
3. Constraint-Based Modeling of Case-Based

Inference

In this chapter, we adopt a constraint-based view of the CBI hypothesis, accord-
ing to which the similarity of inputs imposes a constraint on the similarity of
associated outcomes in the form of a lower bound. A related inference mechanism
then allows for realizing CBI as a kind of constraint propagation. We also discuss
representational issues and algorithms for putting the idea of learning within this
framework into action. The chapter is organized as follows: Section 3.1 introduces
the aforementioned formalization of the CBI hypothesis. A case-based inference
scheme which emerges quite naturally from this formalization is proposed in Sec-
tion 3.2 and further developed in Section 3.3. Case-based learning is discussed
in Section 3.4. In Section 3.5, some applications of case-based inference in the
context of statistics are outlined. The chapter concludes with a brief summary
and some complementary remarks in Section 3.6.

3.1 Basic concepts

3.1.1 Similarity profiles and hypotheses

Proceeding from the framework introduced in Section 2.4, the system under con-
sideration can be thought of as the triple (S,R, ϕ).1 The (unknown) functional
relation ϕ completely determines the structure of this system at the instance
level, whereas a memory of observed cases provides only partial information. In
connection with CBI, we are interested in utilizing the additional information
provided by a CBI setup Σ for deriving a corresponding characterization of the
system at the similarity level. This additional information is mainly contained in
the similarity measures.

Definition 3.1 (similarity profile). Consider a CBI setup Σ. The function
hΣ : DS −→ [0, 1] defined by

hΣ(x)
df
= inf

s,s′∈S, σS(s,s′)=x
σR(ϕ(s), ϕ(s′))

is called the similarity profile of Σ. �
1 This is in agreement with general systems theory, where an abstract system is defined as a relation

on a set [228]. It should also be mentioned that this mathematical structure, even though formally
very simple, is general enough for modeling any kind of “real” system.
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60 3. Constraint-Based Modeling of Case-Based Inference

The similarity profile hΣ is the “fingerprint” of the system (S,R, ϕ) at the simi-
larity level and (partly) defines the similarity structure of the setup Σ. Just like
ϕ determines dependencies at the instance level, hΣ depicts relations between de-
grees of similarity: Given the similarity of two inputs, it provides a lower bound
to the similarity of the respective outcomes. It hence conveys a precise idea of the
extent to which the application at hand actually meets the CBI hypothesis, i.e, it
can be interpreted as a (multi-dimensional) quantification of the degree to which
the CBI hypothesis holds true.2 In fact, the stronger the similarity structure of
(S,R, ϕ) is developed, the more constraining the similarity profile will be. Note
that the domain and the codomain of hΣ are one-dimensional, whereas S and R
are generally of higher dimension. Thus, a similarity profile represents knowledge
about the system structure ϕ in a condensed form. (We will return to the relation
between hΣ and ϕ in Section 3.2.)

Needless to say, the similarity profile of a CBI setup will generally be unknown.
This leads us to introduce the related concept of a similarity hypothesis.

Definition 3.2 (similarity hypothesis). A similarity hypothesis is identified
by a function h : [0, 1] −→ [0, 1] (and similarity measures σS , σR).3 The intended
meaning of the hypothesis h (or, more precisely, the hypothesis (h, σS , σR)) is the
assumption that

∀ s, s′ ∈ S : (σS(s, s′) = x) ⇒ (σR(ϕ(s), ϕ(s′)) ≥ h(x)) . (3.1)

A hypothesis h is called stronger than a hypothesis h′ if h′ ≤ h and h "≤ h′. Let Σ
be a CBI setup with similarity profile hΣ. We say that Σ satisfies the hypothesis
h, or that h is admissible, if h(x) ≤ hΣ(x) for all x ∈ DS . �

A similarity hypothesis h is thought of as an approximation of a similarity profile
hΣ. It thus defines a formal model of the CBI hypothesis for the application at
hand, as represented by the setup Σ. In Section 2.4, it has already been mentioned
that different types of hypotheses might be of different expressive power. This re-
mark becomes more obvious now. Since a similarity profile hΣ is a condensed rep-
resentation of ϕ, a similarity hypothesis h will generally be less constraining than
a hypothesis which is directly related to ϕ, that is, an approximation ϕ̂ : S −→ R
of ϕ. Yet, a similarity profile has a relatively simple structure which facilitates
the formulation, derivation, or adaptation of hypotheses (cf. Section 3.4).

A similarity hypothesis can originate from different sources. Firstly, it might ex-
press a purely heuristic quantification of the CBI assumption. In this case, it is
often expressed as “the more similar two inputs are, the more similar the corre-
sponding outputs are.” The concept of a similarity profile, as introduced above,

2 There are obvious ways of deriving a one-dimensional quantification, for example a (weighted) mean
of the values {hΣ(x) |x ∈ DS}.

3 Note that is would be sufficient to define a hypothesis on DS . Quite often, however, it will indeed
appear more convenient to let dom(h) = [0, 1], especially if |DS | is large. Otherwise, dom(h) = [0, 1]
can still be assumed without loss of generality, simply by letting h(x) = 1 for all x 	∈ DS .
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reveals that this kind of formulation implicitly makes a stronger assumption than
the simple “similar inputs imply similar outputs” hypothesis. Namely, it sug-
gests the function hΣ associated with a setup Σ to be increasing, or at least
non-decreasing. More precisely, this formulation may be understood as “the more
similar two inputs are, the larger is the lower similarity bound of the associated
outcomes.” Therefore, we call h a strict hypothesis if it is a non-decreasing func-
tion. Moreover, we say that a setup Σ satisfies the CBI hypothesis in the strict
sense if hΣ is non-decreasing.

Secondly, it is a natural idea to consider the acquisition of hypotheses as a problem
of (empirical) learning, i.e., to learn hypotheses from observed (pairs of) cases.
This way, CBI combines instance-based learning, which essentially corresponds to
the collection of cases, and model-based learning, namely the learning of similarity
hypotheses. The assumption that the CBI hypothesis applies in a strict sense
serves an (additional) inductive bias in connection with the model-based aspect
of learning. In fact, since it suffices to consider non-decreasing functions h as
candidates for approximating hΣ, the hypothesis space H under consideration is
reduced correspondingly.

Remark 3.3. Observe that the CBI hypothesis can be enforced to hold true
in the strict sense by adapting the similarity measure σS (and, hence, changing
the CBI setup correspondingly). In fact, one can always determine a bijective
mapping f : DS −→ DS such that hΣ is non-decreasing if σS is replaced by σ′

S =
f ◦ σS . Seen from this perspective, one may always assume that the strict CBI

hypothesis is actually valid and simply explain the opposite by the inadequacy
of the (originally) chosen similarity measure.4 �

Remark 3.4. A strict similarity hypothesis h is closely related to the concept
of a gradual inference rule in fuzzy set-based approximate reasoning. A gradual
rule is a special kind of fuzzy rule of the form “the more X is in A, the more
Y is in B,” where A and B are fuzzy sets modeling some gradual concepts. The
application of this kind of fuzzy rule in the context of CBI will be discussed in
Section 6.1. �

Example 3.5. Fig. 3.1 shows the similarity profiles hΣ1 and hΣ2 of the CBI

setups Σ1 and Σ2 defined by the (repetitive) ILP problems in Example 2.5.5

As can be seen, these functions are indeed increasing. Moreover, the similarity
structure of Σ1 is developed more strongly than the structure of Σ2. The same
remarks apply to the setups Σ∗

1 and Σ∗
2 , the similarity profiles of which are shown

in the same figure. �

4 Though this would again degrade the CBI hypothesis to a trivial assumption (see the discussion in
Section 2.2.3).

5 We plotted the polygonal line connecting the points {(x, hΣ(x)) |x ∈ DS}.
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Example 3.6. Let (S, ∆S) and (R, ∆R) be metric spaces and suppose ϕ :
S −→ R to be Lipschitz continuous, i.e., there is a constant L > 0 such that
∆R(ϕ(s), ϕ(s′)) ≤ L∆S(s, s′) for all s, s′ ∈ S. Moreover, suppose σS to be ∆S-
related (via f) and σR to be ∆R-related (via g). Then, h = g ◦ Lf−1 is an
admissible hypothesis for the corresponding CBI setup. �

Remark 3.7. It has already been suggested in Definition 3.2 to characterize a
similarity hypothesis in a more precise way, namely as a triple (h, σS , σR). Indeed,
the essential aspect in connection with a hypothesis h is the fact that it relates
degrees x of the similarity scale DS (resp. the unit interval) to degrees y = h(x)
of the scale DR (resp. the unit interval). Thus, the meaning of a hypothesis h
strongly depends on the similarity functions σS and σR in the sense that changing
these functions would also change the meaning of h. Particularly, two hypothe-
ses h, h′ as well as the similarity profiles associated with two systems (S,R, ϕ)
and (S,R, ϕ′) are not comparable unless the underlying similarity measures are
identical. �

3.1.2 Generalized similarity profiles

There are two characteristic features of case-based reasoning which are worth
mentioning in connection with the concept of a similarity profile and which sug-
gest to generalize Definition 3.1. As will be seen, this generalization makes a
similarity profile more suitable for supporting certain (case-based) problem solv-
ing strategies.

Firstly, CBI methods do usually not take the complete memory M of cases into
account when solving a new problem. Rather, the attention is drawn to the most
similar cases,6 since less similar cases are assumed to hardly improve the solution
(prediction) quality. Indeed, utilizing the complete memory may affect the system

6 The problem of searching these cases efficiently is closely related to the topics of case retrieval and
case indexing (cf. Section 2.2).

Fig. 3.1. Left: Similarity profiles hΣ1 (solid line) and hΣ2 of the (repetitive) ILP problems defined in
Example 2.5. Right: Similarity profiles hΣ∗

1
(solid line) and hΣ∗

2
defined in the same example.
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efficiency adversely, at least if the latter does not only take the quality of a solution
(prediction) into consideration but also the time which has been spend on deriving
it [355, 353]. Secondly, CBI problems might be solved repeatedly by using the
same memory M of cases. One may then benefit from the fact that the memory
does not change by adjusting the formalization of the similarity structure to M.

As already announced above, we are now going to introduce some generalizations
of Definition 3.1 which are motivated by the two aforementioned aspects.

Definition 3.8 (k-selection). Let M = (〈s1, r1〉, . . . , 〈sn, rn〉), k ≤ n, and con-
sider an input s0 ∈ S. The extended k-selection N ex

k (M, s0) is defined as a sub-
sequence of M such that

〈s, r〉 ∈N ex
k (M, s0) ⇔

card{1 ≤ ı ≤ n |σS(s0, s) < σS(s0, sı)} < k.

The k-selection Nk(M, s0) is defined such that

〈s, r〉 ∈Nk(M, s0) ⇔
card{1 ≤ ı <  | 〈sı, rı〉 ∈ N ex

k (M, s0)} < k.

Thus, Nk(M, s0) is exactly of length k, whereas N ex
k (M, s0) might consist of

more than k cases. �

Definition 3.9 ((n, k)-similarity profile). Consider a CBI setup Σ. We define
the (n, k)-similarity profile

h
(n,k)
Σ : DS −→ [0, 1]

associated with Σ as follows: For all x ∈ DS , the value h
(n,k)
Σ (x) is given by the

maximal value y ∈ [0, 1] such that

∀M ∈ Mn ∀ s0 ∈ S ∀ 〈s, ϕ(s)〉 ∈ Nk(M, s0) :

σS(s, s0) = x ⇒ σR(ϕ(s), ϕ(s0)) ≥ y,

where Mn denotes the class of memories of size n. �

According to Definition 3.9, the concept of an (n, k)-similarity profile corresponds
to statements of the following form: “Let M be an arbitrary memory of size n.
If two inputs s0 ∈ S and s ∈ M are x-similar and s is among the inputs in
M which are most similar to s0, then the similarity of the outcomes ϕ(s0) and

ϕ(s) is at least h
(n,k)
Σ (x).” We have hΣ ≤ h

(n,k)
Σ for all 1 ≤ k ≤ n, where n ∈ N

and n ≤ |S| if S is finite. This inequality holds due to the fact that h
(n,k)
Σ is less

constrained than hΣ, which can be grasped as follows: For s, s0 ∈ S (and σS(s, s0)
small enough) it might happen that s ∈ S is not relevant for s0 in the sense that
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∀M ∈ Mn : 〈s, ϕ(s)〉 "∈ Nk(M, s0).

Now, if neither s is relevant for s0 nor vice versa, the value σR(ϕ(s), ϕ(s0)) does

no longer constrain the lower bound h
(n,k)
Σ (σS(s, s0)). Quite often, however, hΣ

and h
(n,k)
Σ will differ but slightly, at least if n − k is small in relation to the size

of the set S.

Remark 3.10. In connection with a “selective” CBI strategy it might be rea-
sonable to require the most similar cases to be (pairwise) different. This amounts
to considering only those memories induced by sequences of (pairwise) different
inputs. Statistically speaking, a memory M is then determined by a random
sample from S without replacement. Of course, Definition 3.9 can be modified
accordingly. �

Definition 3.11 (M-similarity profile). Consider a CBI setup Σ with mem-
ory M. We define hM

Σ : DS −→ [0, 1] by means of

hM
Σ (x)

df
= inf

s∈M↓,s0∈S,σS(s,s0)=x
σR(ϕ(s), ϕ(s0)).

