
6. Fuzzy Set-Based Modeling of Case-Based

Inference II

In Chapter 5, it has already been shown that fuzzy rules can be modeled formally
as possibility distributions constrained in terms of a combination of the member-
ship functions which define, respectively, their antecedent and consequent part.
This way, they relate the concepts of similarity and uncertainty, which is the main
reason for their convenience as formal models of the CBI hypothesis. Work on
fuzzy if–then rules has mainly concentrated on algebraic properties of (general-
ized) logical operators. However, going into the semantics of such rules, it turns
out that different interpretations lead to different types of fuzzy rules, which can
be associated with corresponding classes of implication operators [117].

The logical operator used for modeling the type of fuzzy rule that we have focused
on in Chapter 5, a so-called possibility rule, is a conjunction (t-norm) rather than
an implication. In fact, a possibility rule is considered, not as a logical implication
in the strict sense, but rather as an example-oriented rule which encodes and
extrapolates information derived from observations. In this context, a fuzzy rule
“if X is A then Y is B” defines a case in the form of an ordered pair of data
(A,B) which suggests the feasibility of further (similar) cases (or, more precisely,
guarantees a certain degree of possibility of such cases).

As already pointed out, however, an alternative, implication-based type of fuzzy
rule can be very useful in the context of CBI, both from a knowledge represen-
tation (Section 5.3.3) and a learning point of view (Section 5.6). In this chap-
ter, we shall consider implication-based fuzzy rules in more detail. As will be
seen, formalizing the CBI hypothesis in terms of implication-based rules involves
a completely different approach to knowledge representation and inference. In
fact, the use of implication-based fuzzy rules leads to a constraint-based approach
which can be seen as a generalization of the constraint-based modeling of CBI

in Chapter 3. That is, each rule associated with an observed case 〈s1, r1〉 serves
as a constraint: Given a new input s0 similar to s1, it rules out those outcomes
which are not sufficiently similar to r1. This way, an observation restricts the set
of possible outputs resp. decreases the possibility of certain outcomes. Loosely
speaking, a constraint-based (implication-based) fuzzy rule excludes outcomes
which are dissimilar (while not saying anything about the similar ones), whereas
an example-oriented (conjunction-based) rule supports outcomes which are sim-
ilar (while reserving judgement concerning the ones which are dissimilar). The
difference between the two approaches, which exactly corresponds to the distinc-
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230 6. Fuzzy Set-Based Modeling of Case-Based Inference

tion between certainty and plausibility resp. upper and lower possibility in Section
5.1, becomes also apparent from the way in which evidence from multiple cases
is combined. In connection with implication-based rules, this evidence is aggre-
gated by means of an intersection (resp. the application of a t-norm) which is a
natural approach to combining constraints. As opposed to this, the disjunctive
aggregation (resp. the application of a t-conorm) in the case of possibility rules
corresponds to a data accumulation process.

The remaining part of the chapter is organized as follows: In Section 6.1 and
Section 6.2, two basic models which make use of two types of implication-based
fuzzy rules, namely gradual rules and certainty rules, are introduced. Section 6.3
considers case-based inference in the context of information fusion and provides
a probabilistic interpretation which relates the gradual rule and the certainty
rule model. The rating of cases based on the information they provide and the
related idea of “exceptionality” of cases is considered in Section 6.4. Section 6.5
generalizes the previously introduced models by applying the CBI hypothesis in
a locally resticted way.

Before going on, let us make a note on notation. As in Chapter 5, we shall
denote by ϕ ⊆ S × R the set of potential observations, i.e., a case is always
an element of the relation ϕ. Alternatively, we shall look at ϕ as a set-valued
mapping ϕ : S −→ 2R, i.e., we denote by ϕ(s) the set ϕ ∩ ({s} × R) of possible
outcomes of the input s. We shall further abuse this notation and write r = ϕ(s)
instead of (s, r) ∈ ϕ or {r} = ϕ(s) if ϕ is an ordinary function. Again, we assume
data to be given in the form of a (finite) memory

M =
{
〈s1, r1〉, 〈s2, r2〉, . . . , 〈sn, rn〉

}
of precedent cases. Let M∗ denote the class of all finite memories M ⊂ ϕ.

Finally, we restrict ourselves in this chapter to the qualitative version of possi-
bility theory and, hence, to the operators min and max as t-norm and t-conorm,
respectively. Thus, we assume that possibility (and hence similarity) is measured
on an ordinal scale L. (Though an exception is made in Section 6.3, where a
possibilistic prediction is endowed with a probabilistic semantics.) We note, how-
ever, that all results can be transferred to the quantitative case in a more or less
straightforward way.

6.1 Gradual inference rules

6.1.1 The basic model

Gradual rules [119] depict relations between variables X and Y which correspond
to propositions of the form “the more X is A, the more Y is B,” where A and B
are fuzzy sets modeling certain symbolic labels. This can also be stated as “the
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larger the degree of membership of X in the fuzzy set A, the larger the degree
of membership of Y in B” or, even more precisely, as “the larger the degree of
membership of X in the fuzzy set A, the larger the guaranteed lower bound to
the degree of membership of Y in B.” The intended semantics of such a rule can
be expressed in terms of membership degrees by

A(X) ≤ B(Y ), (6.1)

which is equivalent to the collection of constraints

∀ 0 < α ≤ 1 : X ∈ Aα ⇒ Y ∈ Bα,

where Aα = {x |A(x) ≥ α} denotes the α-cut of the fuzzy set A [119].

The constraint (6.1) induces a {0, 1}-valued (conditional) possibility distribution
πY |X , where πY |X(y |x) denotes the possibility of Y = y given that X = x:

∀x ∈ DX ∀ y ∈ DY : πY |X(y |x) = A(x)
rg� B(y), (6.2)

where
rg� is the Rescher-Gaines implication (α

rg� β = 1 if α ≤ β and 0 otherwise)
and DX and DY are the domains of X and Y , respectively.

More generally, fuzzy gradual rules can be classified as truth-qualifying rules, the
semantics of which are adequately modeled by means of so-called R(esiduated)-
implications. An R-implication is derived from a t-norm ⊗ through residuation
[118]:

∀α, β ∈ [0, 1] : α � β
df
= sup{ γ |α ⊗ γ ≤ β }. (6.3)

An example is the implication operator � defined as

α � β
df
=

{
1 if α ≤ β

β if α > β
.

Using this implication, the possibility of Y = y is not restricted to the values 0
and 1 but may take any value in the interval [0, 1]. Nevertheless, subsequently we
will adhere to the model (6.2) which is referred to as a pure gradual rule in [46].

