
5. Fuzzy Set-Based Modeling of Case-Based

Inference I

A close connection between fuzzy set-based (approximate reasoning) methods
and the inference principle underlying similarity-based (case-based) reasoning
has been pointed out recently [99, 407]. Besides, some attempts at combining
case-based reasoning (or, more generally, analogical reasoning) and methods from
fuzzy set theory have already been made [408], including the use of fuzzy sets for
supporting the computation of similarities of situations in analogical reasoning
[144], the formalization of aspects of analogical reasoning by means of similarity
relations between fuzzy sets [48], the use of fuzzy set theory in case indexing
and retrieval [209, 214], the case-based learning of fuzzy concepts from fuzzy
examples [295], the use of fuzzy predicates in the derivation of similarities [40],
and the integration of case-based and rule-based reasoning [138]. See [45, 49] for
a more general framework of analogical reasoning.

This chapter continues this promising line of research. It is argued that fuzzy
rules in conjunction with associated inference procedures provide a convenient
framework for modeling the CBI hypothesis and for supporting the task of case-
based inference as outlined in Section 2.4.

The remaining part of the chapter is organized as follows: Even though we as-
sume the reader to be familiar with basics of fuzzy set theory, we recall the most
important concepts from possibility theory in Section 5.1. The basic CBI frame-
work we proceed from and the key idea of fuzzy rule-based modeling of the CBI

hypothesis are introduced in Section 5.2. Diverse types of extensions of the basic
model will then be discussed in Sections 5.3 and 5.4. Section 5.5 presents some
experimental studies in the field of classification. The idea of calibrating a CBI

model by combining qualitative modeling techniques with data-driven optimiza-
tion methods is addressed in Section 5.6. Finally, some connections between the
approach introduced in this chapter and related approaches in the field of fuzzy
set theory are discussed in Section 5.7.

5.1 Background on possibility theory

In this section, we recall some basic concepts from possibility theory, as far as
required for the current chapter. Possibility theory deals with “degrees of pos-
sibility”. The term “possibility” is hence employed as a graded notion, much in
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166 5. Fuzzy Set-Based Modeling of Case-Based Inference

the same way as the term “probability”. At first sight, this might strike as odd
since “possibility” is usually considered a two-valued concept in natural language
(something is possible or not). Before turning to more technical aspects, let us
therefore make some brief remarks on the semantics underlying the notion of
“possibility” as used in possibility theory.

Just as the concept of probability, the notion of possibility can have different se-
mantic meanings. To begin with, it can be used in the (physical) sense of a “degree
of ease”. One might say, for instance, that it is more possible for Hans to have two
eggs for breakfast than eight eggs, simply because eating two eggs is more easy
(feasible, practicable) than eating eight eggs [416]. However, as concerns the use
in most applications, and in this book in particular, possibility theory is consid-
ered as a means for representing uncertain knowledge, that is, for characterizing
the epistemic state of an agent. For instance, given the information that Hans has
eaten many eggs, one is clearly uncertain about the precise number. Still, three
eggs appears somewhat more plausible (possible) than two eggs, since three is
more compatible with the linguistic quantifier “many” than two.

It is important to note that a degree of possibility, as opposed to a degree of
probability, is not necessarily a number. In fact, for many applications it is suffi-
cient, and often even more suitable, to assume a qualitative (ordinal) scale with
possibility degrees ranging from, e.g., “not at all” and “hardly” to “fairly” and
“completely” [251, 127]. Still, possibility degrees can also be measured on the
cardinal scale [0, 1], again with different semantic interpretations. For example,
possibility theory can be related to probability theory, in which case a possibil-
ity degree can specify, e.g., an upper probability bound [122]. For convenience,
possibility degrees are often coded by numbers from the unit interval even within
the qualitative framework of possibility theory.

As a means of representing uncertain knowledge, possibility theory makes a dis-
tinction between the concepts of certainty and plausibility of an event. As opposed
to probability theory, possibility theory does not claim that the confidence in an
event is determined by the confidence in the complement of that event and, con-
sequently, involves non-additive measures of uncertainty. Taking the existence of
two quite opposite but complementary types of knowledge representation and
information processing into account, two different versions of possibility theory
will be outlined in the following. For a closer discussion refer to [131] and [104].

5.1.1 Possibility distributions as generalized constraints

A key idea of possibility theory as originally introduced by Zadeh [416] is to
consider a piece of knowledge as a (generalized) constraint that excludes some
“world states” (to some extent). Let Ω be a set of worlds conceivable by an
agent, including the “true world” ω0. With (incomplete) knowledge K about the
true world one can then associate a possibility measure ΠK such that ΠK(A)
measures the compatibility of K with the event (set of worlds) A ⊆ Ω, i.e., with
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the proposition that ω0 ∈ A. Particularly, ΠK(A) becomes small if K excludes
each world ω ∈ A and large if at least one of the worlds ω ∈ A is compatible with
K. More specifically, the finding that A is incompatible with K to some degree
corresponds to a statement of the form ΠK(A) ≤ p, where p is a possibility degree
taken from an underlying possibility scale P .

The basic informational principle underlying the possibilistic approach to knowl-
edge representation and reasoning is stated as a principle of minimal specificity:1

In order to avoid any unjustified conclusions, one should represent a piece of
knowledge K by the largest possibility measure among those measures compat-
ible with K, which means that the inequality above is turned into an equality:
ΠK(A) = p. Particularly, complete ignorance should be modeled by the measure
Π ≡ 1.

Knowledge K is usually expressed in terms of a possibility distribution πK, a
Ω −→ P mapping related to the associated measure ΠK through

ΠK(A) = sup
ω∈A

πK(ω).

Thus, πK(ω) is the degree to which world ω is compatible with K.

Apart from the boundary conditions ΠK(Ω) = 1 (at least one world is fully
possible) and ΠK(∅) = 0, the basic axiom underlying possibility theory after
Zadeh involves the maximum-operator:

ΠK(A ∪ B) = max
{
ΠK(A), ΠK(B)

}
. (5.1)

In plain words, the possibility (or, more precisely, the upper possibility-bound) of
the union of two events A and B is the maximum of the respective possibilities
(possibility-bounds) of the individual events.

As constraints are naturally combined in a conjunctive way, the possibility mea-
sures associated with two pieces of knowledge, K1 and K2, are combined by using
the minimum-operator:

πK1∧K2(A) = min{πK1(A), πK2(A)}
for all A ⊆ Ω. Note that πK1∧K2(Ω) < 1 indicates that K1 and K2 are not fully
compatible, i.e., that K1 ∧ K2 is contradictory to some extent.

The distinction between possibility and certainty of an event is reflected by the
existence of a so-called necessity measure NK that is dual to the possibility mea-
sure ΠK. More precisely, the relation between these two measures is given by

NK(A) = 1 − ΠK(Ω \ A) (5.2)

for all A ⊆ Ω:2 An event A is necessary in so far as its complement (logical
negation) is not possible.

1 This principle plays a role quite comparable to the maximum entropy principle in probability theory.
2 If the possibility scale P is not the unit interval [0, 1], the mapping 1 − (·) on the right-hand side of

(5.2) is replaced by an order-reversing mapping of P .
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Worth mentioning is the close relationship between possibility theory and fuzzy
sets. In fact, the idea of Zadeh [416] was to induce a possibility distribution from
knowledge stated in the form of vague linguistic information and represented
by a fuzzy set. Formally, he postulated that πK(ω) = µF (ω), where µF is the
membership function of a fuzzy set F . To emphasize that ω plays different roles
on the two sides of the equality, the latter might be written more explicitly as
πK(ω |F ) = µ(F |ω): Given the knowledge K that ω is an element of the fuzzy
set F , the possibility that ω0 = ω is evaluated by the degree to which the fuzzy
concept (modeled by) F is satisfied by ω. To illustrate, suppose that world states
are simply integer numbers. The uncertainty related to the vague statement that
“ω0 is a small integer” (ω0 is an element of the fuzzy set F of small integers)
might be translated into a possibility distribution that lets ω0 = 1 appear fully
plausible (µF (1) = 1), whereas, say, 5 is regarded as only more or less plausible
(µF (5) = 1/2) and 10 as impossible (µF (10) = 0).

5.1.2 Possibility as evidential support

Possibility theory as outlined above provides the basis of a generalized approach
to constraint propagation, where constraints are expressed in terms of possibility
distributions (fuzzy sets) rather than ordinary sets (which correspond to the spe-
cial case of {0, 1}-valued possibility measures). A constraint usually corresponds
to a piece of knowledge that excludes certain alternatives as being impossible
(to some extent). This “knowledge-driven” view of reasoning is complemented by
a, say, “data-driven” view that leads to a different type of possibilistic calculus.
According to this view, the statement that “ω is possible” is not intended to
mean that ω is provisionally accepted in the sense of not being excluded by some
constraining piece of information, but rather that ω is indeed supported or, say,
confirmed by already observed facts (in the form of examples or data).

To distinguish the two meanings of a possibility degree, we shall denote a degree
of evidential support or confirmation of ω by δ(ω),3 whereas π(ω) denotes a degree
of compatibility.

To illustrate, suppose that the values a variable V can assume are a subset of
V = {1, 2, . . . , 10} and that we are interested in inferring which values are possible
and which are not. In agreement with the example-based (data-oriented) view,
we have δ(v) = 1 as soon as the instantiation V = v has indeed been observed
and δ(v) = 0 otherwise. The knowledge-driven approach can actually not exploit
such examples, since an observation V = v does not exclude the possibility that
V can also assume any other value v′ "= v. As can be seen, the data-driven and
the knowledge-driven approach are intended, respectively, for expressing positive
and negative evidence [108]. As examples do express positive evidence, they do
never change the distribution π ≡ 1. This distribution would only be changed if

3 In [393], this type of distribution is called σ-distribution.
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we knew from some other information source, e.g., that V can only take values
v ≥ 6, in which case π(v) = 1 for v ≥ 6 and π(v) = 0 for v ≤ 5.

The difference between modeling positive and negative evidence becomes espe-
cially clear when it comes to expressing complete ignorance. As already mentioned
above, this situation is adequately captured by the possibility distribution π ≡ 1:
If nothing is known, there is no reason to exclude any of the worlds ω, hence each
of them remains completely possible. At the same time, complete ignorance is
modeled by the distribution δ ≡ 0. The latter does simply express that none of
the worlds ω is actually supported by observed data.

Within the context of modeling evidential support, possibilistic reasoning accom-
panies a process of data accumulation. Each observed fact, φ, guarantees a certain
degree of possibility of some world state ω, as expressed by an inequality of the
form δφ(ω) ≥ d. The basic informational principle is now a principle of maximal
informativeness that suggests adopting the smallest distribution among those
compatible with the given data and, hence, to turn the above inequality into an
equality. The accumulation of observations φ1 and φ2 is realized by deriving a
distribution that is pointwise defined by

δφ1∧φ2(ω) = max{δφ1(ω), δφ2(ω)}.

As can be seen, adding new information has quite an opposite effect in connection
with the two types of possibilistic reasoning: In connection with the knowledge-
driven or constraint-based approach, a new constraint can only reduce possibility
degrees, which means turning the current distribution π into a smaller distribution
π′ ≤ π. In connection with the data-driven or example-based approach, new data
can only increase (lower bounds to) degrees of possibility.

Closely related to the view of possibility as evidential support is a set-function
that was introduced in [121], called measure of “guaranteed possibility”: ∆(A)
is the degree to which all worlds ω ∈ A are possible, whereas an event A is
possible in the sense of the usual measure of “potential possibility”, namely Π(A)
as discussed above, if at least one ω ∈ A is possible.4 For the measure ∆, the
characteristic property (5.1) becomes

∆(A ∪ B) = min{∆(A), ∆(B)}.

5.2 Fuzzy rule-based modeling of the CBI hypothesis

Rule-based modeling plays an important role in fuzzy systems research and will
also turn out to be useful in the context of case-based inference. Fuzzy rules
provide a local, rough and soft specification of the relation between variables X

4 The latter semantics is clearly in line with the measure-theoretic approach underlying probability
theory.
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and Y ranging on domains DX and DY , respectively [124]. They are generally
expressed in the form “if X is A then Y is B,” where A and B are fuzzy sets
associated with symbolic labels and modeled by means of membership functions
on DX resp. DY .5

There are several aspects which motivate the use of fuzzy rules in connection with
case-based reasoning [100, 205]. Firstly, the CBI hypothesis itself corresponds to
an if-then rule: “If two inputs are similar, then the associated outcomes are similar
as well.” Secondly, the notion of similarity, which lies at the heart of case-based
reasoning, is also strongly related to the theory of fuzzy sets. Indeed, one of
the main interpretations of the membership function of a fuzzy set is that of a
similarity relation, i.e., degrees of membership can be thought of as degrees of
similarity [126]. Thirdly, linked with the framework of possibility theory, fuzzy sets
provide a tool for the modeling and processing of uncertainty. In connection with
the heuristic character of CBR, this aspect seems to be of special importance. As
already mentioned in Chapter 1, the CBI principle should not be understood as
a deterministic rule. Within the context of fuzzy rules considered in this chapter,
it will rather be interpreted in the following sense: “If two inputs are similar, it
is possible that the associated outcomes are similar as well.”

At a formal level, fuzzy rules can be modeled as possibility distributions con-
strained by a combination of the membership functions which define the an-
tecedent and consequent part of the rule, where the concrete form of the con-
straint depends on the interpretation of the rule [124]. This way, they relate the
concepts of similarity and uncertainty, thus providing the basis for methods of
uncertain similarity-based inference. This is the main reason for their convenience
as formal models of the CBI hypothesis

5.2.1 Possibility rules

The aforementioned interpretation of the CBI hypothesis is nicely captured by
means of a so-called possibility rule, a special type of conjunction-based fuzzy
rule. A possibility rule involving fuzzy sets A and B, subsequently symbolized by
A ⇁ B, corresponds to the statement that “the more X is A, the more possibly
B is a range for Y .” More precisely, it can be interpreted as a collection of rules
“if X = x, it is possible at least to the degree A(x) that B is a range for Y .”
The intended meaning of this kind of possibility-qualifying rule is captured by
the following constraint which guarantees a certain lower bound to the possibility
δ(x, y) that the tuple (x, y) is an admissible instantiation of the variables (X,Y ):

δ(x, y) ≥ min{A(x), B(y) }. (5.3)

As suggested by the rule-based modeling of the relation between X and Y , these
variables often play the role of an input and an output, respectively, and one

5 We shall usually use the same notation for a label, the name of an associated fuzzy set, and the
membership function of this set. Thus, A(x) is the degree of membership of the element x in the
fuzzy set A.
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is interested in possible values of Y while X is assumed to be given. By letting

δ(y |x)
df
= δ(x, y), the constraint (5.3) can also be considered as a lower bound

to a conditional possibility distribution. That is, given the value X = x, the
possibility that Y = y is lower-bounded by δ(x, y) according to (5.3). Observe
that nothing is said about Y in the case where A(x) = 0 since we then obtain the
trivial constraint π(y |x) ≥ 0. Besides, it should be noticed that the lower bound-
interpretation is also consistent with conditional distributions δ(· |x) which are
not normalized, i.e., for which supy δ(y |x) < 1 (cf. Section 5.1).

5.2.2 Modeling the CBI hypothesis

The basic framework we shall proceed from in this chapter is a special type of
generalized non-deterministic CBI setup (see Definition 2.7 and Remark 2.8 in
Section 2.4.2). As in Chapters 3 and 4, a case c is a tuple 〈s, r〉 ∈ C = S × R
consisting of an input s ∈ S and an associated output r ∈ R. However, we do no
longer assume that an input determines a unique outcome, i.e., cases c = 〈s, r〉
and c′ = 〈s′, r′〉 such that s = s′ but r "= r′ might be encountered. In fact,
the assumption of a functional relation ϕ : S −→ R mapping inputs to unique
outcomes would be too restrictive for the type of applications we have in mind in
connection with the possibilistic approach. Rather, ϕ is now defined as a relation

ϕ ⊆ S × R (5.4)

and corresponds to a set of potential observations, i.e., existing (but perhaps not
yet encountered) cases. As before, we assume data to be given in the form of a
memory

M =
{
〈s1, r1〉, 〈s2, r2〉, . . . , 〈sn, rn〉

}
of observed cases. As an aside, note that M was formally treated as a sequence
rather than a set in Chapters 3 and 4. This is not necessary within the possibilistic
framework of this section. Moreover, we can abandon the assumption that S and
R are countable.

As before, our focus is on case-based inference: Given a new input s0 ∈ S, the
task is to predict the outcome r0 ∈ R associated with s0. This actually comes
down to predicting the set {r ∈ R | 〈s0, r〉 ∈ ϕ} of potential outcomes, since we
do no longer assume uniqueness. To this end, we shall derive a quantification
of the possibility that r0 = r, i.e., 〈s0, r〉 ∈ ϕ, for each outcome r ∈ R. As
will be seen in the remainder of this chapter, this kind of prediction makes the
formulation of rather general types of queries possible, especially if s0 is allowed
to be incompletely specified.

The basic idea of the approach discussed in this chapter is to use a possibility rule
as defined above in order to formalize the CBI hypothesis. In fact, interpreting the
variables X and Y as degrees of similarity between two inputs and two outputs,
respectively, and A and B as fuzzy sets of “large similarity degrees” (with strictly
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increasing membership functions) amounts to expressing the following version of
the CBI hypothesis: “The more similar two inputs are, the more possible it is that
the corresponding outcomes are similar” [99]. In the same way as the probabilistic
model of Chapter 4, this formalization takes the heuristic nature of the CBI

hypothesis into account. In fact, it does not impose a deterministic constraint,
but only concludes on the possibility of the outcomes to be similar.

In the sense of the above principle, an observed case 〈s1, r1〉 ∈ M is taken as
a piece of evidence which qualifies similar (hypothetical) cases 〈s, r〉 as being
possible. According to (5.3) it induces lower bounds6

δ(s, r) ≥ min
{

σS(s, s1), σR(r, r1)
}

(5.5)

to the possibility that 〈s, r〉 ∈ ϕ. This can be interpreted as a similarity-based
extrapolation of case-based information: The observation 〈s1, r1〉 is considered as
a typical case or, say, prototype, which is extrapolated in accordance with the
CBI hypothesis. The more similar 〈s, r〉 and 〈s1, r1〉 are in the sense of the (joint)
similarity measure

σC :
(
〈s, r〉, 〈s′, r′〉

)
�→ min

{
σS(s, s′), σR(r, r′)

}
, (5.6)

the more plausible becomes the (hypothetical) case 〈s, r〉 and, hence, the larger
is the (lower) possibility bound (5.5). In other words, a high degree of possibility
is assigned to a hypothetical case as soon as the existence of a very similar case
is guaranteed (by observation).

