
7. Case-Based Decision Making

Early work in AI has mainly focused on formal logic as a basis of knowledge rep-
resentation and has largely rejected approaches from (statistical) decision theory
as being intractable and inadequate for expressing the rich structure of (human)
knowledge [193]. However, the recent development of more tractable and expres-
sive decision-theoretic frameworks and inference strategies such as, e.g., graph-
ical formalisms [292, 187], in combination with the analysis of restrictions of
traditional AI reasoning techniques have stimulated renewed interest in decision
theory. In fact, ideas from decision theory now play a predominant role in the
modeling of rationality, one of the major topics of current research in AI [95].
Loosely speaking, the AI paradigm has undergone a shift from “acting logically”
to “acting rationally” [322]. The related view of intelligent behavior deviates fun-
damentally from the classical “logicist” approach. While the latter emphasizes the
ability to reach correct conclusions from correct premises, the decision-theoretic
approach considers AI as the design of (limited) rational agents [324]. For this
“agent-based” view of AI, intelligence is strongly related to the capacity of suc-
cessful behavior in complex and uncertain environments and, hence, to rational
decision making.1

Decision theory and AI can fertilize each other in various ways [298]. As already
suggested above, classical decision theory provides AI with important ideas and
concepts of rationality, thus contributing to a formal basis of intelligent agent
design. Yet, it has been less concerned with computational and knowledge repre-
sentational aspects. AI can particularly contribute in this direction. It has been
realized very soon, for instance, that perfect rationality, in the sense of generat-
ing behavior which leads to maximal (expected) utility, cannot be achieved once
computational aspects come into play [321]. In fact, an agent having to make a
decision under limited computational (time, memory) resources not only has to
reason about the decision itself but also about the computations it uses for de-
riving the decision: A more elaborated computation might yield a better decision
but also requires more time (or other resources). Being perfectly rational in the
aforementioned sense, it has to perform the reasoning about its computations in
the same decision-theoretic way. This, however, leads to the problem of realizing
some kind of metalevel rationality [23, 38, 324] and, hence, results in a concep-
tual regress. Problems of this kind have motivated the definition of alternative

1
J. Doyle has suggested to define AI itself as the computational study of rational behavior [94].
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254 7. Case-Based Decision Making

concepts which are weakenings of perfect rationality. They serve as candidates for
putting the agent-based understanding of intelligence and the related approach
to the design of intelligent systems on a formal basis. Among the proposals, the
concept of bounded optimality seems to be the one which is most relevant for
practical as well as theoretical AI research [323].

As far as the aspect of knowledge representation is concerned, research in AI has
shown various possibilities of extending the decision-theoretic frameworks usually
considered in classical approaches. Recent developments include the modeling of
decision problems within qualitative [52, 53, 123, 129] and constraint-based [143]
settings and make use of formal logic in order to represent the knowledge of a
decision maker in a more flexible way [39, 50, 98, 293, 326, 365, 366]. These ap-
proaches are intended to make decision-theoretic models more realistic, tractable
and expressive.

In this chapter, we are mainly concerned with the idea of case-based decision
making (CBDM) which is originally due to Gilboa and Schmeidler [167]. The
notion CBDM stands for the application of the CBI principle in the context of
decision making: An agent faced with a decision problem relies upon its experience
from similar problems encountered in the past. Loosely speaking, it chooses an act
based on the (cumulative or average) performance of (potential) acts in previous
problems which are similar to the current one.

Even though the model in [167] has mainly been introduced with economic ap-
plications in mind, CBDM is particularly interesting from an AI perspective.
Firstly, it combines principles from two important subfields of AI, namely deci-
sion theory and CBR. Secondly, it touches on interesting aspects of knowledge
representation and reasoning. In fact, the mental notions of preference and belief
constitute the main concepts of classical decision theories. Corresponding mathe-
matical models are based on formalizations of these concepts, such as preference
relations, utility functions, and probability distributions. The aforementioned ap-
proach of Gilboa and Schmeidler leads to a decision theory in which the
cognitive concept of similarity plays a predominant role. Needless to say, in-
corporating this concept into formal approaches to decision making raises some
interesting (semantical) questions. Particularly, it has to be clarified which role
similarity plays and, hence, what the relation between this and other concepts
such as preference and belief could be (cf. Section 7.6). Clearly, this question
concerns basic assumptions underlying a decision-theoretic model. One should
therefore not expect to find definite answers. Classical works by Ramsey [309],
de Finetti [146], von Neumann and Morgenstern [278] and Savage [331]
as well as recent developments in the field of decision theory, such as non-additive
expected utility [334, 166] or qualitative decision making, show various ways of
formalizing the notions of preference and belief (including measure-theoretic ap-
proaches, such as fuzzy measures [384] and different types of probability [145],
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as well as more logic-oriented symbolic methods [365]).2 Moreover, a consensus
concerning the actual meaning of the concept itself seems to exist even less in the
case of similarity than in the case of preference or uncertainty. As will be seen,
the approaches to case-based decision making discussed in this chapter not do
only differ with respect to the mathematical formalization, they are also based
on different principles and ideas for incorporating similarity and principles of CBI

into decision making.

The remaining part of the chapter is organized as follows: In Section 7.1, we
provide a brief review and discussion of case-based decision theory as introduced
by Gilboa and Schmeidler. In Section 7.2, we consider the idea of case-based
decision making in connection with the Nearest Neighbor principle which is
commonly used in instance-based learning. A fuzzy set-based approach to CBDM

which is due to Dubois and Prade [101] will be discussed in Section 7.3. A
generalization of the latter is proposed in Section 7.4. Section 7.5 is devoted to
an alternative framework of case-based decision making which is based on the
methods of case-based inference proposed in previous chapters. A discussion of
some selected aspects of CBDM models follows in Section 7.6. Finally, Section 7.7
introduces a framework of experienced-based decision making as a generalization
of case-based decision making.

7.1 Case-based decision theory

This section gives a brief review of the model introduced by Gilboa and Schmei-

dler [167], referred to as case-based decision theory (CBDT) by the authors.
Putting it in a nutshell, the setup they proceed from can be characterized as fol-
lows: Let Q and A be (finite) sets of problems and acts, respectively, and denote
by R a set of outcomes (outputs) or results. Choosing act a ∈ A for solving prob-
lem p ∈ Q leads to the outcome r = r(p, a) ∈ R. A utility function u : R −→ U
resp. u : Q×A −→ U assigns utility values to such outcomes; the utility scale U
is taken as the set of real numbers. Let

σQ : Q × Q −→ [0, 1], σR : R × R −→ [0, 1]

be similarity measures quantifying the similarity of problems and outputs, re-
spectively. Suppose the decision making agent to have a (finite) memory

M = {(p1, a1, r1), . . . , (pn, an, rn)} (7.1)

of cases at its disposal, where (pk, ak) ∈ Q × A, rk = r(pk, ak) (1 ≤ k ≤ n),
and suppose furthermore that it has to choose an act for a new problem p0 ∈ Q.
If a certain act a0 ∈ A has not been applied to the problem p0 so far (i.e.,

2 Needless to say, a validation or comparison of decision-theoretic models is generally difficult, no
matter whether from a descriptive or a normative point of view.
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there is no case (p0, a0, r) ∈ M) the agent will generally be uncertain about
the result r(p0, a0) and, hence, about the utility u(r(p0, a0)). According to the
assumption underlying the paradigm of CBDT it then evaluates an act based
on its performance in similar problems in the past, as represented by (parts of)
the memory M. More precisely, the decision maker is supposed to choose an act
which maximizes a linear combination of the benefits experienced so far:

V (a0) = Vp0,M(a0)
df
=
∑

(p,a0,r)∈M

σQ(p, p0) · u(r). (7.2)

The summation over an empty set yields the “default value” 0 which plays the
role of an “aspiration level.” Despite the formal resemblance between (7.2) and
the well-known expected utility formula one should not ignore some substantial
differences between CBDT and expected utility theory (EUT). This concerns not
only the conceptual level but also mathematical aspects. Particularly, it should be
noted that the similarity weights in (7.2) do not necessarily sum up to 1. Conse-
quently, (7.2) must not be interpreted as an estimation of the utility u(r(p0, a0)).

As an alternative to the linear functional (7.2), an “averaged similarity” version
has been proposed. It results from replacing σQ in (7.2) by the similarity measure

(p, p0) �→ σQ(p, p0)


 ∑

(p′,a0,r′)∈M

σQ(p′, p0)




−1

(7.3)

whenever the latter is well-defined. (Note that this measure is defined separately
for each act a0.) Theoretical details of CBDT including an axiomatic character-
ization of decision principle (7.2) are presented in [167].

The basic model has been generalized with respect to several aspects. The problem
of optimizing decision behavior by adjusting the aspiration level in the context of
repeated problem solving is considered in [168] (see also Section 7.6). In [169], the
similarity measure in (7.2) is extended to problem–act tuples: Given two similar
problems, it is assumed that similar outcomes are obtained for similar acts (not
only for the same act). Indeed, it is argued convincingly that a model of the form

V (a0) =
∑

(p,a,r)∈M

σQ×A((p, a), (p0, a0)) · u(r), (7.4)

where σQ×A is a (problem–act) similarity measure over Q × A, is more realistic
than (7.2). For example, an act a0 which has not been applied as yet is generally
not evaluated by the default utility 0 if experiences with a comparable act a have
been made. In fact, an outcome r(p, a) will then influence the rating of a0 in
connection with a problem p0 which is similar to p. Besides, it should be noticed
that (7.4) allows for realizing some kind of analogical reasoning. Suppose, for
instance, that the effect expected from applying a0 to p0 is comparable to the
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effect of applying a to p. In that sense, (a0, p0) might appear to be quite similar
to (a, p), although a and a0 as well as p and p0 as such are rather dissimilar.

With regard to alternative models of CBDM proposed in subsequent sections it
is useful to picture again the following properties of the decision criteria outlined
above:

– Accumulation/averaging: The criteria (7.2) and (7.4) realize a simple summa-
tion of (weighted) degrees of utility. Consequently, a decision maker might prefer
an act a, which always brought about rather poor results, to an act a∗ which
has so far yielded very good results, simply because a has been tried more often
than a∗. This effect is annulled by (7.3), where the use of a normalized similarity
measure yields an average utility.

– Compensation: Both decision rules compensate between good results and bad
results associated with an act a.

Gilboa and Schmeidler especially emphasize the cognitive plausibility of their
model [171]. In fact, a main motivation behind CBDT is to provide a more
faithful description of human decision making than EUT does. Indeed, in some
situations this axiomatic theory seems rather restrictive. Particularly, it assumes
the decision maker to have very detailed information at its disposal: a list of the
states of nature, a probability distribution over these states, a list of potential
acts, and a numerical utility value for all act–state pairs.3 Since this information
is generally not completely available, the decision maker is forced to engage in
hypothetical reasoning.4 Moreover, some well-known paradoxes [13, 140] as well
as psychological studies [375] show that EUT can be challenged as a descriptive
theory of (human) decision making. Still, it deserves mentioning that CBDT is
not seen as a competing theory, but rather as an alternative (or complementary)
“language” for modeling decision problems. It seems especially useful if a problem
description is not naturally cast in the framework of decision making under risk or
if a problem is very unfamiliar, in which case the modeling of states of nature and
associated probabilities might be difficult. A thorough discussion of the relation
between CBDT and EUT can again be found in [167].

Let us conclude with a remark on the concept of similarity as used in CBDT.
One might argue that the measures σQ and σQ×A need not be interpreted as
similarities at all: Basically, the valuation (7.2) can be seen as a weighted sum

V (a0) = Vp0,M(a0) =
∑

(p,a,r)∈M

ωp0,a0,M(p, a) · u(r) (7.5)

of utility degrees encountered in the past,5 where the weights reflect the relevance
of a case. This relevance, however, might not only depend on similarity. Rather,

3 Still, it has to be noticed that an unequivocal model does generally not exist. Rather, there is much
freedom in the definition of, e.g., states and acts.

4 What is the effect of choosing a certain act in a certain state of nature?
5 The linearity of the representation (7.2) is mainly due to the separability axiom in [167].
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it can capture other (or further) aspects as well and, hence, leaves much freedom
for different types of cognitive interpretation.6 In this connection, it is worth
mentioning that the axiomatic frameworks in [167, 169] do not impose special
restrictions (such as symmetry) on σQ and σQ×A which might appear natural
when interpreting the latter as similarity measures.

The indexing of a weight ωp0,a0,M(p, a) in (7.5) suggests that the relevance of a
case (p, a, r) is not necessarily a function of (p, a) and (p0, a0) alone but might also
depend on other cases in the memory M. An example of this type of “context-
sensitive” relevance will be presented in the next section.

7.2 Nearest Neighbor decisions

Interestingly enough, the modification (7.3) of decision criterion (7.2) corresponds
to a special version of a k-Nearest Neighbor approximation, namely Shep-

hard’s interpolation method which makes use of the complete set of observations
[340]. It is used for making predictions in other CBI approaches as well (e.g., in
the ELEM2-CBR system [61]). Indeed, case-based decision making can basically
be seen as a special type of CBI or, more specifically, of case-based inference as
discussed in previous chapters: Evaluating the act a0 comes down to estimat-
ing the associated outcome r(p0, a0) (resp. the utility thereof) when viewing a
problem–act tuple (p0, a0) as an input in the sense of CBI. In this sense, a sin-
gle decision problem gives rise to several CBI problems since a corresponding
estimation has to be derived for all acts a ∈ A. Of course, the estimation of an
outcome can principally be realized by any method of instance-based prediction.7

In particular, one might think of replacing (7.2) by the NN rule in its basic form,
an idea that we shall discuss below.

7.2.1 Nearest Neighbor classification and decision making

Recall the problem–act similarity model (7.4) and let σS = σQ×A denote a sim-
ilarity measure over the set of inputs which now corresponds to the set Q × A
of problem–act tuples. Moreover, let M↓ be the projection of the memory M to
Q × A. The NN-based counterpart to the evaluation (7.4) of an act a0 ∈ A is
then given by

V (a0) = u(r(NNM(p0, a0)), (7.6)

where NNM(p0, a0) is the nearest neighbor of the problem–act tuple (p0, a0):

NNM(p0, a0) = arg max
(p,a)∈M↓

σQ×A((p, a), (p0, a0)). (7.7)

6
Gilboa and Schmeidler fully agree in this point. See [71] for a related discussion and [36] for an
application of CBDT where the notion of “relevance” might be preferred to that of “similarity.”

7 In fact, other machine learning methods could be used as well (cf. Section 7.7).
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Of course, definition (7.7) should be refined in order to handle the non-uniqueness
of the nearest neighbor. However, for the sake of simplicity we assume that each
problem–act tuple (p0, a0) has a unique nearest neighbor in M↓ (according to the
similarity σQ×A).

Observe that the CBDT criteria (7.2) and (7.4) use all cases in order to eval-
uate an act. As opposed to this, the decision maker concentrates completely on
the most relevant experience when evaluating an act according to (7.6). More
precisely, (7.6) corresponds to (7.5) with the relevance given by

ωp0,a0,M(p, a) =

{
1 if (p, a) = NNM(p0, a0)

0 otherwise
.

On the one hand, some information is clearly lost by reducing the number of
cases taken into account.8 On the other hand, the nearest neighbor does gener-
ally provide the most relevant information, i.e., the loss of information is limited.9

Moreover, (7.6) can be seen as an approximation of (7.4) which appears reasonable
from a computational point of view. Indeed, since the retrieving of all previous
cases might be very time consuming, a decision maker will generally not fall back
on its entire experience when having to perform a prompt action. Besides, (7.6)
might appear more natural in some situations since it avoids the accumulation
and compensation effect produced by (7.2) and (7.4) (cf. Section 7.1). Particu-
larly, the estimation (7.6) corresponds to the true utility if a0 has already been
applied to p0 in the past (which means that (p0, a0) ∈ M↓). The addition of
further (weighted) utility degrees or any kind of averaging might then be coun-
terproductive (cf. Section 7.6).