This function is called the M-similarity profile of Σ. �

Definition 3.12 ((M, k)-similarity profile). Consider a CBI setup Σ with

memory M. We define h
(M,k)
Σ : DS −→ [0, 1] as follows: For all x ∈ DS , the

value h
(n,k)
Σ (x) is given by the maximal value y ∈ [0, 1] such that

∀s0 ∈ S ∀T ∈ Nk(M, s0) ∀〈s, r〉 ∈ T :

(σS(s, s0) = x) ⇒ (σR(r, ϕ(s0)) ≥ y)

holds true. The function h
(n,k)
Σ is called the (M, k)-similarity profile of Σ. �

The above definitions reveal that a (·, k)-profile corresponds to the idea of using
only k of the stored cases for CBI. Likewise, passing from a similarity profile
to an (M, ·)-similarity profile is motivated by the idea of repeatedly using a
fixed memory M of cases for solving CBI problems. A profile hM

Σ , for instance,
corresponds to rules of the following form: “Given the memory M and two x-
similar inputs s0 ∈ S and s ∈ M, the similarity of the outcomes ϕ(s0) and ϕ(s)

is at least hM
Σ (x).” The relations hΣ ≤ h

(n,k)
Σ ≤ hM,k

Σ and hΣ ≤ hM
Σ ≤ hM,k

Σ hold
obviously true for all memories M and k ≤ n = |M|. Passing from a profile hΣ

to a profile hM
Σ will generally have a considerable effect on the quantification of

the similarity profile, and the smaller the memory M is, the stronger this effect
will be. In fact, a profile hΣ is determined by the similarity relations between
arbitrary cases c and c′, whereas c must be an element of M in connection with
hM

Σ .
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The generalization of Definition 3.2 in accordance with the generalization of sim-
ilarity profiles is straightforward. We may then speak, e.g., of a similarity hy-
pothesis related to an M-similarity profile or to an (n, k)-profile. In subsequent
sections of this chapter we will restrict ourselves mainly to the consideration of
(ordinary) similarity profiles and related hypotheses, although a further general-
ization will be introduced in Section 3.3.2. Most often, it will be obvious how to
transfer corresponding results.

3.2 Constraint-based inference

3.2.1 A constraint-based inference scheme

In this section, we shall introduce an inference scheme which emerges quite nat-
urally from the constraint-based view of the CBI hypothesis as formalized in the
previous section. Consider a CBI problem 〈Σ, s0〉 and suppose that Σ satisfies
the hypothesis h. If the memory M contains the input s0, i.e., if M contains a
case 〈s, r〉 such that s = s0, the correct outcome r0 = r can simply be retrieved
from M. Otherwise, we can derive the following restriction:

r0 ∈ ϕ̂h,M(s0)
df
=
⋂

〈s,r〉∈M

Nh(σS(s,s0))(r), (3.2)

where ϕ̂h,∅(s0)
df
= R by convention and the α-neighborhood of an output r ∈ R is

defined by the set of all outcomes r′ which are at least α-similar to r:

Nα(r)
df
= {r′ ∈ R |σR(r, r′) ≥ α}. (3.3)

Thus, according to the constraint-based interpretation the task of case-based
inference can be seen as one of deriving and representing the set (3.2), or an
approximation thereof. This may become difficult if, for instance, the definition
of the similarity σR and, hence, the derivation of a neighborhood are complicated.
The sets (3.3) may also become large, in which case they cannot be represented
by simply enumerating their elements.

In this connection, it should be noted that (3.2) remains correct if the intersection
is taken over k < n of the inputs s ∈ M↓. Since less similar inputs will often
hardly contribute to the precision of predictions, it might indeed be reasonable
to proceed from k inputs maximally similar to s0, especially if the intersection
of neighborhoods (3.3) is computationally complex. Besides, it is worth mention-
ing that (3.2) can be approached efficiently by means of parallel computation
techniques. In fact, the sets which have to be combined (via intersection) can
be derived independently of each other. Moreover, the (associative) combination
itself can be realized in an arbitrary order. Thus, a parallel implementation of
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(3.2) is (more or less) straightforward and will enable the exploitation of relatively
large memories.

Of course, while assuming the profile of a CBI setup to be unknown, one can-
not guarantee the admissibility of a hypothesis h and, hence, the correctness of
(3.2). That is, it might happen that ϕ(s0) "∈ ϕ̂h,M(s0). In fact, we might even
have ϕ̂h,M(s0) = ∅. Nevertheless, taking for granted that h is indeed a good
approximation of hΣ, it seems reasonable to derive ϕ̂h,M(s0) according to (3.2)
as an approximation of ϕ̂hΣ ,M(s0) (while keeping the hypothetical character of
h in mind). This situation reflects the heuristic character of CBI as a problem
solving method. Nevertheless, by quantifying the probability of obtaining correct
predictions, our results in Section 3.4 will provide a sound basis of this approach.

A similarity profile as well as a similarity hypothesis relate degrees of similarity to
one another: Given the similarity of two inputs, they conclude on the similarity
of the related outcomes. Thus, the similarity relations between observed cases
constitute the principal information from which a case-based inference scheme
proceeds. This motivates the following definition.

Definition 3.13 (similarity structure). Consider a CBI setup Σ with M be-
ing the associated memory (2.29) of cases and let s0 be a new input. The sim-
ilarity structure of the CBI problem 〈Σ, s0〉 is defined by the similarity profile
(hΣ, σS , σR) of Σ resp. a corresponding hypothesis (h, σS , σR) together with the
similarity structure

SST(M, s0)
df
=
{
zı = (xı, yı) | 1 ≤ ı <  ≤ n

}
∪
{
x0 | 1 ≤  ≤ n

}

of the extended memory (M, s0). Here, the values xı and yı are defined as

xı
df
= σS(sı, s) and yı

df
= σR(rı, r). We will generally assume the similarity

profile hΣ resp. the hypothesis h to be given and simply call SST(M, s0) the sim-
ilarity structure of 〈Σ, s0〉. Moreover, we define the partial similarity structure
pSST(M, s0) by the set {x0 | 1 ≤  ≤ n}. �

��

(S,R, ϕ) (M, s0)

σR
σS

σR σ
(−1)
R

σS

hΣ zΣ
level
similarity

level
system

�constraint-based

inference

�

C

ϕhΣ ,M

Fig. 3.2. Illustration of the case-based (similarity-based) inference process.
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Even though the inference scheme (3.2) is rather simple, it is worth reconsidering
it from an abstract point of view. This will reveal some basic ideas of our ap-
proach to CBI, which becomes more involved within the probabilistic setting of
Chapter 4. The overall CBI process as illustrated in Fig. 3.2 can be characterized
as follows:

– In a first step, the problem 〈Σ, s0〉 is characterized at the similarity level by
means of its similarity structure. In fact, hΣ resp. zΣ = SST(M, s0) can be seen
as the “image” of the system (S,R, ϕ) resp. the (extended) memory (M, s0) un-
der the transformation defined by the similarity measures σS and σR. This map-
ping realizes a projection from an often high-dimensional (and non-numerical)
instance space S ×R into the two-dimensional similarity space DS ×DR, which
is usually more accessible to analytical methods. Still, this projection is not
(information-)theoretically justified like, say, dimension reduction techniques
such as principal component analysis in statistics. Rather, it is guided by the
heuristic assumption that the similarity structure of the problem 〈Σ, s0〉 repre-
sents useful information.

– The main step of the CBI process is then to utilize the similarity structure of the
problem for constraining the unknown outcome r0 at the similarity level. The
corresponding constraints C are implicit in the sense that they are expressed
in terms of the (bilateral) concept of similarity, i.e., they do not refer to the
output itself.

– Finally, the observed outputs come into play. In conjunction with a transfor-
mation σ

(−1)
R : R × [0, 1] −→ 2R, which is inversely related to σR via

σ
(−1)
R (r, α)

df
= {r′ ∈ R |σR(r, r′) ≥ α}, (3.4)

they are used for translating the constraints C at the similarity level into con-
straints on outcomes at the instance level. According to (3.2), these constraints
are combined conjunctively by means of an intersection.

Two characteristics of case-based (similarity-based) inference as introduced above
are worth mentioning. Firstly, CBI is indirect in the sense that the given infor-
mation is not used for drawing inferences about the unknown output r0 directly.
Rather, it is used for deriving evidence concerning similarity degrees σR(r0, rk),
which are then translated into evidence about outcomes. Secondly, CBI is local
in the sense that the rules (3.1) associated with a hypothesis h derive evidence
concerning the value r0 from single cases. These pieces of evidence have still to be
combined in order to obtain the constraint implied by the complete memory M.
Within the deterministic framework of this chapter, the combination of evidence
derived from different cases is accomplished by (3.2), i.e., by means of a simple
intersection of sets. As will be seen in Chapter 4, this problem becomes more
complicated within a probabilistic setting.

Needless to say, the stronger the similarity structure of a setup Σ is developed,
the more successful CBI will be. Within our framework, we have quantified the
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degree to which the CBI hypothesis holds true for the setup Σ by means of the
similarity profile hΣ. This quantification, however, may appear rather restrictive.
In fact, the derivation of valid predictions according to (3.2) necessitates the use
of lower similarity bounds, which leads to a kind of worst case analysis. The
existence of some “exceptional” pairs of cases, for instance, might call for small
values hΣ(x) of the similarity profile hΣ. Consequently, the predictions (3.2) which
reflect the success of the CBI process (cf. Section 3.4) might become imprecise
even though the similarity structure of Σ is otherwise strongly developed. This
observation serves as a main motivation for the consideration of local similarity
profiles in Section 3.3.2 and for the probabilistic generalization of the constraint-
based approach which we will turn to in Chapter 4.

From a mathematical point of view, the decisive aspect of the inference scheme in
Fig. 3.2 is the fact that it is based on the analysis, not of the original data, but of
transformed data which depicts a certain relation between original observations.
Considering these observations in pairs, the original data (represented by the
memory M ⊆ S × R) is transformed into the new set of data{

(σS(s, s′), σR(r, r′)) | 〈s, r〉, 〈s′, r′〉 ∈ M
}

. (3.5)

As opposed to functional relations related to the instance level, which are map-
pings of the form S −→ R, the result h of the analysis of (3.5) provides informa-
tion about the relation σR(ϕ(s), ϕ(s′)) between outcomes ϕ(s), ϕ(s′), given the
relation σS(s, s′) between inputs s and s′. Then, given an observation 〈s, r〉 and
a new input s0 and, hence, the relation σS(s, s0), h is used for specifying the
relation σR(r, r0) between r and r0 = ϕ(s0). Finally, the inverse transformation

σ
(−1)
R is used for translating information about r and σR(r, r0) into information

about r0 itself. Moreover, the combination of evidence concerning r0 becomes
necessary if this kind of information has been derived from different observations
〈s1, r1〉, . . . , 〈sn, rn〉.
In our case, the relation between observations corresponds to their similarity, the
function h defines an (estimated) lower bound in the form of (an approximation
of) the similarity profile, and the combination of evidence is realized by the in-
tersection of individual predictions. This, however, is by no means compulsory.
Indeed, one might think of basing inference procedures on alternative specifica-
tions, such as the differences σS(s, s′) = s − s′ and σR(r, r′) = r − r′.7 Then, a
least squares approximation h of the transformed data provides an estimation of
the difference between two outcomes, given the difference between the respective
inputs. Examples of this kind of inference can, e.g., be found in economic analysis
where a functional relation is often assumed, not between the economic quanti-
ties themselves, but between the (temporal) change of these quantities. Economic
time series (x1, . . . , xT ), for instance, are often analyzed in terms of (first-order)
differences ∆tk = tk+1 − tk. Likewise, in preference analysis, a frequently encoun-
tered problem is to induce an absolute rating of given entities (in terms of utility

7 In this example, S and R are assumed to be numerical, of course.
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degrees) based on pairwise comparisons expressing to what extent one object is
preferred to a second one.

Remark 3.14. The non-deterministic setting of Section 2.4.2 takes account of
the fact that an input s ∈ S does not determine a unique outcome or that
observed outputs might be imprecise. A respective generalization of the inference
scheme based on (3.2) will be discussed in Section 3.2.2 below. Simple types of
imprecision, however, can also be incorporated directly into (3.2). Suppose for
instance, that an output cannot be observed exactly but only up to a certain
(similarity) degree α of precision. That is, an observed case 〈s, r〉 does not imply
ϕ(s) = r but only ϕ(s) ∈ N1−α(r). Moreover, suppose that σR is �-transitive,
i.e., �(σR(r, r′), σR(r′, r′′)) ≤ σR(r′, r′′) for all r, r′, r′′ ∈ R (cf. Section 2.3). We
then obtain

ϕ(s0) ∈
⋂

〈s,r〉∈M

N�(hΣ(σS(s,s0)),1−α)(r), (3.6)

for all s0 ∈ S as a valid generalization of (3.2). Observe that (3.6) might be
interesting in connection with non-deterministic CBI problems, namely when
having to use “estimated cases” 〈s, µ̂〉 due to the problem that the true measure
µ might not be observable (cf. Section 2.4.2). In fact, this inference scheme can
be applied if a minimal similarity between the true measure µ and the estimation
µ̂ is guaranteed. �

3.2.2 Non-deterministic problems

Within the non-deterministic setting of Section 2.4.2, a similarity profile hΣ of
a setup Σ is defined by replacing the similarity measure over outputs, σR, by a
similarity measure over probability distributions, σP :

hΣ : DS −→ [0, 1] , x �→ inf
s,s′∈S, σS(s,s′)=x

σP(ϕ(s), ϕ(s′)).

Then, a similarity hypothesis h corresponds to the assumption that

∀ s, s′ ∈ S : σS(s, s′) = x ⇒ σP(ϕ(s), ϕ(s′)) ≥ h(x)

holds true for all x ∈ [0, 1]. Given a memory M of cases 〈sk, µk〉 (1 ≤ k ≤ n), the
inference scheme (3.2) presents itself in the form

µ0 ∈ ϕ̂h,M(s0)
df
=
⋂

〈s,µ〉∈M

Nh(σS(s,s0))(µ), (3.7)

where µ0 is the probability measure associated with the new input s0 and Nα(µ)
df
=

{µ′ ∈ P(R) |σP(µ, µ′) ≥ α} for µ ∈ P(R) and 0 ≤ α ≤ 1. Thus, the set
ϕ̂h,M(s0) now defines a class of probability measures, namely the measures which
are considered as being possible in connection with the unknown measure µ0.
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Upper and lower probability bounds. For a memory M and a new input
s0 ∈ S, the set ϕ̂h,M(s0) as defined in (3.7) corresponds to a set of probability
measures. Instead of the inference result ϕ̂h,M(s0) itself, which might have a
relatively complicated structure, one might be interested in the lower and upper
probability of individual outputs r ∈ R according to this set, i.e.

