
They arise in the form of “Y-systems,” each equation within such a system
belonging to a linear space spanned by the basis of binary Bell polynomials
(Y-polynomials) [187].

An important element is the logarithmic linearizability of Y-systems, which
implies that each bilinear BT can be mapped onto a corresponding linear sys-
tem of the Lax type. However, it turns out that these linear systems involve
differential operators which, even in the simplest case, do not constitute a Dar-
boux covariant [265, 324] Lax pair . This fact prevents us from obtaining large
classes of solutions by direct application of the powerful Darboux machinery
to the systems which arise by straightforward linearization of the Y-systems.
Here we present a simple scheme to resolve this difficulty for a variety of soli-
ton equations which allow a bilinear BT that comprises a constraint of the
lowest possible weight (weight 2). Darboux covariant Lax pairs for the KdV,
Boussinesq, and Lax equations are obtained in a unified manner, by exploiting
the relations between the coefficients of linear differential operators connected
by the classical DT. Exponential Bell polynomials [44] and generalized “mul-
tipotential” Y-systems are found to be useful for this purpose. This approach
reveals deep connections between the (1+1)-dimensional equations and the
underlying (higher-dimensional) Kadomtsev–Petviashvili (KP) hierarchy. We
start our discussion by recalling the basic properties of the Y-polynomials
(derived in [187]) and by indicating how the use of the Y-basis can lead sys-
tematically from the original nonlinear PDEs to the associated linear systems.
The example of the Lax equation is instructive since this fifth-order equation
has no single bilinear Hirota representation. The content of this section follows
[260].

7.1.1 Binary Bell polynomials

The class of exponential Bell polynomials, originally defined for the Abelian
entries as

Ymx(v) = Ym(vx, vxx, ..., vmx) ≡ e−v
∂m

∂xm
ev, m ∈ Z, (7.1)

was introduced in Sect. 2.1. It keeps a balance between linear and quadratic
terms of the (generalized) Burgers equation, for

Ymx(lnψ) = ψmx/ψ. (7.2)

Examples are easily derived and are given in Sect. 2.1. The property of
x-homogeneity,

Ym(λx)(v) = λ−m(v)Ymx(v), (7.3)
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introduces the weight m.
The binary polynomials that we shall use in this section are defined in

terms of the exponential Bell polynomials

Ymx,nt(f) = e−f∂mx ∂nt ef (7.4)

as follows:

Ymx,nt(v, w) ≡ Ymx,nt(f)
∣∣∣∣
fpx,qt =

{
vpx,qt if p + q = odd,
wpx,qt if p + q = even,

(7.5)

with the understanding that fpx,qt ≡ ∂px∂
q
t f . They inherit the easily recogniz-

able partition structure of the Bell polynomials (for a recurrent definition see
Sect. 2.2):

Yx(v) = vx,
Y2x(v, w) = w2x + v2

x,
Yx,t(v, w) = wxt + vxvt,

Y3x(v, w) = v3x + 3vxw2x + v3
x, · · ·

(7.6)

The link between the Y-polynomials and the standard Hirota expression

Dp
xD

q
tG

′ ·G ≡ (∂x − ∂x′)p (∂t − ∂t′)
q
G′(x, t)G(x′, t′)

∣∣∣
x′=x,t′=t

(7.7)

is given by the identity

Ymx,nt(v = lnG′/G, w = lnG′G) ≡ (G′G)−1Dm
x Dn

t G
′ ·G. (7.8)

In the particular case G′ = G, one has

G−2Dm
x Dn

t G · G ≡ Ymx,nt(0, Q = 2 lnG) =
{

0, if m + n = odd,
Pmx,nt(Q), if m + n = even,

(7.9)
the P -polynomials being characterized by an equally recognizable “even part”
partition structure:

P2x(Q) = Q2x, Px,t(Q) = Qxt, P4x(Q) = Q4x + 3Q2
2x,

P6x(Q) = Q6x + 15Q2xQ4x + 15Q3
2x, . . . . (7.10)

A crucial property of the Y-polynomials relates to the transformation w =
v + Q, v = lnψ:

Ypx,qt(v, w = v + Q)
∣∣∣
v=lnψ

(7.11)

= ψ−1

p∑

j=0

q∑

k=0
j+k=even

(
p
q

)(
q
k

)
Pjx,kt(Q)ψ(p−j)x,(q−k)t
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and originates from the addition formula for the polynomials Y (v):

Ymx(v1 + v2) =
m∑

j=0

(
m
j

)
Y(m−j)x(v1)Yjx(v2). (7.12)

The proof is performed by use of the Newton–Leibnitz formula.
It should also be noticed that polynomials Ypx,qt(v, w), constructed with

the derivatives of dimensionless variables v and w, are homogeneous expres-
sions of the weight p+ qr, if r stands for the dimension of t (the dimension of
x is chosen equal to 1).

7.1.2 Y-systems associated with “sech2” soliton equations

We consider four examples of “sech2” soliton equations with the order ranging
from 3 to 5: the KdV, Boussinesq, Lax, and Sawada–Kotera equations.

KdV equation

The invariance of the KdV equation

KdV(u) ≡ ut + u3x + 6uux = 0 (7.13)

under the scale transformation

x→ λx, t→ λ3t, u→ λ−2u (7.14)

shows that u has the dimension −2. A dimensionless field Q can be introduced
by setting u = cQ2x, with c being a dimensionless parameter to be determined.
The resulting equation for Q can be derived from the potential equation

Qxt + Q4x + 3cQ2
2x = 0, (7.15)

which can be cast into the form

E(Q) ≡ Pxt(Q) + P4x(Q) ≡ G−2(DxDt + D4
x)G ·G

∣∣∣
G=exp(Q/2)

= 0 (7.16)

by setting c = 1.
The well-known Hirota two-field condition on G and G′, to be satisfied as

a differential consequence of a bilinear BT (that we have to find), takes the
form [209]

G′−2(DxDt + D4
x)G

′ ·G′ −G−2(DxDt + D4
x)G ·G = 0. (7.17)

It corresponds to the following condition on Q = 2 lnG = w − v and
Q′ = 2 lnG′ = w + v:

E(w + v)− E(w − v) = 2(vxt + v4x + 6v2xw2x)

≡ 2 {∂x [Yt(v) + Y3x(v, w)] + 6W [Y2x(v, w),Yx(v)]} = 0, (7.18)
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where W (Y1,Y2) is the Wronskian. This condition can easily be decoupled into
a pair of equations in the form of linear combinations of the Y-polynomials.
It suffices to impose such a constraint on v and w (pj and qj are integers or
zero, cj is a constant),

∑

j

cjYpjx,qjt(v, w) = 0, (7.19)

of the lowest possible order (or weight). The simplest choice is a constraint of
weight 2:

Y2x(v, w) ≡ w2x + v2
x = 0. (7.20)

In order to obtain a parameter-dependent decomposition, we should im-
pose the condition

Y2x(v, w) = λ, (7.21)

where λ is an arbitrary parameter of weight 2. This leads to the following
Y-system

Y2x(v, w)− λ = 0, Yt(v) + Y3x(v, w) + 3λYx(v) = 0, (7.22)

the compatibility of which is guaranteed by the corresponding system for ψ
[setting w = v + Q, v = lnψ and using (7.10)]:

(L2 − λ)ψ ≡ ψ2x + (Q2x − λ)ψ = 0, (7.23)

(∂t + L3)ψ ≡ ψt + ψ3x + 3(Q2x + λ)ψx = 0,

i.e., to the (λ-independent) condition:

(Qxt + Q4x + 3Q2x)x ≡ ∂xE(Q) = 0. (7.24)

The bilinear equivalent of the Y-system (7.22) is obtained by means of (7.8):

D2
xG

′ ·G = λG′G, (Dt + D3
x + 3λDx)G′ ·G = 0. (7.25)

It is the bilinear BT for the KdV proposed by Hirota [209].

Boussinesq equation

A similar analysis can be applied to the Boussinesq equation

Bq(u) ≡ u2t − u4x + 3(u2)2x = 0. (7.26)
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This equation can be derived from a potential version obtained by setting
u = −Q2x:

E(Q) ≡ P2t(q)− P4x(Q) ≡ G−2(D2
t −D4

x)G ·G
∣∣∣
G=exp(Q/2)

= 0. (7.27)

The corresponding two-field condition

E(Q′ = w + v)− E(Q = w − v) ≡ 2(v2t − v4x − 6v2w2x)

= −2∂xY3x(v, w) + 2v2t + 6W [Y2x(v, w),Yx(v)] = 0 (7.28)

can still be decoupled into a pair of equations of the form (7.19) by means of
the Y-constraint of weight 2 (notice that in this case the dimension of t = 2,
so we dispose of two Y-polynomials of weight 2):

Yt(v) + aY2x(v, w) = 0, (7.29)

where a is a dimensionless constant to be determined.
The decoupling requires a2 = −3 and produces the following parameter-

dependent Y-system (λ is an integration constant):

Yt + aY2x(v, w) = 0, aYx,t(v, w) + Y3x(v, w) = λ. (7.30)

The corresponding bilinear system

(Dt + aD2
x)G

′ ·G = 0, (aDxDt + D3
x − λ)G′ ·G = 0 (7.31)

is exactly the bilinear BT for the Boussinesq equation obtained by Nimmo
and Freeman [350]. Its compatibility is subject to that of the linear equivalent
to the system (7.30):

ψt + aψ2x + aQ2xψ = 0, (7.32)

aψxt + ψ3x + 3Q2xψx + (aQxt − λ)ψ = 0,

i.e., to the following potential version of the Boussinesq equation:

PBq(Q) ≡ (Q2t −Q4x − 3Q2
2x)x = 0. (7.33)

Lax equation

We now consider the Lax equation

Lax(u) ≡ ut + u5x + 10uu3x + 20uxu2x + 30u2ux = 0. (7.34)
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Setting u = cQ2x brings it to the potential equation:

Ec(Q) ≡ Qxt + Q6x + 10cQ2xQ4x + 5cQ2
3x + 10c2Q3

2x = 0. (7.35)

The left-hand side of this equation is homogeneous with weight 6, but there is
no value of c such that (7.35) can be expressed as a linear combination of the
weight 6 polynomials P6x(Q) and Pxt(Q). Setting c = 1, we may nevertheless
consider the two-field condition

E1(w + v)− E1(w − v) ≡ 2 {∂x [Yt(v) + Y5x(v, w)] + R(v, w)} = 0, (7.36)

with

R(v, w) = −5
(
vxw5x − v2xw4x + 6vxw2xw3x + 2v3

xw3x − 3v2xw
2
2x

+6v2
xv2xw2x + 4vxv2xv3x + 2v2

xv4x + v4
xv2x − 2v3

2x

)
. (7.37)

Eliminating w2x and its derivatives by means of the weight 2 constraint (7.21),
we find that the condition (7.36) can be decoupled into the following Y-system:

Y2x(v, w) = λ, Y(v) + Y5x(v, w) + 15λ2Yx(v) = 0. (7.38)

Its compatibility is subjected to that of the corresponding linear system:

ψ2x + (Q2x − λ)ψ = 0, ψt + L5ψ = 0, (7.39)

L5 = ∂5
x + 10Q2x∂

3
x + 5(Q4x + 3Q2

2x + 3λ2)∂x,

i.e., to the condition

(Qxt + Q6x + 10Q2xQ4x + 5Q2
3x + 10Q3

2x)x ≡ ∂xE1(Q) = 0. (7.40)

Sawada–Kotera equation

We finally consider the Sawada–Kotera equation

SK(u) ≡ ut + u5x + 15uu3x + 15uxu2x + 45u2ux = 0, (7.41)

which again can be derived from a potential equation by setting u = Q2x,
expressible in terms of P6x(Q) and Pxt(Q):

E(Q) = Pxt(Q) + P6x(Q) ≡ G−2(DxDt + D6
x)G ·G

∣∣∣
G=exp(Q/2)

= 0. (7.42)

It is easy to see that the corresponding two-field condition

E(w + v)− E(w − v) ≡ 2∂x [Yt(v) + Y5x(v, w)] + 10R(v, w) = 0, (7.43)
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with
R(v, w) = −vxw5x + 2v2xw4x − 2v3xw3x + w2xv4x

−2v2
xv4x − 4vxv2xv3x + 6v2xw

2
2x (7.44)

+3v3
2x − 6vxw2xw3x − 2v3

xw3x − 6v2
xv2xw2x − v4

xv2x,

can no longer be decoupled into a Y-system by means of a weight 2 constraint
of the form (7.20).

Yet, the weight 3 constraint

Y3x(v, w) ≡ v3x + 3vxw2x + v3
x = λ (7.45)

enables us to express R(v, w) as follows:

R(v, w) = −1
2
∂x [Y5x(v, w) + 3λY2x(v, w)] . (7.46)

This means that the condition (7.43) can be decoupled into the following
(λ-dependent) Y-system:

Y2x(u, v)− λ = 0, Yt(v)− 3
2
Y5x(v, w) − 15

2
λY2x(v, w) = 0. (7.47)

Its compatibility is subjected to that of the corresponding ψ-system
(w = v + Q, v = lnψ):

ψ3x + 3Q2xψx − λψ = 0, (7.48)

ψt − 3
2
ψ5x − 15Q2xψ3x − 15

2
P4x(Q)ψx − 15

2
λ(ψ2x + Q2xψ) = 0,

i.e., to the condition:
(
Qxt + Q6x + 15Q2xQ4x + 15Q3

2x

)
x
≡ ∂xE(Q) = 0. (7.49)

The bilinear equivalent of the system (7.47),

(D3
x − λ)G′ ·G = 0,

(
Dt − 3

2
D5
x −

15
2
λD2

x

)
G′ ·G = 0, (7.50)

is the bilinear BT for the Sawada–Kotera equation reported in [386].

7.2 Darboux-covariant Lax pairs in terms of Y-functions

In Sect. 3.7 a joint covariance property of operators was defined and investi-
gated. It results in some necessary conditions, e.g., the joint covariance equa-
tions, whose solutions yield restriction on a form of solvable equations. Let
us now go back to the KdV equation (7.13) and the associated linear system
(7.23). It comprises the second-order eigenvalue equation considered by Lax
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[263], with the covariance property we study throughout this book. According
to this property, (nonvanishing) solutions φ to the spectral equation produce
transformations

Gφ = φ∂xφ
−1 = ∂x − σ, σ = ∂x lnφ, (7.51)

which map L2 = ∂2
x + Q2x onto the similar operator

L̃2 ≡ GφL2(Q2x)G−1
φ ≡ L2(Q̃2x), (7.52)

with Q̃2x = Q2x + 2σx. With the second-order eigenvalue equation obtained
from the constraint (7.21) through the map v = lnψ,

Y2x(v, v + Q) = λ, (7.53)

we may try to associate a Darboux-covariant third-order evolution equation.
Note that any equation of the form

∑

n

cnYpnx,qnt

(
v, v + Q(n)

)
= 0 (7.54)

corresponds to a linear equation for ψ. In particular, there is a correspondence
between the evolution equation (c2 and c3 are constants)

Yt(v) + c2Y2x

(
v, v + Q(2)

)
+ c3Y3x

(
v, v + Q(3)

)
= 0 (7.55)

and its linear counterpart

ψt + L3ψ = 0, L3 = c3∂
3
x + c2∂

2
x + b1∂x + b0, (7.56)

with
b1 = 3c3Q

(3)
2x , b0 = c2Q

(2)
2x . (7.57)

Let Gφ be a transformation (7.51) generated by a (nonvanishing) solution
φ of the system

(L2 − λ)φ ≡ (∂2
x + Q2x − λ)φ = 0, (7.58)

(∂t + L3)φ ≡ (∂t + c3∂
3
x + c2∂

2
x + b1∂x + b0)φ = 0.

It maps the operators L2 − λ and ∂t + L3 onto the similar operators

Gφ(L2 − λ)G−1
φ = L2(Q̃2x)− λ, Gφ(∂t + L3)G−1

φ = ∂t + L̃3,

L̃3 ≡ c3∂
3
x + c2∂

2
x + b̃1∂x + b̃0, (7.59)

where
b̃1 = b1 + Δb1, Δb1 = 3c3σx, (7.60)

b̃0 = b0 + Δb0, Δb0 = b1,x + σΔb1 + 2c2σx + 3c3σ2x, (7.61)
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and the following differential consequences of (7.58) have been taken into
account:

∂x

(
φ2x

φ
+ Q2x − λ

)
= 0 ⇐⇒ ∂xY2x(lnφ)+Q3x ≡ (σx+σ2)x+Q3x = 0,

∂x [Yt(lnφ) + c3Y3x(lnφ) + c2Y2x(lnφ) + b1Yx(lnφ) + b0] = 0 (7.62)

⇐⇒ σt + c3(σ2x + 3σσx + σ3)x + c2(σx + σ2)x + (b1σ)x + b0,x = 0.

In order that ∂t + L3 be the Darboux-covariant with L2 − λ, we have to
determine the coefficients bi, i = 0, 1, as functions of Q2x and its derivatives,
in such a way that the covariance condition

L̃3(Q2x, Q3x, . . .) = L3(Q̃2x, Q̃3x, . . .) (7.63)

be satisfied with

ΔQ(r+1)x ≡ Q̃(r+1)x −Q(r+1)x = 2σrx, r = 1, 2, . . . . (7.64)

Hence, we should look for expressions bi = Fi(Q2x, Q3x, . . .) such that the
differences Δbi which appear in (7.58) and (7.59) are expressible as

Δbi = Fi(Q2x+ΔQ2x, Q3x+ΔQ3x, . . .)−Fi(Q2x, Q3x, . . .), i = 0, 1. (7.65)

Because
Δb1 =

3
2
c3ΔQ2x, (7.66)

it is clear that we can find an expression Fi, linear in Q2x, which satisfies
condition (7.64), yielding

b1 =
3
2
c3Q2x + c1, (7.67)

c1 being an arbitrary constant. The difference Δb0 is now given by the relation

Δb0 =
3
2
c3Q3x + 3c3σσx + 2c2σx + 3c3σ2x, (7.68)

which, on account of (7.62), becomes

Δb0 = 2c2σx +
3
2
c3σ2x = c2ΔQ2x +

3
4
c3ΔQ3x. (7.69)

It follows that we can find an expression F0, linear in Q2x and Q3x, which
satisfies condition (7.64), yielding

b0 = c2Q2x +
3
4
c3Q3x + c0, (7.70)
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where c0 is an arbitrary constant. Setting c0 = c1 = 0, we obtain

L3 = c3

(
∂3
x +

3
2
Q2x∂x +

3
4
Q3x

)
+ c2L2, (7.71)

indicating that the simplest Darboux-covariant third-order evolution equation
to be associated with (7.58) has the form (setting c2 = 0, c3 = 4)

(ψt + L̄3)ψ ≡ 0, L̄3 = 4∂3
x + 6Q2x∂x + 3Q3x. (7.72)

Together with (7.54) it produces an equivalent version of our previous linear
system (7.23) for the KdV equation, obtained by replacing the second equation
by the combination

[∂t + L3 + 3∂x(L2 − λ)]ψ = 0. (7.73)

The operator L̄3 corresponds precisely to the third-order operator which gives
rise to the KdV equation in the Lax formalism [350]:

[∂t + L̄3, L2] = (Qxt + Q4x + 3Q2
2x)x = 0. (7.74)

The full Darboux-covariant system obtained with expression (7.71) for L3,

(L2 − λ)ψ = 0, (∂t + L3)ψ = 0, (7.75)

corresponds, through the map v = lnψ, to the multipotential Y-system

Y2x(v, v + Q) = λ, (7.76)

Yt(v) + c3Y3x

(
v, v + Q(3)

)
+ c2Y2x

(
v, v + Q(2)

)
= 0,

in which
Q

(3)
2x =

1
2
Q2x, Q

(2)
2x = Q2x +

3
4
c2
c3

Q3x. (7.77)

An interesting alternative to this system results from an interchange be-
tween Y2x(v, v + Q) and c3Y3x

(
v, v + Q(3)

)
+ c2Y2x

(
v, v + Q(2)

)
,

c3Y3x

(
v, v + Q(3)

)
+ c2Y2x

(
v, v + Q(2)

)
= λ,

Yt(v) + Y2x(v, v + Q) = 0, (7.78)

which corresponds to an alternative Lax-like system with the third-order
eigenvalue equation and second-order time evolution:

L3ψ ≡ (c3∂3
x + c2∂

2
x + b1∂x + b0)ψ = λψ,

(∂t + L2)ψ ≡ ∂t + ψ2x + Q2xψ = 0, (7.79)

where the bi, i = 0, 1, are given by (7.57).
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Let Gφ be a transformation generated by a (nonvanishing) solution φ of
the system (7.79). It still maps the operators ∂t +L2 and L3−λ onto similar
operators,

Gφ(∂t + L2)G−1
φ = ∂t + L̃2, L̃2 = L2(Q̃2x), (7.80)

Gφ(L3 − λ)G−1
φ = L̃3 − λ, L̃3 = c3∂

3
x + c2∂

2
x + b̃1∂x + b̃0, (7.81)

where the differences Δbi ≡ b̃i − bi are given by (7.60) and (7.61) and where
the following differential consequences of (7.79) have been taken into account:

σt + (σx + σ2)x + Q3x = 0, (7.82)
c3(σ2x + 3σσx + σ3)x + c2(σx + σ2)x + (b1σ)x + b0,x = 0. (7.83)

Extending the condition (7.64) to r = 0, we find by means of the above
analysis that the covariance of L3 − λ with ∂t + L2 is guaranteed if

b1 =
3
2
c3Q2x + c1, b0 = c2Q2x +

3
4
c3(Q3x −Qxt) + c0, (7.84)

where c0 and c1 are arbitrary constants. Setting c0 = c1 = 0, we find

L3 = c3

(
∂3
x +

3
2
Q2x∂x +

3
4

(Q3x −Qxt)
)

+ c2L2, (7.85)

yielding the simplest Darboux-covariant system of type (7.79):

L̂3ψ = λψ, (∂t + L2)ψ = 0, (7.86)

L̂3 = 4∂3
x + 6Q2x∂x + 3 (Q3x −Qxt) .

The operators L̂3 and ∂t + L2 are found to constitute the Lax pair for an
equation which is nothing other than the potential version of the Boussinesq
equation (7.26) in which t has been rescaled (t = aτ, a2 = −3):

[∂t + L2, L̂3] = −(3Q2t + Q4x + 3Q2
2x)x = (Q2τ −Q4x − 3Q2

2x)x. (7.87)

It is easy to verify that the system (7.86) taken with t = aτ and a2 = −3 is
the equivalent version of our previous linear system (7.32) for the Boussinesq
equation which results from subtracting a times the x-derivative of the first
equation from the second one. The full Darboux-covariant system obtained
with expression (7.85),

(L3 − λ)ψ = 0, (∂t + L2)ψ = 0, (7.88)

corresponds, through the map v = lnψ, to a “covariant” version of the system
(7.78) in which

Q
(3)
2x =

1
2
Q2x and Q

(2)
2x = Q2x +

3
4
c2
c3

(Q3x −Qxt). (7.89)
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The striking similarity between the covariant Y-systems associated with
the KdV and Boussinesq equations reveals a deep connection between both
soliton systems. It suffices to consider the next step which leads us from the
system (7.78) to an alternative version with two evolution equations corre-
sponding to two t-variables (tp has the dimension p):

Yt2(v) + Y2x(v, v + Q) = 0, (7.90)

Yt3(v) + c2Y2x

(
v, v + Q(2)

)
+ c3Y3x

(
v, v + Q(3)

)
= 0.

It is clear from the above analysis that the Darboux covariance of the corre-
sponding linear system for ψ = exp v,

(∂t2 + L2)ψ = 0,
(
∂t3 + c3∂

3
x + c2∂

2
x + 3c3Q

(3)
2x ∂x + c2Q

(2)
2x

)
ψ = 0, (7.91)

is still guaranteed by the conditions (7.89) on Q
(3)
2x and Q

(2)
2x . In particular,

it is found that the compatibility of the simplest covariant system (setting
c2 = 0, c3 = 4),

(∂t + L2)ψ = 0, (∂t3 + L̂3)ψ = 0, (7.92)

L̂3 = 4∂3
x + 6Q2x∂x + 3(Q3x −Qxt2),

is subjected to the condition

[∂t3 + L̂3, ∂t2 + L2] = [Px,t3(Q) + 3P2t2(Q) + P4x(Q)]x = 0, (7.93)

which is a potential version of the KP equation:

KP(u) ≡ (ut3 + u3x + 6uux)x + 3u2t2 = 0, (7.94)

obtained by setting u = Q2x and by integrating once with respect to x. We
wish to stress that the above derivation of a covariant Lax pair for the KdV
equation produced three closely related Darboux-covariant systems hinting in
a direct manner at the (well-known) common origin of the KdV and Boussi-
nesq equations as reductions of the KP equation.

We end our discussion with a direct derivation of a Darboux-covariant
equivalent to the linear system (7.39) that we associated with the Lax equation
(7.34). Our starting point is the multipotential Y-system (ci is a constant),

Y2x(v, v + Q) = λ, Yt(v) +
5∑

i=2

ciYix
(
v, v + Q(i)

)
= 0, (7.95)

or its linear version for ψ = exp v,

(L2 − λ)ψ = 0, (∂t + L5)ψ = 0, (7.96)

L5 = c5∂
5
x + c4∂

4
x + b3∂

3
x + b2∂

2
x + b1∂x + b0,
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with

b3 = 10c5Q
(5)
2x + c3, b2 = 6c4Q

(4)
2x + c2,

b1 = 3c3Q
(3)
2x + 5c5

[
Q

(5)
4x + 3

(
Q

(5)
2x

)2
]

+ c1, (7.97)

b0 = c2Q
(2)
2x + c4

[
Q

(4)
4x + 3

(
Q

(4)
2x

)2
]

+ c0.

Let Gφ be a transformation (7.51) generated by a (nonvanishing) solution φ
of the system (7.96) and (7.97). It maps L2 − λ and ∂t + L5 onto the similar
operators (7.60) and ∂t + L̃5, with

L̃5 = c5∂
5
x + c4∂

4
x + b̃3∂

3
x + b̃2∂

2
x + b̃1∂x + b̃0, (7.98)

where

Δb3 ≡ b̃3 − b3 = 5c5σx = 5
2c5ΔQ2x,

Δb2 ≡ b̃2 − b2 = b3,x + σΔb3 + 4c4σx + 10c5σ2x,

Δb1 ≡ b̃1 − b1 = b2,x + σΔb2 + 3σxb̃3 + 6c4σ2x + 10c5σ3x,

Δb0 ≡ b̃0 − b0 = b1,x + σΔb1 + 2σxb̃2 + 3σ2xb̃3 + 4c4σ3x + 5c5σ4x.

(7.99)

In order to ensure the Darboux covariance of ∂t + L5 with L2 − λ, we must
again determine expressions Fi for bi, i = 0, 1, 2, 3, in terms of Q2x and its
derivatives, which are such that condition (7.65) is satisfied at i = 0, 1, 2, 3,
with (7.64). It is clear from (7.98) that F3 can be chosen to be linear in Q2x,
so

b3 =
5
2
c5Q2x + c3, (7.100)

where c3 is an arbitrary constant. Equation (7.98) then becomes

Δb2 =
5
2
csQ3x + 5c5σσx + 4c4σx + 10c5σ2x. (7.101)

Using (7.62), we rewrite it as

Δb2 = 4c4σx +
15
2
c5σ2x = 2c4ΔQ2x +

15
4
c5ΔQ3x, (7.102)

indicating that F2 can be chosen to be linear in Q2x and Q3x, so

b2 = 2c4Q2x +
15
2
c5Q3x + c2, (7.103)

where c2 is an arbitrary constant. Hence, we obtain

Δb1 = 2c4Q3x +
15
4
c5Q4x + 4c4σσx +

15
2
c5σσ2x +

15
2
c5σxQ2x

+3c3σx + 15c5σ2
x + 6c4σ2x + 10c5σ3x, (7.104)
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or, using (7.62),

Δb1 = 2c4ΔQ3x +
25
8
c5ΔQ4x +

15
8
c5 (2Q2xΔQ2x + ΔQ2xΔQ2x)

+
3
2
c3ΔQ2x + 2c4ΔQ3x +

25
8
c5ΔQ4x +

15
8
Δ

(
Q2

2x

)
. (7.105)

It follows that F1 can be chosen to be linear in Q2x, Q3x, Q4x, and Q2
2x, so

b1 =
3
2
c3Q2x + 2c4Q3x +

25
8
c5Q4x +

15
8
c5Q

2
2x + c1. (7.106)

It is found from these results and (7.62) that Δb0 becomes

Δb0 =
15
16

c5 [ΔQ5x + 2Δ(Q2xQ3x)] (7.107)

+ c4
[
ΔQ4x + Δ

(
Q2

2x

)]
+

3
4
c3ΔQ3x + c2ΔQ2x,

indicating that the appropriate expression for b0 is

b0 = c2Q2x +
3
4
c3Q3x + c4(Q4x +Q2

2x) +
15
16

c5(Q5x + 2Q2xQ3x) + c0. (7.108)

Setting c1 = c0 = 0, we obtain the following expression for L5,

L5 = c4L
2
2 + c3

(
∂3
x +

3
2
Q2x∂x +

3
4
Q3x

)
+ c4L2 + L̂5, (7.109)

with (choosing c5 = 16)

L̂5 = 16∂5
x + 40Q2x∂

3
x + 60Q3x∂

2
x + (50Q4x + 30Q2

2x)∂x + 15(Q5x + 2Q2xQ3x).
(7.110)

The relations between different potentials appearing in the covariant system
(7.95) are determined by (7.97), (7.100), (7.103), (7.106), and (7.108). The
simplest Darboux-covariant fifth-order evolution equation (7.97) to be associ-
ated with (7.96) has the form

(
∂t + L̂5

)
ψ = 0. (7.111)

It is easy to see that the system (7.96) and (7.111) is equivalent to the original
system (7.39):

L̂5 = L5 + 15
[
∂3
x + (Q2x + λ)∂x + Q3x

]
(L2 − λ). (7.112)

Notice that the appearance of the third-order Darboux-covariant operator L3

as a part of the general fifth-order covariant operator L5 can be regarded
as a direct confirmation of the close relationship between the KdV and Lax
equations as the third- and fifth-order members of the same hierarchy.
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7.3 Bäcklund transformations and Noether theorem

BTs naturally arise when the Darboux formalism is “projected” to solutions
of nonlinear equations (the potentials of the corresponding Lax representa-
tion). The action is simple: “wave functions” of the Lax equations should be
excluded [239].

7.3.1 BT and infinitesimal BT

In the previous section we showed that the bilinear BT is a DT covariant form
of the equations of the Hirota method. For the KdV equation it is (7.25), which
is obtained from (7.22). The second relation (7.22) is nothing more than the
first equation of the classical BT, relating the fields w = Qx and w′ = Q′

x:

(w + w′)x = (w − w′)2 − κ2, (7.113)

(w + w′)t = −2(w − w′)(w − w′)xx + (wx − w′
x)

2 + 3((w − w′)2 − κ2)2,

while the second equation (we take the form of [407], the appropriate change
of notations is used) is derived from (7.18) in terms of the Q and Q′ fields
of the potential KdV equation (7.15); we denote 2μ = −κ2. The form of this
equation is not unique, because the first one can be used.

The famous consequence of the BT (7.113) is that both variables w and
w′ are solutions of the potential KdV equation

Λw ≡ wt − 6w2
x + wxxx = 0. (7.114)

Steudel [407, 408, 409] derived conservation laws for soliton equations by
application of the Noether theorem, imposing the BT in a version of the
extended interpretation of

w′ = Bκw ≡ w + κ[1 + κ−2(w′
x + wx)]1/2, (7.115)

which is one of the solutions of the first relation in (7.113) with respect to
w′ − w. The real-valued w is in the realm of the extended BT transform, if
inf[1 + κ−2(w′

x + wx)] ≥ 0, or |w′
x + wx| ≤M2, |κ| ≥M .

Theorem 7.1. Let

wi = Bκiw0, w3 = Bκ2w1, (7.116)

then
Bκ1Bκ2 = Bκ2Bκ1 (7.117)

and
(w3 − w0)(w2 − w1) = κ2

2 − κ2
1. (7.118)
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The fundamental property of the extension basis is that (7.115) is valid
not only for solutions of the potential KdV equation. In other words, the
Laurent series

δw = κ + A1κ
−1 + A2κ

−2 + . . . (7.119)

represents the infinitesimal transform at infinity on the κ-plane. Equating the
x-derivative of the right-hand side of (7.119) and the right-hand side of the
first relation in (7.113) yields

A1 = wx, An =
1
2
A(n−1)x − 1

2

n−2∑

r=1

ArAn−r−1, n = 2, 3, 4, . . . . (7.120)

These formulas were first derived by Zakharov and Faddeev [469] in the con-
text of the IST method; see also [385, 445]. Note also that the expansion
(7.119) after differentiation in x gives an alternative representation of a DT
as δwx ∼ u[1]− u. The recurrent relations (7.120) are solved explicitly:

A2 = wxx/2, A3 = wxxx − w2
x/2, A4 = wxxxx/8− wxwxx, . . . . (7.121)

7.3.2 Noether identity and Noether theorem

A Lagrangian density for the KdV equation is chosen so that

L =
1
2
wxwt +

1
2
w2
xx − 2w2

x (7.122)

gives the potential KdV equation (7.114) as the Euler equation. A variant of
the Noether theorem for the dependence of L on wxx is based on the following
form for the variation (the Frechét differential on the prolonged space):

δL ≡ ∂L

∂wt
δwt +

∂L

∂wx
δwx +

∂L

∂wxx
δwxx. (7.123)

A decomposition of the right-hand side of (7.134) into a divergence and a term
proportional δw gives the Noether identity

δL = At + Bx − Λδw, (7.124)

where
A =

∂L

∂wt
δw =

1
2
wxδw, (7.125)

B=
[
∂L

∂wx
−

(
∂L

∂wxx

)

x

]
δw+

∂L

∂wxx
δwx=

(
1
2
wt + wxxx − 6w2

x

)
δw−wxxδwx.

(7.126)
The expression for Λ is given by (7.114). A proof of the theorem follows from
the identity (

∂L

∂wt
δw

)

t

=
(

∂L

∂wt

)

t

δw +
∂L

∂wt
δwt, (7.127)

and similar ones for other derivatives and the Euler equation. The identity
(7.124) proves the Noether theorem:
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Theorem 7.2. If the Lagrangian changes by a divergence

δL = ε(Θt + Ξx) (7.128)

under the infinitesimal transformations w → w+ εf , then, for all solutions of
the potential KdV equation Λw = 0, the conservation law

Tt + Xx = 0 (7.129)

exists, with

T = ε−1A−Θ, (7.130)
X = ε−1B −Ξ. (7.131)

The following lemma occurs:

Lemma 7.3. Let dik = wi − wk and

L[w1]− L[w0] = Θ01
t + Ξ01

x , (7.132)

with
Θ10 = − 1

12
d10d

2
10 +

1
4
κ2, (7.133)

Ξ10 = d10

(
−4

5
d4
10 − 2κ2 + wx(d2

10 − κ2)− 2w2
x +

1
4
(w1 + w0)

)
.

Then the transformation Bκ is the Noether transformation.

This is proved by the definitions of the Lagrangian (7.122) and w1 (7.116) on
the basis of (7.113). The product Bκ+εB−κ, being the Noether transformation,
generates the vector (Θ,Ξ) such that

δL = L[w2]− L[w1] = ε(Θt + Ξx) (7.134)

determines the variation about the fixed w0. Finally, the part of the vector
(Θ,Ξ),

T = −κ

2
d40, X = 2κd40(wx − κ2), (7.135)

which is symmetric with respect to κ → −κ (the symmetry of the BT is
accounted for), contributes indeed to the Noether conservation law:

1
2
d40t + 2d40(κ2 − wx)x. (7.136)

The substitution of expansion (7.119) into (7.136) produces the conservation
laws

(A2r−1)t + 4(A2r+1 − wxA2r−1)x = 0, r = 1, 2, . . . (7.137)

in the form of Wadati et al. [445].
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7.3.3 Comment on Miura map

The first relation in (7.113) for imaginary κ = ik in terms of d01 = w0 − w1 =
d∗41 is nothing more than the Miura link for u = 2wx,

σx = σ2 + k2 − u,

or, in the notation of this section,

d01 = σ = φx/φ,

where φ is a solution of
−φxx + uφ = −k2φ.

This link immediately leads to the continuum conservation law from the cel-
ebrated paper of Miura et al. [335]

(φ∗φ)t + (φ∗φxx + φφ∗
xx − 4|φ2

x| − 6k2φ∗φ)x = 0

in the context of the Noether theorem.
Quite similarly the sine–Gordon equation is treated in [409].

7.4 From singular manifold method to Moutard
transformation

Paper [10] contains the so-called Ablowitz–Ramani–Segur conjecture that in-
corporated the Painlevé property [360]. This result was extended by Weiss
et al. [449] as the Weiss–Tabor–Carnevale theory to check the Painlevé prop-
erty for a PDE.

Estévez and Leble [145, 146] developed a procedure to derive the Moutard
transformation (and hence the DTs ) in the framework of the singular manifold
method. The generalization of these ideas for the case of two Painlevé branches
was made in [143].

We will illustrate the idea using the example of the singular mani-
fold method analysis of a version of the 2+1 KdV (Boiti–Leon–Manna–
Pempinelli 1) equation ([59]). Let us write this equation in the form [145]

mty = (mxxy + mymx)x. (7.138)

It is proved that (7.138) has the standard Painlevé property, i.e., its solutions
can be locally expanded in terms of four arbitrary functions. The truncated
expansion produces the auto-BT

m[1] = m + 6
φx
φ

, (7.139)
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which links two solutions of (7.138) by the “singular manifold” function φ.
The substitution of (7.139) into (7.138) and application of the generalized
procedure [146] leads to the Lax pair

φxxx − φt + mxφx = 0, 3φxy + myφ = 0. (7.140)

A consideration of (7.139) as a transformation m → m[1] and the truncated
expansion for the transformed function ψ[1],

ψ[1] =
p

φ
, (7.141)

which is the solution of the Lax pair (7.140) with the transform m[1], yields
the following equations for p:

px = −2ψφx, py = −2φψy, pt = 2ψxφxx − 2φxψxx − 2ψφt. (7.142)

It can be proved that the form

dΩ = −ψφxdx− φψydy + (ψxφxx − φxψxx − ψφt)dt (7.143)

is exact (i.e., dp = −2dΩ) on solutions ψ and φ of the Lax equations and
hence there exists

ψ[1] = ψ − 2
Ω(ψ, φ)

φ
, (7.144)

which coincides with the Moutard transformation [340, 341]. The method
seems to be an effective tool to derive the Moutard transformation formalism
in 2+1 dimensions [140]. It was further applied to generate the DTs for the
Bogoyavlenskii equation in 2 + 1 dimensions [144]. The constructive elements
of the theory are presented in [141].

7.5 Zakharov–Shabat dressing method via operator
factorization

7.5.1 Sketch of IST method

In the “new history” of the soliton theory, half a century after the Bäcklund–
Moutard–Darboux transformations, the notion of dressing appeared within
the inverse scattering problem, when solving the Cauchy problem for the KdV
equation [474]. To begin with, let us sketch the IST method and introduce
scattering data for the one-dimensional Sturm–Liouville problem

−∂2
xψ + u(x)ψ = k2ψ (7.145)

with a localized potential u(x) (ε > 0, |x| → ∞ ⇒ |u(x)x(1+ε)| → 0) and the
spectral parameter k2. The scattering data comprise eigenvalues kn = iκn,
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normalization constants an = limx→∞ exp(κn)ψn for eigenfunctions ψn nor-
malized as

∫∞
−∞ |ψn|2dx = 1, and the reflection coefficient v(k). The last one is

extracted from the asymptotic behavior of the continuum spectrum solutions

ψ(x, k) �
{

exp(−ikx) + v(k) exp(ikx), x→∞,
w(k) exp(−ikx), x→ −∞.

(7.146)

Solving the scattering problem, we arrive at the function F (x) [354]:

F (x) =
∑

m

am exp(−κmx) +
1
2π

∫ ∞

−∞
v(k) exp(ikx) dk, (7.147)

which determines the kernel of the Gel’fand–Levitan–Marchenko (GLM) in-
tegral equation

K(x, y) + F (x + y) +
∫ ∞

x

K(x, s)F (s + y) ds = 0, x ≤ y. (7.148)

Then the potential u(x) is retrieved from the solution K(x, y) of (7.148) as

u(x) = 2
d
dx

K(x, x). (7.149)

Equation (7.148) links K and F ; it maps the scattering data to the poten-
tial and is referred to as the inverse scattering transformation. The Gardner–
Green–Kruskal–Miura theory, using the second operator of the Lax pair (see
Chap. 3), gives explicit dependence of the scattering data on time, am(t) and
v(k, t), via the initial values of am(0) and v(k, 0).

The GLM equation (7.148) is solved explicitly in some of the simplest
cases [354]. The multisoliton solutions correspond to zero v (reflectionless
potentials). The kernel of the integral operator factorizes in this case and has
a finite number of terms, as is seen from (7.147).

7.5.2 Dressible operators

The idea of the dressing method in its original IST version [474] (we follow
the modification given in [466]) uses the fact that each function F generates
the function K and hence a potential. Let us write (7.147) symbolically as

K + F + K∗F = 0, (7.150)

where the asterisk denotes the action of the integral operator and the function
F (x, y) goes to F (x + y) for the standard GLM equation. Consider a pair of
operators M and M̂ which obey the equation

M̂K + MF + (M̂K)∗F + K∗(MF ) = 0. (7.151)
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The operator M is named the “bare” operator, and M̂ is the “dressed” oper-
ator. Suppose the function F obeys the equation

MF = 0. (7.152)

Then we have
M̂K = 0, (7.153)

if the operator M̂ exists. The set of pairs (M , M̂) forms a vector space.
As an example, consider the operator

M = ∂x + ∂y. (7.154)

In this case (7.151) takes the form

MK(x, y)+MF (x, y)+∂x

∫ ∞

x

K(x, s)F (s, y) ds+
∫ ∞

x

K(x, s)∂yF (s, y) ds = 0.