Applying (5.5) to all cases in the memory M we obtain the possibility distribution
δC defined by

δC(s, r) = max
1≤ı≤n

min
{
σS(s, sı), σR(r, rı)

}
(5.7)

for all c = 〈s, r〉 ∈ S × R. This distribution can be interpreted as a possibilistic
approximation of the relation ϕ in (5.4). It is of provisional nature and actually
represents lower bounds to possibility degrees (the equality in (5.7) is justified by
the principle of maximal informativeness, see Section 5.1.2). In fact, the degree
of possibility assigned to a case c may increase when gathering further evidence
by observing new sample cases, as reflected by the application of the maximum
operator in (5.7).

Observe that similarity degrees (on the right-hand side) are turned into possibility
degrees (on the left-hand side) by virtue of the functional relation (5.7). In fact,
the latter reveals at a formal level that – according to our formalization – similarity
is in direct correspondence with possibility: From the similarity of a case 〈s, r〉 to
an observed case, (5.7) concludes on the possibility of this case itself.

The distribution (5.7) can be taken as a point of departure for various inference
tasks. In particular, given a new input s0, a prediction of the associated outcome
r0 is obtained in the form of the conditional distribution δs0 defined by

6 Without loss of generality, we assume the membership functions of the fuzzy sets of “large similarity
degrees” to be given by the identical function id : x �→ x on [0, 1].
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δs0(r) = δ(r | s0)
df
= max

1≤ı≤n
min
{
σS(s0, sı), σR(r, rı)

}
, (5.8)

for all r ∈ R, where δs0(r) denotes the (estimated) possibility of the output r,
i.e., the possibility that r corresponds to the true outcome r0.

Example 5.1. The (real-world) Automobile Database
7 contains 205 cars,

each of which is characterized by 26 attributes. Thus, let a case correspond to a
car which is characterized by means of an attribute–value representation including
properties, such as its horsepower and fuel-type. For the sake of simplicity, we
shall consider only some of the attributes available, i.e., the memory M is actually
a projection of the complete database. One of the attributes, namely the price of
a car, has been chosen as the outcome associated with a case. The latter is hence
a tuple 〈s, r〉, where the input s = (a1, . . . , aL) is a vector of attribute values
describing a car, and r is the associated price. The similarity between two cars
s and s′ is defined as a combination of the similarities between the respective
attribute values a and a′

 (1 ≤  ≤ L).

To illustrate, suppose a car to be characterized by only one attribute, namely its
horsepower. Thus, the CBI hypothesis should simply be understood in the sense
that “cars with similar horsepowers (possibly) have similar prices.” Let σS(s, s′) =
σhp(s, s

′) = max{1 − |s − s′|/100, 0}. Likewise, let the similarity between two
outcomes (= prices) be given by σR(r, r′) = max{1 − |r − r′|/10000, 0}. Fig. 5.1
shows the prediction (5.8) for s0 = 100. This prediction corresponds to the “more
or less” possible range of prices for the class of cars whose horsepower is 100. As
can be seen, the evidence contained in the memory M of cases strongly supports
prices between $10, 000 and $17, 000. At the same time, however, it does not
completely rule out prices which are slightly lower or higher. �

The possibility distribution δs0. According to (5.8), r is regarded as a possible
output if there is a case 〈sı, rı〉 such that both, sı is close to s0 and rı is close to r.
Or, if we define the joint similarity between the case 〈sı, rı〉 and the (hypothetical)
case 〈s0, r〉 according to (5.6), this can be expressed by saying that the case 〈s0, r〉
is regarded as possible if the existence of a similar case 〈sı, rı〉 is confirmed by
observation. In other words, a similar case provides evidence for the existence of
〈s0, r〉 in the sense of possibility qualification.8

Following the notational convention of Section 5.1, possibility degrees δs0(r) de-
note degrees of “guaranteed possibility”. Thus, they are actually not considered
as degrees of plausibility in the usual sense but rather as degrees of confirmation
as introduced in Section 5.1.2. More specifically, the distribution δs0 : R −→ [0, 1]
is thought of as a lower rather than an upper bound. Particularly, δs0(r) = 0 must

7 Available at http://www.ics.uci.edu/˜mlearn.
8 The idea of possibility qualification, already mentioned in Section 5.1, is usually considered in connec-

tion with natural language propositions [328, 417]. Here, possibility qualification is casuistic rather
than linguistic.
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not be equated with the impossibility of r0 = r but merely means that no evi-
dence supporting the outcome r is available so far! In fact, δs0 is of provisional
nature, and the degree of possibility assigned to an outcome r may increase when
gathering further evidence by observing new cases, as reflected by the application
of the maximum operator in (5.8). These remarks also make clear that the dis-
tribution δs0 is not necessarily normalized (in the sense that supr δs0(r) = 1). In
this connection, also note that there is not necessarily a unique actual world in
the sense of the possible worlds semantics [51]. Since s0 is not assumed to have a
unique output, δs0 rather provides information about the set {r ∈ R | 〈s0, r〉 ∈ ϕ}
of potential outcomes. Thus, the state of “complete knowledge” corresponds to
the distribution δs0 with δs0(r) = 1 if 〈s0, r〉 ∈ ϕ and δs0(r) = 0 otherwise.

In a classification context, where the outcomes r are class labels (i.e., R is a
finite number of classes), the set of all inputs s ∈ S with the same output is
sometime referred to as a concept. When being applied to all s ∈ S, (5.8) yields
“fuzzy” concept descriptions, that is possibilistic approximations of the concepts
Cr (r ∈ R):

Cest
r = {(s, δs(r)) | s ∈ S}, (5.9)

where δs(r) is the degree of membership of s ∈ S in the fuzzy concept Cest
r ,

i.e., Cest
r (s) = δs(r). Note that these fuzzy concepts can overlap in the sense

that min{Cest
r (s), Cest

r′ (s)} > 0 for r "= r′ and s ∈ S (s has a positive degree of
membership in two concepts Cest

r and Cest
r′ , r "= r′).9

The similarity measures σS and σR. Let us make some remarks on the sim-
ilarity measures σS and σR. As mentioned previously, according to (5.8), the

9 In practice, fuzzy and/or overlapping concepts seem to be the rule rather than the exception [3].

Fig. 5.1. Prediction (5.8) of the price of a car with horsepower s0 = 100 (solid line) and prediction
(5.32) for 90 ≤ s ≤ 110.
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similarity of cases is in direct correspondence with the possibility assigned to an
outcome. Roughly speaking, the principle expressed by (the fuzzy rule underlying)
equation (5.8) gives rise to turn similarity into possibilistic support. Consequently,
σS and σR are thought of as, say, support measures rather than similarity mea-
sures in the usual sense. They do actually serve the same purpose as the weight
functions in NN estimation (cf. Section 2.2.1). Particularly, σS(s0, sı) = 0 means
that the ı-th case is not considered as a relevant piece of information since it is
not sufficiently similar to s0. For computation, irrelevant cases in (5.8) can clearly
be left out of account. Thus, it is enough to consider cases in a certain region
around s0. As opposed to the kNN approach, it is the size of this region rather
than the number of neighboring cases which is fixed.

As in previous chapters, we assume σS and σR to be reflexive and symmetric,
whereas no special kind of transitivity is required.10 In fact, the application of
the maximum operator in (5.8) does even permit a purely ordinal approach. In
this case, the range of the similarity measures is a finite subset A ⊂ [0, 1] that
encodes an ordinal scale such as

{completely different, . . . , very similar, identical}. (5.10)

Correspondingly, degrees of possibility are interpreted in a qualitative way [251,
127]. That is, δs0(r) < δs0(r

′) only means that outcome r is less supported than
outcome r′; apart from that, the difference between the possibility degrees has no
meaning.

Needless to say, a scale such as (5.10) is more convenient if cases are complex
objects rather than points in a Euclidean space and if similarity (distance) be-
tween objects must be assessed by human experts (which is common practice
in case-based reasoning). Note that an ordinal structure is also sufficient for the
original kNN rule. In connection with distance-weighting (cf. Section 2.2.1), how-
ever, the structures of the involved measures become more important. In any case,
one should be aware of the fact that a cardinal interpretation of similarity raises
some crucial semantic questions if corresponding measures cannot be defined in
a straightforward way. In the weighted kNN rule, for example, one patient that
died from a certain medical treatment compensates for two patients that sur-
vived if the former is twice as similar to the current patient. But what exactly
does “twice as similar” mean in this context?

Looking at (5.8) from the point of view of observed cases, this estimation princi-
ple defines a (possibilistic) extrapolation of each case 〈sı, rı〉. In the original NN

approach, which does not involve a distance measure on R, a case 〈sı, rı〉 ∈ M
can only support the output rı. This corresponds to the special case where σR in
(5.8) is given by

10 Let us mention again that relations satisfying reflexivity and symmetry are often called proximity
relations in the fuzzy set literature, where similarity relations are defined as transitive proximity
relations [100]. Anyway, we shall use the term similarity relation (similarity measure) henceforth
without assuming transitivity.
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σR(r, r′) =

{
1 if r = r′

0 if r "= r′
, (5.11)

which is reasonable if R is a nominal scale, as, e.g., in concept learning.

By allowing for graded distances between outcomes, the possibilistic approach
provides for a case 〈sı, rı〉 to support similar outcomes as well. This type of
extended extrapolation is reasonable if R is a cardinal or at least ordinal scale.
In fact, it should be observed that (5.8) applies to continuous scales in the same
way as to discrete scales and thus unifies the performance tasks of classification
and function approximation. For example, knowing that the price (= ouput) of
a certain car is $10,500, it is quite plausible that a similar car has exactly the
same price, but it is plausible as well that it costs $10,700. Interestingly enough,
the same principle is employed in kernel-based estimation of probability density
functions, where probabilistic support is allocated by kernel functions centered
around observations [318, 289]. Indeed, (5.8) can be considered as a possibilistic
counterpart of kernel-based density estimation. Let us furthermore mention that
the consideration of graded distances between outputs is also related to the idea
of class-dependent misclassification costs [290, 364].

5.3 Generalized possibilistic prediction

The possibility distribution δs0 , which specifies the fuzzy set of well-supported
outputs, is a disjunctive combination of the individual support functions

δı
s0

: r �→ min
{
σS(s0, sı), σR(r, rı)

}
. (5.12)

In fact, the max-operator in (5.8) is special t(riangular)-conorm and serves as a
generalized logical or-operator: r0 = r is regarded as possible if 〈s0, r〉 is similar
to 〈s1, r1〉 OR to 〈s2, r2〉 OR . . . OR to 〈sn, rn〉.
Now, fuzzy set theory offers t-conorms other than max and, hence, (5.8) could be
generalized as follows:

δs0(r)
df
= δ1

s0
(r) ⊕ δ2

s0
(r) ⊕ . . . ⊕ δn

s0
(r)

=
⊕

1≤ı≤n

min
{
σS(s0, sı), σR(r, rı)

}

= 1 −
⊗

1≤ı≤n

max
{
1 − σS(s0, sı), 1 − σR(r, rı)

}

for all r ∈ R, where ⊗ and ⊕ are a t-norm and a related t-conorm, respectively.
Recall that a t-norm is a binary operator ⊗ : [0, 1]2 −→ [0, 1] which is commuta-
tive, associative, monotone increasing in both arguments and which satisfies the
boundary conditions x ⊗ 0 = 0 and x ⊗ 1 = x [227]. An associated t-conorm is
defined by the mapping (α, β) �→ 1 − (1 − α) ⊗ (1 − β). The t-norm associated
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with the t-conorm max is the min-operator. Other important operators are the
product ⊗P : (α, β) �→ αβ with related t-conorm ⊕P : (α, β) �→ α + β − αβ and
the Lukasiewicz t-norm ⊗L : (α, β) �→ max{0, α + β − 1} the related t-conorm of
which is the bounded sum ⊕L : (α, β) �→ min{1, α + β}.
Observe that the minimum operator employed in the determination of the joint
similarity between cases can be considered as a logical operator as well, namely as
a fuzzy conjunction: Two cases 〈s0, r〉 and 〈sı, rı〉 are similar if both, s0 is similar
to sı and r is similar to rı. Consequently, this operator might be replaced by a
t-norm, too. By doing so, (5.12) and (5.8) become

δı
s0

: r �→ σS(s0, sı) ⊗ σR(r, rı) (5.13)

and
δs0(r)

df
=
⊕

1≤ı≤n

σS(s0, sı) ⊗ σR(r, rı), (5.14)

respectively. Note, however, that a (fuzzy) logic-based derivation of the joint sim-
ilarity is not compulsory. Particularly, the t-norm ⊗ in (5.14) need not necessarily
be the one related to the t-conorm ⊕. For example, one might thoroughly take
⊗ = min and ⊕ = ⊕P , or even combine the similarity degrees σS(s0, sı) and
σR(r, rı) by means of an operator which is not a t-norm. In that case, however,
the “logical” interpretation of (5.14) is lost.

5.3.1 Control of compensation and accumulation of support

By choosing an appropriate t-conorm ⊕ in (5.14) one can control the accumu-
lation of individual degrees of evidential support, especially the extent of com-
pensation. To illustrate, consider the following classification scenario (with labels
DARK and LIGHT), where σS(s0, s1) = 3/4, σS(s0, s2) = σS(s0, s3) = 1/2, and
σS(s0, s4) = 1/4:

x1 x2x3x4

Should one prefer DARK or LIGHT as a classification of the new input
(indicated by the cross)? The use of the max-operator as a t-conorm yields
δs0(DARK) = 3/4 and δs0(LIGHT) = 1/2 and, hence, the decision DARK.
The three moderately similar instances with label LIGHT do not compensate
for the one very similar instance with label DARK. As opposed to this, the prob-
abilistic sum (α, β) �→ α+β −αβ brings about a compensation effect and entails
δs0(DARK) = 3/4 and δs0(LIGHT) = 13/16, that is, a slightly larger possibility
for LIGHT.

More generally, different t-conorms can model different accumulation modes,
which typically entail a kind of saturation effect. In the case of the probabilistic
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sum ⊕P , for example, an additional β-similar observation increases the current
support α by β(1−α). Thus, the larger the support already granted is, the smaller
the absolute increase due to the new observation will be. This appears reasonable
from an intuitive point of view: If the support of an output is already large, one
is not surprised to see another (close) input having the same output. A small
support increment then reflects the low information content related to the new
observation [203].

5.3.2 Possibilistic support and weighted NN estimation

A t-norm ⊗ is called Archimedian if the following holds: For all x, y ∈ ]0, 1[ there
is a number n ∈ N such that ⊗(n)(x) < y (where ⊗(n)(x) = ⊗(n−1)(x) ⊗ x and
⊗(1)(x) = x). It can be shown that ⊗ is a continuous Archimedian t-norm iff
there is a continuous, strictly decreasing function g : [0, 1] −→ [0,∞] such that
g(1) = 0 and

α ⊗ β = g(−1)(g(α) + g(β)) (5.15)

for all 0 ≤ α, β ≤ 1, where the pseudo-inverse g(−1) is defined as

g(−1) : x �→
{

g−1(x) if 0 ≤ x ≤ g(0)

0 if g(0) < x
.

The function g is called the additive generator of ⊗. For example, x �→ 1 − x
and x �→ − ln(x) are additive generators of the Lukasiewicz t-norm ⊗L and the
product ⊗P , respectively.

Based on the representation (5.15), one can establish an interesting connection
between (5.14) and the weighted NN rule (cf. Section 2.2.1). To this end, let g
be the additive generator of the t-norm11 related to the t-conorm ⊕ used as an
aggregation operator in (5.14). With dı = 1−σS(s0, sı)⊗σR(r, rı) and ωı = g(dı),
we can write (5.14) as

δs0(r) = 1 − g(−1)(ω1 + ω2 + . . . + ωn). (5.16)

Since g is decreasing, it can be considered as a weight function that turns a
distance dı into a weight ωı associated with the ı-th input. Then, (5.16) tells us
that the possibility degree δs0(r) is nothing else than a (monotone increasing)
transformation of the sum of weights ωı. In other words, (5.14) can be seen as a
distance-weighted NN estimation, where the weight of a neighbor is determined
as a function of its similarity to the new instance. As opposed to (2.8), however,
the weight of a case according to (5.16) does not depend on other cases stored in
the memory (cf. Section 5.3.5 below).

Consider the Lukasiewicz t-(co)norm as an example, for which we obtain ωı =
1 − dı = σS(s0, sı) ⊗ σR(r, rı) and

11 This is not the t-norm used in (5.14) for defining a joint similarity measure.
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δs0(r) = min{1, ω1 + ω2 + . . . + ωn}. (5.17)

If, moreover, σR is given by (5.11), then δs0(r) is nothing else than the bounded
sum of the similarity degrees σS(sı, s0) between s0 and the inputs sı with output
rı = r. Thus, (5.17) is basically equivalent to the global NN method, i.e., the
weighted NN approach with k = n,12 apart from the fact that it does not distin-
guish between outputs whose accumulated support exceeds 1 (this is an extreme
type of saturation effect). For the probabilistic sum ⊕P , the mapping between
possibility degrees and the sum of weights is bijective:

δs0(r) = 1 − exp
(
− (ω1 + ω2 + . . . + ωn)

)
.

In connection with the generalized model (5.14), the t-conorm ⊕ used for com-
bining individual degrees of support defines another degree of freedom of the
model. It is hence interesting to mention the existence of parameterized families
of t-(co)norms which comprise commonly used operators as special cases. For
example, the Frank-family is defined as

⊕ρ : (α, β) �→




max{α, β} if ρ = 0
α + β − αβ if ρ = 1
min{1, α + β} if ρ = ∞
1 − lnρ

(
1 + (ρ1−α−1)(ρ1−β−1)

ρ−1

)
otherwise

. (5.18)

Proceeding from such a family of t-conorms, the degree of freedom of the model
reduces to a single parameter, here ρ, which can be adapted in a simple way, e.g.,
by means of cross-validation techniques.

5.3.3 Upper and lower possibility bounds

The possibility degree (5.14) represents the support (confirmation) of an output r
gathered from similar cases according to the CBI hypothesis. Now, in the sense of
this hypothesis, an observation 〈sı, rı〉 might not only confirm but also disqualify
an output r. This happens if sı is close to s0 but rı is not similar to r. A possibility
distribution expressing degrees of exclusion rather than degrees of support and,
hence, complementing (5.14) in a natural way is given by

πs0 : r �→
⊗

1≤ı≤n

(1 − σS(s0, sı)) ⊕ σR(r, rı). (5.19)

According to (5.19), an individual observation 〈sı, rı〉 induces a constraint on
the outcome of s0: An output r is disqualified by 〈sı, rı〉 if both, σS(s0, sı) is
large and σR(r, rı) is small. As opposed to this, 〈sı, rı〉 is completely ignored if

12 The proper kNN rule cannot be emulated as in (2.10) since the weights ωı depend on absolute
distance (again, see Section 5.3.5 below).
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σS(s0, sı) = 0, in which case the individual support on the right-hand side of
(5.19) is 1 (πs0 ≡ 1 is an expression of complete ignorance: all upper possibility
bounds are 1 since there is no reason to discredit any output). This approach is
obviously in agreement with the constraint-based view of possibilistic reasoning
(cf. Section 5.1.1). Moreover, the distribution (5.19) is again related to a special
type of fuzzy rule [107].