Within the context of our CBI framework, a gradual rule reads “the more similar
two inputs are, the more similar are the associated outcomes” or, more precisely,
“the more the similarity of inputs is in F , the more the similarity of outcomes
is in G,” with F and G being fuzzy sets of “large similarity degrees” (F and G
are non-decreasing L −→ L functions). In connection with (6.1) and an observed
case 〈s1, r1〉, this rule (completely) excludes the existence of other (hypothetical)
cases 〈s, r〉 which would violate

F (σS(s, s1)) ≤ G(σR(r, r1)). (6.4)

Thus, given a new input s0 and assuming F = G = id, (6.4) becomes
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∀ 〈s, r〉 ∈ ϕ : σS(s, s1) ≤ σR(r, r1) (6.5)

and, hence, leads to the restriction

r0 ∈
{
r ∈ R |σS(s0, s1) ≤ σR(r, r1)

}
(6.6)

for the output r0 associated with s0. Since corresponding constraints are obtained
for all cases of a memory M, we finally derive the following prediction [99, 101]:

r0 ∈ ϕ̂M(s0)
df
=
⋂

1≤ı≤n

{
r ∈ R |σS(s0, sı) ≤ σR(r, rı)

}
. (6.7)

Clearly, the extent to which the CBI hypothesis holds true depends on the re-
spective application. Consequently, the formalization of this principle by means
of the constraint (6.1) might be too strong, at least in connection with the un-
derlying similarity relations σS and σR. That is, cases 〈s, r〉, 〈s′, r′〉 might exist
such that σS(s, s′) > σR(r, r′), i.e., although the inputs are similar to a certain
degree, the same does not hold for the associated outputs. This, however, con-
tradicts (6.4). Thus, calling a prediction ϕ̂M(s0) correct (with respect to the case
〈s0, r0〉) if r0 ∈ ϕ̂M(s0), the (general) correctness of the inference scheme (6.7) is
not guaranteed in the sense that it might yield an incorrect prediction:

∃M ∈ M∗ ∃ 〈s0, r0〉 ∈ ϕ : r0 "∈ ϕ̂M(s0).

That is, there are a memory M and a case 〈s0, r0〉 such that the set-valued
prediction derived from M does not cover r0. Note that the complete class ϕ of
cases would have to be known in order to guarantee the correctness of (6.7) in
the above sense. Needless to say, this condition is usually not satisfied.

6.1.2 Modification of gradual rules

Again, more flexibility can be introduced in the basic model (6.1) by means of a
modifier, i.e., a non-decreasing function m : L −→ L. This leads to

∀ 〈s, r〉 ∈ ϕ : m(σS(s, s1)) ≤ σR(r, r1) (6.8)

instead of (6.5). Moreover, (6.7) becomes

r0 ∈ ϕ̂m,M(s0)
df
=
⋂

1≤ı≤n

{
r ∈ R |m(σS(s0, sı)) ≤ σR(r, rı)

}
. (6.9)

The application of the modifier m can be seen as “calibrating” the similarity
scales underlying the set of inputs and the set of outputs such that (6.1) is al-
ways satisfied. As an extreme example of (6.8) consider the case where m ≡ 0,
expressing the fact that the CBI hypothesis does not apply at all. In other words,
the similarity of inputs (in the sense of σS) does not justify any conclusions about
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the similarity of outcomes (in the sense of σR). Observe, however, that m can as
well be utilized in order to strengthen (6.1). We might take, for instance, m ≡ 1
if all outcomes are always perfectly similar according to σR! This type of modi-
fication of a gradual rule can be interpreted in the same way as the modification
of a possibility rule (cf. Section 5.4.4).

We call a modifier admissible if it guarantees the correctness of the inference
scheme (6.9), i.e.

∀M ∈ M∗ ∀ 〈s0, r0〉 ∈ ϕ : r0 ∈ ϕ̂m,M(s0). (6.10)

The modifier m defined by

m(x) = sup
{
h(x′) |x′ ∈ DS , x′ ≤ x

}
(6.11)

for all x ∈ DS , where

h(x) = inf
〈s,r〉,〈s′,r′〉∈ϕ:σS(s,s′)=x

σR(r, r′),

is admissible. Moreover, it is maximally restrictive in the sense that

∀M ∈ M∗ ∀ s0 ∈ S : ϕ̂m,M(s0) ⊆ ϕ̂m′,M(s0)

holds true for each admissible (and non-decreasing) m′ : DS −→ L.1 Taking the
upper bound in (6.11) only guarantees that m is non-decreasing. In fact, (6.10) re-
mains valid when replacing m by h, which obviously corresponds to the similarity
profile as introduced in Section 3.1.2 In other words, a modifier m defines a strict
similarity hypothesis (see page 61) and thus obeys the “the more... the more...”
assumption underlying the concept of a gradual rule: The modification by means
of a non-decreasing function corresponds to the “stretching” and “squeezing” of
the similarity scale underlying σS . When interpreting m ◦ σS as a new (adapted)
similarity measure, m ◦ σS and σS are still coherent in the sense that

σS(s1, s2) ≤ σS(s3, s4) ⇒ m(σS(s1, s2)) ≤ m(σS(s3, s4)) (6.12)

for all s1, s2, s3, s4 ∈ S. As opposed to this, a non-increasing function h also puts
the similarity degrees x ∈ DS in a different order and, hence, violates (6.12).

Loosely speaking, (6.11) can be seen as a solution to the (optimization) problem of
finding a modifier maximally restrictive among all the admissible ones. Estimating
(6.11) from observed data (in the form of the memory M) can be considered
as a problem of case-based learning. Of course, a corresponding estimation will
generally not allow for verifying the admissibility of a modifier in the sense of
(6.10). In fact, (6.10) can be checked only for the observed cases, which means

1 Here, we assume that m′(x) ∈ L for all x ∈ DS . More generally, a modifier is a DS −→ [0, 1]
mapping.

2 Recall, however, that ϕ as defined here is not necessarily a functional relation.
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that the requirement of (global) admissibility has to be weakened. An obvious
idea is to look for a maximally restrictive modifier m which is admissible, not
necessarily for the complete relation ϕ, but at least for the memory M. That is,

∀ 〈s, r〉 ∈ M : r ∈ ϕ̂m,M(s). (6.13)

In addition to (6.13), it might appear natural to require

∀ s ∈ S : ϕ̂m,M(s) "= ∅. (6.14)

That is, for each input s which might be encountered, the inference scheme (6.9)
yields a non-empty (even if perhaps incorrect) prediction [100]. Needless to say,
the additional requirement (6.14) makes the learning of a modifier more complex.3

Note that the problem of learning the maximally restrictive modifier (6.13) can
be approached by the algorithm proposed in Section 3.4 (cf. Remark 3.31).

Observe that F = G = id can be assumed for the fuzzy sets F and G in (6.4)
without loss of generality (as long as G is strictly increasing). This becomes obvi-
ous from the constraint (6.8). Namely, m(F (σS(s, s′)) ≤ G(σR(r, r′)) is equivalent
to m′(σS(s, s′)) ≤ σR(r, r′) with m′ = G−1 ◦ m ◦ F .

Even though the approach (6.8) allows for the adaptation of the formal CBI

model based on a gradual rule, this model remains rather restrictive. In fact, the
above discussion has shown that the gradual rule model is closely related to the
constraint-based approach of Chapter 3.4 Consequently, it might lead to imprecise
predictions for exactly the same reasons. Consider the following example, to which
we shall return occasionally in subsequent sections.

Fig. 6.1. Graph of the function a �→ a mod 100.