Note that the NN-decision rule (7.6) partitions the set A into equivalence classes
[a], where

b ∈ [a] ⇔ a ∼ b ⇔ NNM(p0, a) = NNM(p0, b).

In fact, two acts a and b are rated equally in the sense of (7.6) whenever a ∼ b,
i.e., as soon as both acts have the same nearest neighbor (in connection with a
problem p0). The criterion (7.6) hence ignores the actual degrees of similarity,
a problem already mentioned in connection with the comparison of instance-
based and kernel-based extrapolation of case-based information (cf. Section 5.3.5).
This, however, does not appear reasonable from a decision making point of view.
Consider, for instance, a case (p, a, r) with high utility u(r). Moreover, let b and
c be acts such that σQ×A((p, a), (p0, b)) is large and σQ×A((p, a), (p0, c)) is small.
Still, assume that NNM(p0, b) = NNM(p0, c) = (p, a). In this situation, a risk-
averse decision maker will generally prefer b to c. The criterion (7.6), however,
does not differentiate between these two acts. The NN principle (as any other
estimation method) seems hence questionable in the context of decision making.

8 Though formally only the relevance of some cases is set to 0.
9 This claim can be proved in a formal way. The result in [74], for instance, can be interpreted as follows:

Under certain technical assumptions, at least half of the information that a complete random sample
contains about an outcome in already represented by the nearest neighbor of the query instance.
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Indeed, at this point one should realize an important difference between decision
making and prediction, the performance task which is commonly solved by NN

algorithms: In a prediction problem, an estimation has to be derived for only
one instance and this estimation is not considered as a valuation which supports
any kind of comparison. Having to choose one among the potential candidates
anyway, it might then be acceptable to base an estimation on the nearest neighbor
even if it turns out to be quite dissimilar.

Let us mention that the averaged similarity criterion (7.3) suffers from a similar
problem. In fact, it is readily seen that the valuation of an act according to (7.3)
can be very large even though this act has only been applied in situations which
are hardly similar to the current problem.

7.2.2 Nearest Neighbor decision rules

In order to overcome the aforementioned problem it seems natural to not only
associate the utility v of the nearest neighbor (p, a) ∈ M↓ with each act a0 ∈ A
(i.e., with the tuple (p0, a0)), but rather the tuple (v, σ), where σ denotes the
similarity between (p0, a0) and (p, a). The preferences of an agent should then be
expressed in terms of a preference relation over the class of such utility–similarity
tuples. This is somewhat comparable to generalized decision rules which take
not only the expected utility into account but also the variance (i.e. uncertainty)
related to an act.

More specifically, one might think of the following generalization of (7.6):

V (a0) = σQ×A
(
(p0, a0), NNM(p0, a0)) · u(r(NNM(p0, a0))

)
. (7.8)

This valuation, which represents a preference relation over the set of tuples (v, σ)
by means of

(v, σ) � (v′, σ′) ⇔ v · σ ≤ v′ · σ′,

combines (7.4) and (7.6) to some extent. Again, it considers only one previous
case (namely the nearest neighbor) rather than all cases when evaluating an act.
The corresponding utility, however, is now weighted by the degree of similarity.
In fact, (7.8) can be seen as a special version of (7.4) when interpreting σQ×A as
a measure of relevance (cf. Section 7.1), which is then given by

ωp0,a0,M(p, a) =

{
σQ×A((p, a), (p0, a0)) if (p, a) = NNM(p0, a0)

0 otherwise
. (7.9)

According to (7.9), only the nearest neighbor is considered as a relevant obser-
vation. Of course, this idea might be generalized by taking the k ≥ 1 nearest
neighbors into account, or by introducing a threshold such that the relevance of
an observation is set to 0 in case its similarity is too small.

The valuation (7.8) defines a reasonable tradeoff between the goodness (in terms
of utility) and the relevance (in terms of similarity) of an experience. Still, it
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deserves mentioning that the degree of similarity is nothing else than a heuristic
indication of the actual degree of uncertainty of an NN estimation. In fact, it is
not true in general that a larger similarity comes along with a higher precision of
an estimation.

It has already been mentioned that a reduction of observations as realized by
(7.8) might be reasonable from a computational point of view. Particularly, this
is true if the decision maker has a large memory of cases but a relatively small
number of acts (and if it disposes of an efficient method of case retrieval). In the
reverse case where the memory is small and the set of acts to be evaluated is
large, a different strategy which passes through the set of cases, M, rather than
the set of acts, A, might be preferred: Instead of considering the most relevant
observation for each act one can proceed from an observation and attach the
related experience to the most relevant act. This idea is realized by the following
counterpart to (7.8):

V (a0) =
∑

(p,a)∈M↓:NNp0,A(p,a)=a0

σQ×A((p, a), (p0, a0)) · u(r(p, a)). (7.10)

Here,
NNp0,A(p, a) = arg max

a0∈A
σQ×A((p, a), (p0, a0)) (7.11)

denotes the problem–act tuple (p0, a0) ∈ {p0} × A which is maximally similar to
the observation (p, a) ∈ M↓. We assume (7.11) to be unique whenever some a0 ∈
A exists such that σQ×A((p, a), (p0, a0)) > 0; otherwise we let NNp0,A(p, a) = ∅ by
definition.

7.2.3 An axiomatic characterization

In [169], an axiomatization of (7.4) is proposed which assumes a preference rela-
tion +x ⊂ A × A over the set of acts to be given. As suggested by the attached
index, this preference relation depends on the experience of the decision maker: x
defines a M↓ −→ Rn function which assigns utility degrees to problem–act pairs.
It can simply be thought of as the vector

x = (x1, . . . , xn) =
(
u(r(p1, a1)), . . . , u(r(pn, an))

)
,

where xı = u(r(pı, aı)) ∈ R corresponds to the utility obtained in connection
with the ı-th problem–act tuple (pı, aı). The vector x represents the history of
the decision maker and determines the context of the new decision problem. The
information available to a decision maker which has to evaluate an act a ∈ A
might thus be illustrated in the form of a table as follows:

utility x1 x2 . . . xn

similarity σ1(a) σ2(a) . . . σn(a)
(7.12)
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The (case-based) rating of a will then be a function of the values in this table,
namely the degrees of utility obtained so far and the similarities

σı(a) = σQ×A((p0, a), (pı, aı))

between the already encountered problem–act tuples and the new tuple (p0, a).
The criterion (7.4), for instance, is given by the weighted sum

V (a) =
n∑

ı=1

σı(a)xı.

Clearly, this criterion and table (7.12) remind one of expected utility theory. In
fact, the context x plays formally the role of the probability distribution on the
set of states of nature, and the degrees of similarity σı correspond to degrees of
utility in EUT.

For the NN-rules (7.8) and (7.10) we can show representation theorems similar to
the one obtained in [169]. Consider the following axioms, which are basically for-
mulated in terms of contexts10 (,x and -x denote the asymmetric and symmetric
part of +x, respectively):

A1 Order: +x is complete and transitive for all x ∈ Rn.

A2 Continuity: For all (xk)k≥1 ⊂ Rn and all a, b ∈ A it holds true that
(
xk → x ∧ ∀ k ≥ 1 : a +xk b

)
⇒ a +x b.

A3 Additivity: For all x, y ∈ Rn and a, b ∈ A it holds true that

a ,x b ∧ a +y b ⇒ a ,x+y b.

A4 Neutrality: For all a, b ∈ A it holds true that a -(0,...,0) b.

A5 Diversity: For all distinct acts a, b, c, d ∈ A a vector x ∈ Rn exists such
that

a ,x b ,x c ,x d.

The following result has been shown in [169]: A1–A5 imply the existence of
vectors ω(a) = (ω1(a), . . . , ωn(a)) for all a ∈ A such that

a +x b ⇔
n∑

ı=1

ωı(a) · xı ≥
n∑

ı=1

ωı(b) · xı, (7.13)

where the xı are the utility degrees in (7.12). Moreover, the vectors ω(a) are
unique up to an affine transformation. Of course, the weights ωı(a) can be inter-
preted as the similarity degrees σı(a) in (7.12).

10 This contrasts with classical decision-theoretic models which are formalized in terms of acts (in the
Savage setting) or probabilistic lotteries (in the Von Neumann-Morgenstern framework).
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The valuations (7.8) and (7.10) are obviously special cases of the weighted sum
in (7.13). In order to obtain a set of axioms which imply a nearest neighbor
representation it is hence possible to extend A1–A5 in such a way that some
of the weights ωı become 0. Consider the following axiom (the k-th entry of the
vector ek is 1 and all other entries are 0):

A6 For all acts a, b, c ∈ A, x ∈ Rn, γ ≥ 0 and 1 ≤ k ≤ n it holds true that

c ,x a ∧ c ,x b ⇒ c ,x+γek
a ∨ c ,x+γek

b. (7.14)

In a certain sense, the meaning of A6 is opposite to that of axiom A5. The
latter demands that a set of acts can be put in any order by defining the context
appropriately. As opposed to this, A6 demands that a certain modification of
the context, namely the increase of one utility degree xk, can only have a limited
influence: It can reverse but one of the preferences in the antecedent part of
implication (7.14).

Lemma 7.1. Suppose A1-A6 to hold and let 1 ≤ k ≤ n. The vector

λ = (λ1, . . . , λm) = (ωk(a1), . . . , ωk(am)),

where m = card(A) ≥ 4, is of the form

λ = αeı0 + β (7.15)

for some 1 ≤ ı0 ≤ m, α ≥ 0 and β ∈ R. �

Proof. Consider a permutation π of {1, . . . , m} such that

λπ(1) ≥ λπ(2) ≥ . . . ≥ λπ(m). (7.16)

We obviously have λπ(2) = . . . = λπ(m) if (7.15) holds. Suppose by way of negation
that

λπ(2) ≥ . . . ≥ λπ(−1) > λπ() ≥ . . . ≥ λπ(m).

Axiom A5 guarantees the existence of x ∈ Rn such that aπ() ,x aπ(1) and
aπ() ,x aπ(2). Since ωk(aπ()) = λπ() < λπ(1) = ωk(aπ(1)) and ωk(aπ()) = λπ() <
λπ(2) = ωk(aπ(2)), there is obviously some γ > 0 such that

n∑
ı=1

ωı(aπ(ı0)) · (xı + γek) >
n∑

ı=1

ωı(aπ()) · (xı + γek)

for ı0 = 1 and ı0 = 2. This means aπ(1) ,x+γek
aπ() and aπ(2) ,x+γek

aπ()

according to (7.13) and, hence, contradicts A6. Consequently, the representation
(7.15) must hold with ı0 = π(1), α = λπ(1) − λπ(2) and β = λπ(2). �
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Theorem 7.2. Consider a decision problem with card(A) ≥ 4. The preference
relations +x can be represented by (7.10) iff they satisfy A1–A6. �

Proof. It is readily verified that the preference relations +x defined by (7.10)
satisfy A1–A6. Concerning the converse direction, we make use of Lemma 7.1
and the fact that β in (7.15) can be set to 0 without loss of generality. In fact,
the variation of β does not influence the relation on the right-hand side of (7.13).
Thus, for each 1 ≤ k ≤ n there is at most one 1 ≤ ı0 ≤ m such that ωk(aı0) "= 0.
We hence obtain the representation (7.10) by letting

NNp0,A(pı, aı) = {a ∈ A |ωı(a) > 0}

for all (pı, aı) ∈ M↓. �

Note that a value ωı(a) > 0 is interpreted as the similarity between (pı, aı) and
(p0, a) = NNp0,A(pı, aı). It hence corresponds to the value σı(a) in (7.12). It
is clear, however, that the complete similarity relation σQ×A cannot be deter-
mined by the preferences +x. In fact, ωı(b) = 0 does not necessarily mean that
σQ×A((pı, aı), (p0, b)) = 0 but only implies σQ×A((pı, aı), (p0, b)) < ωı(a). This
is caused by the behavior of a decision maker applying the NN principle. Ac-
cording to (7.9) it concentrates on the nearest neighbors of the observations but
completely ignores other acts to which it assigns a relevance of 0. Thus, the pref-
erences +x can determine only the relevance of a case but not its similarity to
(p0, a0).

Now, consider again the decision rule (7.8). Axiom A5 is obviously not satisfied
in connection with this criterion. Indeed, we have

b +x c +x d or d +x c +x b

for all x ∈ Rn if the acts b, c, d ∈ A have the same nearest neighbor (p, a) and if

σQ×A((p, a), (p0, b)) < σQ×A((p, a), (p0, c)) < σQ×A((p, a), (p0, d)).

Observe, however, that the act c will then be ignored by the decision maker in the
sense that it is not chosen anyway (except perhaps if V (b) = V (c) = V (d) = 0).
Besides, act b becomes interesting only if all acts have a negative (estimated)
utility according to (7.8), a situation that can formally be avoided (see below).
We can hence restrict the decision rule (7.8) to a set Ap0 of acts as follows: For
the problem–act tuple (pı, aı) ∈ M↓ define

Ap0(pı, aı) = arg max
a∈A : NNM(p0,a)=(pı,aı)

σQ×A((p0, a), (pı, aı))

whenever the set on the right-hand side is not empty. For the sake of simplicity,
we again assume Ap0(pı, aı) to be unique. The set Ap0 is then defined as

Ap0 = {Ap0(pı, aı) | 1 ≤ ı ≤ n,Ap0(pı, aı) exists }. (7.17)
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It can be thought of as the set of relevant acts. As already suggested above, a de-
cision based on (7.8) might appear somewhat peculiar if V (a0) < 0 for all a0 ∈ A.
Observe, however, that this problem can formally be avoided by means of a proper
definition of acts. For instance, one might introduce a new act a∗ which stands for
“doing anything” or “trying something completely new.” When adding a dummy
case (p∗, a∗, 0) to M, V (a∗) = 0 is guaranteed by letting σQ×A((p, a), (p∗, a∗)) = 1
if (p, a) = (p∗, a∗) and 0 otherwise. Thus, a∗ is preferred to each act with a nega-
tive estimated utility. This is clearly in accordance with the idea of an aspiration
level in [167].

Note that each act a ∈ Ap0 in (7.17) has a unique nearest neighbor in M↓.
Moreover, for each (pı, aı) ∈ M↓ there is at most one act a ∈ A such that (pı, aı)
is the nearest neighbor of (p0, a) (which implies card(Ap0) ≤ card(M)). It is hence
obvious that A5 is satisfied for Ap0 . Besides, it is not difficult to show that the
preference relations induced by (7.8) also satisfy the following axiom:

A7 For all x, y ∈ Rn and a, b ∈ A it holds true that

a +x b ∧ a +y b ⇒ a +max{x,y} b,

where the maximum of the vectors x and y is defined component-wise.

Theorem 7.3. Consider a decision problem with card(A) ≥ 4. The preference
relations +x can be represented by (7.8) iff they satisfy A1–A7. �

Proof. Again, A1–A7 are obviously satisfied when representing +x by (7.8).
In order to show the converse direction suppose A1–A7 to be satisfied. Given
A1–A6, is has been shown in Theorem 7.2 that (7.13) holds in such a way that
ωı(a)ωı(b) = 0 for all acts a "= b. In order to establish a representation of +x

by (7.8), we further have to show that ı "=  ⇒ ωı(a)ω(a) = 0 for all acts a.
Thus, assume the existence of an act a such that ωı(a) > 0 and ω(a) > 0 for
1 ≤ ı "=  ≤ n. Moreover, let the contexts x and y be defined as follows:

xk =




ω(a) if k = ı

−ωı(a) if k = 

0 if ı "= k "= 

, yk =




−ω(a) if k = ı

ωı(a) if k = 

0 if ı "= k "= 

.