(7.155)
Evidently,

∂x

∫ ∞

x

K(x, s)F (s, y) ds = −K(x, x)F (x, y) +
∫ ∞

x

[(∂xK(x, s)]F (s, y) ds.

(7.156)
Integration by parts gives

I =
∫ ∞

x

[∂sK(x, s)]F (s, y) ds = −
∫ ∞

x

K(x, s)∂sF (s, y) ds−K(x, x)F (x, y).

(7.157)
In (7.155) take into account (7.156) and introduce I as

MK(x, y) + MF (x, y)−K(x, x)F (x, y) +
∫ ∞

x

[∂xK(x, s)]F (s, y) ds

+
∫ ∞

x

K(x, s)∂yF (s, y) ds + I − I = 0. (7.158)

For +I substitute the mid-positioned term in (7.157), and for −I the right-
hand side of (7.157) with the opposite sign:

MK(x, y) + MF (x, y)−K(x, x)F (x, y) +
∫ ∞

x

[∂xK(x, s)]F (s, y) ds

+
∫ ∞

x

K(x, s)∂yF (s, y) ds +
∫ ∞

x

[∂sK(x, s)]F (s, y) ds

+
∫ ∞

x

K(x, s)∂sF (s, y) ds + K(x, x)F (x, y) = 0. (7.159)
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Ordering the terms, we get

(∂x + ∂y)K(x, y) + MF (x, y) (7.160)

+
∫ ∞

x

[(∂x + ∂s)K(x, s)]F (s, y) ds +
∫ ∞

x

K(x, s) (∂y + ∂s)F (s, y) ds = 0.

Hence, the following operator arises:

M̂ = M = ∂x + ∂y. (7.161)

The operator M is called dressible. A set of dressible operators forms linear
space.

A connection between scattering data and a potential U = U(x, t) with
the additional (time) parameter is used in integrable equations via the Lax
representation [335] and, directly, in quantum evolution problems. The prob-
lems in which potentials are functions of time can be studied by the present
method because the operator of the time derivative ∂t is dressible. As before,
from the equation

MF (x, y, t) = 0
we obtain

M̂K(x, y, t) = 0.
Let a function ψ be a solution of two equations

(∂t − L[U ])ψ = 0, (7.162)

(∂y −A[U ])ψ = 0. (7.163)
If derivatives with respect to t and y commute, then the Lax representation
is

At − Ly = [A,L]. (7.164)

Proposition 7.4. If two operators M and M̂ are such that there exists a
solution of (7.151) (operator M is dressible) and if the operator M forms the
Lax pair with N , then the operators M̂ and N̂ also form a Lax pair. If a pair
of operators M and N produces a nonlinear system, then the pair M̂ and N̂
produces the same system.
The next example is

M = α
∂

∂t
+ ∂2

x − ∂2
y . (7.165)

We want to dress the operator M , applying it to the GLM equation (7.151).
Integrating by parts yields the operator

M̂ = α
∂

∂t
+ ∂2

x − ∂2
y + U(x), (7.166)

where
U(x) = −2

d
dx

K(x, x). (7.167)
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Note that a function U has appeared in the dressed operator, while for the
first-order operator (7.154) the dressed operator is the same as the bare one
(7.161).

In general, we put
L0 = l0(x, t, . . .)∂nx . (7.168)

Consider the operator D of the following structure:

DF = α∂tF + L0F − FL+
0 , (7.169)

where L+
0 is the Hermitian conjugate to L and acts to the left.

Proposition 7.5. The operator (7.169) is dressible. The dressed operator D̂
is

D̂K = α∂yK + LK −KL+
0 , (7.170)

where
L = L0 + L̃ (7.171)

and
L̃ = l̂0 ∂

n−1
x + . . . , l̂0 ∼ (∂x − ∂y)iK

∣∣
y=x

. (7.172)

7.5.3 Example

Let us take
L0 = ∂2

x ⇒ L = ∂2
x + U.

Solving the equation MF = 0 yields M̂K = 0; hence, some class of solvable
equations appears, with some linear space.
Let us consider operators D1 and D2,

D1F = α1∂t1F + L
(1)
0 − FL

(1)+
0 ,

D2F = α2∂t2F + L
(2)
0 − FL

(2)+
0 .

This class of operators contains the Lax representation

α1∂t1L
(2)
0 − α2∂t2L

(1)
0 +

[
L

(1)
0 , L

(2)
0

]
= 0.

For relevant forms of the operators L
(1)
0 and L

(2)
0 and for α1 = α, α2 = −1,

t1 = y, and t2 = t we obtain the KP equation

∂x (ut + 6uux + uxxx) + α2uyy = 0.

In the case of α2 = −1 we have the KP I equation; otherwise, if α2 = 1 we
have the KP II equation. The KP equation is the two-dimensional equation
that contains the KdV equation as a y-independent reduction:

ut + 6uux + uxxx = 0.
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It was demonstrated in [324] that the triangular (Volterra) factorization
of the operator

F = (1 + K+)−1(1 + K−)

proved by Zakharov and Shabat [474] links the Zakharov–Shabat dressing
scheme to the DT dressing.
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Dressing via local Riemann–Hilbert problem

Beginning with this chapter, we proceed to a description of the second (mostly
analytic) aspect of the dressing method. In this chapter we will show how to
dress a seed solution of a (1+1)-dimensional nonlinear equation making use
of the local Riemann–Hilbert (RH) problem. First we formulate in Sect. 8.1 a
general approach to the RH problem based dressing method [354] in terms of
the Lax representation associated with a given nonlinear equation. Then in
the subsequent sections we will illustrate with examples of specific nonlinear
equations the power of the RH problem method. Throughout this chapter we
stress two basic facts concerning the applicability of the RH problem to solve
nonlinear equations: (1) the RH problem naturally arises in the context of non-
linear equations and (2) this approach is substantially universal. In Sect. 8.2
we concretize the main ideas by means of the classic example of the nonlinear
Schrödinger (NLS) equation. Sections 8.3 and 8.4 are devoted to mathemat-
ically more complicated equations: the modified NLS (MNLS) equation and
the Ablowitz–Ladik (AL) equation. These two examples are particularly in-
teresting from the point of view of the RH problem. Indeed, the reader will
see that the formalisms we apply for solving the MNLS equation and the AL
equation are practically the same though these equations are completely dif-
ferent: one of them is a partial differential equation (MNLS), while the other is
a differential-difference equation (AL). Section 8.5 demonstrates some novel
features of the RH problem formulation which arise in the case of higher-
order matrix spectral problems. As an example, we consider in this section
the three-wave resonant interaction equations. These equations are of inter-
est in themselves because they represent the so-called dispersionless nonlinear
equations. The non-Abelian version of this system was discussed in Sect. 3.7.
In Sect. 8.6 we give one more argument in favor of the universality of the dress-
ing method formalism developed. Namely, we will obtain the homoclinic orbits
for the NLS and MNLS equations. Strictly speaking, this problem is not per-
tinent to the RH problem in the context of this chapter because we will dress
the plane wave solution under periodic boundary conditions. Nevertheless, our
formalism exhibits its effectiveness for solving nonsolitonic problems as well.

225
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Finally, in the last section we briefly consider the well known Korteweg–de
Vries (KdV) equation. This consideration is based on the method which allows
a straightforward generalization to (2+1)-dimensional nonlinear equations and
serves as a bridge to go in this direction.

8.1 RH problem and generation of new solutions

As indicated in previous chapters, the Lax representation [263] (or the zero-
curvature representation) is of primary importance for the integration of non-
linear equations. In the framework of the Lax representation, a system of two
linear matrix equations (sometimes these equations are scalar ones)

ψx = Uψ, ψt = V ψ (8.1)

is associated with a given nonlinear equation. Here the matrices U(x, t, k) and
V (x, t, k) depend on a solution of the nonlinear equation and on a complex
spectral parameter k independent of the coordinates (x, t). These matrices are
chosen in such a way that the compatibility condition [7]

Ut − Vx + [U, V ] = 0 (8.2)

resulting from the equality of mixed derivatives ψxt = ψtx and providing the
existence of a common solution for the system (8.1) would produce exactly the
nonlinear equation we are considering. The matrices U and V have noncoin-
ciding sets of poles (divisors) in some points of the extended complex k-plane
C = C ∪ {∞}. In fact, they are the divisors that determine all the essential
features of the nonlinear equation with a given Lax representation.

Suppose we know some seed solution u0 of the nonlinear equation (8.2).
On frequent occasions, trivial solutions like zero can serve as the seed solution.
We therefore know explicitly the matrices U0 and V0 which correspond to this
solution. As a result, we can solve a system of linear equations

Ex = U0E, Et = V0E (8.3)

for the matrix function E(x, t, k). Now we will demonstrate, following Za-
kharov and Shabat [475] (see also [148]), that there exists a possibility to
build a class of new solutions of the nonlinear equation (8.2), this class being
parameterized by a closed oriented contour L on the extended plane C and
by a nondegenerate bounded matrix function G0(k) defined on the contour.
For this purpose we introduce first a matrix function G(x, t, k),

G(x, t, k) = E(x, t, k)G0(k)E−1(x, t, k), k ∈ L, (8.4)

where E(x, t, k) solves the system (8.3). Then we pose the RH problem [167]
for the matrix G(x, t, k) on the contour L as

Φ−1
− (x, t, k)Φ+(x, t, k) = G(x, t, k), k ∈ L. (8.5)
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In other words, we want to factorize the matrix G(x, t, k) into a product of
the matrix functions Φ+ and Φ− in such a way that Φ+ (Φ−) is analytic inside
(outside) the contour L and both of them satisfy equation (8.5) on the contour.
Such an analytic factorization problem represents one of the formulations of
the RH problem. If the contour L coincides with the real axis of the k-plane,
then the matrix Φ+ is analytically continuable to the upper half plane, while
Φ− is analytically continuable to the lower half plane.

The solution of the RH problem in the form formulated above is not unique.
Evidently, matrices Φ′

± = M(x, t)Φ± with an arbitrary nondegenerate matrix
M solve the same factorization problem. To provide the uniqueness of the
solution, we should pose the normalization condition. This means that we
should set a definite value of one of the matrices Φ± in some predetermined
point of the k-plane. Usually the infinite point k =∞ is taken as the reference
point. If Φ−(∞) = 11, then this normalization is called canonical.

Let us differentiate (8.5) with respect to x, taking into account that Gx =
[U0, G]. Then we obtain

Φ+x = UΦ+ − Φ+U0,

where we introduce a matrix function U(x, t, k),

U = Φ−U0Φ
−1
− + Φ−xΦ−1

− = Φ+U0Φ
−1
+ + Φ+xΦ

−1
+ .

It is clear that the matrix U has the same set of poles as U0, if the poles
do not lie on the contour. Moreover, if the contour contains the pole k0 with
multiplicity n0, we should demand an additional property of the matrix G0(k),
namely,

G0(k) = 11 + O (|k − k0|n0) ,

near the point k0; 11 is the identity matrix.
Similarly, the differentiation of (8.5) in t gives a matrix V ,

V = Φ−V0Φ
−1
− + Φ−tΦ−1

− = Φ+V0Φ
−1
+ + Φ+tΦ

−1
+ ,

entering the equation
Φ+t = V Φ+ − Φ+V0.

The last step is to introduce functions ψ± = Φ±E which satisfy the compatible
linear equations

ψ±x = Uψ±, ψ±t = V ψ±.

Hence, we constructed new matrices U and V which obey the compati-
bility condition (8.2), provided that we are able to solve the RH prob-
lem (8.5). It is important to stress that the matrices U and V have the
same structure as U0 and V0. In other words, U and V depend on a new
solution u(x, t) in the same way as U0 and V0 depend on the seed so-
lution u0(x, t). Therefore, we can restore purely algebraically the solution
u(x, t).
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A distinction will be made between two types of the RH problem. The
first one is the so-called regular RH problem when both Φ+ and Φ−1

− have no
zeros in their domains of analyticity. In other words, detΦ+ �= 0 inside the
contour L and detΦ−1

− �= 0 outside the contour. Otherwise we will deal with
the RH problem with zeros. It is the RH problem with zeros that leads to
soliton solutions of nonlinear equations.

The scheme described above gives general principles of dressing the seed
solution. In the examples we give, we demonstrate that the RH problem arises
naturally within the inverse spectral transform (IST) approach. Moreover, it
will be clear how to adopt involutions that impose some restrictions on the
general Lax representation (8.2) and reduce the matrices U and V to those
belonging to some complex Lie algebras or symmetric spaces [331].

8.2 Nonlinear Schrödinger equation

Here we demonstrate the main stages of the application of the RH problem
to obtain a soliton solution of the NLS equation

iut + uxx + 2|u|2u = 0. (8.6)

A vast amount of literature exists about the NLS equation, the most important
books are by Novikov et al. [354], Lamb [259], Dodd et al. [117], Ablowitz
and Segur [13], Calogero and Degasperis [81], Newell [348], and Faddeev and
Takhtajan [148]. Remember that solutions of the NLS equation in terms of
the elliptic functions were given in Sects. 3.5 and 4.9.

8.2.1 Jost solutions

As is well known [473], the NLS equation (8.6) can be represented as the
compatibility condition of the system (8.1) of two linear matrix equations
with the 2× 2 matrices U and V of the form

U = −ikσ3 + Q, Q =
(

0 u
−ū 0

)
, (8.7)

V = −2ik2σ3 + 2kQ + iσ3Qx − iQ2σ3,

this compatibility condition being fulfilled for arbitrary constant spectral pa-
rameter k. The matrix Q stands for the potential in the spectral equation
ψx = Uψ. It will be more convenient for us to write the spectral equation
in terms of the matrix J = ψE−1, where E = exp(−ikxσ3) is a solution of
the spectral equation for zero potential. Hence, the spectral equation we shall
deal with is written as

Jx = −ik[σ3, J ] + QJ. (8.8)

We consider the zero solution of the NLS equation as the seed solution to be
dressed and are interested in deriving localized solutions.



8.2 Nonlinear Schrödinger equation 229

First we introduce the so-called Jost solutions J±(x, k) of the spectral
equation (8.8) obeying the asymptotic conditions J± → 11 at x→ ±∞. Since
tr U = 0, these boundary conditions guarantee that detJ± = 1 for all x. In
other words, the Jost solutions coincide asymptotically with the solution of
the spectral equation with zero potential. It is clear now that going from the
matrix ψ to the matrix J enables us to use the unit asymptotic for J±, instead
of the exponential asymptotic E.

Being solutions of the first-order differential equation, the Jost functions
J± are not mutually independent. Indeed, they are interconnected by the
scattering matrix S(k),

J− = J+ESE−1, S(k) =
(
a(k) −b̄(k)
b(k) ā(k)

)
, det S(k) = 1, (8.9)

and the structure of S(k) is dictated by the form of the potential Q. It follows
directly from the spectral equation (8.8) that the Jost solutions obey the
involutive condition

J†
±(x, k̄) = J−1

± (x, k), (8.10)

where the dagger means the Hermitian conjugation. It is extremely important
that the involution (8.10) manifests itself throughout all the other objects
related to the spectral equation. For example, the scattering matrix S(k)
obeys the same involution S†(k̄) = S−1(k) .

8.2.2 Analytic solutions

What can we say about analytic properties of the Jost matrix functions with
respect to the spectral parameter k? Let us rewrite the spectral equation (8.8)
with the boundary conditions in the integral form. To take an example, we
obtain the following integral equations

(J−)11(x, k) = 1 +
∫ x

−∞
dξ u(ξ) (J−)21(ξ, k),

(J−)21(x, k) = −
∫ x

−∞
dξ ū(ξ) (J−)11(ξ, k) exp[2ik(x− ξ)] (8.11)

for the first column entries of the Jost matrix J−. We see that the exponent
in the integrand (8.11) decreases for Imk > 0. In other words, the first column
J

[1]
− of the matrix J− is analytic in the upper half plane and continuous on

the real axis Im k = 0. In the same way we recognize that the second column
J

[2]
+ of the matrix J+ is analytic as well in the same domain. Therefore, we

can define the matrix function Φ+(x, k),

Φ+(x, k) =
(
J

[1]
− , J

[2]
+

)
,

which is a solution of the spectral equation (8.8) and is analytic as a whole in
the upper half plane.
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The analytic solution Φ+(x, k) can be expressed in terms of the Jost func-
tions and some elements of the scattering matrix. Indeed, remembering (8.9),
we have

Φ+ =
(
J

[1]
− , J

[2]
+

)
=

(
a J

[1]
+ + b e2ikx J

[2]
+ , J

[2]
+

)

=
(
J

[1]
+ , J

[2]
+

)(
a 0
b e2ikx 1

)
= J+ES+E−1,

where

S+ =
(
a 0
b 1

)
. (8.12)

Similarly,

Φ+ = J−ES−E−1, S− =
(

1 b̄
0 a

)
, S+ = SS−. (8.13)

It follows from the above formulas that

det Φ+(x, k) = a(k). (8.14)

Now, what about a matrix function analytic in the lower half plane? We
can define such a function Φ−1

− (x, k) by means of the involution (8.10), i.e.,

Φ−1
− (x, k) = Φ†

+(x, k̄).

It can be easily shown that Φ−1
− (x, k) is expressed in terms of the rows of

J−1
± , namely,

Φ−1
− =

(
(J−)−1

[1]

(J+)−1
[2]

)
.

Therefore, Φ−1
− (x, k) is a solution of the adjoint spectral problem. On the real

axis
Φ−1
− (x, k) = Φ†

+(x, k) = ES†
+E−1J−1

+ = ES†
−E−1J−1

−

and detΦ−1
− (x, k) = ā(k) .

Let us write an asymptotic expansion for Φ+(x, k) ,

Φ+(x, k) = 11 +
1
k
Φ

(1)
+ (x) + O

(
1
k2

)
, (8.15)

and substitute it into the spectral equation (8.8). Collecting terms with equal
powers of k, we find a reconstruction formula for the potential:

Q = i
[
σ3, Φ

(1)
+

]
. (8.16)

Hence, in order to solve the NLS equation, we should find the analytic solu-
tion Φ+ .
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8.2.3 Matrix RH problem

Let us calculate a product Φ−1
− (x, k)Φ+(x, k) for Im k = 0. We easily find that

this product depends essentially on k only, the x-dependence being given by
the simple exponential function E. Indeed,

Φ−1
− (x, k)Φ+(x, k) = EG0(k)E−1, G0 = S†

+S+ =
(

1 b̄
b 1

)
(8.17)

with account for |a|2 + |b|2 = 1. Hence, we arrive at the matrix RH problem!
This problem arises naturally provided we operate with analytic solutions of
the spectral problem. The contour L, being the real axis Im k = 0, divides
the complex k-plane into the domains C+ , Imk > 0 , and C− , Imk < 0. The
normalization of the RH problem (8.17) is canonical,

Φ±(x, k) −→ 11 for k →∞,

owing to (8.15).
The RH problem (8.17) is characterized by the so-called RH data which

are categorized into discrete data (eigenvalues kj and eigenvectors |j〉; see
later) and continuous data [the matrix element b(k)]. Solitons correspond to
the discrete data of the RH problem with zeros of the scattering coefficients
a(k) and ā(k). Because we showed in the preceding subsection that the deter-
minants of the matrices Φ+ and Φ−1

− are given by a(k) and ā(k), respectively,
these matrices have zeros at the points kj , k̄l in their domains of analytic-
ity, i.e., detΦ+(kj) = 0, Im kj > 0, j = 1, 2, . . . , N , and detΦ−1

− (k̄l) = 0,
Im k̄l < 0, l = 1, 2, . . . , N . We suppose that all zeros are simple and of finite
number. Besides, in virtue of the involution (8.10), we have an equal number
N of zeros in both domains. The case of multiple points of the RH problem
associated with the Zakharov–Shabat spectral problem has been studied by
Shchesnovich and Yang [401].

We will solve the RH problem with zeros (8.17) by means of its regular-
ization. This procedure consists in extracting rational factors from Φ+ which
are responsible for the existence of zeros. In fact, these rational factors rep-
resent specific Darboux transformations which produce simple zeros in the
wave function Φ+ (Chap. 3). Indeed, if detΦ+(kj) = 0, then at the point kj
there exists an eigenvector |χj〉 with zero eigenvalue, Φ+(kj)|χj〉 = 0 . Let us
introduce a rational matrix function

Ξ−1
j = 11 +

kj − k̄j
k − kj

Pj , Pj =
|χj〉〈χj |
〈χj|χj〉 .

Here Pj is the rank 1 projector, P 2
j = Pj , and 〈χj | = |χj〉† (cf. Chap. 3). In a

relevant basis Pj = diag (1, 0); hence, detΞ−1
j = (k − k̄j)(k − kj)−1. Because

detΦ+(k) ∼ (k − kj) near the point kj , we evidently have det(Φ+Ξ−1
j ) �= 0

at the point kj . Thereby we succeeded in regularizing the RH problem at the
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point kj . Zero k̄l of the matrix function Φ−1
− is regularized by the rational

function

Ξl = 11− kl − k̄l

k − k̄l
Pl

and the matrix Ξl Φ
−1
− has no zero in k̄l. The regularization of all the other

zeros is performed similarly and eventually we obtain the following represen-
tation for the analytic solutions:

Φ± = φ±Γ, Γ = ΞNΞN−1 · · ·Ξ1, (8.18)

where the rational matrix function Γ (x, k) accumulates all zeros of the RH
problem, while the matrix functions φ± solve the regular RH problem (i.e.,
without zeros):

φ−1
− (x, k)φ+(x, k) = Γ (x, k)EG0(k)E−1Γ−1(x, k). (8.19)

If we restrict ourselves to obtaining the soliton solutions of the NLS equation,
i.e., for G0 = 11, we can pose without loss of generality φ± = 11.1 As a result,
Φ+ = Γ . The matrix Γ will be called the dressing factor. It follows from
(8.18) that the asymptotic expansion for the dressing factor is written as

Γ (x, k) = 11 +
1
k
Γ (1)(x) + O

(
1
k2

)
. (8.20)

For practical purposes, it is more convenient to decompose the product
(8.18) into simple fractions [124, 235]. In general, the rational matrix function
Γ (k) and its inverse can be decomposed into terms of two sets of the vectors
|xj〉 and |yj〉:

Γ (k) =
(

11− kN − k̄N
k − k̄N

PN

)
· · ·

(
11− k1 − k̄1

k − k̄1
P1

)

= 11−
N∑

l=1

kl − k̄l

k − k̄l
|xl〉〈yl|,

Γ−1(k) =
(

11 +
k1 − k̄1

k − k1
P1

)
· · ·

(
11 +

kN − k̄N
k − kN

PN

)

= 11 +
N∑

j=1

kj − k̄j
k − kj

|yj〉〈xj |. (8.21)

Hence, instead of N vectors |χj〉 we obtained 2N vectors |xj〉 and |yj〉.
The next problem is to express |xj〉 in terms of |yj〉. Consider the identity

1 In the examples in the following sections such a simple choice will not be valid.
Moreover, for the perturbed NLS equations the equality φ± = 11 is valid in the
leading-order approximation only.
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Γ (k)Γ−1(k) = 11 at the point k = kj . To avoid divergence at k→ kj , we should
pose Γ (kj)|yj〉〈xj | = 0, or

(
11−

N∑

l=1

kl − k̄l

kj − k̄l
|xl〉〈yl|

)
|yj〉〈xj | = 0 .

Multiply it by |yj〉 on the right. Because 〈xj |yj〉 �= 0, we obtain

|yj〉 =
N∑

l=1

|xl〉〈yl
∣∣∣∣
kl − k̄l

kj − k̄l

∣∣∣∣ yj〉. (8.22)

Let us introduce N ×N matrices

X = (|x1〉, |x2〉, . . . , |xN 〉), Y = (|y1〉, |y2〉, . . . , |yN 〉),

D = {Dlj} =
{
〈yl

∣∣∣∣
1

kj − k̄l

∣∣∣∣ yj〉
}
, F = diag(. . . , kl − k̄l, . . .).

Then (8.22) is written as Y = XFS, or XF = Y S−1. In components,

(kl − k̄l)|xl〉 =
N∑

j=1

(
D−1

)
jl
|yj〉.

Substituting it into (8.21) and introducing more convenient notation |j〉 ≡ |yj〉,
we obtain the desired formula for the dressing factor:

Γ (k) = 11−
N∑

j,l=1

1
k − k̄l

|j〉 (D−1
)
j l
〈l|, Dlj =

〈l|j〉
kj − k̄l

. (8.23)

Similarly,

Γ−1(k) = 11 +
N∑

j,l=1

1
k − kj

|j〉 (D−1
)
j l
〈l|. (8.24)

Let us remember the reconstruction formula (8.16), which is now written
as

Q = i
[
σ3, Γ

(1)(x)
]
. (8.25)

As a result, we will be able to find solutions of the NLS equation, provided
we can calculate explicitly the matrix Γ or, more precisely, the vector |j〉. To
this end, let us differentiate the equation Φ+(kj)|j〉 = 0 in x. Because Φ+ is a
solution of the spectral equation (8.8), we obtain

∂xΦ+(x, k)kj |j〉+ Φ+(x, kj)|j〉x = ikjΦ+(x, kj)σ3|j〉+ Φ+(x, kj)|j〉x = 0.

Therefore, the x-dependence of |j〉 is given by a simple linear equation

|j〉x = −ikjσ3|j〉. (8.26)
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In the same manner we find the evolutionary equation

|j〉t = −2ik2
jσ3|j〉. (8.27)

Integrating them, we obtain explicitly the vector |j〉 as

|j〉 = exp
[
(−ikjx− 2ik2

j t)σ3

] |j0〉, (8.28)

where |j0〉 is a vector integration constant.

8.2.4 Soliton solution

With the above results in hand, we can now derive the soliton solution of the
NLS equation. We have in this case N = 1 and pose k1 = ξ + iη. Then the
vector |1〉 (8.28) takes the form

|1〉 =
(

exp
{
η(x + 4ξt)− i

[
ξx + 2(ξ2 − η2)t

]}
p1

exp
{−η(x + 4ξt) + i

[
ξx + 2(ξ2 − η2)t

]}
p2

)
,

where p1 and p2 are components of the constant vector |10〉. The reconstruc-
tion formula (8.25) reduces to

u(x, t) = 2iΓ (1)
12 (x, t). (8.29)

It follows from

Γ = 11− k1 − k̄1

k − k̄1
P1

that

Γ (1) = −2iη
|1〉〈1|
〈1|1〉 . (8.30)

It is important that the vector |1〉 enters (8.30) both in the numerator and in
the denominator. Therefore, we can divide both components of the vector by
the same number, say p2, without changing Γ (1). Denoting

ea+iβ =
p1

p2
, z = 2η(x + 4ξt) + a, ϕ = −2ξx− 4(ξ2 − η2)t + β,

we can represent the vector |1〉 in the very simple form:

|1〉 = e(1/2)(a+iβ)

(
e(1/2)(z+iϕ)

e−(1/2)(z+iϕ)

)
. (8.31)

Substituting this vector into (8.30), we find

Γ (1) = −iη
(

ez eiϕ

e−iϕ e−z

)
sechz

and, in accordance with (8.29), we finally obtain the standard formula [473]
for the NLS soliton:

u(x, t) = 2ηeiϕsechz. (8.32)

Here ξ and η determine the soliton velocity and amplitude, respectively, while
a and β give the initial position and phase of the soliton.



8.2 Nonlinear Schrödinger equation 235

8.2.5 NLS breather

In this subsection we will obtain the breather solution of the NLS equa-
tion. The breather is an oscillating “bound state” of two solitons centered
at the same position and having equal velocities. Without loss of general-
ity, we take the velocity of the solitons to be zero (ξ1 = ξ2 = 0). As a
result, we have now four zeros of the RH problem, two of them lying on
the positive imaginary axis, k1 = iη1 and k2 = iη2, and the other two
zeros lying on the negative imaginary axis, k̄1 = −iη1 and k̄2 = −iη2.
Therefore, the dressing factor Γ entering the reconstruction formula (8.25)
is written in the form (8.23) for N = 2 and gives after the asymptotic
expansion

Γ (1) = −
2∑

j,l=1

|j〉(D−1))j l〈l| (8.33)

= −(D−1)11|1〉〈1| − (D−1)21|2〉〈1| − (D−1)12|1〉〈2| − (D−1)22|2〉〈2|.

The matrix elements Dlj are given by (8.23) and hence the matrix D takes
the form

D =

⎛

⎜⎝
〈1|1〉

k1 − k̄1

〈1|2〉
k2 − k̄1〈2|1〉

k1 − k̄2

〈2|2〉
k2 − k̄2

⎞

⎟⎠.

We can rewrite (8.33) immediately in terms of the matrix D:

Γ (1) = (detD)−1[−D22|1〉〈1|+ D21|2〉〈1|+ D12|1〉〈2| −D11|2〉〈2|]. (8.34)

The vector |j〉, j = 1, 2, has the form [see (8.31)]

|j〉 = e(i/2)βj

(
e(1/2)(zj+iϕj)

e−(1/2)(zj+iϕj)

)
, zj = 2ηjx, ϕj = 4η2

j t + βj,

and we put aj = 0 because the maxima of both solitons coincide. Let us first
calculate matrix elements Dlj :

D12=
e−(i/2)(β1−β2)

i(η1 + η2)

(
exp

1

2
(z1 + z2 − iϕ1 + iϕ2) + exp

1

2
(−z1 − z2 + iϕ1 − iϕ2)

)
,

D21 = −D∗
12, D11 =

cosh z1

iη1
, D22 =

cosh z2

iη2
.

Then we obtain the determinant of D:

detD =
2

(η1 + η2)2

(
cosh(z1 + z2) + cos(ϕ1 − ϕ2) − (η1 + η2)

2

2η1η2
cosh z1 cosh z2

)
.
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Remember that the two-soliton solution is given by (8.29). Calculating now
Γ

(1)
12 by means of (8.32)–(8.34), we find

Γ
(1)
12 =

1
i detD

η1 − η2

η1 + η2

(
cosh z1

η1
eiϕ2 − cosh z2

η2
eiϕ1

)
.

Hence,

u(x, t) = (η2
1 − η2

2)
(

cosh 2η1x

η1
exp

(
4iη2

2t + iβ2

)− cosh 2η2x

η2
exp

(
4iη2

1 + iβ1

))

×
(

cosh 2(η1 + η2)x + cos
[
4(η2

1 − η2
2)t + β1 − β2

]
(8.35)

− (η1 + η2)2

2η1η2
cosh 2η1x cosh 2η2x

)−1

.

This formula describes the two-soliton solution of the NLS equation but it is
not yet a breather. The breather being a result of the evolution of the initial
configuration u(x, 0) = 2 sechx is obtained under definite relations between
η1 and η2 and between β1 and β2 [387]. Considering u(x, t) (8.35) for t = 0,
we easily find that we should take η1 = 3/2, η2 = 1/2, β1 = 0, and β2 = π.
As a result, the breather solution of the NLS equation is written as

u(x, t) = 4eit cosh 3x + 3e8it coshx

cosh 4x + 4 cosh 2x + 3 cos 8t
. (8.36)

The breather (8.36) oscillates with the frequency ω = 8.
In conclusion, let us summarize the basic steps in the derivation of the

soliton solution. First we built analytic solutions of the spectral problem from
the components of the Jost solutions. Then we showed that the analytic solu-
tions solve the RH problem with zeros. After regularization of the RH problem
we extracted the rational dressing factor. The dressing factor is determined
by the discrete RH data, i.e., eigenvalues and eigenvectors. The eigenvalues
are constants of motion, while the eigenvectors are governed by simple linear
equations. After integrating these equations we obtained the eigenvectors ex-
plicitly that enable us to calculate the dressing factor and finally to derive the
soliton solution.

8.3 Modified nonlinear Schrödinger equation

In this section we will obtain soliton solutions of the MNLS equation taking
as a seed solution the trivial one u = 0. The MNLS equation

iut + uxx + 2|u|2u + iα
(|u|2u)

x
= 0, α ∈ Re (8.37)

for a scalar complex function u(x, t) has important applications in nonlinear
optics [23, 121, 180, 432, 442] and plasma physics [213, 334]. In particular,
this equation extends the famous NLS equation to the case of subpicosecond
optical pulses. For definiteness we take hereafter the parameter α > 0.
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8.3.1 Jost solutions

Equation (8.37) allows the Lax representation (8.2) with the matrices U and
V of the form

U = − i
α

(k2 − 1)σ3 + ikQ, Q =
(

0 u
ū 0

)
, (8.38)

V = − 2i
α2

(k2 − 1)2σ3 +
2i
α
k(k2 − 1)Q + ik2Q2σ3 − kσ3Qx − iαkQ3.

As for the NLS equation, we define a matrix J = ψE−1, where

E = exp
[−(i/α)(k2 − 1)xσ3

]

is a solution of the equation ψx = Uψ for zero potential Q = 0; hence, a
spectral equation for the MNLS equation is written as

Jx = − i
α

(k2 − 1) [σ3, J ] + ik QJ. (8.39)

This spectral problem, being quadratic in the spectral parameter k, belongs
to the Wadati–Konno–Ichikawa (WKI) class [444]. The Hamiltonian structure
and squared solutions of equations solvable by the quadratic spectral problem
have been studied by Gerdjikov and Ivanov [183, 184]. It should be noted that
the MNLS equation can be transformed by a gauge transformation [330] to
the so-called derivative NLS equation [233] which is also applicable in plasma
physics [119, 337, 411].

Jost solutions J±(x, k) of (8.39) are determined by the asymptotics J± → 11
as x → ±∞ and detJ± = 1. The scattering matrix S(k) is given by the
equations of the form (8.9) for Im k2 = 0 and the involution (8.10) preserves
its form for the MNLS Jost functions as well.

There exists another symmetry of the spectral equation (8.39). Indeed, it
can be easily shown that a solution of the spectral equation satisfies a parity
condition

J(k) = σ3J(−k)σ3. (8.40)

This condition means that the diagonal entries of the matrix J are even func-
tions of k, while off-diagonal ones are odd functions. Evidently, the parity con-
dition (8.40) is valid as well for the scattering matrix. In particular, we find
that the scattering matrix elements obey the parity conditions a(k) = a(−k)
and b(k) = −b(−k).

Let us consider now the asymptotic expansion of the Jost solutions at
k →∞,

J±(x, k) = J
(0)
± (x) +

1
k
J

(1)
± (x) + O

(
1
k2

)
. (8.41)

As a consequence of the parity property (8.40), the expansion coefficients
J

(2n)
± , n = 0, 1, . . ., are diagonal matrices, while J

(2n+1)
± , n = 0, 1, . . ., are
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off-diagonal matrices. Substituting the series (8.41) into the spectral equation,
we find the leading-order terms J

(0)
± (x) as

J
(0)
± (x) = exp

(
− iα

2
σ3

∫ x

±∞
|u(ξ)|2dξ

)
.

Hence, we arrive at the important conclusion that the asymptotic expansion
with the unit matrix as the leading-order term, like for the NLS equation, is
incompatible with the spectral equation (8.39).

8.3.2 Analytic solutions

Rewriting equations for the first column of J− in the integral form,

J−11 = 1 + ik
∫ x

−∞
dξ u(ξ)J−21(ξ),

J−21 = ik
∫ x

−∞
dξ ū(ξ)J−11(ξ) exp

(
2i
α

(k2 − 1)(x− ξ)
)
, (8.42)

we see that the exponent in the integrand of (8.42) decreases for Im k2 > 0,
i.e., for k lying in the first and third quadrants of the k-plane. We denote
this domain by C+. In other words, the first column J

[1]
− is analytic in C+

and sectionally continuous on Im k2 = 0, i.e., on the real and imaginary axes,
reaching them from C+. Similarly we reveal analyticity of the column J

[2]
+ in

the same domain. Therefore, a matrix function

Φ+ =
(
J

[1]
− , J

[2]
+

)

solves the spectral equation (8.39) and is analytic in C+. Similarly to the
NLS equation, we can express the analytic solution Φ+ in terms of the Jost
functions:

Φ+ = J+ES+E−1 = J−ES−E−1,

with the same matrices S± as in (8.12) and (8.13). The asymptotic expansion
for Φ+ takes the form

Φ+(x, k) = Φ
(0)
+ (x) +

1
k
Φ

(1)
+ (x) + O

(
1
k2

)
. (8.43)

Substituting this expansion into the spectral equation and equating terms
with equal powers of k, we find

Φ
(1)
+ =

α

2
σ3QΦ

(0)
+ , Φ

(0)
+x = iQΦ

(1)
+ .

Combining these relations, we get two important results: first, the equation
for Φ

(0)
+ ,

Φ
(0)
+x = − iα

2
σ3 Q

2Φ
(0)
+ , (8.44)
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and, second, a formula for the reconstruction of the potential Q,

Q =
2
α

σ3 Φ
(1)
+ Φ

(0)−1
+ . (8.45)

In virtue of the involution of the type (8.10) we introduce a matrix function
Φ−1
− ,

Φ−1
− (x, k) = Φ†

+(x, k̄), (8.46)

which is analytic for Im k2 < 0, i.e., in the second and fourth quadrants.
This domain is denoted as C−. These formulas give the following relations for
determinants:

detΦ+(x, k) = a(k), detΦ−1
− (x, k) = ā(k).

As follows from (8.45), we need to know explicitly the matrix Φ+ to find
solutions of the MNLS equation.

8.3.3 Matrix RH problem

Once again we calculate a product Φ−1
− (x, k)Φ+(x, k) for k ∈ Im k2 = 0,

Φ−1
− (x, k)Φ+(x, k) = EG0(k)E−1 , (8.47)

where

G0(k) = S†
+S+ =

(
1 b̄
b 1

)
.

Hence, we obtain the RH problem (8.5). Figure 8.1 illustrates the contour L
dividing the complex k-plane into two domains C+ and C− with the Φ+ func-
tion and the Φ−1

− function, respectively. The positive direction of the contour

k

�+ +( )�

�+ +( )�

�
�
(�-

-1
)

�
�
(�-

-1
)

L

Fig. 8.1. Domains of analyticity and the contour L direction



240 8 Dressing via local Riemann–Hilbert problem

corresponds to the rule that the C+ domain is on the left when traveling along
the contour. The normalization of the RH problem (8.47) is noncanonical be-
cause, in accordance with (8.43),

Φ+(x, k)→ Φ
(0)
+ (x), k →∞ .

In general we obtain the RH problem with zeros. Suppose that all zeros
are simple. In virtue of the involution (8.46) we have an equal number N of
zeros in C+ and C−. Moreover, because of the parity property (8.40), zeros
appear in pairs as ±kj and ±k̄l. This means that the regularization of the RH
problem at the points±kj is performed by two elementary rational multipliers,
Φ+Ξ−1

j Ξ−1
−j , where

Ξ−1
j = 11 +

kj − k̄j

k − k̄j
Pj , Ξ−1

−j = 11− kj − k̄j

k + k̄j
P−j , P±j =

|χ±j〉〈χ±j |
〈χ±j |χ±j〉 ,

and Φ+(±kj)|χ±j〉 = 0. In virtue of the parity property, the vectors |χj〉
and |χ−j〉 are interrelated, |χ−j〉 = σ3|χj〉, and therefore P−j = σ3Pjσ3.
After the complete regularization, we once again arrive at the factorizable
representation of Φ±,

Φ± = φ±Γ, Γ = ΞNΞ−N · · ·Ξ1Ξ−1 , (8.48)

where φ± solve the regular RH problem

φ−1
− φ+ = ΓEG0E

−1Γ−1. (8.49)

Comparing the asymptotic expansion

Γ (x, k) = 11 + k−1Γ (1)(x) + O(k−2)

with that for Φ+ (8.43), we obtain from (8.48)

Φ
(0)
+ = φ+, Φ

(1)
+ = Φ

(0)
+ Γ (1).

Hence, we can take the leading-order term Φ
(0)
+ (x) of the asymptotic expansion

(8.43) as a k-independent solution of the regular RH problem. In turn, the
reconstruction formula (8.45) now takes the form

Q =
2
α
Φ

(0)
+ Γ (1)

(
Φ

(0)
+

)−1

. (8.50)

Note that because the RH problem for the NLS equation allows the standard
normalization, we took a trivial solution (φ+ = 11) of the regular RH problem
(8.19). It should be stressed once again that a choice of a k-independent
solution of the regular RH problem is valid for solitons only. If we want to
account for the nonsolitonic part of a solution, we should consider a nontrivial
solution of the regular RH problem. As a rule, the regular RH problem does
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not allow as complete an analytical investigation as the RH problem with
G0 = 11. In general, the regular RH problem can be formulated in terms of
singular integral equations. Examples of a perturbative study of the regular
RH problem to account for soliton radiation are given in [122, 398]. The
description of the RH problem for the WKI spectral problem can be also
found in the paper by Zabolotskii [463].

8.3.4 MNLS soliton

We can simplify the reconstruction formula (8.50) when soliton solutions are
concerned. Indeed, equations (8.39), (8.44), and (8.48) yield the equation for
the dressing factor:

Γx =
(
Φ

(0)−1
+ Φ+

)

x
=

iα
2

Q2σ3Γ − i
2

(k2 − 1) [σ3, Γ ] + ik
(
Φ

(0)
+

)−1

QΦ
(0)
+ .

Therefore, Γ−1(x, k = 0) obeys

Γ−1(x, k = 0)x = − iα
2

Q2σ3Γ
−1(x, k = 0).

But exactly the same differential equation occurs for Φ
(0)
+ ; see (8.44). Hence,

we can identify Γ−1(x, k = 0) and Φ
(0)
+ and write the reconstruction formula

(8.50) for solitons as

Q =
2
α
σ3Γ

−1(k = 0)Γ (1)Γ (k = 0) . (8.51)

As a result, it is the dressing factor Γ that completely determines soliton
solutions of the MNLS equation.