3 Verifying (6.14) is closely related to testing the coherence of a set of gradual rules [133].
4 The approaches basically differ in the sense that the latter does not only allow for strict similarity

hypotheses.
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Example 6.1. Let a CBI setup be defined as follows:

S = R = N0, DS = DR = {0, 1},
σS(a, b) = σR(a, b) = 1 ⇔ |a − b| ≤ 10,

ϕ : S −→ R , a �→ a mod M.

Thus, inputs and outputs correspond to natural numbers, and two inputs (out-
puts) are either completely similar or not similar at all. According to the definition
of ϕ,

ϕ(a) = q ⇔ q ∈ {0, 1, . . . , M − 1}
∧ ∃ p ∈ N0 : a = pM + q.

Assuming M to be a rather large integer, we can hence say that ϕ(s) and ϕ(s′)
are “almost surely” similar whenever s and s′ are similar. (See Fig. 6.1, where the
graph of ϕ is illustrated for M = 100). Nevertheless, “exceptional” pairs of inputs
s, s′ for which σS(s, s′) = 1 and σR(ϕ(s), ϕ(s′)) = 0 still exist (e.g., s = M − 1,
s′ = M). Thus, one has to take m ≡ 0 in order to guarantee the correctness of
(6.9). Then, however, case-based inference via (6.7) becomes meaningless, since
ϕ̂m,M(s0) = R = N0 for all s0 ∈ S. �

This example suggests looking for generalized inference schemes which are less
restrictive. In this chapter, we consider two possibilities of weakening the for-
malization of the CBI principle based on gradual rules. Firstly, we give up the
requirement of its global validity, i.e., the fact that one modifier has to be deter-
mined such that (6.8) is satisfied for all (tuples of) cases. A related approach will
be proposed in Section 6.5, where case-based inference will not be formalized by
means of a single modifier, but by means of a set of (“locally valid”) fuzzy rules.
This idea is similar to the use of local similarity profiles in the constraint-based
approach to CBI.

Secondly, (6.8) is obviously not very flexible in the sense that it does not allow
for incorporating some tolerance toward exceptions into the inference process. In
fact, the above example suggests looking for inference schemes which do not only
distinguish between the possibility and impossibility of outcomes, but which are
able to derive more expressive predictions using a graded notion of possibility.
For this reason, we shall consider so-called certainty rules in Section 6.2 below.
Replacing gradual rules by certainty rules is motivated in the same way as passing
from constraint-based to probabilistic CBI as proposed in Chapter 4.

6.2 Certainty rules

A certainty rule corresponds to statements of the form “the more X is A, the
more certain Y lies in B.” More precisely, it can be interpreted as a collection
of rules “if X = x, it is certain at least to the degree A(x) that Y lies in B”
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(x ∈ DX), which amounts to saying that the possibility of values outside B
is bounded by 1 − A(x). This translates into the following constraint on the
conditional possibility distribution πY |X [124]:

∀x ∈ DX , y ∈ DY : πY |X(y |x) ≤ max{1 − A(x), B(y)}. (6.15)

More generally, rules of this kind can be classified as certainty-qualifying rules
[118]. The semantics of such rules is adequately captured by means of so-called

S(trong)-implication operators. The latter is of the form α � β
df
= n(α)⊕β, where

n(·) is a strong negation and ⊕ a t-conorm. A special case of an S-implication
is the Kleene-Dienes implication in (6.15). Note that the mapping x �→ 1 − x in
(6.15) is actually thought of as the order-reversing mapping of the ordinal scale
L.

The upper bound (6.15) implies that the possibility of Y = y is bounded by
1−A(x) if X = x and B(y) = 0, which means that y is outside of the support of B.
Thus, the larger A(x), the smaller the possibility that y lies outside of B. Within
the framework of possibility theory, certainty is closely related to impossibility5

and, hence, (6.15) indeed means that y lies in B with certainty A(x).

Since a certainty rule is thought of as a constraint which holds true in general but
still allows for exceptions (see e.g. [376]), it is more flexible than the approach
based on gradual rules and seems to be particularly suitable as a formal model of
CBI. In connection with the concept of a certainty rule, the CBI hypothesis can
be understood as “the larger the similarity of two inputs is, the more certain it is
that the similarity of corresponding outcomes is large,” an interpretation which
emphasizes the heuristic nature of this assumption.

Given a new input s0, an observed case 〈s1, r1〉 ∈ M constrains the possibility of
similarity degrees y = σR(r0, r1) according to the certainty rule model (6.15):

π(y |x) ≤ πcert(x, y) = max{1 − y, x}, (6.16)

where x = σS(s0, s1) is the similarity between s0 and s1. Since r0 = r implies
y = σR(r, r0), we thus obtain

πs0(r) = π(r | s0) ≤ max
{
1 − σS(s0, s1), σR(r, r1)

}
(6.17)

for the possibility that r ∈ R corresponds to the unknown outcome r0. The more
similar the inputs s0 and s1 are, the more constrained the possibility of outcomes
becomes according to (6.17). If, for instance, σS(s0, s1) is close to 1, the possibility
bound π(r | s0) can only be large for outcomes which are very similar to r1. If,
however, σS(s0, s1) is very small, we also obtain a large possibility bound for
outputs hardly similar to r1. Particularly, (6.17) becomes trivial if σS(s0, s1) = 0.
The resulting possibility distribution π ≡ 1 reveals complete ignorance. That is,

5 Formally, the certainty c of an event A and the possibility p of the complement of A are related
according to c = 1 − p (cf. Section 5.1).
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the observed outcome r1 says nothing about the unknown outcome r0, because
the corresponding inputs are not similar at all.

Since (6.17) applies to all cases of the memory, we obtain the possibility distrib-
ution

πs0 : r �→ π(r | s0) (6.18)

df
= min

1≤ı≤n
max
{
1 − σS(s0, sı), σR(r, rı)

}
,

which emerges from (6.15) under the application of the minimal specificity prin-
ciple.6 The constraint (6.18) can be generalized to

πs0 : r �→ π(r | s0) (6.19)

= min
1≤ı≤n

m2

(
max
{
1 − m1(σS(s0, sı)), σR(r, rı)

})

by means of modifier functions m1, m2 : L −→ L. The associated certainty rule,
denoted m1 ◦ σS

m2� σR, corresponds to statements of the form “for m1-similar
inputs it is m2-certain that the respective outputs are similar.” As in the case of
possibility rules, the modifier m2 can be used for bounding the effect of a rule
(cf. Section 5.4.4). Discounting a certainty rule can be realized, e.g., by means of
a modifier x �→ max{x, λ}, where the discounting factor λ guarantees a minimal
degree of possibility.7

Remark 6.2. The modifier x �→ max{x, λ} corresponds to a special case of
the discounting operation x �→ (1 − λ) ⊗ x + λ [402]. It is obtained by taking
the generalized conjunction ⊗ as (α, β) �→ max{0, α + β − 1}. The modifier
x �→ min{x, 1−λ}, used as a discounting operation in the possibilistic framework
of Chapter 5, emerges under the same conjunction from x �→ (1 − λ) − (1 − λ) ⊗
(1 − x). �

According to the gradual rule model, an observed case 〈s1, r1〉 rules out the exis-
tence of other (hypothetical) cases completely, namely those which do not obey
(6.8). Particularly, the set

{
r ∈ R |m(σS(s0, s1)) ≤ σR(r, r1)

}
of outcomes regarded as possible for the input s0 excludes outputs which are not
similar enough, namely those outcomes r ∈ R with σR(r, r1) < m(σS(s0, s1)). As
opposed to this, a certainty rule (6.17) only gradually restricts the possibility of
a case 〈s, r〉:
6 According to this principle, each element of the domain of a possibility distribution is assigned the

largest possibility in agreement with the given constraints. The principle is already discussed under
the name principle of maximal possibility in [415] and has been introduced as an information-theoretic
principle in [113].