µ↓
0(r) = min

µ∈ϕ̂h,M(s0)
µ(r) and µ↑

0(r) = max
µ∈ϕ̂h,M(s0)

µ(r). (3.8)

Let us, therefore, consider a particular (but still reasonable) choice of the simi-
larity σP which supports an efficient derivation of these probability bounds:

σP(µ, µ′)
df
= 1 − f

(
max
r∈R

|µ(r) − µ′(r)|
)

(3.9)

for all µ, µ′ ∈ P(R), where f : [0, 1] −→ [0, 1] is (strictly) increasing.8 The
constraint on µ0 induced by the k-th case 〈sk, µk〉 is now given in the form of an
interval probability [µl

0k, µ
u
0k], where

µl
0k(r) = max

{
µk(r) − f−1(1 − σS(s0, sk)), 0

}
, (3.10)

µu
0k(r) = min

{
µk(r) + f−1(1 − σS(s0, sk)), 1

}
, (3.11)

and

[µl
0k, µ

u
0k]

df
= {µ ∈ P(R) | ∀ r ∈ R : µl

0k(r) ≤ µ(r) ≤ µu
0k(r)}. (3.12)

Suppose ϕ̂h,M(s0) "= ∅ for the overall constraint (3.7). The latter is then also an
interval probability:

ϕ̂h,M(s0) = [µl
0, µ

u
0 ], (3.13)

where
µl

0(r) = max
1≤k≤n

µl
0k(r), µu

0(r) = min
1≤k≤n

µu
0k(r) (3.14)

for all r ∈ R. It deserves mentioning that the representation of an interval prob-
ability in the sense of (3.12) is not unique. In general, it is possible to represent a
given class of probability measures µ over a set X by means of different intervals
[µl, µu] (i.e., lower and upper envelopes µl : X −→ [0, 1] and µu : X −→ [0, 1]
such that µl ≤ µu). In fact, the intervals [µl

0(r1), µ
u
0(r1)] are not necessarily min-

imal, i.e., the lower and upper bounds (3.14) do not necessarily correspond to
the optimal bounds (3.8). That is, it might be possible that µl

0(r1) < µ↓
0(r1) or

µ↑
0(r1) < µu

0(r1) and, hence, that one can increase µl
0(r1) or reduce µu

0(r1) for some
r1 ∈ R without changing the associated class (3.13) of probability measures. In
other words, it might happen that µl

0(r1) (resp. µu
0(r1)) is actually not attained

by any measure µ ∈ ϕ̂h,M(s0). In the case of finite R, the optimal individual

bounds µ↓
0(r1) and µ↑

0(r1) can be found by solving two simple linear programming
problems:

8 The maximum in (3.9) obviously exists.
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minimize (maximize) µ0(r1) s.t.




µl
0(r) ≤ µ0(r) ≤ µu

0(r) (r ∈ R)

µ0(r) ≥ 0 (r ∈ R)∑
r∈R µ0(r) = 1

Remark 3.15. The bounds (3.10) and (3.11) associated with a single constraint
are already optimal. This can be seen as follows. Let α0 = f−1(1 − σS(s0, sk))
and α1 = min{µk(r1), α0} for some r1 ∈ R. That is, µl

0k(r1) = µk(r1) − α1. If
α1 = α0 then µk(r1) ≥ α0, i.e., there is some r2 ∈ R such that µk(r2) ≤ 1 − α0.
The probability measure µ defined by

µ(r) =




µk(r) − α0 if r = r1

µk(r) + α0 if r = r2

µk(r) if r1 "= r "= r2

is then an element of [µl
0k, µ

u
0k], i.e., the lower bound µl

0k(r1) = µk(r1) − α0 is
indeed attained. Now, suppose α1 < α0 which means that µl

0k(r1) = 0. Since
µk(r1) = 1 −

∑
r1 =r∈R µk(r) and µk(r1) < α0 it is obviously possible to distribute

the probability mass α1 = µk(r1) over the elements r "= r1 such that the measure
µ defined by

µ(r) =

{
0 if r = r1

µk(r) + α(r) if r "= r1

for all r ∈ R is an element of the class [µl
0k, µ

u
0k], where α(r) ≥ 0 and∑

r1 =r∈R α(r) = α1. Thus, the lower bound µl
k0(r1) = 0 is again attained. Analo-

gously it is shown that the upper bound µu
k0(r1) is always attained. �

A Maximum Likelihood approach. In Section 2.4.2, we have pointed out that
it might not be possible to observe the probability measure µ associated with an
input s. Rather, a case is often given in the form of a tuple 〈s, x〉, where x has
been chosen at random according to µ. We shall now consider a framework which
allows for deriving estimated cases 〈s, µ̂〉 by means of a Maximum Likelihood

(ML) approach.

Let P(R) consist of a class of parameterized probability measures µθ (θ ∈ Θ)
and suppose that σP : P(R) × P(R) −→ [0, 1] can be expressed as a function of
parameter vectors, i.e., the similarity σP(µθ, µθ′) can be written in terms of the
parameter vectors θ and θ′ for all θ, θ′ ∈ Θ. Thus, we can associate a parameter
θ with each input s. By thinking of the parameter as an output, we can also
identify Θ by the set of outputs, R, and write σP(µθ, µθ′) = σR(θ, θ′).9

Now, consider a non-deterministic CBI problem. Suppose that n cases 〈sk, xk〉
(1 ≤ k ≤ n) have been observed. A reasonable approach to estimating the prob-
ability measures µk associated with the inputs sk is to maximize the likelihood
function

9 Observe that this assumption does not exclude (3.9).
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λ : (θ1, . . . , θn) �→
∏

1≤k≤n

µθk
(xk)

subject to the constraints

∀ 1 ≤ ı,  ≤ n : σR(θı, θ) ≥ σS(sı, s).

That is, we let µ̂k = µθ̂k
, where the parameter vectors θ̂1, . . . , θ̂n denote the

(constrained) ML estimations. The measure µ0 associated with a new input s0 is
then estimated according to

µ0 ∈
⋂

1≤k≤n

Nh(σS(s0,sk))(µ̂k).

3.3 Case-based approximation

Suppose a hypothesis h (with associated similarity functions σS , σR) and a mem-
ory M to be given. By applying (3.2) to all s ∈ S (not only to one input s0 ∈ S),
we obtain a set-valued mapping ϕ̂h,M : S −→ 2R:10

ϕ̂h,M : s �→
⋂

〈s′,r′〉∈M

Nh(σS(s,s′))(r
′). (3.15)

It is readily shown that ϕ̂h,M defines an outer approximation of ϕ in the sense
that ϕ(s) ∈ ϕ̂h,M(s) for all s ∈ S if the hypothesis h is admissible. The mapping
ϕ̂hΣ ,M, induced by the similarity structure of a CBI setup, can be seen as a
simplified but imprecise representation of the system structure ϕ. We call ϕ̂h,M
a case-based approximation (CBA) of ϕ. Clearly, the stronger the (admissible)
hypothesis h is, the more precise the approximation ϕ̂h,M becomes. The CBA

obtained for the similarity profile hΣ, ϕ̂hΣ ,M, is the smallest outer approximation
of ϕ in the sense that ϕ̂hΣ ,M(s) ⊆ ϕ̂h,M(s) holds true for all s ∈ S and admissible
hypotheses h.

Remark 3.16. Definition (3.15) is not exactly in agreement with our CBI ap-
proach in the sense that we may have ϕ̂h,M(s) "= {r} for some case 〈s, r〉 ∈ M.
That is, the prediction ϕ̂h,M(s) might contain additional outcomes even though
the output r could be retrieved from the memory. It can easily be verified, how-
ever, that ϕ̂h,M(s) = {r} is guaranteed if both measures σS and σR are separating.
Clearly, a further way of ensuring ϕ̂h,M(s) = {r} is to modify the definition of a
case-based approximation as follows: ϕ̂h,M(s) is determined according to (3.15)
only if s "∈ M↓, otherwise the output is retrieved from M and is hence given by
{ϕ(s)}. �
10 This mapping corresponds in some way to what is called the extensional concept description in

instance-based learning [11].
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Let us again mention that (3.2) resp. (3.15) are easily generalized such that
only k < n of the most similar cases (represented by a sub-memory M′ ⊆ M)
are used for constraining the outcome. Then, we can define an approximation
ϕ̂h,M,k : S −→ 2R by means of

ϕ̂h,M,k : s �→
⋂

〈s′,r′〉∈T (s)

Nh(σS(s,s′))(r
′), (3.16)

where T (s)
df
= Nk(M, s) or T (s)

df
= N ex

k (M, s).

3.3.1 Properties of case-based approximation

It deserves mentioning that the similarity measures principally play the role of
ordinal concepts within our approach.11 According to (3.2), the set ϕ̂h,M(s0) de-
pends only on the relative order of similarity degrees, as specified by the hypoth-
esis h (cf. Remark 3.7). In other words, the sets DS and DR can be interpreted as
linearly ordered scales of similarity for which only the ordering of the grades of
similarity is important. In fact, the numerical encoding is just a matter of conve-
nience and the interval [0, 1] could be replaced by any other linearly ordered scale.
In fact, the inference scheme (3.2) can even be generalized in a straightforward
way to similarity measures which are defined on a (complete) lattice structure
[56, 283].

In order to make the ordinal character of similarity more explicit let us call two
similarity measures σ and σ′ (defined over a set A) coherent if

σ(a, b) ≤ σ(c, d) ⇔ σ′(a, b) ≤ σ′(c, d) (3.17)

holds true for all a, b, c, d ∈ A. This definition is in accordance with the relational
approach to similarity discussed in Section 2.3 (coherent similarity measures in-
duce the same relation R).

Lemma 3.17. Let σ : A × A −→ [0, 1] and σ′ : A × A −→ [0, 1] be coherent
similarity measures and let X = {σ(a, b) | a, b ∈ A}. Then, a strictly increasing
function f : X −→ [0, 1] exists such that σ′ = f ◦ σ. �

Proof. For a, b ∈ A, let x = σ(a, b) and define f(x) = σ′(a, b). Obviously, f is
well-defined, since the coherency of σ and σ′ implies

σ(a, b) = σ(c, d) ⇔ σ′(a, b) = σ′(c, d) (3.18)

for all a, b, c, d ∈ A. Moreover, f is strictly increasing, since (3.18) remains valid
when replacing the equality relation by the <-relation. �
11 This should be regarded as a reasonable property. Indeed, considering similarity as a cardinal concept

complicates its formalization and raises some difficult semantical questions.
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Proposition 3.18. Consider a system (S,R, ϕ) and a memory M of cases and
let σS and σ′

S resp. σR and σ′
R be coherent similarity measures. Moreover, de-

note by hΣ resp. h′
Σ the similarity profiles induced by these measures and let

ϕ̂hΣ ,M resp. ϕ̂h′
Σ ,M be the case-based approximations defined by (hΣ, σS , σR)

resp. (h′
Σ, σ′

S , σ′
R) via (3.15). We then have ϕ̂hΣ ,M = ϕ̂h′

Σ ,M. �

Proof. According to Lemma 3.17 there are strictly increasing functions f and
g such that σ′

S = f ◦ σS and σ′
R = g ◦ σR. From (3.18) and f(σR(r, r′)) ≤

g(σS(s, s′)) ⇔ σ′
R(r, r′) ≤ σ′

S(s, s′) for all s, s′ ∈ S and r, r′ ∈ R then follows
that h′

Σ ◦ f = g ◦ hΣ. Now, consider s, s′ ∈ S, r, r′ ∈ R and suppose that
(hΣ ◦ σS)(s, s′) ≤ σR(r, r′). It follows that

σ′
R(r, r′) = (g ◦ σR)(r, r′)

≥ (g ◦ hΣ ◦ σS)(s, s′)

= (h′
Σ ◦ f ◦ σS)(s, s′)

= (h′
Σ ◦ σ′

S)(s, s′).

In the same way it is shown that (h′
Σ ◦ σ′

S)(s, s′) ≤ σ′
R(r, r′) implies (hΣ ◦

σS)(s, s′) ≤ σR(r, r′). Consequently, we have NhΣ(σS(s,s′))(r) = Nh′
Σ(σ′

S(s,s′))(r)
for all s, s′ ∈ S, r ∈ R and, hence, ϕ̂hΣ ,M = ϕ̂h′

Σ ,M. �

In Section 2.4, it was already pointed out that similarity measures might be
more or less “discriminating.” We are now in the position to put this into more
precise terms. Let us call a similarity measure σ a refinement of a measure σ′ if
σ′ = f ◦ σ, where f is non-decreasing (i.e., order-preserving) but not (strictly)
increasing. Loosely speaking, the measure σ uses a richer similarity scale which
includes more degrees of similarity, that is rg(σ′) � rg(σ).

Proposition 3.19. Consider a system (S,R, ϕ) and a memory M of cases.
Let σS be a refinement of σ′

S and σR a refinement of σ′
R. Moreover, de-

note by hΣ resp. h′
Σ the similarity profiles induced by these measures and let

ϕ̂hΣ ,M resp. ϕ̂h′
Σ ,M be the case-based approximations defined by (hΣ, σS , σR)

resp. (h′
Σ, σ′

S , σ′
R) via (3.15). Then, ϕ̂hΣ ,M(s) ⊆ ϕ̂h′

Σ ,M(s) for all s ∈ S. �

Proof. Consider values s, s′ ∈ S and r, r′ ∈ R. Suppose that r′ ∈ NhΣ(σS(s,s′))(r),
i.e., σR(r, r′) ≥ hΣ(σS(s, s′)). Thus, we find t, t′ ∈ S such that σR(r, r′) ≥
σR(ϕ(t), ϕ(t′)) and σS(s, s′) = σS(t, t′). Since σ′

S = f ◦ σS and σ′
R = g ◦ σR

for non-decreasing functions f, g, we have σ′
S(s, s′) = σ′

S(t, t′) and σ′
R(r, r′) ≥

σ′
R(ϕ(t), ϕ(t′)). Therefore,

h′
Σ(σ′

S(s, s′)) ≤ σ′
R(ϕ(t), ϕ(t′)) ≤ σ′

R(r, r′)

and, hence, r′ ∈ Nh′
Σ(σS(s,s′))(r). �
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Of course, generally we will not only have ϕ̂hΣ ,M(s) ⊆ ϕ̂h′
Σ ,M(s), as guaranteed

by Proposition 3.19, but also ϕ̂hΣ ,M(s) "= ϕ̂h′
Σ ,M(s) for some s ∈ S. As an obvious

example consider the “least discriminating” case where g ≡ 1 on DR and, hence,
σ′
R ≡ 1 on R × R, which leads to the trivial prediction ϕ̂h′

Σ ,M ≡ R on S.