Now we will derive the MNLS soliton. The discrete data of the RH problem
comprise the eigenvalues k1, k2 = −k1, k̄1, and k̄2 = −k̄1 (Fig. 8.2), as well
as the eigenvectors |1〉 and |2〉 ≡ | − 1〉 = σ3|1〉. Following (8.23) and (8.24),
we have

Γ (k) = 11 − 1
k − k̄1

[(
D−1

)
11
|1〉〈1|+ (

D−1
)
21
|2〉〈1|]

− 1
k + k̄1

[(
D−1

)
12
|1〉〈2|+ (

D−1
)
22
|2〉〈2|] ,

Γ−1(k) = 11 +
1

k − k1

[(
D−1

)
11
|1〉〈1|+ (

D−1
)
12
|1〉〈2|]

+
1

k + k1

[(
D−1

)
21
|2〉〈1|+ (

D−1
)
22
|2〉〈2|] .

Hence, we need know the eigenvectors to obtain the matrix elements Dlj (8.23)
and the dressing factor Γ . In the same way as was done for the NLS equation
in (8.26) and (8.27), we have a system of linear equations for the vector |1〉:



242 8 Dressing via local Riemann–Hilbert problem

Fig. 8.2. Typical arrangement of zeros corresponding to the MNLS soliton

|1〉x = − i
α

(k2
1 − 1)σ3|1〉, |1〉t = − 2i

α2
(k2

1 − 1)2σ3|1〉.

Solving it we obtain the vector |1〉 exactly in the form (8.31) but with different
definitions of z and ϕ. Namely,

z =
1

2w
(x− V t− x0) , x0 = 2aw,

ϕ = V wz +
1
4
(V 2 + w−2)t + ϕ0, ϕ0 = aV w + β.

Here we have introduced real parameters V and w,

V =
2
α

(2− k2
1 − k̄2

1), w =
i
2

α

k2
1 − k̄2

1

,

which play the role of the soliton velocity and width, as will be seen later.
Note once again that |2〉 = σ3|1〉. Therefore, we can now calculate the matrix
D in accordance with (8.23) and represent Γ and Γ−1 as

Γ (k) = 11− D̃−
k − k̄1

− D̃+

k + k̄1
, Γ−1(k) = 11 +

D−
k − k1

+
D+

k + k1
.

Here

D− =
k2
1 − k̄2

1

2

⎛

⎜⎜⎝

ez

k1ez + k̄1e−z
eiϕ

k1e−z + k̄1ez
e−iϕ

k1ez + k̄1e−z
e−z

k1e−z + k̄1ez

⎞

⎟⎟⎠ , D+ = −σ3D−σ3,
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D̃− =
k2
1 − k̄2

1

2

⎛

⎜⎜⎝

ez

k1e−z + k̄1ez
eiϕ

k1e−z + k̄1ez
e−iϕ

k1ez + k̄1e−z
e−z

k1ez + k̄1e−z

⎞

⎟⎟⎠ , D̃+ = −σ3D̃−σ3.

This gives

Γ (1) = −
(
D̃+ + D̃−

)
= (k2

1 − k̄2
1)

⎛

⎜⎜⎝
0

eiϕ

k1e−z + k̄1ez
e−iϕ

k1ez + k̄1e−z
0

⎞

⎟⎟⎠ ,

Γ (k = 0) =
k1

k̄1

⎛

⎜⎜⎝

k1ez + k̄1e−z

k1e−z + k̄1ez
0

0
k1e−z + k̄1ez

k1ez + k̄1e−z

⎞

⎟⎟⎠ .

Substituting these matrices into (8.51) eventually yields the soliton of the
MNLS equation:

us(x, t) =
i
w

k1e−z + k̄1ez

(k1ez + k̄1e−z)2
eiϕ. (8.52)

The most important feature of the soliton (8.52) consists in the fact that the
parameter α enters the denominator of (8.52) through w. This means that the
soliton (8.52) is nonperturbative with respect to α and cannot be obtained by
considering the MNLS equation as an α-perturbed NLS equation. Despite a
rather unaccustomed form, it is easy to check that the modulus of the soliton
(8.52) behaves as prescribed for solitons, i.e., mainly in accordance with the
hyperbolic secant rule:

|us| = sech z

2w|k1| cos θ
(
1 + tan2 θ tanh2 z

)−1/2
.

Here

|k1| =
[(

1− α

4
V
)2

+
( α

4w

)2
]1/4

, tan 2θ =
α

4w
1

1− (α/4)V
.

The soliton (8.52) has a number of peculiarities which distinguish it from the
standard NLS soliton. First, the soliton us has nonzero phase difference at its
limits. Indeed,

k1e−z + k̄1ez

(k1ez + k̄1e−z)2
−→

{
(k̄1/k

2
1) e−z , z →∞

(k1/k̄
2
1) ez , z → −∞

and
arg (us(z → −∞))− arg (us(z →∞)) = 6 arg(k1) �= 0.
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Second, the important invariant of the MNLS equation, namely, the optical
energy (or number of particles)

∫∞
−∞ |us|2dx, has the upper limit [399]

∫ ∞

−∞
|us|2dx =

8
α

arg(k1) <
4π
α

.

These properties of the MNLS soliton resemble those of the dark NLS soli-
ton which also has nonzero phase difference and relation between the optical
energy and the phase difference.

At the same time, there exists a nontrivial limit transition from the MNLS
soliton to the bright NLS one. To carry out this limit, we should take into
account that the Lax pair (8.38) for the MNLS equation should produce in
this limit the Lax pair (8.7) for the NLS equation. This condition implies that
the spectral parameter k depends on α and gives the following prescription
[399]:

1
α

(k2 − 1) −→ kNLS at α→ 0,

or
k = 1 +

α

2
kNLS + O(α2) . (8.53)

In the limit (8.53) the MNLS soliton (8.52) reproduces the NLS soliton (8.32).
Similarly to the NLS equation, we can construct a MNLS breather by

means of the dressing factor Γ with N = 4 because of zeros ±k1 and ±k2

(as well as ±k̄1 and ±k̄2). Explicit calculation was performed by Doktorov
[121]. Figures 8.3 and 8.4 demonstrate the temporal evolution of the MNLS
breather. We see that the MNLS breather evolves as a whole object, without
any decomposition into single solitons, as it should.

-4

-2

0

2

4

x

0
2

4
6

8
10

12
14

16
18

20
22

24

t

-3

-2

-1

0

1

2

3

Fig. 8.3. Evolution of the real part of the MNLS breather
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Fig. 8.4. Evolution of the imaginary part of the MNLS breather

8.4 Ablowitz–Ladik equation

This section is devoted to a consideration of a completely different example
of nonlinear integrable equations, namely, the discrete nonlinear AL equation
[8]. The propagation properties of waves arising as a result of the interplay
of nonlinearity with the lattice discreteness can be quite distinct from those
inherent in continuous nonlinear systems. For example, self-focusing and defo-
cusing processes can be achieved in the same discrete medium, and wavelength
diffraction management [9], the possibility forbidden in continuous systems,
is possible. Our aim in this section is to derive the soliton solution of the AL
equation. We will follow prescriptions developed in the preceding sections and
will see that, despite some features peculiar to discrete equations, the main
ideas of the dressing method based on the RH problem are valid for a wide
class of nonlinear equations, no matter whether the coordinates are discrete
or continuous. Moreover, a striking resemblance exists between solving the
MNLS and AL equations, though it is the NLS equation that represents the
continuous limit of the AL equation.

8.4.1 Jost solutions

The AL equation

iunt +
1
h2

(un+1 + un−1 − 2un) + |un|2(un+1 + un−1) = 0 (8.54)

describes evolution of a scalar complex function un(t) defined on an infinite
one-dimensional lattice (−∞ < n <∞) with the lattice spacing h. The terms
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un+1 + un−1 − 2un represent the discrete analog of the second derivative. To
perform a limit h→ 0, we write un±1 as

un±1 = u± hux +
1
2
h2uxx

and substitute them into (8.54). This yields the NLS equation iut = uxx +
2|u|2u. In the following we put h = 1.

The AL equation allows the Lax representation with the AL spectral prob-
lem [8]

J(n + 1) = (E + Qn)J(n)E−1, (8.55)

Qn =
(

0 un
−u∗

n 0

)
, E =

(
z 0
0 z−1

)
,

and the evolutionary equation

Jt(n) = V (n)J(n)− J(n)Ω(z), (8.56)

V (n) = i
(

u∗
n−1un zun − z−1un+1

z−1u∗
n − zu∗

n−1 −un−1u
∗
n

)
+ Ω,

Ω (z) =
i
2
(z − z−1)2σ3.

It is customary to denote a spectral parameter for the AL spectral problem
as z, instead of k in the preceding sections. Besides, for further convenience
we use here an asterisk to denote complex conjugation.

Note that we encounter the first novel feature compared with continu-
ous equations. Indeed, the spectral problem (8.55) is not differential but al-
gebraical. Nevertheless, we can introduce matrix Jost functions J±(n, z) as
solutions of the spectral equation (8.55) with the asymptotics J± → 11 as
n→ ±∞. The scattering matrix S(z) defined by

J−(n, z) = J+(n, z)EnS(z)E−n (8.57)

has the structure

S(z) =
(
a+ −b−
b+ a−

)
.

The AL spectral problem, like the WKI one, obeys the parity property

J(n, z) = σ3J(n,−z)σ3. (8.58)

Hence, we can suppose that the process of solving the AL equation will have
much in common with that of the MNLS equation, and not with that of the
NLS equation, as one might expect.

The second feature is the lack of a simple involution relation like (8.10).
Instead we will now derive a discrete analog of the involution property. To
this end, let us define a parameter z̄ as z̄ = 1/z∗. Then it is easy to show that
(E(z̄) + Qn)

† = E−1(z)−Qn and

[J±(n + 1, z̄)]†=
[
(E(z̄) + Qn) J±(n, z̄)E−1(z̄)

]†
=E(z)J±(n, z̄)

(
E−1(z)−Qn

)
.
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Accounting for the relation [E−1(z)−Qn](E +Qn) = (1+ |un|2) 11, we obtain

J†
±(n + 1, z̄)J±(n + 1, z) = (1 + |un|2)E J†

±(n, z̄)J±(n, z)E−1.

Iterating this relation as

J†
±(n, z̄)J±(n, z) = (1 + |un|2)E−1J†

±(n + 1, z̄)J±(n + 1, z)E

= (1 + |un|2)−1(1 + |un+1|2)−1E−2J†
±(n + 2, z̄)J±(n + 2, z)E2 = . . .

and taking into account the asymptotic behavior J+ → 11 at n → +∞ even-
tually yields

J†
+(n, z̄)J+(n, z) =

∞∏

l=n

ρ−1
l 11 ,

where ρl = 1 + |ul|2. Denoting

∞∏

l=n

ρ−1
l = v+(n), (8.59)

we can write the result of iterations as

J†
+(n, z̄) = v+(n)J−1

+ (n, z). (8.60)

In the same way we obtain

J†
−(n, z̄) = v−(n)J−1

− (n, z), v−(n) =
n−1∏

l=−∞
ρl. (8.61)

Equations (8.60) and (8.61) determine the involution property for the AL
spectral problem. We will call the relations (8.60) and (8.61) as conjugation.
Now we show that the functions v±(n) are nothing more than determinants of
J±. Indeed, because det (E+Qn) = ρn, we have detJ+(n+1) = ρn detJ+(n),
or

detJ+(n) = ρ−1
n detJ+(n+1) = ρ−1

n ρ−1
n+1 detJ+(n+2) = . . . =

∞∏

l=n

ρ−1
l = v+,

and similarly for J−. As a result, detJ±(n, z) = v±(n). It should be noted in
this connection that detJ−(n) = detJ+(n) detS and hence

detS = v, v = v−1
+ v− =

∞∏

l=−∞
ρl.

The next step in studying the Jost solutions is their asymptotic behavior.
Let us write the spectral equation (8.55) in the explicit form

(
J11 J12

J21 J22

)

n+1

=
(

J11 + z−1unJ21 z2J12 + zunJ22

z−2J21 − z−1u∗
nJ11 J22 − zu∗

nJ12

)

n
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and consider the limit z → ∞, for which J(n, z) = J (0)(n) + z−1J (1)(n) +
z−2J (2)(n) + . . . . Then in the leading order of the asymptotic expansion we
obtain

(
J

(0)
11 J

(0)
12

J
(0)
21 J

(0)
22

)

n+1

=

(
J

(0)
11 z2J

(0)
12 + zJ

(1)
12 + zunJ

(0)
22

0 J
(0)
22 − zu∗

nJ
(0)
12 − u∗

nJ
(1)
12

)

n

.

Comparing the entries with the same power of z on both sides of this relation,
we get

J (0)(n + 1) =
(

1 0
0 ρn

)
J (0)(n) , (8.62)

while the potential un is retrieved as

un = −J
(1)
12

J
(0)
22

. (8.63)

In the limit z → 0, for which J(n, z) = J(0)(n) + zJ(1)(n) + z2J(2)(n) + . . . ,
we similarly obtain

J(0)(n + 1) =
(
ρn 0
0 1

)
J(0)(n).

8.4.2 Analytic solutions

To reveal analytic properties of the Jost solutions, we rewrote the spectral
equation for the continuous nonlinear equations in the form of integral equa-
tions. Now it is natural to use infinite products. Indeed, we transform the
spectral equation as

J(n, z) = (E + Qn)−1J(n + 1, z)E =
E−1 −Qn

ρn
J(n + 1, z)E

= lim
N→∞

N∏

l=n

E−1 −Ql

ρl
J(N + 1)EN−n+1

and for the first column we write

J
[1]
+ (n, z) = [J+(n, z)]·1 = lim

N→∞

N∏

l=n

(
E−1 −Ql

ρl

)

··
[J+(N + 1)]·1 z

N−n+1.

Since J+(N) → 11 at N → ∞, the factor [J+(N + 1)]·1 in the last equa-
tion can be treated as [J+(N + 1)]11. Hence, the expression in parentheses
does not contribute to the z-dependence of J+21 and therefore [J+(n, z)]21 ∼
zN−n+1 −→ 0 at z → 0. As regards J+11, we will gain z−1 = (E−1)11 from
every factor in the product, which results in J+(n, z)11 ∼ z−(N−n+1)zN−n+1
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and [J+(n, z)]11 does not depend on z in this limit. Hence, the column J
[1]
+

is analytic for |z| < 1, i.e., inside the unit circle at the z-plane. In the same
way we can show that the columns J

[1]
− and J

[2]
+ are analytic for |z| > 1, i.e.,

outside the unit circle. Let us define a matrix function

Φ+(n, z) =
(
J

[1]
− , J

[2]
+

)

which is analytic for |z| > 1 (the Cout domain) and solves the spectral equation
(8.55). It follows from the conjugation formulas (8.60) and (8.61) that the rows
(J−)−1

[1] and (J+)−1
[2] are analytic for |z| < 1 (the Cin domain). As a result, the

matrix function

Φ−1
− (n, z) =

(
(J−)−1

[1]

(J+)−1
[2]

)
(n, z) (8.64)

is analytic as a whole in Cin and solves the adjoint spectral problem. From
the definition (8.57) of the scattering matrix we have

Φ+ = (J [1]
− , J

[2]
+ ) = (a+J

[1]
+ + z−2nJ

[2]
+ , J

[2]
+ ) = J+EnS+E−n,

S+ =
(
a+ 0
b+ 1

)
,

and similarly

Φ+ = J−EnS−E−n, S− =
(

1 b−/v
0 a+/v

)
.

Therefore,

detΦ+ = det J+ detS+ = det J− detS− = v+(n) a+(z). (8.65)

Analogously,
Φ−1
− = EnT+E−nJ−1

+ = EnT−E−nJ−1
− ,

T+ =
(
a−/v b−/v

0 1

)
, T− =

(
1 0
b+ a−

)
,

and
detΦ−1

− (n, z) = v−1
− (n)a−(z).

Asymptotic formulas for analytic solutions are derived directly from those
for the Jost functions. In particular, at z →∞

Φ+ =
(
J−11 J+12

J−21 J+22

)
−→

(
lim
z→∞J−11 0

0 lim
z→∞ J+22

)
.

From (8.62) J
(0)
−11(n + 1) = J

(0)
−11(n) = J

(0)
−11(n− 1) = . . . = 11 and

J
(0)
+22(n) = ρ−1

n J
(0)
+22(n + 1) = ρ−1

n ρ−1
n+1J

(0)
+22(n + 2) = . . . =

∞∏

l=n

ρ−1
l = v+(n).
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Therefore, at z →∞

Φ+(n, z) −→ Φ
(0)
+ (n) =

(
1 0
0 v+(n)

)
. (8.66)

In the same way we derive at z → 0

Φ−1
− −→ Φ−1

−(0) =
(
v−1
− (n) 0

0 1

)
.

Hence, detΦ+ → v+(n) at z →∞ , which gives from (8.65) a+(z)→ 1 in the
same limit. Similarly, a−(z)→ 1 at z → 0 .

The last thing we should do with the analytic solutions is to obtain a
conjugation formula for them. Writing out (8.60) J−1

± (n, z) = v−1
± (n)J†

±(n, z̄)
in components, we get

[
J−1
− (n, z)

]
11

= v−1
−

[
J†
−(n, z̄)

]

11
= v−1

−
[
J∗
−(n, z̄)

]
11

,

[
J−1
− (n, z)

]
12

= v−1
−

[
J†
−(n, z̄)

]

12
= v−1

−
[
J∗
−(n, z̄)

]
21

,
[
J−1

+ (n, z)
]
21

= v−1
+ (n)

[
J∗

+(n, z̄)
]
12

,
[
J−1

+ (n, z)
]
22

= v−1
+ (n)

[
J∗

+(n, z̄)
]
22

.

Inserting these relations into (8.64) yields

Φ−1
− (n, z) =

(
J−1
−[1](n, z)

J−1
+[2](n, z)

)
=

(
J−1
−11 J−1

−12

J−1
+21 J−1

+22

)
(n, z)

=
(
v−1
− J∗

−11 v−1
− J∗

−21

v−1
+ J∗

+12 v−1
+ J∗

+22

)
(n, z̄) =

(
v−1
− 0
0 v−1

+

)(
J

[1]
− , J

[2]
+

)†
(n, z̄)

=
(
v−1
− 0
0 v−1

+

)
Φ†

+(n, z̄).

As a result, the conjugation formula for the analytic solutions takes the form

Φ†
+(n, z) = B(n)Φ−1

− (n, z̄), B(n) =
(
v−(n) 0

0 v+(n)

)
. (8.67)

8.4.3 RH problem

As might be expected, the functions Φ+ and Φ−1
− enter the RH problem

Φ−1
− (n, z)Φ+(n, z) = EnG(z)E−n, |z| = 1, (8.68)

G = T+S+ = T−S− =
(

1 b−/v
b+ 1

)
,

with the contour being the unit circle |z| = 1. The normalization of the RH
problem is noncanonical and is given by (8.66). It should be noted that there
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exists a possibility for the AL equation to formulate the RH problem with
the standard normalization but at the cost of nonlinear dependence of the
spectral problem on the potential Qn [182].

As we know, solitons correspond to the RH problem with zeros. Suppose
Φ+ has zeros at some points ±zj ∈ Cout, j = 1, . . . ,N , i.e., detΦ+(±zj) = 0,
and detΦ−1

− (±z̄l) = 0, ±z̄l ∈ Cin, l = 1, . . . ,N . Because of the modification
of the involution property, we should match a definition of the projector Pj
with the conjugation formula (8.67). In other words, we define the projector
as

Pj =
|j〉〈j|B
〈j|B|j〉 ,

with the matrix B defined in (8.67). Owing to the parity property (8.58), we
have | − j〉 = σ3|j〉.

Exactly as for the MNLS equation, we bring the matrix functions Φ± to a
factorizable representation Φ± = φ±Γ , with the dressing factor Γ written as

Γ (n, z) = 11−
N∑

j,l

1
z − z̄l

|j〉 (D−1
)
j l
〈l|B, (8.69)

Γ−1(n, z) = 11 +
N∑

j,l

1
z − zj

|j〉 (D−1
)
j l
〈l|B,

with the matrix elements

Dlj = 〈l| B

zj − z̄l
|j〉. (8.70)

Now what about a coordinate dependence of the vector |j〉? As regards
n-dependence, we have

Φ+(n + 1, z)|j, n + 1〉 = 0 = [E(zj) + Qn]Φ+(n, zj)E−1(zj)|j, n + 1〉.
Comparing this with the spectral equation (8.55), we can take E−1(zj)|j,
n + 1〉 = |j, n〉, or

|j, n〉 = En(zj)|j̃〉,
where |j̃〉 is an n-independent (but t-dependent) vector. It follows from (8.56)
that |j, n〉t = Ω(zj)|j, n〉. Therefore, the coordinate dependence of the vector
|j〉 is given by

|j〉 = En(zj)eΩ(zj)|j 0〉, |j 0〉 = const. (8.71)

Finally, we find from the identity detΦ+(zj) = 0 that zeros do not depend on
n and t. Zeros ±zj and ±z̄l and vectors |j〉 comprise the discrete part of the
RH problem. Once again, where solitons were concerned, i.e., G(z) = 11, we
can choose the leading-order term Φ

(0)
+ (8.66) of the asymptotic expansion as

a solution of the regular RH problem φ−1
− φ+ = 11.
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In accordance with (8.63), (8.66), and Φ+ = φ+Γ , a solution un(t) of the
AL equation can be retrieved from the solution of the RH problem as

un(t) = − lim
z→∞

(zΦ+)12
Φ+22

= −Φ
(1)
+12

Φ
(0)
+22

= − Γ
(1)
12

v+(n)
. (8.72)

Hence, to obtain a soliton solution of the AL equation, we should find the
dressing factor Γ .

8.4.4 Ablowitz–Ladik soliton

As we know, four zeros ±z1 and ±z̄1 correspond to a single soliton solution
of the AL equation (Fig. 8.5). To obtain the AL soliton, we will be guided by
(8.72). For discrete RH data, it is possible to express v+(n) entering (8.72)
in terms of Γ (n, z = 0)—just in the same way as we expressed Φ

(0)
+ through

Γ (k = 0) in the case of the MNLS equation. Indeed, because for solitons
G(z) = 11, we have Φ+ = Φ−. Hence, Φ+ → diag(v−(n), 1) as z → 0, owing to
(8.66). Now we obtain from Φ+ = Φ

(0)
+ Γ

Γ (n, z) =
(

1 0
0 v−1

+

)
Φ+, Γ (n, 0) =

(
1 0
0 v−1

+

)(
v− 0
0 1

)
=

(
v− 0
0 v−1

+

)
.

Hence, v−1
+ (n) = Γ22(n, 0) and the reconstruction formula takes the form

un(t) = −Γ (1)
12 (n)Γ22(n, 0). (8.73)

Besides, we can express the matrix B (8.67) in terms of Γ (n, 0):

B = diag
(
Γ11(n, 0), Γ−1

22 (n, 0)
)
.

Z

Z1

Z1

-Z1

-Z1

1

Fig. 8.5. Typical arrangement of zeros corresponding to the Ablowitz–Ladik soliton
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Now we will calculate the dressing factor Γ . Denoting z1 = exp[(1/2)(μ+ ik)]
and (p1/p2) = exp(a + iϕ), where p1 and p2 are components of the constant
vector |j 0〉, we find from (8.71) the vector |j〉 explicitly:

|j〉 = e
1
2 (a+iβ)

(
e

1
2 (xn+iϕn)

e−
1
2 (xn+iϕn)

)
. (8.74)

Here

xn = μn− 2t sinhμ sin k + a, ϕn = kn + 2t(coshμ cos k − 1) + ϕ.

It should be noted that the vector |j〉 (8.74) has the same structure as the
corresponding vector for the NLS and MNLS equations; see (8.31). As regards
the dressing factor Γ , it follows from (8.69) with N = 1, z2 = −z1, and
z̄2 = −z̄1 that

Γ (n, z) = 11 − 1
z − z̄1

[|n〉(D−1)11)〈n|B + σ3|n〉(D−1)21〈n|B
]

(8.75)

− 1
z + z̄1

[|n〉(D−1)12〈n|Bσ3 + σ3|n〉(D−1)22〈n|Bσ3

]
.

Calculating matrix elements Dlj (8.70) and taking into account that detΓ
(n, 0) = exp(2μ), we obtain from (8.75)

Γ (n, z) = 11− sinhμ

2(z − z̄1)
F̃−(n)− sinhμ

2(z + z̄1)
F̃+(n), (8.76)

Γ−1(n, z) = 11 +
sinhμ

2(z − z1)
F−(n) +

sinhμ

2(z + z1)
F+(n),

where

F̃−(n) =

⎛

⎜⎜⎝

exp
[
μ(n− 1

2 − x) + i
2k

]

coshμ(n− 1− x)
exp [ik(n− x) + iα− μ]

coshμ(n− 1− x)
exp [−ik(n− 1− x)− iα + μ]

coshμ(n− x)
exp

[−μ(n− 1
2 − x) + i

2k
]

coshμ(n− x)

⎞

⎟⎟⎠ ,

F−(n) =

⎛

⎜⎜⎝

exp
[
μ(n− 1

2 − x) + i
2k

]

coshμ(n− x)
exp [ik(n− x) + iα− μ]

coshμ(n− 1− x)
exp [−ik(n− 1− x)− iα + μ]

coshμ(n− x)
exp

[−μ(n− 1
2 − x) + i

2k
]

coshμ(n− 1− x)

⎞

⎟⎟⎠ ,

F̃+(n) = −σ3F̃−(n)σ3, F+(n) = −σ3F−(n)σ3.

Here
x(t) = 2t

sinhμ

μ
sink + x0, x0 = − a

μ
− 3

2
,
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α(t) = 2t(coshμ cos k +
k

μ
sinhμ sink − 1) + α0, α0 = β − ak

μ
− k.

As a result, we obtain from (8.73) the AL soliton solution [8]:

un(t) = exp[ik(n− x) + iα]
sinhμ

coshμ(n− x)
.

The AL soliton depends on four constant real parameters μ, k, x0, and α0

which determine the soliton mass 2μ, its group velocity vgr = 2(sinhμ/μ) sink,
soliton maximum position x(t), and phase α(t).

8.5 Three-wave resonant interaction equations

In this section we shall deal with the problem of three-wave resonant inter-
action in nonlinear quadratic media, one of the classic examples of successful
application of the IST to an actual physical problem. Three wave packets (en-
velopes) are involved in this process, the central frequencies and wave vectors
obeying the resonance conditions

ω3 = ω1 + ω2, k3 = k1 + k2. (8.77)

The physical nature of the wave packets can be arbitrary. The interaction of
the type (8.77) describes, e.g., a decay of wave 3 (pumping wave) into waves
1 and 2 (secondary waves). Such a process occurring in a stable medium is
exemplified by generation of harmonics in nonlinear optics [349] and decay
instability in plasma [226]. In unstable media, e.g., in plasma, processes of the
so-called explosive instability type are possible when the resonance conditions
take a rather different form:

ω1 + ω2 + ω3 = 0, k1 + k2 + k3 = 0.

The (1+1)-dimensional form of the three-wave resonant interaction (in the
following, the three-wave equations) for the case of the decay instability can
be given as

u1t + v1u1x = iγū2u3,

u2t + v2u2x = iγū1u3, (8.78)
u3t + v3u3x = iγu1u2,

while for the explosive instability they are written slightly differently:

u1t + v1u1x = iγū2ū3,

u2t + v2u2x = iγū1ū3, (8.79)
u3t + v3u3x = iγū1ū2.
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Here uj and vj are the scaled envelope and group velocity of the jth wave, and
γ is the interaction constant. In what follows we restrict ourselves to (8.78).
The case of the explosive instability (8.79) is treated in the same manner.

A possibility to solve the three-wave equations by means of the IST was
discovered by Zakharov and Manakov [471, 472]. The detailed analysis of the
three-wave equations can be found in [229, 234, 354]. From the point of view
of the RH problem, we will see that because an associated spectral problem
is realized with 3 × 3 matrices, some subtle details arise when determining
analytic properties of Jost solutions.

Before proceeding to solving (8.78), we discuss some peculiarities inherent
in these equations. The main one is the absence of dispersion in the model,
i.e., the lack of second-order derivatives in x in (8.78). The reason is that
the three-wave resonant interaction has a very short characteristic time scale
compared with that for dispersive effects. In other words, the time needed
for a three-wave interaction to exhibit a considerable effect on the system is
much shorter that the time required for dispersion to manifest itself. Let us
recall that in the case of the NLS model, it is the dispersion that leads to a
separation between solitons and linear waves (radiation) because of the decay
of the continuous spectrum in time. In contrast, for the three-wave equations
the continuous spectrum is considered on an equal footing with the solitons:
it remains with solitons for long times and mixes nonlinearly with them.

Nevertheless, as for the NLS solitons, the three-wave soliton solutions can
be obtained in a closed form. Indeed, we can discriminate between solitons
and radiation on the basis of the properties of the RH problem associated with
the three-wave equations. Namely, there exists a subset of the RH problem
data for which a system of singular integral equations reduces to the algebraic
ones. Solutions of these algebraic equations are called solitons of the three-
wave equations. At the same time, as a manifestation of the aforementioned
mixing of solitons and radiation, different envelopes can in general exchange
with solitons and radiation, provided that the total number of solitons is
preserved. Moreover, as we showed in Sect. 3.7, the previous statements still
hold for more general (non-Abelian) three-wave system.

8.5.1 Jost solutions

Let us start to solve (8.78). Those equations allow the Lax representation

ψx = i(kJ + U)ψ, ψt = i(kI + V )ψ, (8.80)

where J and I are diagonal matrices with constant real entries,

J = diag (a1, a2, a3), a1 > a2 > a3, I = diag (b1, b2, b3).

U and V are 3×3 matrices with zero diagonal. We suppose that the potential
U falls fast enough for |x| → ∞,

∫∞
−∞ |uij(x)| dx <∞ ∀ i, j; as usual, k is the

spectral parameter. The compatibility condition for (8.80) has the form

[J, V ] = [I, U ], Ut − Vx + i[U, V ] = 0. (8.81)
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Then equations (8.78) are obtained from (8.81) after the following identifica-
tions:

u1 =
u12

(a1 − a2)1/2
, u2 =

u23

(a2 − a3)1/2
, u3 =

u13

(a1 − a3)1/2
,

αij =
bi − bj
ai − aj

, v1 = −α12, v2 = −α23, v3 = −α13, vij = αijuij ,

γ =
a1b3 − a3b1 + a3b2 − a2b3 + a2b1 − a1b2

[(a1 − a2)(a1 − a3)(a2 − a3)]
1/2

,

as well as the reduction U † = U and, as a consequence, V † = V . So, explicitly
the matrices U and V are written as

U =

⎛

⎝
0 u12 u13

ū12 0 u23

ū13 ū23 0

⎞

⎠ , V = −
⎛

⎝
0 v1u12 v3u13

v1ū12 0 v2u13

v3ū13 v2ū23 0

⎞

⎠ .

To formulate the RH problem with the canonical normalization, we introduce
the matrix function χ = ψE−1, where E = exp(ikJx). Then the spectral
problem is written as

χx = ik[J, χ] + iUχ. (8.82)
Let J±(k, x) be the Jost solutions to the spectral problem (8.82), J± → 11 at
x → ±∞. Then the scattering matrix S(k) is defined as before: J−(k, x) =
J+(k, x)ES(k)E−1.

8.5.2 Analytic solutions

As usual, we write the spectral equation for the Jost solutions in the integral
form:

J±(k, x) = 11 +
∫ x

±∞
dy eikJ(x−y)U(y)J±(k, y)e−ikJ(x−y). (8.83)

From (8.83) we can readily ascertain that the columns J [1]
+ and J

[3]
− are analytic

in the upper half plane Im k > 0, while J
[1]
− and J

[3]
+ are analytic in the lower

half plane Im k < 0. As regards the second columns J
[2]
± , they do not allow an

analytic continuation off the real axis Im k = 0. The reason for such behavior is
evident: while the first and the third columns have in the integrand (8.83) the
exponential factors with the differences ai−aj of the same sign [(a2−a1) < 0
and (a3 − a1) < 0 for the first column, and (a1 − a3) > 0 and (a2 − a3) > 0
for the third column], the second column contains the differences of opposite
signs [(a1 − a2) > 0 and (a3 − a2) < 0].

In order to apply the RH problem to solve (8.78), we should construct a
matrix solution to (8.82) which will possess as a whole the definite analytic
properties in the k-plane. To this end, we address ourselves to the adjoint
spectral problem

ψ̃x = −i(kJ + UT)ψ̃, (8.84)
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with transpose matrix UT. It is easy to see that if ψ is a solution to (8.80), then
(ψ−1)T is a solution to the adjoint spectral problem (8.84). For the problem
(8.84) we can also introduce the Jost solutions J̃± → 11 at x → ±∞, which
obey the equation

J̃±x = −ik[J, J̃±]− iUTJ̃±,

and a scattering matrix R(k) for the adjoint spectral problem is defined by
means of J̃−(k, x) = J̃+(k, x)ER(k)E−1, R = (S−1)T.

Now we can prove that the columns J̃
[1]
− and J̃

[3]
+ are analytic for Im k > 0,

while the columns J̃
[1]
+ and J̃

[3]
− are analytic for Im k < 0. So, it is natural

to construct a vector column being the vector product of the vector columns
J̃

[1]
− and J̃

[3]
+ . Being by construction analytic in the upper half plane, it can be

considered as the needed second column with the definite analytic behavior.
More exactly, the vector column

J
′[2] =

(
J̃

[1]
− × J̃

[3]
+

)
exp[−ik(a1 + a2 + a3)x]

is a solution to (8.82) and the matrix function

Φ+ =
(
J

[1]
+ , J

′[2], J
[3]
−

)
(8.85)

is a solution to (8.82) and is analytic as a whole in the upper half plane
Im k > 0.

Just as in the preceding sections, we can represent Φ+ in the form Φ+ =
J+ES+E−1, where

S− =

⎛

⎝
r11 0 0
r12 s33 0
r13 −s32 1

⎞

⎠ , S+ =

⎛

⎝
1 −r21 s13

0 r11 s23

0 0 s33

⎞

⎠ .

Here sjk and rjk are entries of the matrices S and R, respectively. Besides,
we have S+ = SS−.

8.5.3 RH problem

As in the case of the NLS equation, there is the involution J†
±(k̄) = J−1

± (k)
which permits us to construct the matrix function Φ−1

− (k) analytic in the lower
half plane, Φ−1

− (k) = Φ†
+(k̄). Thereby, we are in a position to formulate the

RH problem,

Φ−1
− (k, x)Φ+(k, x) = E(k, x)G(k)E−1(k, x), Φ± → 11 at k →∞, (8.86)
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with

G(k) = S†
+(k)S+(k) =

⎛

⎝
1 −r21 s13

−r̄21 1− |r33|2 s̄32

s̄13 s32 1

⎞

⎠ .

The contour defining the RH problem coincides with the real axis Im k = 0
and the normalization is canonical.

8.5.4 Solitons of three-wave equations

Our intention is to obtain a soliton solution of the three-wave equations; hence,
we should consider the RH problem with zeros and for G(k) = 11. The discrete
spectral data of the RH problem (8.86) are given by zeros kj ≡ ξj + iηj of the
matrix function Φ+ (8.85), detΦ+(kj) = 0, Im kj > 0, and vector |j〉. For the
one-soliton solution the matrix Φ+ reduces to the dressing factor Γ having
the form

Γ = 11− k1 − k̄1

k − k̄1
P , (8.87)

where the projective 3× 3 matrix

P =
(|p1|2 + |p2|2 + |p3|2

)−1

⎛

⎝
|p1|2 p1p̄2 p1p̄3

p2p̄1 |p2|2 p2p̄3

p3p̄1 p3p̄2 |p3|2

⎞

⎠ (8.88)

is composed from the components of the vector |1〉 = (p1, p2, p3)T. Substitut-
ing the asymptotic decomposition Γ = 11 + k−1Γ (1) + . . ., k →∞ into (8.82),
we reconstruct the potential U from the solution of the RH problem (8.86),
U = −[J, Γ (1)], or, as follows from (8.87),

U = (k1 − k̄1)[J, P ]. (8.89)

Therefore, the problem of finding the soliton solution reduces to finding the
projective matrix P . Its coordinate dependence is determined by the evolution
equations for the vector |1〉:

|1〉x = −ik1J |1〉, |1〉t = −ik1I|1〉.

Hence,
pj = exp[−i(ξ1 + iη1)(ajx + bjt)]p

(0)
j ,

where the complex parameters p
(0)
j stand for the integration constants. These

constants are determined from the initial conditions at t = 0. Thereby, we have
the explicit expression for the matrix P (8.88). Substituting it into (8.89), we
obtain the soliton solution to the three wave equations:

uij = 2iη1(ai−aj)p
(0)
i p̄

(0)
j exp{−i(ξ1+iη1)[(ai−aj)x+(bi−bj)t]}Δ−1

1 , (8.90)
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where

Δ1 =
3∑

l=1

|p(0)
l |2 exp[2η1(alx + blt)].

To gain greater insight into the solution (8.90), let us consider the case
of only two nonzero constants p

(0)
1 and p

(0)
2 ; hence, the potential U contains

only two nonzero entries u12 and u21 = ū12. In this case the solution (8.90)
transforms to

u12 = iη1(a1 − a2)
exp {−ξ1 [(a1 − a2)x + (b1 − b2)t + φ12]}

cosh [η1(a1 − a2)(x− v1t− x12)]
, (8.91)

where

x12 =
1
η1

α1 − α2

a1 − a2
, φ12 =

φ1 − φ2

ξ1
, p

(0)
j ≡ exp (αj + iφj).

This result is somewhat trivial because only one of the wave packets has a
nonzero envelope, but the essential features of such a solution are inherent in
the whole soliton (8.90). Indeed, let all p(0)

j be nonzero. Consider the solution
(8.90) for t → ∞, paying special attention to the wave u13. We can put u13

in the following form:

u13 = 2iη1(a1 − a3) exp {−iξ1 [(a1 − a3)x + (b1 − b3)t + φ13]}D−1
1 , (8.92)

where
D1 = 2 cosh [η1(a1 − a3)(x− v3t) + α1 − α3]

+ exp [−η1(a1 − a2)(x− v1t)− α1 + α2] exp [η(a1 − a3)(x− v2t) + α2 − α3] .

Let v1 > v2. Then we conclude from (8.92) that u13 → 0 for t→∞, while for
t→ −∞ u13 tends to the expression of the type (8.91) with the change of in-
dices 2→ 3, i.e., to the soliton of pumping wave. In contrast, the components
u12 and u23 tend exponentially to zero for t → −∞ and to solitons of the
type (8.91) for t→∞. Thereby, the solution (8.90) describes the decay of the
composite soliton into two simple ones. For the case of v1 < v2 the solution
(8.90) describes the reverse process of a fusion of two simple solitons into the
composite one.

Hence, the three-wave resonant interaction process provides an example
of the so-called nontrivial interaction of solitons, as distinct from the trivial
interaction (scattering) of the NLS solitons.

So far we have considered the case of the simplest identity reduction
U † = U . At the same time, the spectral problem (8.82) allows a reduction
of a more general type (the so-called B-hermiticity [354]):

U † = BUB, B = diag (r1, r2, r3),
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where rj = ±1. Such a reduction provides the mutual conjugation of zeros of
the RH problem which lie in different half planes of the k-plane. It is easy to
see that the projective matrix P takes the form

Pij =
ripip̄j∑
l rl|pl|2

.

It is important that nonidentity reduction leads to a substantial modification
of the above results. This conclusion follows from the fact that the denomi-
nator Δ1 entering the soliton solution (8.90) takes the form

Δ′
1 =

3∑

l=1

rl|p(0)
l |2 exp [ 2ηl(alx + blt)]. (8.93)

If some of rl are equal to −1, a singularity occurs for some values of the
coordinates. Let us consider the case B = (−1, 1, 1). It is evident that the
singularity is absent only for p

(0)
1 = 0, which means that only the soliton of

the simple wave u23 exists in the system with such a restriction. A similar
conclusion follows for the reduction matrix B = (1, 1,−1).

Nontrivial results take place for the reduction B = (1,−1, 1). As for the
previous cases, we have here the possibility of the existence of solitons of the
wave u13 for two other zero waves. At the same time, a general solution for
three envelopes can exist, but for a finite time interval. Indeed, let us write
the denominator Δ′

1 (8.93) in the form

Δ′
1 exp [ 2α1 + 2η1(a1x + b1t)]

= 1− exp [ 2(β1 − β2)− 2η1(a1 − a2)x − 2η1(b1 − b2)t]
+ exp [ 2(β1 − β3)− 2η1(a1 − a3)x − 2η1(b1 − b3)t]

and analyze the expression on the right-hand side. This analysis shows that
under the condition

1
a1 − a2

(
|β1 − β2|a2 − a3

a1 − a2
− (b1 − b2)t

)

<
1

a1 − a3

(
|β1 − β3|a2 − a3

a1 − a3
− (b1 − b3)t

)

Δ′
1 does not take zero value. Excluding the exceptional case v1 = v2, we see

that this inequality is broken for some positive or negative t = t0. The case of
the positive t0 corresponds to the explosive instability, while for the negative
t0 we have the process of smoothing the initial singularity.

Note that the Darboux-dressing transformation was applied in [108] to
construct a larger class of exact solutions of the three-wave equations with
nontrivial seed solutions.
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8.6 Homoclinic orbits via dressing method

In this section we will dress nonzero solutions of the NLS and MNLS equa-
tions. Along with solitons as stable solutions of nonlinear integrable equations
with important applications in physics and mathematics, these equations al-
low unstable waves such as homoclinic orbits. The existence of homoclinic
solutions serves as an indicator of chaotic behavior in a perturbed deter-
ministic nonlinear dynamical system. The role of homoclinic solutions in the
generation of chaos was revealed in the case of periodic boundary conditions
for the damped-driven sine–Gordon equation [326, 327] and for the perturbed
NLS equation [5, 11, 6, 201, 297]. Extended reviews of analytic and numerical
methods in this topic are given by McLaughlin and Overman [328] and by
Ablowitz et al. [6]. Different approaches have been proposed for derivation of
homoclinic solutions for integrable partial differential equations: while the bi-
linear Hirota method [210] was used by Ablowitz and Herbst [5], the Bäcklund
transformations were employed in [296, 326, 327, 455]. The problem of con-
struction of the homoclinic orbits by means of the Darboux transformation
method is discussed in the book of Matveev and Salle [324].