7 This contrasts with the discounting of possibility rules, where the application of the min-operator
instead of the max-operator yields an upper rather than a lower possibility bound.
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π(s, r) ≤ πC(s, r) = max
{
1 − σS(s, s1), σR(r, r1)

}
. (6.20)

Thus, it does generally not exclude other cases completely. In fact, the possibility
of a case 〈s, r〉 is 0 only if both, s is perfectly similar to s1 and r is completely
different from r1. Given a new input s0, we hence obtain πs0(r) > 0 as soon as
σS(s0, s1) < 1 or σR(r, r1) > 0. It is exactly this property which allows for the
modeling of exceptional inputs and which seems advantageous in connection with
the adaptation of CBI models.

Example 6.3. To illustrate this, let us reconsider Example 6.1. The fact that
we have to take m ≡ 0 in connection with the gradual rule model means that a
case 〈s, r〉 no longer constrains the possibility of outcomes associated with a new
input s0. Now, suppose that we define m1 by m1(0) = 0 and m1(1) = 1 − ε (and
that we take m2 = id) in the certainty rule approach (6.19), where 0 < ε � 1.
Given a case 〈s1, r1〉 and a new input s0 similar to s1, we obtain

πs0(r) =

{
1 if σR(r, r1) = 1

ε if σR(r, r1) = 0
. (6.21)

Thus, outcomes which are similar to r1 are regarded as completely possible, but a
positive (even if small) degree of possibility is also assigned to outcomes r which
are not similar to r1. This takes the existence of exceptional pairs of inputs into
account. �

As pointed out in [99], a certainty rule (6.17) fails to modulate the width of the
neighborhood around an observed outcome r1 in terms of the similarity between
s0 and s1, which a gradual rule would do. As expressed by (6.17), it only attaches a
level of uncertainty (which depends on σS(s0, s1)) to the fuzzy set r �→ σR(r, r1) of
outcomes close to r1. A way of remedying this problem would be to use implication
operators such as

α � β =

{
1 if α ≤ β

1 − α if α > β
(6.22)

or

α � β =

{
1 if α ≤ β

max{1 − α, β} if α > β
(6.23)

in place of max{1 − α, β} in (6.15).8 Implications of that kind can be obtained
from an R-implication → by contraposition, i.e., α � β = (1 − β) → (1 − α).

We then obtain the (generalized) model

πs0 : r �→ π(r | s0) = min
1≤ı≤n

m2 (m1(σS(s0, sı)) � σR(r, rı)) . (6.24)

8 (6.23) is the R-implication and, at the same time, the S-implication related to a t-norm called the
nilpotent minimum. Given a strong negation n, the latter is defined as x⊗y = min{x, y} if y > n(x)
and x ⊗ y = 0 otherwise [150].



6.3 Cases as information sources 239

This approach avoids the following effect which occurs under the application of the
constraint (6.17): If the inputs s0 and s1 are similar enough, the bound of π(r | s0)
in (6.17) only reflects the similarity between r and r1. This, however, means that
we generally have π(r | s0) < 1 even for outcomes r which are rather similar to
r1. In fact, (6.17) reduces the possibility of r0 = r even if σS(s0, s1) ≤ σR(r, r1).
In this situation it appears to be more restrictive than a gradual rule. Observe
that (6.22) to some degree combines the effect of gradual and certainty rules since
r0 ∈ σR(rı, ·)α with certainty α = m1(σS(s0, sı)) for all 1 ≤ ı ≤ n (if m2 = id).
Now, however, the certainty level and the level of the cut of the similarity relation
σR(rı, ·) are directly related (through m1).

6.3 Cases as information sources

As in Section 4.5, we shall now look at cases as individual information sources
and consider case-based inference as the parallel combination of such information
sources. A corresponding (probabilistic) framework allows for a semantic inter-
pretation of the prediction πs0 = π(· | s0) derived from a (modified) certainty rule.
This interpretation gives a concrete meaning to a degree of possibility π(r | s0)
and might hence be helpful in connection with the acquisition of modifiers (which
act on possibility distributions). At the same time, it establishes a connection be-
tween the approaches presented in Section 6.1 and Section 6.2, showing that the
latter can be seen as a generalization of the former (from a probabilistic point
of view). Again, let us mention that we give up the ordinal interpretation of the
underlying possibility scale in this section.

6.3.1 A probabilistic model

When making use of the CBI hypothesis formalized by means of a fuzzy rule,
each observed case provides some evidence concerning the unknown outcome r0.
Given a memory M of n cases, the individual pieces of evidence have to be
combined into a global constraint. Seen from this perspective, each case serves
as an information source, and one task arising in connection with CBI is the
parallel combination of these information sources. In Section 6.1, for instance,
the evidence derived from an individual case 〈s1, r1〉 is given in the form of a set
Nm(σS(s,s0))(r) of possible candidates, where

Nα(r1)
df
=
{
r ∈ R |α ≤ σR(r, r1)

}
denotes the α-neighborhood of the outcome r1. Moreover, the (conjunctive) com-
bination of evidence is realized by means of the intersection (6.9).

Recall the framework of the parallel combination of information sources which has
been outlined in Section 4.5: Let Ω denote a set of alternatives, consisting of all
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possible states of an object under consideration and let ω0 ∈ Ω be the actual (but
unknown) state. An imperfect specification of ω0 is a tuple Γ = (γ, pC), where C
is a (finite) set of specification contexts, γ is a mapping γ : C −→ 2Ω, and pC is
a probability measure over C. The problem of combining evidence is defined as
generating an imperfect specification Γ of ω0 which performs a synthesis among
the n imperfect specifications Γ1, . . . , Γn issued by different information sources.

In Section 6.1, the evidence derived from an individual case 〈s1, r1〉, namely the
set Nm(x)(r1) with m(x) = m(σS(s0, s1)) being the lower similarity bound (6.11),
corresponds to a particular imperfect specification Γ = (γ, pCx):

Cx = DR,

γ(c) = Nc(r1),

pCx(c) =

{
1 if c = m(x)

0 if c "= m(x)
.

(6.25)

A context c is hence thought of as the lower similarity bound m(x) ∈ DR asso-
ciated with the similarity degree x ∈ DS . Observe that the information source
〈s1, r1〉 is correct in the sense that the prediction γ(c) = Nc(r1) contains the ob-
ject ω0 = r0 under the assumption that the context c is true (and the modifier m
is admissible). It is also of maximum specificity since Nc(r1) is the most specific
characterization of r0 that can be inferred by 〈s1, r1〉 in this context.