It is readily verified that V (a) = 0 in both contexts. Moreover, V (b) = 0 does
also hold true for all other acts since b "= a entails ωı(b) = ω(b) = 0. Thus,
b +x a and b +y a for any act b "= a. In the context max{x, y}, however, we have
V (a) = 2ωı(a)ω(a) > 0 and, hence, a ,max{x,y} b. This contradicts A7. �

7.3 Fuzzy modeling of case-based decisions

Case-based decision making has been realized in [101] as a kind of case-based ap-
proximate reasoning. This approach is in line with methods of qualitative decision



266 7. Case-Based Decision Making

theory. In fact, the assumption that uncertainty and preference can be quantified
by means of, respectively, a precise probability measure and a cardinal utility
function (as it is assumed in classical decision theory) does often appear unreal-
istic. As opposed to (7.2), the approach discussed in this section only assumes an
ordinal setting for modeling decision problems, i.e., ordinal scales for assessing
preference and similarity. This interpretation should be kept in mind, especially
since both scales will subsequently be taken as (subsets of) the unit interval.

7.3.1 Basic measures for act evaluation

Let � be a multiple-valued implication connective. Given a memory M and
a new problem p0, the following (estimated) utility value is assigned to an act
a ∈ A:

V ↓
p0,M(a)

df
= min

(p,a,r)∈M
σQ(p, p0) � u(r). (7.18)

This valuation supports the idea of finding an act a which has always resulted in
good outcomes for problems similar to the current problem p0. Indeed, (7.18) can
be considered as a generalized truth degree of the claim that “whenever a has
been applied to a problem p similar to p0, the corresponding outcome has yield a
high utility.” An essential idea behind (7.18) is that of avoiding the accumulation
and compensation effect caused by the decision criterion (7.2) (cf. Section 7.1),11

since these effects do not always seem appropriate (cf. Section 7.6).

As a special realization of (7.18) the valuation

V ↓
p0,M(a)

df
= min

(p,a,r)∈M
max{n(h(σQ(p, p0))), u(r)},

is proposed, where h is an order-preserving function which assures the linear scales
of similarity and preference to be commensurable and n is the order-reversing
function of the similarity scale. By taking n as x �→ 1 − x in [0, 1] and h as the
identity, we obtain

V ↓
p0,M(a)

df
= min

(p,a,r)∈M
max{1 − σQ(p, p0), u(r)}. (7.19)

This criterion can obviously be seen as a qualitative counterpart to (7.2). Besides,
the criterion

V ↑
p0,M(a)

df
= max

(p,a,r)∈M
min{σQ(p, p0), u(r)} (7.20)

is introduced as an optimistic counterpart to (7.19). It can be seen as a formal-
ization of the idea to find an act a for which there is at least one problem which
is similar to p0 and for which a has led to a good result. Again, let us mention
that expressions (7.19) and (7.20) are closely related to decision criteria which

11 Note that the accumulation effect is also the main motivation for the normalization (7.3).
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have recently been derived in [123] in connection with an axiomatic approach to
qualitative decision making under uncertainty.

In the more general context of problem–act similarity, the decision rules (7.19)
and (7.20) become

V ↓
p0,M(a0)

df
= min

(p,a,r)∈M
max{1 − σQ×A((p, a), (p0, a0)), u(r)}, (7.21)

V ↑
p0,M(a0)

df
= max

(p,a,r)∈M
min{σQ×A((p, a), (p0, a0)), u(r)}. (7.22)

In order to make the basic principles underlying the above criteria especially
obvious, suppose the qualitative utility scale to be given by U = {0, 1}. That is,
only a crude distinction between “bad” and “good” outcomes is made. (7.21) and
(7.22) can then be simplified as follows:

V ↓
p0,M(a0)

df
= 1 − max

(p,a,r)∈M : u(r)=0
σQ×A((p, a), (p0, a0)), (7.23)

V ↑
p0,M(a0)

df
= max

(p,a,r)∈M : u(r)=1
σQ×A((p, a), (p0, a0)). (7.24)

According to (7.23), the decision maker only takes cases (p, a, r) with bad out-
comes into account. An act a0 is discounted whenever (p0, a0) is similar to a
corresponding problem–act tuple (p, a). Thus, the agent is cautious and looks
for an act that it does not associate with a bad experience. According to (7.24),
it only considers the cases with good outcomes. An act a0 appears promising if
(p0, a0) is similar to a tuple (p, a) which has yielded a good result. In other words,
the decision maker is more adventurous and looks for an act that it associates
with a good experience.

7.3.2 Modification of the basic measures

As noted in [125], (7.19) makes only sense if the memory contains at least one
problem p such that σQ(p, p0) = 1 and a has been chosen for solving p. Otherwise,
it may happen that (7.19) is very high even though none of the problems contained
in the memory is similar to the current problem p0.

12 Particularly,

({
p ∈ Q | (p, a, r) ∈ M ∧ σQ(p, p0) > 0

}
= ∅
)

⇒
(
V ↓

p0,M(a) = 1
)

,

which does not seem satisfactory.

Modifications of (7.19) and its optimistic counterpart have been proposed in order
to cope with these difficulties. The modified version of (7.19) is based on some
kind of normalization of the similarity function for each act a and a discounting

12 Notice that the averaged similarity criterion (7.3) suffers from the same drawback.
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which takes the absence of problems similar to p0 into account. More precisely,
the modified measure is given by

V ↓
p0,M(a) = min

{
hM(a, p0), min

(p,a,r)∈M
max{1 − σa

Q(p, p0), u(r)}
}

, (7.25)

where
hM(a, p0) = max

(p,a,r)∈M
σQ(p, p0),

and σa
Q(·, p0) denotes a normalization13 of σQ(·, p0), e.g.,

σa
Q(p, p0) =

{
1 if σQ(p, p0) = hM(a, p0)

σQ(p, p0) if σQ(p, p0) < hM(a, p0)
.

The idea behind (7.25) is that the willingness of a decision maker to choose act
a is upper-bounded by the existence of problems which are completely similar to
p0 and to which a has been applied. Moreover, σQ(·, p0) is normalized in order
to obtain a meaningful degree of inclusion. Thus, (7.25) corresponds to the com-
pound condition that there are problems similar to p0 to which act a has been
applied and the problems which are most similar to p0 are among the problems
for which a has led to good results. Observe that (7.19) is retrieved from (7.25)
as soon as hM(a, p0) = 1. Moreover, note that a corresponding modification can
also be defined for (7.20):

V ↑
p0,M(a) = max

{
1 − hM(a, p0), max

(p,a,r)∈M
min{σa

Q(p, p0), u(r)}
}

. (7.26)

The criteria (7.25) and (7.26) guarantee that V ↓
p0,M(a) ≤ V ↑

p0,M(a) which is not
necessarily the case for (7.19) and (7.20).

7.3.3 Interpretation of the decision criteria

As opposed to (7.2), the criteria (7.19) and (7.20) do obviously not focus on some
kind of average performance, which hardly makes sense within an ordinal setting.
Rather, they should be considered from the same point of view as qualitative
decision rules such as Maximin [123]. Indeed, the application of (7.18) seems
reasonable, for instance, if an agent aims at minimizing the occurrence of worst
case outcomes in competition with other agents or if only an ordinal preference
relation on outcomes is assumed [52].

We shall now propose two interpretations of (7.19).14 The first one is that of an
approximation of a (generalized) Maximin evaluation: Observe that we can write
(7.19) as

13 Note that this normalization is again defined for each act individually.
14 These interpretations can be transferred to (7.20) in a straightforward way.
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V ↓
p0,M(a) = min

0≤k≤m
max{1 − σk, vk}, (7.27)

where the values 0 = σ0 < σ1 < . . . < σm = 1 constitute the (finite) set
{σQ(p, p′) | p, p′ ∈ Q} of possible similarity degrees of problems and

vk = min Vk = min{u(r) | (p, a, r) ∈ M, σQ(p, p0) = σk}

is the lowest utility obtained in connection with act a for problems which are
σk-similar to p0. Moreover, vk = 1 by definition if Vk = ∅ (which is just the reason
for the problem that (7.19) becomes large if no similar observations have been
made).

According to (7.27), the valuation (7.19) of an act is completely determined by
the lower bounds vk (0 ≤ k ≤ m) which are derived from the memory M (and
discounted according to respective degrees of similarity). This reveals that (7.19)
can indeed be seen as some kind of “experience-based” approximation of the
Maximin principle. The case in which all problems are completely similar makes
this especially apparent. Then, (7.19) evaluates an act a simply according to the
worst consequence observed so far. More generally, the value vk can be seen as
an estimation of the lower utility bound

wk = min{u(r(p, a)) | p0 "= p ∈ Q, σQ(p, p0) = σk},

i.e., the smallest degree of utility which can be obtained in connection with act
a for (not necessarily encountered) problems from Q which are σk-similar to p0.
Then, V ↓

p0,M(a) can be interpreted as an approximation of

W ↓
p0

(a) = min
0≤k≤m

max{1 − σk, wk},

which defines a case-based generalization of a Maximin-evaluation. In fact,
W ↓

p0
(a) is equal to V ↓

p0,M(a) if a has already been applied to all problems (up
to p0) from Q, i.e., if {p | ∃ r ∈ R : (p, a, r) ∈ M} = Q \ {p0}.
According to a second (more logic-oriented) interpretation, (7.18) might be seen as
the (generalized) truth degree of a proposition characterizing the decision maker’s
preferences concerning acts. In our case, those acts are preferred which have al-
ways resulted in good outcomes for similar problems. Then, (7.18) defines the
degree to which an act meets the requirements and, hence, induces a correspond-
ing preference relation over acts. In a certain sense, this approach can be seen
as a “compiled” decision model which skips the estimation of utility and relates
similarity or, more generally, certain properties of an act to preference more di-
rectly. That is to say, the agent already knows which properties a preferred act
should have. The idea of such a compiled model becomes even more obvious if
we consider (crisp) rules of the form “if the problem has property x then choose
an act with property y”, such as “if it looks rainy then take an umbrella with
you.” Rules of this kind are often set up if a decision problem is solved frequently.
They represent a sort of routine decision and reflect the agent’s knowledge that



270 7. Case-Based Decision Making

a decision analysis, i.e., the estimation of utility degrees for all decisions, would
result in choosing a certain act if the problem has a related property anyway.

Even though formally equivalent, the two interpretations are different from a
semantical point of view. For instance, interpreting the value V (a) assigned to
an act a which has not yet been tried as a degree to which this act meets the
agent’s idea of an “ideal” decision seems less critical than viewing this value as
an estimated utility. In fact, the latter is merely a “default utility.” As opposed
to this, the former interpretation does principally not assume observations at all.
Rather, V (a) can be seen as reflecting the agent’s attitude toward uncertainty.
Assigning a high default value to a then simply means that a not yet applied
act seems attractive and, hence, amounts to model an uncertainty-prone decision
maker who is willing to try new acts.

7.4 Fuzzy quantification in act evaluation

In some situations, the extremely pessimistic and optimistic nature of the crite-
ria (7.19) and (7.20), respectively, might appear at least as questionable as the
accumulation in (7.2). Here we shall propose a generalization of the decision rule
(7.19) which is a weakening of the demand that an act has always produced good
results for similar problems. In fact, one might already be satisfied if a turned
out to be a good choice for most similar problems, thus allowing for a few excep-
tions [125]. In other words, the idea is to relax the universal “for all” quantifier.
Observe that a similar generalization of (7.20), which replaces “there exists” by
“there are at least several” and, hence, corresponds to a strengthening of this
decision principle, seems reasonable as well. It can be obtained analogously.

Consider a finite set A of cardinality m = |A|. In connection with propositions
of the form “most elements of A have property X” the fuzzy quantifier “most”
can be formalized by means of a fuzzy set [132, 403],15 the membership function
µ : {0, 1, . . . , m} −→ [0, 1] of which satisfies

∀ 1 ≤ k ≤ m − 1 : µ(k) ≤ µ(k + 1) and µ(m) = 1. (7.28)

The special case “for all” then corresponds to µ(k) = 0 for 0 ≤ k ≤ m − 1 and
µ(m) = 1. Given some µ satisfying (7.28), we define an associated membership
function µ by µ(0) = 0 and µ(k) = 1 − µ(k − 1) for 1 ≤ k ≤ m (see e.g. [109]). A
membership degree µ(k) can then be interpreted as quantifying the importance
that the property X is satisfied for k (out of the m) elements.

Consider a memory M of cases, a problem p0 ∈ Q, an act a ∈ A, and let
Ma = {(p′, a′, r′) ∈ M| a = a′}. Moreover, let µ formalize the above-mentioned
“for most” concept. A reasonable generalization of (7.19) is then given by

15 Other possibilities of expressing a fuzzy quantifier exist as well, including the use of order-statistics
[300] and an ordered weighted minimum or maximum [135].
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Vp0,M(a) = min
0≤k≤|Ma|

max {1 − µ(k), δa(k)} , (7.29)

where
δa(k) = max

M′⊂Ma : |M′|=k
min

(p,a,r)∈M′
max{1 − σQ(p, p0), u(r)}

defines the degree to which “the act a has induced good outcomes for similar
problems k times.” The extent to which a (small) degree δa(k) decreases the
overall valuation of a is upper bounded by 1−µ(k), i.e., by the respective level of
(un-)importance. Observe that we do not have to consider all subsets M′ ⊂ Ma

of size k for deriving δa(k). In fact, for computing Vp0,M(a) it is reasonable to
arrange the m = |Ma| values v = max{1 − σQ(p, p0), u(r)} in a non-increasing
order v1 ≥ v2 ≥ . . . ≥ vm. Then, (7.29) is equivalent to

Vp0,M(a) = min
0≤k≤|Ma|

max {1 − µ(k), vk} ,

where v0 = 1.

The generalized criterion (7.29) can be useful, e.g., in connection with the idea
of repeated decision making which arises quite naturally in connection with a
case-based approach to decision making. We might think of different scenarios
in which repeated problem solving becomes relevant. A simple model emerges
from the assumption that problems are chosen repeatedly from Q according to
some selection process which is not under the control of the agent, such as the
repeated (and independent) selection of problems according to some probability
measure. More generally, the problem faced next by the agent might depend on
the current problem and the act which is chosen for solving it. A Markov Deci-

sion Process extended by a similarity measure over states (which correspond to
problems) may serve as an example. Besides, we might consider case-based deci-
sion making as a reasonable strategy within a (repeated) game playing framework
like the iterated prisoner’s dilemma [19].

As a concrete example let us consider a very simple model of repeated decision
making: Suppose that the agent faces the same problem p repeatedly and that the
result associated with an act a ∈ A = {a1, a2, a3} depends on a state of nature
ω ∈ Ω = {ω1, ω2, ω3}. The state ω is assumed to be chosen randomly (every
time) and is not part of the problem description. We assume the probability for
ω = ω3, which is also not known to the decision maker, to be positive but relatively
small. Moreover, the results (= utilities) associated with act–state tuples shall be
specified as follows:

ω1 ω2 ω3

a1 1 1 0
a2 1 0 0
a3 0 0 0
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Recall that 0 and 1 are interpreted as ordinal degrees of utility; they only indicate
that one outcome is preferred to the other one, which might be encoded by −1
and 1 as well.16

Now, since a1 dominates a2 and a3 (strictly), it is obviously the best choice.
Observe, however, that the valuation of an act a according to (7.19) simply cor-
responds to the worst outcome observed in connection with this act, i.e.