The possibility of an outcome r can now be characterized by means of an extended
estimation, namely as a tuple

δ∗s0
(r) = [ δs0(r), πs0(r) ]

with a lower bound δs0(r) expressing a degree of confirmation, and an upper
bound πs0(r) expressing a degree of plausibility. The following cases show that
the complementary distribution πs0 can greatly improve the informational content
of a possibilistic evaluation:13

– δ∗s0
(r) = [0, 1]: This is an expression of complete ignorance. Neither is r sup-

ported nor is it (partly) excluded by any observation. Thus, r is fully plausible
though not confirmed at all.

– δ∗s0
(r) = [0, 0]: Clear evidence against r has been accumulated in the form of

inputs similar to s0 with outputs dissimilar to r.

– δ∗s0
(r) ≈ [1, 1]: The output r is strongly supported through the observation of

similar cases.

Notice that
δs0(r) > πs0(r) (5.20)

indicates a kind of conflict [376] and is closely related to the problem of ambiguity
in connection with the NN principle (cf. Section 2.2.1). In fact, (5.20) can occur
if s0 has close neighbors sı and s with quite dissimilar outputs rı and r (mathe-
matically speaking, s0 is a point of discontinuity). In this case, the evaluation of r
is unsteady, and the support δs0(r) should be taken with caution. The inequality
in (5.20) might also trigger a revision process that aims at removing the conflict
by means of a model adaptation.

5.3.4 Fuzzy logical evaluation

The values δs0(r) in (5.14) can also be considered as membership degrees of a fuzzy
set, namely the fuzzy set of “well-supported outputs”. In fact, the possibility
degree δs0(r) can be seen as the truth degree, 〈P (r)〉, of the following (fuzzy)
predicate P (r): “There is an input close to s0 with an output similar to r.” P (r)
defines the property that qualifies r as a well-supported output.

13 Recall that positive and negative evidence cannot be distinguished in probability theory.
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Of course, one might easily think of alternative characterizations of well-supported
outputs. Fuzzy set-based modeling techniques allow for translating such charac-
terizations given in linguistic form into logical expressions. By using fuzzy logical
connectives including t-norms, fuzzy quantifiers such as “a few” and fuzzy re-
lations such as “closely located”, one can specify sophisticated fuzzy decision
principles that go beyond the simple NN rule. Example:

“There are at least a few closely located inputs, most
of these inputs have the same output, and none of the
moderately close inputs has a very different output.”

The logical expression P (·) associated with such a specification can be used in
place of the right-hand side in (5.14):

δs0(r)
df
= 〈P (r)〉. (5.21)

The decision rule related to (5.14) favors the outcome rest
0 that meets the require-

ments specified by P (·) best. This generalization appears especially interesting
since it allows one to adapt the NN principle so as to take specific characteristics
of the application into account.

Observe that (5.21) can also mimic the original kNN rule: Consider the fuzzy
proposition “r is supported by many of the k nearest neighbors of s0”, and let
the fuzzy quantifier “many (out of k)” be modeled by the mapping ı �→ ı/k.
Then, δs0(r) = ı/k iff ı among the k nearest neighbors have outcome r. In this
case, possibility degrees (derived from fuzzy truth degrees) formally coincide with
probability degrees.

5.3.5 Comparison of extrapolation principles

As already mentioned above, the possibilistic approach to CBI can also be con-
sidered as a kind of NN estimation. Thus, it seems interesting to have a closer
look at this type of “possibilistic NN estimation” as an alternative to the proba-
bilistic approach to estimation and decision making, which is in agreement with
the original kNN rule (cf. Section 2.2.1).

Both the possibilistic and the probabilistic approach can be considered as a two-
step procedure. The first step derives a distribution that will subsequently be
referred to as the NN estimation. This estimation defines a degree of support for
each output r ∈ R. The second step, the NN decision, chooses one output on
the basis of the NN estimation. Usually, the decision is given by the outcome
with maximal support, and ties are broken by coin flipping. Still, in the case of
a continuous (or at least ordinal) scale R, a decision might also be obtained by
some kind of averaging procedure.

In order to facilitate the comparison of the two approaches, we write degrees of
evidential support in the general form
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ν(r | s0,M) = α
(
{νsı(r | s0,M) | 〈sı, rı〉 ∈ M}

)
(5.22)

and thus obtain the (maximal support) decision as

rest
0 = arg max

r∈R
ν(r | s0,M). (5.23)

In (5.22), νsı(r | s0,M) is the support of the hypothesis r0 = r provided by the
case 〈sı, rı〉, and α is an aggregation function.

To reveal the original kNN rule and the probabilistic approach as special cases
of (5.23), note that the probability distribution (2.6) is obtained by using the
arithmetic sum as an aggregation function α and defining the support function
as

νp
sı
(r | s0,M) =

{
1/k if sı ∈ Nk(s0) and r = rı

0 otherwise
. (5.24)

More generally, if S is a metric space, a support function can be defined as

νp
sı
(r | s0,M) =

{
Kdk

(s0 − sı) if r = rı

0 otherwise
, (5.25)

where K is a kernel function. The index dk denotes the distance between s0 and
its k-th nearest neighbor. It signifies that the kernel function is scaled so as to
exclude exactly those inputs sı with ∆S(s0, sı) > dk. Proceeding from (5.25),
and assuming that R is a finite set {ρ1 . . . ρm}, the probability distribution ps0 is
obtained by normalizing the supports

νp(ρ | s0,M) =
∑

〈sı,rı〉∈M

νp
sı
(ρ | s0,M),

which yields

ps0(ρ) =
νp(ρ | s0,M)∑m
ı=1 νp(ρı | s0,M)

(5.26)

for all ρ ∈ R. That is, the aggregation α is now the normalized rather than the
simple arithmetic sum. Of course, since normalization does not change the mode
of a distribution it has no effect on decision making and could hence be omitted
from this point of view.

The possibilistic approach (5.14) is recovered by α = ⊕ and

νδ
sı
(r | s0,M) = σS(s0, sı) ⊗ σR(r, rı). (5.27)

As can be seen, the main difference between the probabilistic and the possibilistic
approach concerns the definition of the individual support function νs and the
aggregation of the corresponding degrees of support.

Apart from that, however, a direct comparison is complicated by the similarity
measure over outputs, σR, which is used in (5.27) but not in (5.25). One possibility
to handle this problem is to consider (5.27) only for the special case (5.11):
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νδ
sı
(r | s0,M) =

{
σS(s0, sı) if r = rı

0 otherwise
. (5.28)

Equation (5.28) reveals that the similarity measure σS now plays the same role
as the kernel function K in (5.25).

Absolute versus relative support. An important difference between (5.25)
and (5.28) is that an example 〈sı, rı〉 ∈ M provides relative support of an output
r in the probabilistic approach but absolute support in the possibilistic one. That
is, νδ

sı
(r | s0,M) depends on the absolute similarity between s0 and sı but is

independent of further observations. In fact, we can actually write νδ
sı
(r | s0) in

place of νδ
sı
(r | s0,M) since M does not appear on the right-hand side of (5.28):

The support provided by observed examples 〈sı, rı〉 is bounded to nearby cases,
decreases gradually with distance, and vanishes for completely dissimilar cases.

As opposed to this, the support νp
sı
(r | s0,M) is relative and depends on the

relation between the distance of sı to s0 and the distances of other observations
to s0. This is reflected by the scaling of the kernel function in (5.25). On the
one hand, this means that νp

sı
(r | s0,M) can be large even though sı is quite

distant from s0. On the other hand, the extension of the memory M by another
instance close enough to s0 might exclude a quite similar observation sı from
the neighborhood Nk(s0). The corresponding re-scaling of the kernel function
will then cancel the support provided by 〈sı, rı〉 so far. The induced thresholding
effect appears especially radical (and might be questioned on such grounds) in
connection with (5.24), where νp

sı
(r | s0,M) is reduced from 1/k to 0, that is from

full support to zero support.

The bounding of evidential support, as realized by the possibilistic approach, is
often advisable. Consider a simple example: Let S = [0, 1] and

ϕ = {(s, I[1/2,1](s)) | s ∈ S}

and suppose inputs to be chosen at random according to a uniform distribution.
Moreover, assume that a new input s0 must be labeled, given a memory that
consists of only a single observation 〈s1, r1〉. Using the 1NN rule, the probability
of a correct decision is obviously 1/2. Now, suppose that the NN rule is applied
only if |s0 −s1| ≤ d, whereas a decision is determined by flipping a coin otherwise
(this is exactly the procedure that results from the possibilistic approach by
defining σS in (5.8) by σS(s, s′) = 1 if |s − s′| ≤ d and 0 otherwise). A simple
calculation shows that the probability of a correct decision is now 1/2+ d(1− d).
As can be seen, dissimilar cases are likely to provide misleading information in this
example and, hence, the disregard of such cases is indeed advantageous. Loosely
speaking, it is better to guess an output at random than to rely on observations
not similar enough.

Of course, the concept of absolute support is actually not reserved to the possi-
bilistic approach but can be realized for the probabilistic method as well. To this
end, one simply replaces (5.25) by
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νp
sı
(r | s0,M) =

{
K(s0 − sı) if r = rı

0 otherwise
, (5.29)

where the kernel function K is now fixed. That is, K is no longer scaled by
the size of the neighborhood of s0. This is exactly the estimation one derives by
the reasoning in Section 2.2.1 if the generalized NN density estimation (2.14) is
replaced by the simple kernel estimator:

φest(s0) =
1

n
·

n∑
ı=1

K(s0 − sı). (5.30)

Here, the only problem occurs if νp(r | s0,M) = 0 for all r ∈ R. In this situ-
ation (of complete ignorance), a probability distribution cannot be derived by
normalization.

Apart from that, (5.29) might indeed be preferred to (5.25) due to the reasons
mentioned above. In fact, one should realize that one of the major reasons for
using the NN density estimator (2.14) rather than the kernel estimator (5.30) is
to guarantee the continuity of the density function φest. In the context of case-
based inference or, say, instance-based learning this is not important, however,
since one is not interested in estimating a complete density function but only a
single value thereof. To the best of our knowledge, (5.25) and (5.29) have not been
compared in a systematic way in IBL so far. Note that (5.29) should actually
be called a Near Neighbor estimation since it involves the near rather than
the nearest neighbors. The same remark applies to the possibilistic approach, of
course.

Above, it has been argued that the consideration of graded degrees of similarity
between outcomes is often advised (see also our example in Section 5.3.7 below). It
should be mentioned, therefore, that the probabilistic approach might be extended
in this direction as well. To this end, a joint probability density can be estimated
based on a kernel function K, which is now defined over S × R. An estimation
for the output r can then be derived by conditioning on s0:

ps0(r) ∝
∑

〈sı,rı〉∈M

νp
sı
(r | s0,M) =

∑
〈sı,rı〉∈M

K
(
s0 − sı, r − rı

)
.

This is the most general form of a probabilistic estimation. Still, one should keep
in mind that it requires S × R to have a suitable mathematical structure, an
assumption which is not always satisfied in applications (again, we refer to our
example below).

Similarity versus frequency. The estimation principle underlying the prob-
abilistic NN approach combines the concepts of similarity (distance) and fre-
quency: It applies a closeness assumption, typical of similarity-based reasoning,
that suggests to focus on the most similar observations (or to weight observations
by their distance). From the reduced set of supposedly most relevant instances,
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probabilities are then estimated by relative frequencies. This contrasts with the
basic (max–min) possibilistic approach (5.8) which relies on similarity alone: The
application of the maximum operator does not produce any compensation or re-
inforcement effect. Thus, possibility depicts the existence of supporting evidence,
not its frequency.14 The generalized possibilistic approach based on (5.14) allows
for modes of compensation which combine both aspects. Especially, the operators
mentioned above produce a kind of saturation effect, that is, a limited reinforce-
ment effect: The increase of support due to the observation of a similar instance
is a decreasing function of the support that is already available.

In this connection, it is important to realize the different nature of the concepts of
possibility and probability. Particularly, it should be emphasized that the former
is not interpreted in terms of the latter.15 For example, consider the standard
probabilistic setting where cases are chosen randomly and independently accord-
ing to a fixed probability measure over S × R. The possibility degree δs0(r) will
then converge to 1 with increasing sample size whenever 〈s0, r〉 has a non-zero
probability of occurrence. In fact, the possibilistic approach is interested in the
existence of a case, not in its probability. Roughly speaking, the major concern
of this approach is the approximation of the concepts Cr, r ∈ R, whereas the
probabilistic approach aims at estimating conditional probability distributions
ps0 = P(· | s0). Of course, this distinction is relevant only if the concepts are
overlapping, that is, if the query s0 does not have a unique outcome. Other-
wise, a possibilistic and a probabilistic approach are equivalent in the sense that
s0 ∈ Cr ⇔ P(r | s0) = 1.

It is beyond question that the frequency of observations usually provides valuable
information. Yet, the frequency-based approach does heavily rely on statistical
assumptions concerning the generation of training (and test) data. Thus, it might
be misleading if these assumptions are violated. Suppose, e.g., that the probabil-
ity of observing a positive example, while learning a concept C1 ⊆ S, depends
on the number of positive examples observed so far and hence contradicts an
independence assumption (the probability of an output r, given the input s, is
not independent of the data). In this case, a probabilistic estimation is clearly
biased, whereas the possibility distribution (5.8) is not affected at all. Indeed,
the information expressed by δs0 remains valid even if only negative examples
sı ∈ C0 = S \ C1 have been presented so far: δs0(1) = 0 then simply means that
no evidence for s0 ∈ C1 has been gathered as yet. Moreover, the value δs0(0)
reflects the available support for s0 ∈ C0. This support depends on the distance
of s0 to the observed negative examples. Note that δs0(0) = 0 is possible as well.
In this case, no evidence is available at all, neither for nor against s0 ∈ C1. See
Section 5.5.3 for a simulation experiment which concerns the aspect of robustness
of NN estimation toward violations of the standard statistical assumptions.

14 To a certain extent, this is related to the distinction between an existential and an enumerative
analogy factor in models of analogical induction [281].

15 Though such a relationship can be established, e.g., by interpreting possibility as upper probability
[122] or fuzzy sets as coherent random sets [111].
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Apart from statistical assumptions, the structure of the application has an im-
portant influence. To illustrate, consider two classes in the form of two clusters
such that the (known) diameter of both clusters is smaller than the distance be-
tween them, that is ∆S(s1, s2) < ∆S(s1, s3) whenever r1 = r2 "= r3. The output of
an input can then be determined with certainty as soon as the distance from its
nearest neighbor is known. In other words, the 1NN rule which does not involve
frequency information performs better than any kNN rule with k > 1.

5.3.6 From predictions to decisions

In addition to the extrapolation principles let us compare the induced distribu-
tions, referred to as NN estimations, from a knowledge representational point of
view, especially against the background of the two shortcomings of the NN rule
illustrated in Fig. 2.1.

A crucial difference between a possibility distribution δ and a probability func-
tion p is that the latter obeys a normalization constraint that demands a total
probability mass of 1, whereas no such constraint exists in possibility theory.
Consequently, a possibility distribution is more expressive in some situations.
Especially, the following points deserve mentioning:

– Possibility reflects ignorance: All possibility degrees δs0(r) remain rather small
if no sufficiently similar cases are available. Particularly, the distribution δs0 ≡ 0
is an expression of complete ignorance and reflects the absence of any relevant
observation (σS(s0, sı) = 0 for all sı). A learning agent using this estimation
“knows that it doesn’t know” [359]. As opposed to this, a distribution such as,
say, δs0 ≡ |R|−1 (in the case of finite R) indicates that some (small) evidence
is available for each of the potential outcomes. These two situations cannot
be distinguished in probability theory where they induce the same distribution
ps0 ≡ |R|−1 (if, as suggested by the principle of insufficient reason, complete
ignorance is modeled by the uniform distribution).

– Possibility reflects absolute frequency: For example, suppose σS(s0, sı) = 1 −
d > 0 and rı = r′ for all n inputs sı stored in the memory. The probabilistic
estimation (2.6) then yields the one-point distribution ps0(r

′) = 1 and ps0(r) = 0
for all r "= r′. Thus, it suggests that r0 = r′ is certain, even if n is rather small.
With a compensating t-conorm such as the probabilistic sum ⊕P , the extended
estimation (5.14) yields δs0(r

′) = 1− dn and δs0(r) = 0 for all r "= r′. Thus, not
only does the possibilistic support of the hypothesis r0 = r′ reflect the distance
but also the actual number of voting instances: δs0(r

′) is an increasing function
of n and approaches 1 for n → ∞.

As can be seen, a probabilistic estimation can represent ambiguity, whereas the
possibilistic approach captures both problems, ambiguity and ignorance: Ambi-
guity (Fig. 2.1, above) is present if there are several plausible outputs with similar
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degrees of support, and ignorance (Fig. 2.1, below) is reflected by the fact that
even the most supported output has a small degree of possibility. Thus, (5.14)
can be taken as a point of departure for a decision making procedure that goes
beyond the guessing of an outcome. For example, a possible line of action proceed-
ing from (5.14) might be expressed by the following rules (involving thresholds
0 < dmax < dmin < 1):

– If δs0(r
∗) ≥ dmin for the most supported outcome r∗ and δs0(r) ≤ dmax for all

r "= r∗, then let rest
0 = r∗.

– If δs0(r
∗) < dmin, then gather further information.

– If δs0(r
∗) ≥ δs0(r) ≥ dmin for two outcomes r∗, r ∈ R, then refuse a prediction.

The Echocardiogram Database
16 is a real-world example that is quite inter-

esting in this respect. One problem that has been addressed by machine learning
researchers in connection with this database is to predict from several attributes
whether or not a patient who suffered from a heart attack will survive at least one
year. Since data is rather sparse (132 instances and about 10 attributes), the pos-
sibilistic approach often yields estimations with low support for both alternatives,
surviving and not surviving at least one year. This is clearly reasonable from a
knowledge representational point of view and reveals an advantage of absolute
over relative degrees of support. For example, telling a patient that your experi-
ence does not allow any statement concerning his prospect of survival (δs0 ≡ 0)
is very different from telling him that his chance is 50% (ps0 ≡ 1/2).

The discrepancy between a probabilistic and a possibilistic approach disappears
to some extent if one is only interested in a final decision, that is, if a decision
must be made irrespective of the quality and quantity of the information at
hand. For example, the method in [84], which derives a prediction in terms of
a belief function (cf. Chapter 4), refers to the so-called transferable belief model
[350] and, hence, turns the belief function (at the “credal” level) specifying the
unknown outcome into a probability function (at the “pignistic” level) before
making a decision. Thus, the support of individual outputs is expressed in terms
of probability, and an NN estimation can be derived by taking one among the
most probable outcomes, breaking ties at random.