We will show in this section that the dressing method developed in the
preceding sections is well suited to derive homoclinic solutions. In order to
explain basic ideas, we first reproduce the known homoclinic solution of the
NLS equation by means of the dressing method. Then we consider the MNLS
equation.

8.6.1 Homoclinic orbit for NLS equation

The NLS equation

iut = uxx + 2(|u|2 − ω)u, ω ∈ Re (8.94)

with an additional real parameter ω has the Lax pair ψx = Uψ and ψt = V ψ
with the matrices U and V of the form

U = ikσ3 + iQ, Q =
(

0 u
ū 0

)
,

V = i(2k2 −Q2 + ω)σ3 + 2ikQ + σ3Qx.

We are interested in periodic solutions of (8.94) with a spatial period L,
u(x + L, t) = u(x, t). Hence, the Floquet theory should be applied to the
spectral equation ψx = Uψ. The fundamental matrix M(x, k) is defined as a
solution of the spectral equation with the boundary condition M(0, k) = 11.
The Floquet discriminant is defined as Δ(k) = trM(L, k), where M(L, k)
is the transfer matrix, and bounded eigenfunctions of the spectral problem
correspond to Δ(k) satisfying the condition −2 ≤ Δ(k) ≤ 2. The Floquet
spectrum is characterized by the simple periodic points {ks

j , Δ(ks
j) = ±2,
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(dΔ/dk)ks
j
�= 0} and the double points {kd

j , Δ(kd
j ) = ±2, (dΔ/dk)kd

j
= 0,

(d2Δ/dk2)kd
j
�= 0}. We will deal with the complex double points indicating

linearized instability of solutions of a nonlinear wave equation because these
points label the orbits homoclinic to unstable solutions.

We are interested in orbits homoclinic to the periodic plane wave solution
u0 of the NLS equation (8.94) taken in the form

u0 = c exp[−2i(c2 − ω)t], (8.95)

where c is a real amplitude. Simple calculation gives the fundamental matrix,

M(x, k) =

(
cosμx + i(k/μ) sinμx i(c/μ)e−2i(c2−ω)t sinμx

i(c/μ)e2i(c2−ω)t sinμx cosμx− i(k/μ) sinμx

)
, μ2 = c2+k2,

and hence Δ(k) = 2 cosμL. Thereby, the Floquet spectrum comprises the
real axis of the k-plane (the main spectrum) and a part of the imaginary axis
lying between the simple periodic points ±ic. Besides, there exists an infinite
sequence of real double points kd

n = [(nπ/L)2 − c2]1/2, where c2 ≤ (nπ/L)2

and n are integers, and a finite number of complex double points kd
j , where

j are integers, situated on the imaginary axis within the interval (ic,−ic),
(jπ/L)2 < c2. In what follows we choose c and L in such a way to obtain a
single pair of complex double points kd

1 = ±i[c2− (π/L)2]1/2, which is a single
unstable mode of the solution (Fig. 8.6). Hence, j = 1 and n = 2, 3, . . .

After diagonalization of the transfer matrix M(L, k), R−1M(L, k)R =
diag(eiμL, e−iμL), we define the Blochsolution χ̃ = M(x, k)R of the spectral

Fig. 8.6. The Floquet spectrum (thick lines), infinite sequence of the real double
points ±kd

n, simple periodic points ±ic, and the single pair of the complex double
points ±kd

1
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equation. Demanding the Bloch solution to satisfy both equations of the Lax
pair, we obtain it explicitly as

χ̃ = exp[−i(c2 − ω)tσ3]

⎛

⎜⎝
1 −μ− k

c
μ− k

c
1

⎞

⎟⎠ exp[iμ(x + 2kt)σ3] .

In the following, it will be more convenient to work with a modified Bloch
function χ = χ̃ exp[−ikxσ3 − i(2k2 + ω)tσ3] which satisfies the equations

χx = Uχ− ikχσ3, χt = V χ− i(2k2 + ω)χσ3 (8.96)

and allows the asymptotic expansion started with the unit matrix, χ = 11 +
k−1χ(1) + O(k−2), while the potential Q is reconstructed via

Q = −[σ3, χ
(1)]. (8.97)

Suppose now that a solution homoclinic to the plane wave (8.95) can be
obtained from (8.97) with the Bloch function χ being a result of dressing the
Bloch function χ0 which satisfies (8.96) with u = u0:

χ = Γχ0. (8.98)

Here Γ (k, x, t) is the dressing factor which is written in the form well known
for us:

Γ = 11− k1 − k̄1

k − k̄1
P, Γ−1 = 11 +

k1 − k̄1

k − k1
P, (8.99)

where P is a projector, P = (|1〉〈1|)/〈1|1〉, 〈1| = |1〉†, and |1〉 = (p1, p2)T is a
two-component vector. As regards the choice of the pole k1 in (8.99), it is the
point where we encounter a crucial difference from the standard applications
of the dressing method. The positions of the poles in the dressing factors are
usually taken quite arbitrarily, without reference to the seed solution u0. In
contrast, it is the seed solution u0 which determines these poles in our case.
Namely, we take the complex double points as the poles of the dressing factors;
therefore, k1 = kd

1 .
Expanding (8.99) in the asymptotic series in k−1 gives a new solution in

terms of the old one and the dressing factor:

Q = Q0 − [σ3, Γ
(1)],

where Γ = 11 + k−1Γ (1) + O(k−2). Hence, we need know the vector |1〉 to
obtain new solution Q.

Differentiating (8.98) in x yields

U(k) = −Γ [∂x − U0(k)]Γ−1, (8.100)

where U0 = U(u0). Evidently, the left-hand side of (8.100) is regular at points
k1 and k̄1, while the right-hand side has simple poles at these points because of
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the dressing factors. From the condition of a vanishing residue at the point k1

we obtain |1〉x = U0(k1)|1〉, and, similarly, |1〉t = V0(k1)|1〉. These equations
are easily integrated and we obtain

|1〉=e−i(c2−ω)tσ3

⎛

⎜⎝
A exp(iμ1x− 2k0μ1t)− μ1 − ik0

c
exp(−iμ1x + 2k0μ1t)

A
μ1 − ik0

c
exp(iμ1x− 2k0μ1t) + exp(−iμ1x + 2k0μ1t)

⎞

⎟⎠ .

Here A = const, μ1 = μ(k1), k1 = ik0. Evidently, Γ (1) = −(k1− k̄1)P and
hence u = u0 +2(k1− k̄1)P12, with P12 = (p1p̄2)/(|p1|2 + |p2|2). Inserting here
the vector |1〉 and introducing notations

A = exp(ρ+ iβ), τ = σt− ρ, φ = β − π/2, σ = 4k0μ1, μ1 + ik0 = ceip,

we obtain the homoclinic solution in the form

uh =
cos 2p− sin p sech τ cos(2μ1x + φ) − i sin 2p tanh τ

1 + sin p sech τ cos(2μ1x + φ)
ce−2i(c2−ω)t,

(8.101)
which coincides with the solution obtained by Li and McLaughlin [297] by
means of the Bäcklund transformation.

It is easy to see that this solution is indeed homoclinic to the plane wave,
reproducing this wave (up to a factor) at both infinities:

t→ ±∞ : uh → exp(±2ip)c exp[−2i(c2 − ω)t] .

Solutions of the type (8.101) with the plane-wave asymptotic behavior were
previously obtained in [20, 217]. In [20] the solution (8.101) was related with
the long-time evolution of the modulational instability of the plane wave. The
Darboux transformation was applied in [217] to dress the plane wave and the
dressed solution was interpreted as describing a process of self-excitation and
subsequent attenuation of periodic waves.

In the case of N unstable modes the above procedure can be iterated.
However, a more efficient way to deal with multiple double points is described
in the next subsection.

8.6.2 MNLS equation: Floquet spectrum and Bloch solutions

The MNLS equation

iut = uxx + iα(|u|2u)x + 2(|u|2 − ω)u,

with a real constant ω, allows the Lax representation with the matrices U and
V of the form (Sect. 8.3)

U = iΛσ3 + ikQ, Λ(k) =
1
α

(1− k2), Q =
(

0 u
ū 0

)
,

V = iΩσ3 + 2ikΛQ− ik2Q2σ3 + kσ3Qx + iαkQ3, Ω(k) = 2Λ2 + ω.
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Like the NLS equation, we take the plane wave solution of the MNLS equation

u0 = c exp[−2i(c2 − ω)t]

as a periodic solution with a spatial period L. The fundamental matrix
M(x, k) is obtained in the form

M(x, k) =

⎛

⎜⎝
cosμx + i

Λ

μ
sinμx i

ck

μ
e−2i(c2−ω)t sinμx

i
ck

μ
e2i(c2−ω)t sinμx cosμx− i

Λ

μ
sinμx

⎞

⎟⎠ ,

where μ = (Λ2 + c2k2)1/2. Hence, Δ(k) = 2 cosμL and four complex double
points kj = ±[1 − (1/2)α2c2 ± iαclj ]1/2, lj = [1 − (1/4)α2c2 − (jπ/cL)2]1/2,
lying in four quadrants of the k-plane, correspond to each unstable mode.
We choose c and L in such a way that only the single unstable mode exists,
i.e., l21 > 0 and l2j < 0 for j > 1. The linearized stability analysis confirms
that the above four complex double points k1 = [1 − (1/2)α2c2 − iαcl1]1/2,
k2 = −k1, k3 = k̄1 and k4 = −k̄1 (Fig. 8.7) are associated with the exponential
instability.

The Bloch function which solves both Lax equations takes a surprisingly
simple form:

χ̃0(k, x, t)=exp[−i(c2−ω)tσ3]

⎛

⎜⎝
1 −μ− Λ

ck
μ− Λ

ck
1

⎞

⎟⎠ exp
{
iμ

[
x + (2Λ + αc2)t

]
σ3

}
.

�

�

�

�

k
1

d

-k
1

d

k
1

d

k

-k
1

d

Fig. 8.7. Four complex double points for the single unstable mode
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Now we define a modified Bloch function χ = χ̃ exp(−iΛx − iΩt)σ3 which
satisfies the linear equations χx = Uχ − iΛχσ3, and χt = V χ − iΩχσ3 and
allows the asymptotic expansion χ = χ(0) + k−1χ(1) + O(k−2). Therefore, we
obtain for the plane wave potential

χ0(k, x, t) = exp[−i(c2 − ω)tσ3]

⎛

⎜⎝
1 −μ− Λ

ck
μ− Λ

ck
1

⎞

⎟⎠

× exp [i(μ− Λ)(x + 2Λt)σ3] exp
[
i(αμc2 − ω)tσ3

]

and the leading term of the asymptotic series χ
(0)
0 = e−(i/2)αc2[x+(3/2)αc2t]σ3 .

We see once again that this leading term is not a unit matrix, in contrast
to the NLS equation. Once again this is a manifestation of the fact that the
MNLS equation does not allow the canonical normalization of the associated
RH problem. Therefore, we perform now one more transformation of the Bloch
solution, φ = χ(0)−1χ, to have the unit matrix in the asymptotic expansion:
φ = 11 + k−1φ(1) + O(k−2). φ satisfies the linear equations

φx = U ′φ− iΛφσ3, φt = V ′φ− iΩφσ3, (8.102)

where

U ′ = iΛσ3 + ikQ′ +
i

2
ασ3Q

′2, (8.103)

V ′ = iΩσ3 + 2ikΛQ′ − ik2Q′2σ3 + kσ3Q
′
x −

α

2
[Q′, Q′

x]−
i
4
α2σ3Q

′4.

Here the new potential Q′ is related to the initial one Q as

Q′ = χ(0)−1Qχ(0). (8.104)

Evidently, Q′2 = Q2. Besides, φ(1) is expressed via the potential as follows:

φ(1) =
α

2
σ3 Q

′ .

8.6.3 MNLS equation: dressing of plane wave

Suppose a new solution of the linear equations (8.102) follows from the known
one φ0 by dressing φ = Γφ0. As before, we take the complex double points
as the poles of the dressing factor; therefore, we have four poles k1 = kd

1 ,
k̄1 = k̄d

1 , k2 = −kd
1 , and k̄2 = −k̄d

1 . Expanding the relation φ = Γφ0 in the
asymptotic series gives in accordance with (8.104) and (8.103)

Q = χ(0)

[(
χ

(0)
0

)−1

Q0χ
(0)
0 +

2
α
σ3Γ

(1)

]
(χ(0))−1.
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Because φ(k = 0) and (χ(0)
0 )−1 obey the same equation yx = (i/2)ασ3 Q

′2 y

and φ(k = 0) = Γ0 φ0(k = 0), we get χ(0) = χ
(0)
0 Γ−1

0 , where Γ0 = Γ (k = 0).
Therefore, we obtain the connection between the new and old solutions of the
MNLS equation:

Q = Γ−1
0

(
Q0 +

2
α
σ3χ

(0)
0 Γ (1)χ

(0)−1
0

)
Γ0,

or in components

u =
(Γ0)22
(Γ0)11

[
u0 +

2
α

exp
(
−iαc2x− i

3
2
α2c4t

)]
. (8.105)

In full agreement with the results of Sect. 8.2.3 we represent the dressing
factor in the form

Γ (k) = 11−
2∑

j,l=1

1
k − k̄l

|j〉(D−1)j l〈l|, Dlj =
〈l|j〉

kj − k̄l
. (8.106)

Differentiating φ = Γφ0 in x gives U ′(x, k) = −Γ [ ∂x − U ′
0(x, k)]Γ−1. From

the condition of vanishing residues at the points k1 and k2 we obtain the
equations

|j〉x = U ′
0(kj)|j〉, |j〉t = V ′

0(kj)|j〉, j = 1, 2. (8.107)
Note that the vector |2〉 is related to |1〉 as |2〉 = σ3|1〉, in virtue of the parity
property U ′

0(k2) = U ′
0(−k1) = σ3U

′
0(k1)σ3. Hence,

D11 =
〈1|1〉

k1 − k̄1
= −D22, D21 =

〈2|1〉
k1 − k̄2

= −D12.

As a result, we obtain Γ0 and Γ (1) entering (8.105) in the form

Γ0 = diag
(

1 +
2
k̄1

(|1〉〈1|)11
D11 −D21

, 1 +
2
k̄1

(|1〉〈1|)22
D11 + D21

)
≡ diag (Γ01, Γ02),

Γ (1) = −2
(

0 (|1〉〈1|)12(D11 −D21)−1

(|1〉〈1|)21(D11 + D21)−1 0

)
.

Because Dij are expressed in terms of the vector |1〉 [see (8.106)], we have to
obtain it explicitly. Next we will account for the explicit (x, t)-dependence of
the vector |1〉 and justify the name “homoclinic” for the solution (8.105).

8.6.4 MNLS equation: homoclinic solution

Integrating linear equations (8.107), we obtain

|1〉 = exp
(

i
2
αc2xσ3

)
exp

[
−i

(
c2 − ω − 3

4
α2c4

)
tσ3

]
exp

(
1
2

(γ + iβ)
)

×
(

eiξ−τ + e−iξ+τ

[
e−(τ+Φ)ei(ξ−λ−) − eτ+Φe−i(ξ−λ+)

]
ei(δ/2)

)
.
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Here γ and β are real integration constants, μ1 = μ(k1) = π/L, ξ = μ1(x +
2αc2t) + (1/2)β, τ = 2cμ1l1t− (1/2)γ,

Φ =
1
4

log
1 + αμ1

1− αμ1
, tanλ± =

l1
(μ1/c) + (1/2)αc

, and tan δ =
αcl1

1− (1/2)α2c2
.

Hence, the matrix elements are written as

D11 = 2eγ(A + B)(k1 − k̄1)−1, D21 = 2eγ(A−B)(k1 + k̄1)−1,

where

A(ξ, τ) = cosh 2τ + cos 2ξ, B(ξ, τ) = cosh 2(τ + Φ)− cos(2ξ − λ+ − λ−),

and

Γ01 =
k1

k̄1

k1A + k̄1B

k̄1A + k1B
= ei(Θ−δ), Γ02 =

k1

k̄1

k̄1A + k1B

k1A + k̄1B
= e−i(Θ+δ),

tan
Θ

2
=

1
i
k1 − k̄1

k1 + k̄1

A−B

A + B
,

exp(−iαc2x) exp
(
−3

2
iα2c4t

)
Γ

(1)
12

= − iαl1 exp(−iδ/2)
k̄1A + k1B

[(
e2τ + e2iξ

)
eΦ−iλ+ − (

e−2τ + e−2iξ
)
e−Φ+iλ−

]
u0 .

Substituting the above formulas into (8.105), we obtain explicitly the homo-
clinic solution of the MNLS equation:

u =

(
1 − 2i l1e

−i(δ/2)

k̄1A + k1B

[(
e2τ + e2iξ

)
eΦ−iλ+ −

(
e−2τ + e−2iξ

)
e−Φ+iλ−

])
u0e

−2iΘ .

(8.108)

The solution (8.108) is indeed homoclinic to the plane wave because

τ → ±∞ : u→ u0 exp [−2i(Θ± + Φ±)] ,

Θ± = lim
τ→±∞Θ = ± arctan

α2c l1μ1

2
(
1− 1

2α
2c2

) (
1− 1

4α
2c2

)
+ (αc l1)2

,

Φ± = ±1
2

arctan
2c l1μ1

μ2
1 − c2l21

.

In the α → 0 limit, if the spectral parameter k is represented as k = 1 −
1
2 αkNLS + O(α2), the solution (8.108) reproduces the NLS homoclinic orbit
(8.101).
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8.7 KdV equation

At first sight it might appear as rather strange to devote the very last section in
this chapter to one of the most popular and most studied nonlinear integrable
equations. Our intention here is to perform an analysis of the KdV equation in
the form most suitable for a generalization to (2+1)-dimensional equations.
It is precisely this approach that will be realized in the next chapter, first
using an example of the (1+1)-dimensional integrodifferential Benjamin–Ono
equation and then for proper (2+1)-dimensional equations. We will not dwell
on a detailed exposition of various results concerning the KdV equation and
its solutions. There exists a vast amount of literature devoted to this topic (for
example, [13, 81, 117, 348]). The traditional treatment of the KdV equation
was mentioned in Sect. 7.5.1. Instead, our main goal in this section is to
illustrate the basic steps of the approach, which goes back to Novikov et al.
[354]. We recommend the reader to consult the content of this section when
studying the next chapter in order to see strict parallels in the strategy of
solving (1+1)- and (2+1)-dimensional equations.

8.7.1 Jost solutions

The KdV equation
ut + 6uux + uxxx = 0

for a smooth real function u(x, t) is integrated by means of the spectral prob-
lem having the form of the time-independent Schrödinger equation [173]

φxx + (u + k2)φ = 0. (8.109)

To have linear dependence on the spectral parameter k, we perform a trans-
formation m(x, k) = φ(x, k) exp(ikx). Hence, the spectral problem for KdV is
written as

mxx − 2ikmx + um = 0. (8.110)
The evolution part of the Lax pair has the form

mt = (α− 4ik3 + ux + 2iku)m + (4k2 − 2u)mx, α = const. (8.111)

Analysis of the spectral problem will be performed by means of the Green
function method. The Green function G(x, k) solves the equation

Gxx − 2ikGx = −δ(x)

and has the form

G(x, k) =
1
2π

∫ ∞

−∞
dp

eipx

p (p− 2k)
.

We see that the Green function has a discontinuity across the real axis of the
complex k-plane. Accordingly, we can determine two Green functions G±(x, k)
which are analytic in the half planes Imk ≷ 0:

G±(x, k) = ± 1
2ik

(
1− e2ikx

)
θ(±x), (8.112)
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where θ(x) is the Heaviside step function, θ(x) = 1 for x > 0 and θ(x) = 0
for x < 0. Hence, the fundamental solutions (the Jost functions) M±(x, k)
of the spectral equation (8.110) can be defined by means of the integral
equations

M±(x, k) = 1 +
∫ ∞

−∞
dx′G±(x− x′, k)u(x′)M±(x′, k), (8.113)

with the property M±(x, k)→ 1 at k →∞. M± can be analytically extended
in the upper and lower halves of the k-plane, respectively. Besides, these func-
tions obey the boundary conditions M±(x, k)→ 1 at x→ ∓∞. Indeed, though
the integral equations (8.113) have been written in the Fredholm form, they
are in fact of the Volterra type because of the step function θ(±x).

The free term 1 in (8.113) represents a solution of the spectral equation
with zero potential. This corresponds to dressing of the trivial solution. How-
ever, the second-order spectral equation with zero potential allows one more
linearly independent solution e2ikx. Accordingly, we can define two other fun-
damental solutions

N±(x, k) = e2ikx +
∫ ∞

−∞
dx′G±(x − x′, k)u(x′)N±(x′, k), (8.114)

with the limits N±(x, k) → e2ikx at x → ∓∞. As distinct from M±, the
eigenfunctions N±, due to the exponential free term, cannot in general be
analytically continued off the real axis Imk = 0.

It follows from (8.112) that

M±(x, k)→ a±(k)± b±(k)e2ikx (8.115)

for x→ ±∞, where

a±(k)= 1± 1
2ik

∫ ∞

−∞
dxu(x)M±(x, k), b±(k) = − 1

2ik

∫ ∞

−∞
dxu(x)M±(x, k)e−2ikx

(8.116)

are the scattering coefficients. For real potentials u(x) there are involution
relations for scattering coefficients:

a∗±(k) = a±(−k), b∗±(k) = b±(−k), a∗+(k) = a−(k), b∗+(k) = b−(k),

|a+(k)|2 = 1 + |b+(k)|2.
It is important that a±(k) are analytic functions in Imk ≷ 0, as is seen from
(8.116). Therefore, M±/a± are meromorphic functions in Imk ≷ 0 with a
finite number of poles in zeros of a±(k).
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8.7.2 Scattering equation and RH problem

In accordance with (8.115), for x→ +∞
M+(x, k)
a+(k)

→ 1 + ρ+(k)e2ikx, ρ+ =
b+
a+

.

At the same time M−(x, k) → 1 at x → +∞. Let us now calculate a jump
Δ(x, k) = M+/a+ − M− of these functions across the real axis Imk = 0.
Calculation gives

Δ(x, k) = (1/a+)− 1

+
∫ ∞

−∞
dx′(G+−G−)(x− x′, k)u(x′)

M+(x′, k)
a+(k)

+
∫ ∞

−∞
dx′G−(x−x′, k)Δ(x′, k).

Since (G+−G−)(x, k) = (1/2ik)
(
1− e2ikx

)
, in virtue of the definitions (8.116)

we obtain

Δ(x, k) = ρ+(k)e2ikx +
∫ ∞

−∞
dx′G−(x− x′, k)u(x′)Δ(x′, k).

On the other hand [see (8.114)],

ρ+(k)N−(x, k) = ρ+(k)e2ikx +
∫ ∞

−∞
dx′G−(x− x′, k)u(x′)ρ+(k)N−(x′, k).

Comparing the last two equations, we conclude owing to the uniqueness of
the solution of the above integral equations that Δ(x, k) = ρ+(k)N−(x, k).
Therefore, we arrive at the scattering equation

M+(x, k)
a+(k)

= M−(x, k) + ρ+(k)N−(x, k). (8.117)

In order to have reasons to treat (8.117) as the RH problem, we should ex-
press N− in terms of M−. To do that we note first of all that G±(x, k) =
G±(x,−k)e2ikx. Hence,

M−(x,−k) = 1 +
∫ ∞

−∞
dx′G−(x− x′, k)u(x′)M−(x′,−k)

= 1 +
∫ ∞

−∞
dx′e−2ik(x−x′)G−(x− x′, k)u(x′)M−(x′,−k)

= e−2ikx

(
e2ikx +

∫ ∞

−∞
dx′G−(x− x′, k)u(x′)M−(x′,−k)e2ikx′

)
.
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Comparing this with the integral equation for N− (8.114), we get the symme-
try relation:

N−(x, k) = M−(x,−k)e2ikx. (8.118)

Therefore, we can write the scattering equation (8.117) in the form of the RH
problem with a shift :

M+(x, k)
a+(k)

= M−(x, k) + ρ+(k)e2ikxM−(x,−k), Imk = 0. (8.119)

The shift is referred to the change of sign in k in the last term. The normal-
ization of the RH problem (8.119) is canonical, M± → 1 as k →∞.

The form (8.119) of the RH problem corresponds to the jump problem for
a piecewise analytic function Ψ(x, k),

Ψ =
{
M+/a+, Imk > 0,
M−, Imk < 0, (8.120)

with discontinuity along the contour Imk = 0. In previous sections we dealt
with the factorization form of the RH problem. Evidently, both versions are
equivalent. Indeed, the RH problem (8.17) for the NLS equation with the
matrix G = I + g takes the form Φ+ = Φ− + gΦ− with the same structure as
(8.119).

8.7.3 Inverse problem

To solve the inverse problem of determining the potential u(x), we reconstruct
the function Ψ(x, k) (8.120). This function is analytic in the entire complex
k-plane, except for a finite number N of simple poles at the points kj = iκj ,
κj > 0, j = 1, . . . ,N , and a discontinuity across the real axis. Accordingly,
using the Cauchy formula, we obtain

Ψ(x, k) = 1 +
N∑

l=1

Φj(x)
k − kj

+
1

2πi

∫ ∞

−∞

d�
�− k

ρ(�)e2i�xM−(x,−�). (8.121)

Here Φj(x) is a residue of Ψ in kj . A set of all Φj(x), j = 1, . . . ,N comprises the
set of eigenfunctions corresponding to the discrete spectrum (kj , j = 1, . . . ,N )
of the problem (8.110). For Imk > 0 (8.121) and (8.118) give

M+(x, k)
a+(k)

= 1 +
N∑

j=1

Φj(x)
k − kj

+
1

2πi

∫ ∞

−∞

d�
�− k

ρ(�)N−(x, �).

To determine the behavior of M+ for k → kj , we define a regular part of
M+ as

M
(j)
+ (x, k) =

M+(x, k)
a+(k)

− Φj(x)
k − kj

.
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With account for the integral equation (8.113) for M+, we can write

M
(j)
+ (x, k)−

∫ ∞

−∞
dx′G+(x− x′, k)u(x′)M (j)

+ (x′, k)

=
1

a+(k)
− 1

k − kj

(
Φj −

∫ ∞

−∞
dx′G+(x− x′, k)u(x′)Φj(x′)

)
.

The left-hand side of this equation is free of singularities for k = kj ; hence,
the diverging terms on the right-hand side have to be canceled. This gives the
integral equation for discrete eigenfunctions:

Φj(x) = iγ−1
j +

∫ ∞

−∞
dx′G+(x − x′, kj)u(x′)Φj(x′), γj = i(da+/dk)kj .

(8.122)
Comparing (8.122) with the integral equation for M+, we find

lim
k→kj

M+(x, k) = −iγjΦj(x). (8.123)

In turn, (8.123) and asymptotics of M+ at x→ ±∞ give

Φj →
{

iγ−1
j , x→ −∞

icje−2κjx, x→ +∞.
(8.124)

Here cj is a normalization constant. Finally, it follows from (8.122) and (8.124)
that it is possible to express eigenvalues as functionals of discrete eigenfunc-
tions:

κj = − i
2
γj

∫ ∞

−∞
dxu(x)Φj(x).

To reconstruct the potential, we at first derive a system of linear equations
for eigenfunctions. Φj can be expressed in terms of M−:

Φj(x) =
i
γj

M+(x, kj) = icjN−(x, kj) = icje−2κjxM−(x,−kj).

On the other hand, we obtain from (8.121)

M−(x,−k) = 1−
N∑

j=1

Φj(x)
k + kj

+
1

2πi

∫ ∞

−∞

d�
� + k + i0

ρ(�)N−(x, �) (8.125)

and for k = kj

M−(x,−kj) = 1 + i
N∑

j=1

Φj(x)
κj + κm

+
1

2πi

∫ ∞

−∞

d�
� + iκj

ρ(�)N−(x, �).

Therefore, Φj(x) takes the form

Φj(x) = icje−2κjx

⎛

⎝1 + i
N∑

j=1

Φj(x)
κj + κm

+
1

2πi

∫ ∞

−∞

d�
� + iκj

ρ(�)N−(x, �)

⎞

⎠ .

(8.126)
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Further, in virtue of (8.118) and (8.125),

N−(x, k) = e2ikx

⎛

⎝1−
N∑

j=1

Φj(x)
k + iκj

+
1

2πi

∫ ∞

−∞

d�
� + k + i0

ρ(�)N−(x, �)

⎞

⎠ .

(8.127)

As a result, we have a closed system of linear equations (8.126) and (8.127)
to find Φj(x) and N−(x, k). This system is determined by the RH data
{ρ+(k), κj , cj , j = 1, . . . ,N}. Then we expand the integral equation (8.114)
for N− in the asymptotic series in k−1 and compare it with (8.127) taken for
k →∞. As a result, we get the reconstruction formula

u(x) = ∂x

⎛

⎝2i
N∑

j=1

Φj(x)− 1
π

∫ ∞

−∞
dkρ(k)N−(x, k)

⎞

⎠ . (8.128)

The first term on the right-hand side of (8.128) contributes from the discrete
spectrum, while the second term is responsible for the continuous spectrum.

It should be stressed that it is the nonanalytic eigenfunction N− that
enters the complete set of eigenfunctions {N−, Φj , j = 1, . . . ,N} [363]. It
is not accidental because the spectral problem (8.110) is non-self-adjoint in
contrast to the standard spectral problem (8.109).

8.7.4 Evolution of RH data

Substituting the asymptotics of M+ at x → ±∞ into the evolution equation
(8.111), we obtain

α = 4ik3, a+(k, t) = a+(k, 0), ρ+(k, t) = ρ+(k, 0)e8ik3t.

Because a+(kj , t) = 0, we get κj = const. Besides, owing to M+(x, kj) →
bje−2κjx at x→ +∞, we find

cj(t) = cj(0)e8κ3t.

Hence, the time dependence of the RH data is extremely simple.

8.7.5 Soliton solution

Solitons correspond to reflectionless potentials, i.e., ρ(k) = 0. The simplest
one-soliton solution is given by u1(x, t) = 2iΦ1x(x, t). It follows from (8.126)
that

Φ1(x, t) = 2iκ1
e−2κ1(x−4κ2

1t−x0)

1 + e−2κ1(x−4κ2
1t−x0)

, x0 =
1

2κ1
ln

c1(0)
2κ1

.

Hence, the one-soliton solution to the KdV equation has the form

u1(x, t) = 2κ2
1sech2κ1(x− 4κ2

1t− x0),
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which goes back to Korteweg and de Vries [249]. An N -soliton solution is also
well known [354].

Let us remember that the aim of this chapter is purely methodological.
We will see in the next chapter that the main ideas developed above will be
naturally developed for (2+1)-dimensional equations.





9

Dressing via nonlocal
Riemann–Hilbert problem

In the previous chapter we illustrated the efficiency of the dressing approach
using the local Riemann–Hilbert (RH) problem for solution of the Cauchy
problem for a number of (1+1)-dimensional nonlinear integrable equations.
The essential progress in the development of the inverse spectral transform
(IST) formalism has been achieved owing to the perception that the nonlocal
RH problem can serve as a natural frame for solving nonlinear equations
in 2+1 dimensions. Manakov [305] was the first to apply the nonlocal RH
problem to treat the Kadomtsev–Petviashvili (KP) equation by means of the
IST method. Besides, there exists an important class of (1+1)-dimensional
nonlinear integrodifferential equations which cannot be solved by the methods
discussed in Chap. 8.

This chapter contains an exposition of basic points related to the appli-
cation of the nonlocal RH problem. We consider three featured examples. In
Sect. 9.1 we consider the (1+1)-dimensional integrodifferential Benjamin–Ono
(BO) equation . At the very beginning we work with real function u(x, t) tak-
ing into account important constraints imposed on the spectral data by the
reality condition, due to Kaup, Lakoba, and Matsuno [231]. Basic steps in ap-
plication of the nonlocal RH problem developed for the BO equation are then
used in Sect. 9.2 for the KP I equation. Along with the classical lumps, we
discuss localized solutions associated with multiple-pole eigenfunctions found
by Ablowitz and Villarroel [439]. Finally, Sect. 9.3 is devoted to solution of
the initial boundary value problem for the Davey–Stewartson I (DS I) equa-
tion. It is this equation that allows true exponentially localized solitons in
2+1 dimensions discovered by Boiti, Leon, Martina, and Pempinelli [62]. In
our consideration we follow the formalism adopted by Fokas and Santini [162].

9.1 Benjamin–Ono equation

The BO equation for a scalar function u(x, t),

ut + 2uux + Huxx = 0, Hu(x) =
1
π

p.v.
∫ ∞

−∞
dx′ u(x′)

x′ − x
, (9.1)

277
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where Hu(x) is the Hilbert transform of u(x) and p.v. means the principal
value of the integral, describes the propagation of long internal waves in a
stratified fluid [46, 106, 195, 357]. We require the function u(x, t) to be real, in
accordance with its physical meaning. In the general case of complex u(x, t)
Fokas and Ablowitz [158] developed an IST approach to solve the Cauchy
problem for the BO equation within the class of initial conditions which have
sufficient decay at infinity, i.e., u(x, 0) ≡ u0(x) → 0 at |x| → ∞. The consid-
eration of real potentials u(x)1 imposes nontrivial restrictions on the spectral
data of the corresponding RH problem and, in addition, makes it possible
to derive a body of practically important results, such as the prediction of
a number of possible bound states (solitons) that can be produced by the
initial data [232, 231]. Furthermore, we will restrict ourselves to the so-called
nongeneric potentials which include, in particular, all N -soliton solutions and
zero background [232, 362]. The nongeneric case has distinctly different fea-
tures, compared with the general situation. The N -soliton solution of the BO
equation was obtained for the first time in [83, 86] in the framework of the
decomposition of u(x, t) in a finite number of simple poles, as well as in [310]
by the Hirota method . The IST method permits us to carry out the complete
study of the Cauchy problem for the BO equation.

9.1.1 Jost solutions

The Lax pair for the BO equation (9.1) has the form [54, 346]

iΦ+
x + k(Φ+ − Φ−) + uΦ+ = 0, (9.2)

iΦ±
t − 2ikΦ±

x + Φ±
xx − 2i[u]±x + νΦ± = 0. (9.3)

Here Φ±(k, x) are limit values of the analytic function Φ at y → ±0 in the
upper and lower halves of the complex z-plane, where z = x + iy is a com-
plexification of the physical variable x, k is a spectral parameter, and ν is an
arbitrary constant. The functions [u]±(x) are defined as [u]± = P±u, where
P± are projectors

(
P±u

)
(x) = ± 1

2πi

∫ ∞

−∞
dx′ u(x′)

x′ − (x± i0)
.

In other words, [u]+ means that one takes the part of u(x) that is analytic in
the upper half z-plane. It is interesting that the spectral equation (9.2) can
be considered as a differential RH problem.

Taking the (+) part of the spectral equation (i.e., acting on it by the
projector P+), we arrive at the integrodifferential equation

iΦ+
x + kΦ+ + [uΦ]+ = 0. (9.4)

1 On occasion, we will suppress for convenience time dependence in the potential
and other quantities.
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Now we introduce the Jost solutions N±(x, k) of (9.4) by means of their
asymptotics:

N+(x→ −∞, k) = eikx, N−(x→∞, k) = eikx, k > 0. (9.5)

There exist the other pair M±(x, k) of the Jost solutions of the spectral equa-
tion (9.2), which are defined by the asymptotics

M+(x→ −∞, k) = 1, M−(x→∞, k) = 1 (9.6)

and are solutions of the inhomogeneous integrodifferential equation

iΨ+
x + kΨ+ + [uΨ ]+ − k = 0. (9.7)

All the Jost functions are defined for positive values of k. These values of k
comprise the continuous spectrum of the spectral problem (9.2).

The Jost functions introduced obey the following integral equations:

M±(x, k) = 1 +
∫ ∞

−∞
dx′G±(x− x′, k)u(x′)M±(x′, k), (9.8)

N±(x, k) = eikx +
∫ ∞

−∞
dx′G±(x− x′, k)u(x′)N±(x′, k). (9.9)

Here

G±(x, k) =
1
2π

∫ ∞

0

dp
eipx

p− (k ± i0)
(9.10)

are limits of the Green function

G(x, k) =
1
2π

∫ ∞

0

dp
eipx

p− k

on the real k-axis which are analytic everywhere in the complex k-plane,
except for the positive part of the real k-axis. Equation (9.10) can be obtained
with account of the formula

1
x′ − (x + iε)

= i
∫ ∞

0

dp exp[−ip (x′ − x− iε)].

It should be stressed that the integral equations (9.8) and (9.9) are of
the Fredholm type, as distinct from the Volterra integral equations for the
(1+1)-dimensional equations of the preceding chapter. This fact is of crucial
importance because homogeneous versions of (9.8) and (9.9) can have non-
trivial solutions Φj(x),

Φj(x) =
∫ ∞

−∞
dx′G(x− x′, kj)u(x′)Φj(x′), kj < 0, (9.11)

G(x, kj) =
1
2π

∫ ∞

0

dp
eipx

p− kj
, (9.12)
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in some isolated points kj , j = 1, . . . ,N , lying on the negative part of the
axis Imk = 0. These solutions determine the discrete spectrum of the spectral
problem and are associated with solitons (or lumps) of the BO equation. Each
of these functions is analytic in the upper half z-plane.

Integrating (9.12) by parts, we obtain an asymptotic of G(x, kj):

G(x, kj) =
1

2πikjx
+O(x−2).

Therefore,

Φj(x)→ 1
2πikjx

∫ ∞

−∞
dx′u(x′)Φj(x′) at x→∞.

It is seen that it is natural to take the normalization of Φj(x) as

xΦj(x)→ 1 at x→∞. (9.13)

In this case, the eigenvalues kj are given by the functional

kj =
1

2πi

∫ ∞

−∞
dxu(x)Φj(x), j = 1, . . . ,N . (9.14)

9.1.2 Scattering equation and symmetry relations

In the same way as for other spectral problems, the left and right Jost functions
are interrelated by scattering equations. To obtain the scattering equations,
we find at first a difference Δ(x, k) = M+(x, k)−M−(x, k) for k > 0. It follows
from (9.8) and (9.9) that

Δ(x, k)=
∫ ∞

−∞
dx′G+(x−x′, k)u(x′)M+(x′, k)−

∫ ∞

−∞
dx′G−(x−x′, k)u(x′)M−(x′, k).

As stated already, the Green function G(x, k) has a discontinuity across the
positive k-axis. We can calculate this jump:

G+(x, k)−G−(x, k)

=
1
2π

∫ ∞

0

dp eipx
(

1
p− k − i0

− 1
p− k + i0

)
= iθ(k)eikx,

where we have used

1
k ∓ i0

= ±πiδ(k) + p.v.
(

1
k

)
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and θ(k) is the Heaviside step function. Hence,

Δ(x, k) =
∫ ∞

−∞
dx′G−(x− x′, k)u(x′)Δ(x′, k) +

∫ ∞

−∞
dx′(G+ −G−)(x − x′, k)

= β(k)eikx +
∫ ∞

−∞
dx′G−(x− x′, k)u(x′)Δ(x′, k), (9.15)

where the reflection coefficient β(k) is defined as

β(k) = iθ(k)
∫ ∞

−∞
dxu(x)M+(x, k)e−ikx. (9.16)

On the other hand, it follows from (9.9) that

β(k)N−(x, k) = β(k)eikx +
∫ ∞

−∞
dx′G−(x− x′, k)u(x′)β(k)N−(x′, k). (9.17)

Comparing (9.15) and (9.17), we find Δ(x, k) = β(k)N−(x, k). Thereby, we
obtain the important relation between the Jost functions:

M+(x, k) = M−(x, k) + β(k)N−(x, k). (9.18)

There also exists a connection between the functions N+ and N− written
as [383]

N+(x, k) = Γ (k)N−(x, k) (9.19)

with some function Γ (k). Let us differentiate G± in k and integrate the result
by parts. This gives

∂G±
∂k

= − 1
2πk
± ixG±(x, k). (9.20)

On the other hand, writing N−(x, k) from (9.9) as

N−(x, k)e−ikx = 1 +
∫ ∞

−∞
dx′G−(x− x′, k)e−ik(x−x′)u(x′)N−(x′, k)e−ikx′

and taking the k-derivative, we find with account of (9.20)

∂

∂k

[
N−(x, k)e−ikx

]
=

∫ ∞

−∞
dx′ ∂G−

∂k
(x− x′, k)e−ik(x−x′)u(x′)N−(x′, k)e−ikx′

−i
∫ ∞

−∞
dx′G−(x− x′, k)e−ik(x−x′)(x− x′)u(x′)N−e−ikx′

+
∫ ∞

−∞
dx′G−(x− x′, k)e−ik(x−x′)u(x′)

∂

∂k
(N−e−ikx′

)

= e−ikxf−(k) +
∫ ∞

−∞
dx′G−(x − x′, k)e−ik(x−x′)u(x′)

∂

∂k
(N−e−ikx′

), (9.21)
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where
f−(k) = − 1

2πk

∫ ∞

−∞
dxu(x)N−(x, k), k > 0. (9.22)

Multiplying M−(x, k) (9.8) by f−(k) and comparing the result with the right-
hand side of (9.21), we arrive at the differential connection between N− and
M− [158]:

∂

∂k

[
N−(x, k)e−ikx

]
= f−(k)M−(x, k)e−ikx. (9.23)

Similarly,
∂

∂k

[
N+(x, k)e−ikx

]
= f+(k)M+(x, k)e−ikx,

where
f+(k) = − 1

2πk

∫ ∞

−∞
dxu(x)N+(x, k), k > 0. (9.24)

Equations (9.23) and (9.24) give the symmetry (or closure) relations for the
Jost solutions. Multiplying both sides of (9.19) by u(x) and integrating in x,
we find a simple connection between f+(k) and f−(k):

f+(k) = Γ (k)f−(k). (9.25)

Eventually, (9.23), (9.24), (9.19), and (9.25) give

β(k)f+(k) =
∂

∂k
Γ (k). (9.26)

Now we should find out how the function M− behaves as k → kj . Define a
function M

(j)
− (x, k) as in [158] (we suppose here that M− allows simple poles

only; see Sect. 9.1.4)

M
(j)
− (x, k) = M−(x, k)− cj

k − kj
Φj(x),

where cj is a normalization constant. Then we can write, taking into account
(9.8) and (9.11),

M
(j)
− (x, k)−

∫ ∞

−∞
dx′G−(x− x′, k)u(x′)M (j)

− (x′, k) (9.27)

= 1− cj
k − kj

(
Φj(x) −

∫ ∞

−∞
dx′G−(x− x′, k)u(x′)Φj(x′)

)
.