V ↓
p0,M(a) =

{
0 if (p, a, 0) ∈ M
1 if (p, a, 0) "∈ M .

Thus, we have V ↓
p0,M(a1) = 0 as soon as a1 has been selected for solving p and

ω = ω3. From this moment of time, a1 and, sooner or later, a2 and a3 are rated
equally and an act might be selected, e.g., by flipping a coin. In other words,
the problem which occurs when basing decisions on (7.19) is the fact that this
criterion does not, in the long run, discriminate between two acts even though the
first one strictly dominates the second one. It is interesting to compare this with
the Maximin rule which also does not discriminate between a1 and a3.

17 This,
however, seems to be acceptable more easily than the same property for (7.19): If
used in connection with one-shot decisions, the Maximin rule does not memorize
experience from previous problem solving epochs. As opposed to a case-based
decision rule, it does not have the opportunity of learning and experimenting in
the course of a repeated problem solving process.18

The aforementioned drawback can be avoided by (7.29) in conjunction with a
proper formalization of the “for most” concept. In fact, since (7.29) allows for a
few exceptions (and ω3 is assumed to occur but seldom) we will probably have
Vp0,M(a2) = Vp0,M(a3) = 0 < 1 = Vp0,M(a1). Then, the relative frequency of
selecting a1 will converge toward 1 (instead of 1/3, as it would do in connection
with a random choice between equally rated acts a1, a2, a3). More precisely, sup-
pose the “for all” quantifier to be defined such that it yields 1 if the property
under consideration is satisfied in at least 100(1 − ε) percent of the cases and 0
otherwise. In terms of our notation above, this means

µ(k) =

{
1 if k/m ≥ 1 − ε

0 if k/m < 1 − ε
.

We will then have Vp0,M(a1) = 0 if the proportion πm of cases in which ω3 has
occurred in connection with a1 exceeds ε, where m is the number of times a1 has
been chosen. Otherwise, we have Vp0,M(a1) = 1. The probability that πm > ε and,
hence, the probability that Vp0,M(a1) = 0 will be small if ε is chosen sufficiently
large in relation to the probability of the occurrence of ω3. On the other hand, ε

16 This clearly exemplifies that the application of (7.2) does hardly make sense.
17 A discrimination can be achieved by extensions of Maximin, such as the ordinal decision rules

Discrimin and Leximin [152].
18 This argument is no longer valid in a game playing context. Then, however, Maximin can be justified

by the assumption of an opponent acting optimally.
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should not be made too large since otherwise Vp0,M(a2) = 1 as well, which means
that a1 and a2 are rated equally. An interesting idea arising in this context, which
leads to a further extension of the model, is that of learning an optimal “for most”
concept (from a parameterized class of membership functions). This can be seen
as the counterpart to learning an optimal aspiration level in CBDT [168]. In our
example, where the membership function µ depends only on ε, this parameter
itself can be considered as an aspiration level.

Notice that the probability of πm > ε decreases with m if the probability that
ω = ω3 is smaller than ε. Thus, the probability of disqualifying a1 is, if at all,
relatively large at the beginning of a decision sequence, i.e., as long as a1 has
not been tried very often. This problem can be alleviated by means of a more
flexible specification of the “for most” concept. Namely, the smaller the value of
m, the less restrictive this concept should be specified in terms of the membership
function µ. The definition above, for instance, could be generalized such that ε
depends on m, i.e., µ(k) = 1 if k/m ≥ εm and µ(k) = 0 otherwise, with a
non-increasing sequence (εm)m≥0.

Let us now pass over from the (case-based) valuation of single acts (in the context
of a certain problem) to the valuation of complete decision strategies. Of course,
the question when to prefer a certain decision rule to an alternative criterion is
by no means obvious in connection with the assumption of an ordinal setting
for decision making. In fact, all kinds of “averaging” like, e.g., the derivation of
the mean of the obtained utility values, are out of the question. Using the worst
outcome, which might appear natural if (7.19) is seen as a kind of (case-based)
analogue of the Maximin decision rule, seems critical as well. In fact, within a
case-based decision framework it is principally not possible to fully realize the
idea underlying this (pessimistic) principle. Namely, an agent knows the possible
consequences of a decision only after having applied the corresponding act. Then,
however, the worst outcome has already occurred. In other words, it is impossible
for a case-based decision maker to avoid the worst outcome in any case or to
choose acts according to a (proper) Maximin principle.

In connection with a model in which problems are chosen repeatedly according to
some probability it seems reasonable to prefer a decision strategy S to a strategy
S ′ if the former dominates the latter (stochastically) in the following sense: Let
U = {u1, u2, . . . , um} such that u1 < u2 < . . . < um define the (linearly ordered)
utility scale, and denote by P n

k (S) the probability of obtaining the utility uk in
the n-th step of a decision sequence if strategy S is used.19 Then, S dominates
S ′ (stochastically) if

∀n ∈ N ∀ 1 ≤ k ≤ m :
m∑

ı=k

P n
ı (S ′) ≤

m∑
ı=k

P n
ı (S). (7.30)

19 Observe that the sequences (a(n))n≥1 of decisions and (u(n))n≥1 of obtained outcomes resp. utility
values are well-defined stochastic processes. In fact, for a (deterministic or stochastic) case-based
decision procedure, the n-th decision is a function of the stochastic sequence of the first n problems
(p(1), . . . , p(n)).
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For our example above, we have U = {0, 1}, i.e., P n
0 (S) and P n

1 (S) simply corre-
spond to the probability of obtaining a “bad” and a “good” outcome, respectively,
in connection with the n-th decision. Moreover, a decision criterion S is preferred
to S ′ in the sense of (7.30) if P n

1 (S) ≥ P n
1 (S ′) for all n ∈ N.

Appendix F shows simulation results for different decision strategies Sε which
differ only with respect to the choice of ε, i.e., the definition of the “for most”
quantifier. The states ω1, ω2, ω3 occur with probability 0.6, 0.3, and 0.1, respec-
tively. Acts are evaluated according to (7.29), and ties between equally rated
decisions are broken by coin flipping.

The results confirm the supposition that ε should satisfy 0.1 < ε < 0.4. The
critical values are ε = 0.1 and ε = 0.4. For ε < 0.1, the agent is overly ambitious,
and all acts will sooner or later be judged equally and, hence, P n

1 (Sε) → 1/2 as
n → ∞. Letting 0.4 < ε is “too tolerant” in the sense that Vp0,M(a2) = 1 in
the long term, which means that (7.29) does not differentiate between a1 and a2

and, therefore, P n
1 (Sε) → 3/4 as n → ∞. Note that the estimation of P n

1 (Sε)
from the sequence (u(n))n≥1 of obtained utility values is a good starting point for
learning an optimal value for ε, i.e., for choosing an optimal “for most” concept
from {µε | 0 ≤ ε ≤ 1}.

7.5 A CBI framework of CBDM

CBDT as introduced in [167] is largely motivated by practical problems arising
in connection with EUT, notably the considerable need of precise information for
modeling decision problems. Indeed, the specification of an EUT model might
often be complicated and expensive, especially when having to solve relatively
novel decision problems. In this section, we shall propose a framework of CBDM

which also makes use of case-based reasoning in order to alleviate this problem,
but which remains closer to classical decision theory. Loosely speaking, the idea is
to apply the methods of case-based inference (CBI) discussed in previous chapters
in order to support the modeling of decision problems.

7.5.1 Generalized decision-theoretic setups

The basic EUT setup (in the finite case) can be illustrated in the form of a table
as follows:

ρ1 ρ2 . . . ρn

ω1 ω2 . . . ωn

a1 u11 u12 . . . u1n

a2 u21 u22 . . . u2n
...

...
...

. . .
...

am um1 um2 . . . umn

(7.31)
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The ω constitute the set Ω of states of nature, and each ω is assumed to occur
with probability ρ. Choosing act aı yields utility uı if the state of nature is ω,
which means that the expected utility of aı is given by

∑n
=1 ρuı. The expected

utility framework can be generalized in order to deal with infinite sets of acts
and/or states of nature. Subsequently, however, we assume A and Ω to be finite.

When modeling a decision problem, some of the information in (7.31) might be
incomplete or even missing. This concerns mainly the probability distribution on
Ω and the utility function u : A×Ω −→ U which assigns a utility degree to each
tuple consisting of an act and a state of nature. The basic idea which is discussed
in this section and which characterizes CBDM is the use of case-based inference
for deriving corresponding estimations. Of course, this approach presupposes the
existence of cases. As will be seen, there are different possibilities for defining a
case, each of which leads to a different extension of the basic EUT setup.

For instance, let Q be a set of problems and suppose an EUT setup (7.31) to be
associated with each problem p ∈ Q:

ρp
1 ρp

2 . . . ρp
n

ω1 ω2 . . . ωn

a1 up
11 up

12 . . . up
1n

a2 up
21 up

22 . . . up
2n

...
...

...
. . .

...
am up

m1 up
m2 . . . up

mn

(7.32)

A case is then defined as a triple (p, ρp, up), where ρp and up denote the probability
distribution and utility function associated with the problem p, respectively. (The
set of acts, A, and the set of states of nature, Ω, are assumed to be fixed.) Within
the framework of CBI, the problem p corresponds to an input. Moreover, ρp and
up mark the outcome associated with a case, which can hence be written as a
tuple 〈p, (ρp, up)〉. Note that such a case reduces to a tuple of the form 〈p, ρp〉 or
〈p, up〉 if either up or ρp is fixed in advance.

Suppose a decision maker to have a memory M of cases at its disposal. Given
a new problem p0, it can then make use of case-based inference in order to sup-
port the specification of a related EUT setup. This approach relies on the CBI

assumptions

– that similar problems give rise to similar probability distributions on Ω, and/or

– that an act yields similar utilities for similar problems (under the same state of
nature).

Example 7.4. Consider different types of urn experiments as an example: Let a
state of nature, ω, correspond to the number of black balls in a random sample
of size k. The sample is drawn from an urn which contains a large number K of
balls, each of which is either black or white. An act a corresponds to an estimation
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of ω, and the utility u(a, ω) depends on the accuracy of this estimation, i.e., on
the (absolute) difference |a − ω|. Moreover, suppose that a problem is associated
with the experimental conditions under which a sample is taken. The problems
“simple selection with replacement” and “simple selection without replacement”
can be considered as being similar if k/K is small. Indeed, the hypergeometric
distribution which defines ρ in the latter case can then be approximated by the
binomial distribution which is relevant if selected balls are replaced. From a CBI

perspective, knowledge of the distribution ρ for the first problem can hence be
seen as valuable information for defining the EUT setup for the (somewhat more
complicated) second problem. Observe that the utility function is assumed to be
known (and identical) for both problems. �

An alternative approach is to consider a setting in which the probability over Ω
and/or the utility function depend not only on the problem but also on the act:

ρ
(p,a)
1 ρ

(p,a)
2 . . . ρ

(p,a)
n

ω1 ω2 . . . ωn

a u
(p,a)
1 u

(p,a)
2 . . . u

(p,a)
n

(7.33)

A case can then be seen as a tuple 〈(p, a), µp,a〉, where µp,a is a probability distri-
bution on U . This definition is in accordance with the idea of a non-deterministic
CBI setup as introduced in Section 2.4.2, where a random outcome is associated
with each input. It can be considered as a generalization of CBDT which assumes
the outcome associated with a problem–act tuple (p, a) to be deterministic. Thus,
both frameworks (7.32) and (7.33) combine aspects from EUT and CBDT. The
former, however, seems to be closer to EUT, whereas the latter is quite similar
to CBDT.

Observe that a setup

ρ
(p0,a0)
1 ρ

(p0,a0)
2 . . . ρ

(p0,a0)
n

a0 u
(p0,a0)
1 u

(p0,a0)
2 . . . u

(p0,a0)
n

(7.34)

makes also sense within the original context of CBDT where a problem–act tuple
has a unique outcome, i.e., if a case is a triple (p, a, r) resp. a tuple 〈(p, a), r〉.
Then, however, an unknown outcome (or utility) is not considered as a random
variable (in the proper sense), and an uncertainty measure ηp0,a0 associated with
a new problem p0 and an act a0 is interpreted as a quantification of a (subjective)
belief concerning this outcome. Such a framework can be seen as defining an
extended Bayesian approach in which CBI is used for assessing a (prior) measure
of uncertainty over Ω. Symbolically, it can be illustrated as follows:

(p1, a1, r1), . . . , (pn, an, rn)
p0, a0

σQ×A, σR




CBI−→ ηp0,a0 . (7.35)
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7.5.2 Decision making using belief functions

The type of uncertainty measure derived in (7.35) depends on the way in which
CBI is realized. Within the probabilistic framework of Section 4.5, for instance,
the measure ηp0,a0 takes the form of a belief function:

ηp0,a0 = Bel(H,M, (p0, a0)) =
n∑

ı=1

αı · Belı(H, (p0, a0)),

where H is a probabilistic similarity hypothesis and

Belı(H, (p0, a0)) = σ
(−1)
R
(
rı, H(σQ×A((p0, a0), (pı, aı)))

)
denotes the belief function associated with the ı-th case (pı, aı, rı) ∈ M. In this
context, the probability distribution in (7.34) is replaced by a belief function.
Consequently, the concept of an expected utility has to be generalized in order
to evaluate an act. In other words, a framework of CBDM can be obtained by
combining the CBI method of Section 4.5 and a generalization of expected utility
based on belief functions. In recent years, several approaches to decision making
on the basis of belief functions have been proposed in literature. Subsequently,
we shall describe some of them very briefly.

Consider a belief function Bel on a set of outcomes, R, and let m denote the mass
distribution associated with Bel. Moreover, let F be the set of focal elements of
m. A generalized expected utility can then be defined in terms of the Choquet
integral

∫ ch

u dBel =

∫ ∞

0

Bel([u > t]) dt +

∫ 0

−∞
(Bel([u > t]) − 1) dt, (7.36)

where [u > t]
df
= {r ∈ R |u(r) > t}. This approach is a pessimistic strategy in

the sense that (7.36) is equal to the minimum (the infimum in the non-finite case
[390, 389]) of a class of associated classical expected utilities:

∫ ch

u dBel = min
µ∈PBel

∫
u dµ, (7.37)

where
PBel = {µ ∈ P(R) | ∀X ⊂ R : Bel(X) ≤ µ(X)} (7.38)

is the set of probability measures over R compatible with Bel. As (7.38) reveals,
this approach favors a lower probability interpretation of belief functions.

Choquet expected utility now plays an important role in research on axiomatic
non-expected utility. This research direction is motivated by the paradoxes of
Allais [13] and Ellsberg [140] which call the validity of the assumptions un-
derlying EUT into question. A “behavioral foundation” of Choquet expected
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utility in the context of decision making under uncertainty has first been given
by Schmeidler [334], who uses the decision-theoretic setup of Anscombe &

Aumann [15]. A corresponding extension of the approach of Savage [331] has
been proposed in [166]. These works have been refined by several authors. An
appealing axiomatic characterization of non-additive expected utility somehow
unifying [334] and [166] has been developed in [330]. In [190] it is shown that a
common characterizing property of this line of research is a certain weakening of
Savage’s axioms which essentially restricts the well-known sure thing principle
to so-called comonotonic acts.

