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Abstract. Water shortage is a major cause of yield loss in maize. Thus, breeding for adaptation to water-
stressed environments is an important task for breeders. The use of quantitative-trait loci (QTL) models in 
which the response of complex phenotypes under stressed environments is described in direct relation to 
molecular information can improve the understanding of the genetic causes underlying stress tolerance. 
Mixed QTL models are particularly useful for this type of modelling, especially when the data stem from 
multi-environment evaluations including stressed and non-stressed conditions. The study of complex 
phenotypic traits such as yield under water-limited conditions can benefit from the analysis of trait 
components (e.g., yield components) that can be exploited in indirect selection. 

Multi-trait multi-environment QTL models help to identify the genome regions responsible for 
genetic correlations, whether caused by pleiotropy or genetic linkage, and can show how genetic 
correlations depend on the environmental conditions. With the objective of identifying QTLs for 
adaptation to drought stress, we present the results of a multi-trait multi-environment QTL-modelling 
approach using data from the CIMMYT maize-breeding programme. 

INTRODUCTION 

Water shortage is a major cause of yield loss in maize (Zea mays L.). The supply of 
water by irrigation can alleviate drought stress, but irrigation is costly and not 
realistic in most of the maize production areas. Yield loss due to water stress can be 
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tackled by developing varieties better adapted to water-limited conditions. Thus, 
drought tolerance is a prime objective of many maize-breeding programmes.  

Maize is particularly sensitive to drought stress occurring just before and during 
flowering when the crop’s yield potential is defined. When drought stress occurs just 
before flowering, a delay of silk emergence in relation to male flowering is 
observed, and this increase of the anthesis-silking interval (ASI) is correlated with 
lower yield (Bolaños and Edmeades 1993). Therefore, the selection of genotypes 
that have a short ASI under water-limited conditions has been shown to be useful to 
improve drought tolerance in maize (Edmeades et al. 1999; 2000; Ribaut et al. 
1996). 

Quantitative-trait loci (QTLs) associated with drought tolerance can be used in 
breeding strategies for drought tolerance, especially for selection under stress 
conditions, where traits typically show low heritability (Ribaut et al. 1996). In QTL 
mapping, complex phenotypes are modelled in direct relation to molecular 
information contributing to the understanding of the genetic causes underlying stress 
tolerance. Mixed models offer a particularly useful statistical framework for QTL 
analysis (Malosetti et al. 2004), especially when the data stem from multi-
environment evaluations including stressed and non-stressed conditions. The study 
of complex phenotypic responses, such as yield under water-limited conditions, can 
benefit from the study of their trait components, which can be exploited in indirect 
selection.  

In contrast to single-trait single-environment QTL models, multi-trait multi-
environment QTL models simultaneously fit QTLs as affecting several traits in 
several environments. The attractiveness of such models is that they can help to 
identify the genome regions responsible for genetic correlations between traits, say 
yield and its components, whether caused by pleiotropy or genetic linkage, and can 
show how these genetic correlations depend on the environmental conditions. With 
the objective of identifying QTLs for adaptation to drought stress, we present the 
results of a multi-trait multi-environment QTL-modelling approach using data on 
grain yield (GY) and ASI from the CIMMYT maize-breeding programme. 

MATERIALS AND METHODS 

Field data and molecular-marker data 

The data used in this paper were generated at CIMMYT, Mexico, with the objective 
of detecting QTLs related to yield and other yield-related traits under stressed 
conditions. A detailed description of field experiments and production of molecular-
marker information is given in Ribaut et al. (1996). Briefly, an F2 population derived 
from the cross between a drought-resistant parent (Ac7643S5) and a high-yielding 
but drought-susceptible parent (Ac7729/TZSRWS5) was genotyped by RFLP 
markers. A population of 211 F2:3 families derived from that F2 was subsequently 
evaluated in three years under different water and nitrogen stress conditions in 
Mexico (Table 1). Several traits were registered, but in the present chapter we 
concentrate on GY and ASI.  
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Table 1. Description of the environments in which maize genotypes were evaluated: 
environment codes, location, water regime, nitrogen availability, mean GY and ASI 

