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Foreword

In the last three decades, important trends of research in artificial intelligence have
been devoted to the design and the study of inference systems that exhibit human-
like reasoning capabilities, with special emphasis on tolerance toward incomplete
information and uncertainty. This program, which can be also related to cognitive
psychology concerns, has led to the development of computational models, in
particular for default reasoning that accommodates exceptions and inconsistency,
for approximate reasoning with interpolative abilities, as well as for case-based
reasoning.

Case-based reasoning (CBR) relies on the concept of similarity, and more partic-
ularly on the idea that situations recognized as similar in important aspects may
be also similar in other respects. CBR thus appears as a yet simple instance of
analogical reasoning, but as powerful as a general problem solving method. This
explains the success encountered by case-based reasoning, and beyond that, the
interest for similarity-based reasoning that has been increasing in the last ten
years. The very idea of CBR is thus to solve new problems on the basis of expe-
rience that is represented by already solved problems of the same type, referred
to as cases. Thus, a new problem is solved by adapting the solution of a similar
case, hoping that the adaptation can be done with much less effort than solving
the problem from scratch.

A CBR system requires efficient techniques for several important subtasks, such
as organizing and maintaining the case base, retrieving cases (which are maxi-
mally similar to the problem) from the case base, and adapting stored cases to
the problem at hand. The basic inference mechanism underlying CBR, where the
concept of similarity plays a major role, is built upon the principle of instance-
based learning and nearest neighbor classification.

CBR has always been motivated by real-world problems, and research in this
area has largely focused on building efficient computer systems. Less work has
been done, however, on the theoretical foundations of case-based and similarity-
based inference. Note that this strongly contrasts with the situation in default
reasoning, and to a less extent in approximate reasoning. The present book seeks
to remedy this flaw. Its objective is to contribute to a sound foundation of CBR

and related fields, such as instance-based learning and analogical reasoning, by
providing formal models of similarity-based inference.

To accomplish this objective, Eyke Hüllermeier embeds case-based inference
into different frameworks of knowledge representation and reasoning, namely
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Foreword

constraint-based reasoning, probability theory, and fuzzy sets and possibility the-
ory. His basic idea is to express the heuristic “similar problem-similar solution”
principle in the form of an explicit model, using the formal language of the under-
lying framework. Proceeding this way, one can take advantage of the reasoning
mechanisms offered by that framework. Thus, the author develops various alter-
native methods, realizing case-based inference as constraint propagation, as prob-
abilistic inference, and as fuzzy set-based approximate reasoning. As convincingly
shown in the book, this approach has several advantages. Particularly, case-based
inference can benefit from the features offered by the different frameworks. As a
noticeable example consider the issue of uncertainty representation. How reliable
is a solution proposed by a CBR system? Questions of such kind, which have not
received much attention in CBR so far, can adequately be approached by means
of probabilistic methods. Likewise, a fuzzy set-based approach to case-based in-
ference can adequately cope with imprecisely or vaguely described cases. Needless
to say, the alternative formalizations of similarity-based inference developed by
the author are complementary rather than competitive, and different applications
will usually call for different methods.

Apart from contributing to the formal foundations of case-based inference, the
author’s approach has further advantages. Integrating case-based reasoning with
other computing paradigms such as probabilistic reasoning and fuzzy set theory
can lead to efficient hybrid methods and flexible information processing systems.
This can help to clarify differences between alternative methods, but also to show
things they have in common. In fact, as one of the more recent trends in artificial
intelligence and machine learning, the development of hybrid systems has already
produced a number of successful applications. A very promising approach in this
connection is the combination of case-based and rule-based reasoning: Since cases
and rules can represent, respectively, individual facts and generalized knowledge,
these approaches can complement each other in a reasonable way. Indeed, close
connections at a formal level can be observed between case-based inference and
rule-based inference techniques as realized in approximate reasoning. Worth men-
tioning is also the current interest, reflected by the organization of specialized
workshops, in the combination of case-based reasoning and techniques such as
fuzzy sets, neural networks and genetic algorithms, often called “soft computing”
paradigms.

With these motivations in mind, Eyke Hüllermeier has done an excellent job in
writing this book. His monograph, which is the first one of this type, presents
state of the art information as well as novel ideas and new research results in a
highly readable and intelligible form. From a theoretical point of view, it clearly
constitutes an important contribution to the foundations of case-based and ap-
proximate reasoning. From a practical point of view, it should be of interest to
everyone working in CBR, fuzzy sets, uncertain reasoning, and related fields.

Toulouse, July 2006 Henri Prade
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Preface

Longstanding research in artificial intelligence and related fields has produced a
number of paradigms for building intelligent and knowledge-based systems, such
as rule-based reasoning, constraint processing, or probabilistic graphical mod-
els. Being one of these paradigms, case-based reasoning (CBR) has received a
great deal of attention in recent years and has been used successfully in diverse
application areas.

The CBR methodology is inspired by human problem solving and has roots in
cognitive psychology. Its key idea is to tackle new problems by referring to similar
problems that have already been solved in the past. More precisely, CBR proceeds
from individual experiences in the form of cases. The generalization beyond these
experiences is largely founded on principles of analogical reasoning in which the
(cognitive) concept of similarity plays an essential role.

This book is an attempt to contribute to the theoretical foundations of CBR,
which are not as fully developed as one might expect in light of the practical
success of the methodology. To this end, we propose formal models of the funda-
mental though often implicitly used inference principle underlying CBR methods,
namely the heuristic assumption that “similar problems have similar solutions”.
Proceeding from these models, concrete inference schemes are derived within dif-
ferent frameworks of approximate reasoning and reasoning under uncertainty.

The case-based approximate reasoning methods thus obtained especially empha-
size the heuristic nature of case-based (similarity-based) inference. More specifi-
cally, we combine case-based reasoning with probabilistic methods as well as fuzzy
set-based modeling and approximate reasoning techniques. This way, we hope to
contribute to a solid foundation of case-based reasoning which is grounded on
well-established concepts and techniques from the aforementioned fields, but also
to inspire new approaches and to cast light on already existing ones.

Needless to say, the application of these reasoning methods is not restricted to
CBR in a narrow sense. Instead, these methods suggest “case-based” approaches
in other fields as well. In the final part of the book, we discuss models of case-
based decision making which combine principles of both case-based reasoning and
decision theory. Such models are motivated for reasons of cognitive plausibility as
well as practical relevance, and can complement existing models, such as expected
utility theory, in a reasonable way.
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Notation

This list offers some of the basic notation that will be used throughout the book.
Specific notation will be introduced in the main text as the need arises. Even
though some symbols will be used for different purposes, the concrete meaning
should always be clear from the context.