Related models for decision making with belief functions have also been proposed
in [210]. The axiomatic theory developed in [212] gives a foundation to these de-
cision models. Here, situations are considered in which information is ambiguous
and not fully probabilizable. It is argued that entirely vague information should
be processed according to the (objective) symmetry principles of complete igno-
rance [16, 69] (rather than to the principle of insufficient reason). Again, the most
important aspect of the decision-theoretic framework developed in [212] is a nat-
ural weakening of Savage’s sure thing principle [331]. It is shown that, within
the resulting axiomatic setting, decisions can be represented by belief functions
on outcomes. More precisely, a representation of a preference relation on the set
of acts is of the form

f �→
∑
F∈F

mf (F ) v(rF , RF ) , (7.39)

where mf is the Möbius transform (mass distribution) associated with the belief
function induced by the act f : A −→ R on the set of outcomes. Moreover, rF is
the worst and RF is the best outcome within F ∈ F . As as special case of (7.39)
the functional∑

F∈F
mf (F ) (α(rF , RF ) u(rF ) + (1 − α(rF , RF )) u(RF )) (7.40)

is proposed, where u reflects the agent’s attitude toward outcomes in decision
under risk. The function α is interpreted as an index of the like or dislike of
ambiguity.

A related generalization of the Von Neumann-Morgenstern framework has
been proposed by Jaffray [211]. He combines the axioms of linear utility theory
with axioms of rational decision making under mixed uncertainty [70] in order
to justify a family of so-called Hurwicz α-criteria. According to these criteria, a
belief function Bel over the set of outcomes R is evaluated by

α inf{Eµ(u) |µ ∈ PBel} + (1 − α) sup{Eµ(u) |µ ∈ PBel}, (7.41)

where Eµ(u) denotes the expected utility under the probability measure µ. The
use of Hurwicz criteria is also advocated by Strat [361].

Yager [405] defines a generalized expected utility of the form
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∑
F∈F

m(F ) · φ(F ) (7.42)

which makes use of a set-function φ : 2R −→ R. The problem of assigning a
degree of utility, φ(F ), to a focal set F is considered in the context of decision
making under ignorance. It is proposed to solve this problem by applying an
OWA (Ordered Weighted Average) operator20 [404] to the collection u(F ) of
utility degrees u(r) (r ∈ F ).21 That is, φ(F ) = OWA(u(F )). Special cases of this
operator include the well-known decision rules

φ(F ) = min u(F ),

φ(F ) = α min u(F ) + (1 − α) max u(F ),

φ(F ) =
∑
r∈F

u(r)/ card(F ).

Note that the set-function φ in (7.42) allows one to model the agent’s decision
behavior under complete ignorance in a more general way than the extreme (pes-
simistic) valuation by means of the Choquet integral (where always the worst
case is assumed) or the Hurwicz criteria (7.40) (where φ(F ) depends only on the
worst and the best element in F ).

As (7.37) shows, the use of Choquet integration comes down to deriving a clas-
sical expected utility based on the selection of a probability measure compatible
with the belief function. In [350] it has been proposed to apply a generaliza-
tion of Laplace’s insufficient reason principle in order to select a corresponding
distribution:

µ({r}) =
∑
F∈F

IF (r) m(F )/ card(F ). (7.43)

The transformation (7.43), which corresponds to the betting function (4.22) in-
troduced in Section 4.5.1, has been justified axiomatically in the context of the
transferable belief model which favors a purely subjective (and non-probabilistic)
interpretation of belief functions. Note that (7.43) is the distribution of maximum
entropy among PBel, i.e., it can also be derived from the principle of maximum
entropy.

7.5.3 Possibilistic decision making

In Chapter 6, we have proposed a possibilistic method of case-based inference
which makes use of implication-based fuzzy rules. According to this approach,
uncertainty concerning the outcome r0 is characterized by means of a possibility
distribution:

20 Operators of this type are also known as linear order statistics in the field of robust statistics.
21 Each outcome r ∈ F contributes exactly one element to u(F ), i.e., the same utility degree might

appear several times in u(F ).
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πa0,M(r′) = min
(p,a,r)∈M

σQ×A((p0, a0), (p, a)) � σR(r, r′) (7.44)

for all r′ ∈ R, where � is a generalized implication operator. An alternative
approach using conjunction-based (example-based) fuzzy rules has been outlined
in Chapter 5. It leads to the possibility distribution22

πa0,M(r′) = max
(p,a,r)∈M

min{σQ×A((p, a), (p0, a0)), σR(r, r′)}. (7.45)

Suppose that outcomes are directly given in terms of utilities, i.e. U = R. (Oth-
erwise, a possibility distribution on the set of utility degrees can be obtained via
v �→ maxr : u(r)=v πa0,M(r).) The problem of choosing an act then turns out as one
of choosing among the possibility distributions

{πa0,M | a0 ∈ A}. (7.46)

This situation is quite similar to decision under risk where the agent has to choose
among probability distributions (lotteries).

There are different ways of realizing a corresponding selection. We can, for in-
stance, adopt a quantitative point of view and interpret possibility degrees as
upper probabilities. A possibility distribution then corresponds to a special type
of plausibility measure, which means that the methods discussed in Section 7.5.2
can be applied.

We can, however, also interpret the possibilistic approach in a purely qualitative
way. Dubois and Prade [123] have recently proposed a qualitative decision
theory in which uncertainty and utility are represented by possibility measures
and qualitative utility functions, respectively. The corresponding decision criteria
are derived from an axiomatic framework which can be seen as a qualitative
counterpart to the axioms of Von Neumann and Morgenstern’s expected
utility theory.

Let . be a preference relation on the class Π of normalized possibility measures
on a finite set R = {r1, . . . , rn} of outcomes. As usual, denote by ∼ and � the
symmetric and anti-symmetric part of ., respectively. Moreover, let V be a finite
linear scale of uncertainty such that min V = 0 and max V = 1. Likewise, let
U be a finite linear scale of preference such that min U = 0 and max U = 1.
The commensurability between the ordinal scales U and V is achieved via an
order-preserving mapping h from the plausibility scale to the preference scale
which satisfies h(0) = 0 and h(1) = 1. For λ, µ ∈ V with max{λ, µ} = 1 the
possibilistic mixture (λ/π, µ/π′) of two possibility distributions π and π′ again
defines a possibility distribution:

∀ r ∈ R : (λ/π, µ/π′)(r)
df
= max{min{λ, π(r)}, min{µ, π′(r)}} .

In [103], the following axiomatic system P has been proposed:

22 Note that in Chapter 5 this distribution has been denoted by δ instead of π. Here, this distinction
is not needed.
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P1 . is a total preorder.

P2 π ≤ π′ ⇒ π′ . π (uncertainty aversion).

P3 π1 ∼ π2 ⇒ (λ/π1, µ/π) ∼ (λ/π2, µ/π) (independence).

P4 ∀π ∈ Π ∃λ ∈ V : π ∼ (1/r∗, λ/r∗), where r∗ and r∗ denote a maximal
and a minimal element of R, respectively.23

Based on this set of axioms, the existence of a utility function u : R −→ U
and the following pessimistic decision criterion, which represents the preference
relation ., are derived:

QU−(π)
df
= min

r∈R
max {n(h(π(r))), u(r)} . (7.47)

That is π . π′ ⇔ QU−(π) ≤ QU−(π′). Here, n is the order-reversing function
on U .

As an alternative model, an axiomatic system O has been proposed in which
the uncertainty aversion axiom P2 is replaced by an uncertainty-prone postulate.
Moreover, P4 is slightly modified:

O1 . is a total preorder.

O2 π ≤ π′ ⇒ π . π′.

O3 π1 ∼ π2 ⇒ (λ/π1, µ/π) ∼ (λ/π2, µ/π).

O4 ∀π ∈ Π ∃λ ∈ V : π ∼ (λ/r∗, 1/r∗).

Based on these axioms one obtains the optimistic decision criterion

QU+(π)
df
= max

r∈R
min {h(π(r)), u(r)} . (7.48)

If we interpret the approach to CBI outlined in Chapters 5 and 6 as purely
qualitative ones (and also assure the commensurability of the plausibility scale
and the preference scale), the decision theory of [123] can be applied to the
distributions (7.44) or (7.45). That is, the decision criteria derived from the above
axioms can be used in order to choose the most preferred distribution from the
set (7.46), and, hence, the most preferred act. Applying (7.47) resp. (7.48) leads
to the following valuations of an act a ∈ A:

V↓(a) = QU−(πa,M) = min
r∈R

max {n(h(πa,M(r))), u(r)}, (7.49)

V↑(a) = QU+(πa,M) = max
r∈R

min {h(πa,M(r)), u(r)} . (7.50)

Let us finally mention that the uncertainty averse and uncertainty prone postu-
lates P2 and O2 can be replaced by (intuitively plausible and somewhat more

23 We extend � to R in the usual way: r � r′ iff πr � πr′ , where πr = I{r} and πr′ = I{r′}.
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appealing) possibilistic dominance criteria which are possibilistic counterparts to
the well-known concept of probabilistic dominance. This result is proved in Ap-
pendix A.

7.6 CBDM models: A discussion of selected issues

In this section, we shall discuss some selected issues in case-based decision making.
Our emphasis is on pointing out some principal differences between the models
outlined in previous sections. In order to demarcate the different approaches,
we shall reserve the acronym CBDM mainly for the framework presented in
Section 7.5. Since the methods from Sections 7.1–7.4 are closer to case-based
decision theory originally introduced by Gilboa and Schmeidler, they will be
referred to as CBDT.

7.6.1 The relation between similarity, preference, and belief

A main difference between the models outlined in Section 7.5 (CBDM) and the
approaches of previous sections concerns the way in which the concepts of belief,
preference, and similarity are related. The approaches of Sections 7.1–7.4 make
use of a decision-theoretic setup which is based on the concepts of similarity and
utility alone. As opposed to this, the framework of CBDM in Section 7.5 makes
also explicit the concept of belief and can thus be seen as an extension of classical
(statistical) decision-theoretic models. In fact, this approach realizes a two-stage
process, in which the actual decision problem is only solved in the second stage
by means of (more or less) common techniques from decision theory. Case-based
reasoning is not used for selecting an act directly. Rather, it has influence on the
formation of the belief of the decision maker. This belief is represented in the
form of a belief function or possibility distribution on the set of outcomes, R.
The cases contained in a memory M are treated as observations. For instance,
observing that an act a has led to a good result for a similar problem will increase
the agent’s belief that a is also a good choice for the problem at hand.

The derivation of (7.2) in [167] shows that an agent with a utility function u,
who obeys the respective axioms, behaves as if it had a similarity measure over
Q and evaluates acts according to (7.2). This way, similarity is directly related
to utility and indirectly to preference. The formal resemblance of (7.2) and the
EUT formula, i.e., the expected utility of an act, suggests that the meaning of
similarity in CBDT is to some extent comparable to the role that probability
plays in EUT.

Most approaches to decision making evaluate acts by combining preference and
belief in some way, where preference is quantified in the form of a utility function.
In fact, for estimating the utility one obtains when choosing a certain act it seems
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natural to consider the set V of possible utility degrees,24 to modify each degree v
in accordance with an associated degree of belief, and to aggregate these modified
utilities.25 In expected utility theory, for instance, degrees of belief associated
with v ∈ V (and an act a) correspond to probabilities pa(v), and modification
and aggregation are realized by multiplication and addition, respectively:

V (a) =
∑
v∈V

pa(v) · v. (7.51)

Within the qualitative approach proposed in [103, 123], belief is represented by
possibility degrees πa(v), modification corresponds to bounding the impact of less
possible utility degrees upon the valuation of an act, and the min-operator is used
as an aggregation function:

V (a) = min
v∈V

max{1 − πa(v), v}. (7.52)

Observe that the averaged similarity version of (7.2) corresponds to the expected
utility model (7.51) if the probability pa(v) is estimated according to

pa(v) =

∑
(p,a,r)∈M,u(r)=v σQ(p, p0)∑

(p,a,r)∈M σQ(p, p0)
. (7.53)

Likewise, (7.19) is equivalent to (7.52) with

πa(v) = max
(p,a,r)∈M,u(r)=v

σQ(p, p0). (7.54)

As can be seen, based on the idea that similarity is used for assessing a degree
of belief, namely (7.53) resp. (7.54), it is possible to interpret the approaches
(7.2) and (7.18) within an extended decision-theoretic framework which combines
similarity, preference, and belief, even though the latter only appears implicitly.

Still, there are several motivations for modeling the (causal) relation between
similarity and belief in a more explicit way, as we have done in Section 7.5. Firstly,
viewing the cases of a memory as an (additional) information source which has an
effect on the agent’s belief and, hence, utilizing case-based reasoning for decision
making only indirectly leads to a more expressive approach which also avoids some
technical difficulties. This becomes obvious, for instance, when considering the
extreme example of a memory that does not contain any case similar to the current
problem, which means that the memory is effectively empty. If, however, no cases
exist, it seems somewhat peculiar that a case-based (similarity-based) reasoning
procedure should be used for estimating the utility of choosing some act for solving
the problem. Instead of assigning a “default utility,” it appears more natural

24 For the sake of simplicity suppose this set to be finite.
25 Note that the consideration of single utility degrees may not be enough if belief is formalized by

means of non-additive measures of uncertainty [166, 330, 334].
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to expect the result of case-based (similarity-based) reasoning to be complete
ignorance about utilities, which is adequately reflected, e.g., by the possibility
distribution π ≡ 1 on the set of outcomes. Needless to say, an uncertainty measure
like a probability distribution, a belief function or a possibility distribution, is
able to reproduce certain characteristics of a memory M better than a “point
estimation.” The averaged similarity version of (7.2), for instance, can be seen
as a kind of weighted mean. It is unable, however, to represent the variance of
utility degrees associated with a certain act.

Secondly, making uncertainty related to decision problems explicit allows for tak-
ing the agent’s attitude toward uncertainty into account. Otherwise, this attitude
has to be encoded in the similarity measure or the utility function. Suppose, for
example, that a decision maker (repeatedly) faced with a problem p can choose
between two acts a and b. Act a yields utility 0 with certainty. The more risky
act b yields either an extremely high utility M or an extremely low utility −M ,
where the high utility occurs with a fixed but unknown probability every time b
is chosen. The willingness of an (uncertainty averse) agent to choose b will then
depend on the number of times the cases (p, b, M) and (p, b,−M) have been ob-
served.26 The memory M = {(p, b, M)} containing only one case, for instance,
might not be convincing enough, even though V (b) = M > 0 = V (a) according
to (7.2).

Thirdly, the distinction between two “mental” levels, one for representing knowl-
edge and one for making decisions, seems to have advantages with respect to the
design of intelligent systems [130], i.e., if a decision-theoretic model is understood
as a language for modeling the problem solving behavior of an agent. The inte-
gration of different information sources at the decision level, for instance, would
require a related extension of the underlying decision theory and seems to be more
difficult than doing the same at the knowledge representation level. Consider again
the approach of Section 7.5.3 as an example. There, case-based reasoning takes
place at the knowledge representation level and yields a possibility distribution
on the set of outcomes. It is hence not difficult to combine this case-based knowl-
edge with general background knowledge represented, e.g., in the form of fuzzy
rules. In fact, the possibility distributions associated with such rules can simply
be combined (via intersection) with the distribution(s) originating from CBI.

Let us finally mention that the (causal) relation Similarity → Belief is also
supported by psychological evidence. In fact, the finding that people rely on
similarity as a heuristic principle for assessing the probability of an uncertain event
or the value of an uncertain quantity was made by Tversky and Kahneman

in various psychological studies [374]. The authors call this heuristic approach
the representativeness principle. For example, the probability that a person has
a certain job seems to be assessed by the degree to which this person is similar
to the stereotype of a person having this job.

26 In other words, the agent estimates the unknown probability that M occurs by the corresponding
(relative) frequency of occurrence.
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7.6.2 The effect of observed cases

The impact that case-based information has upon the evaluation of acts is rather
different for the decision models discussed in this chapter. A major difference
concerns the question whether experienced cases can be compensated by other
cases, e.g., whether a good experience can compensate for a bad one, or whether
several moderately similar cases can outweigh one completely similar case.