For us to be able to study the approximation capability of (3.15) more thoroughly
the system (S,R, ϕ) must have a structure which allows us to quantify the quality
of a case-based approximation. To this end, let us endow S and R with a metric,
i.e., let (S, ∆S) and (R, ∆R) be metric spaces. Clearly, a good approximation of
ϕ can only be expected if the similarity measures σS and σR are related to the
distance measures ∆S and ∆R. We can prove the following result.

Proposition 3.20. Suppose that σS = f ◦ ∆S and σR = g ◦ ∆R with strictly
decreasing functions f and g, and

∃ ε > 0∃S ′ ⊆ S : card(S ′) < ∞ ∧ S =
⋃
s∈S′

B̄ε(s), (3.19)

where B̄ε(s)
df
= {s′ ∈ S |∆S(s, s′) ≤ ε}. Moreover, assume the Lipschitz condition

∃L > 0∀ s, s′ ∈ S : ∆R(ϕ(s), ϕ(s′)) ≤ L ∆S(s, s′) (3.20)

to hold. Then, a finite memory M exists such that

diam(ϕ̂hΣ ,M(s))
df
= max{∆R(r, r′) | r, r′ ∈ ϕ̂hΣ ,M(s)} ≤ 2 L ε

for all s ∈ S. �

Proof. Let ε > 0 and S ′ ⊆ S satisfy (3.19) and define M =
⋃

s′∈S′〈s′, ϕ(s′)〉. For
s, s′ ∈ S such that σS(s, s′) = x ∈ DS we have ∆S(s, s′) = f−1(x). Thus, accord-
ing to (3.20), σR(ϕ(s), ϕ(s′)) ≥ g(Lf−1(x)), which means hΣ(x) ≥ g(Lf−1(x))
for all x ∈ DS . Now, consider some s ∈ S. According to (3.19), the memory
M contains a case 〈s0, r0〉 such that ∆S(s, s0) ≤ ε. Hence, hΣ(σS(s, s0)) ≥
g(Lf−1(σS(s, s0))) ≥ g(Lε), which means that ∆R(r0, r

′) ≤ L ε for all r′ ∈
NhΣ(σS(s,s0))(r0). The result then follows from ∆R(r, r′) ≤ ∆R(r, r0) + ∆R(r0, r

′)
for all r, r′ ∈ NhΣ(σS(s,s0))(r0) and ϕ̂hΣ ,M(s) ⊆ NhΣ(σS(s,s0))(r0). �

Since ϕ(s) ∈ ϕ̂hΣ ,M(s) for all s ∈ S, Proposition 3.20 guarantees the existence of
a case-based approximation of ϕ which determines all outcomes up to a precision
of δ = 2 L ε. The following corollaries follow immediately.

Corollary 3.21. Suppose the assumptions of Proposition 3.20 to hold true with
“∃ ε > 0” in (3.19) replaced by “∀ ε > 0.” Then, the mapping ϕ can be approxi-
mated to any degree of accuracy δ > 0 via (3.15) with a finite memory M. �
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Corollary 3.22. Let S ⊆ Qp be bounded, R ⊆ Qq, and ∆S and ∆R be defined
by the corresponding Euclidean distances. Moreover, suppose that ϕ satisfies
(3.20) and that σS = f ◦∆S and σR = g ◦∆R with f, g strictly decreasing. Then,
ϕ can be approximated to any degree of accuracy δ > 0 via (3.15) with a finite
memory M. �

Assumption (3.19), which requires the existence of a finite cover of S, cannot be
dropped, as can easily be seen by constructing a counter-example with ∆S defined
by ∆S(s, s′) = 0 for s = s′ and ∆S(s, s′) = 1 for s "= s′ (and card(S) = ℵ0).
Likewise, (3.20) is necessary, as an example with ϕ(s) defined on [0, 1] ∩ Q by
ϕ(s) = 1 for s = 0 and ϕ(s) = 0 for s > 0 (and ∆R the standard metric) shows.

The discussion so far has shown that the inference scheme presented in Section 3.2
can basically be seen as a set-valued approximation method. The essential part
of this inference procedure is realized in what we have called the similarity space,
not in the instance space itself (cf. Fig. 3.2). That is, CBI is not directly based on
the information provided at the system level. Rather, the concept of similarity,
quantified in terms of similarity functions σS and σR, is exploited in order to
transform this information into information which is represented at the similarity
level. An approximation at the instance level is then derived within a two-stage
process from inferences about the similarity of an unknown outcome to already
observed ones.

It is this indirect derivation of approximations that constitutes the main dif-
ference between CBA and other approximation techniques. In fact, an implicit
notion of similarity is also present in other methods, since the (local) transfer
of observed outputs is generally based on the concept of distance. Typically, a
(scalar) estimation of an unknown value f(x) of a function f is derived in the
form of a weighted combination of training examples f(x1), . . . , f(xn), where the
weight of an example f(xk) decreases with the distance of the associated point
in the input space, xk, to the query point x.12 Consider an approximation of the
form

f̂(x) =

∑n
k=1 K(xk − x) · f(xk)∑n

k=1 K(xk − x)
,

where K(·) is a kernel function (centered at 0), as an example.

In some approximation methods the observed outcomes f(xk) appear only implic-
itly, in the sense that they determine parameters of an approximating function.
In a special version of locally weighted regression, for instance, the parameters of
a linear function f̂(·) are determined such that

n∑
k=1

(f(xk) − f̂(xk))
2K(d(x, xk))

12 The input space must hence be endowed with a distance measure.
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is minimized, where d(·) is a distance measure, and K(·) is a kernel function. The

value of f(·) for the query point x is then estimated by f̂(x).

As a further example consider again the k-Nearest Neighbor (kNN) method
(cf. Section 2.2) from which several instance-based learning algorithms have
emerged. It derives predictions according to

f̂(x) = F (f(x1), . . . , f(xk)),

where f(x1), . . . , f(xk) are the training examples associated with the k points
which are most similar to (or have the smallest distance from) the query point x.
If f(·) is a numerical function, F (·) is often defined as a weighted average, i.e.

f̂(x) =
k∑

=1

(
1 − |x − x|∑k

ı=1 |x − xı|

)
· f(x).

If rg(f) is discrete, F (·) generally returns the value which is most frequent among
f(x1), . . . , f(xk).

As can be seen, the approximation methods outlined above are based on the
same data as CBA, namely a set of observed values of a function (= outcomes)
and some kind of similarity or distance relation between points (= inputs) in the
input space. This data can be defined as an extension of the similarity structure
(cf. Definition 3.13 and Fig. 3.3).

Definition 3.23 (outcome structure). Let Σ be a CBI setup, s0 a new input,
and M the memory (2.29) associated with Σ. The set of values

OST(M, s0)
df
= SST(M, s0) ∪ {r | 1 ≤  ≤ n}

(together with (hΣ, σS , σR)) defines the outcome structure of the CBI problem
〈Σ, s0〉. �

Usual approximation methods employ the outcome structure directly within one
inference step. As opposed to this, the first step of the CBA scheme uses only
the similarity structure, and the observed outcomes rk are called in for the second
inference step.

The aforementioned difference becomes obvious, e.g., when comparing CBA to
the kNN algorithm. Firstly, this algorithm applies the similarity measures directly
at the instance level in order to find the most similar cases, whereas in CBA these
measures are used for defining the similarity structure hΣ. Secondly, the kNN
method does also perform the inference step at the instance level, in the sense
that predictions are derived directly from the observed outcomes. As opposed to
this, CBA uses the given information for drawing inferences, not about outputs,
but about similarities. It makes use of observed outcomes by more indirect means,
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r1 r2x11

y11

x01 x02

x11

y11

x01 x02

in the sense that each output defines an instantiation of a similarity constraint
at the system level.

In connection with the kNN method it should also be observed that CBA (espe-
cially (3.16)) can be seen as an interesting set-valued version of this algorithm. As
an advantage of CBA let us mention that it also takes the quality of the similar-
ity structure into account when predicting an outcome. In fact, (3.15) will not be
very constraining if this structure is poorly developed, thus indicating that the
application of the Nearest Neighbor principle (and, hence, the original kNN
method) does not seem advisable. We shall come back to this point in Chapter
4.

The following points deserve mentioning when comparing case-based to other lo-
cal approximation methods. On the one hand, CBA is less demanding in the sense
that it requires the specification of a similarity hypothesis, i.e., a relatively simple
one-dimensional function, whereas other methods derive approximating functions
with dom(f) = S and codom(f) = R. Moreover, CBA still works if S and R are
not as well-structured as certain number spaces, a situation regularly encountered
within the context of CBR. In fact, the assignment of similarity degrees can then
be seen as a reasonable quantification of the approximation problem. This kind of
quantification will often be more obvious than a quantification of S and R which
allows for deriving a good approximation f̂ : S −→ R.

On the other hand, the transformation from a high-dimensional (instance) space
into a low-dimensional (similarity) space is usually afflicted with a loss of informa-
tion. This becomes especially apparent in connection with the (pseudo-)inverse
of the similarity measure σR. In fact, this transformation will generally be a
set-valued mapping.

In any case, a comparison between (indirect) case-based and direct approximation
methods remains a difficult (if not meaningless) task. Firstly, the success of any
approximation method largely depends on the application and properties of the

Fig. 3.3. The outcome (left) and similarity structure (right) of a CBI problem can be illustrated a
a graph, where the nodes are associated with (information about) cases and the edges are labeled
with information concerning the (similarity) relation between cases. This figure shows the graphs for a
memory with two cases.

s
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data.13 Thus, it will generally not be possible to qualify one approach as being
superior in comparison to other methods. Secondly, a case-based approximation
is not scalar-valued but derives set-valued approximations which either cover
the unknown outcome or, as will be seen in Section 3.4, define some kind of
confidence region. Thus, the usefulness of an approximation method will also
depend on whether the problem at hand requires an estimation in the form of a
scalar value r̂0 or whether it is important to have information about r0 in the form
of outer bounds. As can be seen, the aforementioned differences between case-
based and direct approximation suggest to combine (rather than to compare)
these approaches.

3.3.2 Local similarity profiles

In Section 3.2.1, it has already been pointed out that CBA is local in the sense
that the information provided by different cases is processed and combined inde-
pendently.14 It is, however, global in the sense that the similarity profile represents
information which holds true for the complete similarity space. In fact, the con-
straint NhΣ(σS(s,s0))(r) provided by a case 〈s, r〉 for the prediction of an unknown
outcome ϕ(s0) contains a local component, namely the case 〈s, r〉 itself, as well
as a global component, namely the similarity hypothesis h. CBA can thus be
characterized as a local processing of global information.

Often, the CBI assumption is not satisfied equally well for all parts of the instance
space S×R.15 The global validity of the similarity profile might then prevent one
from defining tight bounds for those regions where the CBI hypothesis actually
applies rather well. In fact, a globally admissible similarity hypothesis might lead
to (local) predictions which are unnecessarily imprecise. This is illustrated by the
following simple example.

Example 3.24. Let S = R = [−1, 1] \ {0},16 ϕ(s) = −1 if −1 ≤ s < 0, and
ϕ(s) = 1 if 0 < s ≤ 1. Moreover, let σS(u, v) = σR(u, v) = 1 − |u − v|/2.
Obviously, for all 1 "= x ∈ DS there are s, s′ ∈ S such that σS(s, s′) = x and
σR(ϕ(s), ϕ(s′)) = 0. We hence have hΣ(x) = 0 for all x ∈ DS \ {1}, which means
that ϕ̂hΣ ,M(s0) = [−1, 1] if 〈s0, ϕ(s0)〉 "∈ M. �

Loosely speaking, a CBI strategy is not applicable in Example 3.24 because the
CBI hypothesis is not globally valid. Still, it seems desirable to make use of
the observation that this assumption is satisfied at least locally. One possibility
of doing this is to partition the set S of inputs and to derive respective local

13 Recall the selective superiority problem mentioned in footnote 9.
14

CBA is also local in the sense that it is a local approximation method. These two meanings of
locality should not be confused.

15 In a game playing context, for instance, the CBI principle hardly applies to certain “tactical” situ-
ations [310].

16 More specifically, to comply with our formal framework, we should set S = R = ([−1, 1] ∩ Q) \ {0}.
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approximations.17 In Example 3.24, it suggests itself to partition S into [−1, 0)
and (0, 1]. However, since ϕ is generally unknown, the definition of such a partition
will not always be obvious, all the more if S is non-numerical. Here, we consider
a second possibility, namely that of associating an individual similarity profile
with each input of the memory. This approach is somehow comparable to the use
of local kernels in kernel-based density estimation [385], and to the use of local
metrics in kNN algorithms and instance-based learning (e.g., metrics which allow
feature weights to vary as a function of the instance [342, 157, 9, 311]). It leads
us to introduce the concept of a local similarity profile.

Definition 3.25 (local similarity profile). Consider a CBI setup Σ and let
s ∈ S. We define hs

Σ : DS −→ [0, 1] by the mapping

x �→ inf
s′∈S, σS(s,s′)=x

σR(ϕ(s), ϕ(s′)).

This function is called the local similarity profile associated with s, or the s-
similarity profile of Σ. A collection hM

Σ = {hs
Σ | s ∈ M↓} of local profiles is

referred to as the local M-similarity profile. �

The following relations hold between the different types of similarity profiles:

hΣ =
∧
s∈S

hs
Σ, hM

Σ =
∧

s∈M↓

hs
Σ.