Basic mathematical notation

∀, ∃ universal and existential quantifier
∧, ∨, ¬ logical conjunction, disjunction, negation
⇒, ⇔ logical implication, equivalence
df
=, ≡ equality by definition, identity
N (N0) set of natural numbers (including 0)
I set of integers
Q set (field) of rational numbers

R, R set (field) of real numbers (including −∞ and ∞)
R≥α R>α set of real numbers (equal to or) larger than α
ℵ0 cardinality of the natural numbers
card(X), |X| cardinality of the set X
X ⊕ Y addition of sets: X ⊕ Y = {x + y |x ∈ X, y ∈ Y }
∅ empty set
∪,∩, \ set-theoretic union, intersection, difference
X × Y Cartesian product of sets X and Y
⊂ resp. ⊆, � subset relation, proper subset relation
| · |, | · |p Euclidean distance (in Rn), Lp-norm
‖f‖p Lp-norm of the function f
[α, β], (α, β], ... closed and (half) open intervals
diam(X) diameter supx,x′∈X ∆(x, x′) of the set X
Bε(x), B̄ε(x) open and closed ε-ball around x
(xn)n≥1 → x0 convergence of the sequence (xn)n≥1 toward x0

(xn)n≥1 ↗ x0 convergence from below
(xn)n≥1 ↘ x0 convergence from above
O(f), o(f) Landau symbols (with limit either 0 or ∞)
� much smaller than
dom(f), rg(f) domain and range of the function f
codom(f) codomain of the function f

1



2 Notation

f ∧ g, f ∨ g lower and upper envelope of the functions f and g
f |A restriction of f : X −→ Y to the set A ⊂ X
f ◦ g composition of functions f and g
f ∝ g function f is proportional to function g
IX indicator function of the set X
id identical function x �→ x
mod modulo function (infix notation)
�x� largest integer ≤ x
max, min maximum and minimum operator
inf, sup infimum and supremum operator
exp exponential function
ln, logα natural logarithm, logarithm with a base α

arg max y ∈ arg maxx∈X f(x)
df⇔ f(y) = maxx∈X f(x)

A = (aı), a
 matrix A, -th column of A

At transpose of matrix A
A × x, x × y matrix and vector multiplication
ek k-th unit vector in Rn

Remark: We use the term “increasing” (decreasing) in the strict sense, i.e., in
the sense of strictly increasing (strictly decreasing). The opposite of increasing
(decreasing), i.e., decreasing (increasing) in the weak sense, is referred to as “non-
increasing” (non-decreasing). Even though the arg max-operator actually returns
a set of elements, we shall often write y = arg maxx∈X f(x) ∈ X; it is then
assumed that the maximizing element is unique, or that y is simply an arbitrary
choice among these elements.

Probability theory and statistics

P(Ω,A), P(Ω) class of probability measures over the measurable

space (Ω,A), P(Ω)
df
= P(Ω, 2Ω)

F(Ω,A), F(Ω) class of normalized uncertainty measures over
(Ω,A) resp. (Ω, 2Ω)

µ, µY |(X=x) probability measure, conditional measure
Bel, Pl, m belief and plausibility function, mass distribution
P(X) probability of event X (informal notation)
⊗ product of measures
λ(·) likelihood function(

n
m

)
binomial coefficient

� stochastic dominance relation
X ∼ µ X is distributed according to measure µ



Notation 3

φµ,σ density function of the normal distribution with

mean µ and standard deviation σ (φ
df
= φ0,1).

µuni
Ω uniform measure over Ω

med(A) median of a set of numbers A
E(X) expected value of a random variable X
V(X) variance of a random variable X
bias(θe) bias of an estimator θe

MSE(θe) mean square error of an estimator θe

Remark: We shall often not distinguish between an element x and its singleton
{x}. In particular, we use the same notation for a probability measure and the
related probability distribution function, i.e., we write µ(x) instead of µ({x}).

Fuzzy sets, fuzzy measures, and possibility theory

F(X) class of fuzzy subsets of a set X
A, B, . . . fuzzy sets (membership functions)
µ membership function
supp(A) support of the fuzzy set A
Aα, A0 α-cut of A (0 < α ≤ 1), closure of the support
�, ⊗ triangular norm (t-norm)
⊕ triangular co-norm (t-conorm)
� generalized (multiple-valued) implication operator
δ, ∆ possibility distribution (measure)
π, Π possibility distribution (measure)
N necessity measure∫ ch

Choquet integral∫ su
Sugeno integral

Remark: We do not distinguish between a fuzzy set and its membership function,
i.e., we usually write A(x) (rather than µA(x)) for the degree of membership of
an element x in the fuzzy set A.



4 Notation

Case-based inference

S, R, C = S × R set of inputs, outputs, cases
M, M↓ memory of cases 〈s, r〉, projection of M to S
ϕ mapping S → R or relation between S and R
ϕ̂h,M approximation of ϕ based on similarity hypothesis

h and memory of cases M
σ, ∆ similarity measure, distance measure
DS , DR ranges of the similarity measures σS (over S) and

σR (over R)
Σ, 〈Σ, s0〉 CBI setup, CBI problem with new input s0

hΣ, HΣ similarity profile, probabilistic similarity profile
h, H similarity hypothesis, probabilistic hypothesis
Nα(r) α-neighborhood of an outcome r ∈ R
Nk(M, s0) k-selection from memory M
N ex

k (M, s0) extended k-selection
SST(M, s0) similarity structure
pSST(M, s0) partial similarity structure
OST(M, s0) outcome structure
CST(M, s0) case structure

Abbreviations

AI artificial intelligence
CBA case-based approximation
CBDM case-based decision making
CBDT case-based decision theory
CBI case-based inference
CBL case-based learning
CBLA, CBLP case-based learning algorithm/process
CBR case-based reasoning
EBDM experience-based decision making
EUT expected utility theory
ILP integer linear programming
LS least squares
ML, MLE maximum likelihood (estimation)
PSP probabilistic similarity profile
RCOP repetitive combinatorial optimization
RSP repeated search problem



1. Introduction

1.1 Similarity and case-based reasoning

The idea that reasoning and problem solving (by human beings) are guided by ex-
periences from situations which are similar to the current one has a long tradition
in philosophy. It dates back at least to D. Hume who concedes to the concept
of similarity (resemblance) the role of a basic principle of human thought:1 “To
me, there appear to be only three principles of connexion among ideas, namely,
Resemblance, Contiguity in time and place, and Cause and Effect.” Today, it is
widely recognized that similarity plays a major role not only in commonsense but
also in scientific reasoning. It is ubiquitous, for instance, in cognitive psychology,
where it contributes essentially to formal theories of knowledge and behavior. It
serves in particular as an organizing principle in object classification, general-
ization (e.g., extrapolation, interpolation), and the formation of concepts (e.g.,
clustering).

Interestingly enough, current research in Artificial Intelligence (AI) seems
to be largely dominated by the three principles stated by Hume.2 Particularly, the
idea that people reason by similarity (or, more generally, by analogy) has recently
been realized on a formal level. In fact, the cognitive concept of similarity and the
related everyday finding that – at least more often than not – similar causes bring
about similar effects do now provide the basis of many formal methods of machine
learning and (inductive) reasoning. As an example let us mention the Nearest

Neighbor principle, a pattern recognition technique which proceeds from the
assumption that “similar patterns belong to similar classes.” In its basic version,
this classifier estimates the class of a new instance (pattern) by the class of the
“closest” among the already classified examples. Though it is worth mentioning
that this rather simple decision principle provides the basis for more sophisticated
methodologies, such as case-based reasoning (CBR).