When k → kj , the last term in (9.27) develops an uncertainty 0/0. The k-
derivative of the numerator in this term gives with regard to (9.20)

∫ ∞

−∞
dx′

(
∂

∂k
G−(x − x′, k)

)
u(x′)Φj(x′)

= − 1
2πk

∫ ∞

−∞
dxu(x)Φj(x) + i

∫ ∞

−∞
dx′(x− x′)G(x− x′, kj)u(x′)Φj(x′).
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Hence,

M
(j)
− (x, k)−

∫ ∞

−∞
dx′G(x − x′, kj)u(x′)M−(x′, kj) (9.28)

= aj + icj
∫ ∞

−∞
dx′(x− x′)G(x − x′, kj)u(x′)Φj(x′),

where
aj = 1− cj

2πkj

∫ ∞

−∞
dxu(x)Φj(x).

Putting cj = −i gives aj = 0. It is easy to see that a particular solution
to (9.28) has the form M

(j)
− (x, k) = xΦj(x). Then, applying the Fredholm

alternative [425], we obtain a connection between Φj and M−:

lim
k→kj

(
M−(x, k) +

i

k − kj
Φj(x)

)
= (x + γj)Φj(x). (9.29)

The normalization constant γj will be time-dependent if we account for the
evolution of the potential u(x, t).

9.1.3 Adjoint spectral problem and asymptotics

Following the paper by Kaup and Matsuno [232], we define now the adjoint
spectral problem

iΦA
x − kΦA + u

[
ΦA

]+
= 0. (9.30)

Applying the projector P− to (9.30), we obtain the equation complex conju-
gate to (9.4) whose solution is N∗

+(x, k). The (+) projection of (9.30) gives
a linear inhomogeneous equation. As a result, a solution NA of the adjoint
problem is given by

NA(x, k) = N∗
+(x, k)− i

∫ x

−∞
dx′ [uN∗

+

]+ (x′, k)e−ik(x−x′). (9.31)

Similarly we can write a bound-state eigenfunction NA
j (x):

NA
j (x) = Φ∗

j (x)− i
∫ x

−∞
dx′ [uΦ∗

j

]+ (x′)e−ikj(x−x′).

In the following we will need asymptotic expressions for the eigenfunctions
at |x| → ∞. Taking into accountthe definitions (9.5) and (9.6) and equations
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(9.18), (9.19), and (9.31), we have for x→ −∞ and k > 0, in addition to (9.5)
and (9.6)

N−(x, k)→ Γ (k)eikx, M−(x, k)→ 1 + β(k)eikx, NA(x, k)→ eikx

(9.32)
and for x→∞ and k > 0

N+(x, k)→ Γ (k)eikx, M+(x, k)→ 1 + β(k)eikx, NA(x, k)→ Γ ∗(k)e−ikx,
(9.33)

while for the bound states we have for x→ −∞ and kj < 0

Φj(x)→ 1
x
, NA

j (x)→ 0,

and for x→∞ and kj < 0

Φj(x)→ 1
x
, NA

j (x)→ −ie−ikjx

∫ ∞

−∞
dx′u(x′)Φ∗

j (x
′)eikjx

′
.

Now we can concretize the form of the function Γ (k). Excluding the poten-
tial u(x) from the direct (9.4) and adjoint (9.30) spectral problems , we obtain
a relation (the Wronskian relation) between the left and right asymptotics:

ΦA(x, k′)Φ(x, k)|+∞
x=−∞ = i(k − k′)

∫ ∞

−∞
dx′ΦA(x′, k′)Φ(x′, k). (9.34)

Taking k′ = k, ΦA = NA, and Φ = N− in (9.34) and using the above asymp-
totics, we easily get

Γ ∗(k)Γ (k) = 1,

which allows us to introduce a real phase θ(k):

Γ (k) = e−iθ(k).

To find the phase explicitly, we construct the Wronskian relation from the
spectral problems (9.7) and (9.30):

NA(x, k′) [M−(x, k)− 1]+∞
x=−∞ (9.35)

= i(k − k′)
∫ ∞

−∞
dx′NA(x′, k′) [M−(x′, k)− 1]− i

∫ ∞

−∞
dx′u(x′)

[
NA(x′, k′)

]−
.

Taking k′ = k once again, we find

β(k) = −iΓ (k)
∫ ∞

−∞
dxu(x)

[
NA(x, k)

]−
. (9.36)

Let us remember [see (9.31)] that
[
NA

]− = N∗
+. Then, with account for the

connection (9.19) and the definition (9.22) of f−(k), we obtain from (9.36)
β(k) = −2πikf∗

−(k), i.e.,

f−(k) =
β∗(k)
2πik

. (9.37)
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Because (∂/∂k)Γ = −iΓ (∂/∂k)θ, we find from (9.25), (9.26), and (9.37):

∂θ

∂k
=
|β(k)|2

2πk
.

Hence, we represent explicitly the function Γ (k) in terms of the reflection
coefficient β(k):

Γ (k) = exp

(
1

2πi

∫ k

0

dk′

k′ |β(k′)|2
)

. (9.38)

It should be stressed that (9.37) and (9.38) hold for real potentials only. In
the case of complex potentials, the spectral functions β(k) and f−(k) are
independent [158].

We can make use of the Wronskian relation to derive integral expressions
for “squared” eigenfunctions. Taking ΦA = NA(x, k′) and Φ = N(x, k) in
(9.34) and using the asymptotics (9.32) and (9.33), we obtain

∫ ∞

−∞
dxNA(x, k′)N(x, k) = −iΓ ∗(k′) lim

x→+∞
ei(k−k′)x

k − k′ +
i

Γ (k)
lim

x→−∞
ei(k−k′)x

k − k′ .

Invoking the formula

lim
x→+∞p.v.

e±ikx

k
= ±iπδ(k),

we find the following orthogonality relation for the continuous eigenfunctions:
∫ ∞

−∞
dxNA(x, k′)N−(x, k) =

2π
Γ (k)

δ(k − k′). (9.39)

It is evident (because k and kj belong to different parts of the real k-axis)
that the continuous and bounded eigenfunctions are mutually orthogonal:

∫ ∞

−∞
dxNA

j (x)N−(x, k) =
∫ ∞

−∞
dxNA(x, k)Φj(x) = 0, (9.40)

as well as ∫ ∞

−∞
dxNA

j (x)Φn(x) = 0, if j �= n. (9.41)

Furthermore, it follows from (9.35) that
∫ ∞

−∞
dxNA

j (x)Φj(x) = i
∫ ∞

−∞
dxu(x)

[
NA
j (x)

]−
.

With account for NA
j = Φ∗

j and (9.14) we obtain
∫ ∞

−∞
dxNA

j (x)Φj(x) = −2πkj . (9.42)
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Finally, the boundary condition (9.13) gives
∫ ∞

−∞
dxΦj(x) = −πi. (9.43)

9.1.4 RH problem

Now we have all ingredients to formulate the RH problem for the BO equation.
Indeed, because the Green function G+ is analytic in the upper half k-plane, it
follows from the theory of Fredholm integral equations [425] that the solution
M+(x, k) is analytic in the same region as well, except for possible poles
at isolated points kj , where nontrivial solutions of the homogeneous integral
equation exist. The same analytic properties but in the lower half plane are
inherent to the eigenfunction M−(x, k). As regards N±, they cannot in general
be continued off the real k-axis because of the exponent eikx. On the other
hand, there is a differential connection (9.23) between the functions N− and
M−. This fact enables us, by means of (9.18), (9.23), and (9.37), to pose the
RH problem of the form

M+(x, k) = M−(x, k) +
β(k)
2πi

∫ k

0

dk′

k′ β∗(k′)e−ik′xM−(x, k′). (9.44)

The normalization of the RH problem (9.44) is given by

M+(x, k)→ 1 at k →∞. (9.45)

It should be noted that the RH problem (9.44) is essentially distinct from
the RH problems we dealt with in the preceding chapter. Namely, the RH
problem (9.44) is nonlocal in that stems from the nonlocality of the BO equa-
tion. The spectral data of the RH problem (9.44) are determined by the set
{β(k), k > 0; kj ,Reγj , j = 1, . . . ,N}.2 As usual, we can regularize the RH
problem and represent its solutions M+ and M− as

M+(x, k) = 1− i
N∑

j=1

(k− kj)−1Φj(x)+m+(x, k), m+(x, k →∞) = 0, (9.46)

M−(x, k) = 1−i
N∑

j=1

(k−kj)−1Φj(x)+m−(x, k), m−(x, k →∞) = 0, (9.47)

where the holomorphic functions m±(x, k) are (+) and (–) functions with
respect to x, respectively. The fact that the spectral problem (9.2) allows
only simple poles was proved in [362].

2 It will be shown later that Imγj can be expressed in terms of kj .
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The solution M−, Imk ≤ 0 of the RH problem can be expressed in terms
of N−(x, k) for positive k and of Φj(x) at the poles kj . Let us write (9.18) as
[see (9.46)]

1− i
N∑

j=1

(k − kj)−1Φj(x) + m+(x, k) = M−(x, k) + β(k)N−(x, k)

and apply the projector P− to it. This yields

M−(x, k) = 1− i
N∑

j=1

(k− kj)−1Φj(x)+
1

2πi

∫ ∞

0

dl
β(�)

�− (k − i0)
N−(x, �). (9.48)

We see that the solution (9.48) clearly demonstrates the separation of con-
tributions of the discrete and continuous spectra. It follows from (9.29) and
(9.48) that in the limit k → kj

(x + γj)Φj(x) + i
∑

n	=j
(k − kj)−1Φj(x)− 1

2πi

∫ ∞

0

d�
β(�)

�− (k − i0)
N−(x, �) = 1.

(9.49)
Now we multiply (9.49) by Φ∗

j (x) and integrate in x with account for the
orthogonality conditions (9.39)–(9.43). This yields

∫ ∞

−∞
dx(x + γj)|Φj(x)|2 = πi.

In accordance with (9.42) the last formula gives

γj =
1

2πkj

∫ ∞

−∞
dxx|Φj(x)|2 − i

2kj
; (9.50)

therefore,

Imγj = − 1
2kj

. (9.51)

Hence, only the Reγj should be included in the set of spectral data of the RH
problem.

The reconstruction of the potential u(x) from the solution of the RH prob-
lem can be performed as follows. Integrating by parts the integral in (9.9), we
find

M− → 1− [u]+

k
, k →∞.

As a result, we obtain from (9.48) in the same limit k →∞

[u]+ =
1

2πi

∫ ∞

0

dkβ(k)N−(x, k) + i
N∑

j=1

Φj(x). (9.52)

Therefore, the real potential u(x) is given by

u(x) = [u(x)]+ + [u(x)]+∗. (9.53)
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9.1.5 Evolution of spectral data

To determine the time evolution of the spectral data, we should consider the
Lax equation (9.3):

iM+t − 2ikM+x + M+xx − 2i[ux]+M+ + νM+ = 0.

Since M+ → 1 for x → −∞, we have ν = 0. At x → ∞ this equation is
reduced to

iM+t − 2ikM+x + M+xx = 0. (9.54)

Let us substitute (9.18) into (9.54):

i(M−t + βtN− + βN−t)− 2ik(M−x + βN−x) + M−xx + βN−xx = 0. (9.55)

At x → +∞, M− → 1 and N− → eikx. As a result, (9.55) gives βt = ik2β,
i.e.,

β(k, t) = β(k, 0)eik2t. (9.56)

Taking the time derivative of (9.29) yields

kj = const, γj(t) = 2kjt + γj,0, γj,0 = const. (9.57)

Therefore, (9.56) and (9.57) give the time dependence of the spectral data.

9.1.6 Solitons of BO equation

In the case of the pure soliton potential us(x, t) the reflection coefficient β(k)
vanishes; hence, the reconstruction of the potential is given by [see (9.52)]

[us(x, t)]
+ = i

N∑

j=1

Φj(x, t).

Bound states Φj can be found from (9.49) as a solution of the algebraic system

(x + γj)Φj + i
∑

n	=j
(kj − kn)−1Φn = 1. (9.58)

For N = 1 we obtain from (9.58)

Φ1(x, t) = [x + γ1(t)]−1.

Putting k1 = −(1/2)v, v > 0 and accounting for the relation (9.51), we can
write γ1,0 = −x0 + i/v. Then γ1(t) = −x0 − vt + i/v and (9.52) and (9.53)
eventually give

us(x, t) =
2v

1 + v2(x − vt− x0)2
. (9.59)
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We see that the BO soliton looks like a localized object moving with velocity
v with the initial position of the maximum at point x0. As for the Korteweg–
de Vries (KdV) soliton, the same parameter v determines both the soliton
amplitude and the soliton velocity. However, the BO soliton (9.59) decays
algebraically only, as distinct from the KdV soliton, which decreases expo-
nentially.

One further comment is in order concerning the Jost functions for the one-
soliton potential (9.59). Though the function M− can be easily recovered from
(9.48), we have no recipe for similarly recovering the function N− [remember
that the solution (9.48) of the RH problem as well as the potential (9.52)
are expressed in terms of N−(x, k) defined for positive k]. Instead we should
solve the direct spectral problem (9.4) and (9.5) with the one-soliton potential
(9.59). Because N− has to be analytic in the upper half z-plane and the
potential (9.59) is real, we can write

[uN−]+ = u(x)N−(x, k) + i
N−(x0 + i/v, k)
x− (x0 + i/v)

.

Then the solution of the spectral problem has the form [232]

N−(x, k)e−ikx (9.60)

=
x− x0 − i/v
x− x0 + i/v

{
1 + N−

(
x, k0 +

i
v

)[(
1 +

2k
v

)
ek/vE(ζ) +

2i
v

e−ikx

x− x0 − i/v

]}
,

where ζ = ik(x− x0 − i/v) and E(ζ) =
∫∞
ζ

dt exp(−t)t−1, where arg(ζ) < π.
In general, the function N− (9.60) is not analytic in the upper half z-plane, in
view of the fact that the integral E(ζ) has a logarithmic singularity at ζ = 0,
E(ζ) ∼ −γ − ln ζ + O(z), where γ is the Euler constant. The only way to
provide analyticity is to choose N−(x0 + i/v, k) = 0, which results in

N−(x, k) = eikx x− x0 − i/v
x− x0 + i/v

. (9.61)

This form of the Jost function N−(x, k) agrees with both asymptotics (9.32)
and (9.33) [note that Γ (k) = 1 for β(k) = 0]. For the bound states, the
problem of singularity is resolved automatically in view of (1 + 2k/v) = 0 for
k = k1.

Now we can obtain from (9.59) and (9.61) that
∫ ∞

−∞
dxus(x)N−(x, k)e−ikx = 0. (9.62)

The potentials obeying (9.62) are called nongeneric, as distinct from generic
potentials for which the integral (9.62) is strictly nonzero [232, 362]. The N -
soliton solutions, including the trivial one u = 0 which is considered here as the
seed solution, belong to the class of nongeneric potentials. The IST approach
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to the BO equation developed by Fokas and Ablowitz [158] is applicable to
general complex generic potentials.

One of the main distinctions between the nongeneric and generic potentials
is the limit k→ 0 for the Jost functions and the reflection coefficient β(k). To
determine whether one has the generic or the nongeneric case, it is sufficient to
determine how fast the reflection coefficient vanishes for k → 0+. This problem
is closely related to the problem of the edge of the continuous spectrum. It
was shown by Pelinovsky and Sulem [362] that the point k = 0 belongs to the
continuous spectrum for nongeneric potentials and does not belong to it for
generic ones.

Now we briefly address a problem of estimating a number of bound states
(solitons) generated by a smooth localized initial perturbation u0(x). Equation
(9.48) for k = 0 gives

M−(x, 0) = 1 + i
N∑

j=1

k−1
j Φj(x) +

1
2πi

∫ ∞

0

dk
k

β(k)N−(x, k). (9.63)

Let us multiply this equation by u(x) and integrate over the real line x. The
integral

∫∞
−∞ dxu(x)M−(x, k) on the left-hand side of (9.63) gives zero for

both generic and nongeneric potentials (M−(x, 0) = 0 for generic potentials
[232]). Then it follows from (9.16) and (9.14) that the number of bound states
is given in terms of the area A[u] of u0(x), where A[u] =

∫∞
−∞ dxu0(x):

N =
1
2π

(
A[u] +

1
2π

∫ ∞

0

dk
k
|β(k)|2

)
.

The last remark is concerned with soliton generation by a small initial per-
turbation. It was shown in [362] that there is a threshold in soliton generation
for generic initial perturbation, while in the case of a perturbation of zero
background or soliton state, a new eigenvalue emerges from the edge k = 0 of
the continuous spectrum for an arbitrary small initial perturbation. This new
eigenvalue is exponentially small.

9.2 Kadomtsev–Petviashvili I equation—lump solutions

The KP equation
(ut + 6uux + uxxx)x = ±3uyy (9.64)

appeared in plasma physics [227] and surface water waves [12] for the de-
scription of two-dimensional waves propagating in the x direction with slow
variation in the y direction. This equation represents one of the possible gener-
alizations of the KdV equation to 2+1 dimensions. The properties of localized
solutions of (9.64) depend crucially on the sign of the right-hand side of this
equation. We refer to the KP I equation for the case of (+) sign and to the
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KP II equation for (–) sign. In this section we consider the KP I equation—it
is the nonlocal RH problem that appears in studying the KP I equation by
the inverse spectral method, as was shown by Manakov [305]. The KP II
equation is integrated in the framework of the ∂̄ method and is considered
in the next chapter. Fokas and Ablowitz [157] succeeded in obtaining explicit
formulas for scattering data by means of introducing nonanalytic eigenfunc-
tions of the associated spectral problem and derived lump solution, previously
found in [306] and in [324]. Fokas and Zakharov [163] generalized the dressing
method to the case of nontrivial seed solutions. Boiti et al. [66] elaborated
a spectral transform for the KP I equation based on analytic eigenfunctions
and orthogonality relations. Boiti et al. [70, 71] applied a resolvent-based ap-
proach for obtaining solutions of the KP I equation on both zero and nonzero
background. The classical results concerning various solutions of the KP I
equation in the framework of the IST have been summarized by Ablowitz and
Clarkson [3] and Konopelchenko [241]. Since then further important progress
in the KP I theory has been achieved. In particular, Ablowitz and Villarroel
[14, 439] discovered a class of solutions of the KP I equation associated with
multiple poles of meromorphic eigenfunctions. Pelinovsky and Sulem [363]
proved the completeness of a set of eigenfunctions which contains nonanalytic
continuous eigenfunctions.

Note that we will be interested in solutions of the KP I equation that
decrease as x2 + y2 → ∞; therefore, no consideration will be given to the
so-called line solitons of the KP I equation which do not decrease in some
directions in the (x, y) plane and essentially give the KdV solitons directed
at some angle relative to the x-axis. N -line solitons are discussed by Satsuma
[385]. The IST theory for the line-soliton-type potentials has been considered
by Boiti et al. [69].

9.2.1 Lax representation

Following the strategy of the dressing method, we first derive the Lax repre-
sentation for the KP I equation. Let us introduce “long” derivatives

Dx = ∂x + ik, Dy = ∂y + ik2, Dt = ∂t + ik3.

Evidently, these operators have poles at k =∞ and are mutually commuting.
Our aim is to make up “balance equations” in order to eliminate poles. It
is clear that the difference iDym − D2

xm ∼ O(1) has no poles in k for the
function m(x, y, t, k) which allows the asymptotic expansion m = 1 +m1/k +
m2/k

2+O(k−3). Therefore, we can write this difference as iDym−D2
xm = um

with some function u(x, y, t). Taking into account the above expansion, we can
show that u = −2im1x and hence

imy = mxx + 2ikmx + um. (9.65)

In the same way we can form the balance equation with the operator Dt.
Indeed, the third-order pole is eliminated if we take the sum

Dtm + D3
xm = mt + mxxx + 3ikmxx − 3k2mx.
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In order to eliminate the second-order and first-order poles, we should write

mt + mxxx + 3ikmxx − 3k2mx = μD2
xm + νDxm + ρm (9.66)

with some yet unknown functions μ, ν, and ρ that do not depend on k. Insert-
ing the series expansion of m in (9.66) and equating terms with equal powers
of k−1, we find

μ = 0, ν = 3im1x = −(3/2)u, ρ = 3im1xx − 3m2x − iνm1.

Terms with k−2 in (9.65) give im1y = m1xx + 2im2x + um1; therefore, we can
write ρ as

ρ =
3
2
im1xx − 3

2
m1y = −3

4
ux − 3

4
i∂−1
x uy.

Hence,

mt + mxxx + 3ikmxx − 3k2mx +
3
2
umx +

3
2
ikum +

3
4
uxm +

3
4
i∂−1
x uym = 0.

(9.67)
Performing a scaling transformation y → −y, t → 4t, equations (9.65) and
(9.67) take the form

imy + mxx + 2ikmx + um = 0, (9.68)

mt+4mxxx+12ikmxx−12k2mx+6umx+6ikum+3uxm−3i
(
∂−1
x uy

)
m = 0.
(9.69)

It can be shown that the compatibility condition for this system of linear
equations gives precisely the KP I equation:

(ut + 6uux + uxxx)x = 3uyy. (9.70)

Hence, equations (9.68) and (9.69) constitute the Lax representation for the
KP I equation with the spectral parameter k [133]. Moreover, the KP I equa-
tion follows immediately from (9.69) if we express terms with k by means of
(9.68), expand (9.69) in k−1, and account for the relation m1x = (i/2)u. An
alternative derivation of the Lax representation for the KP equation is given
in Sect. 7.5. In what follows we consider the function u(x, y, t) to be real,
nonsingular, and decaying rationally at infinity.

9.2.2 Eigenfunctions and eigenvalues

As for the BO equation, we start with the determination of the Green function
for the spectral problem (9.68). By the standard Fourier analysis we get

G(x, y, k) =
1

4π2

∞∫

−∞

∞∫

−∞
dξdη

ei(ξx+ηy)

η + ξ(ξ + 2k)
. (9.71)
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It is seen from (9.71) that G(x, y, k) has a discontinuity across the real axis
Imk = 0 of the complex k-plane. Taking k = kR±i0, we will have two functions

G±(x, y, k) =
i

2π

∫ ∞

−∞
dξ exp [iξx− iξ(ξ + 2k)y] [θ(y)θ(∓ξ)− θ(−y)θ(±ξ)] ,

(9.72)
which allow analytic continuation in the half planes Imk ≷ 0. As before, θ(ξ)
stands for the Heaviside step function.

According to the fact that the spectral equation (9.68) with zero potential
has two linearly independent solutions,

m01 = 1, m02 = exp[iβ(x, y, k, �)], β(x, y, k, �) = (�− k)x− (�2 − k2)y,
(9.73)

where � is an additional parameter, we can build two pairs of eigenfunctions
of the spectral equation, M±(x, y, k) and N±(x, y, k, �) [157]. With account
for (9.73), these eigenfunctions obey the following inhomogeneous integral
equations:

(G±M±)(x, y, k) = 1, (9.74)
(G±N±)(x, y, k, �) = eiβ(x,y,k,�), (9.75)

where the operator G± acts as

(G±F )(x, y, k, �)=F (x, y, k, �) (9.76)

−
∫∫

D

dx′dy′G±(x− x′, y − y′, k)u(x′, y′)F (x′, y′, k, �).

Integration in (9.76) is performed over the two-dimensional region D from
−∞ to +∞ with respect to both variables. It should be remarked that the
order of integration is important when the potential u(x, y) is not absolutely
integrable. We adopt the rule that the first integration is in x, i.e.,

∫∫

D

dxdy =
∫ ∞

−∞
dy

∫ ∞

−∞
dx.

Eigenfunctions M± allow analytic continuation in the half planes Imk ≷ 0,
while eigenfunctions N± are in general nonanalytic for Imk �= 0.

Bound states of the spectral equation (9.68) are given by solutions Φ±
j (x, y),

decaying at infinity, of the homogeneous Fredholm equations

(G±Φ±
j )(x, y, k±j ) = 0, G±(x, y, k±j ) =

1
4π2

∞∫

−∞

∞∫

−∞
dξdη

ei(ξx+ηy)

η + ξ(ξ + 2k±
j )

(9.77)
for a set of isolated complex values k±j , j = 1, . . . ,N . Eigenvalues k±

j

comprise the discrete spectrum of (9.68). For real potentials k±j appear in
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pairs, k−
j = k̄+

j . The asymptotic behavior of the Green function for r =
(x2 + y2)1/2 →∞ follows from (9.72) and has the form

G±(x, y, k)→ ± 1
x− 2(k ± i0)y

+O(r−2). (9.78)

Inserting (9.78) into (9.77) and putting k → k±j , we get asymptotics of the
discrete eigenfunctions:

Φ±
j (x, y)→ ± i

x− 2k±
j y

1
2πi

∫∫

D

dx′dy′u(x′, y′)Φ±
j (x′, y′).

Let us introduce the notation

Q(k±j ) = ± 1
2πi

∫∫

D

dxdyu(x, y)Φ±
j (x, y). (9.79)

Then it is natural to normalize Φ±
j by the condition

−i(x− 2k±
j y)Φ

±
j (x, y)→ Q(k±

j ) at r→∞. (9.80)

A particular value of Q depends on the pole structure of the meromorphic
functions M±. With this in mind we will call Q(k±j ) the index of pole k±

j [14].
Besides, suppose that (9.77) has a unique solution, i.e., dim kerG±(k±

j ) = 1.
Now we introduce the adjoint operator G† and the adjoint integral equation

(G†χ)(x, y, k) ≡ χ(x, y)−
∫∫

D

dx′dy′Ḡ(x′ − x, y′ − y, k)u(x, y)χ(x′, y′) = 1.

(9.81)
In the differential form the adjoint spectral problem is written as

(−i∂y + ∂xx + u− 2ik̄∂x)χ = 0. (9.82)

In virtue of the symmetry Ḡ(x, y, k̄) = G(−x,−y, k), it follows from (9.81)
that

kerG†(k±
j ) = u(x, y)kerG(k∓

j ). (9.83)

This means that Φ±
j will be solutions of the homogeneous equations (9.77) at

the points k±j if u(x, y)Φ±
j are solutions of the adjoint homogeneous equation

at the points k∓j . In particular, we obtain

dim kerG(k±
j ) = dim kerG†(k±

j ) = dim kerG(k∓
j ).

A crucial difference between the spectral problem for KP I and that for
the BO equation lies in the fact that (9.68) allows multiple eigenvalues. First
we will consider the case of simple eigenvalues.

It follows from analytic properties of G± that eigenfunctions M± are repre-
sented in terms of meromorphic functions with simple poles at the points k±j :

M±(x, y, k) = 1 +
N∑

j=1

(k − k±
j )−1Φ±

j (x, y) + m±(x, y, k), (9.84)
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where bound states Φ±
j are residues of M± at the points k±

j and m± are
holomorphic functions in Imk ≷ 0, m± → 0 at |k| → ∞. In order to determine
residues Φ±

j , we need to investigate the behavior of M± in the limit k → k±
j .

Around k = k−j we evidently get

M−(x, y, k) = ν−(x, y, k) +
Φ−
j

k − k−
j

, (9.85)

where ν− is regular in k−
j and tends to 1 at |k| → ∞. Inserting (9.85) into

(9.74) gives

(G−ν−)(x, y, k) + (k − k−
j )−1(G−Φ−

j )(x, y, k) = 1.

Expanding G− in the Taylor series around k−j , we obtain in the limit k → k−j
two integral equations

(G−Φ−
j )(x, y, k−j ) = 0, (G−ν−)(x, y, k−j )+

(
∂G−
∂k

Φ−
j

)
(x, y, k−j ) = 1. (9.86)

The first equation is satisfied owing to (9.77). The derivative of the Green
function follows from (9.72):

∂G−
∂k

(x, y, k−j ) = −i(x− 2k−
j y)G−(x, y, k−j ) +

1
2πi

. (9.87)

Substituting it into the second equation in (9.86) transforms this equation to
{G−

[
ν− + i(x − 2k−

j y)Φ
−
j

]}
= 1−Q(k−

j ). (9.88)

If Q(k−
j ) = 1 (the so-called normalization constraint), it follows from (9.86)

and (9.88) that in virtue of dim kerG = 1 we have

ν− + i(x− 2k−
j y)Φ

−
j = −iγ−

j Φ−
j ,

where γ−
j is a proportionality constant. As a result, we get [compare the

similar formula (9.29) for the BO equation]

lim
k→k−j

(
M− −

Φ−
j

k − k−
j

)
= −iξ−j Φ−

j , ξ−j = x− 2k−
j y + γ−

j . (9.89)

An analogous formula in terms of ξ+
j = x− 2k+

j + γ+
j exists for k → k+

j .
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9.2.3 Scattering equation and closure relations

To formulate the RH problem, we derive here the scattering equation and
closure (symmetry) relations. For this purpose we first calculate a jump
Δ = M+ −M− of eigenfunctions across the real k-axis:

Δ(x, y, k) =
∫∫

D

dx′dy′(G+ −G−)(x − x′, y − y′, k)u(x′, y′)M+(x′, y′, k)

+
∫∫

D

dx′dy′G−(x − x′, y − y′, k)u(x′, y′)Δ(x′, y′, k), Im k = 0.

Equation (9.72) gives

(G+ −G−)(x, y, k) =
1

2πi

∫ ∞

−∞
d�sign(�− k)eiβ(x,y,k,�),

where we put ξ + k = �. Then

Δ(x, y, k) =
∫ ∞

−∞
d�sign(�− k)T (k, �)eiβ(x,y,k,�) (9.90)

+
∫∫

D

dx′dy′G−(x− x′, y − y′, k)u(x′, y′)Δ(x′, y′, k),

where
T (k, �) =

1
2πi

∫∫

D

dxdye−iβ(x,y,k,�)u(x, y)M+(x, y, k). (9.91)

Let us multiply N− (9.75) by sign(�− k)T (k, �) and integrate in �:
∫ ∞

−∞
d�sign(�− k)T (k, �)N−(x, y, k, �) =

∫ ∞

−∞
d�sign(�− k)T (k, �)eiβ(x,y,k,�)

+
∫ ∞

−∞
d�sign(�−k)T (k, �)

∫∫

D

dx′dy′G−(x−x′, y−y′, k)u(x′, y′)N−(x′, y′, k, �).

(9.92)
Comparing (9.90) and (9.92) and taking into account dim kerG− = 1, we
obtain the scattering equation

M+(x, y, k)−M−(x, y, k) =
∫ ∞

−∞
d�sign(�−k)T (k, �)N−(x, y, k, �), Im k = 0.

(9.93)
We will be closer to the formulation of the RH problem for the KP I

equation if we find a relation between the eigenfunctions M− and N− (the
closure relation). It follows from (9.75) that

(
Ĝ−N̂−

)
(x, y, k, �) = ei�x−i�2y, (9.94)
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where
Ĝ− = G−eikx−ik2y, N̂− = N−eikx−ik2y.

Differentiation of (9.94) in k with account for (9.87) gives [157]
(
Ĝ ∂

∂k
N̂−

)
(x, y, k, �) = −F (k, �)eikx−ik2y, (9.95)

where
F (k, �) =

i

2π

∫∫

D

dxdyu(x, y)N−(x, y, k, �). (9.96)

Multiply now (9.74) for M− by −F (k, �)eikx−ik2y and compare it with (9.95).
As a result, we get the closure relation

∂N−
∂k

(x, y, k, �) + i(x− 2ky)N−(x, y, k, �) = −F (k, �)M−(x, y, k). (9.97)

In the integral form, taking into account the boundary condition
N−(x, y, k, k) = M−(x, y, k), relation (9.97) has the form [3]

N−(x, y, k, �) = M−(x, y, �)eiβ(x,y,k,�) −
∫ k

�

dpF (p, �)M−(x, y, p)eiβ(x,y,k,p).

(9.98)
The spectral transforms T (k, �) (9.91) and F (k, �) (9.96) are not indepen-

dent. Indeed, let us multiply N−(x, y, k, �) (9.75) by u(x, y)M̄+(x, y, k) and
integrate in x and y:
∫∫

D

dxdyu(x, y)M̄+(x, y, k)N−(x, y, k, �)=
∫∫

D

dxdyu(x, y)M̄+(x, y, k)eiβ(x,y,k,�)

+
∫∫

D

dxdyu(x,y)M̄+(x,y,k)
∫∫

D

dx′dy′G−(x−x′,y−y′, k)u(x′,y′)N−(x′,y′,k, �).

Inserting M̄+ (9.74) into the second line of this formula, accounting for the
symmetry G±(x, y, k) = Ḡ∓(−x,−y, k) for real k and the definitions (9.91)
and (9.96), we get

T (k, �) = F̄ (k, �). (9.99)

9.2.4 RH problem

Formulas (9.89), (9.93), and (9.98) make it possible to formulate the RH
problem for the KP I equation. Indeed, substituting N− (9.98) into the right-
hand side of (9.93), we obtain after some manipulations the nonlocal RH
problem [157]

M+(x, y, k)−M−(x, y, k) =
∫ ∞

−∞
d�f(k, �)M−(x, y, �)eiβ(x,y,k,�), (9.100)

f(k, �) = sign (k − �)F (k, �)
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with the standard normalization condition M± → 1 at |k| → ∞. Acting on
(9.100) with the projector P−,

(P−g)(k) = − 1
2πi

∫ ∞

−∞

d�
�− k + i0

g(�),

we obtain a linear integral equation

M−(x, y, k) = 1 +
N∑

j=1

[
(k − k+

j )−1Φ+
j (x, y) + (k − k−

j )−1Φ−
j (x, y)

]
(9.101)

+
1

2πi

∫∫

D

d�dp
p− k + i0

f(p, �)M−(x, y, �)eiβ(x,y,p,�), Im k = 0.

The limit k → k±j gives with account for (9.89)

−iξ±j Φ±
j (x, y) = 1 +

N∑

i=1

′ [(k±
j − k+

i )−1Φ+
i (x, y) + (k±

j − k−
i )−1Φ−

i (x, y)
]

+
1

2πi

∫∫

D

d�dp
p− k±

j

f(p, �)M−(x, y, �)eiβ(x,y,p,�). (9.102)

The prime near the sign symbol means that terms with zero denominators are
excluded. Equations (9.101) and (9.102) comprise a complete system of linear
equations for finding eigenfunctions M− and Φ±

j in terms of the RH data
[f(k, �); k±

j , γ
±
j , j = 1, . . . ,N ] [remember that γ±

j enter ξ±j (9.89)]. Hence,
the potential u(x, y) is reconstructed as

u(x, y) = ∂x

⎛

⎝−2i
N∑

j=1

(Φ+
j + Φ−

j ) +
1
π

∫∫

D

dkd�f(k, �)M−(x, y, �)eiβ(x,y,k,�)

⎞

⎠ .

(9.103)
A distinctive role of the nonanalytic eigenfunctions N± should be espe-

cially emphasized. As shown in [363], they are the functions N± having the
additional parameter � that comprise, along with the bound states Φ±

j , a com-
plete set of functions. In particular, the potential is expressed in terms of the
complete set of eigenfunctions as

u(x, y)= ∂x

⎛

⎝−2i
N∑

j=1

(Φ+
j + Φ−

j ) +
1
π

∫∫

D

dkd�sign (k − �)T (k, �)N−(x, y, k, �)

⎞

⎠ .

9.2.5 Evolution of RH data

Evolution equations for the RH data are found, as usual, from (9.69). Sub-
stituting (9.100) into (9.69), we obtain the evolution equation for f(k, �):
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ft(k, �) = 4i(�3−k3)f(k, �). Therefore, the time dependence of the continuous
RH data is given by the simple formula

f(k, �, t) = f(k, �, 0) exp
[
4i(�3 − k3)t

]
. (9.104)

To get discrete data evolution, we insert (9.84) with m± = 0 into (9.69). It
follows in the limit k → k±j that

∂tk
±
j = 0. (9.105)

Finally, in the same limit, equation (9.89) gives

γ±
j (t) = γ±

j (0) + 12(k±
j )2t. (9.106)

9.2.6 Soliton solution

Algebraic solitons (lumps) of the KP I equation correspond to “reflectionless”
potentials when f(k, �) = T (k, �) = 0. The N -soliton solution is reconstructed
from (9.103) as

uN (x, y) = −2i∂x
N∑

j=1

[
Φ+
j (x, y, t) + Φ−

j (x, y, t)
]
, (9.107)

where Φ±
j are found from the system of linear algebraic equations [see (9.102)]

1 + iξ±j Φ±
j +

N∑

i=1

′ [(k±
j − k+

i )−1Φ+
i + (k±

j − k−
i )−1Φ−

i

]
= 0. (9.108)

In particular, equation (9.108) gives for N = 1

Φ±
1 =

i
Δ

(
x− 2k∓

1 y + 12(k∓
1 )2t + γ∓

1 (0)± i
k+
1 − k−

1

)
,

Δ = (X − 2kRY )2 + 4k2
I Y

2 +
1

4k2
I

.

The notations are

X = x− 12(k2
R + k2

I )t− x0, Y = y − 12kRt− y0, k±1 = kR ± ikI, (9.109)

x0 =
kRγI − γRkI

kI
, y0 =

γI

2kI
, γ±

1 (0) = γR ± iγI.

With Φ±
1 found, we obtain from (9.107) the one-lump solution:

u1(x, y, t) = ∂2
x lnΔ = 4

−(X − 2kRY )2 + 4k2
I Y

2 + 1/4k2
I

[(X − 2kRY )2 + 4k2
I Y

2 + 1/4k2
I ]2

. (9.110)
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This solution describes a smooth weakly localized (decaying as r−2)
configuration which moves uniformly with velocity v = (vx, vy) = [12(k2

R +
k2
I ), 12kR]. For 2N noncoinciding eigenvalues k±j , j = 1, . . . ,N , the N -lump

solution can be compactly written in the form [354]

uN (x, y, t) = 2∂2
x ln det B, (9.111)

where entries Bmn of the 2N × 2N matrix B are given by

Bmn = (x− 2kmy + γm)δmn − i(1− δmn)(km − kn)−1

and the eigenvalues and normalization factors are arranged as

(k+
1 , . . . , k+

N , k−1 , . . . , k−N ) and (γ+
1 , . . . , γ+

N , γ−
1 , . . . , γ−

N ).

The solution (9.111) describes a process of collision of N lumps. It can be
shown [306] that (9.111) is decomposed into a sum of N one-lump solutions
for t → ±∞. It is important that phase shifts of lumps stemming from their
mutual interaction are zero. This means that lump interaction is trivial.

9.2.7 KP I equation—multiple poles

Following Ablowitz and Villarroel [14, 439], consider here the case of a purely
discrete spectrum but assume that eigenfunctions can have multiple poles.
When a continuous spectrum is absent, the solutions M± of the RH problem
are the same, M+ = M− = M . Suppose M(x, y, k) corresponds to the purely
discrete spectrum of the problem (9.68) and has 2N poles k±j , j = 1, . . . ,N
with multiplicities r±j :

M(x, y, k) = 1 +
2N∑

m=1

[
Φm(x, y)
k − km

+
rm∑

r=2

Ψm,r(x, y)
(k − km)r

]
. (9.112)

Here Φm = Φ+
m, m = 1, . . . ,N and Φm = Φ−

m for m = N +1, . . . , 2N . To have
explicitly the function M , we need know the Laurent coefficients Φm and Ψm,r.
Therefore, we derive first of all equations for them. Around the pole km we
have

M(x, y, k) = ν(x, y, k) +
Φm

k − km
+

rm∑

r=2

Ψm,r
(k − km)r

, (9.113)

where ν(x, y, k) is a regular part of M , and ν → 1 at |k| → ∞. Now we insert
(9.113) into the equation (GM)(x, y, k) = 1. Expanding the Green function
up to the rmth order around km and equating terms with equal powers of
(k − km)−r, we obtain a system of integral equations
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(GΨm,rm)(x, y, km) = 0 ,
(
GΨm,rm−1 +

∂G
∂k

Ψm,rm

)
(x, y, km) = 0,

... (9.114)
(
GΦm +

∂G
∂k

Ψm,2 + . . . +
1

(m− 1)!
∂rm−1G
∂krm−1

Ψm,rm

)
(x, y, km) = 0,

(
Gν +

∂G
∂k

Φm +
1
2
∂2G
∂k2

Ψm,2 + . . . +
1

rm!
∂rmG
∂krm

)
(x, y, km) = 1.

The first equation in this system shows that the poles km are indeed the dis-
crete data of the RH problem , while Ψm,rm are eigenfunctions corresponding
to the eigenvalues km. It should be noted that equations (9.86) make up a
particular case of the system (9.114).

As in Sect. 9.2.1, we define the indices of poles

Q(km) =
1

2πi
sign(Im km)

∫∫

D

dxdy uΦm.