The one-point distribution pCx in (6.25) suggests the lower similarity bound to be
known precisely. In general, however, knowledge about m(x) will be incomplete.
Let us therefore assume pCx to be defined in a more general way, such that pCx(c),
the probability that m(x) = c, can take values between 0 and 1. Since m(x) = c
means that c defines the (largest) lower similarity bound, it implies σR(r0, r1) ∈
[c, 1]. That is, the true similarity between r1 and the unknown outcome r0 is at
least c. For y ∈ DR, the probability that σR(r0, r1) = y is hence bounded as
follows:

P(y) ≤
∑

c∈DR:c≤y

pCx(c).

When interpreting a possibility distribution π on DR as an encoding of upper
degrees of probability9 – by virtue of the correspondence π(y |x) = P(y) – it is
possible to trace the possibility distribution

πcert : y �→ πcert(y |x) = m(x) � y (6.26)

derived from a (modified) certainty rule10 back to a probabilistic specification
of the similarity bound m(x). Consider as an example (6.26) for the implication
operator (6.22):

πcert(y |x) =

{
1 if m(x) ≤ y

1 − m(x) if m(x) > y
. (6.27)

9 Here, we clearly give up the ordinal interpretation of the possibility scale.
10 For the sake of simplicity, we restrict ourselves to certainty rules with one modifier in this section.
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For m(x) > 0, (6.27) corresponds to the probability pCx defined by

pCx(c) =




1 − m(x) if c = 0

m(x) if c = m(x)

0 if c "∈ {0, m(x)}
. (6.28)

This model can be interpreted as follows: The lower similarity bound is esti-
mated by m(x), but this estimation is only correct with a certain probability.
Particularly, (6.28) assigns a positive probability to the value 0, i.e., it does not
exclude the existence of outcomes which are not similar at all (and hence entail
m(x) = 0). Associating m(x) with the interval [m(x), 1], we might also interpret
this model as a kind of confidence interval for a similarity degree y = σR(r0, r1),
supplemented with a corresponding level of confidence.

Since m(x) = c also implies

r0 ∈
{
r ∈ R |σR(r, r1) ≥ c

}
,

the possibility distribution

πs0(r) = m(σS(s0, s1)) � σR(r, r1), (6.29)

which is induced by an observed case 〈s1, r1〉 in connection with a certainty rule,
can be interpreted in the same way as the corresponding distribution (6.26). That
is, the value πs0(r) can be interpreted as an upper bound to the probability that
r0 = r.

The probability (6.28) reveals a special property of the uncertain prediction de-
rived from the rule (6.27). Namely, the certainty level associated with the estima-
tion of a similarity bound is in direct correspondence with the similarity degree
itself. That is, the larger the estimation of the similarity bound m(x) is, the larger
will be the level of confidence attached to the confidence interval [m(x), 1].11

6.3.2 Combination of information sources

So far, we have considered only one piece of evidence, derived from a single case
〈s1, r1〉, and the imperfect specification related to the corresponding similarity
bound m(x), where x = σS(s0, s1). In general, the memory M contains several
cases, and uncertainty concerning the complete modifier (6.11) has to be specified.
Thus, let us define the set of specification contexts as C = DDS

R . Each context
c ∈ C corresponds to a function c : DS −→ DR and, hence, specifies a lower
similarity bound c(x) for all x ∈ DS . Moreover, suppose a certainty rule with
modifier m to be given and let pC be defined on C in such a way that the
marginal distributions correspond to the distributions pCx (x ∈ DS) induced by
this rule.
11 Needless to say, this property is not always appropriate.
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The different information sources associated with cases in the memory now share
a common set C of specification contexts. Let Γı = (γı, pC) (1 ≤ ı ≤ n) denote
the imperfect specification associated with the ı-th case 〈sı, rı〉. The mapping γı

is then given by
γı(c) = Nc(σS(sı,s0))(rı)

for all c ∈ C. Making use of all cases and assuming the specification context c ∈ C
to be true, we can derive the prediction r0 ∈ ϕ̂c,M(s0), where

ϕ̂c,M(s0) =
⋂

1≤ı≤n

{
r ∈ R | c(σS(s0, sı)) ≤ σR(r, rı)

}
. (6.30)

This is in accordance with the gradual rule model that considers only one modifier
and, hence, provides the corresponding set-valued prediction (6.30). In fact, (6.30)
reveals that each context c ∈ C corresponds to some modified gradual rule. In
other words, a certainty rule can be interpreted as a “random” gradual rule, i.e.,
a class of (modified) gradual rules with associated probabilities. This relation
between gradual and certainty rules is further explored in Appendix B.

When considering the modifier m as a random variable, the prediction of r0

according to (6.30) becomes a random set, where ϕ̂c,M(s0) occurs with probability
pC(c).12 The probability that a certain output r ∈ R is an element of this set is
given by

P(r ∈ ϕ̂c,M(s0)) =
∑

c : r∈ϕ̂c,M(s0)

pC(c) (6.31)

and defines an upper bound to the probability that r0 = r. In connection with the
idea of a randomized gradual rule model, (6.31) corresponds to the probability of
selecting a (modified) gradual rule c which does not exclude the (hypothetical)
case 〈s0, r〉, i.e., for which (6.30) holds.

The imperfect specification Γ = (γ, pC) defined by

γ(c) = ϕ̂c,M(s0)

for all c ∈ C (and C, pC as above) corresponds to the conjunctive pooling of the
information sources Γ1, . . . , Γn. This kind of combination is justified by the fact
that all information sources are correct with respect to all specification contexts
c ∈ C. Within a possibilistic setting, conjunctive pooling comes down to deriving
the intersection of possibility distributions. In fact, it is not difficult to show that
(6.31) is bounded from above by the possibility distribution πs0 derived from a
certainty rule in connection with a number of cases. That is,

P(r ∈ ϕ̂c,M(s0)) ≤ πs0(r) = min
{
π1

s0
(r), . . . , πn

s0
(r)
}

(6.32)

for all r ∈ R, where πı
s0

denotes the possibility distribution derived from the
ı-th case according to (6.29). The interpretation of possibility degrees as upper

12 Observe, however, that c 	= c′ 	⇒ ϕ̂c,M(s0) 	= ϕ̂c′,M(s0).
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approximations of probabilities is hence in agreement with the application of the
minimum operator in (6.19), i.e., with making use of this operator in order to
combine the possibility distributions derived from individual cases.

Appendix B shows that the above probability distribution pC , where pC(c) is
the probability of the gradual rule associated with the context (= modifier) c, is
unique under the assumption that the operator modeling the implication-based
fuzzy rule satisfies a certain (non-)monotonicity condition. This might be consid-
ered as an interesting result, especially with regard to the combination of evidence
in the probabilistic framework of Section 4.5.3. As pointed out there, the joint
probability measure µ in (4.27) is generally not defined in a unique way.