CBR is a problem solving methodology built upon the hypothesis that “similar
problems have similar solutions” [234]. Putting it in a somewhat more general

1 See, e.g., [206], page 101 (our italics).
2 The idea of a cause–effect relation, for instance, finds its formal counterpart in rule-based systems

which have been (and still are) the most commonly used tool for realizing knowledge representation
and reasoning (deductive inference) in knowledge-based systems. Moreover, the concept of causality
is one of the central issues of current research in reasoning under uncertainty [337, 294]. Models of
temporal and spatial reasoning have recently received much attention in the subfield of qualitative
reasoning [242].
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6 1. Introduction

context – not necessarily related to special performance tasks such as classifica-
tion or problem solving – we shall express assumptions of this kind, referring to
a directed dependency between two entities, by saying that “similar inputs have
similar outputs/outcomes.” This hypothesis will be referred to as the CBI hy-
pothesis, where CBI stands for case-based inference. Again, it is interesting to
mention that the type of commonsense rule expressed by the CBI hypothesis
goes back (at least) to Hume who notes that3 “In reality, all arguments from
experience are founded on the similarity, which we discover among natural ob-
jects, and by which we are induced to expect effects similar to those, which we
have found to follow from such objects. ... From causes, which appear similar, we
expect similar effects. This is the sum of all our experimental conclusions.”

As can be seen, the concept of similarity is intimately related to the concept of a
case, understood in a wide sense as a particular experience or “chunk” of knowl-
edge: The very idea of case-based reasoning is to extrapolate such experiences to
new situations that appear to be similar. Throughout this book, we shall often use
the term “case-based reasoning” in this relatively broad sense, including the idea
of case-based problem solving in the spirit of [234], that is, CBR in a more narrow
sense, but also other case-based approaches, such as instance-based learning [11].
Thus defined, case-based reasoning is of course hardly conceivable without the
idea of similarity. The other way round, however, the similarity concept is present
in many other reasoning and learning methods as well, even though in a more
implicit way. For example, the concept of a kernel in kernel-based learning meth-
ods [335, 339] can often be interpreted as a kind of similarity measure. For this
reason, we will mostly speak about “case-based” rather than “similarity-based”
reasoning (inference), even though in the context of this book the meaning of
these two terms is more or less the same.

1.2 Objective of this book

Similarity disposes of a much less developed scientific tradition than other ba-
sic concepts of knowledge representation and reasoning, notably preference and
uncertainty. The same remark does also apply to related reasoning techniques,
despite the fact that, as noted above, many formal methods imply a sort of “rep-
resentativeness assumption” which refers – at least implicitly – to similarity.4 Yet
how can the somewhat questionable reputation of similarity and case-based rea-
soning be explained? At least two reasons deserve mentioning.

The first point is related to the concept of similarity itself and concerns problems
of quantification and measurement. In fact, similarity is extremely subjective and
context dependent. Two things which are very similar from one point of view

3 See e.g. [206], page 116.
4 Function approximation by means of interpolation is a simple example.
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can be very dissimilar from another perspective.5 Moreover, it seems that simi-
larity can be discovered between any pair of objects. Tversky [373] exemplifies
this quite well by suspecting that “an essay is like a fish” (because both have
head, body, and tail). In any case, a meaningful definition of similarity requires
a considerable amount of background knowledge, e.g., for separating the relevant
from the irrelevant features of an object, and strongly depends on the context
and on the viewpoint of the observer. This might explain to some extent why
similarity is considered with scepticism in modern scientific research that puts a
strong emphasis on objectiveness and measurability.

Interestingly enough, the situation seems to be less delicate for the concepts
of uncertainty and preference. As opposed to similarity, these concepts dispose
of widely accepted formalizations. Uncertainty, for instance, can be formalized in
terms of probability, which in turn can be connected with the concept of frequency.
Undoubtedly, the latter can be grasped more easily than similarity. Probability
can also be interpreted in a subjective sense, namely in terms of fair betting rates.
Even if not being objective, this interpretation allows for the elicitation of prob-
ability degrees by means of a well-defined measurement procedure (at least in
theory). The quantification of preference is a major concern of utility theory, by
now a well-developed subfield of economic theory, and has more recently also re-
ceived attention in AI [181, 96]. Again, utility is an extremely subjective concept.
In many cases, however, it can be reduced to the concept of cost which is much
more objective. Compared with similarity, it also disposes of better measurement
devices.6

The second point is related to the methods of similarity-based reasoning. More
precisely, it concerns the guiding principle underlying such methods, namely the
above-mentioned CBI hypothesis. First, this hypothesis is apparently of heuristic
nature. It should not be considered as a deterministic rule which is universally
valid, but rather as a “rule of thumb” that can fail in some situations. In fact,
similarity-based reasoning will lead to erroneous conclusions if the assumption
expressed by the CBI hypothesis does not apply to reality. Second, the CBI

hypothesis does actually not suggest a concrete inductive reasoning principle.7 In
fact, in applications it is often used in a more “intuitive” manner. It is hence not
astonishing that approaches such as CBR are often criticized for their ad-hoc
character. Even though methods of this kind proved to be successful in practice,
this criticism might be intelligible from a theoretical point of view. Indeed, it
seems to be true that many CBR applications, even if successfully solving the
problem at hand, lack a sound theoretical basis.

5 For example, a cup is similar to a plate as far as its fragility is concerned, but rather different with
respect to its functionality.

6 For example, the relative utility of a good can be expressed in terms of its exchange value.
7 That is, a principle which justifies inductive conclusions and which allows one to handle such conclu-

sions in a logically consistent way. (Per definitionem, such a principle cannot be a logical tautology.)
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Again, it is interesting to make a comparison with other reasoning methods. In-
ductive statistical inference on the basis of frequency, for example, seems to enjoy
a much greater acceptance than similarity-based inference, even though one might
argue that it proceeds from assumptions which are hardly less hypothetical. Let
us mention, however, an important difference which might explain this situation
to some extent: As opposed to similarity-based reasoning, statistical inference is
based on (probabilistic) models which state the underlying assumptions in an un-
equivocal and explicit way. Moreover, it makes use of general inference principles,
such as Maximum Likelihood. For such principles it is possible to establish for-
mal properties (e.g. consistency) which do not depend on the specific application.
This provides the basis of comparative studies and for estimating the reliability
of inference results.

A major concern of this book is to contribute to a theoretical foundation of CBI,
thereby improving the understanding, acceptance and applicability of this type
of inductive inference. To this end, we shall especially emphasize two aspects:

– In many methods, the CBI hypothesis is used in a more or less implicit way.
Thus, the underlying assumptions often remain unclear. To counteract this flaw,
we shall propose explicit models of the CBI hypothesis. These models can then
be taken as a point of departure for developing more transparent similarity-
based inference schemes.

– Likewise, the CBI hypothesis and related reasoning principles are often used
without testing their validity for the application at hand. Therefore, we are espe-
cially interested in improving the confidence in CBI, i.e., in making similarity-
based inference more reliable. This requires the elaboration of general inference
principles and the investigation of their properties. In this connection, the afore-
mentioned models will prove to be useful.