For bound-state eigenfunctions Φm the orthogonality conditions are fulfilled:

〈Φ−
� , Φ

+
j 〉 = 0, j �= �, (9.115)

where the scalar product is defined as

〈f, g〉 = 1
π

∫∫

D

dxdy f̄xg. (9.116)

The orthogonality conditions are easily obtained from the spectral equation
(9.68) for Φ+

j by multiplying it by Φ̄−
� and integrating by parts. The indices

of the poles can be expressed by means of this scalar product:

Q(k+
j ) =

1
2πi

∫∫

D

dxdy uΦ+
j = −1

π

∫∫

D

dxdy
2N∑

m=1

(∂xΦm)Φ+
j

=
1
π

∫∫

D

dxdy
2N∑

m=1

(∂xΦ̄m)Φ+
j =

2N∑

m=1

〈Φm, Φ+
j 〉 = 〈Φ−

j , Φ
+
j 〉.

Because 〈f, g〉 = −〈g, f〉, we get the important equality

Q(k+
j ) = Q(k−

j ). (9.117)

In what follows we shall restrict our consideration to the simplest example
of a double pole. In other words, we assume that the eigenfunction M(x, y)
has the following structure:

M(x, y, k) = 1 +
Φ+

1

k − k+
1

+
Φ−

1

k − k−
1

+
Ψ2

(k − k+
1 )2

. (9.118)
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For determination of the Laurent coefficients Φ±
1 and Ψ2 we consider first the

function M near k = k+
1 :

M(x, y, k) = ν+(x, y, k) +
Φ+

1 (x, y)
k − k+

1

+
Ψ2

(k − k+
1 )2

, (9.119)

where ν+ is regular in k+
1 and tends to 1 at |k| → ∞. In this case the system

(9.114) is reduced to three equations

(GΨ2)(x, y, k+
1 ) = 0, (9.120)

(
GΦ+

1 +
∂G
∂k

Ψ2

)
(x, y, k+

1 ) = 0, (9.121)
(
Gν+ +

∂G
∂k

Φ+
1 +

1
2
∂2G
∂k2

Ψ2

)
(x, y, k+

1 ) = 1. (9.122)

In virtue of the similarity with equations (9.86), we can invoke the result
(9.89) and write by analogy

Φ+
1 + iξ+

1 Ψ2 = 0. (9.123)

As regards (9.122), we need the second derivative of the Green function that
is obtained from (9.87):

∂2G+

∂k2
=

[
2y − (x− 2ky)2

]
G+ +

x− 2ky
2π

. (9.124)

Substituting (9.87) and (9.124) into (9.122), we get
(G [ν+ + i(x− 2k+

1 y)Φ+
1 −

(
2iy + (x− 2k+

1 y)2
)
Ψ2

])
(x, y, k+

1 )

= 1−Q(k+
1 )− 1

2
q2 +

1
2
(x− 2k+

1 y)Q2, (9.125)

where

Q2 =
1

2πi

∫∫

D

dxdy u(x, y)Ψ2(x, y), q2 =
1
2π

∫∫

D

dxdy(x−2k+
1 y)u(x, y)Ψ2(x, y).

(9.126)
Now we prove that Q2 = 0 and q2 = −Q(k+

1 ). Indeed, if Φ+
1 ∼ r−α1 and

Ψ2 ∼ r−α2 , then it follows from (9.121) written in a differential form as

(i∂y + ∂2
x + 2ik+

1 ∂x + u)Φ+
1 + 2i∂xΨ2 = 0

that α2 = α1 + 1. Further, by analogy with the one-lump solution (9.110)
we suppose that u ∼ O(r−2) at r → ∞. Then α1 = 1. Hence, performing
integration for Q2 in (9.126), we obtain in virtue of the decay rate of Ψ2

Q2 = − 1
2πi

∫∫

D

dxdy(i∂y + ∂2
x + 2ik+

1 ∂x)Ψ2 = 0.
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Taking then (x − 2k+
1 y)Ψ2 from (9.123) and inserting it into (9.125) gives

q2 = −Q. Eventually, eliminating Φ+
1 in (9.125) by means of (9.123), we can

write (9.122) as
[
G
(
ν+ +

1
2
(ξ+2

1 − 2iy + γ+
2 )Ψ2

)]
(x, y, k+

1 ) = 1− 1
2
Q(k+

1 ), γ+
2 = γ+

2 (t).

(9.127)
The inhomogeneous integral equation (9.127) will have a solution if the right-
hand side is orthogonal to the complex conjugated solution χ̄ of the adjoint
integral equation (9.81) (the Fredholm condition [425]). In the case of the
second-order pole in k+

1 we get χ̄(x, y, k+
1 ) = u(x, y)Φ+

1 (x, y), in accordance
with (9.83). As a result, the Fredholm condition provides

0 =
(

1− 1
2
Q(k+

1 )
)∫∫

D

dxdyχ̄

=
(

1− 1
2
Q(k+

1 )
)∫∫

D

dxdyu(x, y)Φ+
1 (x, y) ∼

(
1− 1

2
Q(k+

1 )
)
Q(k+

1 ).

Because we assume Q(k+
1 ) �= 0, this gives Q(k+

1 ) = 2.
Now we will treat the simple pole k−1 , taking into account that Q(k−

1 ) =
Q(k+

1 ) ≡ Q = 2. Near k−1 we write

M(x, y, k) = ν−(x, y, k) +
Φ−

1

k − k−
1

, (GM)(x, y, k) = 1, (9.128)

and ν− is regular in k−1 and tends to 1 as |k| → ∞. Let us remember that
for simple pole k−1 equations (9.86) exist, the second one of them being trans-
formed to (9.88). Because Q �= 1, equation (9.89) is not valid and cannot be
used to determine Φ−

1 .
In order to have analog of (9.89) for Q �= 1, we differentiate (GM) = 1

(9.128) in k:
(
∂G
∂k

ν−

)
+

(
G ∂ν−

∂k

)
+

1
k − k−

1

(
∂G
∂k

Φ−
1

)
− 1

(k − k−
1 )2

(GΦ−
1

)
= 0.

Expanding G and (∂G/∂k) near k−1 and collecting terms with equal powers of
(k − k−

1 )−1, we obtain the following integral equations:

(GΦ−
1 )(x, y, k−1 ) = 0,

(
∂G
∂k

ν− + G ∂ν−
∂k

+
1
2
∂2G
∂k2

Φ−
1

)

k−1

= 0.

Taking into account explicit formulas (9.87) and (9.124) for derivatives of the
Green function, we get

[
G
(
∂ν−
∂k

+ i(x− 2k−
1 y)ν− − 1

2
(2iy + (x − 2k−

1 )2)Φ−
1

)]
(x, y, k−1 )

= i(x − 2k−
1 y)

(
1− 1

2
Q

)
− q0 − 1

2
η̃, (9.129)
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where

q0 =
−1
2πi

∫∫

D

dxdyu(x, y)ν−(x, y), η̃ =
−1
2π

∫∫

D

dxdy(x− 2k−
1 y)u(x, y)Φ−

1 (x, y).

On the other hand, equation (9.88) gives for Q = 2
{G [ν− + i(x− 2k−

1 y)Φ−
1

]}
(x, y, k−1 ) = −1. (9.130)

Let us multiply (9.130) by −[q0 + (1/2)η̃] and add it to (9.129). As a result,
we obtain an analog of (9.89) for the case Q = 2:

(
∂ν−
∂k

+ iξ−1 ν− − 1
2
(2iy + (ξ−1 )2 + δ−)Φ−

1

)

k−1

= 0, δ− = δ−(t). (9.131)

Now we have all that is necessary to determine Φ±
1 and Ψ2. Near k = k+

1

ν+(k) = 1 +
Φ−

1

k − k−
1

.

and (9.123) and (9.127) give the following system of linear algebraic equations:

Φ+
1 + iξ+

1 Ψ2 = 0, 1 + (k+
1 − k−

1 )−1Φ−
1 +

1
2
(ξ+2

1 − 2iy + γ+
2 )Ψ2 = 0. (9.132)

Eliminating Ψ2, we obtain a relation between Φ+
1 and Φ−

1 :

1 +
i

2ξ+
1

(ξ+2
1 − 2iy + γ+

2 )Φ+
1 +

Φ−
1

k+
1 − k−

1

= 0. (9.133)

Near k = k−1

ν−(k) = 1 +
Φ+

1

k − k+
1

+
Ψ2

(k − k+
1 )2

and (9.131) gives

1 +
(

1
k−
1 − k+

1

+
i
ξ−1

1
(k−

1 − k+
1 )2

)
Φ+

1 +
(

1
(k−

1 − k+
1 )2

+
2i

(k−
1 − k+

1 )3

)
Ψ2

+
i

2ξ−1
[(ξ−1 )2 + 2iy + δ−]Φ−

1 = 0. (9.134)

Eliminating once again Ψ2, we obtain the second equation for Φ+
1 and Φ−

1 :

1 +
1

k−
1 − k+

1

[
1 + i

(
1
ξ+
1

+
1
ξ̄+
1

)
1

k−
1 − k+

1

− 2
|ξ+

1 |2
1

(k−
1 − k+

1 )2

]
Φ+

1

+
i

2ξ̄+
1

[(ξ̄+
1 )2 + 2iy + δ−]Φ−

1 = 0. (9.135)
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Hence, we have a system of two algebraic equations (9.133) and (9.135) to
determine Φ±

1 and hence Ψ2 from (9.132). Expanding M in the asymptotic
series in k−1 leads to the reconstruction formula

u(x, y) = −2i∂x(Φ+
1 + Φ−

1 ) = 2∂2
x lnΔ. (9.136)

To obtain evolution of the parameters γ±
1 (t) and δ−(t), we substitute M found

above into (9.69) taken at r→∞. This gives

γ±
1 (t) = γ + 12k±2

1 t, δ−(t) = δ − 24ik−
1 t, γ, δ = const.

After rather lengthy but transparent calculations we obtain the function Δ in
the form [439]

Δ(x, y, t) (9.137)

=
{
[X − 2kRY − 12(k2

R − k2
I )t]

2 − 4k2
I (Y + 12kRt)2 + δ−R (t)

}2

+
(

2(Y + 12kRt)
{
1 + 2kI[X − 2kRY − 12(k2

R − k2
I )t]

}
+

γ+
I (t)
kI
− δ−I (t)

)2

+
1
k2
I

[(
X − 2kRY − 12(k2

R − k2
I )t−

1
2kI

)2

+ 4k2
I (Y + 12kRt)2 +

1
4k2

I

]
,

where X and Y were introduced in (9.109). The lump solution of the KP I
equation corresponding to the multiple poles (9.118) is given by

u� = 2∂2
x lnΔ = 2

[
ΔXX

Δ
−

(
ΔX

Δ

)2
]
.

Note that the existence of indices (topological charges) is stipulated by the
fact that the potential decays sufficiently slowly (algebraically) at infinity.

Villarroel and Ablowitz [439] investigated this solution for t → ±∞. It
was shown that the solution decomposes in this limit into two humps each
having its own velocity. Figures 9.1–9.3 illustrate a typical scattering process
described by the solution (9.137). The interaction of the lumps can be treated
in terms of two-particle dynamics under the action of attractive force. Mutual
attraction is not strong enough to form a bound state. Hence, as distinct
from the N -lump configuration, interaction between multiple-pole humps is
nontrivial. These authors also considered more complicated versions of the
multiple-pole structure.

Note that a class of (in general, singular) solutions of the KP I equation
(and some other equations) with multiple poles was obtained by Dubrovsky
[136].
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Fig. 9.1. Lumps of the solution (9.137) before interaction. Z = X − 2kRY − 12
(k2

R − k2
I )t, kR = 1/2, kI = 1, γ = δ = 0 [439]

9.3 Davey–Stewartson I equation

In the context of shallow water waves, the DS I equation

iqt +
1
2
(qxx + qyy) + ε|q|2q = φxq, (9.138)

φxx − φyy = 2ε
(|q|2)

x
, ε = ±1

describes the (2+1)-dimensional evolution of a small-amplitude, slowly mod-
ulated packet of surface waves with dominant surface tension [105, 470]. Here

Fig. 9.2. Interaction of lumps described by the solution (9.137) [439]
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Fig. 9.3. Lumps of the solution (9.137) after interaction [439]

q(x, y, t) is the dimensionless envelope of the wave packet and φ(x, y, t) is
the dimensionless amplitude of the mean fluid flow. The initial-value problem
for DS I was addressed by Fokas and Ablowitz [156, 159]. They formulated
the RH problem for the eigenfunctions of the spectral problem but localized
solutions were not been found. In a somewhat more general (in fact, noninte-
grable) form the DS I type equation arises in nonlinear optics when studying
propagation of a single quasimonochromatic optical pulse in a nonresonant
quadratic medium [2].

A breakthrough in finding true solitons in 2+1 dimensions was caused
by the remarkable discovery by Boiti et al. [62, 63, 365]. They demonstrated
by means of the Bäcklund gauge transformation that exponentially localized
solitons of the DS I equation exist if specific boundary conditions are properly
taken into account. This new situation can be explained in physical language.
Indeed, in 1+1 dimensions, where solitons are the result of the balance between
counter-acting nonlinearity and dispersion, both of these effects are of the
same order of magnitude and are able to compensate each other. In contrast,
in 2+1 dimensions dispersion is, as a rule, much stronger than nonlinearity;
hence, additional sources are needed to stop dispersive broadening. Just the
boundaries serve as these sources.

There are two versions of the IST formalism to find solitons of the DS I
equation. Fokas and Santini [162] used the unit normalization of analytic
eigenfunctions of the spectral problem and modified the second (evolutionary)
Lax equation to incorporate nontrivial boundary conditions, while Boiti et al.
[67, 68] normalized eigenfunctions by the boundary conditions, retaining the
second Lax equation to be explicitly integrable. We will follow in this section
the approach of Fokas and Santini as it is technically simpler, though the
method by Boiti et al. seems perhaps more natural from the viewpoint of the
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IST ideology. Note that the so-called dromion solutions of the DS I equation
were derived by the ∂̄ formalism in the book by Konopelchenko [241].

9.3.1 Spectral problem and analytic eigenfunctions

The DS I equation (9.138) arises as the compatibility condition of the system
of linear equations (the Lax pair)

ψx + σ3ψy + Qψ = 0, Q =
(

0 q
εq̄ 0

)
, (9.139)

iψt + σ3ψyy + Qψy + Aψ = 0. (9.140)

Here ψ(x, y, t) is a 2×2 matrix function and the 2×2 matrix A will be specified
later. Because the spectral problem (9.139) is hyperbolic, it is reasonable to
use the coordinates ξ = x + y and η = x − y. In new coordinates the second
equation in (9.138) takes the form

φξη =
ε

2
(∂ξ + ∂η)|q|2. (9.141)

Integrating (9.141) in turn in ξ and η, we obtain

φξ = −U1 +
ε

2
|q|2, U1(ξ, η) = − ε

2

η∫

−∞
dη′

(|q|2)
ξ
+ u1(ξ, t), (9.142)

φη = −U2 +
ε

2
|q|2, U2(ξ, η) = − ε

2

ξ∫

−∞
dξ′

(|q|2)
η

+ u2(η, t).

Here the real functions u1(ξ, t) and u2(η, t) represent the boundary values of
U1 and U2:

u1(ξ, t) = lim
η→−∞U1(ξ, η, t), u2(η, t) = lim

ξ→−∞
U2(ξ, η, t). (9.143)

Then the DS I equation is written as

iqt + qξξ + qηη + (U1 + U2)q = 0. (9.144)

Hence, we can consider the DS I equation as the integrodifferential equation
for complex function q(x, y, t) with boundary conditions (9.143) and definite
dependence (9.142) of U1 and U2 on q. Just the real functions U1 and U2 enter
the matrix A in the evolutionary part (9.140) of the Lax pair:

A =
(
U2 −qη
εq̄ −U1

)
. (9.145)

We assume that q(ξ, η, 0), u1(η, t), and u2(ξ, t) decay for large ξ and η. Our
aim is to solve the initial boundary value problem for the DS I equation.
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Now we introduce a spectral parameter k by means of the transformation

ψ(ξ, η) = M(ξ, η, k)Ek(ξ, η), Ek(ξ, η) = diag
(
eikη, e−ikξ

)
.

In terms of the matrix M , the spectral equation (9.139) takes the form

DM − i
2
k[σ3,M ] +

1
2
QM = 0, D = diag(∂ξ, ∂η). (9.146)

We will seek solutions M(ξ, η, k) of the spectral equation that are bounded in
the (ξ, η)-plane for any k and allow the asymptotic expansion

M(ξ, η, k) = 11 + k−1M (1)(ξ, η) +O(k−2).

Substituting this expansion into (9.146), we can reconstruct the potential:

Q(ξ, η) = i[σ3,M
(1)(ξ, η)], or q(ξ, η) = 2iM (1)

12 (ξ, η). (9.147)

As before, we will work with solutions of the spectral problem which are
written in the integral form. It can be shown that there exist eigenfunctions
with definite analytic properties in the k-plane. Namely, the matrix functions
M±(ξ, η, k) determined by the Green functions G±,

M±(ξ, η, k) = 11−
(
G±(·, k)

1
2
Q(·)M±(·, k)

)
(ξ, η), (9.148)

where [
G+(·, k)Φ(·, k)

]
(ξ, η) (9.149)

=

⎛

⎜⎜⎜⎝

ξ∫
−∞

dξ′Φ11(ξ′, η, k)
ξ∫

−∞
dξ′Φ12(ξ′, η, k)eik(ξ−ξ′)

−
∞∫
η

dη′Φ21(ξ, η′, k)e−ik(η−η′)
η∫

−∞
dη′Φ22(ξ, η′, k)

⎞

⎟⎟⎟⎠

and [
G−(·, k)Φ(·, k)

]
(ξ, η) (9.150)

=

⎛

⎜⎜⎜⎝

ξ∫
−∞

dξ′Φ11(ξ′, η, k) −
∞∫

ξ

dξ′Φ12(ξ′, η, k)eik(ξ−ξ′)

η∫
−∞

dη′Φ21(ξ, η′, k)e−ik(η−η′)
η∫

−∞
dη′Φ22(ξ, η′, k)

⎞

⎟⎟⎟⎠

are analytic in the upper and lower half planes of the k-plane, respectively.
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9.3.2 Spectral data and RH problem

To determine spectral data for the spectral problem (9.146) with the potential
Q, we should calculate a jump Δ = M+−M− of eigenfunctions across the real
axis Imk = 0. After straightforward calculation making use of (9.148)–(9.150)
we obtain

Δ(ξ, η, k) = Γ (ξ, η, k)−
(
G̃(·, k)

1
2
Q(·)Δ(·, k)

)
(ξ, η), Imk = 0, (9.151)

where

Γ =
1
2

(
0 − ∫∞

−∞ dξ′(qM−
22)(ξ

′, η, k)eik(ξ−ξ′)

ε
∫∞
−∞ dη′(q̄M+

11)(ξ, η
′, k)e−ik(η−η′) 0

)

and the Green function G̃ is defined as
[
G̃(·, k)Φ(·, k)

]
(ξ, η)

=

⎛

⎜⎜⎝

ξ∫
−∞

dξ′Φ11(ξ′, η, k)
ξ∫

−∞
dξ′Φ12(ξ′, η, k)eik(ξ−ξ′)

η∫
−∞

dη′Φ21(ξ, η′, k)e−ik(η−η′)
η∫

−∞
dη′Φ22(ξ, η′, k)

⎞

⎟⎟⎠ .

Hereafter we will not specify the integration limits in the case of integration
along the whole line.

Let us seek the jump in the form

Δ(ξ, η, k) =
∫

d�M−(ξ, η, �)E�(ξ, η)f(k, �)E−1
k (ξ, η) (9.152)

with a 2 × 2 matrix function f(k, l) that determines the spectral data. Sub-
stituting (9.152) into (9.151), we have

Δ(ξ, η, k) = Γ (ξ, η, �)−
∫

d�
(
G̃(·, �)1

2
Q(·)M−(·, �)E�(·)f(k, �)E−1

k (·)
)

(ξ, η).

(9.153)
Comparing (9.153) and (9.151), we obtain after simple calculation

∫
d�E�(ξ, η)f(k, �) = −1

2

∫
d�

(
0

∫
dξ′(qM−

22)(ξ
′, η, k)e−i�ξ′

0 0

)
f(k, �)

+
1
2

(
0 − ∫

dξ′(qM−
22)(ξ

′, η, k)
ε
∫

dη′(q̄M+
11)(ξ, η

′, k)eikη′ 0

)
. (9.154)

Let us act on (9.154) with the matrix operator

1
2π

diag
(∫

dη′e−ipη′ ,

∫
dξ′eipξ′

)
.
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This results in

f(k, �) =
(

0 −S(k, �)
T (k, �) 0

)
−

∫
dp

(
0 S(p, �)
0 0

)
f(k, �), (9.155)

where the spectral functions are defined as

S(k, �) =
1
4π

∫ ∫
dξdη qM−

22e
−ikξ−i�η, T (k, �) =

ε

4π

∫ ∫
dξdη q̄M+

11e
ikη+ilξ

(9.156)
and T (k, �) = εS̄(�, k) [162]. It immediately follows from (9.155) that f22 = 0;
hence,

f(k, �) =
(− ∫

dpT (k, p)S(p, �) −S(k, �)
T (k, �) 0

)
. (9.157)

Inserting (9.157) into (9.152), we find that the second column of the jump
satisfies the equation

(
M+

12

M+
22

)
(k)−

(
M−

12

M−
22

)
(k) = −

∫
d�S(k, �)eikξ+i�η

(
M−

11

M−
21

)
(�). (9.158)

Similarly, for the first column we have
(
M+

11

M+
21

)
(k)−

(
M−

11

M−
21

)
(k) = −

∫
d�T (k, �)e−ikη−i�ξ

(
M+

12

M+
22

)
(�). (9.159)

Equations (9.158) and (9.159) determine the nonlocal RH problem. In accor-
dance with the Cauchy–Green formula (1.98) the solution of the RH problem
is given by the integral equations of the form

(
M±

11

M±
21

)
(k) =

(
1
0

)
+

1
2π

∫
dp

p− (k ± i0)

∫
d�T (p, �)e−ipη−i�ξ

(
M+

12

M+
22

)
(�),

(
M±

12

M±
22

)
(k) =

(
0
1

)
− 1

2π

∫
dp

p− (k ± i0)

∫
d�S(p, �)eipξ+i�η

(
M−

11

M−
21

)
(�).

(9.160)
Hence, the reconstruction of the potential q(ξ, η) from the solution of the RH
problem is given with account for (9.147) by the formula

q(ξ, η) =
1
π

∫ ∫
dkd�S(k, �)ei�η+ikξM−

11(ξ, η, �). (9.161)

9.3.3 Time evolution of spectral data and boundaries

To find solutions of the DS I equation using the IST method, we should de-
termine the time evolution of the spectral function S(k, �). As usual, the
second Lax equation is exploited for this sake. In the case of the initial
boundary value problem we, however, cannot naively invoke (9.140) in its
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present form because of the nontrivial boundary conditions. In order to rec-
oncile boundary conditions with the evolutionary Lax equation, note that
we can add a term

∫
d�ψ(k, �)γ(k − �) with some matrix function γ to the

right-hand side of (9.140), without breaking the compatibility condition. Now
we invoke such a freedom to incorporate boundary values u1 and u2 into
the Lax pair. Assume that the right-hand side of (9.140) contains an ad-
ditional term W (ξ, η, k) and consider a matrix function ψ− related to M−

by ψ−(ξ, η, k) = M−(ξ, η, k)Ek(ξ, η). From the integral formulas (9.148) and
(9.150) for M− it immediately follows that matrix elements of ψ− obey simple
asymptotics in some directions ξ → ±∞ and/or η → ±∞. As an example,
ψ−

12 → 0 at ξ → +∞ and ψ−
22 → e−ikξ at η → −∞; hence, we can write

ψ−
12t = −

∫ ∞

ξ

dξ′
(
ψ−

12t

)
ξ′ and ψ−

22t =
∫ η

−∞
dη′

(
ψ−

22t

)
η′ .

Inserting into the integrands evolution equations for the entries of ψ− which
follow from

iψ−
t + σ3ψ

−
yy + Qψ−

y + Aψ− + W = 0,

yields, in particular,
(
W12

W22

)
= −k2

(
ψ−

12

ψ−
22

)
(k) +

∫
d�

(
ψ−

12

ψ−
22

)
(�)γ1(k − �).

Here γ1(k − �) is related to the boundary value u1(ξ, t) by means of

u1(ξ, t) =
∫

d�γ1(k − �)ei(k−�)ξ. (9.162)

Similarly,
(
W12

W22

)
(k) = k2

(
ψ−

11

ψ−
21

)
(k)−

∫
d�

(
ψ−

11

ψ−
21

)
(�)γ2(k − �)

and
u2(η, t) =

∫
d�γ2(k − �)e−i(k−�)η.

As a result, the improved evolutionary Lax equation has the form

iψ−
t + σ3ψ

−
yy + Qψ−

y + Aψ− + k2ψ−σ3 −
∫

d�ψ−(�)γ(k − �)σ3 = 0, (9.163)

γ(k − �) = diag [γ2(k − �), γ1(k − �)] .

Subsequent actions are rather standard. In terms of ψ−, the spectral func-
tion S(k, �) is written as

S(k, �) =
1
4π

∫ ∫
dξdηq(ξ, η)ψ−

22(ξ, η, k)e−i�η.
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Hence, it is natural to consider ψ−
12 for ξ → −∞:

lim
ξ→−∞

ψ−
12(ξ, η, k) ≡ χ(k, η) =

1
2

∫
dξdη q(ξ, η)ψ−

22(ξ, η, k).

Moreover, it is easy to show that χ(k, η) =
∫

d�ei�ηS(k, �).
We consider (9.163) for ψ−

12 at ξ → −∞. In this limit

iχt + χηη + u2χ− k2χ +
∫

d�χ(�, η)γ1(k − �) = 0. (9.164)

Let us analyze the term with the integral. Expressing γ1(k−�) from (9.162) as

γ1(k − �) =
1
2π

∫
dξ′e−i(k−�)ξ′u1(ξ′, t)

and substituting it in (9.164) yields the purely exponential k-dependence of
the integrand. This means that it is reasonable to multiply this term by
(2π)−1

∫
dkeikξ and integrate in k to have the delta-function δ(ξ − ξ′). As

a result, we obtain

1
2π

∫
dkeikξ

∫
d�χ(�, η)γ2(k − �) = u1(ξ, t)Ŝ(ξ, η).

Here Ŝ(ξ, η) = (1/2π)
∫

d�ei�ξχ(�, η), i.e., Ŝ(ξ, η) represents in fact the Fourier
transform of the spectral function S(k, �):

Ŝ(ξ, η) =
1
2π

∫ ∫
dξdη eikξ+i�ηS(k, �).

Transforming the rest of the terms in (9.164) after multiplying by the above
integral operator, we obtain the linear evolution equation for Ŝ(ξ, η) [162]:

iŜt + Ŝξξ + Ŝηη + (u1 + u2)Ŝ = 0. (9.165)

We should solve this equation with the initial value Ŝ(ξ, η, 0), which in turn is
determined by the initial value q(ξ, η, 0), and the known boundary functions
u1 and u2.

Equation (9.165) allows the separation of variables of the form Ŝ(ξ, η, t) =
X(ξ, t)Y (η, t). This leads to the appearance of the nonstationary linear
Schrödinger equations with the boundary functions as potentials:

iXt + Xξξ + u1(ξ, t)X = 0, iYt + Yηη + u2(η, t)Y = 0. (9.166)

In what follows we will be interested in the purely discrete spectra of (9.166)
(the so-called reflectionless boundaries). It is easy to verify directly that the
orthonormal eigenfunctions Xn(ξ, t) and Yn(η, t) of the discrete spectrum of
(9.166) can be written in a closed form as solutions of the algebraic equations
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Xn +
N1∑

j=1

mnm̄j

μn + μ̄j
exp

[−(μn + μ̄j)ξ + i(μ2
n − μ̄2

j )t
]
Xj

= mne−μn(ξ−iμnt), (9.167)

Yn +
N2∑

j=1

�n�̄j

λn + λ̄j
exp

[−(λn + λ̄j)η + i(λ2
n − λ̄2

j )t
]
Yj

= �ne−λn(η−iλnt), (9.168)

while the potentials are expressed in terms of Xn and Yn as

u1(ξ, t) = −2∂ξ
N1∑

i=1

m̄i exp [−μ̄i(ξ + iμ̄it)]Xi(ξ, t),

u2(η, t) = −2∂η
N2∑

j=1

�̄j exp
[−λ̄j(η + iλ̄jt)

]
Yj(η, t). (9.169)

Evidently, the solutions of (9.167) and (9.168) take the form

Xn(ξ, t) =
N1∑

i=1

[
(11 + Cξ)−1

]
nj

mje−μj(ξ−iμj t),

Yn(η, t) =
N2∑

j=1

[
(11 + Cη)−1

]
nj

�je−λj(η−iλj t), (9.170)

where the Hermitian matrices Cξ and Cη are defined as follows:

(Cξ)ni =
mnm̄i

μn + μ̄i
exp

[−(μn + μ̄i)ξ + i(μ2
n − μ2

i )t
]
,

(Cη)nj =
�n�̄j

λn + λ̄j
exp

[−(λn + λ̄j)η + i(λ2
n − λ̄2

j )t
]
.

Therefore, the spectral function Ŝ(ξ, η, t) is written as

Ŝ(ξ, η, t) =
N1∑

i=1

N2∑

j=1

ρijXi(ξ, t)Yj(η, t) (9.171)

and the complex parameters ρij are determined from the initial conditions:

ρij =
∫ ∫

dξdηŜ(ξ, η, 0)X̄i(ξ, 0)Ȳj(η, 0). (9.172)

Orthonormality of Xn and Yn gives rise to

XnX̄i = ∂ξ
[
(11 + Cξ)−1

]
ni

, YnȲj = ∂η
[
(11 + Cη)−1

]
nj

. (9.173)
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9.3.4 Reconstruction of potential q(ξ, η, t)

The factorized representation (9.171) of Ŝ(ξ, η, t) corresponds to the degener-
acy of the kernel S(k, �) of the integral equations (9.160) that determines the
solution of the nonlocal RH problem. Namely,

S(k, �) =
N∑

i=1

Si(k)S̃i(�). (9.174)

As a result, the second column
(
M+

12,M
+
22

)T
(k) in (9.160) can be written as

(
M+

12

M+
22

)
(k) =

(
0
1

)
−
√

2π
2π

∫
dp

p− (k + i0)
eipξ

N∑

i=1

Si(p)Fi(ξ, η), (9.175)

where

Fi(ξ, η) =
1√
2π

∫
d�ei�ηS̃i(�)

(
M−

11

M−
21

)
(�).

Let us multiply (9.175) by (2π)−1/2
∫

dke−ikξS̄r(k) and integrate in k. This
gives

Gr(ξ, η) =
(

0
1

)
σ̄r(ξ) (9.176)

−
∫

dkS̄r(k)e−ikξ
∑

i

1√
2π

∫
d�σi(�)Fi(ξ, η)

1
2πi

∫
dp

p− (k + i0)
ei(ξ−�)p.

Here

Gr(ξ, η) =
1√
2π

∫
dke−ikξS̄r(k)

(
M+

12

M+
22

)
(k)

and σi(ξ) determines the Fourier transform of Si(k):

σi(ξ) =
1√
2π

∫
dkeikξSi(k).

The last integral in (9.176) gives 2πiθ(ξ − �) exp[ik(ξ − �)]. Then after simple
manipulations with (9.176) we eventually obtain the algebraic equation

Gr(ξ, η) +
N∑

i=1

αri(ξ)Fi(ξ, η) =
(

0
1

)
σ̄i(ξ), (9.177)

where

αri =
∫ ξ

−∞
d�σ̄r(�)σi(�). (9.178)

Performing a similar calculation with the column (M−
11,M

−
21)

T, we obtain
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Fr(ξ, η) + ε

N∑

j=1

βrjGj(ξ, η) =
(

1
0

)
σ̃r(η). (9.179)

Here
βrj(η) =

∫ η

−∞
d�σ̃r(�)¯̃σj(�) (9.180)

and σ̃j(�) is the Fourier transform of S̃j :

σ̃j =
1√
2π

∫
d�ei�ηS̃j(�). (9.181)

Then from (9.177) and (9.179) we find a system of algebraic equations for the
first component fr of Fr:

fr − ε

N∑

j=1

⎛

⎝
N∑

j=1

βrjαji

⎞

⎠ fi = σ̃r. (9.182)

Inserting into (9.161) the factorized form (9.174) of S(k, �), we arrive at the
closed formula for the potential q:

q(ξ, η) = 2
N∑

i=1

σi(ξ)fi(ξ, η). (9.183)

Hence, we have two representation of the Fourier transform of S(k, �, t).
One of them is written in terms of σi and σ̃i, S(ξ, η, t) =

∑
i σi(ξ, t)σ̃i(η, t),

and the other one is given by (9.171). Therefore, we can take

σi(ξ, t) = Xi(ξ, t), σ̃i(η, t) =
N2∑

j=1

ρijYj(η, t). (9.184)

Recall that we should calculate fi(ξ, η) which enters (9.183). Taking advantage
of the representation (9.184) and the orthonormality property (9.173), we
can calculate integrals in (9.178) and (9.180). Then after rather lengthy but
straightforward calculation we obtain the formula for the potential q [162]:

q(ξ, η, t) =
N1∑

i=1

N2∑

j=1

Xi(ξ, t)Yj(η, t)Zij(ξ, η, t), (9.185)

where Zij obeys the matrix algebraic equation Z− εHZ = ρ. Here the matrix
H is given by H = ρ(11 + Cη)−1ρ̄†(11 + Cξ)−1T and the matrix ρ is defined in
(9.172). Solutions of the DS I equation which correspond to the reflectionless
boundaries are called (N1, N2) dromions [162].
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9.3.5 (1, 1) Dromion solution

It is instructive to derive explicitly the simplest (1, 1) dromion solution. It
corresponds to ε = N1 = N2 = 1. In what follows we will omit the summation
subscript 1. In this case equations (9.167) and (9.170) give

X(ξ, t) =
1
2
me−μRξ0eiμIξ+i(μ2

R−μ2
I )tsechμR(ξ + 2μit− ξ0),

Y (η, t) =
1
2
�e−λRη0eiλIη+i(λ2

R−λ2
I )tsechλR(η + 2λIt− η0),

u1(ξ, t) = 2μ2
Rsech2μR(ξ + 2μRt− ξ0),

u2(η, t) = 2λ2
Rsech2λR(η + 2λIt− η0),

where μ = μR +iμI, λ = λR +iλI, and real parameters ξ0 and η0 are defined as

ξ0 =
1
μR

ln
|m|√
2μR

, η0 =
1
λR

ln
|�|√
2λR

.

It is convenient to introduce running coordinates zξ = μR(ξ + 2μIt− ξ0) and
zη = λR(η + 2λIt− λ0). Then

Z = ρ
exp(−zξ − zη) cosh zξ cosh zη

exp(−zξ − zη) cosh zξ cosh zη + |ρ|2/4
and the (1, 1) dromion solution takes the form

q(ξ, η, t) = 4ρ(μRλR)1/2
exp(−iΦ)

4 cosh zξ cosh zη + |ρ|2 exp(zξ + zη)

with the phase

Φ = μIξ + λIη − (μ2
R + λ2

R − μ2
I − λ2

I )t− arg(m�).

This solution describes a localized object in the (ξ, η)-plane which decays ex-
ponentially in all directions in the plane and moves with velocity (−2μI,−2λI).
Therefore, the dromion velocity is completely determined by the boundaries,
while the initial value ρ influences the direction of motion in the (ξ, η)-plane.

Explicit calculation of the (2, 2) dromion solution is too cumbersome to
be reproduced here. Fokas and Santini [162] performed the analysis of the
asymptotic behavior of the (2, 2) dromion. They showed that this solution
decays asymptotically into four single-hump constituents. Though the total
energy of the (2, 2) dromion is conserved, the constituents can exchange energy
among themselves. Besides, dromions do not in general preserve their form
upon interaction.
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Generating solutions via ∂̄ problem

This chapter is devoted to a brief exposition of the ∂̄ formalism, as applied
to nonlinear equations. The first three sections deal with the so-called non-
linear equations with self-consistent sources (or with nonanalytic dispersion
relations). This class of nonlinear equations is physically interesting because
nonanalytic dispersion relations are directly associated with the resonant in-
teraction of radiation with matter. In Sects. 10.1 and 10.2 we consider the
(1+1)-dimensional nonlinear Schrödinger (NLS) and modified NLS equations
with self-consistent sources, respectively, along with their gauge equivalents,
while Sect. 10.3 is devoted to the Davey–Stewartson I equation with a non-
analytic dispersion relation. We analyze these equations by means of the ∂̄
approach. It should be noted that the Riemann–Hilbert (RH) problem could
be applied as well for this aim but, in our opinion, the ∂̄ approach is frequently
the most transparent and leads directly to the final results. In the first three
sections, the ∂̄ formalism is outlined in a rather unusual setting, but we prove
its usefulness for practical calculations.

The last two sections comprise examples of nonlinear equations where
using the ∂̄ problem is necessary. Namely, in Sect. 10.4 we consider the
Kadomtsev–Petviashvili II (KP II) equation and Sect. 10.5 is concerned with
the Davey–Stewartson II (DS II) equations. The exposition in Sect. 10.4 is
fairly standard. Section 10.5 contains some recent results pertaining to mul-
tiple poles of discrete eigenfunctions.

10.1 Nonlinear equations with singular dispersion
relations: 1+1 dimensions

One of the ways to generalize nonlinear equations integrable by the IST
is to add a source (the so-called self-consistent source) to a given equa-
tion. Needless to say, this operation has to preserve the integrability of the
equation. Mel’nikov [329] represented the source as a Fourier transform of
eigenfunctions of the recursion operator associated with the spectral problem.

319
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Claude et al. [90, 295, 293, 291] related the source to the singular (nonana-
lytic) component of the dispersion law which follows from the evolution part
of the Lax pair. Besides, (1+1)-dimensional nonlinear equations with a source
can arise as a result of reductions via the symmetry constraints of (2+1)-
dimensional equations [247, 479]. The importance of the singular dispersion
relations (SDR) stems from the fact that adding a source transforms, as a
rule, the initial-value problem to the initial boundary value problem. As is
well known, boundaries play a vital part in many physical applications.

We start the study of nonlinear equations with SDR from the NLS equation
with a source. A general approach to the solution of the Cauchy problem for
nonlinear equations with SDR associated with the Zakharov–Shabat spectral
problem was discussed by Leon [292] in terms of the RH problem. Our aim
in this section is mainly to demonstrate the basic rules of working within the
framework of the ∂̄ formalism. We will closely follow the formalism used by
Beals and Coifman [42] in their review article. A different approach to the ∂̄
problem can be found in [220].

10.1.1 Spectral transform and Lax pair

We start from the matrix ∂̄ problem in the complex k-plane,

∂̄ψ = ψR, (10.1)

where R(x, t, k) is a spectral transform matrix which will be associated with
a nonlinear equation. For simplicity we omit k̄ in arguments of R(x, t, k) and
ψ(x, t, k), so the quantities like ψ and R are, in general, nonanalytic in some
domains in the k-plane (this may be everywhere in the k-plane). It is the
operator ∂̄ that measures the “departure from analyticity,” when ∂̄ψ �= 0. As
shown in Sect. 1.11, a solution of the ∂̄ problem (10.1) with the canonical
normalization is written as

ψ(k) = 11 +
1

2πi

∫∫
d� ∧ d�̄
�− k

ψ(�)R(�) ≡ 11 + ψRCk. (10.2)

Here Ck is the Cauchy–Green integral operator acting on the left. It transforms
the argument k to � in the function in front of it and integrates the result with
the weight (2πi)−1(�−k)−1 over the whole complex plane. The representation
(10.2) enables us to write formally a solution of the ∂̄ problem (10.1) in terms
of the matrix R:

ψ(k) = 11 · (11−RCk)−1. (10.3)

We will see later that though (10.3) looks rather symbolic, we can do with it
all the manipulations we need.

Define a pairing

〈f, g〉 = 1
2πi

∫∫
dk ∧ dk̄f(k)gT(k), 〈f, g〉T = 〈g, f〉, (10.4)
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where the superscript T means transposition. The pairing (10.4) possesses
easily verified properties:

〈fR, g〉 = 〈f, gRT〉, 〈fCk, g〉 = −〈f, gCk〉. (10.5)

It is important that the space–time dependence of the matrix R(x, t, k)
dictates completely the form of the Lax pair of a given equation. Let the
x-dependence be given by a simple linear equation

Rx = ik[R, σ3]. (10.6)

Then we can perform with account of (10.3) the following calculation:

ψx(k) = 11·(11−RCk)−1RxCk(11−RCk)−1 =ikψ(Rσ3 − σ3R)Ck(11 −RCk)−1

= ikψRσ3Ck(11−RCk)−1 − ikψσ3RCk(11 −RCk)−1.

The first term on the right-hand side is transformed in this way:

ikψRCk =
i

2πi

∫∫
d� ∧ d�̄
�− k

�ψ(�)R(�) =
i

2πi

∫∫
d�∧d�̄

(
1 +

k

�− k

)
ψ(�)R(�)

= i〈ψR, 11〉+ ik(ψRCk) = i〈ψR, 11〉+ ik(ψ − 11) ≡ i〈ψR〉+ ik(ψ − 11) (10.7)

(sometimes we will omit 11 in 〈·, 11〉 unless its presence is important). As regards
the second term, we write RCk(11−RCk)−1 = (11−RCk)−1 − 11; hence,

ψx(k) = i〈ψR〉 − ikσ3(11 −RCk)−1 + ikψσ3.