That is, the similarity profile hΣ and M-similarity profile hM
Σ are lower envelopes

of the class of local profiles associated with inputs in S and M↓, respectively.
Consequently, hΣ ≤ hM

Σ ≤ hs
Σ for all memories M and inputs s ∈ M↓.

As can be seen, a local similarity profile is closely related to the idea of an
M-similarity profile. In fact, an s-profile corresponds to the M-profile with
M↓ = (s). Besides, a class of local profiles will generally be specified – by means
of respective learning methods (cf. Section 3.4) – for a memory which does not
change frequently. In connection with approximation methods, the inputs which
constitute the memory and for which local profiles are defined play a role some-
what similar to the so-called knots in, say, approximation with spline functions,
and the local profiles correspond to basis functions.

Given a hypothesis hM = {hs | s ∈ M↓} related to a local M-similarity profile
and a new input s0 ∈ S, the inference scheme (3.2) is replaced by

ϕ(s0) ∈ ϕ̂hM,M(s0)
df
=
⋂

〈s,r〉∈M

Nhs(σS(s,s0))(r). (3.21)

The respective case-based approximation, i.e., the local counterpart to (3.15), is
called a local case-based approximation:

17 This idea is related to that of feature space partitioning in classification [77]. See also [261] for a
related idea in connection with memory-based learning.
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ϕ̂hM,M : s �→
⋂

〈s′,r′〉∈M

Nhs′ (σS(s,s′))(r
′).

Example 3.26. Consider again Example 3.24 and suppose that the memory M
contains the cases 〈−1,−1〉 and 〈1, 1〉. The respective local profiles are given by

x �→
{

1 if 1/2 ≤ x ≤ 1

0 if 0 ≤ x < 1/2
.

These two profiles can already guarantee an exact representation of ϕ. That is,
ϕ̂hM

Σ
(s) = {ϕ(s)} for all s ∈ S with M = (〈−1,−1〉, 〈1, 1〉). �

Note that a local profile indicates the validity of the CBI hypothesis for individual
cases. That is, the local profile associated with an input s ∈ S can be utilized
for rating the quality of the case 〈s, ϕ(s)〉.18 An input with a strongly developed
local profile (i.e., its outcome is locally representative) will generally support
precise predictions, whereas an input with a poorly developed profile will hardly
be useful from the viewpoint of CBA. Local profiles might hence serve as a
(complementary) criterion for selecting “competent” cases to be stored in (or
removed from) the memory [357]. It should be noted, however, that the similarity
profile can only be taken as an indication of the precision of predictions. In fact,
the predictions also depends on the neighborhood structure of R. For instance, it
is quite possible that card(Nα(r)) < card(Nβ(r′)) for two outcomes r "= r′, even
though β < α.

3.4 Learning similarity hypotheses

3.4.1 The learning task

The inference scheme (3.2) reveals that CBI can essentially be seen as an instance-
based approach. Still, it also contains a model-based component, namely the simi-
larity hypothesis h. Consequently, learning can be realized in (at least) two ways
in CBI: By storing new cases in the memory and by estimating the similarity
profile. Here, we concentrate on the latter (model-based) aspect.

Definition 3.27 (CBL). Consider a CBI setup Σ with a memory

M ⊆ D = DN = (c1, . . . , cN),

where D denotes the sequence of cases which have been encountered so far (these
are the first N cases, given the assumption that cases arrive successively). More-
over, let H be a hypothesis space of functions h : [0, 1] −→ [0, 1]. The task
of case-based learning (CBL) is understood as deriving an optimal hypothesis
h∗ ∈ H from the data given. �
18 See Section 4.6 for a more detailed discussion of the assessment of cases.
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Observe that different similarity measures define different similarity structures of
the system under consideration and that the measures originally chosen might
not be optimal in the sense that similarity structures induced by alternative
measures are, in a certain sense, more suitable for CBI. Suppose, for instance,
that we have measures (σS , σR) and (σ′

S , σ′
R) and let ϕ̂h,M resp. ϕ̂′

h,M denote the
case-based approximations induced by these measures via (3.15) with h = hΣ. If
ϕ̂h,M(s) ⊆ ϕ̂′

h,M(s) for all s ∈ S, then (σ′
S , σ′

R) should not (at least not strictly) be
preferred to (σS , σR). This gives rise to defining a partial order relation on a class
of measures. Therefore, it might also be reasonable to allow for the adaptation of
similarity measures. The problem of CBL can thus be extended as follows.

Definition 3.28 (extended CBL problem). Let a set S of inputs, a set R of
outputs, and a memory M ⊆ D = (c1, . . . , cN) be given, where D denotes the
sequence of cases which have been encountered so far. Moreover, let H be a class
of functions h : [0, 1] −→ [0, 1] and HS , HR classes of similarity measures over
S and R, respectively. The task of (extended) CBL is defined as searching the
hypothesis space H × HS × HR for an optimal hypothesis h∗ = (h, σS , σR). �

Remark 3.29. Relating the interpretation of a similarity hypothesis h (resp. a
similarity profile hΣ) to the idea of modifying the measure σS has already been
suggested in Remark 3.4. If h is strict, such a modification corresponds to a
“stretching” and “squeezing” of the similarity scale underlying σS . Moreover,
the modification is restricted in the sense that the original measure σS and its
modified version σ′

S are coherent in the sense of (3.17). As opposed to this, a
non-monotone hypothesis additionally puts the similarity degrees x ∈ DS in a
different order, which corresponds to a re-arranging of the (ordinal) similarity
scale DS . Then, (3.17) holds true only with ≤ replaced by the equality relation.
In other words, two inputs s1, s2 which are more similar than the inputs s3, s4

according to σS might be seen as being less similar according to σ′
S . Now, one

possibility to approach the extended CBL problem is to allow for a re-arranging
of the similarity scale underlying σR as well, i.e., to allow for replacing σR by
σ′
R = m ◦ σR for some m : [0, 1] −→ [0, 1]. A similarity hypothesis h is then

related to (σS , σ′
R) instead of (σS , σR). In connection with the extended CBL

problem, this amounts to defining HR as the class of all measures which can be
written in the form m ◦ σR. �

Definition 3.27 has not commented on the criteria which decide on the optimality
of hypotheses. In order to derive such criteria we fall back on two principles. The
first one is the obvious demand that an optimal hypothesis h∗ should be consistent
with observed data in the sense that (3.1) is satisfied at least for elements of D,
i.e.

(σS(s, s′) = x) ⇒ (σR(r, r′) ≥ h∗(x)) (3.22)

should hold true for all 〈s, r〉, 〈s′, r′〉 ∈ D. This consistency principle is closely re-
lated to the inductive learning hypothesis in machine learning. Namely, we suspect
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a hypothesis h, which is consistent with a large number of observations, also to
be consistent with the overall similarity structure of the system (in the sense
that it is admissible). Observe that (3.22) implies ϕ(s) ∈ ϕ̂h,M(s) for all s with
〈s, ϕ(s)〉 ∈ D and M ⊆ D. Again, we may assume that a mapping which defines
an outer approximation of ϕ|S ′ for a (large) subset S ′ ⊆ S also defines an outer
approximation of the complete mapping ϕ = ϕ|S. We denote by HD ⊆ H the
class of hypotheses which are consistent with a set D of cases in the sense of
(3.22).

As will be seen in Section 3.4.3, it may become necessary to weaken the aforemen-
tioned consistency principle. In fact, testing consistency of a hypothesis according
to (3.22) requires the consideration of all pairs (c, c′) ∈ D ×D of cases. However,
as suggested by Definition 3.27, the memory M of stored cases will generally be
a (proper) subset of the set D of successively encountered cases. It is hence not
possible to take the tuple, say, (c1, cN) into consideration if c1 was not stored long
enough and has been removed before the arrival of cN . Thus, a weaker version of
the consistency principle should require (3.22) to hold true for all

(c, c′) ∈ C = CN
df
=
⋃

1≤n≤N−1

Mn × (cn+1),

where Mn denotes the memory after the observation of the n-th case cn. We
denote by HC the class of hypotheses which are consistent with D in this weaker
sense. Thus, we generally have HD ⊆ HC ⊆ HM, where HM is defined in a
canonical way.

In order to motivate the second principle recall that the case-based approxima-
tion (3.15), which is induced by a hypothesis (h, σS , σR) and a memory M, can
be seen as a simplified representation of the system structure ϕ. Indeed, ϕ̂h,M is
represented by card(M) cases and the hypothesis (h, σS , σR), whereas the repre-
sentation of ϕ – if it cannot be expressed in closed form – requires the enumeration
of the complete set

D∗ df
= {〈s, ϕ(s)〉 | s ∈ S}

of cases. Of course, in passing from ϕ to ϕ̂h,M it is usually unavoidable to loose
some information. The corresponding increase in uncertainty is reflected by the
fact that ϕ̂h,M is a set-valued mapping and that we will generally have {ϕ(s)} �

ϕ̂h,M(s) for at least some inputs s ∈ S. According to the principle of minimum
uncertainty, which is one of the general principles of systems theory, one should,
among a set of candidates, accept only those simplifications of a system for which
the increase in uncertainty is minimal [231]. Thus, let U be some measure which
quantifies the uncertainty associated with ϕ̂h,M.19 A hypothesis h∗ is then optimal
if h∗ ∈ HC and U (ϕ̂h∗,M) ≤ U (ϕ̂h,M) holds true for all h ∈ HC. We denote by
H∗ ⊆ HC the class of all optimal hypotheses. Of course, this definition does
neither guarantee the existence nor the uniqueness of an optimal hypothesis.

19 Various proposals for such uncertainty measures can be found in systems science literature.
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In connection with the learning of hypotheses it makes sense to consider admissi-
bility as a further property which is more restricting than consistency. We denote
by H∗ the class of optimal admissible hypotheses. Thus, H∗ consists of those
uncertainty minimizing hypotheses h∗ which are consistent with D∗.20

Let us now consider the CBL problem in its basic form. Of course, deriving the
uncertainty U(ϕ̂h,M) associated with a hypothesis h is intractable if it requires
the computation of the complete mapping ϕ̂h,M. Observe, however, that any
reasonable measure U should satisfy U(ϕ̂h,M) ≤ U(ϕ̂h′,M) if ϕ̂h,M(s) ⊆ ϕ̂h′,M(s)
for all s ∈ S. Since the latter holds true if h′ ≤ h, U should be consistent with
the partial order defined by ≤ over H.

Observation 3.30. Suppose the hypothesis space H to satisfy h ≡ 0 ∈ H and
(h, h′ ∈ H) ⇒ (h ∨ h′ ∈ H), where h ∨ h′ is defined by the mapping x �→
max{h(x), h′(x)}. Moreover, suppose the measure U to satisfy

(h′ ≤ h) ⇒ (U(ϕ̂h,M) ≤ U(ϕ̂h′,M))

for all h, h′ ∈ H and memories M. Then, a unique optimal hypothesis h∗ ∈ H
exists, and HC = {h ∈ H |h ≤ h∗}. �

Given the assumptions of Observation 3.30, CBL can be realized as a candidate-
elimination algorithm [269], where h∗ is a compact representation of the version
space, i.e., the subset HC of hypotheses from H which are consistent with the
training examples.

Note that (3.22) guarantees consistency in the “empirical” sense that r ∈ ϕ̂h,M(s)
for all observed cases 〈s, r〉 ∈ D. Still, one might think of demanding furthermore
a kind of “logical” consistency, namely ϕ̂h,M(s′) "= ∅ for the set of all possible
inputs s′ ∈ S. Of course, this additional demand would greatly increase the
complexity of testing consistency. Moreover, the assumptions of Observation 3.30
would no longer guarantee the existence of a unique optimal hypothesis.

Since two hypotheses h and h′ are only comparable for the same underlying simi-
larity measures (cf. Remark 3.7), the above remarks do not apply to the extended
CBL problem. Thus, considering the maps ϕ̂h,M themselves cannot be avoided in
this case. Nevertheless, one can think of efficient (heuristic) approaches for realiz-
ing corresponding learning procedures. A value U(ϕ̂h,M) might be approximated,

for instance, by some value Û({ϕ̂h,M(s) | s ∈ S ′}) derived from a sample S ′ ⊆ S.
The usefulness of different (generalized) learning procedures will, however, highly
depend on characteristics of the similarity measures and the way in which these
measures can be adapted, i.e., on the classes HS and HR. In this section, we shall
restrict ourselves to the basic version of the CBL problem.

20 Observe that H∗ ⊆ H∗ does generally not hold.
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3.4.2 A learning algorithm

Let hypotheses be represented by step functions

h : x �→
m∑

k=1

βk · IAk
(x), (3.23)

where Ak = [αk−1, αk) for 1 ≤ k ≤ m − 1, Am = [αm−1, αm] and 0 = α0 <
α1 < . . . < αm = 1 defines a partition of [0, 1].21 The hypothesis h can then be
associated with a set of rules (implications) of the form

(σS(s, s′) ∈ Ak) ⇒ (σR(ϕ(s), ϕ(s′)) ≥ βk). (3.24)

Observe that by simply defining one interval for each element x ∈ DS , hΣ itself
can be seen as a step function if S is finite. A combination (3.24) of such similarity
degrees seems still reasonable if S is not finite (or even if card(S) is large).

The class Hstep of functions (3.23), defined for a fixed partition, does obviously
satisfy the assumptions of Observation 3.30. The optimal hypothesis h∗ is defined
by the values

βk
df
= min

(s,s′)∈C↓,σS(s,s′)∈Ak

σR(ϕ(s), ϕ(s′)) (3.25)

for 1 ≤ k ≤ m, where min ∅ df
= 1 by convention; see Fig. 3.4 for an illustration.

Since this hypothesis is directly derived from the case base M, we also call it the
empirical similarity profile.