The CBI hypothesis mainly concerns the aspect of prediction: It suggests a special
approach to exploiting experience in the form of previously observed cases (input–
output tuples) in order to predict the outcome of a new situation. The term
case-based inference (CBI) will, therefore, explicitly refer to this performance
task, which will be the focus of our investigations. Apart from CBI, which is
closely connected with instance-based machine learning methods, similarity-based
reasoning might involve additional aspects, of course. In the context of CBR, for
instance, CBI does not cover the complete process of problem solving, i.e., the
process of ultimately finding a solution, but only constitutes the first part thereof.8

Typically, the characterization of a solution provided via CBI will be utilized by
(adaptation) methods applied in subsequent stages of the overall problem solving
procedure.

Just as an aside, let us make a remark on the term “prediction”. In statistics, this
term often refers to the outcome of a new random sample (given some knowledge

8 As will be seen later, it basically supports the retrieval of relevant cases.
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which comes from the observation of other samples generated by the same sto-
chastic process). Besides, it is often assigned a temporal meaning, e.g., in time
series analysis. In this book, the term will not especially refer to any of these
aspects. Instead, we shall use “prediction” as a generic term for different perfor-
mance tasks which are concerned with estimating some unknown entity. This in-
cludes standard (statistical) estimation problems such as classification (assigning
an input x to one among a finite set of possible categories), regression (estimat-
ing or approximating functional relationships with numerical outputs), or density
estimation (estimating or approximating a stochastic model in the form of a prob-
ability density function, given a random sample), but also more general problems
involving “complex” output spaces, such as predicting (or rather suggesting) the
configuration of a technical system as a candidate solution in case-based problem
solving.

1.2.1 Making case-based inference more reliable

How can confidence in case-based inference be increased? Of course, the quality of
predictions derived on the basis of the CBI hypothesis crucially depends on the
validity of this assumption in the context of the application at hand. This validity,
in turn, is basically determined by the involved formalization of the similarity
concept, i.e., by what one is inclined to call similar (and to which degree).9

Thus, one possibility to guarantee correct predictions is simply to choose the
“right” measures of similarity. In fact, the CBI hypothesis does trivially apply
(and does actually become circular) when using the “ideal” similarity measure,
according to which two inputs are similar if the associated outcomes are similar.
However, apart from the drawback that this measure of similarity might not be
intuitive at all, this approach is clearly not practicable: Since just the outcomes
have to be predicted, the “ideal” similarity measure cannot be derived.10 Even
though the quality of predictions might be greatly improved by adapting the
similarity measures in a suitable way, it is principally impossible to guarantee a
good performance by doing so.

In this book, we follow a more pragmatic approach. Roughly speaking, we assume
the similarity measures and, hence, a concrete version of the CBI hypothesis to
be given. Predictions are then derived on the basis of this particular hypothesis.
However, rather than merely suggesting a certain output, we shall pay special
attention to the quantification of the reliability of a prediction. In fact, not only
will it quite often be important to know that a certain output seems possible,
but also to have an idea of the degree to which that output is really supported
by past experience. From statistical estimation theory, for instance, it is well-
known that a point-estimation of a parameter is not worth very much without an
associated confidence region, and that the quantification of reliability is critical for

9 See again the example in footnote 5.
10 Though it might possibly be estimated from a set of observations.
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subsequent decision making. In CBI, this aspect has not received much attention
so far.11

To illustrate this further, imagine a concrete application and suppose the sim-
ilar problem–similar solution assumption underlying case-based reasoning to be
hardly justified for that application (and related similarity measures). One might
then expect an inference result expressing that certain solutions appear rather
plausible in connection with a new problem but also that many alternative so-
lutions should not be excluded from the start. Making a prediction of this kind
seems more reasonable than simply pointing to one specific solution, thereby dis-
regarding other plausible solutions and pretending a level of certainty which is
actually not justified. This becomes especially apparent, e.g., when thinking of a
“problem” as a patient with certain symptoms and of the “solution” as a med-
ical diagnosis and a related treatment. In fact, completely disregarding a possible
disease or initiating a treatment on the basis of an ill-supported diagnosis might
have terrible consequences.

1.2.2 The important role of models

In this connection, the advantage of founding predictions (or other types of infer-
ence) on explicit models becomes rather obvious. In fact, a model makes the set of
assumptions underlying the (inductive) reasoning process transparent. The ade-
quacy of these assumptions can then be verified by confronting the model with ob-
served data, i.e., by performing so-called diagnostic (goodness-of-fit) tests. This,
in turn, gives an idea of the confidence of predictions derived from the model.
Again, it might be illustrative to compare this with statistical methods. For ex-
ample, some assumptions on the (data-generating) system under consideration
might suggest the specification of a simple linear regression model12

Y = α + β X + ε. (1.1)

This model includes assumptions of different type: structural assumptions con-
cerning the functional dependence between the (random) variables X and Y ,
probabilistic assumptions and assumptions of independence concerning the gen-
eration of observed data, and assumptions on the distribution of the error term
ε.

While some of the these assumptions are simply taken for granted, others can be
tested against the background of observed data. This concerns, e.g., the linear
structure of the dependence between X and Y . Testing the validity of assumptions

11 Notable exceptions include the application of general validation procedures such as cross validation
or, more generally, methods for estimating the generalization error. Such procedures, however, typi-
cally refer to the average performance of a method instead of the validity of individual predictions.

12 The uncertainty related to a given model is sometimes referred to as “within-model uncertainty.”
Often, however, model selection procedures are employed in a first step in order to seek out an
optimal model from a class of candidate models. In this case, “between-model uncertainty” must
also be taken into account [97].
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(in conjunction with properties of the employed inference procedure) in turn
allows one to quantify the reliability of estimations (of the parameters α, β) or
predictions (of an output value y0, given a new input x0) made on the basis of
model (1.1). For example, such inference results will be unreliable (and endowed
with large confidence regions) if the assumption of a linear structure is not correct.
In summary, a statistical analysis is generally based on the following information:

I. Assumptions on the system structure (e.g. linear).

II. Assumptions on observed data (e.g. independent and identically distributed).

III. A concrete inference principle (e.g. Maximum Likelihood).

A major concern of this book is to propose counterparts to points (I) and (III)
within the framework of CBI. Thus, our aim is to suggest formal models of the
structural assumptions underlying CBI (as expressed by the CBI hypothesis)
and, proceeding from such models, to develop related inference procedures.

Let us add that a model is not only good for testing the adequacy of underly-
ing assumptions. Beyond that, it also supports specific adaptation steps which
become necessary if these assumptions turn out to be unjustified. In fact, the
discussion so far has shown that the validity of the CBI hypothesis largely de-
pends on the application at hand. Thus, a related model has to be adapted to
this application in much the same way as a regression model has to be calibrated
separately for each set of data. In this connection, we shall emphasize the aspect
of model building as well as model adaptation by means of (machine) learning
and linguistic modeling techniques.

Finally, a model can also serve as a source of explanation and justification of
an inference result. This is an important aspect in knowledge-based systems: In
general, a user will be much more satisfied if the system does not only provide the
solution itself, but does also give a clue as to how that solution can be justified.