Now the only problem is concerned with the term k(11 − RCk)−1. We have
from (10.7) kψRCk = 〈ψR〉 + kψ − k; hence, k = 〈ψR〉 + kψ(11 − RCk) and
finally

k(11−RCk)−1 = 〈ψR〉 · (11−RCk)−1 + kψ = (〈ψR〉+ k)ψ. (10.8)

As a result, ψx = −i[σ3, 〈ψR〉]ψ − ik[σ3, ψ]. Introducing a potential

Q =
(

0 q
r 0

)
= −i[σ3, 〈ψR〉], (10.9)

we arrive at the Zakharov–Shabat spectral problem

ψx + ik[σ3, ψ]−Qψ = 0. (10.10)

Hence, the x-equation for R (10.6) with linear dependence on k leads to the
ZS spectral problem.

For the time dependence of R we choose a linear equation as well:

Rt = [R,Ω], (10.11)
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where Ω(k) is a dispersion relation. Suppose Ω(k) comprises both a polyno-
mial part Ωp(k) and a singular (nonanalytic) part Ωs(k). We put

Ω = Ωp + Ωs = αnk
nσ3 +

1
2πi

∫∫
d� ∧ d�̄
�− k

ω(�)σ3. (10.12)

Here αn is a constant and ω(k) is some scalar function. Note that ∂̄Ωs(k)
= ω(k)σ3, in accordance with (1.100). To derive the evolution Lax equation,
we proceed once again from the representation (10.3). First we consider the
polynomial dispersion relation only, Ω = 2ik2σ3. Hence,

ψt = ψRtCk(11 −RCk)−1 = ψRΩCk(11−RCk)−1 − ψΩRCk(11−RCk)−1

= ψRΩCk(11−RCk)−1 − ψΩ(11 −RCk)−1 + ψΩ

= 2i
[
k2ψRCkσ3(11−RCk)−1 − k2ψσ3(11−RCk)−1

]
+ ψΩ.

Note that we cannot factor out k2 from the brackets because different oper-
ators Ckσ3(11 − RCk)−1 and (11 − RCk)−1 act on k2. The term k2ψRCk is
transformed as follows:

k2ψRCk=
1

2πi

∫∫
d� ∧ d�̄
�− k

�2ψ(�)R(�)=
1

2πi

∫∫
d�∧d�̄

(
� + k +

k2

�− k

)
ψ(�)R(�)

= 〈kψR〉+ k〈ψR〉+ k2ψ − k2. (10.13)

This yields

ψt = 2i
[〈kψR〉σ3ψ + 〈ψR〉σ3k(11−RCk)−1 − k2σ3(11 −RCk)−1

]
+ ψΩ.

(10.14)
The expression for k(11 − RCk)−1 was obtained in (10.8). As regards k2

(11−RCk)−1, it follows from (10.13) that

k2 = 〈kψR〉+ k〈ψR〉+ k2ψ(11−RCk)

and hence

k2(11−RCk)−1 =
(〈kψR〉+ 〈ψR〉2 + k〈ψR〉+ k2

)
ψ.

Then we obtain from (10.14)

ψt = −2i
(
[σ3, 〈kψR〉] + iQ〈ψR〉+ ikQ + k2σ3

)
ψ + ψΩ. (10.15)

We can further simplify this equation owing to the relation between 〈kψR〉
and Qx. Indeed,

Qx = −i[σ3, 〈ψR〉x] = −2i〈ψR〉ax.
Here the superscript a means the off-diagonal part of a matrix (the superscript
d will denote the diagonal part). Further,

(ψR)x = −i[σ3, 〈ψR, 11〉]ψR− i[σ3, kψR].
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Hence, 〈ψR〉x = Q〈ψR〉 − i[σ3, 〈kψR〉] and 〈ψR〉ax = Q〈ψR〉d − 2iσ3〈kψR〉a.
Therefore, we derive the following expression for Qx:

Qx = −2iσ3

(
Q〈ψR〉d − 2iσ3〈kψR〉a

)
,

which enables us to express 〈kψR〉a as

〈kψR〉a = −1
4
Qx − i

2
σ3Q〈ψR〉d.

Substituting this formula into (10.15), we obtain the well -known second Lax
equation for the NLS equation:

ψt = 2i(−k2σ3 − ikQ +
1
2
σ3Qx − 1

2
σ3Q

2)ψ + ψΩp.

Now we account for the SDR Ωs (10.12). Again we calculate ψt:
ψt = (ψRΩsCk − ψΩs)(11−RCk)−1 + ψΩs. The first term gives

ψRΩsCk =
1

2πi

∫∫
d� ∧ d�̄
�− k

ψ(�)R(�)
1

2πi

∫∫
dm ∧ dm
m− �

ω(m)σ3.

The denominator is transformed as

1
�− k

1
m− �

=
1

m− k

(
1

�− k
− 1

�−m

)
.

Hence,

ψRΩsCk =
1

2πi

∫∫
d� ∧ d�̄
�− k

ψ(�)R(�)
1

2πi

∫∫
dm ∧ dm
m− k

ω(m)σ3

− 1
2πi

∫∫
dm ∧ dm
m− k

ω(m)
1

2πi

∫∫
d� ∧ d�̄
�−m

ψ(�)R(�)σ3.

The first term of this formula gives [ψ(k) − 11]Ω(k), while the second one
produces

−
∫∫

dm ∧ dm
m− k

ψ(m)ω(m)σ3 + Ω(k),

because the integral over � gives ψRCm = ψ(m)− 11. As a result,

ψt =
1

2πi

∫∫
dm ∧ dm
k −m

ψ(m)ω(m)σ3(11 −RCk)−1 + ψΩs.

How does one calculate (k−m)−1(11−RCk)−1 in this integral? Following our
above experience, we consider first the term (k −m)−1ψRCk:

1
k −m

ψRCk =
1

2πi

∫∫
d� ∧ d�̄
�− k

1
�−m

ψ(�)R(�)
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=
1

k −m

1
2πi

∫∫
d� ∧ d�̄
�− k

ψ(�)R(�)− 1
k −m

1
2πi

∫∫
d� ∧ d�̄
�−m

ψ(�)R(�)

=
1

k −m
[(ψ(k) − 11)− (ψ(m)− 11)] =

1
k −m

[ψ(k)− ψ(m)] .

Hence,
1

k −m
ψ(k)(11 −RCk) =

1
k −m

ψ(m).

Taking the inverse of the last formula yields

1
k −m

(11 −RCk)−1 =
1

k −m
ψ−1(m)ψ(k).

Therefore,

ψt = − 1
2πi

∫∫
d� ∧ d�̄
�− k

ω(�)ψ(�)σ3ψ
−1(�)ψ(k) + ψΩs = Vsψ + ψΩs. (10.16)

Hence, we derived the Lax operator Vs with distinctive squared eigenfunction
structure ψσ3ψ

−1.
In fact, working with the ∂̄ method, we need neither the spectral problem

(10.10) nor the evolution part (10.15) and (10.16) of the Lax pair. All we need
is the ∂̄ problem (10.1) together with the linear equations (10.6) and (10.11)
governing the space–time dependence of the spectral transform R(x, t, k). In-
deed, we will establish later a gauge equivalence of the NLS and Heisenberg
spin chain equations with SDR, derive the recursion operators for them, and
find their soliton solutions without any resort to the Lax pair. It should be
also noted that when searching for the time evolution of spectral data, we use
only the asymptotic of the second Lax operator, i.e., the dispersion relation.
Just this necessary information is contained in the evolution equation (10.11)
for the spectral transform matrix.

10.1.2 Recursion operator

By means of (10.9) and (10.11) we will find the time evolution of the potential
Q:

Qt = −i[σ3, 〈ψR〉t].
Calculation gives

(ψR)t = ∂̄ψt = ∂̄
{
11 · (11−RCk)−1RiCk(11 −RCk)−1

}

= ∂̄
{
ψRtCk(11−RCk)−1

}
= ∂̄

{
ψRt(11−RCk)−1

}
Ck = ψRt(11−RCk)−1.

In performing the last step we made use of the evident relation ∂̄f(k)Ck
= f(k). Therefore, in virtue of the properties (10.5), we can write

Qt = −i
[
σ3〈ψRt(11 −RCk)−1, 11〉] = −i

[
σ3, 〈ψRt, 11 · (11 + RTCk)−1〉] .

(10.17)
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It can be shown, owing to ∂̄(ψ−1)T = −(ψ−1)TRT, that

11 · (11 + RTCk)−1 = (ψ−1)T. (10.18)

Hence,

Qt = −i
[
σ3, 〈ψ(RΩ −ΩR), (ψ−1)T〉] = −i

[
σ3, 〈(∂̄ψ)Ωψ−1, 11〉]

+i
[
σ3, 〈ψΩ, ∂̄(ψ−1)T〉] = −i

[
σ3, 〈(∂̄ψ)Ωψ−1〉+ 〈ψΩ∂̄ψ−1〉]

= −i
[
σ3, 〈∂̄(ψΩpψ

−1)〉 − 〈ψ(∂̄Ωs)ψ−1〉] ,
where we have used Ωs → 0 at k →∞. Taking into account (10.12), we obtain

Qt = −iαn[σ3, 〈∂̄(knψσ3ψ
−1)〉] + i[σ3, 〈ω(k)ψσ3ψ

−1〉]. (10.19)

Denote M(k) = ψσ3ψ
−1. This function satisfies the equation

Mx + ik[σ3,M ]− [Q,M ] = 0. (10.20)

The next steps in deriving the recursion operator are rather standard [148].
Let us write the 2× 2 matrix M as a sum of diagonal and off-diagonal parts,

M = Md + Ma =
1
2
σ3tr(Mσ3) +

1
4

[σ3, [σ3,M ]] . (10.21)

Then (10.20) gives two equations

Md
x = [Q,Ma], Ma

x + 2ikσ3M
a = [Q,Md]. (10.22)

According to the asymptotic condition ψ → 11 at x→∞, we obtain from the
first equation in (10.22) Md = σ3 +∂−1[Q,Ma], which enables us to write the
second equation as

Ma
x + 2ikσ3M

a =
[
Q, σ3 + ∂−1[Q,Ma]

]
. (10.23)

Hence, it is natural to introduce a recursion operator in the form

Λ· = i
2
σ3

(
∂x −

[
Q, ∂−1[Q, ·]]) , (10.24)

which evidently does not depend on k. Then (10.23) gives Ma = −i(Λ−k)−1Q
and

Qt = −αn
[
σ3, 〈∂̄

(
kn(Λ− k)−1

)
Q〉] + i[σ3, 〈ω(k)M(k)〉].

Now we expand (Λ−k)−1 in a series, (Λ−k)−1 = −∑∞
j=1 k

−jΛj−1, and make
use of ∂̄kn−j = πδ(k)δj,n+1. Then

⎡

⎣σ3,

∞∑

j=1

〈∂̄kn−j〉Λj−1Q

⎤

⎦ = −[σ3, Λ
nQ] = −2σ3Λ

nQ.
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As a result, we obtain the hierarchy of equations with SDR associated with the
particular x-dependence (10.6) of the spectral transform (or, in other words,
with the ZS spectral problem):

Qt + 2αnσ3Λ
nQ = i[σ3, 〈ω(k)M(k)〉], (10.25)

Mx = [−ikσ3 + Q,M ].

Let us consider two examples of the initial boundary value problem de-
scribed by the system (10.25).

1. n = 1, α1 = −i, ω(k) = πg(kR)δ(kI), k = kR + ikI,

Q =
1
2

(
0 E
−E∗ 0

)
, M =

i
2

(−n p
p∗ n

)
.

In this case ΛQ = (i/2)σ3Qx. Therefore,

Et + Ex = 〈〈p〉〉, px + 2ikRp = En, nx = −1
2
(Ep̄ + Ēp). (10.26)

Here the double brackets 〈〈p〉〉 =
∫∞
−∞ dkRg(kR)p(kR) stand for the av-

erage over the inhomogeneous broadening with the distribution function
g(kR), when referring to the model of the radiation–matter interaction.
Equations (10.26) are solved with the initial condition for E at t = 0 and
boundary conditions for p and N at x → −∞ or x → +∞. Equations
(10.26) are of the Maxwell–Bloch equation type and describe a number
of phenomena like self-induced transparency [259, 325] and stimulated
Raman scattering [91, 230, 410]. Leon [294] has shown that the system
(10.26) is integrable for arbitrary boundary values.

2. n = 2, Λ2Q = −(1/4)Qxx + (1/2)Q3,

Q =
(

0 E
−E∗ 0

)
, M = i

(−n p
p∗ n

)
.

Equations (10.25) give

iEt+Exx+2|E|2E = 2i〈〈p〉〉, px+2ikRp = −2En, nx = −(Ep̄+ Ēp).
(10.27)

These equations (without inhomogeneous broadening) were derived from
physical motivations by Doktorov and Vlasov [127, 441] to describe the dy-
namics of picosecond optical pulses in a combined resonant-cubic medium.
This system can also be applied to nonlinear interaction of the electro-
static high-frequency wave with an ion-acoustic wave in two-component
homogeneous plasma [90].

10.1.3 NLS–Maxwell–Bloch soliton

Here we will obtain the soliton solution of equations (10.27) within the ∂̄
method. The soliton corresponds to the spectral transform matrix located at
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the points k1 and k̄1 of the complex plane where a solution ψ of the ∂̄ problem
has simple poles. Namely,

R = 2πie−ikσ3x

(
0 cδ(k − k1)

c̄δ(k − k̄1) 0

)
eikσ3x, (10.28)

where c = c(t) and this time dependence should be found from (10.11). As
follows from (10.9), the soliton solution is given by

qs = −2i〈ψR〉12 = −1
π

∫∫
dk ∧ dk̄ψ11(k)R12(k). (10.29)

Substituting the explicit form of R (10.28) into (10.29), we derive a linear
algebraic system

ψ11(k) = 1 +
2ic̄

k − k1
ψ12(k̄1)e2ik̄1x, ψ12 =

2ic
k − k1

ψ11(k1)e−2ik1x.

Solving this system with respect to ψ11(k) and substituting the result into
(10.29) yields

qs = 2ηe−2iξx+iφsech2η(x− x0). (10.30)

Here k1 = ξ + iη, c = −η exp(−2ηx0 + iφ), and x0 and φ are time-dependent.
The time dependence is found from (10.11). Let us denote

Ωs(k1) =
1

2πi

∫∫
d� ∧ d�̄
�− k1

ω(�)σ3 ≡ (ω1 − iω2)σ3.

Then ct = −2c(2ik2
1 + ω1 − iω2). On the other hand, ct = c(−2ηx0t + iφt).

Comparing these two equations, we find

x0 =
(
−4ξ +

ω1

η

)
t + ξ0, φ = −4(ξ2 − η2)t + 2ω2t + φ0, (10.31)

where ξ0 and φ0 are constants. As a result, the soliton solution of the NLS–
Maxwell–Bloch system has the form of the standard NLS soliton (8.32) but
with modulated velocity and phase. This modulation is caused by the res-
onant component of the combined medium and manifests itself through the
frequencies ω1 and ω2. Other quantities p and n are easily calculated with the
known soliton solution (10.30) by means of (10.26).

10.1.4 Gauge equivalence

Up to now we considered the ∂̄ problem with the canonical normalization
ψ(k)→ 11 +O(1/k). To what extent is the demand of the canonical normal-
ization critical ? To answer this question, let us multiply (10.2) by a nondegen-
erate matrix g−1(x, t) from the left [matrix function g(x, t) does not depend
on k] and put ϕ(k) = g−1ψ(k). Then evidently we get

ϕ(k) = g−1(11−RCk)−1. (10.32)
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Calculation of the x-derivative of ϕ yields

ϕx =
(−g−1gx + i〈ϕR〉σ3g − ig−1σ3g〈ϕR〉g

)
ϕ− ikg−1σ3gϕ+ikϕσ3. (10.33)

Now we choose g(x, t) in such a way that the expression in brackets in (10.33)
vanishes. This gives gx + i[σ3, 〈ψR〉]g = 0 or gx = Qg. It means that we can
put g = ψ(k = 0), with ψ being a solution of the ∂̄ problem. Denoting

S(x, t) = g−1σ3g, (10.34)

we obtain from (10.32)

ϕx + ikSϕ− ikϕσ3 = 0. (10.35)

This equation is nothing more than the spectral problem for the Heisenberg
spin chain model [424] which is described by the equation

St =
1
2i

[S, Sxx], S2 = 11. (10.36)

In the same way we could derive the evolution part of the Lax pair for
(10.36) and reproduce the well-known gauge equivalence between the Lax
operators for the NLS and Heisenberg equations [476]. However, because we
work with the ∂̄ problem, we do not need the Lax operators. Within the ∂̄
method, the gauge equivalence is realized as a change of the normalization
condition by means of the function ψ(k = 0).

10.1.5 Recursion operator for Heisenberg spin chain equation
with SDR

To derive the recursion operator for the Heisenberg spin chain equation with
SDR, we start, as in Sect. 10.1.2, from the calculation of the time derivative
of S: St = [S, g−1gt]. Because

g = ψ(k = 0) = 11 +
1

2πi

∫∫
d� ∧ d�̄

�
ψ(�)R(�) = 11 + 〈1

k
ψR, 11〉,

we obtain

gt = 〈1
k
ψRt(11− CkR)−1, 11〉 = 〈ψRt, 1

k
(11 + RTCk)−1〉. (10.37)

We have shown already [see (10.18)] that the operator 11+RTCk is intimately
related to the function (ψ−1)T. Therefore, to calculate (1/k)(11+RTCk)−1 in
(10.37), we begin with

1
k

(ψ−1)TRTCk =
1

2πi

∫∫
d� ∧ d�̄
�− k

1
�
(ψ−1)T(�)RT(�)
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=
1
k

(
1

2πi

∫∫
d� ∧ d�̄
�− k

(ψ−1)T(�)RT(�)− 1
2πi

∫∫
d� ∧ d�̄

�
(ψ−1)T(�)RT(�)

)

=
1
k

[
(ψ−1)TRTCk − (ψ−1)TRTC0

]
=

1
k

[
(ψ−1)T(0)− (ψ−1)T(k)

]
,

because (ψ−1)TRTCk = 11− (ψ−1)T. Therefore, (1/k)(ψ−1)T(11+RTCk)−1 =
k−1(ψ−1)T(0), or

1
k
(11 + RTCk)−1 =

1
k
ψT(0)(ψ−1)T(k). (10.38)

Continuing the calculation in (10.37), we get

gt = 〈ψRt, 1
k
ψT(0)(ψ−1)T(k)〉 = 〈1

k
ψRΩψ−1, 11〉g − 〈1

k
ψΩR, (ψ−1)T〉g

= 〈1
k

(∂̄ψ)Ωψ−1, 11〉g+〈1
k
ψΩ, ∂̄(ψ−1)T〉g = 〈1

k
∂̄(ψΩpψ−1)〉g−〈1

k
ωsψσ3ψ

−1〉g.
Consider first the polynomial dispersion relation Ωp = αnk

nσ3. Because
g(x, t) does not depend on k, we can insert it into the brackets 〈· · ·〉. Then
g−1gt = αn〈(1/k)∂̄(knϕσ3ϕ

−1)〉. As a result,

St = αn

[
S, 〈1

k
∂̄(knϕσ3ϕ

−1)〉
]
. (10.39)

Denote ϕσ3ϕ
−1 = M, then Mx = −ik[S,M]. Let us introduce a moving

trihedral element σ̃± = g−1σ±g and σ̃3 = g−1σ3g = S, where σ± = σ1 ± iσ2

are Pauli matrices, and a covariant derivative

∇xM =Mx + [g−1gx,M].

The trihedral elements are covariantly constant, ∇xσ̃α = 0; therefore, we can
write ∇−1

x

∑
α σ̃αQα =

∑
α σ̃α

∫ x dyQα(y). It can be easily shown that g−1gx
is written in terms of S: g−1gx = (1/4)[S, Sx]; hence,

∇xM = −ik[S,M] +
1
4

[S, [S,M]] . (10.40)

Now we decompose the 2 × 2 matrix M into “diagonal” and “off-diagonal”
parts,

M =Md +Ma =
1
2
S tr(MS) +

1
4

[S, [S,M]] ;

cf. (10.21). The quotation marks are relevant because diagonality and off-
diagonality are used here with respect to the moving trihedral elements. In
other words, S = Sd, [Sd,Md] = 0, [S,Ma] = 2SMa, etc., but the upper
indices d and a do not mean the usual diagonality and off-diagonality.
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Decomposing (10.40) yields

∇xMd =
1
4

[[S, Sx],Ma] , ∇xMa + 2ikSMa =
1
4
[
[S, Sx],Md

]
. (10.41)

Hence,

Md = S +
1
4

∫ x

dy [[S, Sy],Ma(y)] .

Inserting this Md into the second equation in (10.41), we get

∇xMa + 2ikSMa =
1
4

[[S, Sx], S] +
1
16

[
[S, Sx],

∫ x

dy [[S, Sy],Ma]
]
.

The first term on the right-hand side gives −Sx. Introduce now the recursion
operator Λ′:

Λ′· = i
2

(
∇x − 1

16

[
[S, Sx],

∫ x

dy [[S, Sy], ·]
])

.

We have (Λ′ − k)Ma = −(i/4)[S, Sx] and therefore

Ma = − i
4

(Λ′ − k)−1 [S, Sx].

As a result, equation (10.39) yields (n ≥ 1)

St = 2αnS〈∂̄(kn−1Ma)〉 = i
2
αnS〈∂̄

(
kn−1

∞∑

m=1

k−m
)
〉Λ′m−1[S, Sx]

=
i
2
αnπS〈δ(k)〉

∞∑

m=1

δmnΛ
′m−1[S, Sx] = − i

2
αnSΛ

′n−1[S, Sx],

because ∂̄(k−n) = πδ(k)δn1. Hence, the Heisenberg spin chain hierarchy with
SDR is given by

St +
i
2
αnSΛ

′n−1[S, Sx] = −2S〈1
k
ωs(k)Ma〉, (10.42)

∇xMd =
1
4

[[S, Sx],Ma] , ∇xMa + 2ikSMa =
1
4
[
[S, Sx],Md

]
.

The Heisenberg spin chain equation with SDR corresponds to n = 2 and
α2 = −2i.

Let us compare the recursion operators for the NLS and Heisenberg equa-
tions:

(Λ − k)Ma = −iQ and (Λ′ − k)Ma = − i
4
[S, Sx].

It is trivial to show that the right-hand sides are interconnected by the gauge
transformation, (1/4)[S, Sx] = g−1Qg. Therefore, the same connection should
exist for the recursion operators, Λ′ = g−1Λg. We omit rather technical cal-
culation that proves this fact.
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10.2 Nonlinear evolutions with singular dispersion
relation for quadratic bundle

In this section we extend the approach developed in Sect. 10.1 to the case of
the spectral transform matrix whose x-evolution is dictated by the quadratic-
in-k equation [126]. We saw in the previous section that the linear-in-k equa-
tion Rx = ik[R, σ3] leads to the ZS spectral problem. Hence, we can expect
that the present case of k2 will lead us to equations intimately related to
the modified NLS equation which was analyzed in Chap. 8. We know from
this analysis that the modified NLS equation is noncanonical (in the sense of
the RH normalization condition) in the class of equations integrable by the
quadratic bundle. It will be seen that the same noncanonicity occurs for the
∂̄ problem.

10.2.1 ∂̄ Problem and recursion operator

As in Sect. 10.1, we begin with the ∂̄ problem

∂̄ψ(k) = ψ(k)R(k), ψ(k) = 11 +O(1/k), k →∞. (10.43)

Consider the spectral transform as an off-diagonal matrix even in k, R(−k)
= R(k). This condition resembles the parity property of the Jost solutions.
The spatial and temporal dependences of R(k) are given by

Rx =
i
α

(k2 + β)[R, σ3], Rt = [R,Ω], (10.44)

where α and β are real parameters, and the dispersion relation Ω = Ωp + Ωs

includes both the polynomial Ωp and singular Ωs parts,

Ωp = ωpσ3 =
J∑

j=0

γ2jk
2jσ3, Ωs =

1
2πi

∫∫
d� ∧ d�̄
�2 − k2

�2ω(�2)σ3, ∂̄Ωs = ωs(k2).

(10.45)
As before, the solution of the ∂̄ problem (10.43) with the canonical normal-
ization is given by the Cauchy–Green integral formula

ψ(k) = 11 +
1

2πi

∫∫
d� ∧ d�̄
�− k

ψ(�)R(�) ≡ 11 + ψRCk, (10.46)

or
ψ(k) = 11 · (11−RCk)−1 (10.47)

with the diagonal and off-diagonal parts of ψ obeying the parity properties

ψd(−k) = ψd(k), ψa(−k) = −ψa(k). (10.48)
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In view of (10.44), differentiation of (10.47) in x gives

ψx = − i
α

(k2+β)[σ3, ψ]− i
α
k[σ3, 〈ψR〉]ψ− i

α
[σ3, 〈ψR〉]〈ψR〉ψ− i

α
[σ3, 〈kψR〉]ψ.

(10.49)
In virtue of the parity property, 〈ψR〉 is an off-diagonal matrix, while 〈kψR〉
is the diagonal one leading to [σ3, 〈kψR〉] = 0. Define a potential Q:

Q(x, t) =
(

0 q
−q̄ 0

)
= − i

α
[σ3, 〈ψR〉]. (10.50)

Then (10.49) gives the linear spectral problem of the Wadati–Konno–Ichikawa
(WKI) type:

ψx = − i
α

(k2 + β)[σ3, ψ] + kQψ − iα
2

Q2σ3ψ. (10.51)

Now we obtain a hierarchy of evolutions Qt. From (10.50) we get
Qt = −iα−1[σ3, 〈ψR〉t]. The right-hand side is transformed as

(ψR)t = ∂̄ψt = ∂̄
[
11 · (11 −RCk)−1

t

]
= ∂̄

[
ψRtCk(11−RCk)−1

]

= ∂̄
[
ψRt(11− CkR)−1

]
Ck = ψRt(11 − CkR)−1.

Continuing, we get

Qt = − i
α

[σ3, 〈ψRt(11 − CkR)−1, 11〉] = − i
α

[σ3, 〈ψRt, 11 · (11 + RTCk)−1〉].

Here we take into account once again that 11 · (11 + RTCk)−1 = (ψ−1)T(k).
Consequently, we arrive at

Qt = − i
α

[
σ3, 〈ψRΩψ−1, 11〉 − 〈ψΩ, (ψ−1)TRT〉]

= − i
α

[
σ3, 〈∂̄(ψΩpψ−1)〉 − 〈(∂̄Ωs)ψ−1〉]

= − i
α

⎡

⎣σ3,

n∑

j=0

γ2j〈∂̄(k2jM)〉
⎤

⎦ +
i
α

[
σ3, 〈kωs(k2)M〉] ,

where M(k) = ψ(k)σ3ψ
−1(k). This function satisfies the associated spectral

equation

Mx +
i
α

(
k2 + β +

1
2
α2Q2

)
[σ3,M ]− k[Q,M ] = 0 (10.52)
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and can be expanded in the asymptotic series

M = σ3 +
∞∑

�=1

M (�)

k�
,

with M (2�+1) being off-diagonal and M (2�) being diagonal matrices. They
satisfy the following equations:

M (2�)
x = [Q,M (2�+1)],

M (2�−1)
x = − i

α
[σ3,M

(2�+1)]− i
α

(
β +

1
2
α2Q2

)
[σ3,M

(2�−1)] + [Q,M (2�)].

Hence,

M (2�) = σ3δ�0 +
∫ x

dx[Q,M (2�+1)]

and

M (2�+1) = (11 +L)
(

i
2
ασ3∂x − β − 1

2
α2Q2

)
M (2�−1), � ≥ 1, M (1) = iαQ.

Here

L· = − iα
2
σ3

[
Q,

∫ x

dx[Q, ·]
]
.

Now we define the recursion operator

Λ = (11 + L)
(

i
2
ασ3∂x − β − 1

2
α2Q2

)
.

Then it follows that M (2�+1) = iαΛ�Q and Ma = −iαk(Λ − k2)−1Q. Hence,
the hierarchy of nonlinear evolution equations with SDR associated with the
quadratic equation (10.44) is represented by

Qt = −2σ3

n∑

j=0

γ2jΛ
jQ +

2i
α
σ3〈kω(k2)Ma(k)〉

together with the spectral equation (10.52).
Putting n = 2, γ0 = β2γ4, γ2 = 2βγ4, and γ4 = 2i/α2, we obtain the non-

linear equation corresponding to the WKI spectral problem with the canonical
normalization and with SDR:

iQt + σ3Qxx + iαQQxQ + 2βσ3Q
3 +

1
2
α2σ3Q

5 = − 2
α
〈kω(k2)Ma〉. (10.53)

In order to find the soliton solution to equations (10.53) and (10.52), we
take the spectral transform R in the form

R(k) = 2πiE−1

(
0 c [δ(k − k1) + δ(k + k1)]

c̄
[
δ(k − k̄1) + δ(k + k̄1)

]
0

)
E,

(10.54)
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where E = exp
[
(i/α)(k2 + β)σ3x

]
and c = c(t). This choice of R is compatible

with the parity property. Substituting (10.54) into (10.46), we find explicitly
the matrix ψ:

ψ =

⎛

⎜⎜⎝

k2 − k2
1

k2 − k̄2
1

+
k2
1 − k̄2

1

k2 − k̄2
1

Δ−1 4ick
k2 − k2

1

Δ−1 exp
(
−2i

α
(k2

1 + β)x
)

4ic̄k
k2 − k2

1

Δ̄−1 exp
(

2i
α

(k̄2
1 + β)x

)
k2 − k̄2

1

k2 − k2
1

+
k̄2
1 − k2

1

k2 − k2
1

Δ̄−1

⎞

⎟⎟⎠ ,

(10.55)

with

Δ(x, t) = 1 +
|c|2k̄2

1

ξ2η2
e(8/α)ξηx, k1 = ξ + iη.

The time dependence c(t) is found from the second equation in (10.44) and
gives c(t) = c0 exp

{
4[ν′

p + ν′
s − i(ν′′

p + ν′′
s )]t

}
, c0 = const. Here

ν′
p =

4ξη
α2

(ξ2 − η2 + β), ν′′p =
1
α2

[
(ξ2 − η2 + β)2 − 4ξ2η2

]
,

1
4π

∫∫
d� ∧ d�̄
�2 − k2

1

�2ωs(�2) = ν′
s − iν′′

s .

Inserting ψ (10.55) and R (10.54) into (10.50), we immediately obtain the
soliton solution (k1 = |k1|eiμ, |c0||k1| = ξη eρ, ξη > 0)

qs(x, t) = − 4ξη
α|k1| exp

[
−i

(
αν′p
2ξη

x + 4(ν′′
p + ν′′

s )t + μ

)]
(10.56)

×sech
[
4ξη
α

(
x + α

ν′
p + ν′

s

ξη
t

)
+ ρ− iμ

]
.

Equation (10.53) being canonical within the class of equations integrable
via the quadratic bundle has no physical applications. We will show next
that the physically important modified NLS equation follows from (10.53) by
means of a gauge transformation. In fact, this transformation is reduced to a
change of the normalization of the ∂̄ problem.

10.2.2 Gauge transformation

To obtain the integrable modified NLS equation with a source, we per-
form a gauge transformation ψ = gψ′ with a function g(x, t) = ψ(k = 0);
hence, we arrive at the ∂̄ problem with the normalization g−1(x, t),
ψ′ = g−1(x, t) + O(1/k), and with the same matrix R. It is not difficult
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to see that at the same time Λ′ = g−1Λg and the system of equations (10.52)
and (10.53) transforms to

iQ′
t + σ3Q

′
xx − iα(Q′3)x + 2βσ3Q

′3

= −
〈
ωs(k2)

(
k

α
[σ3,M

′a(k)] + i[Q′,M ′d(k)]
)〉

, (10.57)

M ′
x +

[
i
α

(k2 + β)σ3 − kQ′,M ′
]

= 0.

Here Q′ = g−1Qg and M ′ = g−1Mg. Let ωs = iaπδ(Im k1)δ
[
(Re k1)2 − γ2

]
,

a, γ ∈ Re, and

Q′ =
(

0 E
−Ē 0

)
, M ′(γ) =

(−n p
p̄ n

)
(γ).

Then we obtain the following physically interesting system (the modified NLS
equation with SDR),

iEt + Exx + iα(|E|2E)x − 2β|E|2E =
ia
α
p− a

γ
En, (10.58)

px +
2i
α

(γ2 + β)p = 2γEn, nx = −γ(E p̄ + Ēp),
which describes a propagation of a subpicosecond optical pulse with the com-
plex envelope E in a nonlinear fiber containing resonant two-level impurities;
p and n are polarization and population difference,s respectively (a, α, β, and
γ are real parameters). The soliton solution to (10.58) follows immediately
from (10.56) as Es = (g22/g11)qs. Hence, we get

Es(x, t) =
(
Δ(x, t)
Δ̄(x, t)

)2

qs(x, t).

The N -soliton solution can be found in the same way with the use of an
evident generalization of the spectral transform matrix R. Equations (10.58)
were derived from physical arguments in [462].

10.3 Nonlinear equations with singular dispersion
relation: 2+1 dimensions

In the previous sections we elaborated a method to construct nonlinear SDR
equations in 1+1 dimensions. Now we demonstrate how to generalize this ap-
proach to 2+1 dimensions. As shown by Boiti et al. [61], the SDR equations
in 2+1 dimensions possess a number of peculiarities, the main one being the
absence of an explicit expression for the second Lax operator T2 = ∂t − V .
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These authors proposed a (2+1)-dimensional generalization of the Maxwell–
Bloch equations in the form of a rather complicated system of four equations.
The approach of [61] was essentially based on the function V given implic-
itly. On the other hand, we know that the ∂̄ formalism does not rely on the
Lax representation. Therefore, it is seems reasonable to use the ∂̄ method
to derive the above class of equations, without making direct use of the
function V .

This program realized below relies on the bilocal approach initiated by
Konopelchenko and Dubrovsky [243] and elaborated to a full extent by Fokas
and Santini [161, 384]. It is precisely the bilocal formalism that allows us to
generate in a natural manner (2+1)-dimensional counterparts of many struc-
tures which successfully work in 1+1 dimensions.

10.3.1 Nonlocal ∂̄ problem

Our starting point is the nonlocal ∂̄ problem

∂̄ψ(k) =
∫∫

d� ∧ d�̄ψ(�)R(k, �), k, � ∈ C, ψ(k) = 11 +O(1/k), k →∞,

(10.59)

where R(k, �) is a distribution in C
2. We denote the integral in (10.59) as

ψ(k)RkF , where F is an integral operator acting on the left in accordance
with (10.59); hence,

∂̄ψ(k) = ψ(k)RkF. (10.60)

A solution of the ∂̄ problem is given, as usual, by the Cauchy–Green integral:

ψ(k) = 11 +
1

2πi

∫∫
d� ∧ d�̄
�− k

∫∫
dm ∧ dm̄ψ(m)R(�,m)

= 11 +
1

2πi

∫∫
d� ∧ d�̄
�− k

(ψ(�)R�F ) = 11 + ψ(k)RkFCk. (10.61)

Therefore, a solution of the ∂̄ problem is compactly written as

ψ(k) = 11 · (11−RkFCk)−1. (10.62)

The pairing is defined as for 1+1 dimensions (10.4), except for the property
〈ψRkF, φ〉 = 〈ψ, φR̂kF 〉, where R̂(k, �) = RT(�, k).

Assume a linear parametric dependence of R(k, �) on spatial variables of
the form

∂xR(k, �) = i�σ3R(k, �)−ikR(k, �)σ3, ∂yR(k, �) = i(k−�)R(k, �). (10.63)
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Now we show that this choice of the dependence of R(k, �) on spatial variables
leads to the ZS spectral problem on the plane. Differentiating (10.62) in x, we
obtain ∂xψ = ψ(∂xRk)FCk(11−RkFCk)−1. By means of the definitions of the
integral operators F and Ck and (10.63) we perform the following calculation:

ψ(∂xRk)FCk =
1

2πi

∫∫
d� ∧ d�̄
�− k

∫∫
dm ∧ dm̄ψ(m)∂xR(�,m)

=
1

2πi

∫∫
d� ∧ d�̄
�− k

∫∫
dm ∧ dm̄ψ(m) [σ3R(�,m)−R(�,m)σ3]

=
1

2πi

∫∫
d� ∧ d�̄
�− k

(i�ψσ3R�F )− 1
2πi

∫∫
d� ∧ d�̄ i

(
1 +

k

�− k

)
(ψR�F )σ3.

Since we have from (10.61) ψRkFCk = ψ − 11, then (10.63) and the evident
relation RkFCk(11 −RkFCk)−1 = (11−RkFCk)−1 − 11 yield

∂xψ = −ikψσ3 − i〈ψRkF 〉σ3ψ + ikσ3(11−RkFCk)−1. (10.64)

Similarly,
∂yψ = ikψ + i〈ψRkF 〉ψ − ik(11−RkFCk)−1. (10.65)

Adding (10.64) and (10.65) yields

∂xψ + σ3∂yψ − ik[σ3, ψ]− i[σ3, 〈ψRkF 〉]ψ = 0. (10.66)

Hence, if we identify
−i[σ3, 〈ψRkF 〉] = Q(x, y) (10.67)

with the potential, then (10.66) gives the ZS spectral problem on the plane:

(∂x + σ3∂y + Q)ψ − ik[σ3, ψ] = 0. (10.68)

Note that our formalism works much easier in 2+1 dimension than in 1+1
dimensions. Indeed, we do not need to transform terms like k(11−RkFCk)−1

in (10.64) and (10.65) because they cancel each other in the combination
(∂x + σ3∂y)ψ.

The time dependence of R(k, �) is given, as usual, by a linear equation

∂tR(k, �) = R(k, �)Ω(k)−Ω(�)R(k, �). (10.69)

Here Ω(k) is a matrix-valued dispersion relation. It consists of a holomor-
phic (polynomial) part Ωp(k) and a nonanalytic (singular) part Ωs(k). It is
instructive to derive the evolution linear problem ∂tψ = V ψ + ψΩ. It follows
from (10.60) and (10.69) that

∂tψ = ψ(∂tR)FCk(11−RkFCk)−1 = (ψRkFΩCk−ψΩRkFCk)(11−RkFCk)−1

= (ψRkFΩCk − ψΩ)(11 −RkFCk)−1 + ψΩ, (10.70)
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which gives
V ψ = (ψRkFΩCk − ψΩ)(11 −RkFCk)−1.

In order to reveal peculiarities of the Lax operator V , it is sufficient to restrict
ourselves to consideration of the singular part of the dispersion relation. Let

Ωs(k) =
1

2πi

∫∫
d� ∧ d�̄
�− k

ω(�)σ3, ∂̄Ω(k) = ω(k)σ3.

The calculation yields

V (k)ψ(k)(11 −RkFCk) =
1

2πi

∫∫
d� ∧ d�̄
�− k

[ψ(�)R�F ]Ω(�)− ψΩ

=
1

2πi

∫∫
d� ∧ d�̄
�− k

∫∫
dm ∧ dm̄ψ(m)R(�,m)

1
2πi

∫∫
ds ∧ ds̄
s− �

ω(s)σ3 − ψΩ.

The denominator is written as

1
(�− k)(s− �)

=
1

s− k

(
1

�− k
− 1

�− s

)
.

Then we have
V (k)ψ(k)(11 −RkFCk)

=
1

2πi

∫∫
d� ∧ d�̄
�− k

∫∫
dm ∧ dm̄ψ(m)R(�,m)

1
2πi

∫∫
ds ∧ ds̄
s− k

ω(s)σ3

− 1
2πi

∫∫
ds ∧ ds̄
s− k

ω(s)
1

2πi

∫∫
d� ∧ d�̄
�− s

∫∫
dm ∧ dm̄ψ(m)R(�,m)σ3 − ψΩ

= ψRkFCkΩ(k)− 1
2πi

∫∫
ds ∧ ds̄
s− k

ω(s)(ψRsFCs)σ3−ψΩ = −ω(k)ψ(k)σ3Ck,

where we have used ψRsFCs = ψ(s)− 11. Hence,

V (k)ψ(k) = −ω(k)σ3Ck(11−RkFCk)−1.

Multiplying this relation by (11 − RkFCk) and applying the ∂̄ operator, we
obtain

(∂̄V )ψ + V (ψRkF )− V ψRkF = −ψ∂̄Ωs,

which gives the integral equation for the Lax function V [61]:

∂̄V (k) = −ψωs(k)ψ−1+
∫∫

d�∧d�̄ [V (�)− V (k)]ψ(�)R(k, �)ψ−1(k). (10.71)

Hence, the function V is known only within a solution of the integral equation.
Note that (10.71) includes the inverse function ψ−1. However, in 2+1

dimensions (in contrast to 1+1 dimensions), there does not exist a simple
equation [like (10.68)] for ψ−1. Hence, a problem arises of finding a natural
(2+1)-dimensional counterpart of the inverse function well defined in 1+1 di-
mensions. We will see next that such a function does exist and, moreover, that
our formalism unambiguously suggests a true choice of this function.
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10.3.2 Dual function

Let us calculate the time evolution of Q given explicitly by (10.67):

∂tQ = −i[σ3, 〈∂t(ψRkF )〉].
The right-hand side can be transformed as follows:

∂t(ψRkF ) = V ψRkF + ψRkFΩ.

Further calculation, owing to (10.70), yields

∂t(ψRkF ) = ψRkFΩCk(11−RkFCk)−1RkF − ψΩ(11 −RkFCk)−1RkF

+ψRkFΩ = ψRkFΩ(11 − CkRkF )−1 − ψΩRkF (11− CkRkF )−1.