Let us consider the last point first. Due to the accumulation of utility degrees
in (7.2), a good experience with a very similar problem can be compensated by
several good experiences with less similar problems. This contrasts, e.g., with the
Nearest Neighbor decision rule (7.8) which takes only one (namely the most
similar) observed case into account, i.e., which fully relies on the most relevant
experience. Needless to say, the adequacy of the two principles will strongly de-
pend on the application or, more precisely, the extent to which experience with
a certain act can be transferred from one problem to a similar one. Consider,
for instance, a medical agent having to choose between treatments T1 and T2.
The successful application of therapy T1 to several diseases with somewhat sim-
ilar symptoms will generally not compensate for T2’s curing exactly the same
symptoms, even if T2 has not been applied to any other disease.

Now, consider the second point, i.e., the question whether good experiences can
compensate for bad ones and vice versa. The CBDT decision rule (7.2) as well
as the averaged similarity version (7.28) do obviously allow for such a compensa-
tion, and the same is true for the Nearest Neighbor decisions in Section 7.2.
As opposed to this, the criteria (7.19) and (7.20) compensate in only one direc-
tion: According to (7.19), an observed case can only decrease the evaluation of
an act, which reflects the pessimistic or cautious character of this decision rule.
Consequently, a positive experience cannot compensate for a negative one. Con-
trariwise, each observation can only positively influence the evaluation according
to (7.20), i.e., a good experience is never annulled by a bad one.

Again, different evaluation principles will be adequate for different applications.
In this connection, it should be noted that (7.19) and (7.20) assume an ordinal
setting, whereas the addition and multiplication operators used by the CBDT

criteria (7.2) and (7.3) make sense only for cardinal utility and similarity func-
tions. Indeed, (7.19) and (7.20) might be preferred whenever it is difficult to define
such functions. Consider again an example from the medical domain: Treatments
T1 and T2 usually have the same effect. On the one hand, T2 is less expensive
than T1. On the other hand, it is also more risky in the sense that is has already
caused the death of some patients, whereas T1 cures the disease with certainty.
In this situation, it will of course be difficult to come up with a reasonable utility
function, or to fix a minimal success rate of T2 as a decision criterion.27 Rather,
one will generally be cautious and decide in favor of T1, a decision behavior which
is perfectly in line with (7.19).

27 Extreme examples of this kind are often raised against expected utility theory.
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It was pointed out above that (7.19) and (7.20) reflect very opposite attitudes
of a decision maker. Let us finally mention that a similar remark applies to the
indirect evaluations which deduce the possibility of outcomes. When using the
criterion (7.49) in connection with the possibility distribution (7.44), the decision
maker considers all outcomes as being fully possible as long as it has not made any
observations. Each new case serves as a constraint and decreases the possibility
of certain results. By applying the same decision rule to (7.45), the decision
maker starts with the possibility distribution π ≡ 0.28 Each new case serves as
evidence for certain results and increases the possibility correspondingly. Loosely
speaking, the agent learns what can happen, whereas it learns what can or should
not happen if it relies on (7.44). The difference between (7.44) and (7.45) becomes
also clear if we realize that (7.44) is based on the idea of an implication-based
fuzzy rule, whereas (7.45) is related to the concept of a possibility rule, i.e., an
example-based (conjunction-based) fuzzy rule.

7.6.3 Dynamic aspects of decision making

Since CBI is closely related to the idea of repeated problem solving and aspects of
learning it seems natural to consider a CBDM agent acting over time in a certain
environment. The question, then, is how successful a CBDM strategy proves to
be. Since the acquisition of experience in the form of cases is an inherent part
of CBDM, investigating a CBDM strategy in the context of repeated problem
solving seems to be the only reasonable way of judging its efficiency.29 Such an
analysis, which will have much in common with the analysis of heuristic problem
solving methods [291], is principally possible. For instance, given (among other
things) the precise specification of a stochastic environment in which the agent
acts as well as the specification of utilities of histories (which correspond to paths
in this environment), the expected performance of a CBDM strategy is well-
defined (cf. Section 7.4).

Let us mention, however, an interesting aspect of CBDM which makes the analy-
sis of a given strategy as well as the selection of an optimal strategy difficult.
Namely, a single decision at a certain point of time does not only affect the ex-
pected utility and future states of an agent directly. Rather, it has also an impact
on the agent’s experience and, hence, changes its future decision behavior. For
the analysis of a given decision strategy this means that it has to take the (ex-
pected) evolution of the agent’s memory into account. For the development of
an optimal strategy it means that a single decision should not only be judged on
the basis of some estimated (immediate) utility. Since a more experienced agent

28 Again, note that this is actually a distribution of guaranteed possibility, denoted by the symbol δ in
Section 5.

29 Considering something such as the performance of a decision strategy makes sense if we concede
to CBDM a normative character in connection with the idea of heuristic problem solving. Other
criteria become relevant if a case-based decision theory serves as a descriptive theory of (human)
decision making [171].
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will probably make better decisions in the future it should also take the aspect
of broadening experience into account. Informally speaking, the agent has to find
a tradeoff between the exploitation of its past experience and the exploration of
new decisions. This, of course, requires some kind of metalevel reasoning quite
comparable to the concept of metalevel rationality in connection with expected
utility theory (cf. the remarks on page 253). The aforementioned exploration–
exploitation tradeoff is also well-known in fields like optimization and machine
learning.

The above idea can be illustrated nicely for the model (7.2). As an interesting
consequence of this decision principle it has been pointed out in [167] that it
can be seen as a theory of “bounded rationality” formalizing Simon’s idea of
“satisficing” [260, 344]. Suppose, for example, that the selection of a certain act
a∗ for a problem p has led to a positive utility u(r(p, a∗)). When faced with the
same problem again, the decision maker will prefer this act to all other acts to
which the default utility 0 is assigned (since they have not been tried yet). More
generally, the agent may try several acts until one results in a positive utility, but it
will not attempt to maximize utility. Now, an intuitively reasonable modification
of the decision behavior prescribed by (7.2) is to try a new act a from time to
time. This way, an act a∗ such that u(r(p, a∗)) > u(r(p, a∗)) might eventually be
found. Since the agent will then go on choosing a∗, this would have a positive
impact on its (future) “welfare,” a prospect that justifies to put up with the risk of
sometimes obtaining a smaller utility. See [168] for a related strategy of realizing
an “experimenting” agent in CBDT.30 The idea is to adapt the aspiration level
α in the generalization

Vp0,M(a)
df
=
∑

(p,a,r)∈M

σQ(p, p0) · (u(r) − α)

of (7.2) by choosing an act at random from time to time. This way, the agent can
avoid to get stuck in a suboptimal strategy.31

7.7 Experience-based decision making

Case-based decision making, as presented in different versions in previous sections,
can basically be seen as a two-step procedure:

I. Estimation/evaluation: Given a set of experiences in the form of triples (p, a, u)
and a new problem p0, one estimates the utility u(p0, a0) for each act a0 ∈ A.

30 As the “conservative” decision strategy of always choosing the act “go to a restaurant which has not
been tried yet” shows, a careful distinction between the agent’s decisions and its actual behavior
has to be made. Particularly, a satisficing decision strategy does not necessarily entail conservative
behavior.

31 The same idea is also present in several approaches to learning in game theory.
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II.Decision: An (apparently) optimal act is then chosen on the basis of these
estimations.

It deserves mentioning that one actually has to distinguish between the estimation
of a utility degree and the evaluation of an act. As opposed to (7.3), for instance,
the value V (a0) in (7.2) is obviously not an estimation of the utility u(p0, a0)
but still an evaluation of the act a0. As can be seen, many possibilities of act
evaluation exist, although the estimation of an induced utility might be regarded
as the most natural one. Subsequently, we make the reasonable assumption that
the agent bases its decision on estimations of the utilities of acts a0. That is,
we assume that the agent is an estimated utility maximizer, just like a decision
maker applying EUT is an expected utility maximizer.

Experience-based decision making [196] generalizes case-based decision making
in the sense that the estimation of utility degrees as part of the above two-step
procedure is realized by any learning method, not necessarily a case-based one.
Note that EBDM thus defined is an indirect approach in which an approximation
∆ to the optimal decision function

∆∗ : P −→ A, (7.55)

which maps problems to (optimal) decisions, is derived from an estimation û of
the utility function u : P × A −→ R:

∆ : d �→ arg max
a∈A

û(p, a).

An obvious alternative is to realize EBDM in a more direct way. In this case, the
agent tries to learn the decision function (7.55) directly, without estimating the
utility function as an intermediate step.32 This kind of EBDM, which appears
especially appealing from an efficiency point of view, will be discussed in detail
in Section 7.7.1.

Case-based decision making, as case-based reasoning in general, is closely related
to learning from experience in the form of examples or facts. Investigating the
link between factual knowledge and beliefs derived from that knowledge, this
relation is also emphasized in [173], where the axiomatic foundation of CBDT is
developed in a more general context, not restricted to decision making.

In the field of machine learning, several standard types of learning problems
are distinguished. In this connection, it is interesting to note that the indirect
approach to EBDM (as realized by CBDT) is closely related to reinforcement
learning, at least from a formal point of view. There are different settings for
reinforcement learning, most of which fall back on concepts from Markov Decision
Processes: The decision making agent acts in some unknown environment defined
by a set of states S. At each point of time, the agent finds itself in a state s ∈ S,
where an action has to be performed. The consequences of performing action a in

32 Such agents are often called reflex agents in artificial intelligence.



7.7 Experience-based decision making 289

state s are determined by a reward function, r, and a transition function, δ: The
agent receives an immediate reward,33 r(s, a), and moves from state s to state
δ(s, a) ∈ S. This process is repeated until eventually a final state is reached.

As can be seen, the notions of state and reward in reinforcement learning play the
roles, respectively, of the concepts of problem and utility in CBDT. Moreover,
the optimal decision function ∆∗ in EBDM basically corresponds to what is
called an optimal policy in reinforcement learning. The basic difference between
CBDT and reinforcement learning (sequential decision making) concerns the
generation of problems resp. states. In sequential decision making, the next state
is a (perhaps non-deterministic) function of the current state s and the action
a. Consequently, an action does not only determine the immediate reward, but
also the next decision problem and, thereby, the prospect of future rewards. A
“myopic” decision maximizing only the immediate reward r(s, a) is hence not
necessarily optimal. Rather, an optimal action should be one that maximizes the
sum of the immediate reward and the (expected) future rewards.34 A function
taking this into account is the so-called Q-function, that can be defined as follows:

Q(s, a) = r(s, a) + γ
∑
s′∈S

p(s, a, s′) · max
a′

Q(s′, a′), (7.56)

where 0 ≤ γ ≤ 1 is a discounting factor. Moreover, p(s, a, s′) is the probability
that act a yields s′ as the successor state of s (here the transition function δ is
non-deterministic). This leads to Bellmann’s optimality equations

V ∗(s) = E
[
r(s, ∆∗(s)) + γV ∗(δ(s, ∆∗(s)))

]
, (7.57)

which determine the optimal decision function ∆∗. Thus, the value of being in
state s, V ∗(s), is the expected sum of the immediate reward and the discounted
future rewards under optimal behavior, as prescribed by ∆∗.

In CBDT, the action chosen for a problem p does not affect the occurrence of
future problems, which are not under the control of the decision maker. Thus, an
optimal decision is simply one that maximizes u(p, a). Note that the same strat-
egy, namely maximizing r(s, a), is also optimal in sequential decision problems if
either future rewards (utilities) are discounted by means of a discounting factor of
γ = 0 or if the transition function δ (as realized, e.g., by the probability function
p in (7.56)) does not depend on a. In other words, there are two possibilities of
viewing CBDT, at least formally, as a special type of reinforcement learning:
Either the case-based decision maker follows a myopic strategy, or future states
(problems) do not depend on actions.

The main objective in reinforcement learning is to estimate the Q-function on
the basis of rewards obtained so far.35 If Q̂ is such an estimation, an apparently

33 In a more general version, feedback can also be delayed (e.g., the win or loss of a game).
34 The addition of rewards might be replaced by an alternative aggregation operator, of course.
35 The reward function r and probability function p in (7.56) are assumed to be unknown. Otherwise,

classical approaches (e.g., dynamic programming techniques in the case of finite horizon decision
problems) can be used to find an optimal policy on the basis of (7.57).
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optimal strategy is given by the decision function

∆ : s �→ max
a

Q̂(s, a).

Even though ∆(s) does indeed maximize the estimated rewards, the strategy of
persistently choosing actions ∆(s) so as to maximize the current estimation of Q
is again somehow shortsighted and not necessarily optimal. Namely, the agent has
to bear in mind that it keeps learning over time: The estimation of the Q-function
is permanently revised in the light of new observations, and the improvement of
Q̂ might be larger for an alternative action a′ "= ∆(s). Consequently, choosing a′

might lead to better decisions in the future, even though the immediate reward
might be better for a. In other words, the agent has to find an exploration–
exploitation tradeoff (cf. page 287): It has to trade off (estimated) rewards against
the potential for learning useful new information. One strategy, for instance,
is to make random choices, where the probability of an action is proportional
to its estimated value. This way, preference is given to higher valued acts, but
apparently suboptimal acts are not completely ignored. Another possibility is to
assign relatively large default values to yet unknown states (or state–action pairs)
so as to offer an incentive for exploring such states.

As already mentioned in Section 7.6.3, the exploration–exploitation problem is
solved in a very similar way in CBDT, namely by assigning default utilities to
problem–act tuples for which relevant experience is not available as yet. The in-
duced satisficing behavior of a decision maker can be seen as a special exploration
strategy: The agent tries new actions until a satisfying one has been found.

7.7.1 Compiled decision models

The modification (7.3) of evaluation (7.2) can be seen as a special version of es-
timated utility maximization as discussed in Section 7.7. In fact, (7.3) is nothing
else than the application of Shephard’s interpolation method [340], a special
type of Nearest Neighbor (NN) estimation [76].36 This method is well-known
in machine learning, and it is used for making predictions in other CBR ap-
proaches as well (e.g., in the ELEM2-CBR system [61]).37

Of course, Shephard’s interpolation method is not the only way of realizing the
estimation step in EBDM. Principally, it could be replaced by any machine learn-
ing method. In this connection, it is especially interesting to distinguish between
instance-based and model-based approaches to (supervised) machine learning [79].
In particular, our discussion in Section 2.1 has shown that instance-based learn-
ing, as a lazy approach, is easy and quite appealing from a knowledge revision
and adaptation point of view, but not very efficient in the prediction phase. In

36 This is the weighted k-Nearest Neighbor approximation with k = n, i.e., it makes use of the
complete set of observations.

37 See the paper [173] of Gilboa and Schmeidler for a comparison between the nearest neighbor method
and their case-based approach.
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the context of EBDM, this means that a case-based approach appears reasonable
if the decision maker disposes of a limited number of experiences. If a large set of
observed cases is available, however, a compressed representation of the agent’s
knowledge in the form of a model might be more efficient. The aspect of efficiency
becomes especially relevant if deliberation time is costly or strictly limited as in
real-time decision making [64]. Then, model-based learning might be preferred
to instance-based learning, since it is the decision process itself rather than the
learning process that is time critical.

In this connection, it is convenient to classify decision problems with respect
to their novelty. According to a crude distinction, we can differentiate between
problems which are solved frequently and hence become almost automated, prob-
lems for which deliberation is required but which are still familiar, and problems
which are completely unfamiliar [167]. These problem types might be tackled
most efficiently by means of different approaches to learning and knowledge rep-
resentation:

– instance-based learning of the utility function for unfamiliar problems,

– model-based learning of the utility function for familiar problems,

– and a “compiled decision model” approach for routine decisions.