Observe that, as a consequence of applying the maximum operator, a possibilis-
tic NN decision derived from (5.8) coincides with the 1NN rule. The generalized
version (5.14), where several moderately similar examples can compensate for
one very similar instance, comes closer to the original kNN rule. In fact, for cer-
tain special cases, the possibilistic approach is equivalent – from a decision making
point of view – to the probabilistic approach based on the support function (5.29).
Equation (5.16) shows that a possibility degree δs0(r) is a monotone transforma-
tion of the sum of weights ωı, and this relation is one-to-one if the pseudo-inverse
g(−1) is actually the inverse g−1. The similarity function σS can then be chosen

16 Available at http://www.ics.uci.edu/˜mlearn.
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such that
δs0(r) ≤ δs0(r

′) ⇔ ps0(r) ≤ ps0(r
′).

That is, outcomes which are better supported in a possibilistic sense are also more
probable and vice versa.

To illustrate, consider the case where S = Rl and σR(r, r′) = 1 if r = r′ and 0 oth-
erwise. Let K be a kernel function and define σS as (x, y) �→ 1−exp (−K(x, y)).17

For the t-conorm ⊕P , the weights in (5.16) are then given by ωı = K(s0 − sı).
Therefore,

δs0(r) = 1 − exp


−

∑
〈sı,rı〉∈M : rı=r

K(s0 − sı)




= 1 − exp (−c · ps0(sı)) ,

where ps0(r) is the probability degree derived from (5.29) using the kernel function
K and c is the normalization factor c =

∑
r′∈R ps0(r

′).

5.3.7 An illustrative example

Here, we present a simple example for which the possibilistic approach might
be considered superior to the probabilistic one. The task shall be to predict a
student’s grade in physics given some information on other grades of that student.
Thus, an input is now a subject, and the output is given by the corresponding
grade. We assume that grades are taken from the scale R = {0, 1, . . . , 10}, where
10 is the best result. Moreover, we consider two scenarios S1 and S2:

Subject S1 S2

Chemistry – 10
French – 3
Philosophy – 3
Spanish – 3
Sports 5 –

Admittedly, it is not obvious how to define a reasonable similarity measure over
the set of subjects. In fact, an ordinal measure – sufficient for the possibilistic
approach (5.8) – appears much simpler than a cardinal one. Nevertheless, let us
assume the following (cardinal) degrees of similarity:

σS Chem. French Phil. Span. Sports
Physics 3/4 1/3 1/3 1/3 0

17 Formally, one might set K(0)
df
= ∞ to ensure that σS is reflexive.
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Concerning the set of outcomes R, graded degrees of similarity are clearly advised
in this example. Let us define the similarity between two grades a and b to be

σR(a, b) = max

{
1 − 1

5
|a − b|, 0

}
.

Needless to say, our application does not define a statistical setup par excel-
lence, which is a main reason why the probabilistic approach does hardly appear
suitable. To begin with, a scenario as defined above cannot be considered as an
independent sample (perhaps the information is censored if it comes from the
student himself), not to mention the small number of observations. Moreover, a
relative frequency interpretation does not make sense. Finally, the set S endowed
with the similarity measure σS (as partly specified above) is likely to lack a suffi-
ciently strong mathematical (metric) structure, so that the derivation of the kNN

estimation in Section 2.2.1 might no longer be valid. Clearly, nothing prevents us
from still applying the formulae and simply interpreting the normalized degrees
of additive support as degrees of probability. But one should keep in mind that
this approach actually lacks a solid foundation.

The first scenario is a typical example of complete ignorance, for one does not have
any relevant piece of information. It is true that the case base is not empty, but the
grade in sports does not allow one to draw any conclusion on the grade in physics
since these two subjects are very dissimilar. This is adequately reflected by the
possibilistic estimation which yields δs0 = δphysics ≡ 0. A probabilistic estimation
with relative support is obviously not appropriate in this example. Since sports
is the only neighbor one obtains a probability distribution that favors grade 5 for
physics. Thus, it is clearly advised to use absolute rather than relative support.
Then, however, a probability is actually not defined since the denominator in
(5.26) is zero. One way out is to take the uniform distribution ps0 ≡ 1/11 as a
default estimation, but this raises the well-known question whether the latter is
an adequate expression of complete ignorance (which is definitely denied by most
scholars).

Scenario S2 reveals problems of weighting and aggregation. Undoubtedly, a
weighted estimation should be preferred in this example. Still, the example shows
that the definition and aggregation of weights can be tricky. What is the most
likely grade? Particularly, is grade 3 for physics more likely than grade 10 or vice
versa? The weighted kNN rule favors grade 3 since the three subjects which are
moderately similar to physics compensate for the one (chemistry) which is very
similar. Of course, this result might be judged critically. Especially, this example
reveals a problem of interdependence which is not taken into account by means of
a simple summation of weights. Namely, the two subjects Spanish and French are
very similar by themselves. Thus, one might wonder whether the grade 3 should
really count twice. In fact, one might prefer to consider the grades in French and
Spanish as only one piece of evidence (suggesting that the student is not good at
languages) instead of two pieces of distinct information. Formally, the problem
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is that the probabilistic approach makes an assumption of (conditional) inde-
pendence which is no longer valid when taking structural assumptions about the
application into account [198]. Here, such assumptions correspond to the NN in-
ductive bias, namely the CBI hypothesis that similar inputs have similar outputs.
Given this hypothesis, the cases stored in the case base are no longer independent
(grade 3 in French, in conjunction with this hypothesis, makes grade 3 in Spanish
very likely).

The problem of interdependence cannot be taken into account as long as an
estimation disregards the similarity between the instances stored in the memory
(cf. Section 4.5.3), as do all the estimations presented so far. Still, the aggregation
operator ⊕ in the possibilistic approach provides a means for alleviating the
problem. With ⊕ = max, for example, frequency does not count at all and one
obtains δs0(3) = 1/3 < 3/4 = δs0(10). The probabilistic sum ⊕P brings about a
reinforcement effect but still yields δs0(3) = 0.7 < 3/4 = δs0(10), a result that
appears quite reasonable.

A second problem related to scenario S2 is that of ambiguity. Particularly, the
probabilistic approach yields a bimodal distribution ps0 , and the same is also true
for most aggregation operators in the possibilistic approach. For example, (5.14)
with ⊕ = ⊕P (and ⊗ = ⊗P ) yields δs0(3) > δs0(7) < δs0(10). This result is not
intuitive, for one might hardly judge an intermediate grade less possible than two
extreme grades. To solve this problem, δs0 can be replaced by its convex hull

r �→ min

{
max
r′≤r

δs0(r
′), max

r′≥r
δs0(r

′)

}
. (5.31)

In our example, this leads to the following distribution:

r 0 1 2 3 4 5 6 7 8 9 10
δs0(r) 0 0.3 0.53 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.75

Of course, this prediction is still ambiguous in the sense that is supports several
grades by means of high degrees of possibility. This is not a defect, however, but
rather an adequate representation of the ambiguity which is indeed present in the
situation associated with scenario S2.

The modification (5.31) of δs0 should not be considered ad-hoc. Rather, the con-
vexity requirement can be thought of as a possibility-qualifying rule that comple-
ments the case-based justification of possibility degrees: The more possible two
outputs are, the more possible is any outcome in-between. This type of back-
ground knowledge and the associated constraints can be met more easily in the
possibilistic approach than in the probabilistic one. In fact, the incorporation of
background information is hardly compatible with non-parametric density esti-
mation.

In summary, the example has shown the following advantages of the possibilistic
approach: Firstly, the interpretation of aggregated weights in terms of degrees
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of evidential support is often less critical than the interpretation in terms of de-
grees of probability. Secondly, a possibility distribution can represent ignorance.
Thirdly, the use of aggregation operators other than the arithmetic sum can be
useful. Fourthly, the possibilistic approach is more flexible and allows for incor-
porating constraints or background knowledge.

5.3.8 Complexity issues

A straightforward implementation of the prediction (5.13) has a running time
which is linear in the size |M| of the memory and the number |R| of outcomes
(resp. a discretization thereof). In this respect, it is hence completely comparable
to other case-based learning methods.

In order to reduce the computational complexity, instance-based approaches take
advantage of the fact that a prediction is already determined by the nearest
neighbors of the query instance. Thus, the consideration of each sample instance
is actually not necessary, and efficiency can be gained by means of fast algorithms
for finding nearest neighbors [154, 411, 222]. Such algorithms employ efficient
similarity-based indexing techniques and corresponding data structures in order
to find the relevant instances quickly.

The same idea can be applied in connection with the possibilistic approach. In
fact, a possibility degree δs0(r) is completely determined by the neighborhood
of the case 〈s0, r〉, that is the sample instances 〈sı, rı〉 satisfying σS(sı, s0) > 0
and σR(rı, r) > 0. As can be seen, apart from minor differences, the possibilistic
method is quite comparable to other instance-based methods from a complexity
point of view. One such difference concerns the relevant sample instances. In the
kNN approach, the number of relevant instances in always k, but the (degree of)
relevance of an instance may change when modifying the case base. As opposed to
this, the degree of relevance of a neighboring instance is fixed in the possibilistic
approach, but the number of relevant instances can change.

Let us finally mention that efficiency can also be gained if the complete possibility
distribution δs0 is not needed. In fact, quite often one will only be interested
in those outcomes having a high degree of possibility. For example, one might
be interested in a fixed number of maximally supported outcomes, or in those
outcomes whose support exceeds a given possibility threshold. In such cases, the
computation of δs0(r) can be omitted (or broken off) for certain outputs r.

5.4 Extensions of the basic model

The previous section has introduced the main principles of the possibilistic ap-
proach to case-based inference (subsequently, for the sake of brevity, sometimes
referred to as PoCBI). In this regard, the close connection to fuzzy rule-based
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reasoning was especially emphasized. Besides, we highlighted the fact that pos-
sibilistic CBI can be considered as an alternative approach to NN estimation.
This section presents some extensions of the basic model making PoCBI even
more powerful and practically useful.

5.4.1 Dealing with incomplete information

The problem of dealing with incomplete information such as missing attribute val-
ues in an important issue in case-based reasoning and machine learning [88, 305].
For example, suppose that the specification of the new query s0 is incomplete,
and let S0 ⊆ S denote the inputs compatible with the description of s0. Moreover,
recall the lower support-bound semantics of the possibilistic approach to CBI.
The following generalization of (5.14) is in accordance with these semantics:

δs0(r)
df
= inf

s∈S0

δs(r) = (5.32)

= inf
s∈S0

⊕
1≤ı≤n

σS(s, sı) ⊗ σR(r, rı).

Indeed, each potential candidate s ∈ S0 gives rise to a lower bound according
to (5.14), and without additional knowledge we can guarantee but the smallest
of these bounds to be valid. This is in agreement with the idea of guaranteed
possibility (cf. Section 5.1.2). The simplicity of handling incomplete information
in a coherent (namely possibilistic) way is clearly a strong point of possibilistic
CBI. Notice that the computation of the lower bound in (5.32) is in line with
the handling of missing attribute values in the IB1 algorithm (cf. Section 2.2.2),
where these values are assumed to be maximally different from the comparative
value. Yet, the possibilistic solution appears more appealing since it avoids any
default assumption. Indeed, inferring what is possible seems to be a reasonable
way of dealing with missing attribute values and for handling incomplete and
uncertain information in a coherent way.

Example 5.2. Reconsider Example 5.1 and suppose that we are interested in,
say, the price of a car whose horsepower is between 90 and 110. This amounts to
predicting the outcome of an income s0, in which the attributes are incompletely
specified. Fig. 5.1 shows the prediction obtained for the max–min version of (5.32)
for this example. �

More generally, imprecise knowledge about s0 can be modeled in the form of a
possibility distribution π on S, where π(s) corresponds to the degree of plausibility
that s0 = s. A graded modeling of this kind is useful, e.g., if some attributes are
specified in a linguistic way. It suggests the following generalization of (5.32):

δs0(r)
df
= inf

s∈S

(
π(s) � δs(r)

)
, (5.33)
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where � is a generalized implication operator that is reasonably chosen as the
Gödel implication [134]:

α � β
df
=

{
1 if α ≤ β
β if α > β

.

From a logical point of view, (5.33) specifies the extent to which the output r is
supported by all plausible candidates for s0. Notice that the distributions δs and π
in (5.32) have different semantics and express degrees of confirmation and plausi-
bility, respectively (cf. Section 5.1). Particularly, π is assumed to be normalized,
i.e., there is at least one input s with π(s) = 1. One obviously recovers (5.32)
from (5.33) for the special case where π is a {0, 1}-valued possibility distribution
π = IS0 and hence corresponds to a crisp subset S0 ⊆ S.

Similar generalizations can also be realized for coping with incompletely specified
examples. Let the ı-th case in the memory be characterized by the set Sı × Rı ⊆
S × R. Then, (5.14) becomes

δs0(r)
df
=
⊕

1≤ı≤n

inf
〈s′,r′〉∈Sı×Rı

σS(s0, s
′) ⊗ σR(r, r′),

which is in accordance with (5.32). Moreover, we obtain

δs0(r)
df
=
⊕

1≤ı≤n

inf
〈s′,r′〉∈S×R

max
{
σS(s0, s

′) ⊗ σR(r, r′), 1 − πı(s
′, r′)
}

if the ı-th case is characterized by means of a possibility distribution πı on S ×R
rather than by a crisp set Sı×Rı. Note that this expression can be combined with
(5.33) in order to handle incomplete specifications of both, the sample cases and
the new query. Moreover, notice that the distribution δs0 will generally remain
unaffected if an example is completely unspecified (πı ≡ 1), which is clearly a
reasonable property.

Interestingly enough, the above generalization does not only allow for dealing
with incomplete (fuzzy) cases. It also suggests to lump together several (similar)
cases stored in the memory. The idea, then, is to replace these cases by one “fuzzy
case”, the attributes of which are given by the disjunction of the attribute values
of the individual cases. On the one hand, this procedure might improve efficiency,
especially if the memory of cases is very large. On the other hand, some infor-
mation might be lost when basing a prediction on one or several fuzzy cases: In
fact, it is not difficult to show that the support δs0(r) of a (hypothetical) case
〈s0, r〉 derived from a set of observed cases can be larger (but not smaller) than
the support obtained from the fuzzy case which combines the original observa-
tions. Nevertheless, the more similar the combined observations are, the better
the approximation becomes. Of course, instead of replacing a set of cases by a
fuzzy case, one might also think of simply selecting one of these cases which is
prototypical of this set.18

18 This is in line with the idea of generating prototypes by merging training samples – and thus reducing
the size of the training set – which has been proposed in the context of NN classification [62].
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5.4.2 Discounting noisy and atypical instances

Since case-based prediction and instance-based learning are quite sensitive to
noisy instances, it is reasonable to discard those instances [5]. By noise one gen-
erally means incorrect attribute value information, concerning either the descrip-
tive part s of a case or the outcome r (or both). However, the problem of noise is
also closely related to the “typicality” of a case. A typical case is representative of
its neighbors, whereas an exceptional (though not incorrect) case has an outcome
quite different from the outputs of neighboring cases [419].

Recall that each case 〈sı, rı〉 ∈ M is extrapolated by placing the support function
or, say, “possibilistic kernel” (5.13) around the point 〈sı, rı〉 ∈ S × R, just like
a density (kernel) function is centered around each observation in kernel-based
density estimation. Of course, the less representative (i.e., noisy or exceptional)
a case is of its neighborhood, the smaller the extent of extrapolation should be.

A simple learning mechanism that adapts the extent of extrapolation of stored
cases can be realized by means of a slight generalization of the kernel function
(5.13):

δı
s0

: r �→ mı

(
σS(s0, sı)

)
⊗ σR(r, rı). (5.34)

Here, mı : [0, 1] −→ [0, 1] is a monotone increasing modifier function with
mı(1) = 1. This function allows for discounting atypical cases. Roughly speaking,
mı adapts the similarity between the instance sı and its neighbors. For example,
sı is made completely dissimilar to all other instances by letting (mı|[0, 1[) ≡ 0.
Replacing σS by the modified measure mı ◦ σS is closely related to the idea of
local distance measures in NN algorithms.

Suppose that a new observation s0 with output r0 has been made, and consider
a stored case 〈sı, rı〉. Should this case be discounted in the light of the new ob-
servation? The fact that 〈sı, rı〉 supports an outcome different from the observed
output r0 need not necessarily be a flaw. In fact, recall that s0 ∈ Cr0 does not
exclude that s0 ∈ Cr for some r "= r0. In other words, neither the non-support
of the observed nor the support of a different outcome can actually be punished.
However, what can be punished is the disqualification of the output r0 as ex-
pressed by the upper possibility model (5.19). Thus, it is reasonable to require
that the degree of disqualification induced by 〈sı, rı〉 is limited:

1 − mı(σS(s0, sı)) ⊗ σR(r0, rı) ≥ β, (5.35)

where β ' 0 is a constant.

The constraint (5.35) suggests an update scheme in which a stored case 〈sı, rı〉 is
(maybe) discounted every time a new observation 〈s0, r0〉 is made: Let F denote a
parameterized and completely ordered class of functions from which mı is chosen.
An adaptation is then realized by

mı ← min
{
mı, sup{f ∈ F | 1 − f(σS(s0, sı)) ⊗ σR(r0, rı) ≥ β}

}
. (5.36)
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The discounting of noisy and atypical instances through modifying possibilistic
kernel functions appears natural and somewhat simpler than the method used in
IB3 [5]. Firstly, possibilistic discounting is gradual, whereas an instance is either
accepted or rejected (or is temporarily in-between) in IB3. Secondly, the question
whether to discount an instance and to which extent is answered quite naturally
in the possibilistic approach, where support is absolute and graded. In IB3, an
instance is either punished or not, and the corresponding decision is based on a
rule that appears reasonable but might still be considered ad-hoc (sı is discounted
if ∆S(sı, s0) is smaller than or equal to the distance between s0 and its closest
accepted neighbor19).

The possibilistic adaptation scheme becomes rather simple for the special case
S = Rl, R = {0, 1} and mı = I]γı,1], where 0 ≤ γı < 1. If σS is a strictly decreasing
function of Euclidean distance, then the support function (5.13) corresponds to
a ball around sı: δı

s0
(r) = 1 if r = rı and s0 is located inside that ball and

δı
s0

(r) = 0 otherwise. The parameter γı is chosen as large as possible, but such
that the support function does not cover any observed input s with r "= rı, that
is γı ≤ |sı−s| holds true for all of those s. Fig. 5.2 gives an illustration for l = 2.

sı sı

s0

Fig. 5.2. Left: The large circle corresponds to the support function (possibilistic kernel) centered
around sı and marks the extrapolation of outcome rı. Right: The support function is updated after
observing a new instance which has a different outcome r0 	= rı and hence must not be supported.