1.2.3 Formal models of case-based inference

To realize the above ideas, we shall proceed from a precise interpretation of the
CBI assumption: It will be considered as a (deterministic) constraint on degrees of
similarity associated with pairs of cases, where the concrete form of the constraint
is determined by the system under consideration. This simple model will then
be generalized by formalizing the CBI principle within different frameworks of
approximate reasoning and reasoning under uncertainty. More precisely, we shall
propose probabilistic methods as well as models which are based on fuzzy set and
possibility theory. An approach of this kind seems particularly suitable since it
emphasizes the heuristic and, hence, uncertain character of CBI. In fact, a weak
version of the CBI hypothesis according to which similar problems are (at most)
likely to have similar solutions might be seen as a more appropriate description
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of this assumption.13 In the sense of this version, the CBI hypothesis relates
the similarity of inputs to the (uncertain) belief concerning the (similarity of)
outcomes, not to the (similarity of) outcomes directly. Interestingly enough, this
approach is to some extent in line with ideas of plausible reasoning introduced by
G. Pólya [297]. He complements classical inference patterns such as the modus
ponens

B implies A
B is true
A is true

by different schemes of plausible inference. A typical example, in which the con-
cept of similarity (analogy) is directly related to that of plausibility, is the follow-
ing inference pattern:

A is analogous to B
B is true
A is more plausible

Once its underlying hypothesis has been formalized within a certain framework of
reasoning under uncertainty, CBI can benefit from related inference procedures.
A formalization in the framework of possibility theory, for instance, allows one
to exploit (fuzzy set-based) approximate reasoning techniques in order to realize
similarity-based inference. Likewise, a probabilistic model makes the powerful
methodological framework of statistical inference accessible to CBI.14 This way,
it becomes possible to equip CBI with a solid basis which is grounded on well-
established reasoning and inference techniques.

The different formalizations of CBI introduced in subsequent chapters should
not be seen as competing methods. Rather, they emphasize different aspects.
The probabilistic and the possibilistic15 approach, for instance, complement each
other in a reasonable way. In fact, the superiority of a particular model depends
strongly on the respective application. Let us only mention a rough distinction
which is related to the available information sources and the problem of learn-
ing and knowledge acquisition: In general, the probabilistic approach leads to
methods which can be qualified as data-driven. These methods turn out to be
very efficient when disposing of a large sample of observed cases and might hence
be preferred on such grounds. By making use of fuzzy set-based modeling tech-
niques, possibilistic models are particularly suitable for incorporating domain-
specific (expert) knowledge into CBI models. In fact, they provide a convenient

13 Interestingly enough, the probabilistic nature of inductive generalization has been emphasized by
philosophically minded scholars for a long time [266].

14 As will be seen in subsequent sections, not only can CBI benefit from statistical methodology but
also vice versa.

15 In analogy to the term “probabilistic”, we employ the neologism “possibilistic” in the sense of “based
on possibility theory”.
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basis for combining knowledge-driven and data-driven reasoning. Consequently,
they might be preferred if data is sparse or of low quality and if this lack of
information can be compensated by available background knowledge.

1.3 Overview

In the first part of the book, the aforementioned models of the CBI hypothesis
and the related reasoning principles are developed. The second part is devoted to
applications in the fields of decision making and problem solving. Here, we give a
brief outline of the chapters that follow.

Similarity and case-based inference

This chapter provides some background information on case-based (instance-
based) reasoning and on the formalization of the similarity concept. We briefly
survey some methods in which similarity plays a central role, notably Near-

est Neighbor classification, instance-based learning, and case-based reason-
ing. Moreover, we introduce a formal framework of case-based inference (CBI)
which provides a common basis for the methods proposed in subsequent chap-
ters.

Constraint-based modeling of case-based inference

In this chapter, we introduce a basic model of CBI. To this end, we proceed from
a constraint-based interpretation of the CBI hypothesis, according to which
the similarity of inputs imposes a constraint on the similarity of associated
outcomes in the form of a lower bound. The concept of a similarity hypothesis
is introduced as a formalization of this interpretation.

In connection with a set of observations, a similarity hypothesis allows for
realizing case-based inference as a kind of constraint propagation. This inference
scheme leads to set-valued predictions, i.e., an unknown output is characterized
by a set of possible candidates. We propose an efficient algorithm for learning
similarity hypotheses from observed data. By making use of the hypotheses thus
derived, one obtains set-valued predictions which are as precise as possible.
At the same time, these predictions are probably correct: A set of predicted
candidates covers the true outcome with high probability (and is hence referred
to as a “credible output set”). Not only are such properties derived analytically,
they are also validated by means of experimental studies.

Finally, we outline some applications of (constraint-based) CBI in the context
of statistical inference, namely similarity-based parameter estimation and the
similarity-based elicitation of priors in Bayesian analysis. In this connection,
CBI is applied as a non-parametric approach to estimating confidence regions.
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Probabilistic modeling of case-based inference

In this chapter, we propose a generalization of the constraint-based approach
in which the similarity of inputs is taken as an indication of the probability
that the associated outputs are similar (to a certain degree). A probabilistic
formalization of this kind is more flexible and permits for “exceptions to the
(CBI) rule.”

We introduce a basic probabilistic model of the CBI hypothesis, called a prob-
abilistic similarity profile. Taking this model as a point of departure, different
types of case-based inference schemes are realized. In particular, we propose
a model in which cases are considered as individual pieces of (uncertain) evi-
dence, where evidence is represented in the form of belief functions. This idea
is formalized within a framework of information fusion. In this context, we also
discuss the assessment of cases based on the reliability and precision of the
estimations they provide. Related to this aspect is the idea of an “exceptional
case” and the problem of discovering and discounting such cases. Moreover, we
develop an alternative CBI scheme that derives approximate inference results
in the form of upper probability bounds.

In connection with the learning of similarity measures and hypotheses, this
chapter establishes some interesting relations between case-based reasoning and
statistical methods. It is argued that the two fields can cross-fertilize each other:
On the one hand, a probabilistic formalization of case-based reasoning makes
the powerful methodological framework of statistics accessible to CBI. On the
other hand, the idea of reasoning on the basis of similarity appears interesting
from the viewpoint of statistical modeling as well and might contribute to the
extension of existing statistical methods.

Fuzzy set-based modeling of case-based inference

In Chapters 5 and 6, a formal framework of case-based inference is presented
in which the generalization beyond experience is founded on the concepts of
similarity and possibility. The underlying extrapolation principle is formalized
within the framework of fuzzy rules. Thus, case-based reasoning can be real-
ized as fuzzy set-based approximate reasoning. Fuzzy rules establish a relation
between the concepts of similarity and possibility which takes the uncertain
character of case-based inference into account: Extrapolation is “possibilistic”
in the sense that predictions take the form of possibility distributions on the
set of outcomes, rather than precise (deterministic) estimations.16 Moreover,
the aspect of confidence in CBI is again taken into account: The generaliza-
tion of case-based information is founded on a model (of the CBI principle) in
the form of a set of fuzzy rules. That is, a prediction is always justified by an

16 Since a set (resp. its characteristic function) can be identified with a special ({0,1}-valued) possibility
measure, this type of prediction can again be seen as a generalization of set-valued predictions as
derived in connection with the constraint-based approach.
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explicit rule which allows one to conclude from the similarity of inputs on the
possibility of certain outcomes.

Moreover, the close connection between possibility theory and fuzzy sets allows
for exploiting the merits of linguistic modeling techniques in the context of
CBI. In fact, linguistic modeling provides a convenient way of incorporating
domain-specific (expert) knowledge. The approach thus allows one to combine
knowledge and data in a flexible way and favors a view of CBI according to
which the user interacts closely with the reasoning system.