As already mentioned before, the idea of a compiled decision model is to learn
the optimal decision function (7.55) directly, rather than making a detour by
learning the utility function. In [325], compilation is understood as a method
for omitting intermediate computations in some input–output relation. Thus, a
compiled model is an execution architecture computing the original mapping, but
doing so in a more efficient way. This approach will now be discussed in more
detail.

When the decision maker tries to learn the utility function u : P×A −→ R, a case
(p, a, u) can be considered as an example of the form (x, u), where the input x =
(p, a) is a problem–act pair and the outcome y = u(p, a) is a utility degree. Thus,
learning the utility function fits the framework of supervised machine learning.
Still, a case (p, a, u) can also be interpreted in a different way, namely as a valued
example. That is, (x, y) = (p, a) is an example and u an evaluation thereof. The
target function is now the (optimal) decision function ∆∗ : P −→ A. Roughly
speaking, the utility u = u(p, a) indicates the quality of an associated example
(p, a).

The compiled model approach thus necessitates an extension of standard (super-
vised) learning methods which takes the valuation u of an example (p, a) into
account. To this end, we shall fall back on the idea of “satisficing” as discussed
above in connection with the model of CBDT: A “satisficing” decision maker
discriminates between only two types of decisions, namely acceptable and non-
acceptable ones. As will be seen below, the problem of inducing a (satisficing)
decision model thus comes close to the standard setting of supervised learning.
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7.7.2 Satisficing decision trees

In this section, we are going to propose a concrete approach to learning compiled
decision models, namely a modified version of decision tree induction. Thus, the
idea is to implement the decision function ∆ : P −→ A as a decision tree38

resp. a set of condition–action rules that yields as a classification the action to
be chosen, given a new problem (condition). This approach is adequate if the
set A of available acts is relatively small. Moreover, it assumes that problems
are represented by attribute–value pairs with discrete-valued attributes.39 Before
presenting our approach, we give a brief introduction to decision tree learning.

The basic principle underlying most decision tree learners, well-known examples
of which include the ID3 algorithm [304] and its successors C4.5 and C5.0 [306] as
well as the CART system [55], is that of partitioning the set of given examples,
S, in a recursive manner. Each inner node η of the decision tree defines a partition
of a subset Sη ⊆ S of examples assigned to that node. This is done by classifying
elements s ∈ Sη according to the value of a specific attribute T . The attribute
is selected according to a measure of effectiveness in classifying the examples,
thereby supporting the overall objective of constructing a small tree.

A widely applied “goodness of split” measure is the information gain, G(S, T ),
which is defined as the expected reduction in “impurity” (with regard to the class
distribution) which results from partitioning S according to T :

G(S, T ) = I(S) −
∑

t

|St|
|S| I(St), (7.58)

where St denotes the set of elements s ∈ S whose value for attribute T is t.
Moreover, I(·) is a measure of impurity, such as the GINI function [55]

I(S) =
∑

c =c′∈C
qcqc′ = 1 −

∑
c∈C

(qc)
2 (7.59)

with qc the proportion of elements s ∈ S having class c. Besides, a number of
alternative (im)purity measures, such as entropy, have been devised. See [268] for
an empirical comparison of splitting measures.

Suppose a set X of instances to be given, where each instance is characterized by
several attribute values. Moreover, each x ∈ X belongs to one class c = class(x) ∈
C. Given a set of training samples S = {(x1, c1), . . . , (xn, cn)} ⊆ X × C, the basic
ID3 algorithm derives a decision tree as follows:

– The complete set of training samples, S, is assigned to the root of the decision
tree.

38 Decision tree learning is actually a classification method. Even though classifications can be consid-
ered as decisions, it is not specifically used for decision making in the proper sense. Therefore, one
might prefer the alternative terms discimination or classification tree.

39 Continuous-valued attributes can be discretized before or during the learning of a decision tree [93].
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– A node η becomes a leaf (answer node) of the tree if all associated samples Sη

belong to the same class or if all attributes have already been used along the
path from the root of the tree to η.

– Otherwise, node η becomes a decision node: It is split by partitioning the as-
sociated set Sη of examples. This is done by selecting an attribute as described
above and by classifying the samples s ∈ Sη according to the value for that
attribute. Each element of the resulting partition defines one successor node.

Once the decision tree has been constructed, each path can be considered as
a rule. The precedent part of a rule is a conjunction of conditions of the form
T = t, where T is an attribute and t a specific value thereof. The consequent
part determines a value for the class variable. New examples are then classified
on the basis of these rules, i.e., by looking at the class label of the leaf node whose
attribute values match the description of the example. Notice that a unique class
label is associated with each answer node if the data is not noisy and, hence,
the original sample does not contain any clashes (cases with identical attribute
vectors but different classes). Otherwise, the distribution of class labels at the
leaf can be used for deriving a probabilistic estimate. Quite often, the induced
tree undergoes further (post-)processing [267]. Here, the objective is to prune
large trees in order to guarantee transparency. Moreover, pruning counteracts
the problem of overfitting.

An incremental decision tree algorithm has been proposed in [377]. Given the
same training data, this algorithm induces the same tree as ID3. Now, however,
instances are processed in a serial way, that is, the current decision tree is up-
dated each time a new example arrives. Since algorithmic aspects are not our
main concern, we refrain from describing the algorithm here. It should be noted,
however, that an incremental approach to learning has considerable advantages,
especially in the context of decision making. In fact, the idea of learning and
improving performance over time is one of the major aspects of case-based or
experience-based decision making.

In this connection let us also mention a method that combines decision tree learn-
ing and lazy learning [155]: Given a set of training data, new instances are classi-
fied by means of a decision tree. However, a new tree is built for each individual
instance (as in lazy learning, the complete data thus needs to be stored). Loosely
speaking, this algorithm induces decision trees which are optimal for the individ-
ual instances, whereas a usual decision tree is good on average. The algorithm is
efficient due to the fact that actually only one path of a tree is constructed, namely
the one needed to classify the new instance. Besides, computational efficiency is
improved by means of a caching scheme.

Let P = T1 × T2 × . . . × Tm be a set of potential problems, where Tı denotes the
(finite) domain of the ı-th attribute. Thus, each problem p ∈ P is represented as
a vector p = (t1, . . . , tm) of attribute values. Moreover, let A = {α1, . . . , αk} be
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a set of available actions. Finally, utility degrees are again measured on the real
number line.

Assume a memory of cases

M =
{
(p1, a1, u1), . . . , (pn, an, un)

}
∈ P × A × R

to be given, where uı = u(pı, aı) is the utility that has resulted from applying act
aı to problem pı. Let MP , MA, and MP×A denote the projection of M to P, A,
and P × A, respectively. The idea pursued here is to compile this case base into
a decision tree which is then used for solving future decision problems.

Let u∗ ∈ R be a utility threshold defined by the decision maker. This threshold
corresponds to the aspiration level in the CBDT model of Gilboa and Schmei-

dler: An action a is acceptable for a problem p if u(p, a) ≥ u∗, and it is not
acceptable if u(p, a) < u∗.

In a first step, each case (pı, aı, uı) is changed into an example (pı, aı). The latter is
called a positive example if uı ≥ u∗ and a negative example if uı < u∗. In a second
step, a modified memory, S∗, is derived from M. For each problem p ∈ MP it
contains a generalized example (p, Ap), where Ap denotes the set of feasible acts
for problem p. This set is defined as follows:

a ∈ Ap ⇔
{

u(p, a) = umax(p,M) if umax(p,M) ≥ u∗

(p, a) /∈ MP×A if umax(p,M) < u∗ ,

for all a ∈ A, where

umax(p,M)
df
= max

(p,b)∈MP×A
u(p, b).

In plain words, an action a is feasible for p if it belongs to the best among the
actions known to be acceptable for p, or if no acceptable action is known and
a has not been tried as yet. Notice that Ap = ∅ if all available acts have been
applied to p but none of them was acceptable, that is, if an acceptable act for p
does actually not exist. In this case, the decision maker should reduce the utility
threshold u∗.40 Subsequently, we assume Ap "= ∅ for all p ∈ P.

Before proceeding, let us point to a meaningful weakening of the above feasibil-
ity condition u(p, a) = umax(p,M). In fact, this condition could be replaced by
u(p, a) ≥ umax(p,M) − ε, where ε ≥ 0 is a tolerance threshold. Here, the idea is
that an action is acceptable even if its utility is slightly below the utility of the
best (known) action. Of course, a decision maker being less ambitious in this sense
will usually be able to induce simpler decision functions, i.e., to gain efficiency at
the cost of decision quality.

We are now ready to formulate a generalized version of the decision tree learning
problem whose objective is to induce a decision tree that prescribes, for any

40 It would also be possible to maintain individual thresholds for the problems.
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problem, an acceptable action:41 Given a set of generalized examples

S∗ =
{
(p1, Ap1), (p2, Ap2), . . . , (pn, Apn)

}
⊆ P × 2A, (7.60)

induce a decision tree which implements a decision function ∆ : P −→ A such
that

∀ p ∈ MP : ∆(p) ∈ Ap.

In this problem, splitting a set of examples (7.60) is no longer necessary if

A(S∗) =
n⋂

ı=1

Apı "= ∅, (7.61)

hence, (7.61) defines a natural stopping condition. The corresponding node η in
the decision tree then becomes a leaf, and any action a ∈ A(S∗) can be chosen
as the prescribed decision aη associated with that node.

The main modification concerns the “goodness of split” measure. Let G(·) denote
the information gain (7.58) as used for classical decision tree learning. That is,
G(S, T ) quantifies the quality of the split of a (standard) sample S induced by
the attribute T . Now let the class of selections, F(S∗), of the generalized set of
examples (7.60) be given by the class of samples

{(p1, a1), (p2, a2), . . . , (pn, an)} ⊆ P × A

such that aı ∈ Apı for all 1 ≤ ı ≤ n. We extend the measure G(·) to generalized
samples S∗ as follows:

G(S∗, T )
df
= max

S∈F(S∗)
G(S, T ). (7.62)

As can be seen, the extended measure (7.63) is the ordinary measure obtained
for the most favorable instantiation of the generalized examples (p, Ap) and hence
defines a “potential” goodness of split. It corresponds to the “true” measure that
would have been derived for the attribute T if this instantiation is compatible
with the ultimate decision tree. Taking this optimistic attitude is clearly justified
since the tree is indeed constructed in an (apparently) optimal manner (hence
averaging would hardly make sense).

Computing (7.62) comes down to solving a combinatorial optimization problem,
namely to finding

I(S∗)
df
= min

S∈F(S∗)
I(S) (7.63)

for (sub-)sets S∗ of extended examples, where I(·) is a measure of impurity.
It might hence be regarded as critical from a time complexity point of view,

41 An alternative approach would be to learn, for any action, the class of decision problems to which it
can be applied. This type of problem fits into the framework of multi-label classification in machine
learning. However, it does not provide efficient condition-action rules.
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especially in the context of real-time decision making. One should keep in mind,
however, that not the construction (or revision) of the decision tree is time critical
but rather its application. In fact, real-time decision making must not be confused
with real-time learning; as in other decision support systems, learning will rather
be realized as an “off-line” procedure [64].

In Appendix G, we present a heuristic search method for computing (7.63) based
on a branch & bound technique. The efficiency of the method depends critically
on the number of actions (which is the maximal branching factor of the search
tree) and the average size of the sets Ap (which determines the average branching
factor). Even without a detailed complexity analysis, experience has shown that
no problems occur if the number of actions is small. For example, for six actions
and sample sizes up to n = 500 the generalized splitting measure can be computed
within the bounds of seconds. Still, if the number of actions is too large, the exact
computation of (7.63) becomes intractable.

As an alternative we therefore suggest the following heuristic approximation of
(7.63):

I(S∗) = I(S∗), (7.64)

where the selection S∗ ∈ F(S∗) is defined as follows: Let qı be the frequency of
the action αı in the set of examples S∗, i.e., the number of examples (p, Ap)
such that αı ∈ Ap . The αı are first “preferentially ordered” according to their
frequency qı (ties are broken by coin flipping), starting with the most frequent
one. Then, the most preferred action αı ∈ Apı is chosen for each example pı.
Clearly, the idea underlying this selection is to make the distribution of labels
as skewed (non-uniform) as possible, since distributions of this type are favored
by the impurity measure. In [204], we found that the measure (7.64) yields very
good results in practice and compares favorably with alternative extensions of
splitting measures.

Let us finally mention that the adequacy of a decision tree as a representation
of the decision function ∆ does of course depend on the structure of the opti-
mal decision function ∆∗. In fact, since a decision tree, at least in its standard
version, partitions the problem (attribute) space P by means of axis-parallel de-
cision boundaries, good results (in terms of both complexity and accuracy) are
to be expected only if ∆∗ is at least approximately compatible with this type of
inductive bias.

7.7.3 Experimental evaluation

In order to get an idea of how the satisficing decision tree approach performs we
have employed a procedure that generates decision problems in a systematic way.
A decision environment is specified by the following parameters:

– The number m of attributes describing a decision problem.
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– The number k of possible actions.

– The number of values for each attribute. For the sake of simplicity, we assume
that each attribute has the same number v of values. Without loss of generality
these values are represented by natural numbers, that is T = {1, 2, . . . , v} for
all 1 ≤  ≤ m.

– The utility function u that assigns a utility degree u(p, a) to each problem p ∈ P
and action a ∈ A. The generation of u is realized by a random procedure which
is under the control of a complexity parameter γ, as described below.

It has already been mentioned that the adequacy of a decision tree representa-
tion depends on the structure of the decision function ∆∗. In fact, ∆∗ can be
represented by small trees if its structure is in agreement with a decision tree-like
partitioning of the feature space; otherwise, the decision tree model might become
rather complex. In order to control the complexity of the decision environment we
have generated a utility function u as follows: In a first step, an optimal decision
tree is generated at random. This is done in a recursive manner by starting with
the root of the tree and deciding for each node whether it is an inner node or a
leaf of the tree. The probability of a node to become an inner node is specified by
a parameter 0 < γ < 1. Each inner node at level ı has v successors, each of which
corresponds to a value of the ı-th attribute. If the tree has been generated, each
leaf η covers a subset Pη of the set of problems P, namely those problems which
match the attribute values associated with η. The leaf node η is then assigned
an optimal decision aη at random. From the resulting optimal decision tree, the
utility function is finally derived by letting u(p, a) = 1 if a is the optimal solu-
tion to p, i.e., if a = aη, where η is the leaf node that covers p. For all other
(suboptimal) actions b the utility u(p, b) is defined as a decreasing function of
the distance between a and b (where the distance between act aı and act a is
|ı − |). Note that the complexity is completely determined by the parameter γ:
The larger γ, the larger the expected size of the optimal decision tree, i.e., the
more complex the decision environment (at least for an agent that employs a
decision tree representation of its decision model).

After having specified a concrete decision environment by generating the utility
function u at random, a simulation experiment is performed as follows: At the
beginning, the memory of the decision maker is empty, and its (satisficing) de-
cision tree corresponds to a single node. In the ı-th decision epoch, a decision
problem pı is chosen at random from P, according to a uniform distribution. For
this problem, the decision maker selects an action aı according to the current
decision tree model (ties are broken by coin flipping). The new case, consisting of
the problem pı, the act aı, and the experienced utility rı = u(p, a), is added to the
memory. Moreover, the satisficing decision tree is updated whenever necessary.
The simulation stops after the L-th decision epoch.