This special case, that we shall subsequently refer to as PossIBL, is a useful point
of departure for investigating theoretical properties of the possibilistic approach
in the context of concept learning. In [11], some convergence properties of IB1

have been shown for a special setup which makes statistical assumptions about
the generation of training data and geometrical assumptions on a concept C1

to be learned. For PossIBL, one can prove similar properties under the same
assumptions. More specifically, let l = 2, S = [0, 1] × [0, 1] (the results can be
generalized to any dimension l > 2 and any bounded region S ⊂ Rl) and consider
a concept C1 ⊆ S. For the special case above, the PossIBL approximation of C1

is then given by

Cest
1 =

⋃
〈sı,1〉∈M

Bρ(sı)(sı), (5.37)

19 Auxiliary rules are used if s0 does not have an accepted neighbor.
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where Bd(sı) = {s ∈ S | |s − sı| < d} is the (open) d-ball around sı and

ρ(sı) = min
{
|s − sı| | 〈s, r〉 ∈ M, r "= rı

}
. (5.38)

Moreover, the approximation of C0 = S \ C1 is given by

Cest
0 =

⋃
〈sı,0〉∈M

Bρ(sı)(sı). (5.39)

It is readily verified that Cest
0 ∩ Cest

1 = ∅. However, Cest
0 ∪ Cest

1 = S does not
necessarily hold true. Thus, one may have δs0 ≡ 0 for some instances s0 ∈ S
(which are then classified at random). Consequently, an approximation of concept
C1 should actually be represented by the tuple (Cest

0 , Cest
1 ) which divides instances

s0 ∈ S into three groups: Those which (supposedly) belong to C1 (δs0(0) =
0, δs0(1) = 1), those which do not (δs0(0) = 1, δs0(1) = 0), and those for which no
evidence is available so far (δs0 ≡ 0).

Now, a first desirable property is the convergence of the concept approximation,
that is the convergence of Cest

0 and Cest
1 toward C0 and C1, respectively. In this

context, however, the property of convergence itself has to be weakened since ex-
act convergence cannot be achieved due to the fact that an NN classifier cannot
guarantee the avoidance of wrong decisions at the boundary of a concept. More-
over, some assumptions on the generation of samples and on the geometry of the
concept C1 have to be made. Here, we make the same assumptions as in [11]:
Instances are generated randomly and independently according to a fixed prob-
ability measure µ over S. Furthermore, C1 is a concept having a nice boundary,
which is the union of a finite number of closed (hyper-)curves of finite size.

We employ the following notation: The ε-neighborhood of C1 is the set

C+
1 (ε)

df
= {s ∈ S |Bε(s) ∩ C1 "= ∅},

and the ε-core of C1 is defined by

C−
1 (ε)

df
= {s ∈ S |Bε(s) ⊆ C1}.

A set A ⊆ S is called an (ε, γ)-approximation of C1 if there is a (measurable) set
N ⊆ S with µ(N) ≤ γ and such that

(C−
1 (ε) \ N) ⊆ (A \ N) ⊆ (C+

1 (ε) \ N).

Finally, let Cest
1,n and Cest

0,n denote, respectively, the possibilistic concept approxi-
mations (5.37) and (5.39) for |M| = n, i.e., after n observations have been made.

Lemma 5.3. The equalities

C−
1 (ε) = S \ C+

0 (ε) and C−
0 (ε) = S \ C+

1 (ε)

hold true for all 0 < ε < 1. �



5.4 Extensions of the basic model 197

Proof. For s ∈ C−
1 (ε) we have Bε(s) ⊆ C1, which means that |s−s1| < ε implies

s1 ∈ C1. Consequently, there is no s0 ∈ C0 such that |s − s0| < ε and, hence,
s "∈ C+

0 (ε). Now, suppose s ∈ S \ C+
0 (ε). Thus, there is no s0 ∈ C0 such that

|s−s0| < ε, which means that |s−s1| < ε implies s1 ∈ C1 and, hence, s ∈ C−
1 (ε).

The second equality is shown in the same way. �

Theorem 5.4. Let C1 ⊆ S and 0 < ε, γ, d < 1. There is an integer n0 such
that the following holds true with probability at least 1 − d: The possibilistic
concept approximation Cest

1,n is a (2ε, γ)-approximation of C1 and Cest
0,n is a (2ε, γ)-

approximation of C0 for all n > n0. �

Proof. Let N denote the set of instances s ∈ S for which no sı ∈ M↓ exists such
that |s − sı| < ε. In [11], the following lemma has been shown: µ(N) ≤ γ holds
true with probability 1 − d whenever

n > )n0 =
√

2/ε*2/γ2 · ln
(
)
√

2/ε*2/d
)

. (5.40)

Subsequently, we ignore the set N , that is we formally replace S by S \N , C1 by
C1 \ N and C0 by C0 \ N . Thus, the following holds true by definition: For each
s ∈ S there is an instance sı ∈ M↓ such that |s − sı| < ε.

Now, consider any instance s ∈ C−
1 (2ε). We have to show that s ∈ Cest

1,n. Let sı ∈
M↓ be an instance such that |s− sı| < ε. For this instance we have sı ∈ Bε(s) ⊆
C1, which means that sı belongs to C1. Furthermore, Bε(sı) ⊆ B2ε(s) ⊆ C1 and,
hence, ρ(sı) ≥ ε for the value in (5.38). This implies that s ∈ Bρ(sı)(sı) and,
therefore, s ∈ Cest

1,n. Thus, we have shown that C−
1 (2ε) ⊆ Cest

1,n.

Since the same arguments apply to C0, the property C−
0 (2ε) ⊆ Cest

0,n can be shown
in an analogous way. Thus, using Lemma 5.3,

Cest
1,n ⊆ S \ Cest

0,n ⊆ S \ C−
0 (2ε) = C+

1 (2ε).

Likewise, one shows that Cest
0,n ⊆ C+

0 (2ε). �

Roughly speaking, Theorem 5.4 guarantees that the 2ε-core of both, C0 and C1 is
classified correctly (with high probability) if the memory M is large enough. In
other words, classification errors can only occur in the boundary region. For being
able to quantify the probability of an error, it is necessary to put restrictions on
the size of that boundary region and on the probability distribution µ. Thus, let
C denote the class of concepts C1 ⊆ S that can be represented as the union of a
finite set of regions bounded by closed curves with total length of at most L [11].
Moreover, let Pβ denote the class of probability distributions µ over S such that
µ(A) ≤ µL(A) · β for all Borel-subsets A ⊆ S, where µL is the Lebesgue measure
and β > 0.

Theorem 5.5. The concept class C is polynomially learnable with respect to Pβ

by means of the possibilistic concept approximation (Cest
0 , Cest

1 ). �
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Proof. If C1 ∈ C, then the size of the region C+
1 (2ε) \ C−

1 (2ε) is bounded by
4 εL. Consequently, the probability of that area is at most α = 4 εLβ. Since a
classification error can only occur either in this region or in the set N as defined
in Theorem 5.4 and the probability of N is at most γ, the probability of a clas-
sification error is bounded by α + γ. Now, fix the parameters γ and ε as follows:
γ = e/2, ε = e/(8Lβ). By substituting these parameters into (5.40) one finds
that the required sample size n is polynomial in 1/e and 1/d. In summary, the
following holds true for any 0 < e, d < 1, C1 ∈ C, and µ ∈ Pβ: If more than
n(1/e, 1/d) examples are presented, where n is a polynomial function of 1/e and
1/d, then, with probability 1 − d, the possibilistic concept approximation has a
classification error of at most e. This is precisely the claim of the theorem. �

5.4.3 From instances to rules

As already mentioned in previous chapters, selecting appropriate cases to be
stored in the memory M is an important issue in case-based reasoning and
instance-based learning that has a strong influence on performance. Especially
reducing the size of the memory is often necessary in order to maintain the
efficiency of the system. The basic idea is to remove cases which are actually
not necessary to achieve good predictive performance. For example, consider the
problem of concept learning and imagine a concept having the form of a circle
in some (two-dimensional) instance space. To classify inner points correctly by
means of the kNN rule it might then be sufficient to store positive examples of
that concept near the boundary.

In connection with PossIBL, where support is absolute rather than relative,
deleting cases from the memory might produce “holes” in the concept description.
An interesting alternative, which allows one to reduce the size of the memory and,
at the same time, to fill “holes” in the concept description by interpolation, is
based on the idea of merging cases and of generalizing cases into rules. This idea
appears particularly reasonable in light of the close relation between PoCBI and
fuzzy rule-based reasoning. More precisely, each observation can be interpreted
as a fuzzy rule, namely as an instance of a fuzzy meta-rule suggesting that similar
inputs (possibly) have similar outputs.

1 3 5 7 9 1 3 5 7 9 1 3 5 7 9

Fig. 5.3. Possibility distributions induced by two cases (left, middle) and the distribution associated
with the summarizing fuzzy rule (right).
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To illustrate this idea of a one-to-one correspondence between rules and cases,
let S = R, R = {0, 1} and suppose that two inputs s1 = 4 and s2 = 6 with
r1 = r2 = 0 have been observed. The possibilistic kernels (5.13) induced by these
cases are shown in Fig. 5.3. The first case is equivalent to the fuzzy rule “If s0

is approximately 4 then r = 0” if the fuzzy set “approximately 4” is modeled
by the possibility distribution δ1

s0
(the individual support function (5.13)). The

rules associated with the two cases can be merged into one rule, say, “If s0 is
about 5 then r = 0”, where the fuzzy set “about 5” is modeled by the pointwise
maximum, δ1

s0
∨ δ2

s0
, of δ1

s0
and δ2

s0
(Fig. 5.3, right).

The above procedure is closely related to several other techniques that have been
proposed in connection with IBL. Viewing cases as maximally specific rules and
the idea of generalizing cases into rules has been put forward in [89, 90]. The
method proposed in [327] generalizes cases by placing rectangles of different size
around them. A new instance is then labeled by the nearest rectangle rather than
by the nearest case. This is very similar to our approach, where rectangles are
replaced by possibility distributions. Relations also exist with the idea of merg-
ing nearest neighbors of the same output (class label in classification), thereby
generating new (pseudo-sample) prototypes [62].20 In our example, the point 5
may be regarded as a pseudo-instance replacing 4 and 6 (and also endowed with
a modified support function).

In the example in Fig. 5.3, the summarizing rule is exactly equivalent to the con-
junction of the two individual rules. Of course, by weakening the requirement of
equivalence, the merging procedure might also incorporate concepts of approxi-
mation and interpolation. For example, suppose s2 = 8 rather than s2 = 6. The
replacement of δ1

s0
∨ δ2

s0
by its convex hull δ : s �→ max{δ1

s0
(s), δ2

s0
(s), I[5,7]} then

goes beyond a simple combination since δ is larger than the pointwise maximum
of δ1

s0
and δ2

s0
(e.g. δ1

s0
(6) = δ2

s0
(6) = 0.5 < 1 = δ(6)). This kind of possibilis-

tic induction can be reasonable and often allows for incorporating background
knowledge. Particularly, replacing a possibilistic estimation δs0 by its convex hull
is advised whenever a multimodal distribution does not make sense (as in our
example in Section 5.3.7) or if the relation of observable cases (cf. page 22) is
even known to satisfy a convexity constraint of the form

s ∈ Cr ∩ Cr′′ ⇒ s ∈ Cr′ (5.41)

for all r < r′ < r′′.

As can be seen, the extensions discussed here basically suggest a system that
maintains an optimal rule base rather than an optimal case base, including the
combination and adaptation of rules. These extensions are well-suited to the
discounting of cases discussed in Section 5.4.2. Indeed, deriving one rule from
several cases (or other rules) can be accomplished by replacing the latter by a
pseudo-case and defining an appropriate modifier function m for that pseudo-
instance.
20 Compare also with the idea of “fuzzy cases” discussed at the end of Section 5.4.1.



200 5. Fuzzy Set-Based Modeling of Case-Based Inference

5.4.4 Modified possibility rules

The basic model of possibilistic CBI introduced in Section 5.2 can be rendered
more flexible by making use of (linguistic) modifiers [413] in (5.7), i.e., non-
decreasing functions m1, m2 : [0, 1] −→ [0, 1]. This leads to possibility rules m1 ◦
A

m2⇁ B with associated distributions

δs0(r) = max
1≤ı≤n

m2

(
min
{
m1(σS(s0, sı)), σR(r, rı)

})
, (5.42)

or, when using generalized logical operators as suggested in Section 5.3,

δs0(r) =
⊕

1≤ı≤n

m2

(
m1(σS(s0, sı)) ⊗ σR(r, rı)

)
.

Both modifiers in (5.42) control the extent to which a sample case is extrapo-
lated, i.e., the extent to which other (hypothetical) cases are supported by an
observation. The larger (in the sense of the partial order of functions on [0, 1])
m1 and m2 are, the stronger (in the sense of asserted possibility degrees) a case
〈sı, rı〉 is extrapolated.

The modification (5.42) can be interpreted in different ways. Let us first consider
the function m1. In connection with the linguistic modeling of fuzzy concepts,
modifiers such as x �→ x2 or x �→ √

x are utilized for depicting the effect of
linguistic hedges such as “very” or “almost” [413]. Applying the modifier m1

defined by the mapping x �→ x2 might thus be seen as replacing the original
hypothesis that “similar inputs (possibly) induce similar outcomes” by the weaker
assumption that only “very similar situations (possibly) induce similar outcomes.”
Thus, one interpretation of (5.42) is that of adapting the CBI hypothesis and,
hence, the inference mechanism (but of maintaining the similarity measures):
“The more two inputs are m1-similar in the sense of σS , the more possible it is
that the respective results are (at least) similar in the sense of σR.”

According to a second interpretation the similarity measure σS is replaced by
the measure σ′

S = m1 ◦ σS in such a way that the CBI hypothesis applies in its
original form:21 “The more two inputs are similar in the sense of σ′

S , the more
possible it is that the respective results are (at least) similar in the sense of σR.”
Roughly speaking, not the hypothesis is adapted to similarity, but similarity to the
hypothesis. The extreme example m1 = I{1}, indicating that the CBI hypothesis
is not satisfied at all, again reveals that a similarity measure which is reasonable
in the sense of inducing an appropriate extrapolation of observations does not
necessarily appear natural. Indeed, interpreting σ′

S = m1 ◦ σS as an improved
measure suggests that inputs are not comparable at all.

The modifier m2 does not act on a similarity measure but on the possibility-
qualifying part of a rule. It can be thought of as modifying the possibility distri-
bution
21 One has to be careful with this interpretation, since modified measures do not necessarily inherit all

(mathematical) properties of the original relations.
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(s, r) �→ max
1≤ı≤n

min{m1(σS(s, sı)), σR(r, rı)} (5.43)

associated with the possibility rule m1◦A ⇁ B. In fact, it allows for modeling rules
of the form “for m1-similar inputs it is m2-possible that the respective results are
similar,” where “m2-possible” stands for expressions like “more or less possible.”
Linguistic hedges such as “more or less” basically bring about a discounting of
the distribution (5.43) and, hence, of the rule m1 ◦ A ⇁ B.

Discounting a possibility distribution δ can be accomplished in different ways. A
simple approach which is also applicable within the framework of qualitative pos-
sibility theory (where similarity and possibility are measured on ordinal scales)
is to modify δ into min{1 − λ, δ} [120]. The constant λ plays the role of a dis-
counting factor and defines an upper bound to the support that can be provided
by an underlying (possibility) rule. Indeed, δ remains unchanged if λ = 0. As
opposed to this, the original support expressed by δ is completely annulled if the
discounting is maximal (λ = 1). By taking m2 as the mapping x �→ min{1−λ, x},
the distribution (5.42) becomes

δC : (s, r) �→ max
1≤ı≤n

min
{
1 − λ, min

{
m1(σS(s, sı)), σR(r, rı)

}}
. (5.44)

Note that the similarity measure σR is not modified directly. Thus, it somehow
determines the granularity of the extrapolation and, hence, the possibilistic ap-
proximation (5.44).

Example 5.6. Reconsider Example 5.1 with the hypothesis that “it is com-
pletely possible that cars with very similar horsepower have similar prices.” Ap-
plying the modifier m1 : x �→ x2 to the similarity relation σhp and modeling the

Fig. 5.4. Prediction (5.8) of the price of a car based on the original hypothesis (dashed line) and its
modified version (5.44).
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(non-)effect of “completely” by λ = 0, the prediction δs0 based on (5.44) yields
the possibility distribution shown in Fig. 5.4. Compared to the prediction (5.8),
the degree of possibility is smaller for most of the prices r ∈ R. This is caused by
the fact that the CBI hypothesis is now modeled in a more cautious way. �

5.4.5 Combination of several rules

Rather than making use of a single possibility rule, the CBI hypothesis can
be expressed by means of a combination (conjunction) of several rules. Suppose
m such rules to be specified. Denoting by δk

s0
the possibility distribution (5.8)

induced by the k-th rule (1 ≤ k ≤ m), the overall prediction is then given by

δs0(r) = δ1
s0

(r) ∨ δ2
s0

(r) ∨ . . . ∨ δm
s0

(r). (5.45)

The disjunctive combination in (5.45) shows that an outcome can be supported by
any observed case in connection with any rule. Notice that each rule might involve
different similarity relations, or different modifications of basic relations. Within
our framework, it seems particularly interesting to compose new measures from
a set of elementary relations (associated with individual attributes) by means of
fuzzy set-based modeling techniques.

Suppose, as in the Example 5.1, that an attribute–value representation is used
in order to characterize cases. That is, let inputs correspond to vectors s =
(a1, . . . , aL) ∈ S = A1 × . . . × AL, where A denotes the domain of the -th
attribute. Moreover, let σ be an elementary similarity relation defined over A.
By making use of logical connectives, the antecedent part of a possibility rule
can then be composed of these elementary measures or modified versions thereof.
Restricting ourselves to the logical connective ∧, we obtain rules of the form

m11(σ1(a1, a
′
1)) ∧ . . . ∧ m1L(σL(aL, a′

L))
m2⇁ σR(r, r′). (5.46)

Such rules can also be expressed as σ′
S

m2⇁ σR, where

σ′
S(s, s′) =

⊗
1≤≤L

m1(σ(a, a
′
)), (5.47)

provided that the elementary similarity relations in (5.47) are commensurate.

Of course, the antecedent part in (5.46) can be generalized such that only some
of the attributes are used, i.e., each rule can concern different attributes. Leaving
the -th attribute out of account can be interpreted in two ways. Firstly, this
attribute might be irrelevant for the similarity of inputs, which is adequately
reflected by m1 ≡ 1. Secondly, the rule might be interpreted as expressing a
ceteris paribus condition, i.e., it might be assumed implicitly that a = a′

. In this
case, m1 should be defined as m1(1) = 1 and m1(x) = 0 for 0 ≤ x < 1.22 For

22 Besides, σ should be separating.
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example, when saying that two cars with similar horsepower have similar prices,
it might be taken for granted that both cars have the same type of aspiration
(standard or turbo).