According to the interpretation proposed in this section, the certainty rule ap-
proach can be seen as a generalization of the approach based on gradual rules,
in the sense that the lower similarity bounds, which guarantee the correctness
of the set-valued prediction of r0, are no longer assumed to be precisely known.
The incomplete knowledge concerning these bounds is characterized by means of
a probability distribution. This allows for interpreting the case-based inference
scheme in Section 6.2 as a kind of approximate probabilistic reasoning. More pre-
cisely, a prediction π(· | s0) specifies possibility degrees π(r | s0) which can be seen
as upper bounds to the probability that the unknown output r0 is given by the
outcome r.

6.4 Exceptionality and assessment of cases

Considering cases as individual information sources, as we have done in Sec-
tion 6.3, suggests to rate their contribution to the prediction of outcomes. In
fact, the assessment of information sources is supported by most frameworks
for the combination of evidence. The basic idea, then, is to realize some kind of
weighted aggregation procedure or to modify (discount) the information provided
by a source according to its reliability.13 In Section 4.6, this idea has already been
discussed in the context of the probabilistic approach to CBI.

Recall that, given the same information in the form of a context c ∈ C, i.e., a
modifier specifying lower similarity bounds, different cases provide different speci-
fications of the unknown outcome r0: Considering this modifier and the new input
s0, a case 〈s, r〉 provides a prediction of r0 in the form of a possibility distribution
which supports outcomes in the neighborhood of r. Such a specification might
hence be misleading, e.g., if the outcome r is rather “untypical.”

Example 6.4. Consider again Example 6.1 and suppose that s0 = M − 1 and
s1 = M + 1. In accordance with the certainty rule model (6.21) of this example

13 See e.g. [272] for various approaches to the discounting of expert opinions within a generalized
probabilistic framework.
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(cf. Section 6.2), the case 〈s1, r1〉 = 〈M + 1, 1〉 strongly supports the outcomes
{0, . . . , 11} which are similar to r1 = 1. It almost rules out all other outputs,
including the true outcome r0 = M − 1. Loosely speaking, the (otherwise useful)
information about similarity relations, specified by the certainty rule, is “misin-
terpreted” by 〈s1, r1〉. Even though the advice to disqualify outcomes which are
not similar to r will lead to good predictions for the majority of cases 〈s, r〉, it
is hardly reasonable when taken up in connection with an “exceptional” pair of
cases, such as 〈s0, r0〉 and 〈s1, r1〉. �

The above example makes clear that exceptionality is not necessarily a property
of an individual input or case. Rather, the label of exceptionality applies to pairs
of cases. In fact, 〈s1, r1〉 is exceptional only in connection with inputs s = M − k,
where 1 ≤ k ≤ 9, but it will lead to correct predictions for all other inputs.
Moreover, the decision whether to call two cases exceptional will often not be
as obvious as in our example, where only two degrees of similarity are distin-
guished. Making use of richer scales including intermediate degrees of similarity,
exceptionality will become a gradual property.

Interestingly enough, the certainty rule framework suggests computing a degree
of exceptionality in the following way:

ex(〈s, r〉, 〈s′, r′〉) df
= 1 − πcert(σR(r, r′) |σS(s, s′)). (6.33)

That is, the exceptionality of the tuple of cases 〈s, r〉, 〈s′, r′〉 is inversely related to
the possibility of observing σR(r, r′)-similar outcomes for σS(s, s′)-similar inputs,
as specified by the certainty rule model.14 The more 〈s, r〉 and 〈s′, r′〉 violate the
certainty rule, the more exceptional they are in the sense of (6.33).

It is worth mentioning that (6.33) also makes sense in connection with the grad-
ual rule model. Applying (6.33) to the possibility distribution (6.2) induced by
a gradual rule, a tuple of cases is either completely exceptional or not excep-
tional at all. In fact, (6.33) may also be seen as a reasonable generalization of
this rather obvious definition of exceptionality. This again reveals the difference
between the gradual and the certainty rule model: The former is indeed not tol-
erant toward exceptions in the sense that each violation of the rule is “punished”
by classifying the involved cases as completely exceptional ones. As opposed to
this, exceptionality is a gradual property in the certainty rule model.

Even though a gradual or certainty rule can only be violated by tuples of cases
and, hence, exceptionality should be considered as a property of pairs of cases,
it seems intuitively clear in our example that the most unreliable information
sources are those cases 〈s, r〉 with s close to integers kM (k ∈ N0). The closer
an input is to such a point, the more likely the case might be called exceptional.
In fact, one possibility of regarding exceptionality as a property of an individual

14 Again, note that x �→ 1−x in (6.33) actually represents the order-reversing mapping of a possibility
scale.
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case 〈s, r〉 is to consider the likelihood or possibility of 〈s, r〉 to be exceptional
with respect to a new case 〈s0, r0〉. Thus, one might think of generalizing (6.33)
as follows:

ex1(〈s, r〉) df
= sup

〈s′,r′〉∈ϕ

ex(〈s, r〉, 〈s′, r′〉). (6.34)

Assigning a degree of exceptionality to a case in the sense of (6.34) can be inter-
preted as rating the reliability of this case. Of course, this degree of exceptionality
depends on the formalization of the underlying rule. In other words, a case is ex-
ceptional not by itself but only with respect to a particular rule: Changing the
rule by means of a modifier also changes the degree of exceptionality of the case.
For instance, the modification of a gradual rule, as proposed in Section 6.1.2, can
be interpreted as adapting the rule in such way that no exceptional cases exist
at all. Likewise, no case is exceptional with respect to the certainty rule in its
weakest form, as formalized by m1 ≡ 0 in (6.19). In connection with the certainty
rule model (6.21) of Example 6.1, we obtain

ex1(〈s, r〉) =

{
1 − ε if ∃ k ∈ N0 : |s − kM | ≤ 10

0 otherwise

for all 〈s, r〉 ∈ ϕ.

Let us briefly hint at two properties of (6.34). Firstly, this definition of exception-
ality is completely independent of any kind of frequency, i.e., the value ex1(〈s, r〉)
should not be understood as a probability of 〈s, r〉 being exceptional with respect
to some other case. Of course, defining exceptionality of an individual case by
using an averaging operator in place of the supremum in (6.34) seems intuitively
appealing and would clearly make sense within a probabilistic setting. Recall, for
instance, the probabilistic interpretation of the certainty rule model proposed in
Section 6.3. According to this interpretation, a certainty rule can be seen as a
collection of (modified) gradual rules to each of which is attached a certain proba-
bility. Since a case is either exceptional or not with respect to a fixed gradual rule,
it is an obvious idea to derive a corresponding probability of being exceptional
with respect to a certainty rule.

Secondly, (6.34) is rather strict in the sense that it implies

ex(〈s, r〉, 〈s′, r′〉) ≤ min{ex1(〈s, r〉), ex1(〈s′, r′〉)} (6.35)

for all cases 〈s, r〉 and 〈s′, r′〉. In other words, having encountered an exceptional
tuple of cases, both cases are considered to be exceptional. This principle can
obviously be weakened by concluding on the exceptionality of at least one of the
two cases. This leads to the constraints

ex(〈s, r〉, 〈s′, r′〉) ≤ max{ex1(〈s, r〉), ex1(〈s′, r′〉)} (6.36)

for all 〈s, r〉, 〈s′, r′〉 ∈ S. Indeed, (6.36) will often appear more reasonable than
(6.35). For instance, modifying the mapping ϕ in Example (6.1) according to
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ϕ(s) =

{
M if a mod M "= 0

0 if a mod M = 0

suggests to call the cases 〈0, 0〉, 〈M, 0〉, 〈2M, 0〉 . . . exceptional and to consider
all other cases to be (completely) normal. As opposed to this, (6.35) does not
only qualify a case 〈kM, 0〉 itself as exceptional, but also all neighbored cases
〈kM + a, M〉 such that 1 ≤ |a| ≤ 10.