Hence,

∂tQ = −i[σ3, 〈ψRkFΩ(11 − CkRkF )−1, 11〉 − 〈ψΩRkF (11− CkRkF )−1, 11〉].
Taking into account the pairing properties, we get

∂tQ = −i[σ3, 〈ψRkFΩ, 11 · (11 + R̂kFCk)−1〉 − 〈ψΩ, 11 · (11 + R̂kFCk)−1R̂kF 〉].
(10.72)

Now we introduce a dual function ψ̃(k) by means of the relation [120]

ψ̃T = 11 · (11 + R̂kFCk)−1. (10.73)

The ∂̄ problem for the dual function has the form

∂̄ψ̃(k) = −
∫∫

d� ∧ d�̄R(�, k)ψ̃(�), or ∂̄ψ̃T = −ψ̃T(k)RkF (10.74)

and ψ̃(k) satisfies the dual spectral problem

∂xψ̃ + ∂yψ̃σ3 − ψ̃Q− ik[σ3, ψ̃] = 0. (10.75)

In order to derive (10.74), we proceed from ψ̃T = 11− ψ̃TR̂kFCk and take into
account the identity ∂̄f(k)Ck = f(k). Then

∂̄ψ̃T = −ψ̃TR̂kF = −
∫∫

d� ∧ d�̄ψ̃T(�)R̂(k, �)

= −
∫∫

d� ∧ d�̄ψ̃T(�)RT(�, k) = −
∫∫

d� ∧ d�̄[R(�, k)ψ̃(�)]T

and (10.74) follows. The derivation of (10.75) is slightly more cumbersome.
Differentiating (10.73) in x, we find ∂xψ̃

T = −ψ̃T∂xR̂kFCk(11 + R̂kFCk)−1.
Accounting for R̂(k, �) = RT(�, k), we obtain from (10.63)

∂xR̂(k, �) = ikR̂(k, �)σ3 − i�σ3R̂(k, �), ∂yR̂(k, �) = −i(k − �)R̂(k, �).
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Then following the derivation of the Zakharov–Shabat spectral problem, we
obtain

∂xψ̃
T = ikψ̃Tσ3 − i〈ψ̃TR̂kF, 11〉σ3ψ̃

T − ikσ3(11 + R̂kFCk)−1

and

∂xψ̃ = ikσ3ψ̃ − iψ̃σ3〈11, ψ̃TR̂kF 〉 − ik
(
(11 + R̂kFCk)−1

)T

σ3.

Similarly,

∂yψ̃ = −ikψ̃ + iψ̃〈11, ψ̃TR̂kF 〉+ ik
(
(11 + R̂kFCk)−1

)T

.

Hence,
∂xψ̃ + ∂yψ̃σ3 − ik[σ3, ψ̃] + iψ̃[σ3, 〈11, ψ̃TR̂kF 〉] = 0.

Now we need a connection between 〈11, ψ̃TR̂kF 〉 and Q. It can be found as
follows:

〈ψRkF, 11〉 = 〈11 · (11 −RkFCk)−1RkF, 11〉 = 〈11 · (11−RkFCk)−1, R̂kF 〉

= 〈11, R̂kF (11 + R̂kFCk)−1〉 = 〈11, 11 · (11 + R̂kFCk)−1R̂kF 〉 = 〈11, ψ̃TR̂kF 〉.
Hence,

Q = −i[σ3, 〈ψRkF, 11〉] = −i[σ3, 〈11, ψ̃TR̂kF 〉]
and we arrive at the spectral equation (10.75).

Taking into account the above relations concerning the dual function, we
write the evolution (10.72) in the form

∂tQ = −i[σ3, 〈ψRkFΩ, ψ̃〉 − 〈ψΩ, ψ̃TR̂kF 〉] = −i[σ3, 〈(∂̄ψ)Ωψ̃〉+ 〈ψΩ∂̄ψ̃〉].

Finally, dividing the dispersion relation into the regular and singular parts,
we obtain under the condition Ωs(k)→ 0 for k →∞

∂tQ = −i[σ3, 〈∂̄(ψΩpψ̃〉 − 〈ωsψσ3ψ̃〉]. (10.76)

As a result, it is the dual function ψ̃ that is a true (2+1)-dimensional gener-
alization of inverse functions. It should be stressed that the definition (10.73)
of the dual function arises naturally within the framework of the formalism
based on the representation (10.62).

10.3.3 Recursion operator

To derive the recursion operator, we introduce a bilocal object [243]

M12(x, y1, y2, k) = ψ(x, y1, k)σ3ψ̃(x, y2, k) ≡ ψ1σ3ψ̃2.
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The function M12 satisfies the equation

∂xM12 +σ3∂y1M12 +∂y2M12σ3− ik[σ3,M12]+Q1M12−M12Q2 = 0, (10.77)

where Qi ≡ Q(x, yi); hence, (10.76) takes the form

δ12∂tQ2 = −iαnδ12[σ3, 〈∂̄(knM12)〉] + iδ12[σ3, 〈ω(k)M12〉], (10.78)

where δ12 = δ(y1 − y2). Following [384], we introduce the notations

P12M12 = ∂xM12 + σ3∂y1M12 + ∂y2M12σ3, Q±
12M12 = Q1M12 ±M12Q2.

(10.79)
Let Md

12 and Ma
12 be the diagonal and off-diagonal parts of the matrix M .

Then (10.77) and (10.79) yield

P12M
d
12 + Q−

12M
a
12 = 0, P12M

a
12 − 2ikσ3M

a
12 + Q−

12M
d
12 = 0. (10.80)

Because Md
12 = σ3−P−1

12 Q−
12M

a
12, the second equation in (10.80) is written in

the form (Λ − k)Ma
12 = (2i)−1Q+

12 · 11 [Q+
12 · 11 = Q1 + Q2 in accordance with

the definition (10.79)], where the operator Λ is defined as

Λ =
1
2i
σ3(P12 −Q−

12P
−1
12 Q−

12).

Then Ma
12 = (2i)−1(Λ − k)−1Q+

12 · 11 and after the expansion (Λ − k)−1

= −∑∞
m=1 k

−mΛm−1 we can write the polynomial contribution to ∂tQ in
(10.78) as

−iαnδ12[σ3, 〈∂̄(knM12)〉] = αnσ3δ12

∞∑

m=1

〈∂̄kn−m〉Λm−1Q+
12 · 11

= − i
2
αnσ3δ12Λ

nQ+
12 · 11.

Now we have all we need to formulate a closed system of equations de-
scribing the evolution of the potential Q with account for both parts of the
dispersion relations:

δ12∂tQ2 = − i
2
αnσ3δ12Λ

nQ+
12 · 11 + iδ12[σ3, 〈ωs(k)M12〉],

P12M12 − ik[σ3,M12] + Q−
12M12 = 0. (10.81)

Here the operator Λ plays the role of a recursion operator (more precisely, Λ
is related to the true recursion operator by means of σ3). If M12 = σ3 and
ωs(k) = 0, we get from (10.81) the hierarchy including the Davey–Stewartson I
equation derived by Santini and Fokas [384] on the basis of an integral repre-
sentation for the Lax evolution operator V .

For Ωp = 0 the system (10.81) takes the form

δ12∂tQ2 = iδ12[σ3, 〈ωs(k)M12〉], (10.82)

P12M12 − ik[σ3,M12] + Q−
12M12 = 0.

It is seen that the structure of this system is similar to that (10.25) with
αn = 0; hence, we can treat (10.82) as the Maxwell–Bloch equation in 2+1
dimensions. Its soliton solution can be found in [61].
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10.4 Kadomtsev–Petviashvili II equation

In the previous sections we applied the ∂̄ formalism to solve some problems
for nonlinear equations in 1+1 and 2+1 dimensions. Though this approach
has proved its efficiency, the ∂̄ formalism was not absolutely necessary to solve
these problems. In particular, the RH problem could be applied equally well
for this aim.

The present section is devoted to analysis of the KP II equation. The KP II
equation plays a distinctive role in the theory of nonlinear equations. It is the
KP II equation that demonstrated for the first time the nonuniversality of the
nonlocal RH problem for solving nonlinear equations.

Ablowitz et al. [1] showed in a beautiful paper that the inverse problem
for the KP II equation can be successfully solved by means of the ∂̄ problem.
Following this paper, we demonstrate in this section the main steps in realizing
the program for solution of the KP II equation in the framework of the ∂̄
method.

10.4.1 Eigenfunctions and scattering equation

The KP II equation

(ut + 6uux + uxxx)x + 3uyy = 0 (10.83)

describes the evolution of weakly nonlinear, weakly dispersive, and weakly
two-dimensional water waves (all these effects are of the same order) when
gravity dominates surface tension. The physical derivation of the KP II equa-
tion can be found in [3]. The KP II equation represents the compatibility
condition of two linear Lax equations

− ψy + ψxx + uψ = 0, (10.84)
ψt + 4ψxxx + 6uψx + 3uxψ + 3(∂−1

x uy)ψ = 0,

where ∂−1
x f = (1/2)

(∫ x
−∞−

∫∞
x

)
dx′f(x′). In order to introduce a spec-

tral parameter, we transform the Lax pair (10.84) to the function m(x, y, k)
= ψ(x, y) exp(−ikx+ k2y). As a result, we will work with the Lax pair of the
form

− my + mxx + 2ikmx + um = 0, (10.85)
mt + 4mxxx + 12ikmxx − 12k2mx + 6umx + 6ikum + 3uxm
+3(∂−1

x uy)m + (α(k) − 4ik3)m = 0, (10.86)

where α(k) is an arbitrary function. As usual, we choose two linearly inde-
pendent solutions of (10.85) with zero potential:

M0 = 1, N0 = exp
[−i(k + k̄)x + (k2 − k̄2)y

]
.
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One of them, M0, provides the canonical normalization of the solution M of
the full spectral equation (10.85):

M(x, y, k) = 1 +
∫∫ ∞

−∞
dx′dy′G(x− x′, y − y′, k)u(x′, y′)M(x′, y′, k), (10.87)

which is bounded for all complex k. The other solution reads

N(x, y, k) = exp[−i(k + k̄)x + (k2 − k̄2)y] (10.88)

+
∫∫ ∞

−∞
dx′dy′G(x − x′, y − y′, k)u(x′, y′)N(x′, y′, k).

Here G(x, y, k) is the Green function which obeys the equation

−Gy + Gxx + 2ikGx = −δ(x)δ(y)

and can be written as

G(x, y, k) =
1

4π2

∫∫ ∞

−∞
dξdη

ei(ξx+ηy)

ξ2 + 2kξ + iη
. (10.89)

As distinct from the KP I equation, the Green function (10.89) has no jump
across the real axis. Moreover, this function is analytic nowhere in the k-plane,
as can be explicitly seen after integration in η. Indeed, calculating by residues
the integral (10.89) with respect to η, we obtain the following formula for the
Green function [1]:

G(x, y, k) =
1
2π

{
θ(kR)

[
−θ(−y)

∫ 0

−2kR

dξ + θ(y)

(∫ ∞

0

dξ +
∫ −2kR

−∞
dξ

)]

+θ(−kR)

[
−θ(−y)

∫ −2kR

0

dξ + θ(y)
(∫ 0

−∞
dξ +

∫ ∞

−2kR

dξ
)]}

eiξx−(ξ2+2kξ)y .

(10.90)
Formula (10.90) contains explicitly kR and hence the Green function is non-
analytic. As a result, the eigenfunctions M and N are analytic nowhere in the
k-plane. We will stress this fact denoting the eigenfunctions as M(x, y, k, k̄)
and N(x, y, k, k̄).

Nonanalyticity of eigenfunctions prevents us from making use of the
RH problem. It was found by Ablowitz et al. [1] that it is the ∂̄ prob-
lem that should be employed to formulate scattering equations and to solve
the inverse scattering problem. Hence, we calculate first the ∂̄ derivative
∂̄M = (1/2)(∂kR + i∂kI)M(x, y, k, k̄):

∂̄M(x, y, k, k̄) =
∫∫ ∞

−∞
dx′dy′

[
∂̄G(x− x′, y − y′, k, k̄)

]
u(x′, y′)M(x′, y′, k, k̄)

+
∫∫ ∞

−∞
dx′dy′G(x − x′, y − y′, k, k̄)u(x′, y′)∂̄M(x′, y′, k, k̄).
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It is easily obtained from (10.90) that

∂̄G(x, y, k, k̄) =
1
2π

sign(−kR) exp
[−i(k + k̄)x + (k2 − k̄2)y

]
.

Therefore,
∂̄M(x, y, k, k̄) = F (k, k̄)e−i(k+k̄)x+(k2−k̄2)y (10.91)

+
∫∫ ∞

−∞
dx′dy′G(x − x′, y − y′, k, k̄)u(x′, y′)∂̄M(x′, y′, k, k̄),

where the spectral data are given by the function

F (k, k̄) =
1
2π

sign(−kR)
∫∫ ∞

−∞
dxdyu(x, y)M(x, y, k, k̄)ei(k+k̄)x−(k2−k̄2)y.

(10.92)
Comparing (10.91) with the integral equation (10.88), we obtain the scattering
equation in the form of the linear ∂̄ problem:

∂̄M(x, y, k, k̄) = F (k, k̄)N(x, y, k, k̄). (10.93)

The next step consists in finding a symmetry (closure) relation, in order to
express N in terms of M . The Green function obeys the symmetry property

G(x, y,−k̄,−k) = G(x, y, k, k̄) exp
[
i(k + k̄)x− (k2 − k̄2)y

]
.

Now from comparison of (10.87), where substitutions k → −k̄ and k̄ → −k
have been performed, with (10.88) the discrete closure relation follows:

N(x, y, k, k̄) = M(x, y,−k̄,−k) exp
[−i(k + k̄)x + (k2 − k̄2)y

]
.

Thereby, the ∂̄ problem for the eigenfunction M is written in terms of the
scattering data:

∂̄M(x, y, k, k̄) = F (k, k̄)M(x, y,−k̄,−k) exp
[−i(k + k̄)x + (k2 − k̄2)y

]
.

(10.94)
It should be stressed that the above calculation is valid under the assumption
that there are no nontrivial solutions of the homogeneous integral equation
obtained from (10.88).

10.4.2 Inverse spectral problem

The inverse spectral problem is solved by means of the Cauchy–Green formula
[see (1.99)]

M(x, y, k, k̄) = 1 +
1

2πi

∫∫
d� ∧ d�̄
�− k

∂̄M(x, y, �, �̄)

= 1 +
1

2πi

∫∫
d� ∧ d�̄
�− k

F (�, �̄)M(x, y − �̄,−�)e−i(�+�̄)x+(�2−�̄2)y.
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To reconstruct the potential u(x, y), note that we have two representation for
M − 1:

M(x, y, k, k̄)−1 =

⎧
⎪⎨

⎪⎩

∫∫
dx′dy′G(x− x′, y − y′, k, k̄)u(x′, y′)M(x′, y′, k, k̄)

1
2πi

∫∫
d� ∧ d�̄
�− k

F (�, �̄)M(x, y,−�̄,−�)e−i(�+�̄)x+(�2−�̄2)y
.

Now we compare them in the order of O(k−1). From (10.89) for |k| → ∞ we
obtain

G =
1

8π2k

∞∫

−∞
dη v.p.

∞∫

−∞

dξ
ξ

ei(ξx+ηy) +O(k−2) =
i

4k
sign(x)δ(y) +O(k−2).

Besides, M = 1+O(k−1). Hence, the Green function representation of M − 1
yields

M − 1 =
i

4k

⎛

⎝
x∫

−∞
dx′u(x′, y)−

∞∫

x

dx′u(x′, y)

⎞

⎠ +O(k−2). (10.95)

From the ∂̄ representation we obtain

M − 1 =
i

2πk

∫∫
d� ∧ d�̄F (�, �̄)M(x, y,−�̄,−�)e−i(�+�̄)x+(�2−�̄2)y +O(k−2).

(10.96)
Comparing (10.95) and (10.96), we get the reconstruction formula

u(x, y) =
1
π
∂x

∫∫
dk ∧ dk̄ F (k, k̄)M(x, y,−k̄,−k)e−i(k+k̄)x+(k2−k̄2)y.

We will be able to completely solve the KP II equation if the time evolution of
the spectral data is determined. By the standard manipulations with (10.86)
considered at the asymptotic x2 + y2 →∞ we obtain α(k) = 4ik3 and

F (k, k̄, t) = F (k, k̄, 0)e−4i(k3+k̄3)t.

The uniqueness of a solution of the KP II equation for small initial data
u(x, y, 0) was proved by Wickerhauser [451].

10.5 Davey–Stewartson II equation

The DS II equation in the focused case

iut =
1
2
(uxx − uyy) + (φ + |u|2)u, φxx + φyy = 2|u|2xx (10.97)

describes an evolution of quasimonochromatic wave packets with slowly vary-
ing amplitude u(x, y, t) on a two-dimensional water surface under gravity
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[12, 105], where φ(x, y, t) is the velocity potential. Besides, the DS II equation
found use in plasma physics [352]. The IST method for (10.97) was realized
in terms of the ∂̄ problem by Fokas and Ablowitz [159]. Rational nonsingu-
lar localized solutions (lumps) of the DS II equation decaying at infinity as
(x2 + y2)−1 have been derived by Arkadiev et al. [31]. Various aspects of the
IST approach for solving the DS II equation have been discussed by Beals
and Coifman [41, 42] and Konopelchenko and Matkarimov [246]. The Dar-
boux method was used in [308] to obtain soliton solutions which demonstrate
nontrivial dynamics under interaction. The completeness of the eigenfunction
system of the elliptic spectral problem associated with the DS II equation was
established in [364].

In the papers cited above, solitons of the DS II equation correspond to sim-
ple poles of the solutions of the spectral equation. As we know from the exam-
ple of the KP I equation, a novel class of solutions with more diverse properties
arises if the eigenfunctions allow multiple poles. The same situation exists for
the DS II equation. Villarroel and Ablowitz [440] found a variety of rationally
decaying, regular, localized solutions of the DS II equation which stem from
meromorphic eigenfunctions with multiple poles in the spectral parameter.

10.5.1 Eigenfunctions and scattering equation

The DS II equation (10.97) allows the matrix-valued Lax representation

ψx + iσ3ψy −Qψ = 0, Q =
(

0 u
−ū 0

)
(10.98)

ψt = Aψ −Qψy + iσ3ψyy. (10.99)

Here ψ and A are 2× 2 matrices. The compatibility condition for (10.98) and
(10.99) gives the DS II equation (10.97) provided the entries of A are given
by

(∂x + i∂y)A11 =
1
2i

(∂x − i∂y)|u|2, A12 =
1
2i

(∂x − i∂y)u, (10.100)

(∂x − i∂y)A21 = − 1
2i

(∂x + i∂y)|u|2, A21 =
1
2i

(∂x + i∂y)ū,

while the potential φ is expressed in terms of Aij as φ = i(A11 −A22)− |u|2.
Because the spectral problem (10.98) is elliptic, it is reasonable to introduce
complex coordinates z = x+iy and z̄ = x− iy. Then the DS II equation takes
the form

iut = uzz + uz̄z̄ + (g + ḡ)u, gz̄ =
1
2
(|u|2)

z
, (10.101)

where g = iA11. The Lax representation for (10.101) is written as

Dψ =
1
2
Qψ, ψt = Aψ − iQ(∂z − ∂z̄)ψ − iσ3(∂z − ∂z̄)2ψ. (10.102)
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Here

D =
(
∂z̄ 0
0 ∂z

)
, and now A = −i

(
g uz

uz̄ −ḡ
)
.

Let us choose a solution of the free equation Dψ = 0 in the form

E =
(

eikz 0
0 e−ikz̄

)
(10.103)

with a spectral parameter k and transform ψ as ψ = ME. Then the Lax pair
(10.102) takes the form

DM − i
2
k[σ3,M ] =

1
2
QM, (10.104)

Mt = AM − iQ(∂z − ∂z̄)M + kQM − iσ3(∂z − ∂z̄ + ik)2M.(10.105)

Taking the asymptotic expansion

M = 11 +
1
ik

m +O(k−2)

in (10.104), we obtain the potential reconstruction formula

Q = −[σ3,m], or u(x, y, t) = −2m21(x, y, t). (10.106)

In virtue of the specific structure of the potential matrix Q, there is a
symmetry relation between the entries of the matrix M . Namely,

M =
(
M11(k) −M21(k̄)
M21(k) M11(k̄)

)
. (10.107)

Hence, it is sufficient to study only the first column M1 of the matrix M . The
components of the column M1 = (M1,M2)T obey the following (spectral)
equations

∂z̄M1 =
1
2
uM2, ∂zM2 = −ikM2 − 1

2
ūM1, (10.108)

with the boundary condition

lim
|k|→∞

M1(z, z̄, k, k̄) ≡M0 =
(

1
0

)
. (10.109)

As the second linearly independent solution of the free equations (10.108) with
u = 0 we can choose [159]

N0 =
(

0
1

)
e−i(kz+k̄z̄). (10.110)
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Note that equations (10.108) can be treated as ∂̄ (∂) problems in the
coordinate space. Therefore, in accordance with the Cauchy–Green formula
(1.98) and boundary condition (10.109) we can write a solution of (10.108) in
the integral form:

M1(z, z̄, k, k̄) = 1 +
1

2πi

∫∫
dz′ ∧ dz̄′

z′ − z

1
2
u(z′, z̄′)M2(z′, z̄′, k, k̄), (10.111)

M2(z, z̄, k, k̄) = − 1
2πi

∫∫
dz′ ∧ dz̄′

z̄′ − z̄

1
2
ū(z′, z̄′)M1(z′, z̄′, k, k̄)e−ik(z−z′)−ik̄(z̄−z̄′).

Similarly,

N1(z, z̄, k, k̄) =
1

2πi

∫∫
dz′ ∧ dz̄′

z′ − z

1
2
u(z′, z̄′)N2(z′, z̄′, k, k̄), (10.112)

N2(z, z̄, k, k̄) = e−i(kz+k̄z̄)

− 1
2πi

∫∫
dz′ ∧ dz̄′

z̄′ − z̄

1
2
ū(z′, z̄′)N1(z′, z̄′, k, k̄)e−ik(z−z′)−ik̄(z̄−z̄′).

It is easily seen that equations (10.111) can be written in the standard
form with the Green function,

(GM) (z, z̄, k, k̄) =
(

1
0

)
, (10.113)

where

(GM) (z, z̄, k, k̄) ≡M−
∫∫

dz′Rdz′IG(zR − z′R, zI − z′I, k, k̄) (QM) (z′, z̄′, k, k̄)

and

G(z, z̄, k, k̄) =
(
G1 0
0 G2

)
, G1 =

1
2πz

, G2 =
1

2πz̄
e−i(kz+k̄z̄). (10.114)

The presence of exp[−i(kz + k̄z̄)] = exp[−2i(kRx − kIy)] in (10.114)
means that the Green function is nowhere analytic. In turn, the eigenvec-
tors M and N are nowhere analytic as well. “Departure from analyticity”
∂̄M ≡ ∂M/∂k̄ determines the continuous spectrum and can be calculated
directly from (10.111). Indeed,

∂̄M =
1

2πi

∫∫
dz′ ∧ dz̄′

z′ − z

1
2
u(z′, z̄′)∂̄M2(z′, z̄′, k, k̄),

∂̄M2 = b(k, k̄)e−i(kz+k̄z̄) (10.115)

− 1
2πi

∫∫
dz′ ∧ dz̄′

z̄′ − z̄

1
2
ū(z′, z̄′)∂̄M1(z′, z̄′, k, k̄)e−ik(z−z′)−ik̄(z̄−z̄′),
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where
b(k, k̄) =

i
4π

∫∫
dzRdzI ū(z, z̄)M1(z, z̄, k, k̄)ei(kz+k̄z̄).

Comparing (10.115) with (10.112), we conclude that the ∂̄ equation for M
takes the form

∂̄M = b(k, k̄)N. (10.116)

To obtain the closure relation which connects N and M, we write the second
equation in (10.112) as

N2 = e−i(kz+k̄z̄)

(
1 +

1
2πi

∫∫
dz′ ∧ dz̄′

z̄′ − z̄

1
2
(QN)2(z′, z̄′, k, k̄)ei(kz′+k̄z̄′)

)

and compare it with the equation (10.111) for M1. As a result, we get

N =
(

0 −1
1 0

)
Me−i(kz+k̄z̄). (10.117)

10.5.2 Discrete spectrum and inverse problem solution

The discrete spectrum for the spectral problem (10.108) is given by a set of iso-
lated eigenvalues kj , j = 1, . . . ,N , for which homogeneous integral equations
allow nontrivial solutions. As distinct from the KP I equation, the eigenvalue
kj for the DS II equation has double degeneracy with eigenstates Φj(z, z̄) and
χj(z, z̄) [31]. The bound state vector Φ(j) = (Φ(j)

1 , Φ
(j)
2 )T is a solution of the

equations

Φ
(j)
1 (z, z̄) =

1
2πi

∫∫
dz′ ∧ dz̄′

z′ − z

1
2
u(z′, z̄′)Φ(j)

2 (z′, z̄′), (10.118)

Φ
(j)
2 (z, z̄) = − 1

2πi

∫∫
dz′ ∧ dz̄′

z̄′ − z̄

1
2
ū(z′, z̄′)Φ(j)

1 (z′, z̄′)e−ikj(z−z′)−ik̄j(z̄−z̄′)

and χ(j) is expressed through Φ(j) as

χ(j) =
(

0 −1
1 0

)
Φ

(j)
e−i(kjz+k̄j z̄). (10.119)

It is seen from (10.118) that it is natural to normalize bound eigenfunctions
by the condition

Φ(j) → 1
z

(
Qj

0

)
, |z| → ∞

under the constraint
∫∫

dz ∧ dz̄ū(z, z̄)Φ(j)
1 (z, z̄)e−i(kjz+k̄j z̄) = 0.
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Here the index Qj is defined as

Qj =
1
2π

∫∫
dxdyu(x, y)Φ(j)

2 (x, y). (10.120)

We will see that the index Qj plays the same role as that for the KP I equation.
The existence of the discrete spectrum indicates that the eigenvector M is

singular and has (in general, multiple) poles in the points kj . First we consider
the case of simple poles:

M =
N∑

j=1

(k − kj)−1Φ(j)(z, z̄) + Mreg,

where Mreg is regular in kj . In order to determine residues Φ(j), we need to
find the limit of M when k → kj . We have around k = kj

M =
Φ(j)

k − kj
+ μ, (10.121)

where μ is regular in kj and tends to (1, 0)T at |k| → ∞. Taking first Qj = 1,
we substitute (10.121) into (10.113). Following the procedure described in
Sect. 9.2.2 and accounting for the double degeneracy of kj yields [31]

lim
k→kj

(
M(z, z̄, k, k̄)− 1

k − kj
Φ(j)(z, z̄)

)
= −i(z + zj)Φ(j)(z, z̄)− icjχ(j)(z, z̄),

(10.122)
where zj and cj are constants and Φ(j) and χ(j) are related by (10.119).

Combining now the contributions of both the continuous and the discrete
spectra, we can write the eigenvector M as

M(z, z̄, k, k̄) =
(

1
0

)
+

N∑

j=1

Φ(j)(z, z̄)
k − kj

+
1

2πi

∫∫
d� ∧ d�̄
�− k

b(�, �̄)N(z, z̄, �, �̄).

(10.123)
The limit k → kj gives in accordance with (10.122) and for Qj = 1

−i(z + zj)Φ(j)(z, z̄)− icjχ(j) (10.124)

=
(

1
0

)
+

N∑

i	=j

Φ(i)(z, z̄)
kj − ki

+
1

2πi

∫∫
d� ∧ d�̄
�− kj

b(�, �̄)N(z, z̄, �, �̄).

Equations (10.123) and (10.124) comprise the closed system of equations
which enable us to solve the inverse problem. Indeed, owing to (10.106), the
potential u(z, z̄) is retrieved as

u(z, z̄) = 2i
N∑

j=1

Φ
(j)

2 (z, z̄)− 1
π

∫∫
dk ∧ dk̄b̄(k, k̄)N2(z, z̄, k, k̄). (10.125)
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10.5.3 Lump solutions

As an example, we derive the one-lump solution to the DS II equation. In this
case b(k, k̄) = 0, N = 1 and the eigenvector takes the form

M =
(

1
0

)
+

Φ(1)

k − k1
. (10.126)

In virtue of (10.119), equation (10.124) reduces to

(z + z1)Φ(1) + c1

(
0 −1
1 0

)
e−i(k1z+k̄1z̄)Φ

(1)
= i

(
1
0

)
.

Solving this algebraic equation yields

Φ(1) =
i

|z + z1|2 + |c1|2
(

z̄ + z̄1

c1 exp
[−i(k1z + k̄1z̄)

]
)
. (10.127)

Hence, from (10.125) we obtain the lump potential

u1(x, y) =
2c̄1

|z + z1|2 + |c1|2 ei(k1z+k̄1z̄). (10.128)

As usual, in order to have a lump solution of the DS II equation, we need
to know the temporal evolution of the parameters k1, z1, and c1. Substituting
the vector function M (10.126) with the residue (10.127) into (10.105) and
taking into account (10.100), we obtain

k1 ≡ ξ+iη = const, z1(t) = z1(0)+2k1t, c1(t) = c1(0) exp
[−2i(ξ2 − η2)t

]
.

(10.129)
Therefore, the lump solution of the DS II equation is written as [31]

u1(x, y, t) = 2c̄1(0)
exp

[
2i(ξx− ηy + (ξ2 − η2)t)

]

[x + 2ξt + z1R(0)]2 + [y + 2ηt + z1I(0)]2 + |c1(0)|2 .
(10.130)

It describes a localized nonsingular object which moves on the (x, y)-plane
with constant velocity (−2ξ,−2η) and decays as (x2 + y2)−1 .

The solution (10.130) corresponds to Q = 1. A novel situation arises for
the DS II equation, as distinct from the KP I equation. Namely, there exist
meromorphic functions of the type (10.126) related to higher indices. For
example, for Q = 2 and the simple pole k1 the analog of the limit relation
(10.122) takes a more complicated form [440]:

1
2
[
(z + z1)2 − δ

]
Φ(1) + c̄1(z̄ + z̄1 + ε̄)e−i(k1z+k̄1z̄)

(
0 −1
1 0

)
Φ

(1)

= i
(

z + z1

c1e−i(k1z+k̄1z̄)

)
.
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Solving this equation with respect to Φ
(1)

2 , we obtain from (10.125) the lump
solution with Q = 2:

u2(x, y, t) = Δ−1
[
c̄1(z + z1)2 − 2c1(z + z1)(z + z1 + ε)− c̄1δ

]
ei(k1z+k̄1z̄),

(10.131)
with additional complex parameters ε and δ. Here

Δ =
1
4
|(z + z1)2 − δ|2 + |c1|2|z + z1 + ε|2 (10.132)

and the complex parameters k1, z1, c1, δ, and ε evolve in accordance with
(10.129) and δt = 2i, εt = 0. The solution (10.131) is nonsingular and decays as
(x2+y2)−1. Analysis of the denominator in (10.131) shows that asymptotically
this solution decomposes into two separate lumps [440]. These lumps attract
each other but the attractive force is not strong enough to form a bound state.
After collision the lumps scatter at the angle π/2 (Figs. 10.1–10.3).

The simplest example of a meromorphic column function with a double
pole is given by

M(k) =
(

1
0

)
+

Φ
k − k1

+
Ψ

(k − k1)2
. (10.133)

In the same way as for the KP I equation, we substitute (10.133) into (10.113)
and expand the Green function (10.114) up to the second order in (k − k1).
As a result, the limit relation takes the form for Q1 = 2

Φ = −i(z + z1)Ψ + ic̄1e−i(k1z+k̄1z̄)

(
0 −1
1 0

)
Ψ,

(
1
0

)
=

1
2
[−(z + z1)2 + δ

]
Ψ + c1(z + z1 + ε)e−i(k1z+k̄1z̄)

(
0 −1
1 0

)
Ψ.

Solving this algebraic system, we obtain a solution to the DS II equation for
the double pole with Q = 2. It turns out that this solution coincides with
the solution (10.130) after letting t → −t and taking complex conjugation

Fig. 10.1. Two lumps described by the solution (10.131) before interaction [440]
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Fig. 10.2. Interaction of lumps described by the solution (10.131). Two lumps are
merged into a single rotationally symmetric object with an amplitude equal to the
sum of those of the separate lumps [440]
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Fig. 10.3. Two lumps after interaction. The positions of lumps after scattering
differ from those before interaction at the angle π/2 [440]

[440]. This result implies that the physically related solutions u(x, y, t) and
ū(x, y,−t) for Q = 2 have different pole structures. Examples of meromorphic
vector functions with a more complicated combination of poles can be found
in the paper by Villarroel and Ablowitz [440].
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Gauthier–Villars, Paris.

104. Dashen, R.F., Hasslacher, B., and Neveu, A. (1974) Nonperturbative methods
and extended-hadrons models in field theory.II. Two-dimensional models and
extended hadrons, Phys. Rev. D 10, 4130–4138.

105. Davey, A. and Stewartson, K. (1974) On three-dimensional packets of surface
waves, Proc. Roy. Soc. London A 338, 101–110.

106. Davies, R.E. and Acrivos, A. (1967) Solitary internal waves in deep water,
J. Fluid Mech. 29, 593–607.

107. De Lange, O.L. and Raab, R.E. (1991) Operator Methods in Quantum Mechan-
ics, Clarendon Press, Oxford.

108. Degasperis, A. and Lombardo, S. (2005) Exact solutions of the 3-wave resonant
interaction equations, arXiv:nlin.SI/0509038.

109. Deift, P.A. and Li, L.C. (1989) Generalized affine Lie algebras and the solution
of a class of flows associated with the QR eigenvalue algorithm, Comm. Pure
Appl. Math. 42, 963–991.

110. Deift, P.A., Li, L.C., Nanda, T., and Tomei, C. (1986) The Toda flow on a
generic orbit is integrable, Comm. Pure Appl. Math. 39, 183–232.

111. Deift, P.A., Li, L.C., and Tomei, C. (1989) Matrix factorizations and integrable
systems, Comm. Pure Appl. Math. 42, 443–521.

112. Deift, P.A., Nanda, T., and Tomei, C. (1991) Differental equations for the
symmetric eigenvalue problem, SIAM J. Num. Anal. 20, 183–232.

113. Deift, P. and Zhou, X. (1993) A steepest-descent method for oscillatory
Riemann–Hilbert problem. Asymptotics of the MKdV equation, Ann. Math.
137, 295–368.

114. Demkov, Yu.N. and Rudakov, V.S. (1970) Partial wave method for a nonspher-
ical scattering, Zh. Eksper. Teor. Fiz. 59, 2035–2047 [(1971) Sov. Phys. JETP
32, 1103–1113].

115. Demkov, Yu.N. and Ostrovsky, V.N. (1988) Zero-Range Potentials and their
Applications in Atomic Physics, Plenum, New York.

116. Derevianko, A., (2003) Anisotropic pseudpotential for polarized dilute gases,
Phys. Rev. A 67, 033607.

117. Dodd, R.K., Eilbeck, J.C., Gibbon, J.D., and Morris, H.C. (1982) Solitons and
Nonlinear Wawe Equations, Academic Press Inc., London.

118. Dodd, R. and Fordy, A. (1982) On the integrability of a system of coupled
KdV equations, Phys. Lett. A 89, 168–170.

119. Dodd, R.K., Morris, H.C., and Eagleton, J. (1980) Perturbation theory for
the nearly integrable non-linear equations with a modified Zakharov-Shabat
scattering problem, J. Phys. A 13, 1455–1465.

120. Doktorov, E.V. (1994) Nonlinear evolution equations with non-analytic disper-
sion relations in 2+1 dimensions: bilocal approach, J. Phys. A 27, 3491–3499.



References 361

121. Doktorov, E.V. (2002) The modified nonlinear Schrödinger equation: facts and
artefacts, Eur. Phys. J. B 29, 227–231.

122. Doktorov, E.V., Matsuka, N.P. and Rothos, V.M. (2003) Perturbation-induced
radiation by the Ablowitz-Ladik soliton, Phys. Rev. E 68, 066610 (14 pages).

123. Doktorov, E.V. and Prokopenya I.N. (1991) On higher-order corrections in
soliton perturbation theory, Inverse Problems 7, 221–230.

124. Doktorov, E.V. and Rothos, V.M. (2003) Homoclinic orbits for soliton
equations solvable via the quadratic bundle, Phys. Lett. A 314, 59–67.

125. Doktorov, E.V., Sakovich, S.Yu., and Vlasov, R.A. (1996) Polarized femtosec-
ond optical solitons in cubic media, J. Phys. Soc. Jpn. 65, 876–878.

126. Doktorov, E.V. and Shchesnovich, V.S. (1995) Nonlinear evolutions with
singular dispersion laws associated with a quadratic bundle, Phys. Lett. A 207,
153–158.

127. Doktorov, E.V. and Vlasov, R.A. (1983) Optical solitons in media with
resonant and nonresonant nonlinearities, Optica Acta 30, 223–232.
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143. Estévez, P.G. and Gordoa, P.R. (1997) Darboux transformations via Painlevé
analysis, Inverse Problems 13, 939–957.
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and general form of integrable equations for the two-dimensional Gel’fand–
Dikij–Zakharov–Shabat problem: bilocal approach, Physica D 16, 79–98.

244. Konopelechenko, B.G. and Landolfi, G. (1996) On classical string configura-
tion, Mod. Phys. Lett. A 12, 3161–3169.

245. Konopelechenko, B.G. and Martinez Alonso, L. (2002) Dispersionless scalar
integrable hierarchies, Whitham hierarchy, and the quasiclassical ∂̄-dressing
method, J. Math. Phys. 43, 3807–3823.

246. Konopelchenko, B.G. and Matkarimov, B.T. (1990) Inverse spectral transform
for the nonlinear evolution equations generating the Davey–Stewartson and
Ishimori equations, Stud. Appl. Math. 82, 319–359.



References 367

247. Konopelchenko, B., Sidorenko, Yu., and Strampp, W. (1991) (1+1)-
dimensional integrable systems as symmetry constraints of (2+1)-dimensional
systems, Phys. Lett. A 157, 17–21.

248. Konoplich, R.V. (1987) Calculation of quantum corrections to nontrivial clas-
sical solutions by means of the zeta function, Theor. Math. Phys. 73, 379–382.

249. Korteweg, D.J. and de Vries, G. (1895) On the change of form of long waves
advancing in a rectangular canal, and on a new type of long stationary waves,
Philos. Mag., Sec. 5, 39, 2737–2746.

250. Kostant, B. B. (1979) The solution to a generalized Toda lattice and represen-
tation theory, Advances Math. 34, 139–338.

251. Krichever, I. M. (1975) Potentials with zero coefficient of reflection against a
background of finite-zone potentials, Funkc. Anal. Prilozh. 9, No. 2, 77–78.

252. Krichever, I.M. (1978) Rational solutions of the Kadomtsev-Petviashvili equa-
tion and the integrable systems of N particles on a line, Funk. Anal. Prilozh.
12, 76–78.

253. Krishnan, E. V. (1990) Remarks on a system of coupled nonlinear wave equa-
tions, J. Math. Phys. 31, 1155–1156.

254. Kuna, M., Czachor, M. and Leble, S.B. (1999) Nonlinear von Noeumann
equations: Darboux invariance and spectra, Phys. Lett. A 255, 42–48.

255. Kuniba, A., Nakanishi, T., and Suzuki, J. (1994) Functional relations in
solvable lattice models I: Functional relations and representation theory, Int.
J. Mod. Phys. A9, 5215–5266.

256. Kuniba, A., Nakanishi, T., and Suzuki, J. (1994) Functional relations in
solvable lattice models II: Applications, Int. J. Mod. Phys. A9, 5267–5312.

257. Kupershmidt, B.A. (1985) A coupled Korteweg–de Vries equation with disper-
sion J. Phys. A: Math. Gen. 18, 1571–1573.

258. Kuznetsov, E.A. and Mikhailov, A.V. (1974) Stability of stationary waves in
nonlinear weakly dispersive media, Zh. Eksp. Teor. Fiz. 67, 1717–1727.

259. Lamb, G.L., Jr. (1980) Elements of Soliton Theory, Wiley, New York.
260. Lambert, F., Leble, S.B., and Springael, J. (2001) Binary Bell polynomials and

Darboux covariant Lax pairs, Glasgow Math. J. 43A, 55–63.
261. Lambert, F., Loris, I., and Springael, J. (2001) Classical Darboux transforma-

tions and the KP hierarchy, Inverse Problems 17, 1067–1074.
262. Lambert F. and Springael J. (1997) Construction of Bäcklund transformations
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296. Li, Y. (2000) Bäcklund-Darboux transformations and Melnikov analysis for
Davey-Stewartson II equations, J. Nonlin. Sci. 10, 103–131.

297. Li, Y. and McLaughlin D.W. (1994) Morse and Melnikov functions for NLS
PDE’s, Comm. Math. Phys. 162, 175–214.

298. Li, Z., Schwarz, F., and Tsarev, S. P. (2003) Factoring systems of linear PDEs
with finite-dimensional solution spaces, J. Symbolic Comput. 36, 443–471.

299. Lo, C.F. (1997) Canonical dressing in the multimode Jaynes-Cummings model,
Nuovo Cim. D 19, 749–752.

300. Lo, C.F. (1998) Canonical dressing in the multimode two-quantum Jaynes-
Cummings model, Eur. Phys. J. D 1, 93–95.

301. Lopez-Bonilla, A., Navarrete, D., and Salas-Brito, A.L. (1997) Oscillators in
one and two dimensions and ladder operators for the Morse and the Coulomb
problems, Int. J. Quantum Chem. 62, 177–183.

302. Lyng, G. and Miller, P.D. (2005) The N-soliton of the focusing nonlinear
Schrödinger equation for N large, arXiv:nlin.SI/0508007 v1.

303. Ma, Wen-Xiu and Zhou, Zi-Xiang (1996) Coupled integrable systems associated
with a polynomial spectral problem and their Virasoro symmetry algebras,
Progr. Theor. Phys. 96, 449–457.

304. Macek, J. (1967) Application of the Fock expansion to doubly excited states
of the Helium atom, Phys. Rev. 160, 170–174.

305. Manakov, S.V. (1981) The inverse scattering transform for the time-dependent
Schrödinger equation and Kadomtsev-Petviashvili equation, Physica D,
3, 420–427.

306. Manakov, S.V., Zakharov, V.E., Bordag, L.A., Its, A.R., and Matveev, V.B.
(1979) Two-dimensional solitons of the Kadomtsev-Petviashvili equation and
their interaction, Phys. Lett. A 63, 205–206.
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