In Chapter 5, the CBI hypothesis is formalized by means of so-called possibility
rules, an example-based type of fuzzy rule that has originally been applied in
the context of fuzzy control. The basic principle of the related inference mech-
anism is a similarity-guided extrapolation of observed cases. According to this
principle, an encountered case is taken as evidence for the existence of similar
cases. This evidence is expressed in terms of degrees of possibility assigned to
hypothetical cases and thus defines a possibilistic approximation of an underly-
ing (but only partially observed) set of existing cases. Expert knowledge can be
incorporated into the model by means of (linguistic) modifier functions acting
on rules and related similarity measures. Besides, these functions provide the
basis of calibration (learning) methods which adapt the model to the applica-
tion at hand. Here, the idea is to proceed from a purely linguistic specification
of a CBI model. A concrete model is then obtained by adapting the broad
structure thus defined to the observed data.

In Chapter 6, we make use of implication-based fuzzy rules which involve a
complementary principle of case-based reasoning. Roughly speaking, such rules
realize a constraint-based approach17 in the sense that encountered cases are
considered as evidence for (partially) excluding certain other (hypothetical)
cases, which are not similar enough to the observed ones. This is to be con-
trasted with conjunction-based rules, where memorized cases are considered as
pieces of data which support the possibility of observing similar cases.

Case-based decision making

This chapter deals with the idea of applying the CBI principle in the context
of decision making: An agent faced with a decision problem relies upon its ex-
perience from similar problems in the past. That is, it chooses an act based on
the performance of (potential) acts in preceding problems which are similar to
the current one. A formal framework of case-based decision making, intended
as an alternative to expected utility theory, has originally been introduced by
Gilboa and Schmeidler [167]. Beyond that, Dubois and Prade [101] have
outlined a related formalization in the context of (fuzzy set-based) approxi-
mate reasoning. We briefly review these methods and propose some extensions
and generalizations thereof. Moreover, we develop a new approach based on

17 In fact, this approach can be seen as a generalization of constraint-based CBI as realized in Chapter 3.
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methods of case-based inference as introduced in previous chapters. This ap-
proach basically differs from previous proposals in that observed cases are not
used for selecting an act directly. Rather, such cases have influence on the de-
cision maker’s uncertainty about the consequence of choosing a certain act. It
leads to an extended and more expressive decision-theoretic setup which com-
bines the (cognitive) concepts of belief, preference and similarity.

Case-based problem solving

This chapter is devoted to applications of similarity-based inference and statis-
tical methods in the context of heuristic search. We discuss and formalize the
idea of repetitive (search-based) problem solving, understood as the repeated
use of heuristic search for solving problems which share a similar structure. For
obvious reasons, this type of problem is particularly interesting from the per-
spective of CBI and statistics. The basic idea is to exploit the experience from
(combinatorial optimization) problems already solved in order to improve the
efficiency of future (search-based) problem solving. The chapter contributes
from various directions to a methodological framework in which (repetitive)
problem solving by heuristic search can be realized: Firstly, it elaborates on
the idea of making search more efficient by using case-based inference in order
to focus the search process on promising regions of the search space. Secondly,
a novel search strategy based on statistical methods of change detection is in-
troduced. Thirdly, we propose a statistical method for estimating evaluation
functions which control the choice of search operators. Such functions are used
in order to guide a heuristic search algorithm for solving resource-based con-
figuration problems, a particular application which is closely related to integer
linear programming.



2. Similarity and Case-Based Inference

This chapter serves two purposes. Firstly, we provide some background informa-
tion on similarity-based reasoning and related topics. Secondly, we introduce a
formal framework of case-based inference (CBI) that provides the basis for the
methods which are developed in subsequent chapters.

Section 2.2 briefly reviews some problem solving methods in which the concept
of similarity (or the dual concept of distance) plays a central role. From a ma-
chine learning (statistical) perspective, these methods generally belong to the
so-called instance-based (non-parametric) approaches. Therefore, we begin with a
brief comparison of model-based and instance-based reasoning in Section 2.1. The
concept of similarity itself and formalizations thereof are discussed in Section 2.3.
In that section, we shall also outline a new approach to similarity evaluation which
makes use of so-called fuzzy integrals as aggregation operators. In Section 2.4, we
introduce the aforementioned framework of CBI.

2.1 Model-based and instance-based approaches

The major concern of disciplines such as machine learning and statistical inference
is to generalize beyond observed data.1 To this end, the observations encountered
are interpreted against available background knowledge. This knowledge, often
not more than a set of assumptions, is generally expressed (or rather encoded)
in terms of a hypothesis space H, such as a certain class of rule bases in rule
induction or linear functions in regression analysis.2 The hypothesis space, in
conjunction with a related strategy for searching this space, determine (at least
partially) what is called the inductive bias in machine learning. Loosely speaking,
the inductive bias is responsible for choosing among the possible (consistent or
equally acceptable) generalizations. More specifically, a bias reducing the class of
admissible hypotheses (that is, the hypothesis space) is called a restriction bias or
language bias. As opposed to this, a search bias or preference bias has influence
on the generalization through the way a hypothesis space is searched: Using a
certain search strategy, one acceptable hypothesis might be found before and,

1 Being aware of the grave philosophical and logical objections to this venture (as raised by Hume and
still not solved in a satisfactory way, neither by Popper’s deductivism nor by Carnap’s inductivism).

2 In some machine learning methods, e.g., explanation-based learning or inductive logic programming,
background knowledge is represented in a more explicit way.

17
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hence, given priority over another one (the latter is left out of account if the first
hypothesis is immediately adopted).

Since the observed data is usually consistent with a multitude of generalizations,
it would in fact be meaningless without a “biased” angle of view [270]. A strong
bias generally comes along with a restrictive set of prior assumptions. Thus,
it leads to a small space of (still admissible) hypotheses, a prerequisite for good
generalization performance. As opposed to this, an extremely rich (complex) class
of hypotheses3 (models) is often capable of a very accurate adaptation to the
observed data, but performs weak when generalizing beyond these data.4

2.1.1 Model-based approaches

A model (hypothesis) h∗ ∈ H is chosen on the basis of how well it fits the
observed data according to some criterion, e.g., as expressed by the Maximum

Likelihood principle. Further aspects such as the simplicity of the model might
also be considered, especially if several models fit the data equally well. The
principle of Occam’s Razor

5 [37], for instance, suggests to prefer the simplest
hypothesis that fits the data.6 Once having selected a specific model h∗, it can be
used for various types of performance tasks, such as explanation (of the observed
data), problem solving, and prediction (of future observations). Given a new input
x, for instance, the associated output might be estimated by ŷ = h∗(x).

In general, inductive inference performing along these lines is realized by paramet-
ric statistical methods and model-based machine learning techniques. Such meth-
ods aim at constructing a low-dimensional (parametric) model which – at least to
some degree – explains the observed data. They often make explicit assumptions
about some underlying data-generating process, e.g., in the form of relational de-
pendencies between observable quantities and statistical distributions of random
variables.