A natural idea is to discount the information provided by a case based on its
level of exceptionality. As already mentioned before, discounting a fuzzy restric-
tion F over a domain D within the qualitative min-max framework amounts to
modifying F into max{λ, F}, where λ is a discounting factor [120]. Indeed, F
remains unchanged if λ = 0. As opposed to this, the modified restriction becomes
trivial (and corresponds to the complete referential D) if the discounting is max-
imal (λ = 1). This approach can be applied to the result of case-based inference
by identifying discounting factors with degrees of exceptionality. It amounts to
computing

π(r | s) = min
1≤ı≤n

max
{
ex1(〈sı, rı〉), m(σS(s, sı)) � σR(r, rı)

}
. (6.37)

If exceptionality is equivalent to complete exceptionality, as in the gradual rule
model, (6.37) comes down to removing the exceptional cases from the memory.
Apart from that, the usual inference process is realized. In other words, (6.37) then
corresponds to the gradual rule approach (� is the Rescher-Gaines implication)
restricted to the normal cases. When using the certainty rule model in (6.37), i.e.,
when modeling � by implication operators such as (6.22) or (6.23), the level of
uncertainty of an individual prediction is increased in accordance with the degree
of exceptionality of the corresponding case. The CBI hypothesis underlying the
generalized approach might then be characterized as follows: “The larger the
similarity between s and s0 and the less exceptional the input s, the more certain
our conclusion on the similarity between the associated outputs r and r0.”

Interestingly enough, the modifications outlined above suggest a further way of
adaptation: Not the strength of the rule is adapted to the class ϕ of cases, but the
influence of each case is modulated in accordance with its exceptionality relative
to the (predefined) rule. In this connection, it also seems worth mentioning that
assigning degrees of exceptionality to cases in such way that (6.36) is satisfied
leads to an interesting problem from both, a mathematical as well as a semantical
point of view. In addition to observed cases, one might think of using an (a priori)
expert assessment of the exceptionality of cases (which then correspond to triples
〈s, r, e〉) in order to solve this problem, all the more since the minimization of
some objective function subject to the constraints (6.36) might not guarantee a
unique solution.
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6.5 Local rules

The rule-based approaches to CBI outlined in previous sections are local in the
sense that the information provided by different cases is processed and com-
bined independently. They are, however, global in the sense that a (modified)
fuzzy rule constitutes a constraint which is assumed to be globally valid. This
becomes especially apparent in connection with the gradual rule approach, where
an (admissible) modifier m specifies (conditional) lower bounds to the similarity
of outcomes which hold true for all (pairs of) cases. It has already been pointed
out in Section 6.1 that this requirement often entails rather imprecise predictions,
caused by the fact that admissible modifiers might not be very restrictive.

Instead of looking for a global rule, which is valid up to some exceptions – as
discussed in connection with the certainty rule model in previous sections – one
might weaken the principle of a gradual rule by specifying rules which are some-
how “locally” valid. In this section, we follow the idea of adapting a fuzzy rule
to each case of the memory more directly rather than the one of associating in-
stantiations of a global rule with all observed cases (and perhaps discounting
these instantiations in the sense of Section 6.4). This approach is quite similar
to the specification of local similarity profiles and hypotheses in connection with
the constraint-based and probabilistic approaches to CBI discussed in previous
chapters. It differs, however, from the solution proposed in connection with the
possibility rule model (cf. Section 5.4.6), where local rules have not been defined
for individual cases, but for different (fuzzy) regions of the space of inputs.

Let us again consider the gradual rule model. The problem that global validity
might lead to (local) predictions which are unnecessarily imprecise is already
certified by Example 6.1. In fact, the necessity of taking m ≡ 0 leads to the
useless predictions ϕ̂m,M(s0) = N0. Loosely speaking, a CBI strategy is not
applicable because the hypothesis of similar inputs having similar outcomes is
not globally satisfied. Still, it seems desirable to make use of the observation that
the mapping ϕ in the example is piecewise linear, i.e., that the CBI hypothesis
is satisfied at least locally. One possibility of doing this is to partition the set
S of inputs and to derive corresponding local models (cf. Section 5.4.6). In our
example, the idea to partition S into sets of the form

{kM, kM + 1, . . . , kM + (M − 1)} (k ∈ N0)

suggests itself. However, since ϕ is generally unknown, the definition of a partition
will not always be obvious, all the more if S is non-numerical.

Here, we consider a second possibility, namely that of associating an individual
(local) rule with each case of the memory. Thus, the idea is to define rules of the
form “the more similar an input is to s, the more similar the associated outcome
is to r” for each case 〈s, r〉 in the memory. The validity of such a (gradual) rule
is already guaranteed by the (non-decreasing) modifier
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m〈s,r〉(x) = sup
{
h〈s,r〉(x

′) |x′ ∈ DS , x′ ≤ x
}

, (6.38)

for all x ∈ DS , where

h〈s,r〉(x) = inf
〈s′,r′〉∈ϕ : σS(s,s′)=x

σR(r, r′). (6.39)

Since the infimum in (6.39) is taken over a smaller set of cases, (6.38) is obviously
more restrictive than (6.11). Based on (6.38), the inference scheme (6.9) can be
replaced by

r0 ∈
⋂

1≤ı≤n

{
r ∈ R |m〈sı,rı〉(σS(s0, sı)) ≤ σR(r, rı)

}
. (6.40)

In our example, the maximally constraining (admissible) modifier for a case
〈s, r〉 = 〈s, ϕ(s)〉 is simply given by

m〈s,r〉(x) =

{
x if 10 ≤ s mod M ≤ M − 9

0 otherwise
.

Based on a sufficiently large number of observations, the mapping ϕ can hence be
approximated rather accurately. More precisely, the prediction (6.40) converges
toward

ϕ̂(s0) =




{ϕ(s0), . . . , 20} if 0 ≤ ϕ(s0) < 20

{ϕ(s0)} if 20 ≤ s0ϕ(s0) < M − 20

{2M − 12 − ϕ(s0), . . . , M + 9} if M − 20 ≤ ϕ(s0) < M

with an increasing number of observations.

Observe that a local rule can be taken as an indication of the (prediction) quality
of a case 〈s, r〉 and can hence support the design of an optimal case base. The
more restrictive a rule can be made by means of a modifier m〈s,r〉, the more it
will contribute to precise predictions. As in our example, good local rules will
generally be provided by “typical” cases, the outcomes of which are at least to
some degree representative of similar inputs. In this sense, a modifier can also
be seen as an assessment of a case (cf. Section 6.4). A modifier m〈s,r〉 < id, for
instance, brings the discounting of a case about, whereas a modifier m〈s,r〉 > id
produces the opposite effect. Particularly, letting m〈s,r〉 ≡ 0 comes down to leaving
the corresponding case out of account, i.e., to remove it from the memory.