Environment Location Water 
regime ¶ 

Nitrogen Mean GY
(t ha–1) 

Mean 
ASI 

(days) 
NS92a Tlaltizapán WW normal 10.5 –1.6 
IS92a Tlaltizapán IS normal 6.4 –1.0 
SS92a Tlaltizapán SS § normal 3.7 –0.9 
IS94a Tlaltizapán IS normal 4.2 1.8 
SS94a Tlaltizapán SS normal 4.1 1.9 
LN96a Poza Rica WW low 1.8 2.9 
HN96b Poza Rica WW high 4.9 –1.1 
LN96b Poza Rica WW low 1.0 3.3 

¶ WW: well watered; IS: intermediate stress; SS: severe stress 
§ rainfall around flowering caused only intermediate stress 

Multi-trait multi-environment phenotypic model 

We first conducted an analysis without introducing molecular-marker information in 
the model. The multivariate multi-environment mixed model used was (random 
terms underlined):  

 ijtijtitjttijt
GEGEy εμ ++++=  (1) 

with yijt a vector containing the observations of genotypes (i=1…211), in each of the 
eight environments (j=1…8), and for the two traits (t=1…2); μt an intercept for each 
trait (overall trait means across genotypes and environments), Ejt the environmental 
effect (fixed), Git and GEijt the trait-specific genotypic main effects and genotype-
by-environment interaction (GEI) effects, respectively (both random terms), and 
finally a residual term, which we considered heterogeneous among environments. 
An unstructured variance–covariance matrix was assumed for the Git term thus 
introducing genetic correlations between traits due to genotypic main effects. For the 
GEijt term we imposed a factor-analytic model of order 1 (FA1). This model allows 
parsimonious modelling of genotypic correlations between environments and traits, 
since it requires fewer parameters than an unstructured model (Smith et al. 2001). In 
summary, the mixed model as defined above, with an unstructured variance–
covariance model for the genotypic main effects of the traits and a FA1 model for 
the GEI part, allows to consider heterogeneity of genetic variance for the traits 
across environments, genetic correlations between environments for the same trait, 
and genetic correlations between traits within and across environments. Residuals 
were not estimated directly from the analysis since the data consisted of genotypic 
means per trial, but estimates were available from previous analysis. 
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Genotypic and GEI variance components per trait were estimated based on 
Model (1) and used to estimate heritability and genotypic and phenotypic 
correlations between GY and ASI. The association between GY and ASI was 
graphically represented by a number of scatter plots. Further investigation of the 
GEI patterns was performed by plotting the factor loadings for both axes of a factor-
analytic variance–covariance model of order 2 (FA2), which can be regarded as an 
analogue of the AMMI analysis within a mixed-model framework (Smith et al. 
2001). 

The multi-trait multi-environment QTL analysis 

The multivariate mixed model previously described was upgraded to include 
molecular information, leading to the following QTL model:  

 ijtijtitjt
dom
ijt

add
ijttijt

GEGxxEy εδαμ ++++++=  (2) 

where the two extra terms in the model (both fixed effects) account for environment-
specific additive QTL (αjt) and dominance QTL (δjt) effects on GY and ASI. The 
covariables xi

add and xi
dom are called genetic predictors and are a function of the 

inferred genotypic constitution of the QTL at one particular point on the 
chromosome (Jiang and Zeng 1997). In short, for a given genotype, the additive 
genetic predictor (xi

add) had a value –1 when homozygous of the maternal type, 0 
when heterozygous, and +1 when homozygous of the paternal type. The dominance 
genetic predictor (xi