It is important to distinguish different types of models according to which aspects
of the modeled system are taken into consideration. A simple equation relating
some variables (as in linear regression) might be sufficient for making predictions
(and for acting accordingly), but it will generally not allow for understanding
a system or for explaining the mechanism underlying the observed phenomena.
A corresponding distinction between “interpolatory formulae” and “explanatory

3 It is actually not the size of the hypothesis space which determines complexity and hence gener-
alization performance. A useful measure of the complexity of a hypothesis space is the Vapnik-
Chervonenkis (VC) dimension [379].

4 The choice of an adequate hypothesis space is an important problem in machine learning, and some
attempts at automating this choice have already been made (e.g. [24]). Corresponding ideas are also
discussed under the slogan “learning to learn” [368].

5 An alternative (maybe more correct) spelling of the well-known philosopher’s name is “Ockham”.
6 Of course, one still has to specify the meaning of simplicity in order to make this principle applicable.

For instance, the Minimum Description Length principle can be used for putting Occam’s Razor

into practice. See [91] for a critical investigation of Occam’s Razor.
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models” has already been made by Neyman [279]. A similar differentiation be-
tween “surface models” and “deep models” has recently given rise to the founding
of model-based reasoning, which is now a proper subfield of AI. Needless to say,
arbitrary gradations exist between these extreme types of models [248]. Subse-
quently, we shall use the term “model-based” (learning) merely as a counterpart
to “instance-based” (learning).

2.1.2 Instance-based approaches

Instance-based methods represent an alternative approach to (machine) learning.
In model-based learning, an observation has an indirect and global influence on
predictions in the sense that it generally affects the complete set of parameters
which specify the model. Predictions are then derived from that model. As op-
posed to this, individual observations contribute in a more direct but often locally
limited way to the inference result in instance-based methods. A typical exam-
ple is classification according to the Nearest Neighbor (NN) principle (cf.
Section 2.2).

Instance-based approaches generally belong to the class of so-called lazy learn-
ing methods [6] (also known as memory-based [359], exemplar-based [327] or
case-based [234]). These methods learn by simply storing (some of) the observed
examples. They defer the processing of these inputs until a prediction (or some
other type of query) is actually requested. Predictions are then derived by some-
how combining the stored examples. After the query has been answered, the
prediction itself and any intermediate results are discarded. Again, the NN clas-
sifier is a typical example of a lazy (instance-based) learning method. Locally
weighted regression is an example of a (statistical) method which is lazy in the
same sense. In fact, instance-based approaches to machine learning share impor-
tant features with non-parametric methods in statistics, such as kernel smoothing
techniques [385]. It deserves mentioning, however, that instance-based methods
are not necessarily non-parametric.7

As opposed to lazy learners, model-based methods are eager in the sense that they
greedily compile their inputs into an intensional description (model), such as a
decision tree or a regression function, and then discard the inputs. The induced
description is used in order to reply to future information requests. Model-based
learning is thus in line with parametric methods in (classical) statistics.

2.1.3 Knowledge representation

One might argue that instance-based reasoning avoids (or at least circumvents)
the philosophical problem of induction. This is why instance-based reasoning is

7 Even the Nearest Neighbor classifier can be seen as an instantiation of a parameterized(!) class
of (lazy) learning algorithms [396].
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called implicit induction in [172], where it is contrasted with (explicit) induction
as realized, e.g., when learning general rules from specific examples. Indeed, the
lazy learning paradigm is naturally related to what is called transductive infer-
ence in statistical learning theory [380]. Transductive inference is inference “from
specific to specific.” Thus, it stands for the problem of estimating some values
of an unknown functional relation f(·) directly, given a set of empirical data.
Roughly speaking, the test set of points for which predictions have to made later
on is already known in the training phase. This type of inference represents an
alternative to the indirect (model-based) approach which derives an estimation
h∗ of the complete functional relationship in a first step (induction) and evaluates
this estimation at the points of interest afterwards (deduction).

In connection with lazy (instance-based) learning, we shall also speak about “ex-
trapolation” of (the information coming from) observed cases. In fact, typically
the known values of the function f(·) are extrapolated – in a locally limited way –
in order to estimate unknown values. Of course, by making predictions both,
instance-based as well as model-based methods do generalize beyond observed
data. They only employ different types of knowledge representation: extensional
descriptions in instance-based reasoning and intensional descriptions in model-
based methods. Consequently, the generalization step is delayed in instance-based
methods where it corresponds to the extrapolation of observed cases. As opposed
to this, generalization corresponds to induction (model building) in model-based
approaches. In this connection, it is important to note that an extensional de-
scription in the form of a set of observed cases is nothing else than a collection
of known facts. Strictly speaking, it can never be false,8 whereas an intensional
description induced from the observed data might be incorrect.

Instance-based methods still have to incorporate some kind of background knowl-
edge into their process of generalization, although they do not refer to an explicit
model. This inductive bias generally corresponds to some sort of representative-
ness or closeness assumption. As already mentioned in Chapter 1, this assumption
is most clearly expressed by the CBI hypothesis, suggesting that “similar causes
bring about similar effects.” Besides, the application of the CBI principle as-
sumes a precise idea of the concept of similarity in the respective context, i.e., it
makes the quantification of similarity necessary. Since the definition of similarity
measures will again fall back on some underlying assumptions, one can indeed
question the existence of something like genuine model-free reasoning [235].

2.1.4 Performance in generalization

Of course, comparing the quality of predictions is possible only for specific meth-
ods, not for instance-based and model-based approaches in general. But even

8 At least when disregarding philosophical tenets which do even challenge the possibility of knowing
facts.
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for specific methods it is often difficult to make a comparison since performance
depends strongly on the application and properties of the data.9

Still, it can roughly be said that model-based approaches are in general more
knowledge-oriented, since constructing a model often involves a considerable
amount of background knowledge. The observed data is then merely used for cal-
ibrating this knowledge. Consequently, a model-based approach will yield good
inference results if the model is suitably defined, but it might lead to erroneous
conclusions if the assumed model structure does actually not apply to reality.
Instance-based methods are more data-oriented and present a way to overcome
this danger.10 Nevertheless, the lack of predefined structure can lead to prob-
lems such as the overfitting of data. Let us mention that several semi-parametric
statistical methods have been proposed in order to combine the merits of both,
parametric and non-parametric approaches (at the cost of an often increased com-
putational complexity). The same idea has given rise to the emergence of hybrid
(integrated) approaches in machine learning [307].

2.1.5 Computational complexity

Learning in instance-based methods is rather simple from a conceptual point of
view. Basically, it amounts to storing new experiences in the form of observed
cases. Needless so say, however, simply adding all observations to the memory is
generally not the best strategy. In fact, the larger the number of stored cases, the
larger the time complexity and memory requirements of the inference procedure.
In order to optimize performance one has to use a more sophisticated strategy of
maintaining a memory of cases, which does also allow to remove already stored
cases (cf. Section 2.2). If it is possible to influence the choice of the next query
(problem), one might even try to control this choice so as to complement the
current experience in the most reasonable way.