Now, suppose that M is the current memory and that a new case c0 = 〈s0, r0〉 has
been observed. Updating h∗ can then be accomplished by passing the iteration

βκ(s0,s) = min{βκ(s0,s), σR(r0, r)} (3.26)

for 1 ≤  ≤ card(M); the index 1 ≤ κ(s, s′) ≤ m is defined for inputs s, s′ ∈ S
by κ(s, s′) = k

df⇔ σS(s, s′) ∈ Ak. As (3.26) shows, the representation (3.23) is
computationally efficient. In fact, the time complexity of updating a hypothesis
is linear in the size of the memory.22 In other words, the model-based part of
learning in CBI is not critical from a computational point of view. We refer to
the algorithm defined by (3.26) as CBLA and denote by CBLA(C) the hypothesis
(3.25).

For obvious reason we call h∗ ∈ Hstep defined by

β∗
k

df
= inf

x∈DS∩Ak

hΣ(x) (3.27)

(1 ≤ k ≤ m) the optimal admissible hypothesis. Since admissibility (in the sense
of Definition 3.2) implies consistency, we have h∗ ≤ h∗.

21 In Section 3.3.1 we have hinted at the ordinal character of the similarity measures σS , σR. In con-
nection with the representation of hypotheses according to (3.23) it should, therefore, be noticed
that a scaling of σS might influence the optimal similarity hypothesis if the underlying partition is
assumed to be fixed.

22 We assume that κ is computed in constant time.
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σS(sı, s)

σR(rı, r)

0

0

1

1

Fig. 3.4. Each pair of observed cases 〈sı, rı〉 and 〈s, r〉 contributes a point (x, y) in the “similarity
space”, where y = σS(sı, s) and r = σR(rı, r). By definition, these points are located above the
similarity profile, which is here shown by the solid curve. The optimal similarity hypothesis h∗ is given
by the step function indicated by the solid horizontal lines.

Remark 3.31. Assuming the CBI hypothesis to hold true in the strict sense
restricts the class Hstep to the class H↑

step of non-decreasing step functions, which
is also closed under ∨. Consider a hypothesis h∗ ∈ Hstep represented by values

(β1, . . . , βm). Moreover, denote by h↑
∗ ∈ H↑

step the corresponding strict hypothesis

represented by values (β↑
1 , . . . , β

↑
m). The relation between h∗ and h↑

∗ is obviously
given by β↑

k = min{β | k ≤  ≤ m} for all 1 ≤ k ≤ m. Thus, an optimal strict
hypothesis can always be derived easily from h∗. �

Remark 3.32. If a similarity hypothesis h is defined by a step function, the same
is actually true for a case-based approximation ϕ̂h,M itself. Namely, for s, s′ ∈ S
we have ϕ̂h,M(s) = ϕ̂h,M(s′) if κ(s, sı) = κ(s′, sı) for all 1 ≤ ı ≤ n. A correspond-
ing equivalence relation on S × S, where each equivalence class is identified by
some vector (k1, . . . , kn) of indices k = κ(s, s) ∈ {1, . . . , m}, offers some inter-
esting possibilities of representing the mapping ϕ̂h,M and deriving values thereof.
For instance, since ϕ̂h,M(s) = ϕ̂h,M(s′) whenever s and s′ are elements of the same
equivalence relation, the values associated with the equivalence classes might be
computed in advance and stored by means of an adequate data structure. The
derivation of a value ϕ̂h,M(s) then reduces to a (simple) “look-up” procedure.
Admittedly, the number mn of (potential) classes is generally extremely large,
even though most of them will be empty. �

3.4.3 Properties of case-based learning

We shall now consider an iterative scheme which is in accordance with the idea
of CBI as a repeated process of problem solving and learning. This case-based
learning process, called CBLP and outlined in Algorithm 1, is based on a random
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sequence (SN)N≥1 of inputs SN ∈ S which are independent and identically dis-
tributed according to µS , and a sequence p = (pN)N≥1 ∈ [0, 1]∞.

Algorithm 1 CBLP

Input: a sequence of query inputs
Output: a sequence of estimation for outputs

1: M0 = ∅, h0 ≡ 1
2: N = 0
3: repeat
4: compute r̂N+1 = ϕ̂hN ,MN (sN+1)
5: solve-problem(sN+1, r̂N+1)
6: hN+1 = update(hN , cN+1,MN )

7: MN+1 =

{ MN ∪ (cN+1) with probability pN+1

MN with probability 1 − pN+1

8: N = N + 1
9: until no more queries exist

Here, solve-problem is a procedure in which the prediction r̂N+1 is used for
supporting the derivation of the true outcome ϕ(sN+1). Moreover, the procedure
update(hN , cN+1,MN) returns the hypothesis obtained from hN by passing the it-
eration (3.26) for MN and the case cN+1 = 〈sN+1, ϕ(sN+1)〉. Observe that CBLP

guarantees hN = CBLA(CN) but that we generally have hN "= CBLA(DN ×DN).
The probabilistic extension of the memory in CBLP takes into account that
adding all observations to M, i.e., taking p ≡ 1, might not be advisable [353].
Of course, efficient problem solving will generally assume a more sophisticated
strategy for the instance-based aspect of learning, i.e., for maintaining the mem-
ory of cases. It might be reasonable, e.g., to take the “quality” of individual cases
into account and to allow for removing already stored cases from the memory
[355, 286]. Nevertheless, the probabilistic extension in CBLP allows for gaining
insight into theoretical properties of the learning scheme. Observe that pN = 0
for N ≥ N0 (with N0 being a constant number) comes down to using a fixed
memory M.

Given a CBI setup and the sequence (pN)N≥1, the hypotheses hN induced by
CBLP are random functions with well-defined (even though tremendously com-
plicated) distributions. We are now going to derive some important properties
of the sequence (hN)N≥1. It goes without saying that one of the first questions
arising in connection with our learning scheme concerns the relation between
(hN)N≥1 and the optimal admissible hypothesis h∗.

Proposition 3.33. Suppose p ≥ δ > 0, i.e., pN ≥ δ for all N ∈ N, and let
(hN)N≥1 be the sequence of hypotheses induced by CBLP. Then, hN ↘ h∗

stochastically as N → ∞. That is, hN ≥ h∗ for all N ∈ N and

P(‖hN − h∗‖∞ ≥ ε) → 0

for all ε > 0. �
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Proof. From the definition of h∗ and the updating scheme (3.26) it becomes
obvious that h∗ ≤ hN for all N ≥ 1 and that the sequence of functions
(hN)N≥0 is decreasing. Let ε > 0 and consider some 1 ≤ k ≤ m. Accord-
ing to (3.27), there is some x ∈ Ak such that |hΣ(x) − β∗

k| < ε/2. Since we
have hΣ(x) = inf

{
σR(ϕ(s), ϕ(s′)) | s, s′ ∈ S, σS(s, s′) = x

}
, there are also values

sk1 , sk2 ∈ S such that σS(sk1 , sk2) = x and |σR(ϕ(sk1), ϕ(sk2)) − hΣ(x)| < ε/2.
Hence, |σR(ϕ(sk1), ϕ(sk2)) − β∗

k| < ε. This implies |hMN
(x) − β∗

k| < ε as soon as
the memory MN contains the inputs sk1 and sk2 , where hMN

= CBLA(MN).
Since this argumentation applies to all 1 ≤ k ≤ m and since h∗ ≤ hN ≤ hMN

, we
obtain

‖hN − h∗‖∞ ≤ ‖hMN
− h∗‖∞ = max

0≤x≤1
|hMN

(x) − h∗(x)| < ε

if MN contains the (at most 2 m) inputs sk1 , sk2 (1 ≤ k ≤ m). Since µS(sk1) > 0
and µS(sk2) > 0 for all 1 ≤ k ≤ m and pN ≥ δ > 0 for all N ∈ N, the probability
for this tends toward 1 for N → ∞. �

Observe that the stochastic convergence (from above) of the hypotheses (hN)N≥0

toward h∗ ∈ Hstep, which is guaranteed by Proposition 3.33, does not imply that
hN(x) → hΣ(x) for all x ∈ DS . In fact, it might happen that h∗|DS is already
a poor approximation of hΣ (at least in the strong sense of the ‖ · ‖∞ metric)
regardless of the (finite) partition underlying the definition of the hypothesis
space Hstep. The following example shows that this cannot be avoided even if the
system (S,R, ϕ) satisfies strong structural assumptions:

Example 3.34. Let S = {sk = k − (1/2)k | k ∈ N0}, R = {0, 1}, and

ϕ(sk) =

{
0 if �k/2� is odd

1 if �k/2� is even
.

Moreover, let σS(s, s′) = |s − s′|−1 and σR(r, r′) = 1 − |r − r′| (and note that
ϕ : (S, | · |) −→ (R, | · |) does even satisfy a Lipschitz condition). Now, for
αk = 2k/(2k + 1) (k ∈ N) there are exactly two inputs s, s′ ∈ S such that
σS(s, s′) = αk, namely s = sk−1 and s′ = sk (or vice versa). Thus, we have

hΣ(αk) = σR(ϕ(sk−1), ϕ(sk)) =

{
1 if k is odd

0 if k is even
.

Obviously, each finite partition of [0, 1] contains an interval A such that αk, αk+1 ∈
A for some k ≥ 1. Consequently, h∗|A ≡ 0 and, hence, ‖h∗|DS − hΣ‖∞ = 1. �

The convergence from above established by Proposition 3.33 already suggests
that we will generally have hN(x) > hΣ(x) for some x ∈ DS in the course of
a CBL process. Thus, we might work with inadmissible hypotheses (see also
Fig. 3.4, where h∗ ≤ hΣ does not hold). This, of course, seems to conflict with
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the objective of providing an outer approximation of ϕ. Indeed, it can easily be
shown that hΣ is the largest function h (defined on DS) such that ϕ(s) ∈ ϕ̂h,M(s)
for all s ∈ S is guaranteed regardless of the memory M. In other words, for
each function h with h(x) > hΣ(x) for at least one x ∈ DS , a memory M can be
found such that ϕ(s) "∈ ϕ̂h,M(s) for at least one s ∈ S. Observe, however, that the
approximation ϕ̂hN ,MN

is derived from the specific memory MN . Thus, the fact
that hN(x) > hΣ(x) for some x ∈ DS does by no means rule out the possibility of
ϕ̂hN ,MN

being an outer approximation of ϕ. In connection with CBLP one might
therefore be interested in the probabilities

qN+1 = P
(
ϕ(SN+1) "∈ ϕ̂hN ,MN

(SN+1)
)

(3.28)

of incorrect predictions.

Consider a memory M, a hypothesis h, and an input s0 ∈ S. We call s0 extremal23

(with respect to M and h) if h "= update(h, s0,M), i.e., if there is some 1 ≤ k ≤
m and a case 〈s, r〉 ∈ M such that σS(s, s0) ∈ Ak and

∀ 〈s′, r′〉 ∈ M : (σS(s, s′) ∈ Ak) ⇒ (σR(r, r0) < σR(r, r′)) .

Lemma 3.35. For a memory M, a hypothesis h ≤ CBLA(M), and an input
s0 ∈ S suppose that ϕ(s0) "∈ ϕ̂h,M(s0). Then, s0 is extremal. �

Proof. Suppose r0 "∈ ϕ̂h,M(s0). Then, we find a case 〈s, r〉 ∈ M such that
r0 "∈ Nh(σS(s,s0))(r). This means that σR(r, r0) < h(σS(s, s0)) and, since h ≤
CBLA(M), σR(r, r0) < σR(r, r′) for all cases 〈s′, r′〉 ∈ M satisfying σS(s, s′) ∈
Aκ(s,s0). Hence, s0 is extremal. �

Proposition 3.36. The following estimation holds true for the probability (3.28):

qN+1 ≤
N∑

n=0

2m

n + 1
· P(card(MN) = n) (3.29)

≤ 2m

1 + E(card(MN))
=

2m

1 +
∑N

k=1 pk

, (3.30)

where m is the size of the partition underlying Hstep and E denotes the expected
value operator. �

Proof. Suppose MN to consist of n ≤ N cases, i.e., MN is defined by some
random (sub-)sequence (Sπ(1), . . . , Sπ(n)) of inputs, where 1 ≤ π(1) < π(2) <
. . . < π(n) ≤ N . Moreover, consider a new input S0 = SN+1 and observe that

P(ϕ(S0) "∈ ϕ̂hN ,MN
(S0)) ≤ P(ϕ(S0) "∈ ϕ̂hMN

,MN
(S0)),

23 This definition of being extremal is to some extent related to the concept of “strangeness” of an
observation in the context of so-called confidence machines [162, 301].
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where hMN
= CBLA(MN). From the random sequence (Sπ(1), . . . , Sπ(n), S0) of

inputs we can choose a set M′ of (at most) 2m inputs resp. associated cases
such that CBLA(MN ∪ {〈S0, ϕ(S0)〉}) = CBLA(M′). Obviously, 〈S0, ϕ(S0)〉 /∈
M′ implies that S0 is not extremal. Now, recall that inputs are independent
and identically distributed according to µS . Thus, the value 2m/(n + 1) defines
an (upper) bound to the probability that 〈S0, ϕ(S0)〉 ∈ M′ due to reasons of
symmetry. We hence obtain

P(ϕ(S0) "∈ ϕ̂hN ,MN
(S0) | card(MN) = n) ≤

P(ϕ(S0) "∈ ϕ̂hMN
,MN

(S0) | card(MN) = n) ≤ 2m/(n + 1)

from Lemma 3.35. Then, (3.29) and (3.30) follow from the theorem of total prob-
ability and Jensen’s inequality, respectively. �

Corollary 3.37. Suppose p ≥ δ > 0. Then, qN+1 ≤ 2m/(δN + 1). Particularly,
qN+1 ≤ 2m/(N + 1) if p ≡ 1. �

According to the above results, the probability of an incorrect prediction becomes
small for large memories, even though the hypotheses hN might be inadmissible.
Under the assumptions of Corollary 3.37, this probability tends toward 0 with a
convergence rate of order O(1/N).