dom) had a value +1 when the genotype was heterozygous at the 
locus, and 0 otherwise. With the genetic predictors estimated along the 
chromosomes we fitted the model at the different chromosome positions. The fixed 
QTL effects were tested by a Wald test (Verbeke and Molenberghs 2000) and the 
test statistic was plotted along the chromosomes to produce an analogue to the LOD 
score profile usually presented in QTL-mapping results. A QTL was revealed by a 
peak value exceeding a threshold value defined to control for multiple testing. Note 
that the described test is a global test for the presence of a QTL, with an effect on 
GY, ASI or both. Therefore, at positions where the global test indicated a QTL, we 
subsequently estimated and tested for the specific effects on GY and ASI being 
different from zero, the equivalent of a t-test using estimated standard errors. We 
restrict the analysis here to chromosomes 1 and 10. 

When a QTL was found significant for both GY and ASI, a second scan was 
performed to investigate whether a single pleiotropic QTL or two closely linked 
QTLs were involved. In the initial scan a pleiotropic model was assumed as the 
genetic predictors represented the genotypic constitution at the same position for 
both traits. However, in this later stage, we allowed the genetic predictors to 
represent different positions on the chromosomes within a window of 20 cM around 
the initial pleiotropic position. The result of the two-dimensional scan was plotted in 
a contour plot to identify the region where the maximum for the test statistic was 
located, with close-linkage detected when that maximum resided far from the 
diagonal of the plot. 
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RESULTS AND DISCUSSION 

Phenotypic analysis 

The genotypic and GEI variance components for both traits are presented in Table 2. 
As expected, genotypic-variance components were larger for ASI than for GY. 
Conversely, GEI was more important for GY than for ASI, although the latter 
showed considerable GEI in some of the environments (particularly the water-
stressed trials in 1994 and the low-nitrogen trials in 1996). Estimated heritability per 
environment was similar for GY and ASI, an observation that was already 
mentioned in previous studies of this population (Ribaut et al. 1996) and other 
similar populations used in CIMMYT trials (Bolaños and Edmeades 1996). 

Table 2. Estimates of genotypic variance across environments (VG), environment-specific 
genotypic variances (VG(E) ), and environment-specific error variances (VE) for grain yield 
(GY) and anthesis-silking interval (ASI), plus estimates of heritability (h2), and genotypic (rG) 
and phenotypic (rP) correlations between traits 

 GY (t ha–1)  ASI (days)    

 VG VG(E) VE h2  VG VG(E) VE h2  rG rP 

NS92a 0.09 2.71 2.07 0.58  0.96 0.06 1.63 0.38  –0.11 –0.05 

IS92a 0.09 1.04 2.03 0.36  0.96 0.21 0.98 0.54  –0.16 –0.07 

SS92a 0.09 0.92 1.43 0.41  0.96 0.13 1.27 0.46  –0.12 –0.05 

IS94a 0.09 1.33 1.53 0.48  0.96 1.13 2.45 0.46  –0.57 –0.27 

SS94a 0.09 1.39 1.52 0.49  0.96 1.36 4.06 0.36  –0.48 –0.20 

LN96a 0.09 0.17 0.39 0.41  0.96 1.07 2.04 0.50  –0.01 –0.01 

HN96b 0.09 1.56 0.97 0.63  0.96 0.46 0.23 0.86  0.00 0.00 
LN96b 0.09 0.20 0.21 0.59  0.96 2.33 2.64 0.56  0.05 0.03 