Suppose that m possibility rules have been defined by using the same modifier
m2. Moreover, let σk

S (1 ≤ k ≤ m) denote the (aggregated) measure (5.47) asso-
ciated with the antecedent part of the k-th rule. Thus, the rules specify different
conditions (in the form of conjunctions of similarity relations between attributes)
which allow for drawing the same conclusion. The m individual rules are then
equivalent to one (aggregated) rule of the form σS

m2⇁ σR, where

σS(s, s′) =
⊕

1≤k≤m

σk
S(s, s′).

That is, the antecedent part of the aggregated rule corresponds to the disjunction
of the antecedent parts of the individual rules.

Example 5.7. Reconsider Example 5.1 and let the following rules be given: (1)
Cars with very similar horsepower possibly have similar prices. (2) Cars with
similar engine-size and approximately similar peak-rpm (revolutions per minute)
possibly have similar prices. Making use of the similarity measures σeng(x, x′) =
max{1−|x−x′|/100, 0} and σrpm(x, x′) = max{1−|x−x′|/1000, 0}, respectively,
and modeling the effect of the linguistic hedge “approximately” by means of
x �→ √

x, the two rules yield the two predictions shown in Fig. 5.5. The overall
prediction associated with the conjunction of the rules (i.e., the disjunction of the
two premises) corresponds to the pointwise maximum of these distributions. �

Of course, different rules (5.46) will generally use different modifiers m2. They
should then be consistent in the sense that a strengthening of the antecedent

Fig. 5.5. Prediction (5.42) of the price of a car with horsepower 100, engine-size 110 and peak-rpm
5500, induced by two different rules.
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part of a rule does not entail a reduction of extrapolation. Thus, consider two
rules (5.46) modeled by means of modifiers m1

1, m
1
2 and m2

1, m
2
2 (1 ≤  ≤ L),

respectively. The first rule is obviously redundant with respect to the second one
if

∀ 1 ≤  ≤ L : m1
1 ≤ m2

1 and m1
2 ≤ m2

2.

In fact, we then have δ1
s0

≤ δ2
s0

for the possibility distributions induced by these
two rules in connection with any observed case.

Consider the following rules as an example: (1) For cars with similar horsepower
it is completely possible that the associated prices are similar. (2) For cars with
very similar horsepower it is more or less possible that the associated prices
are similar. This example reveals that redundancy always emerges in connection
with somewhat conflicting rules (a stronger condition entails a weaker conclusion).
Therefore, redundant rules should be avoided.

5.4.6 Locally restricted extrapolation

So far, the possibility rules which define a model of the CBI hypothesis have been
used globally in the sense that they apply to all cases of the input-output space
S × R. Needless to say, the CBI hypothesis does not necessarily apply equally
well to all parts of this space. That is to say, the degree of extrapolation of a case
〈s, r〉 that can be justified by the CBI hypothesis might depend on the region to
which it belongs.

In the Automobile Database database (cf. Example 5.1), for instance, the
variance of the price is smaller for cars with aspiration “turbo” than for cars with
aspiration “standard” (even though the average price is higher for the former).
Thus, the hypothesis that similar cars possibly have similar prices seems to apply
better to turbo than to standard cars. Likewise, a statistical analysis suggests
that the variation of the price is an increasing function of the size of cars. Again,
the smaller a car is, the better the CBI hypothesis seems to apply (at least if
the similarity of two lengths x, x′ is a function of |x − x′|). Consequently, the
extrapolation of case-based information should be larger for small cars than for
large cars.

In order to adapt the formalization of the CBI hypothesis one might think of
defining different rules for different regions of the input space. Restricting the
application of a rule to a certain (fuzzy) range of this space can be accomplished
by means of a fuzzy partition F of S. The condition part of a rule then appears
in the form

F (s) ∧ F (s′) ∧ m1(σS(s, s′)), (5.48)

where the fuzzy set F ∈ F is identified by its membership function F : S −→
[0, 1]. The antecedent (5.48) can be associated with an extended possibility rule
“the more both inputs are in F and the more similar they are, the more possible
it is that the related outcomes are similar.” This way, one might express, for
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instance, that “it is completely possible that small cars of similar size have similar
prices” and “it is more or less possible that large cars of similar size have similar
prices.” The fuzzy set F in (5.48) is then given by the set of small cars and large
cars, respectively. Note that the attribute “aspiration” defines a crisp rather than
a fuzzy partition.

On the basis of (5.48), the inference scheme (5.42) becomes

δs0(r) = max
1≤ı≤n

min
{
F (s0) , F (sı), (5.49)

m2 (min {m1(σS(s0, sı)), σR(r, rı)})
}

.

Note that δs0 ≡ 0 as soon as F (s) = 0, thus expressing that a rule has no effect
outside its region of applicability. Besides, it is worth mentioning that (5.49)
is closely related to ideas of discounting as discussed in previous sections. This
becomes especially apparent when writing (5.49) in the form

δs0(r) = max
1≤ı≤n

m2ı(xı), (5.50)

with xı = min{m1(σS(s0, sı)), σR(r, rı)} and m2ı : x �→ min{F (s0), F (sı), m2(x)}.
In fact, (5.50) shows that the original support provided by the cases is discounted
by means of the modifiers m2ı. As opposed to (5.44), however, this is not realized
by using a constant factor λ. Rather, the discounting of a rule now depends on
the inputs s and sı to which it is applied.

5.4.7 Incorporation of background knowledge

Our fuzzy set-based framework is also well-suited for incorporating background
knowledge of more general nature (i.e., not necessarily related to similarity). This
becomes especially apparent if such knowledge is also expressed in terms of fuzzy
rules. For instance, an expert might be willing to agree that “a price of slightly
more than $40,000 for a car with horsepower of approximately 200 is completely
possible.” This can be formalized as a possibility rule A ⇁ B, where A and B
model the fuzzy sets of “approximately 200” and “slightly more than $40,000.”
Such a rule can simply be added to the rule base induced by the memory of cases
(cf. Section 5.4.3), thereby supplementing the “empirical” evidence which comes
from observed cases.

A special type of (rule-based) background knowledge can be obtained by speci-
fying “fictitious cases”. One might specify, for instance, a fictitious car by means
of some attribute values (which can be uncertain or vague) and then ask an ex-
pert for a typical (or possible) price. The fictitious observation thus defined can
principally be treated in the same way as an observed one. This type of reasoning
provides a convenient way of filling up sparse memories. It is also interesting from
a knowledge acquisition point of view. Indeed, from a user (expert) perspective
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it might appear less difficult to give some specific examples (e.g., by estimating
prices of hypothetical cars) than to specify universally valid rules.

Apart from fuzzy rules, more general types of constraints can be used for ex-
pressing background knowledge. A nice example is the convexity constraint (5.41)
according to which intermediary predictions are not less possible than more ex-
treme ones. In order to satisfy such a constraint, a possibility distribution δs0 can
simply be replaced by its convex hull (see (5.31) in Section 5.3.7).

5.5 Experimental studies

5.5.1 Preliminaries

This section presents some experimental studies providing evidence for the excel-
lent practical performance of the possibilistic approach to case-based inference.
More specifically, we shall focus on simple classification problems and investigate
the PossIBL algorithm as introduced in Section 5.4.2. As in previous chapters,
however, we would like to emphasize that our experiments are not meant as an
exhaustive comparative study covering several competing learning algorithms –
and showing that PossIBL is superior to all of its competitors. In fact, one
should realize that the primary motivation underlying PossIBL (or, more gener-
ally, PoCBI) is not another ε-improvement in classification accuracy but rather
the enrichment of instance-based learning (case-based reasoning) by concepts of
possibilistic reasoning (though the latter does clearly not exclude the former).
Besides, one should keep the following points in mind. Firstly, PossIBL has not
been developed within a statistical framework. Thus, the type of problems for
which PossIBL is most suitable (see the example in Section 5.3.7) is perhaps
not represented in the best way by standard (public) data sets commonly used
for testing performance. Secondly, an important aspect of the possibilistic ap-
proach is the one of knowledge representation. But this aspect is neglected if – as
in experimental studies – only the correctness of the final decision (classification
accuracy) counts, not the estimated distribution. Thirdly, regarding other IBL

algorithms, a comparison might appear dubious since PossIBL – in its most gen-
eral form – is an extension of IBL and hence covers specific algorithms such as
kNN as special cases.

Due to these reasons, we have decided to apply a basic version of PossIBL to
several data sets from the UCI repository23 and to employ the kNN (resp. IB1)
algorithm as a reference (we use kNN with k = 1, 3, 5 and the weighted 5NN rule
with weight function (2.9)). Thus, we have refrained from tuning various degrees
of freedom in order to optimize the performance of PossIBL (an exception is
only the experimental study presented in Section 5.5.4). Instead, we have applied

23 http://www.ics.uci.edu/˜mlearn.
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the learning scheme from Section 5.4.2 with the original max–min version (5.8).
The function mı in (5.34) was defined as t �→ exp(−γı (1− t)), where γı ≥ 0 is the
discounting rate of the ı-th case. The constant β in (5.35) was taken as 0.8.24 In
order to avoid difficulties due to the different handling of non-nominal class labels
and the definition of similarity measures for non-numeric attributes, we have
restricted ourselves to data sets for which all predictive attributes are numeric
and for which the class label is defined on a nominal scale. The similarity σS is
always defined as 1 minus the normalized Euclidean distance and the similarity
σR is given by (5.11).

5.5.2 Classification accuracy

The experiments in this section were performed as follows: In a single simulation
run, the data set is divided at random into a training set (the memory M) and a
test set, and the discounting rates γı are adapted to the training set. A decision is
then derived for each element of the test set by extrapolating the training set (but
without adapting the discounting rates or expanding the memory any further),
and the percentage of correct decisions is determined. Statistics are obtained by
means of repeated simulation runs.

Algorithm mean std. min max 0.1–frac. 0.9–frac.
PossIBL 0.8776 0.0148 0.8215 0.9230 0.8584 0.8984
1NN 0.7837 0.0161 0.7323 0.8369 0.7630 0.8030
3NN 0.8117 0.0165 0.7630 0.8707 0.7907 0.8338
5NN 0.8492 0.0155 0.8030 0.8923 0.8307 0.8707
w5NN 0.7864 0.0164 0.7294 0.8428 0.7655 0.8067

Table 5.1. Results for the Balance Scale Database (625 observations, 4 predictive attributes, three
classes, training set of size 300, 1, 000 simulation runs).

Algorithm mean std. min max 0.1–frac. 0.9–frac.
PossIBL 0.9574 0.0204 0.8400 1.0000 0.9333 0.9733
1NN 0.9492 0.0196 0.8400 1.0000 0.9200 0.9733
3NN 0.9554 0.0175 0.8666 1.0000 0.9333 0.9733
5NN 0.9586 0.0181 0.8533 1.0000 0.9333 0.9866
w5NN 0.9561 0.0187 0.8400 1.0000 0.9333 0.9733

Table 5.2. Results for the Iris Plant Database (150 observations, 4 predictive attributes, three
classes, training set of size 75, 10, 000 simulation runs).

24 Variations of this parameter had no significant influence.
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Algorithm mean std. min max 0.1–frac. 0.9–frac.
PossIBL 0.6841 0.0419 0.5300 0.8400 0.6300 0.7400
1NN 0.6870 0.0410 0.5200 0.8200 0.6300 0.7400
3NN 0.6441 0.0421 0.4800 0.8100 0.5900 0.7000
5NN 0.6277 0.0412 0.4800 0.7800 0.5700 0.6800
w5NN 0.6777 0.0414 0.5000 0.8300 0.6200 0.7300

Table 5.3. Results for the Glass Identification Database (214 observations, 9 predictive attributes,
seven classes, training set of size 100, 10, 000 simulation runs).

Algorithm mean std. min max 0.1–frac. 0.9–frac.
PossIBL 0.7096 0.0190 0.6421 0.7711 0.6868 0.7316
1NN 0.6707 0.0199 0.6132 0.7289 0.6447 0.6947
3NN 0.6999 0.0183 0.6447 0.7500 0.6763 0.7237
5NN 0.7190 0.0183 0.6553 0.7684 0.6947 0.7421
w5NN 0.6948 0.0188 0.6421 0.7474 0.6684 0.7184

Table 5.4. Results for the Pima Indians Diabetes Database (768 observations, 8 predictive at-
tributes, two classes, training set of size 380, 1, 000 simulation runs).

Algorithm mean std. min max 0.1–frac. 0.9–frac.
PossIBL 0.7148 0.0409 0.5506 0.8652 0.6629 0.7640
1NN 0.7163 0.0408 0.5843 0.8652 0.6629 0.7640
3NN 0.6884 0.0407 0.5506 0.8315 0.6404 0.7416
5NN 0.6940 0.0392 0.5730 0.8090 0.6404 0.7416
w5NN 0.7031 0.0404 0.5730 0.8315 0.6517 0.7528

Table 5.5. Results for the Wine Recognition Data (178 observations, 13 predictive attributes, three
classes, training set of size 89, 1, 000 simulation runs).

Results are summarized in Tables 5.5.2–5.5.2 by means of statistics for the per-
centage of correct classifications (mean, standard deviation, minimum, maximum,
0.1–fractile, 0.9–fractile). The experiments show that PossIBL achieves compar-
atively good results and is always among the best algorithms. Thus, it is valid to
conclude that even a very basic version of PossIBL performs at least as well as
the basic IBL (NN) algorithms. In other words, possibilistic IBL is in no way
inferior to “standard” IBL as a basis for further improvements and sophisticated
learning algorithms.

Due to the special setting of our experimental studies, especially the choice of max
as an aggregation operator and the use of a {0, 1}-valued similarity measure over
R, one might wonder how to explain the different performance of PossIBL and
the NN classifiers. In fact, in Section 5.3.6 it was argued that the possibilistic NN

decision derived from (5.8) is actually equivalent to the 1NN rule when applying
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the maximum operator. It should hence be recalled that PossIBL, as employed
in the above experiments, involves an adaptation of the (absolute) possibilistic
support that comes from stored cases, which in essence is responsible for the
differences.

A very interesting finding is the following: In the above examples, classification
performance of the kNN algorithm is generally an increasing or a decreasing
function of k. PossIBL, on the other hand, performs very well irrespective of
the direction of that tendency, i.e., regardless of whether a smaller or a larger
neighborhood should be called in. This can be taken as an indication of the
robustness of the possibilistic approach.

5.5.3 Statistical assumptions and robustness

Let us elaborate a little more closely on the aspect of robustness. Above, it has
been claimed that the possibilistic approach is more robust than other methods
against violations of statistical assumptions of independence (see page 185). This
is clearly true for the possibilistic estimation δs0 the informational content of
which remains meaningful even if data is not independent. Here, we would like to
provide experimental evidence for the supposition that the possibilistic approach
can indeed be advantageous from both, an estimation and a decision making point
of view, if the sample is not fully representative of the population.

The experimental setup is as follows: The instance space is defined by S = R,
the set of class labels is R = {−1, +1}, the class probabilities are 1/2, the con-
ditional probability density of the input s given the outcome r is normal with
standard deviation 1 and mean r. In a single simulation run, a random sample
of size n = 20 is generated, using class-probabilities of 1/2 − α and 1/2 + α, re-
spectively (0 < α ≤ 1/2). Based on the resulting training set, which is not “fully
representative” in the sense of [78], predictions are derived for 10 new instances.
These instances, however, are generated with the true class-probabilities of 1/2.
For a fixed value α and a fixed prediction method, a misclassification rate f(α)
is derived by averaging over 10,000 simulation runs.

Fig. 5.6 shows the misclassification rates for several methods. As was to be ex-
pected, f(·) is an increasing function of the sample bias α. The best results are
of course obtained if the class-probabilities of the training set and the test set
coincide, that is for α = 0. The figure also reveals that the sensitivity of the
kNN classifier increases with k. On the one hand, it is true that a larger k leads
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to better results for α close to 0. On the other hand, the performance decreases
more quickly than for smaller k, and k = 1 is to be preferred for α close to 1/2.
This finding can also be grasped intuitively: The larger k, the more the kNN rule
relies on frequency information, and the more it is affected if this information is
misleading.

Fig. 5.6. Misclassification rates of kNN methods (left) and PossIBL (right, in comparison with 1NN).

Apart from kNN methods, we have tested PossIBL with ⊕ = ⊕P . The similarity
measure σS was defined by the triangle (x, y) �→ max{0, 1 − |x − y|/0.8}. Inter-
estingly enough, this approach yields the most satisfactory results. For α close
to 0 it is almost as good as the kNN rules with k > 1, and for α close to 1/2 it
equals the 1NN rule. Thus, the combination mode as realized by the probabilistic
sum (α, β) �→ α + β − αβ turns out to be reasonable under the conditions of this
experiment. As already explained in Section 5.3, this operator produces a kind
of saturation effect: It takes frequency information into account, but only to a
limited extent (the larger the current support already is, the smaller the absolute
increase due to a new observation). Thus, it is indeed in-between the 1NN rule
and the kNN rules for k > 1. Intuitively, this explains our findings in the above
experiment, especially that PossIBL is more robust against the sample bias than
kNN rules for k > 1.

Needless to say, what we considered here is only a particular setup in which
PossIBL appears to be superior to standard kNN with regard to robustness.
As robustness is a very multi-faceted aspect, one should not overlook that our
results are preliminary and of limited significance.

5.5.4 Variation of the aggregation operator

An interesting question concerns the dependence of PossIBL’s performance on
the specification of the aggregation operator ⊕ in (5.13). To get a first idea
of this dependence, we have performed the same experiments as described in
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Section 5.5.2 above. Now, however, we have tested PossIBL with different t-
conorms.

More precisely, we have specified a t-conorm by means of the parameter ρ in
(5.18), i.e., we have taken different aggregation operators from the Frank-family
of t-conorms. PossIBL was then applied to each data set with different operators
⊕ρ. The results are presented in Appendix E. Each figure shows the average
classification performance of PossIBL (over 100 experiments) as a function of
the parameter ρ. Please note the different scaling of the axes for the five data
sets.

Confirming our previous considerations, the results show that in general different
t-conorms are optimal for different applications. Still, PossIBL’s performance is
quite robust toward the variation of the aggregation operator. That is, classifica-
tion accuracy does not drop off too much when choosing a suboptimal operator.

A very interesting finding is the observation that the parameter ρ = 0 and, hence,
the maximum operator is optimal if simultaneously the 1NN classifier performs
well in comparison with other kNN classifiers. If this is not the case as, e.g., for
the Balance Scale and the Pima Indians Diabetes data, parameters ρ > 0
achieve better results. This finding is not astonishing and can also be grasped
intuitively. In fact, it was already mentioned that PossIBL with ⊕ = ⊕0 = max
is closely related to the 1NN classifier, as both methods do fully concentrate on
the most relevant information. As opposed to this, aggregation operators ⊕ = ⊕ρ

with ρ > 0 combine the information from several neighbors in much the same
way as do kNN classifiers with k > 1.