Let us mention that a (globally admissible) gradual rule can be seen as a collection
of rules

α(x) : σS(s1, s2) = x ⇒
∀ r1 ∈ ϕ(s1)∀ r2 ∈ ϕ(s2) : σR(r1, r2) ≥ m(x),
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each of which is an aggregation of more specific (local) rules [115] associated with
cases 〈s, r〉 ∈ ϕ. More precisely, a rule α(x) can be seen as an approximation in
the form of a disjunction

α(x) =
∨

〈s,r〉∈ϕ

α(〈s, r〉, x) (6.41)

of local rules

α(〈s, r〉, x) : (〈s1, r1〉 = 〈s, r〉) ∧ (σS(s1, s2) = x) ⇒ (6.42)

∀ r2 ∈ ϕ(s2) : σR(r, r2) ∈ [m〈s,r〉(x), 1].

Since the disjunction in (6.41) is taken over all cases 〈s, r〉 ∈ ϕ, the global rule
α(x) depends on the similarity degree alone. Observe that (6.11) and (6.38) are
related through

∀x ∈ DS : m(x) = inf
〈s,r〉∈ϕ

m〈s,r〉(x),

which shows that taking the disjunction of the consequent parts in (6.42) comes
down to bounding similarity degrees from below and which again reveals the
restrictive nature of the gradual rule model.

Interestingly enough, a certainty rule can be seen as a more general fusion of local
rules (6.42), taking into account that some conclusions might be less plausible (or
might occur less often) than others and, hence, may lead to a weighted union of
conclusions instead of a disjunction.

Let us finally mention that the idea of adapting a rule-based formalization of the
CBI hypothesis to individual cases applies to certainty rules in the same way as
to gradual rules. Observe that local certainty rules can be seen as a combination
of the two aforementioned generalizations of the gradual rule model. In fact, these
rules are local and tolerant toward exceptions at the same time.

6.6 Summary and remarks

Summary

– The objective of this chapter was to elaborate in more detail on implication-
based fuzzy rules as an alternative model of the inference process in case-based
reasoning. It has been shown that this type of rule leads to an approach which
deviates considerably from the possibility rule model discussed in Chapter 5. In
fact, implication-based fuzzy rules realize a constraint-based approach in much
the same way as the method proposed in Chapter 3: Already encountered cases
are looked at as evidence for (partially) ruling out other (hypothetical) cases,
not similar enough to the observed ones. As opposed to this, a possibility rule
is a conjunction-based rule and gives rise to an example-oriented approach:
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Observed cases are considered as pieces of data which provide evidence for the
possibility of observing similar cases.

– We have distinguished between two types of implication-based rules. The first
type (gradual rules) assumes a kind of closeness relation between the similarity
of inputs and the similarity of outcomes which is not tolerant toward excep-
tions. Given a new input, the observed cases which constitute the memory are
taken as evidence for either allowing or completely excluding certain outcomes.
A second type of rules (certainty rules) only uses case-based information for de-
riving conclusions about the possibility of outcomes. They are more expressive
and allow for the partial exclusion of outputs. Moreover, they can formalize
situations in which the CBI hypothesis holds true “in general” up to some
exceptions to the “similar inputs-similar outputs” rule.

– The use of modifier functions has been proposed for modulating the “strength”
of fuzzy rules. This way, it becomes possible to adapt the formal model ac-
cording to the extent to which the CBI hypothesis actually holds true for the
respective application.

– The meaning of exceptionality of cases has been discussed in connection with
the idea of discounting cases which might be seen as somewhat unreliable or
misleading information sources. The discounting of cases, in conjunction with
a modification of the basic inference scheme, presents a further possibility of
model adaptation.

– Local rules have been introduced as a second direction of generalizing the basic
model. There are different motivations for this step: In the gradual rule model,
it is true that the instantiation of a (globally) admissible rule by different cases
leads to correct predictions. However, inference results might be poor since this
rule will often hardly be constraining. In the certainty rule model, the multiple
instantiation of the same global rule leads to difficulties in connection with
exceptional (still not discounted) cases. This might cause inconsistencies and
an exaggerated exclusion of (rather possible) cases. We have also pointed out
a close relation between local rules and the assessment of cases. In fact, the
determination of a modifier for an individual case can be seen as a rating of the
typicality or prediction quality of that case. Particularly, a modifier can make a
local rule completely ineffective, which amounts to removing the corresponding
case from the memory. Next to the idea of exceptionality with respect to a global
rule, the concept of local rules thus presents a further possibility of rating and
discounting cases.

Remarks

– In this chapter, we have refrained from discussing several issues which have
already been considered in connection with the possibility rule model in Chap-
ter 5. This concerns especially the extensions of the basic model, discussed in
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Sections 5.3 and 5.4. These techniques can as well be applied to the CBI model
which proceeds from implication-based fuzzy rules.

– The combination of possibility and certainty rules has already been proposed
as a basis of the calibration method in Section 5.6. Besides, there are other
motivations for using implication-based and conjunction-based rules jointly. In
[205], for instance, it is argued that a combination of the two types of rules can
greatly improve the informational contents of (possibilistic) case-based predic-
tions. In fact, as already pointed out in Section 5.3.3, the degree δs0(r) derived
from a possibility rule can be seen as a degree of confirmation of the outcome r
and actually defines a lower possibility bound. As opposed to this, the degree
πs0(r) obtained in connection with a certainty rule model reflects the degree
to which past experience (in the form of the memory M) excludes the output
r and determines an upper degree of possibility. Recall the following extreme
examples from Section 5.3.3:

(a) δs0(r) = 0, πs0(r) = 1: A situation of complete ignorance. Neither is r
supported nor (partly) excluded by any observation. Thus, r is fully plausible
though not confirmed at all.

(b) δs0(r) = 0, πs0(r) = 0: Clear evidence against r has been accumulated in
the form of inputs similar to s0 with outputs dissimilar to r.

(c) δs0(r) = 1, πs0(r) = 1: The output r is strongly supported through the
observation of similar cases.15

The above cases emphasize the advantage of the combined approach. The
example-based (possibility rule) model alone cannot distinguish between (a)
and (b). It goes without saying, however, that it makes a great difference from
an epistemic point of view whether a case is not supported simply because no
similar cases have been observed or whether indeed some evidence against this
case has been accumulated (through the certainty-rule model of the CBI princi-
ple). The constraint-based model cannot distinguish between the cases (a) and
(c). Again, however, it might be important to know whether an outcome r seems
completely possible for the input s0 only because no input has been observed
which is similar to s0 or whether r is indeed supported by the observation of
cases 〈s, r〉 such that s is similar to s0 (which requires πs0(r) > 0).

15 In fact, a possibility degree of 1 requires the observation of a perfectly similar case. If the similarity
relations are separating, this means that 〈s, r〉 itself has already been encountered.