Corollary 3.38. Suppose p ≥ δ > 0. Then, the expected proportion of incorrect
predictions in connection with CBLP converges toward 0. �

Proof. Define the random variable Vn (n ≥ 1) by means of Vn = 1 if the n-th
prediction is incorrect, i.e., if ϕ(Sn) /∈ ϕ̂hn−1,Mn−1(Sn), and Vn = 0 otherwise.
Then, E(Vn) = qn, where E(Vn) denotes the expected value of Vn, and

E

(
1

N

N∑
n=1

Vn

)
=

1

N

N∑
n=1

E(Vn)

(Cor. 3.37)

≤ 1

N

N∑
n=1

2m/(δn)

≤ 2m(1 + ln(N))

δN
→ 0

as N → ∞. �

Example 3.39. Fig. 3.5 shows the optimal hypothesis h∗ for the setup Σ1 defined
in Example 2.5 (cf. Section 2.4.1) and the hypothesis hM for a typical memory M
of size 250, generated by a sequence of inputs chosen at random. The underlying
partition has been defined by the values αk = k/10 (k = 0, . . . , 10). The same
figure shows a characterization of the evolution of the approximation quality in
the form of the values ‖h∗ − hMn‖2 and ‖h∗ − hMn‖∞ (n = 1, . . . , 300), where
‖ · ‖p denotes the corresponding Lp-norm. �
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The upper bound established in Proposition 3.36 might suggest to reduce the
probability of an incorrect prediction by reducing the size m of the partition
underlying Hstep. Observe, however, that this will also lead to a less precise ap-
proximation of hΣ and, hence, to less precise predictions of outcomes. “Merging”
two neighbored intervals Ak and Ak+1, for instance, means to define a new hy-
pothesis h with h|(Ak ∪ Ak+1) ≡ min{βk, βk+1}. In fact, the probability of an
incorrect prediction can be made arbitrarily small by increasing the size of the
memory. The precision of the predictions, however, is limited by the precision
to which hΣ can be approximated by h∗ and, hence, by the granularity of the
partition underlying the definition of the hypothesis space Hstep. Of course, noth-
ing prevents us from extending our approach to CBL such that it allows for the
adaptation of the partition. A refinement of the latter will make sense, e.g., if the
size of the memory becomes large.

Let us now consider the fixed memory-model, i.e., the case where CBI is based
on a fixed memory M = (c1, . . . , cn) of size n ≥ 1. The objective of CBL is then
to find an approximation of the M-similarity profile hM

Σ . Thus, the consistency
principle (3.22) should hold true for C = M × D. Again, the class H∗ consists of
the uncertainty minimizing hypotheses in HC. Likewise, H∗ is made of those un-
certainty minimizing hypotheses that satisfy (3.22) for M×D∗. Observation 3.30
does obviously remain correct. The hypothesis h∗ = CBLAM(D) is now defined
by the values

βk = min
{
σR(r, r′) | 〈s, r〉 ∈ M, 〈s′, r′〉 ∈ D, σS(s, s′) ∈ Ak

}
.

Thus, given a new observation, the update of the current hypothesis is realized
by passing the iteration (3.26) for the n cases in M. The fixed-memory version
of CBLP, denoted CBLPM, is outlined in Algorithm 2.

For the hypotheses hN induced by CBLPM we do not only obtain an upper
approximation but even hN = CBLAM(DN).

Fig. 3.5. Left: Optimal hypothesis h∗ for the setup Σ1 in Example 2.5 and the hypothesis hM for a
memory M of size 250. Right: Evolution of approximation quality ‖h∗ − hMn‖2 and ‖h∗ − hMn‖∞
(cf. Example 3.39).
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Algorithm 2 CBLPM
Input: a sequence of query inputs
Output: a sequence of estimation for outputs

1: h0 = CBLA(M)
2: N = 0
3: repeat
4: compute r̂N+1 = ϕ̂hN ,M(sN+1)
5: solve-problem(sN+1, r̂N+1)
6: hN+1 = update(hN , cN+1,M)
7: N = N + 1
8: until no more queries exist

Proposition 3.40. For the sequence (hN)N≥1 induced by CBLPM it holds true
that hN ↘ h∗ stochastically as N → ∞, where h∗ is defined by the values
β∗

k = inf{hM
Σ (x) |x ∈ DS ∩ Ak} (1 ≤ k ≤ m). �

Proposition 3.41. In connection with the fixed memory-model we obtain the
estimation qN+1 ≤ 2m/(N + 1) for the probability (3.28), where m is the size of
the partition underlying Hstep. �

Proof. Consider the random sequence (S1, . . . , SN , S0) of N + 1 inputs. From
this sequence we can choose a set D of (at most) 2m inputs resp. associated
cases such that CBLAM(DN ∪ {〈S0, ϕ(S0)〉}) = CBLAM(D). Now, recall that
〈S0, ϕ(S0)〉 /∈ D implies that S0 is not extremal with respect to hN and M and
that inputs are independent and identically distributed according to µS . Thus, the
value 2m/(N+1) defines an (upper) bound to the probability that 〈S0, ϕ(S0)〉 ∈ D
due to reasons of symmetry. The rest follows from Lemma 3.35. �

Corollary 3.42. The expected proportion of incorrect predictions in connection
with CBLPM converges toward 0. �

It should be noticed that CBLPM is closely related to CBLP in the case where
some N0 ∈ N exists such that pN = 0 for all N ≥ N0. Suppose for instance,
that pN = 1 for 1 ≤ N < N0 and pN = 0 for N ≥ N0. Then, Proposition 3.41
remains correct with CBLPM replaced by CBLP. Proposition 3.40 remains cor-

rect if, moreover, hM
Σ is replaced by h

MN0−1

Σ . The result of Proposition 3.41 can
also be used for deriving the following generalizations of Proposition 3.36 and
Corollary 3.38.

Proposition 3.43. Let N0 ∈ N and suppose pN = 1 for N ≥ N0. We then
obtain the estimation

qN+1 ≤ 2m

(
1 + max{0, N − N0} +

N0−1∑
k=1

pk

)−1

,

where m is the size of the partition underlying Hstep. �
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Corollary 3.44. Let N0 ∈ N and suppose pN = 1 for N ≥ N0. Then, the
expected proportion of incorrect predictions in connection with CBLP converges
toward 0. �

Summing up, the results of this section throw light on some interesting properties
of our approach to case-based learning. In fact, the combination of case-based
inference and case-based learning, i.e., the application of the prediction scheme
of Section 3.2.1 with a hypothesis derived by means of CBLA, allows for deriving
a set-valued prediction ϕ̂(s0) = ϕ̂h,M(s0) which covers the true outcome with a
high probability. In a statistical sense, ϕ̂h,M(s0) can thus be seen as a kind of
confidence region or credible output set, a justification for designating the above
inference scheme as credible case-based inference.

Remark 3.45. In many applications one is interested in both, a credible output
set and a “point-estimation” of the output r0, i.e., a distinguished element r̂0 ∈ R
that can be considered as representative. The latter can be derived from the
credible output set ϕ̂h,M(s0) as a generalized median:

r̂0
df
= arg max

r∈ϕ̂h,M(s0)

∑
r′∈ϕ̂h,M(s0)

σR(r, r′) (3.31)

As can be seen, the generalized median is a kind of center-point, namely the
element of the credible output set which is maximally similar to all other ele-
ments. �

Note that the concrete probability of a correct prediction depends on the number
of observed cases and can thus be estimated in advance. Moreover, it can be made
arbitrarily large by extending the size of the memory. CBLP, the combination of
CBI and CBL, can thus be seen as an interesting method of statistical inference.
Principally, it defines a generalized instance-based learning algorithm which takes
uncertainty in connection with the prediction of outcomes into account. This
aspect will be discussed in more detail in Section 3.5 below.

Let us finally mention that results similar to the ones derived in this section can
also be obtained in connection with other types of similarity profiles. Recall, for
instance, the concept of a local similarity profile: Let M be a memory of cases,
namely a subset M ⊆ D of the cases 〈sn, rn〉 (1 ≤ n ≤ N) which have been
encountered so far. For 〈s, r〉 ∈ M we define the local hypothesis hs by the values

βk
df
= min

1≤n≤N :σS(s,sn)∈Ak

σR(ϕ(s), ϕ(sn)). (3.32)

The local M-hypothesis is given by hM df
= {hs | s ∈ M↓}. We can then prove a

result similar to Proposition 3.36:
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Proposition 3.46. Suppose that N (independent and identically distributed)
cases have been encountered so far. For a subset M containing |M| cases let a
local M-hypothesis be defined according to (3.32). Moreover, let s0 ∈ S be a
new problem (chosen at random from S). The probability that the true outcome
r0 = ϕ(s0) is not covered by

ϕ̂hM,M(s0) =
⋂

〈s,r〉∈M

Nhs(σR(s,s0))(r) (3.33)

is bounded from above by |M|m/(N + 1). �

A prediction (3.33) based on a local M-hypothesis is generally more precise than
a prediction (3.2). At the same time, however, the associated confidence level is
smaller. Still, Proposition 3.46 shows that this level can be made arbitrarily large
by increasing the number of observed cases.

Note that it might not be possible to compute the hypothesis (3.32) exactly
if only some of the encountered cases 〈sn, rn〉 ∈ D are added to M. However,
Proposition 3.46 remains valid (up to some minor modifications) if the minimum
in (3.32) is not taken over all (pairs) of cases.

3.4.4 Experimental results

The basic learning scheme presented in Section 3.4.2 offers a convenient frame-
work which enables the realization of methods for predicting unknown outcomes
based on a sequence of observed cases. The results of Section 3.4.3 show that
corresponding predictions take the form of confidence regions which cover the
unknown output with a certain probability. In this section, we shall present some
small examples in order to convey how this approach works in practice. These
examples are not meant as an empirical evaluation of our CBI method, they are
only intended to provide an illustration of the theoretical results derived above.

We have organized two experimental studies as follows: First of all, a target func-
tion ϕ with domain S and range D is specified. A single run of a simulation
corresponds to the CBLP scheme presented in Section 3.4.3, where p ≡ 1, a new
input is chosen according to the uniform distribution, and the length of the gen-
erated random sequence of inputs is 1000. The size of the partition underlying
the learned similarity hypothesis is m = 20. Given a new input SN+1, a pre-
diction ϕ̂hN ,MN

(SN+1) is derived from the hypothesis hN and the memory MN

according to (3.15) or (3.16). Two characteristic quantities are recorded for this
estimation. Firstly, the correctness is captured by means of VN ∈ {0, 1}, where
VN = 1 iff (ϕ(SN+1) ∈ ϕ̂hN ,MN

(SN+1)). Secondly, the precision is specified by

PN
df
= diam(ϕ̂hN ,MN

(SN+1)). The behavior of the prediction method can then be
characterized by means of the expected values E(VN) and E(PN) associated with
the sequences (V1, . . . , V1000) and (P1, . . . , P1000), respectively. Approximations of
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these expected values have been obtained by deriving mean values V N and PN

from a large number of simulation runs. The respective sequences (V 1, . . . , V 1000)
and (P 1, . . . , P 1000) constitute the results which are finally presented in Appen-
dix D. Note that 1−V N is an estimation of the probability qN specified in (3.28).

For the first example, we have chosen the relatively simple function

ϕ : s �→ sin(s + 1) · cos2(s),

where S = [0, π/2] ∩ Q (and R = ϕ(S) ⊆ [0, 1.2]). The results are shown in
Fig. D.1–Fig. D.3. As it was to be expected from the theoretical results of Sec-
tion 3.4.3, the probability of an incorrect prediction soon becomes very small. Of
course, the more cases are used for constraining the outcome, the more precise the
predictions become. At the same time, however, this also increases the probability
of an incorrect prediction. The approximation (3.16), using a constant number of
k = 10 cases, shows that the expected precision of a prediction is not necessarily
a monotone function of the size of the memory (cf. Fig. D.2). This effect is not
restricted to (3.16) but can also occur in connection with (3.15), i.e., if all cases
are used. It is caused by two opposite effects related to the extension of a memory.
On the one hand,

M′ ⊆ M ⇒ ϕ̂h,M(s) ⊆ ϕ̂h,M′(s)

for all hypotheses h, memories M,M′, and s ∈ S. That is, the larger a memory
is, the more precise the approximation becomes. On the other hand,

h ≤ h′ ⇒ ϕ̂h′,M(s) ⊆ ϕ̂h,M(s)

for all hypotheses h, h′, i.e., the less strong a hypothesis is, the less precise the
approximation becomes. The aforementioned effect is then explained by the fact
that a case-based approximation is derived from a memory M and the associated
hypothesis hM and that M′ ⊆ M implies hM ≤ hM′ .

The simulation results might give the impression that the expected precision of
predictions converges toward some value which is larger than 0. Even though
this might happen in certain cases, it is actually not true for our example. In
fact, this example reflects a typical situation where the expected precision indeed
converges toward 0, but where the improvement due to additional observations
decreases with the size of the memory. In other words, the convergence rate
might be rather low. This can also be illustrated by means of the simple example
ϕ : s �→ s2, s ∈ S = [0, 1].24 For the CBI setup using σS : (s, s′) �→ 1 − |s − s′|
and σR : (r, r′) �→ 1 − |r − r′| we obtain hΣ(x) = x2. Moreover, it can be
shown that (3.15) leads to ϕ̂hΣ ,M(0) = [0, 2 min{s1, . . . , sn}], where s1, . . . , sn

denote the inputs which have already been observed, i.e., which define the memory
M. That is, the expected precision of the prediction of ϕ(0), i.e., the length

of the above interval, is given by the random variable X
df
= 2 min{S1, . . . , Sn},

24 For the sake of simplicity, we put up with the fact that S violates our assumption of countability.
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where S1, . . . , Sn are independent random variables distributed according to µS .
If the latter is taken as the uniform measure over [0, 1], it is not difficult to show
that E(X) = 2/(n + 1). Thus, the expected precision converges toward 0 with a
convergence rate of O(1/n).

The second experimental study uses the CBI setup Σ1 which has been introduced
in Example 2.5, i.e., a value ϕ(s) is defined as the cost of the optimal solution
associated with the combinatorial optimization problem encoded by s. The results
of this study, shown in Fig. D.4–Fig. D.7, are qualitatively similar to those of the
first experiment. As can be seen in Fig. D.4, the non-monotone behavior of the
expected precision of predictions now also occurs in connection with the case-
based approximation (3.15). It should be remarked that the results are quite
satisfactory in the sense that a rather small fraction of the card(S) = 75 cases
suffices for deriving relatively precise predictions of cost values (which are between
0 and 48). A memory of size 1000, for instance, corresponds to a fraction of
approximately 6/100, i.e., a prediction based on the 10 most similar cases uses
only slightly more than 0.06% of the cases.