5.5.5 Representation of uncertainty

It was already mentioned that an important aspect of PossIBL concerns the
representation of uncertainty. The fact that PossIBL can adequately represent
the ignorance related to a decision problem is easily understood and does not
call for empirical validation. To get a first idea of PossIBL’s ability to represent
ambiguity we have derived approximations to two characteristic quantities, again
using the experimental setup as described in Section 5.5.1.

Let D1 denote the expected difference (margin) between the possibility degree of
the predicted label rest

0 and the possibility degree of the second best label, given
that the prediction is correct:

D1
df
= δs0 (r0) − max

r∈R,r =r0

δs0(r). (5.51)

Moreover, let D0 denote the expected difference between the possibility degree
of the predicted label rest

0 and the possibility degree of the actually true label r0,
given that r0 "= rest

0 :

D0
df
= δs0

(
rest
s0

)
− δs0 (rs0) . (5.52)
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Ideally, D0 is small and D1 is large: Wrong decisions are accompanied by a large
degree of uncertainty, as reflected by a comparatively large support of the actually
correct label. As opposed to this, correct decisions appear reliable, as reflected by
low possibility degrees assigned to all labels r "= r0.

Table 5.5.5 shows approximations to the expected values D0 and D1, namely
averages over 1, 000 experiments. As can be seen, the reliability of a prediction is
reflected very well by the possibilistic estimations.

Dataset D0 D1

Balance Scale 0,094 0,529
Iris Plant 0,194 0,693
Glass Identification 0,181 0,401
Pima Indians Diabetes 0,211 0,492
Wine Recognition 0,226 0,721

Table 5.6. Statistics (5.51) and (5.52) for PossIBL.

5.6 Calibration of CBI models

The methodological framework introduced in previous sections provides a broad
spectrum of techniques for building a CBI model. Needless to say, it would be
unrealistic to expect a human expert using these (linguistic) modeling techniques
to come up with precise mathematical formalizations of related fuzzy concepts.
Instead, a more reasonable approach is to let the expert specify the coarse struc-
ture of a model, in our case the fuzzy rules modeling the CBI hypothesis, and to
determine the ultimate model in a second step by adapting the expert model to
the observed data. This is to some extent comparable, say, to graphical modeling
techniques such as Bayesian networks, where the user specifies the structure of the
network (i.e., the qualitative part of the model), and the (conditional) probability
distributions (i.e., the quantitative part) is learned from data.

In Section 5.4.2, we have already presented a learning scheme for adapting a
possibilistic model to the application at hand, albeit for a very particular case
(namely PossIBL, our possibilistic variant of IBL). This section is meant to
discuss model calibration in more general terms, including the determination of
similarity measures and modifier functions. More specifically, we consider the
problem of determining modifiers m1 and similarity measures σS and σR in a set
of rules of the form m1◦σS ⇁ σR. Each of these rules induces a related possibility
distribution (5.7) or, when using aggregation operators other than max and min,
the generalized version

(s, r) �→
⊕

1≤ı≤n

m1(σS(s, sı)) ⊗ σR(r, rı). (5.53)
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The overall distribution δC : S×R −→ [0, 1], considered as a lower approximation
of the relation ϕ in (5.4), is given by the union (pointwise maximum) of these
distributions.

The basic idea is to proceed from similarity measures and modifiers which are
specified in the form of parameterized functions. For instance, the modifier asso-
ciated with the linguistic hedge “very” might be specified by the function x �→ xα

with α > 1. Likewise, the similarity of horsepowers, σhp, might be given by the
function

(x, x′) �→ max

{
1 − |x − x′|

M
, 0

}
, (5.54)

where M plays the role of a parameter (cf. Example 5.1). All these parameters can
be combined into one vector θ which determines the CBI model and, hence, has
a strong influence on the generalization beyond (via extrapolation of) observed
cases. In this sense, it plays a role somewhat similar to, e.g., the smoothing
parameter in kernel-based estimation of probability density functions.

In order to determine θ and, hence, a concrete CBI model from the memory M
of observed cases, a kind of optimization criterion is needed. A reasonable idea is
to minimize some distance, such as∫

C
(δC(c | θ) − δϕ(c))2 dc, (5.55)

between the estimated distribution δC(· | θ) and the (true) {0, 1}-valued distribu-
tion δϕ defined by δϕ(c) = 1 ⇔ c ∈ ϕ.

This is quite comparable with the determination of the kernel width or smooth-
ing parameter h in kernel-based density estimation, where an underlying density
function φ is estimated by

φh : x �→ 1

n

n∑
ı=1

κh (x − xı) =
1

n

n∑
ı=1

κ

(
x − xı

h

)
, (5.56)

with κ being the kernel function.25 The smoothing parameter h has an important
effect on the accuracy of the approximation (5.56). It plays a role somewhat
similar to the bin-width of histograms. One way of determining this parameter is
to minimize the integrated squared error

ISE(h) =

∫
(φ(x) − φh(x))2 dx (5.57)

between the true density φ and the estimation φh.

Unfortunately, (5.57) cannot be derived since the true density φ is unknown,
and the same remark of course also applies to (5.55), where πϕ(c) is not known

25 Typical examples of κ include the Parzen window u �→ I[−1/2,1/2]m [289] and the normal kernel, the
latter being defined as the density of the (multivariate) standard normal distribution.
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for all c ∈ C. A possible way out is to replace the true approximation error by
an empirical error, namely the error for the observed cases. This can be done
by means of a (leave-one-out) cross validation procedure which, in the case of
kernel-based density estimation, approximates the integral by a weighted sum
and replaces the density φ by a further estimation φ̂ [185]. This leads to the
minimization of

n∑
ı=1

(
φ̂h(xı) − φh(xı)

)2

, (5.58)

where φ̂h(xı) denotes the estimated (cross validation) density for the ı-th obser-
vation xı. Again, this value is obtained by means of a kernel-based estimation
(using h as a smoothing parameter). As opposed to the derivation of φh(xı), how-
ever, this estimation leaves the point xı itself out of account, i.e., it uses only the
observations {x1, . . . , xı−1, xı+1, . . . , xn}.
The same idea can also be applied to (5.55). In this case, we do not even have to
estimate the values δϕ(cı) since δϕ(cı) = 1 holds true for each observation cı ∈ M.
However, by restricting ourselves to the observed cases, the minimization problem
becomes ill-posed. In fact, a trivial solution to the problem of minimizing

∑
c∈M

(δC(c | θ) − δϕ(c))2 (5.59)

is given by δC(· | θ) ≡ 1. This simply means to choose the parameter θ such as to
maximize the extrapolation of cases, a hardly convincing result.

In this connection, recall the problem that a possibilistic prediction δC can princi-
pally not be “falsified” (cf. Section 5.4.2): The non-support of an actually observed
case can be justified by the fact that no cases have (as yet) been observed which
are similar enough. Thus, a small value δC(c | θ) is not necessarily a defect of the
model, i.e., it does not necessarily indicate a poor choice of the parameter θ.
(Predicted possibility degrees are only lower bounds, and low degrees are quite
natural if the memory M does not contain many cases similar to c!) Moreover, it
is hardly possible to object to the support of a yet unobserved case since it would
require knowledge about the non-existence of that case (which is of course not
available). As can be seen, the model based on possibility rules only indicates
which cases are (provably) possible. It does not, however, point to those cases
which appear impossible. In other words, the possibilistic model merely expresses
the support but not the exclusion of cases. This contrasts with a probabilistic
approach, where an event cannot be supported without (partly) excluding its
complement at the same time.

Fortunately, as already pointed out in Sections 5.3.3 and 5.4.2, the (partial) ex-
clusion of cases according to the CBI principle can be realized by means of
a complementary type of extrapolation principle induced by a different sort of
fuzzy rule, called certainty rule. The latter entails the distribution
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(s, r) �→
⊗

1≤ı≤n

(1 − σS(s, sı)) ⊕ σR(r, rı) (5.60)

which actually represents upper bounds and thus defines the counterpart to (5.53).
The overall prediction πC, associated with a set of rules of that type, is defined by
the intersection (pointwise minimum) of the distributions (5.60). As can be seen,
a certainty rule reduces the possibility of hypothetical cases which are somehow
in conflict with observed cases, in the sense that the inputs are similar but the
outcomes are rather different.

Example 5.8. Reconsider Example 5.1 with a case (100, 15000), i.e., a car with
horsepower 100 and price $15,000. In connection with the similar horsepower–
similar price hypothesis and the possibility rule model (5.53), this case (partly)
supports the case (110, 16000) which has a similar horsepower and a similar
price. According to the certainty rule model (5.60), it (partly) excludes the case
(110, 5000) which has a similar horsepower but a rather different price. Observe
that the possibility rule model will generally say little about the case (110, 5000),
as expressed by a small lower possibility bound. Likewise, the certainty rule model
has not much to say about the car (110, 16000) to which it assigns a large upper
bound. �

In connection with the determination of optimal similarity measures and modi-
fiers, the two models can complement each other in a reasonable way.26 As already
pointed out in Section 5.3.3, the prediction δC derived from (5.53) and the predic-
tion πC obtained from (5.60) might be conflicting in the sense that πC(c) < δC(c)
for a case c. This can happen if c is supported by some observation c1 ∈ M (ac-
cording to the possibility rule model) and, at the same time, excluded by another
observation c2 ∈ M (according to the certainty rule model). A situation of this
kind indicates a defect of the underlying CBI model (the lower possibility bound
is larger than the upper bound). It occurs if a case c is similar to both, c1 and
c2 (in the sense of the similarity measure σS), and if c1 indicates a result which
is quite different (in the sense of σR) from the one suggested by c2. Besides, it
should be noticed that a more or less isolated case c does not involve any conflict,
since δC(c) and πC(c) will be close to 0 and 1, respectively.

Example 5.9. Suppose, for instance, that we have observed the cars c1 =
(50, 5000), c2 = (100, 15000), and c3 = (75, 7000) and that we only distinguish
between similar and dissimilar horsepowers resp. prices:

σS(x, y) =

{
1 if |x − y| ≤ ∆

0 if |x − y| > ∆
,

σR(x, y) =

{
1 if |x − y| ≤ 5000

0 if |x − y| > 5000
.

26 The joint use of lower and upper possibility bounds (derived, respectively, from possibility and
certainty rules) has also been advocated in the context of approximate reasoning [376, 393].
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For ∆ = 30, c1 qualifies the case c3 as being (completely) possible. However, since
σS(75, 100) = 1 as well, c3 is disqualified by c2 at the same time. This suggests
to choose a smaller value for ∆, since otherwise the similar horsepower–similar
price rule becomes invalid. More generally, a memory of n cases 〈sı, rı〉 calls for

∆ ≤ min
1≤ı,≤n, σR(rı,r)=1

|sı − s|

in order to satisfy this rule. As can be seen, the stronger the variability in the
horsepower–price relation is, the more restrictive the similarity between horse-
powers has to be defined. In the more general case where similarity measures are
not {0, 1}-valued, a conflict might appear in a less obvious way, and the degree
to which the CBI hypothesis is satisfied can vary gradually. �

The above example reveals the following effect: The more similar the cases are
made (through the definition of corresponding similarity measures and modifiers),
the stronger is the degree of support resp. exclusion induced by a set of observa-
tions according to (5.53) resp. (5.60) and, hence, the larger the conflict becomes.
Here, we take advantage of this effect in order to define meaningful modifier func-
tions and measures of similarity. In fact, a reasonable optimization criterion is to
find a tradeoff between a principle of appropriate support (of observed cases) and
a consistency principle:

– Observed cases should be supported as much as possible by the other cases in
the memory (e.g., in connection with a leave-one-out cross-validation).

– The conflict between the support and exclusion of these cases should be as small
as possible.

Formally, we define the support attached to a case c ∈ M by

suppθ(c)
df
= δC(c | θ), (5.61)

where δC(· | θ) is derived from M \ {c} according to (5.53) and m1, σS , σR are
determined by the parameter vector θ. Moreover, the conflict associated with the
case c can be defined as

confθ(c)
df
= max{0, δC(c | θ) − πC(c | θ)}, (5.62)
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where πC(c | θ) is the distribution obtained from the certainty rule model (5.60).
Note that, in the case where possibility is interpreted as an ordinal concept, one
might think of replacing the subtraction in (5.62) by a purely qualitative measure
of conflict:

confθ(c) =

{
1 if πC(c | θ) < δC(c | θ)
0 if πC(c | θ) ≥ δC(c | θ) .

The derivation of (5.61) and (5.62) for all cases in the memory yields n degrees of
support and conflict, respectively. The overall support induced by the parameter
θ, supp(θ), can then be obtained by aggregating these values:

supp(θ) = A({suppθ(c) | c ∈ M}) (5.63)

with A being an aggregation function. A measure conf(θ) of conflict can be de-
fined analogously. Finally, an optimal parameter θ is derived as a function of the
support and the conflict thus defined, e.g., by maximizing

supp(θ) − α · conf(θ) (5.64)

for some tradeoff parameter α ≥ 0 or by maximizing supp(θ) under the condition
that conf(θ) ≤ α.

In order to combine the degrees of support (conflict) associated with individual
cases, one might use a simple average as an aggregation function A in (5.63). Al-
ternatively, an aggregation which is more in accordance with a qualitative setting
is the Sugeno integral ∫ su

suppθ dµ = sup
α≥0

min{α, µ(Fα)}, (5.65)

where Fα = {c ∈ M| suppθ(c) ≥ α} for 0 ≤ α ≤ 1. The measure µ in (5.65) can
be taken as the counting measure, i.e., µ(A) = |A|/|M| for all A ⊆ M.

Fig. 5.7. Support (solid line) and conflict as a function of the parameter M which defines the similarity
measure for the attribute horsepower.
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Example 5.10. Consider as a simple example the choice of the parameter M
in (5.54) which defines the similarity measure σhp in connection with the similar
horsepower–similar price hypothesis (using the same function with M = 3000
for the similarity σR). Fig. 5.7 shows supp(M) and conf(M), defined according
to (5.61), (5.62), and the aggregation (5.65) as a function of M . The choice of
α = 3/4 in (5.64) suggests M = 76 as an optimal parameter and leads to the
prediction shown in Fig. 5.8. �

Remark 5.11. The calibration method outlined above can be seen as a general-
ization of related probabilistic approaches. In the latter case, the support and the
exclusion of a value always add up to 1. Therefore, a conflict cannot occur, and
only the principle of correct support remains relevant. Note that this principle
reduces to a principle of maximal support in the possibilistic model, as can be
gathered from (5.59). In the probabilistic case, the correct support corresponds
to the true probability, as expressed by (5.58). �

Let us finally mention that some standard estimation and optimization problems
have to be solved in connection with a concrete application. This concerns, for
example, the question whether all parameters can be identified by the optimiza-
tion criterion. Besides, it should be noted that the method of finding an optimal
CBI model outlined in this section amounts to solving a nonlinear optimization
problem. It might hence be considered critical from the viewpoint of computa-
tional complexity, especially since a new parameter has to be derived each time
the memory changes. One should realize, therefore, that a parameter estimation
is usually not a time-critical problem since it can be solved “off-line.” Note that
the current optimal parameter can serve as a good initial value when using itera-
tive improvement methods. In fact, a small variation of the memory, such as the
adding of a new case, will generally change the optimal parameter but slightly.

Fig. 5.8. Prediction of the price of a car with horsepower 100, where σhp is given by (5.54) with
M = 76.
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5.7 Relations to other fields

This section is meant to explore relationships between the possibilistic approach
to CBI outlined in previous sections (PoCBI) and some related methods. One
can look at PoCBI from different directions. From the viewpoint of statistics and
data analysis, it is formally somewhat similar to non-parametric (kernel-based)
density estimation. However, as was already discussed in Section 5.3.5, it differs in
using possibility theory and similarity instead of probability theory and frequency
as major concepts. The use of fuzzy sets and possibility distributions instead
of (in addition to) probability distributions is just the characteristic property
that PoCBI shares with fuzzy data analysis, the fuzzy set-based counterpart
(extension) to classical data analysis. Some relevant aspects of corresponding
methods will be discussed in Section 5.7.1.

PoCBI combines rule-based and instance-based reasoning techniques: A mem-
ory of cases induces a set of rules and allows CBI to be realized as rule-based
reasoning. Besides, Section 5.4.7 has shown that both techniques can be used in
a complementary way. The combination of case-based and rule-based reasoning
(as well as other hybrid approaches to machine learning) has recently received
considerable attention, and it has already led to several interesting approaches
[14, 61, 89, 174, 175, 246]. A combined approach is particularly advocated by the
complementary merits of the two techniques, namely the suitability for represent-
ing general (background) knowledge of a domain in rule induction and specific
knowledge in the form of observed cases in CBR. An obvious idea, for instance,
is to use a complementary representation in which those cases are stored in the
memory which are exceptions to a set of otherwise valid (default) rules. There
are, however, other possibilities of combining rule induction and case-based rea-
soning, some of which have been realized in the Patdex system [18]. PoCBI

can be considered from both directions. Since relationships between PoCBI and
instance-based learning have already been discussed in Section 5.3.5, this section
shall touch on some aspects in connection with more common approaches to fuzzy
set-based approximate (rule-based) reasoning.

5.7.1 Fuzzy and possibilistic data analysis

The term fuzzy data analysis can have different meanings, depending on whether
the adjective “fuzzy” refers to the observed data itself or to the methods used for
analyzing the data. That is, a main differentiation must be made between the
analysis of somehow uncertain or vague data (e.g., by means of generalized sta-
tistical methods [241]) and the use of fuzzy or possibilistic methods for processing
data that has been observed precisely (e.g., fuzzy clustering of crisp data [32]).
Fuzzy data analysis can also comprise both aspects, of course. It is then con-
cerned with using fuzzy or possibilistic methods for supporting the analysis of
vague data [22].
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In connection with fuzzy data analysis it is important to distinguish between
different types of incomplete knowledge, notably uncertainty and imprecision.
Traditional statistical methods take the first phenomenon into consideration: The
generation of data is modeled as a stochastic process, thus leading to random
(but still precise) observations. The analysis of fuzzy data does not only consider
uncertainty in the generation but also in the observation of data, i.e., it assumes
observations to be afflicted with imprecision. In fact, the latter type of uncertainty,
which must not be confused with randomness, is often present in practice. Firstly,
the observed object itself can be vague in the sense that it might not be possible
to identify or demarcate it exactly. Secondly, the measuring instrument or the
underlying scale might not allow for identifying the (principally well-defined)
object precisely. A standard example is the (linguistic) “value” of a number (which
is exact as such) on a scale of linguistic expressions.

Subsequently, we shall briefly discuss some aspects of PoCBI in the context of
different approaches to fuzzy data analysis. Qualitative data analysis generally
aims at discovering some kind of structure or patterns in the data and, hence, is in
line with desriptive statistics, exploratory data analysis, as well as much of current
research in the emerging field of data mining and knowledge discovery [183].
Corresponding methods, such as (fuzzy) cluster analysis, mainly focus on single
properties of the objects under study and are mainly interested in comparing
the data. As in PoCBI, the concept of similarity thus plays a major role in such
methods. Besides, PoCBI also helps in getting a more precise idea of the data. To
this end, however, it already generalizes beyond the given observations (against
the background of further knowledge), whereas qualitative methods consider these
observations alone. Seen from this perspective, PoCBI might be considered as
an extended form of exploratory or descriptive data analysis.