Illustrating example. To illustrate, we present a simple example step by step.
Let m = 6, k = 3, v = 3, L = 10, u∗ = 0.7 and consider the sequence of decision
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problems in Table 7.1 (and disregard, for the time being, the actions and utility
degrees shown in the same table).

problem act utility
t1 t2 t3 t4 t5 t6
2 1 2 1 1 2 α1 1
2 1 2 3 3 1 α1 1
1 1 2 3 2 3 α1 0.2
1 3 3 3 3 3 α2 0.8
1 1 3 2 1 3 α2 1
2 2 1 2 1 3 α1 0.9
3 2 2 2 2 3 α1 0
3 1 2 2 3 2 α2 0.5
3 1 1 3 3 1 α3 0
1 3 2 1 1 2 α1 0.8

Table 7.1. Sequence of decision problems specified by the values of six attributes (columns 1–6), the
action performed by the decision maker, and the resulting utility degree.

For the first decision problem, the agent chooses an action at random. As shown
in Table 7.1, this is action α1, for which it receives a utility of 1. Thus, the agent
generates a decision tree which corresponds to the following rules:

t1 t2 t3 t4 t5 t6 action
? ? ? ? ? ? α1

This tree prescribes action α1 regardless of the attribute values. Thus, for the
second problem the agent chooses again α1, and again obtains a utility of 1. Con-
sequently, it does not modify the decision tree. For the third problem, however,
α1 yields a utility of 0.2 which falls below the utility threshold u∗. Therefore, the
agent changes the decision tree according to the procedure outlined above:

t1 t2 t3 t4 t5 t6 action
1 ? ? ? ? ? α2

2 ? ? ? ? ? α1

This tree prescribes to choose α1 if the value of the first attribute is 2, but α2

if this value is 1. Thus, the agent’s hypothesis is that α1 yields bad outcomes if
t1 = 2 (note that t5 and t6 might have been chosen as splitting attributes as well).
The next update occurs after the 7-th problem. Since the decision tree does not
prescribe an action for t1 = 3, the agent chooses α1 at random. This leads to a
utility of 0. The new decision tree contains the following rules:

t1 t2 t3 t4 t5 t6 action
1 ? ? ? ? ? α2

2 ? ? ? ? ? α1

3 ? ? ? ? ? α2
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This tree is changed into

t1 t2 t3 t4 t5 t6 action
1 ? ? ? ? ? α2

2 ? ? ? ? ? α1

3 ? ? ? ? ? α3

after the 8-th problem, since α2 yields u = 1/2 < u∗ for a problem with t1 = 3.
Notice that, so far, the decision is completely determined by the first attribute.
After the 9-th problem, however, the agent realizes that this is not enough. The
new decision tree also involves attribute t6:

t1 t2 t3 t4 t5 t6 action
1 ? ? ? ? 3 α2

2 ? ? ? ? 3 α1

3 ? ? ? ? 3 α2

? ? ? ? ? 1 α1

? ? ? ? ? 2 α1

General findings. More generally, we were interested in effects of the complexity
of the decision environment and of the aspiration level of the decision maker.
Regarding the first factor, more complex decision environments are expected to
entail larger decision trees and smaller average utilities over time. As concerns
the aspiration level, it is to be expected that higher levels will probably guarantee
higher utilities on average but, at the same time, lead to more complex decision
models. To illustrate, consider the problem of choosing the optimal dose of a
drug for different patients. The simple decision tree shown in Fig. 7.1 might
lead to satisfying results (the utility of a decision depends on the patient’s state
of health after the treatment). Still, even better results might be obtained by
differentiating more precisely between patients, taking further attributes such as
weight into account. This would of course mean using a more complex decision
tree.

< 12 ≥ 12

malefemale

age

sex

20ml

10 ml

30 ml

Fig. 7.1. Decision tree implementing a simple strategy for choosing the dose of a drug.

One might furthermore suspect that the effect of increasing the threshold u∗ is
not independent of the complexity of the decision environment. Consider the
following example: Suppose that exactly one optimal action with utility 1 exists
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for each problem. An act applied to a problem for which it is not optimal yields
a utility of 0 < α < 1. Now, with a threshold u∗ ≤ α the decision maker is always
satisfied, regardless of what action it applies to a problem. In fact, its decision
model consists of only one rule which prescribes to choose act a, where a is the act
that has been applied to the first problem, perhaps randomly. The average utility
is exactly α + (1−α)/k. If the utility threshold u∗ exceeds α, the decision maker
is satisfied only with the optimal acts, and it will spend enormous effort in finding
these acts. The difficulty of this venture in turn depends on the generalization
capability of the induced decision trees. If a decision tree is indeed a good model
for the application at hand, the agent might succeed very quickly. Otherwise, it
might try several actions for each individual problem before finally finding the
optimal one it seeks for. Anyway, the decision model will become much more
complex in this case. Of course, this model will finally come up with an optimal
act for each problem. It should be noted, however, that it might take a long time
and many unsuccessful attempts before this model is constructed. Therefore, the
gain in utility might be poor over a limited time horizon and might hence not
compensate for the increased complexity.

For different combinations of utility thresholds u∗ and complexity measures γ,
we have performed 1,000 simulation runs with m = 6, k = 4, v = 4, L = 100,
respectively. For each simulation, the average utility (r1 + . . .+ r100)/100 and the
average size of the decision tree have been computed. (The size was measured
in terms of the number l of leaf nodes.) The corresponding results, documented
in Table 7.2 and Appendix H, permit the following conclusions which confirm
our above suppositions: Increasing u∗ always leads to more complex decision
models. However, it yields an improvement in average utility only if the decision
environment is not too complex. Roughly speaking, the decision maker should
be demanding for simple environments, where decision trees provide an adequate
model and, hence, looking for better decision models is likely to be successful.
If the environment is complex, however, it is urged to be modest: Searching for
better models will generally increase the size of decision trees but hardly the
quality of decisions.

γ = 0.5 γ = 1
u∗ = 0.2 0.59 0.59
u∗ = 0.9 0.79 0.56

γ = 0.5 γ = 1
u∗ = 0.2 8.84 15.76
u∗ = 0.9 19.82 48.79

Fig. 7.2. Average values of the (average) utility degrees (left) and (average) number of leaf nodes
(right), taken over the 1,000 simulation runs.
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7.8 Summary and remarks

Summary

– We have briefly reviewed the original idea of case-based decision making due
to Gilboa and Schmeidler (Section 7.1) as well as an alternative (fuzzy
set-based) model proposed by Dubois and Prade (Section 7.3). Rather than
concentrating on the accumulated or average performance of acts, the latter
gives preference to acts which have always led to good results for problems
which are similar to the current one.

– Methods of CBDM on the basis of the Nearest Neighbor principle have
been investigated and characterized axiomatically in Section 7.2. NN decision
rules can be seen as approximations of the decision criteria in CBDT. They
can be motivated, among other things, for reasons of computational efficiency.

– The fuzzy set-based approach to CBDM has been generalized in Section 7.4.
The extreme (worst case) valuation in the original model has been relaxed by
looking out for acts which have yielded good results at least in most (rather
than all) cases in the past. It has been shown that the relaxation of the “always”
requirement in the principle underlying the original decision criterion can be
advantageous in the context of repeated decision making.

– Section 7.5 has outlined an alternative CBDM framework. Corresponding
methods combine results of previous chapters and generalized decision theories
which have recently been proposed in literature in order to realize case-based
decision making. These methods are case-based in the sense that an agent makes
use of case-based reasoning (in the form of case-based inference) in order to sup-
port the modeling of a new decision problem, notably the specification of an
uncertainty measure over possible outcomes. Since the latter is not necessarily
a probability measure, the concept of an expected utility has to be generalized
in order to compare acts. Two concrete methods have been discussed: The CBI

approaches of Section 4.5 and Chapters 5 and 6 give rise to decision making
with “case-based” belief functions and “case-based” possibility distributions,
respectively.

– In Section 7.7, we introduced a framework of experienced-based decision making
as an extension of case-based decision making. In EBDM, an agent faced with
a new decision problem acts on the basis of experience gathered from previous
problems in the past, either through predicting the utility of potential actions
or through establishing a direct relationship between decision problems and
appropriate actions. A realization of the latter approach has been proposed in
the form of “satisficing decision trees”.
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Remarks

– A representation of cases which is similar to the one proposed by Gilboa and
Schmeidler was already suggested by Kolodner [234]. Apart from a problem
and a solution she introduced a third component of a case: the outcome is
thought of as the state of the world under the condition that the corresponding
solution is applied and usually comprises some kind of feedback (see also [30]).
According to this point of view, a triple (p, a, r) is seen as an extended decription
of a case, i.e., a usual case (p, a) supplemented by some valuation r. By using the
notation 〈(p, a), r〉 we have suggested a second interpretation in this chapter: p
and a are taken together and constitute the first component of an ordinary case.
This component is now partly under the control of the agent which can choose
a. The second component is the outcome associated with the problem–act tuple
(p, a). Even though formally equivalent to the first notation, considering a case
as a tuple 〈(p, a), r〉 seems more natural in the context of Section 7.5 where
case-based reasoning (case-based inference) is used in its basic form, namely
for predicting the outcomes associated with inputs (= problem–act tuples).

– In [172], Gilboa and Schmeidler provide an interesting comparison between
case-based and rule-based knowledge representation, with special emphasis on
the problem of induction. This article also contains further examples showing
that the linearity of the CBDT functionals will often be too restrictive in
practice. Particularly, this seems to be true if the decision maker is allowed
to learn a similarity function resp. the importance of cases.42 For instance, if
experience is better represented by subsets of cases, the weight of an individual
case depends on other observations as well. This effect, however, cannot be
captured by the (additively) separable CBDT functionals but rather calls for
the use of non-additive set-functions.

– As the summation of (weighted) degrees of utility in (7.2) reveals, CBDT ac-
tually assumes that the application of an act to similar problems yields similar
utilities rather than similar outcomes. Of course, the two principles are only
equivalent if outcomes are directly given in terms of utilities. Otherwise, the
use of utility degrees in (7.2) has to be justified by the additional assumption
that similar outcomes have similar utilities.

– The memory (7.1) of cases represents the experience of the decision maker.
This does not mean, however, that all cases have been collected by the agent
itself, or that the agent has made all related decisions. In fact, cases can also
be experienced in a passive way or might even be the product of some kind of
hypothetical reasoning.

– The simple accumulation of utility degrees in (7.2) does not always appear plau-
sible, of course. Let us mention, however, that it might well be reasonable in
connection with certain applications, such as the modeling of consumer behavior

42 The adaptation of the similarity function is interpreted as some kind of second-order induction in
[172].
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in economics [170]. Interestingly enough, some undesirable effects of the accu-
mulative nature of (7.2) can also be avoided by using the more general approach
(7.5): The relevance of an observation might be reduced if the same case has
already been encountered before. This idea seems quite plausible from a cogni-
tive point of view. In fact, it again reveals the advantage of a “relevance-based”
decision theory which is more general than a “similarity-based” approach.

– It has been mentioned that CBDT should not be seen as a competing the-
ory, but as an alternative model which complements expected utility theory in
a reasonable way. The claim that neither of them is superior in general and
that the adequacy of a model strongly depends on the kind of problem under
consideration is supported by a theoretical result of Matsui [262]. He shows
that EUT and (a slight modification of) Gilboa and Schmeidler’s CBDT

are equivalent in the sense that each EUT model can be represented in the
framework of CBDT and vice versa.43 The embedded model, however, might
be much more complex than the original model.

– Notwithstanding the cognitive appeal of CBDT, one might feel some uneasi-
ness concerning the manifold possibilities for defining a case-based decision
model. CBDT basically suggests that the current decision is a function of the
agent’s experience, considered against the background of a similarity relation
between inputs. The experience, as represented by the history of cases, is an
element of a quite complex and high-dimensional space on which various deci-
sion functions can be defined. Moreover, similarity is a rather vague concept,
and it is by no means obvious what a reasonable similarity function should look
like. In this respect, expected utility theory appears more restrictive. In fact,
a decision is derived from a utility function44 and a probability function which
can be seen as an (information-compressed) statistic of the agent’s experience
(at least if probabilities are obtained from relative frequencies). Besides, the
linear combination of probability and utility by means of the expected utility
formula seems more straightforward than a similarity-based evaluation. Loosely
speaking, EUT determines the information to be extracted from the agent’s
experience and the way in which this information is to be used more strictly.

– We have assumed the nearest neighbor (7.11) to be unique. The case of non-
uniqueness could be handled by means of a set-valued generalization in the
Dempster-Shafer style. Then, (7.11) defines the set of nearest neighbors,
thus playing a role somewhat comparable to a focal element of a belief structure
over A. (Observe, however, that the weights in (7.10) are utility degrees which
do not necessarily sum up to 1.) Moreover, (7.10) becomes

43 Consequently, the two theories are observationally equivalent.
44 Note that a utility function is principally required in CBDT as well. There, however, the function

needs to be known only partially, namely for the observed outcomes.
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V (a0) =
∑

(p,a)∈M↓:NNp0,A(p,a)�a0

σQ×A((p, a), (p0, a0)) · u(r(p, a)),

i.e., V (a0) defines the counterpart to the plausibility of a value a0 ∈ A.

– In the context of CBDM, the decision maker treats an uncertainty measure
derived via CBI as some kind of “intermediate result” of the complete decision
procedure. In Section 7.5.3, for instance, the possibility distributions (7.46) are
taken as primitives in the second step of this procedure, namely the ranking
of acts according to (7.49) or (7.50). In order to apply these qualitative deci-
sion criteria, the agent has to consider the distributions as being objectively
given. In fact, the axiomatic framework in [123] is set up in the style of Von

Neumann and Morgenstern: A utility function is derived from preferences,
but the concept of belief in the form of a possibility distribution on outcomes
is assumed to be given.45 The two-stage procedure realized by CBDM might
appear vulnerable from this point of view, particularly since the meaning of
objectivity seems less obvious in the case of a possibility distribution than in
the case of a probability [194].

– The idea of relating similarity and uncertainty (cf. Section 7.6.1) is also realized
in the theory of counterfactuals proposed by Lewis [250], where the plausibility
of an imaginary input is determined by its similarity to the current input.

– A combination of the concepts of similarity, preference (utility), and belief
(probability) has also been outlined in [319]. However, this approach is quite
different from the ideas discussed in this chapter. Particularly, it is not related
to case-based reasoning.

– In connection with NN decision rules (Section 7.2) it has been mentioned that
a decision maker will generally not utilize its complete memory when having to
perform a prompt action. This consideration reveals the importance of efficient
memory organization and case retrieval strategies. Needless to say, a computa-
tionally efficient (and cognitively plausible) case-based decision theory has to
take these aspects into account.

– The methods proposed in Section 7.5 are based on generalizations of expected
utility theory. Let us mention that one could also think of other ways of com-
bining case-based inference and EUT. The constraint-based approach to CBI

discussed in Chapter 3, for instance, can be used in order to suggest a subset
of acts or states of nature which should be taken into account. EUT can then
be applied to the reduced setup. Not only is an approach of this kind computa-
tionally efficient, it also appears cognitively plausible. In fact, human decision
makers will generally concentrate on a small number of acts and disregard states
of nature which are considered as being impossible anyway.

– The property of bounded optimality mentioned at the beginning of this chapter
can be paraphrased as “the optimization of computational utility given a set of

45 See [128] for an axiomatization of qualitative decision making in the style of Savage.
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assumptions about expected problems and constraints in reasoning resources”
[192]. According to [323], a program exhibits bounded optimality if it “is a
solution to the constrained optimization problem presented by its architecture.”
A relaxation of this concept is asymptotic bounded rationality [323] which to
some extent parallels the idea of asymptotic complexity. It aims at supporting a
constructive theory of bounded rationality which makes the design of bounded
optimal agents largely independent of the architecture of the computational
environment.

The fact that computational aspects of rational decision making have only
recently become a focus of research should not give rise to the impression that
related problems have been ignored before. Indeed, classical decision theory has
well been aware of computational problems [255]. See, for instance, [182] for a
generalization of the axioms of subjective probability taking related aspects
into account.