 
Figure 1 shows the patterns of GEI in the experiments. For interpretation, the 
lengths of the vectors representing the environments correspond to the amount of 
GEI in that environment. The (cosine of the) angle between environmental vectors is 
proportional to the correlation between the two environments with respect to the 
GEI. Acute angles represent high positive correlations, obtuse angles indicate high 
negative correlations, and right angles point to low correlations. For GY, GEI was 
mainly caused by the contrast between environments in 1992 and 1994 versus those 
in 1996. This pattern reflects the contrast between two different locations, 
Tlaltizapán and Poza Rica, that represent rather different growing environments for 
maize, especially in terms of temperatures and water availability (Tlaltizapán is a 
drier and cooler location than Poza Rica) (Edmeades et al. 1999). GEI for ASI was 
mainly caused by the contrast of the trials in 1994 versus the ones in 1992 and 1996. 
In this case, the contrast seems to reflect the effect of a water-stressed environment 
(1994) versus those that did not have or had mild water restrictions (though some of 
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the environments in Poza Rica were stressed due to low nitrogen). We emphasize 
that in those trials of 1992 that were managed in such a way that water stress was 
supposed to occur, rainfall occurred around flowering and, therefore, the plants did 
not experience water shortage. This lack of water stress is reflected by the values for 
average ASI observed in those trials: these values were similar to the ones observed 
in environments in which water stress was not imposed (Table 1).  

Figure 1 also reflects the correlations between GY and ASI, and shows that in 
most of the environments the association between both traits was rather low (right 
angle between vectors). The only example of a negative association between GY 
and ASI was observed in the trials of 1994, where an obtuse angle between GY and 
ASI vectors indicates a negative correlation (Figure 1). This conclusion is in 
agreement with the estimated genetic correlations between both traits (Table 2). The 
lack of association between GY and ASI in most of the environments is also evident 
from Figure 2, where only in the water-stressed trials of 1994 a moderate association 
is observed (Figure 2). This observation is consistent with previous results in which 
the correlation between GY and ASI was mainly observed in water-stressed 
environments (Bolaños and Edmeades 1996; Chapman and Edmeades 1999). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Plot of loadings from a factor-analytic model of order 2 (FA2) fitted on maize trials 
carried out in eight environments in Mexico. The labels associated to each vector indicate the 
observed trait (GY or ASI) and environment 
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Figure 2. Yield versus ASI in eight environments, with environments grouped by year 
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QTL analysis 

The profiles resulting from the QTL scan of chromosomes 1 and 10 are presented in 
Figure 3. The profiles show three regions where significant additive QTL effects 
were found, two on chromosome 1 and one on chromosome 10. The two regions on 
chromosome 1 were at 137 cM and at 215 cM and the one on chromosome 10 at 62 
cM, which agreed with previous studies in the same population, although using 
different QTL models (Ribaut et al. 1996; Vargas et al. 2006). No significant 
dominant effects were found on any of the chromosomes.  
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Figure 3. Result of a multi-trait multi-environment QTL-mapping scan (simple interval 
mapping) on chromosomes 1 and 10 of maize. The profile represents the test statistic under 
the null hypothesis of no additive (solid line) or dominance (broken line) QTL effect on GY or 
ASI in any environment. The horizontal line represents a threshold above which the null 
hypothesis is rejected 
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Two linked QTLs for GY and ASI on chromosome 1 

The estimates of the QTL effects revealed that while the QTL at 137 cM on 
chromosome 1 had an effect only on GY, the one at 215 cM on the same 
chromosome had an effect exclusively on ASI (Table 3). The magnitudes and signs 
of the effects for GY reflect the higher GEI observed in this trait, as for example the 
allele coming from the high-yielding parent (the father) resulted in higher yields in 
four environments, but lower yield in the high-nitrogen environment of Poza Rica 
(Table 3), and no superiority in the rest of the environments. The effects for ASI 
were more consistent across the environments, with some variation in the 
magnitude, but not in sign (Table 3). Considering the signs of the effects of these 
two QTLs, the genetic correlation that those two QTLs induce is in the expected 
direction (except in HN96b), that is, a negative correlation between GY and ASI. 
However, the impact of this correlation might be low in view of the weak linkage 
between the QTLs (137 and 215 cM).  

