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Abstract: The KdV-KZK equation for fluids developed by me was presented at the 
ICSV 11 in St. Petersburg in July 2004. In this paper, I made an attempt on the 
analytical solutions of this equation using the perturbation method. Some 
physical interpretation of the solutions is given. A brief introduction to KdV-
KZK equation for solids is given 
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1. INTRODUCTION 

We developed the KdV-KZK equation for fluids in a paper presented at the 
11 04. The KdV-KZK equation covers all 
basic physical mechanisms of sound propagation in fluids: diffraction, 
nonlinearity, absorption, and dispersion. Mark Hamilton’s group1 in 
University of Texas has used a numerical method to solve an augmented 
Burgers equation using splitting procedure and incremental step approach by 
giving equal weights to all the four physical mechanisms. This does not 
reflect the actual phenomenon because dispersion may be predominant over 
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diffraction etc. and so only gives approximation results. In this paper, we use 
a rigorous approach by using analytical method.  

2. PERTURBATION METHOD USED 

The KdV-KZK equation is given as 
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where P = acoustic pressure, z = direction of sound propagation, τ = t – z/c0, 
ε = parameters of nonlinearity,  c0 = sound velocity, b = ζ + 4η/3 where ζ and 
η are the bulk and shear viscosity. ρ0 = density of fluid and γ = cp/cv = 
adiabatic index where cp and cv are the specific heats at constant pressure 
and constant volume. 

With perturbation method and writing 
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First perturbation, we write 
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where 2222 yx ∂∂+∂∂=Δ⊥  is the Lagrangian in transverse coordinates. 

Here our solutions are given in the light of the simple modes of operation 
of a parametric radiator. The processes whereby low-frequency waves are 
formed in the field of nondiffracting plane and spherically diverging high-
frequency beams are considered. We will consider waves of high intensity 
(high acoustic Reynolds number) and that the profile of the wave contains a 
discontinuity. 
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The solution of Eq. (3) for a biharmonic high-frequency pump can be 
written as 
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The complex amplitudes 2,1A  satisfy the parabolic equation of diffraction 
theory: 
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where Aα  describes the attenuation of the high-frequency waves. 

For second perturbation, we have 
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Substituting in Eq. (4), we have  
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where Ω = difference angular frequency. 

Substitute the expression Eq. (7) into the right hand side of Eq. (6) and 
seek its solution by inspection in the form 
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We obtain the following equation for the complex amplitude of the 
difference frequency wave ),( zrP− in place of Eq. (6) : 
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Here the term that describes the damping of the difference frequency wave is 
eliminated with the help of the substitution )exp( zPP −−− −→ α . Thus 
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where −α = damping coefficient of difference frequency wave, K = wave 
number of the difference frequency wave, al221 =−+= −αααα  = 
effective attenuation coefficient, A1, A2

* = functions satisfying the parabolic 
equation Eq. (5) without account of attenuation. 

To solve Eq. (10), we assume the beams to be cylindrically symmetric 
(circular). Using the Hankel transforms : 
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Eq. (9) becomes 
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then Eq. (10) reduces to  
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is the Hankel transform of the right hand side of Eq. (10). The solution of 
Eq. (12) with zero condition at the boundary z=0 has the form  
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Carrying out the inverse Hankel transformation, we find the desired solution 
of Eq. (10) 
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This solution is valid for any distributions of complex amplitudes of the 
high-frequency waves A1 and A2 on the surface of the pump transducer. 
Substituting any of the solutions of the parabolic equation in this form, the 
corresponding solution for the difference-frequency wave can be obtained. 

For third perturbation, we have 
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We know that the KdV-KZK equation is an extension of the KdVB equation 
to include diffraction effect. So the solution of the KdVB equation should 
throw some lights on the possible solution of the KdV-KZK equation. The 
solution of the KdVB equation describes a shock wave as a transition 
between two constant velocity values. This transition can have oscillations 

due to the dispersion. At low δ where 
0

3
02 ρ

δ
c
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quite close to solitons (solitons correspond to a closed separatrix). In the 
latter case a nonstationary solution can be developed as well, describing a 
slowly decaying soliton. 

Hence, let us seek a solution in the form of a soliton  
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Substituting Eq. (17) into Eq. (16), should give some light on the 
solution of the KdV-KZK equation. 
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3. ANALYTICAL SOLUTION OF THE KDV-KZK 
EQUATION USING CHAOTIC THEORY 

The KdV-KZK equation is a nonlinear differential equation. There is a 
theorem stating that any nonlinear differential equation does possess a 
regime within which its solutions are chaotic. Using the above theorem, the 
KdV-KZK equation should have some chaotic solution subject to certain 
conditions on its parameters. The KdVB equation has some soliton solution. 
X. N. Chen and R. J. Wei2 show that some solitons do possess chaotic 
characteristics. I feel that it is very promising to find analytical solutions of 
the KdV-KZK equation in the light of chaotic theory. 

4. EXTENSION OF THE KDV-KZK EQUATION TO 
SOLIDS 

There has been extension of the KZ equation from fluids to solids such as 
3 work. In this paper, they consider a weakly 

nonlinear, weakly diffracting, two dimensional shear waves propagating in a 
prestrained hyper elastic solid. A modification of the classical KZ equation 
is derived using a systematic perturbation scheme. Both dissipative and non-
dissipative materials are considered. The principle effect of the prestrain is 
seen to be the inclusion of a quadratic nonlinearity to the cubic nonlinearity 
found n the case of zero prestrain. Further results include the shock jump 
relations and the prediction of shocks having a speed which is identical to 
the nonlinear wave speed ahead of or behind the shock. The main difference 
of the KZ equation for fluids and for solids is the inclusion of elasticity and 
stress-strain relations in the equation. Also the Lagrangian coordinates 
instead of the Euler coordinates have to be used to account for the strain 
parameter. 

5. CONCLUSION 

The analytical solution for the KdV-KZK equation is possible. Analytical 
solutions for the KdVB equation are well established. Compared with the 
KdVB equation, the KdV-KZK equation only has one extra term and it will 
not introduce much complexity. It would be also useful to find numerical 
solutions of the KdV-KZK equation but would be different from that of the 
Lee-Hamilton method1 which gives equal importance to each of the physical 
mechanism. KdV-KZK equation for fluids will find application in 
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aerodynamics, underwater acoustics. Its extension to solids will find 
applications in medical imaging and in nonlinear nondestructive evaluation. 
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