Let us finally consider a “real-world” application. In connection with the Hous-

ing Database,25 we have used CBI for predicting prices of houses which are
characterized by 13 attributes. Similarity was defined as an affine-linear func-
tion of the distance between (real-valued) attribute values. For randomly chosen
memories of size 30 we have used 450 cases as training examples in order to
learn the respective local M-profiles. Based on (local) hypotheses thus obtained,
CBI allowed for predicting prices of the remaining 56 cases with a precision of
approximately 10,000 dollars and a confidence level around 0.85. Taking the gen-
eralized median (3.31) as a point-estimation, which here simply corresponds to
the center of the interval, one thus obtains predictions of the form x ± 5, 000
dollars. As can be seen, these estimations are quite reliable but not extremely
precise (the average price of a house is approximately 22,500 dollars). In fact,
this example clearly points out the limits of an inference scheme built upon the
CBI hypothesis. Our approach takes these limits into account and makes them
explicit: A case-based prediction of prices cannot be confident and extremely pre-
cise at the same time, simply because the housing data meets the CBI hypothesis
but moderately. Needless to say, problems of such type are of a general nature
and by no means specific to case-based inference. Linear regression, for example,
assumes a linear relationship between the dependent and independent variables.
It yields poor predictions and imprecise confidence intervals if this assumption is
not satisfied (which is often the case in practice).

25 Available at http://www.ics.uci.edu/˜mlearn.
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3.5 Application to statistical inference

It has already been mentioned that our approach to case-based learning (Sec-
tion 3.4) gives rise to an extension of the inference scheme of Section 3.2 which
provides us with an interesting statistical inference mechanism. In fact, it is just
the attached level of confidence which makes a (set-valued) prediction (3.2) at-
tractive from a statistical perspective. In order to emphasize this point, we have
already used the term credible CBI, referring to the combination of the inference
scheme (3.2) and the case-based learning algorithm of Section 3.4: Given a ran-
domly chosen memory M of cases and a new input s0, CBI derives a hypothesis
h = CBLA(M) and delivers a prediction

(ϕ̂h,M(s0), α)

such that
P (ϕ(s0) ∈ ϕ̂h,M(s0)) ≥ 1 − α.

This section is meant to outline briefly two applications which show that credible
CBI can complement existing statistical methods in a reasonable way.

3.5.1 Case-based parameter estimation

In order to show how credible CBI might support classical approaches to statis-
tical inference let us consider the idea of case-based parameter estimation. Thus,
the task is to estimate an unknown parameter ϑ ∈ Θ, where Θ denotes an under-
lying class of parameters. Quite often, the estimation of ϑ according to, say, the
Maximum Likelihood (ML) principle, is a computationally complex problem
involving numerical optimization methods. The computation of an ML estima-
tion (MLE) is hence impossible if such estimations have to be made available
frequently, perhaps even under strict time constraints. As an example one might
think of a control problem where data is obtained from monitoring a technical
system and where the MLE serves as a control parameter [219]. Likewise, on-
line data analysis and estimation problems arise in mining so-called data streams
[92, 161].

If the (repeated) derivation of an MLE is computationally too complex, credible
CBI might be used for estimating it. More specifically, we can derive a confi-
dence region for the MLE based on a set of data–MLE tuples and a new set of
data. Using our terminology, the data plays the role of an input and the MLE

corresponds to the output. The data–MLE tuples which constitute the memory
may originate from other estimations or may have been derived during a less
time-critical preprocessing phase.

The CBI hypothesis now means that similar data leads to similar ML estima-
tions, an assumption which appears reasonable for many applications. Still, the
choice of an adequate measure for determining the similarity between two sets of
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data will generally not be obvious. Since the adequacy of a measure depends on
the respective application, we will not go into detail here. Let us only mention
that it will often be possible to simplify the problem by passing from the data
itself to sufficient statistics thereof, i.e., to consider sufficient statistics as inputs
which determine the output in the form of an MLE.

In general, one will be interested in a confidence region not for the MLE ϑML

but for the true parameter ϑ of an underlying stochastic model. Suppose that
a confidence region for ϑ takes the form ϑML ⊕ CML, where CML ⊆ Rn can
be constructed from the data and does not depend on ϑ. A simple example is
the estimation of the mean µ of a normal distribution with standard deviation
σ. In this case, the (1 − α)-confidence region CML corresponds to an interval
[−tα · σ/

√
n, tα · σ/

√
n],26 i.e., CML depends only on the number of observations.

Now, let (ϕ̂h,M, β) be a CBI prediction of ϑML. Since

(ϑML ∈ ϕ̂h,M) ∧ (ϑ ∈ ϑML ⊕ CML) ⇒ (ϑ ∈ ϕ̂h,M ⊕ CML),

we obtain
P(ϑ ∈ ϕ̂h,M ⊕ CML) ≥ (1 − α)(1 − β).

That is, the set ϕ̂h,M ⊕ CML defines a (1 − α)(1 − β)-confidence region for ϑ.
This way, a confidence region for the true parameter ϑ can be derived by means
of purely case-based reasoning, i.e., without any reference to a likelihood function
and corresponding maximization problems.

3.5.2 Case-based prior elicitation

The determination of prior probability distributions is a main burden of Bayesian
analysis, and it has become a focus of criticism of the Bayesian approach. As a
second application let us therefore consider the possibility of exploiting (credible)
CBI in order to support the elicitation of such priors, i.e., the determination of
prior distributions from previous cases. The idea is thus to treat a CBI prediction
(ϕ̂h,M, α) of an MLE ϑML as prior information about the unknown parameter ϑ.

In general, there will exist several possibilities of utilizing a CBI prediction. A
relatively straightforward choice of a prior based on a prediction (ϕ̂h,M, α) is
defined by the associated probability density function

f : ϑ �→
{

(1 − α)(
∫

ϕ̂h,M
dt)−1 if ϑ ∈ ϕ̂h,M

α(
∫

Θ\ϕ̂h,M
dt)−1 if ϑ "∈ ϕ̂h,M

,

where we assume (
∫

Θ
dt) < ∞.27 For very small α one might even completely

concentrate on the predicted region and define a corresponding uniform prior
only over ϕ̂h,M:

26 The value tα is defined through the equality
∫ tα

−tα
φ(t) dt = 1 − α, where φ denotes the probability

density function of the standard normal distribution.
27 Otherwise it might still be possible to work with improper priors.
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f : ϑ �→
{

(
∫

ϕ̂h,M
dt)−1 if ϑ ∈ ϕ̂h,M

0 if ϑ "∈ ϕ̂h,M
.

The prior distribution is often assumed to belong to a certain parameterized
class C = {fγ | γ ∈ Γ} of distributions, where C is chosen in such a way that the
prior is conjugate to the likelihood function. This guarantees that the posterior
distribution belongs to the same class. A CBI prediction can then be utilized
for constraining (or even determining) the parameters of a prior distribution,
the so-called hyper-parameters. More precisely, a prediction (ϕ̂h,M, α) serves as a
constraint in the sense that the parameter γ has to satisfy

∫
ϕ̂h,M

fγ(t) dt = α. For

example, if the prior is normal with mean µ and standard deviation σ, the CBI

prediction ([β−, β+], α) entails
∫ β+

β− φµ,σ(t) dt = α, which in turn suggests

µ =
β− + β+

2
, σ =

β+ − β−

2tα
.

3.6 Summary and remarks

Summary

– We have adopted a constraint-based view of the CBI hypothesis, according to
which the similarity of inputs imposes a constraint on the similarity of asso-
ciated outcomes in the form of a lower bound. This interpretation allows for
exploiting the reasoning principle underlying CBI within a formal inference
process.

– The concept of a similarity profile has been introduced. It establishes a con-
nection between the system level and the similarity level and represents the
similarity structure of a CBI setup. Several generalizations of this concept have
been proposed in order to take special characteristics of CBI into consideration
and to improve case-based inference.

– A similarity hypothesis is thought of as an approximation of a similarity profile.
It thus defines a formal model of the CBI hypothesis for the system under
consideration.

– CBI has been realized as a process of constraint propagation which allows for
predicting an unknown output r0 ∈ R by means of a set ϕ̂h,M(s0) ⊆ R of
possible outcomes. This set is derived from an underlying hypothesis h and a
memory M of cases. It is guaranteed to cover r0 if h is admissible. An efficient
implementation of this inference scheme can be realized by means of parallel
computation techniques.

– We have studied some properties of case-based approximations, i.e., set-valued
mappings ϕ̂h,M : S −→ 2R derived from a hypothesis h and a memory of cases
M.
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– The idea of case-based learning can be realized in different ways within our
framework. Here, we have concentrated on the learning of a suitable similarity
hypothesis from a sequence of observations.

– Utilizing the hypothesis space Hstep, which consists of a class of step functions
on [0, 1], allows for realizing CBL by means of an efficient candidate-elimination
algorithm, CBLA. Particularly, the time complexity of updating a hypothesis
hM is linear in the size of the memory M.

– A sequence of hypotheses derived by CBLA from a random sequence of cases
converges stochastically toward the optimal admissible hypothesis h∗ ∈ H.
Even though these hypotheses may be inadmissible, they allow for deriving
predictions which define outer bounds with high probability. We thus obtain a
method of credible case-based inference that produces predictions in the form
of credible output sets which cover the true output with high probability. In
fact, our CBI method can be seen as a non-parametric approach to estimating
confidence regions.

– In Section 3.5, it has been argued that credible CBI is also interesting in the
context of classical statistical inference. More specifically, we have outlined the
ideas of case-based parameter estimation and case-based prior elicitation in
Bayesian analysis.

Remarks

– Within our framework, the concept of similarity should be seen as an essen-
tial but at the same time auxiliary concept. Indeed, the inference procedure
outlined in this chapter principally works with any pair of similarity functions
σS and σR, each of which defines a certain similarity structure. Of course, the
more suitably these functions are chosen, the more precise the inference results
will be. However, since our inference scheme takes into account the degree to
which the CBI hypothesis applies these results remain valid even if similarity is
not quantified in a meaningful way. The interpretation as an auxiliary concept
contrasts with other formalizations of CBI [99, 141, 296], in which inference
becomes more or less meaningless without a reasonable measure of similarity.

– It has already been remarked that the CBI scheme in Section 3.2.1 is based
on the transformation of original data, i.e., instances in the space S × R, into
points of the similarity space DS × DR. In this connection, it is interesting
to note that the transformation of data from a high-dimensional into a low-
dimensional space is also used by several other methods, e.g., in statistical data
analysis or self-organizing neural networks. Of course, the underlying objective
which is common to these methods is to capture essential properties of a system
structure by means of a simplified representation.

– In [221], an instance-based prediction method has been advocated as an alter-
native to linear regression techniques. By deriving set-valued instead of point
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estimations, credible CBI somehow combines advantages from both methods:
It requires less structural assumptions than (parametric) statistical methods as
does the instance-based approach. Still, it allows for quantifying the uncertainty
related to predictions by means of confidence regions. We shall return to this
point in the following chapter.

– We have argued that our approach to CBI combines model-based and instance-
based learning (cf. Section 3.1). Let us mention, therefore, another idea of es-
tablishing a relationship between model-based and instance-based reasoning.
According to the point of view adopted in [236], an instance-based prediction is
obtained within a Bayesian framework by marginalizing over all possible model
families and all (parameterized) individual models within those families. The
basic idea can be expressed by writing (in a somewhat sloppy notation)

P(x |X) =

∫
M

P(x |M) P(M |X) dM, (3.34)

where X and x denote, respectively, the observed data and a new vector x, and
M is a class of models. Equation (3.34) suggests that the prediction does not
depend on a model, only on the data X. However, apart from some technical
difficulties, this approach is not very convincing. In fact, (3.34) is nothing else
than the standard approach to higher-level Bayesian analysis (Bayesian aver-
aging): A prediction is derived by taking the average of the predictions made
by each possible model, weighted by the plausibilities of these models. Thus,
(3.34) corresponds to a weighted average of models of a certain class (sometimes
called the ensemble average).28 It is by no means “model-free” since the bias of
the model class is actually not “integrated out” by (3.34). Besides, it deserves
mentioning that our approach to combining model-based and instance-based
inference is very different. This becomes especially obvious by realizing that we
do not consider a model of any underlying data-generating process, but rather
of the CBI principle itself.

– The construction of confidence regions29 in the context of CBLP is in line with
classical (Neyman-Pearson) statistical inference. Particularly, the inference
procedure does not condition on the (structure of the) actually observed data
(as likelihood methods do). Rather, the claim that the n-th outcome is covered
with probability 1−αn by the confidence region Cn derived from the first n−1
cases should be interpreted in a “frequentistic” way: Let an experiment consist
of drawing a random sample of n cases, constructing a confidence region from
the first n − 1 cases, and noting a success if the outcome of the n-th case is
covered by that region. By repeating this type of experiment over and over
again, the relative frequency of successes will converge toward 1 − αn. In other
words, the probability αn is a property which has to be ascribed to the inference
procedure, not to the result.

28 Taking all model families (whatever this means) into account is impossible anyway. In practice, one
only considers one class, e.g., a certain type of neural networks.

29 Note that these regions are random variables.
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– In Section 3.1, we have hinted at limitations of a similarity-based analysis which
can occur due to the low dimensionality of the similarity space. In order to
overcome such limits one might think of using a more general, multi-dimensional
formalization of the concept of similarity. Such representations have indeed been
advocated in literature (e.g. [283]).

– In [247], the authors consider the problem to quantify the extent to which the
CBR hypothesis holds for a particular application at hand. To this end, they
propose a measure of the problem–solution regularity. In contrast to our concept
of a similarity profile, however, this is a one-dimensional measure. Besides, it
is not used for the purpose of prediction but rather as a kind of trigger for the
maintenance of the CBR system.