While qualitative methods focus on individual properties of an object, quantita-
tive analysis is rather concerned with finding (invariant) relations between dif-
ferent features, e.g., by estimating (fuzzy) functional relationships (as supervised
methods in machine learning).

Example 5.12. As a simple example of a quantitative method consider the fit-
ting of a (parameterized) fuzzy set-valued mapping Fθ : R −→ F(R) to a set of
(fuzzy) observations (xk, Yk) ∈ R×F(R) (1 ≤ k ≤ n). This can be accomplished,
e.g., by choosing the (fuzzy) parameter vector θ such that

n∑
k=1

‖Yk − Fθ(xk)‖

is minimized, where ‖ · ‖ is a (metric) distance measure on F(R), the class of
fuzzy subsets of R [86]. A further possibility is to minimize the spread of Fθ

while somehow covering the data, e.g., while satisfying Yk ⊆ Fθ(xk) for all 1 ≤
k ≤ n. The latter type of fuzzy regression analysis amounts to solving a linear
programming problem if Fθ has a certain linear structure. �
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Fuzzy methods like the one in Example 5.12 can be interpreted in different ways.
Firstly, they can be seen as a generalized approximation (resp. interpolation)
method, where scalar observations and functions are replaced by fuzzy set-valued
observations and mappings, respectively. Such methods should basically be un-
derstood as describing the given data, as opposed to inductive statistical methods
which draw conclusions about some underlying process which generates the data.
For instance, the parameter θ in Example 5.12 is chosen such that Fθ fits the data
optimally (e.g., in the sense of minimizing the sum of squared errors). It should
not be interpreted, however, as an estimation of some true (but unknown) pa-
rameter which identifies a data-generating process. Consequently, fuzzy methods
of such kind cannot fall back on a related model in order to make predictions.
Rather, they have to rely on the same kind of assumptions as CBI, namely that
the observations are to some degree representative and that similar outputs are
generated by similar inputs [21].27 It should be observed, however, that the ex-
tent of extrapolation (or interpolation) of outputs is principally not bounded, e.g.,
when fitting a fuzzy mapping to a set of observations and using that mapping for
making predictions [87]. Seen from this perspective, corresponding methods seem
to lack a solid basis for generalizing beyond observed data.

The use of fuzzy sets for modeling imprecision in the observation of (actually
exact) data gives rise to a second interpretation which is related to possibility
theory: A fuzzy set A attaches uncertainty to a crisp object (namely its core)
and a degree of membership A(x) is considered as the possibility of x being the
true (only incorrectly observed) object. This interpretation has motivated the
introduction of possibilistic variables as a counterpart to random variables. The
related idea of a possibilistic generation of data leads to parameter estimation
methods which parallel the maximum likelihood estimator in statistics (by using
the minimum operator instead of the product) [22]. Corresponding methods thus
fall into line with model-based approaches in mathematical statistics. Since each
observation induces a possibility distribution π = A, this type of modeling is
closely related to PoCBI. Still, the underlying semantics is very different. In the
first case, indistinguishability is taken as a necessary evil, and A(x) quantifies
the possibility that the real object, x0, is actually given by x. In the second
case, similarity is exploited as a useful concept for pointing to the existence
of other objects, and π(x) is considered as the plausibility of encountering x
(while knowing the current object x0). As a further difference let us mention
that the ensemble of fuzzy observations (the possibilistic data set) marks the
input in possibilistic data analysis. It is further processed by means of generalized
methods, such as possibilistic linear regression [367] or possibilistic cluster analysis
[191]. In PoCBI, the union of possibility distributions principally corresponds to
the output, whereas the input is given in the form of precise cases.

A third interpretation of fuzzy methods establishes a close connection between
fuzzy sets (fuzzy data) and probability theory and makes use of concepts such

27 Indeed, this assumption is implicitely made when fitting a continuous (fuzzy) mapping.
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as like probabilistic sets [189], fuzzy random variables [241] or random fuzzy sets
[303]. This approach calls for generalizations of classical statistical methods. It
also leads to possibilistic reasoning methods which can be seen as a kind of approx-
imate probabilistic inference. Let us mention the learning of possibilistic networks
from data which is based on a probabilistic interpretation of possibility degrees (in
terms of random sets) as an example [42, 43]. Possibilistic networks emerge from
probabilistic networks (including Bayesian networks [292] and Markov networks
[245]) by using possibility distributions instead of probability measures. This al-
lows one to take uncertainty as well as imprecision into account [41]. Apart from
the probabilistic semantics, they can hence be seen as the possibilistic counterpart
to probabilistic networks in much the same way as PoCBI can be considered as
the possibilistic counterpart to kernel-based density estimation.

Graphical modeling by means of network structures is an example of a model-
based approach which is capable of combining knowledge and data in various
ways, a property which is often emphasized as a major benefit [187]. Typically,
an expert specifies the structure of a network, i.e., the qualitative part, while
the associated (conditional) probability or possibility distributions are learned
from data. Compared with the use of rules (which define the qualitative part of
the model in PoCBI), knowledge hence appears in the form of (in)dependence
relations between variables represented by means of a directed (acyclic) graph.
Besides, the (conditional) probabilities or possibilities, i.e., the quantitative part
of a network, correspond to the similarity measures and modifier functions in
PoCBI, which can be adapted to observed data by means of corresponding learn-
ing method (cf. Section 5.4.2).

In summary, PoCBI has characteristics in common with both, qualitative and
quantitative data analysis. It is close to qualitative approaches in making use of
similarity as a basic concept and in supporting the description of data. Still, it is
also concerned with generalizing and making predictions, a property it shares with
possibilistic approximation or parameter estimation. As opposed to PoCBI, how-
ever, such methods are mostly model-based. Besides, the meaning of a possibility
distribution in PoCBI greatly differs from the interpretation in the methods out-
lined in this section, the latter using such distributions for modeling uncertain or
vague data, parameters or predictions.

5.7.2 Fuzzy set-based approximate reasoning

Fuzzy rule-based modeling and related approximate reasoning techniques are
among the most popular applications of fuzzy set theory. Fuzzy rules have been
used extensively for the linguistic modeling of functional relationships. The main
idea of fuzzy control, for instance, is to simulate a human expert by constructing
a control function from a set of linguistically specified if-then rules. In this con-
text, a rule “if X is A then Y is B” represents (vague) partial knowledge about
the graph of an underlying (control) function and is usually not considered as
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a logical implication. Rather, it defines an (ordered) pair of (fuzzy) data (A,B)
and should be understood in the sense of a possibility-qualifying rule. The union
of fuzzy relations A × B associated with a number of rules defines a fuzzy graph
[418]. It is thought of as a vague approximation of the underlying (control) func-
tion in much the same way as δs0 is interpreted as a (lower) approximation of the
relation ϕ of cases.

Seen from this perspective, PoCBI is close to the interpretation of fuzzy rules
originally outlined by Zadeh [414] and put into practice by Mamdani [259, 258].
Still, a major difference deserves mentioning: A human expert specifying points
of the graph of a function is assumed to have knowledge about absolute values of
that function. By providing similarity-based rules in PoCBI, he rather gives a
description of how these values vary when changing the argument of the function.
For example, an expert might know very little about prices of cars of a certain
manufacturer. Still, his (case-based) experience might tell him that (at least in
general) cars with similar horsepower and similar engine-size have similar prices.
Then, learning about the price of one (typical) car of a certain manufacturer,
he will also have an idea of the price of a similar car (produced by the same
manufacturer).

Mathematically speaking, PoCBI assumes that a human expert can somehow
specify, not a function itself, but the variation or derivative of the function. This
knowledge can then be used for extrapolating observed data in the form of con-
crete values. By instantiating observed cases, PoCBI thus transforms a set of
similarity-based rules into a (larger) set of ordinary fuzzy rules. In other words,
an ordinary rule base is derived from a set of similarity-based rules in connection
with a set of observations. Needless to say, this type of case-based derivation of a
rule base might be interesting not only for CBR itself but also for other domains.
In fuzzy control, for instance, it might reasonably complement other techniques
for learning fuzzy rules (e.g. [2, 386]). In this sense, PoCBI can be seen from
two perspectives. Firstly, as a method which makes use of fuzzy set-based mod-
eling techniques in order to specify a CBR model, i.e., as an application of fuzzy
set (possibility) theory in case-based reasoning. Secondly, as a method which al-
lows one to transform case-based information into a fuzzy rule base, i.e., as an
application of CBR techniques in (rule-based) approximate reasoning.

Of course, if the expert is also able to specify some values of a function it seems
reasonable to combine PoCBI and the approach to approximate reasoning used in
fuzzy control, an idea which has already been discussed in Section 5.4.7. Besides,
it should be mentioned that a rule base thus obtained can be “tuned” in different
ways. For instance, in order to reduce the size of the case base it will often
be reasonable to merge several rules which originate from similar cases, i.e., to
derive one general rule from a number of more specific rules (see, e.g., [406] and
Section 5.4.3).
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5.8 Summary and remarks

Summary

– In this chapter, we have outlined a possibilistic approach to case-based infer-
ence. The basic principle of this approach, referred to as PoCBI, is a kind
of similarity-guided, possibilistic extrapolation of observed cases. According to
this principle, which relies on the CBI hypothesis and which has been formal-
ized within the framework of fuzzy rules, an already encountered case is taken
as evidence for the existence of similar cases. This evidence is expressed in
terms of degrees of possibility assigned to hypothetical cases and thus defines
a possibilistic approximation of an underlying (but only partially observed) set
of potential cases.

– A distinctive feature of PoCBI is the ability to combine knowledge and data in
a flexible way. Even though it can be considered as a case-based method in the
first place, (expert) knowledge still plays an essential role. Firstly, such knowl-
edge is used for controlling the “possibilistic extrapolation” of sample cases,
i.e., the local generalization beyond observed examples. Secondly, general back-
ground knowledge can supplement case-based information when it comes to
making predictions. A prediction in the form of a possibility distribution may
thus result from the combination of several ingredients, namely the observed
cases, the (heuristic) “CBR knowledge” which dictates how to extrapolate the
data, and background knowledge which supplements or modifies the extrapo-
lation.

– One of the basic ideas of our approach is that of exploiting the merits of linguis-
tic modeling techniques in the context of CBR. It does not mean, however, that
a human expert is expected to come up with an optimal model from the start.
Rather, it might be sufficient if he specifies a broad structure in a first step,
including, e.g., the selection and combination of important attributes which
appear together in a rule. A corresponding rule base can then be calibrated
afterwards by means of the adaptation technique proposed in Section 5.6.

– From a learning point of view, the possibilistic approach has much in common
with non-parametric statistical inference (kernel-based density estimation) and
instance-based learning. In fact, the application of possibility theory allows
for realizing a graded version of the similarity-based extrapolation principle
underlying IBL which appears to be very natural and intuitively appealing. We
have presented a detailed comparison of the possibilistic extrapolation principle
and the commonly used approach which can be endowed with a probabilistic
basis. Even though the two methods are based on quite different semantics,
the possibilistic variant (PossIBL) can formally be seen as an extension of
the probabilistic approach. Indeed, it has been shown that the former – at least
in its general form – can mimic the latter. Apart from that, the possibilistic
approach seems to have some advantages:
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From a knowledge representation point of view, a possibilistic (instance-based)
prediction is more expressive than a probabilistic one. Especially, the former is
able to represent the absolute amount of evidential support as well as partial
ignorance, a point which seems to be of major importance in IBL. Further-
more, the interpretation of aggregated degrees of individual support in terms of
(guaranteed) possibility (degrees of confirmation) is generally less critical than
the interpretation in terms of degrees of probability.

Regarding the applicability, the possibilistic approach is more robust and may
thus extend the range of applications. Particularly, it makes no statistical as-
sumptions about the generation of data and less mathematical assumptions
about the structure of the underlying instance space. In fact, it was shown
that PossIBL performs at least as well as standard NN techniques for typical
(real-word) data sets. Beyond that, however, it can also be applied to data that
violates certain statistical assumptions. Also worth mentioning is that the max–
min version of PossIBL can even be applied within a purely ordinal setting.

Finally, the possibilistic method is more flexible and supports several extensions
of IBL. This includes the adaptation of aggregation modes in the combination
of individual degrees of support, the coherent handling of incomplete infor-
mation, and the graded discounting of atypical cases. Moreover, it allows one
to complement the similarity-based extrapolation principle by other inference
procedures.

– PoCBI is also related to possibilistic data analysis. In this regard, it was found
that it combines aspects of qualitative (descriptive, exploratory) and quanti-
tative (inductive) methods and that it can be seen as a kind of extended ex-
ploratory data analysis. The comparison between PoCBI and fuzzy set-based
approximate reasoning has shown that PoCBI applies fuzzy rules at a higher
level. In connection with observed data, a set of such rules induces or, say,
instantiates an “ordinary” (fuzzy) rule base. Thus, case-based and rule-based
reasoning techniques can complement each other in a reasonable way.

Remarks

– The type of possibilistic prediction realized by PoCBI can be used in vari-
ous ways, e.g., as in this chapter for classification or function approximation.
Besides, it can be embedded into more complex reasoning procedures. In the
context of case-based reasoning, for example, PoCBI can support the overall
process of problem solving by bringing a set of potential solutions into focus: By
providing estimations δs0(r) of the possibility that r is the solution (= outcome)
of the new problem (= input) s0, or that r can at least be adapted in a suitable
way, PoCBI allows one to focus on the most promising candidates and, hence,
to improve the efficiency of case-based problem solving. Likewise, a prediction
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in the form of a possibility distribution can provide useful information in the
context of decision making (cf. Chapter 7).

– A case is often characterized by a set of attributes, and a similarity relation is
given for each of these attributes (cf. Section 2.3.3 and Example 5.1). In this
connection, it deserves mentioning that the derivation of a global similarity by
means of an aggregation of individual similarity relations presupposes the in-
dividual measures to be commensurate: Given two measures σ1 and σ2 ranging
on (numeric) scales L1 and L2, respectively, the objects x and y are as similar
as u and v iff the equality σ1(x, y) = σ2(u, v) holds. This remark is particularly
important in connection with ordinal scales (which might even have different
cardinalities). At a formal level, commensurability can also be achieved by map-
ping similarity degrees from different (heterogeneous) scales into one common
scale L before aggregation takes place.

– We have stressed the aspect that a possibilistic CBI model is essentially derived
from the knowledge of an expert, and that data is only used for calibrating the
model. Of course, other approaches which partly rely on user advice in model
building exist as well, but often the user plays a less significant role or intervenes
in a more indirect way. In the memory-based reasoning methodology presented
in [217], for instance, the user can specify causal dependencies between variables
by (partially) determining the structure of a probabilistic network. This network
(eventually in a corrected form) is then used for deriving a similarity-measure
which in turn controls the retrieval of cases (and, hence, the labeling of new
cases in a classification task).

– Note that the possibilistic approximation of the relation ϕ in (5.4) will in gen-
eral not converge toward (the {0, 1}-valued possibility distribution associated
with) ϕ with an increasing sample size. Rather, some hypothetical cases similar
to observed cases will always be supported with a positive degree of similarity
even though they do actually not exist. This problem could be alleviated by
controlling the extent of extrapolation as a function of the sample size.28 This
is comparable to a corresponding adaptation of the smoothing parameter in
kernel-based density estimation. Notice, however, that an adaptation of this
kind is already realized by the calibration of a CBI model (cf. Section 5.6), al-
beit in a more implicit way. Besides, it should be mentioned that an asymptotic
influence of similarity might indeed be reasonable. It makes sense, e.g., if the
sample is not representative and some cases are not accessible to observation
[281].

– The generalization of the kNearest Neighbor algorithm which has been pro-
posed in [84] is also closely related to the possibilistic approach of this chapter.
As already explained in Section 4.9, this approach specifies the unknown class
c0 of a new pattern x0 in terms of a belief function. This belief function is

28 The opinion that the influence of similarity should decrease if the sample size increases was already
held by Carnap in connection with the inductive logic-based modeling of analogical reasoning [60].
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obtained by combining the individual belief functions induced by the neighbors
of x0, where the ı-th neighbor xı specifies c0 by means of a mass distribution
mı such that

mı({cı}) = αı, mı(C) = 1 − αı. (5.66)

Note that the belief structure (5.66) is consonant, which means that it can also
be expressed in terms of a possibility distribution.

The main differences between [84] and PoCBI are as follows: Firstly, the com-
bination of individual pieces of evidence is realized in different ways, namely by
means of a ⊕-aggregation in PoCBI and by means of Dempster’s rule in [84].
Note that the latter assumes the pieces of evidence to be distinct [349] which, as
argued in Chapter 4, might not always be true in the context of classification.

Secondly, as in IBL, the method in [84] does not consider a similarity structure
over the set of outcomes (classes). In fact, an instance only supports the class
to which it belongs. As opposed to this, a case also supports similar outcomes
in PoCBI.

Thirdly, by focusing on classification as a performance task, the method in
[84] has been developed with a specific application in mind and can be seen as
a purely data-driven approach. As has been seen in previous sections, PoCBI

supports the combination of data and domain-specific (expert) knowledge in the
more general context of case-based reasoning. This becomes possible through
the close connection between possibility theory and the theory of fuzzy sets.
In particular, this connection allows one to adapt a possibilistic CBI model by
means of fuzzy set-based (linguistic) modeling techniques.

– When comparing the extrapolation principle of the possibilistic and the proba-
bilistic NN principle (Section 5.3.5) we have emphasized the difference between
absolute and relative support of a case. A similar distinction has also been made
in the context of clustering. In fuzzy clustering, a point is not assigned to one
class in an unequivocal way; rather, it may have a positive degree of member-
ship in several classes. Still, in the classical approach the membership degrees
are forced to sum to 1 [32]. Consequently, these membership degrees must be
interpreted as relative numbers. This constraint (which has a probabilistic fla-
vor) is relaxed in possibilistic clustering [240], where a membership degree does
indeed reflect the (absolute) compatibility of a point with the prototype of a
cluster.

– In the qualitative (max-min) version of PoCBI, the evidential support of a
hypothetical case c basically corresponds to the maximal similarity between
c and an observed case. Interestingly enough, the same value also plays an
important role in a probabilistic model of analogical induction proposed in [281].
This value, which corresponds to the possibility degree (5.7) in our approach, is
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called analogy factor.29 In [281], however, this factor is not directly considered as
a measure of evidence. Rather, it is used for modeling the influence of experience
from similar situations when it comes to updating a degree of probability (of
occurrence) associated with c.

29 More precisely, it is qualified as an existential analogy factor. An enumerative factor which depends
on the similarity of c, not only to the nearest neighbor, but to all observed cases is considered as an
alternative.