Table 3. Environment-specific QTL effects for GY (t ha–1) and ASI (days). A negative sign 
indicates that the high-value allele is coming from the maternal line (drought-resistant) and a 
positive sign indicates that the high-value allele is from the paternal line (high-yielding line) 

 chr 1, 137 cM  chr 1, 215 cM  chr 10, 62 cM 
Environment GY ASI  GY ASI  GY ASI 
NS92a 0.65 * –0.1  –0.26 –0.4 *  0.50 * 0.4 * 
IS92a 0.63 * –0.1  –0.12 –0.5 *  0.60 * 0.5 * 
SS92a 0.82 * –0.1  0.09 –0.6 *  0.19  0.5 * 
IS94a 0.61 * –0.3  –0.21 –0.7 *  0.47 * 0.5 * 
SS94a 0.31  –0.3  0.00 –1.1 *  0.62 * 0.7 * 
LN96a 0.01  0.3  0.01 –0.7 *  0.11  0.8 * 
HN96b –0.37 * 0.0  0.07 –0.4 *  0.97 * 0.2  
LN96b 0.05  0.1  0.00 –0.5 *  0.10  0.5 * 
* P<0.05 

The QTL on chromosome 10 

In contrast to chromosome 1, the QTL on chromosome 10 had a significant effect on 
both GY and ASI, in four of the eight environments (Table 3). Another remarkable 
difference was that the induced correlation was positive rather than negative. From a 
physiological point of view, a short ASI is an indicator of a better crop status (higher 
crop and ear growth rates), which relates to a higher yield (Edmeades et al. 2000; 
Westgate 2000). However, in our example, the allele coming from the high-yielding 
parent also caused a higher ASI value (Table 3), inducing a positive correlation 
between GY and ASI. On the one hand, and since GY is a complex trait determined 
by many processes during development, it is possible that the disadvantage of a 
longer ASI determined by this QTL is compensated by an advantage given by the 
same QTL at a later developmental stage, e.g., grain filling. On the other hand, this 
result may point to less-explored physiological mechanisms, which determine the 
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increase of both GY and ASI. From a breeder’s point of view, our result suggests 
that phenotypic selection for short ASI will not necessarily retain all positive alleles 
for GY, which highlights the potential of marker-assisted selection as a complement 
to conventional phenotypic selection.  

A relevant question that follows from the results found for chromosome 10 is 
whether pleiotropy or genetic linkage is present. We addressed this question by 
refitting the model allowing for changing positions of the putative QTLs for GY and 
ASI. The results are presented in Figure 4 where the pleiotropic model (indicated in 
the figure by a dotted diagonal line) can be compared with alternative linkage 
models. Our result indicates that the area where the maximum of the test statistics 
was found (white area) included the pleiotropic model, though a close-linkage model 
cannot be excluded either (Figure 4). Whichever of the two models is the real 
underlying genetic model, the region would be considered as ‘functionally 
pleiotropic’ as breaking this association will always be difficult in practice.  
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Figure 4. Contour plot of the Wald statistic for QTL effects on chromosome 10 with varying 
positions for GY (horizontal axis) and for ASI (vertical axis). The results of pleiotropic 
models are represented on the diagonal (dotted line) 
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CONCLUSIONS 

With an example in maize we showed how information stemming from managed-
stress trials can be exploited to investigate the genetic causes of drought-stress 
adaptation. Mixed models are particularly suitable to model complex phenotypic 
responses across environments (stressed and not stressed), including the commonly 
observed GEI. In addition, multivariate mixed model approaches allow to model the 
association between traits in their dependence on the environmental conditions. One 
step further, molecular marker information can be incorporated to identify the 
genome regions underlying variation and co-variation between traits, thereby 
providing relevant information for practical plant breeding. Questions on the 
relevant regions to select for and on pleiotropy versus genetic linkage determining 
correlations between traits can be addressed. This information can be 
advantageously integrated in breeding procedures for direct and indirect selection of 
better adapted genotypes. 
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