Briefly, learning in instance-based methods can be seen as organizing an optimal
memory of cases.11 This is often simpler and more efficient than learning in model-
based approaches. Particularly, instance-based learning is inherently incremental.
In fact, an extensional description can be updated quite easily, namely by adding
a new case (fact). As opposed to this, the adaptation of an induced model which
becomes necessary due to the observation of a new case is often much more
difficult. In non-incremental induction, adaptation comes down to re-estimation,
i.e., to deriving a new model from scratch.12 As can be seen, from an estimation
point of view the problem with non-incremental model-based approaches is not

9 The observation that each approach to (inductive) learning works best in some special domain, but
not in general, has been termed the selective superiority problem in machine learning [57].

10 Still, they generally require the definition of a reasonable similarity or distance measure.
11 Of course, here we neglect other aspects of learning, such as adapting the similarity measure.
12 Note that this requires to store not only the model, but also the complete data.
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the one of induction (as discussed above), but rather the related one of knowledge
revision.13

The derivation of predictions is generally efficient in model-based approaches,
where it often comes down to evaluating a functional expression. Compared to
this, the combination of stored cases in lazy methods is less efficient (among other
things, it requires the searching of the memory).

From a complexity point of view, it can hence be said that lazy (instance-based)
methods have lower computational costs than eager (model-based) algorithms
during the training phase. Moreover, knowledge revision can be realized in a
simple and straightforward way. On the other hand, they generally have greater
storage requirements (typically linear in the size of the data set) and higher
computational costs when it comes to deriving a prediction.

2.2 Similarity-based methods

2.2.1 Nearest neighbor (NN) estimation

The well-known Nearest Neighbor (NN) principle, which originated in the
field of pattern recognition [76], provides an intuitively simple approach to the
prediction of both categorical and numerical outputs.

To introduce and discuss the main ideas of NN estimation, consider an input
space X endowed with a distance measure ∆X .14 The elements of X are instances
x which can be though of as the description of objects (usually in attribute–value
form). L denotes a set of outputs, and 〈x, λx〉 ∈ X ×L is called a labeled instance
(or a case). In classification tasks, L is a finite (usually small) set {λ1, . . . , λm}
comprised of m class labels. Let S denote a sample that consists of n labeled
instances 〈xı, λxı〉 (1 ≤ ı ≤ n). Finally, a new instance x0 ∈ X is given, whose
label λx0 is to be estimated.

With regard to the sample S, note that X ×L corresponds to the set of potential
observations. For each label λ ∈ L, let Cλ ⊆ X denote the set of instances
x ∈ X such that 〈x, λ〉 can indeed be observed. Cλ is also referred to as a concept.
Formally, one can assume an underlying population of entities such that each
element e of this population is mapped to a labeled instance 〈x(e), λ(e)〉 in a
unique way. Thus, x is an element of Cλ or, say, 〈x, λ〉 is an existing instance
if there is at least one e such that 〈x, λ〉 = 〈x(e), λ(e)〉. Note that the mapping
e �→ x(e) is not assumed to be injective (different elements of the population might
have the same description), which means that concepts can overlap (Cλ ∩Cλ′ "= ∅
for λ "= λ′).

13 Yet, it should be recognized that model-based approaches are not necessarily non-incremental.
14 (X , ∆X ) is often supposed to be a metric space.
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The NN principle prescribes to estimate the label of the yet unclassified instance
x0 by the label of the closest sample instance, viz the one that minimizes the
distance to x0. The k-Nearest Neighbor (kNN) approach is a slight general-
ization which takes the k > 1 nearest neighbors of a new query x0 into account.
That is, an estimation λest

x0
of λx0 is derived from the set Nk(x0) of the k nearest

neighbors of x0, e.g., by means of the majority vote decision rule:

λest
x0

= arg max
λ∈L

card{x ∈ Nk(x0) |λx = λ}. (2.1)

Not only can the NN principle be used for classification, it is also employable
for realizing a (locally weighted) approximation of continuous-valued target func-
tions. To this end, one reasonably computes the (weighted) mean of the k nearest
neighbors of a new query point instead of returning the most common value.15

The inductive bias underlying the NN principle corresponds to a representative-
ness or closeness assumption suggesting that similar (= closely located) instances
have similar (or even the same) label. This assumption is obviously a special ver-
sion of the CBI hypothesis (cf. Section 1.1). It gives rise to a similarity-guided
extrapolation principle which is clearly of a heuristic nature. Still, theoretical
properties of NN classification have been investigated thoroughly from a statisti-
cal perspective (e.g. [74]).16 In fact, the origin of the NN approach can be found
in work on non-parametric discriminatory analysis [148, 149].

Besides, several conceptual modifications and extensions, such as distance weight-
ing, which is discussed below, have been considered. Particularly, (editing) meth-
ods for selecting optimal training samples to be stored in the memory have been
developed in order to improve classification performance [163, 397] or to reduce
computational complexity [186] or both. Other extensions aim at supporting the
determination of adequate metrics [392] and the optimal size of the neighborhood.
Computational aspects have been addressed as well. For example, fast algorithms
and efficient data structures for finding nearest neighbors have been devised in
order to improve computational efficiency [154, 158, 411, 223, 222, 287].

Uncertainty in NN estimation. In statistical estimation theory, an estimated
quantity is always endowed with a characterization of its reliability, usually in
terms of a confidence measure and a confidence region. Alternatively, an esti-
mation is given directly in the form of a probability distribution. As opposed to
this, the NN principle in its basic form merely provides a point-estimation or,
say, a decision rule, but not an estimation in a statistical sense. The neglecting of
uncertainty makes this principle appear questionable in some situations, a point
that we shall return to in later chapters. To illustrate, Fig. 2.1 shows two classi-
fication problems. The new instance x0 is represented by a cross, and dark and
light circles correspond to instances of two different classes, respectively. In both

15
Shephard’s interpolation method [340] can be considered as a special type of NN estimation.

16 Needless to say, corresponding results can only be derived under certain statistical assumptions on
the setting of the problem.
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cases, the kNN rule with k = 5 suggests DARK as a label for x0. As can be
seen, however, this classification is everything but reliable: In the above setting,
the proportion of dark and light examples is almost balanced (apart from that,
the closest points are light). This is a situation of ambiguity. The setting below
illustrates a problem of ignorance: It is true that all neighbors are dark, but even
the closest among them are actually quite distant.

Fig. 2.1. Two situations of uncertainty in connection with the basic kNN rule, caused by the existence
of more than one frequent class label among the nearest neighbors (above) and the absence of any close
neighbor (below).

A simple (yet drastic) step to handle this type of problem is to apply a reject
option in the form of a distance or frequency threshold. That is, a classification
or answer to a query is simply refused if the nearest neighbors are actually not
close enough [370, 75, 136] or if the most frequent label among these neighbors is
still not frequent enough [68, 188].

A second possibility is to equal statistical methods (especially Bayesian ones)
in deriving a probability distribution as an inference result. In fact, this is an
obvious idea since NN techniques have originally been employed in the context
of non-parametric density estimation [148, 256]. Thus, a single decision can be
replaced by an estimation in the form of a probability vector(

px0(λ1), . . . , px0(λm)
)
, (2.2)

where px0(λı) = P(λı |x0) is the probability that λx0 = λı, i.e., the conditional
probability of the label λı given the instance x0. Taking the k nearest neighbors
of x0 as a point of departure, an intuitively reasonable approach is to specify the
probability px0(λı) by the relative frequency of the label λı among the labels of

these neighbors: px0(λı)
df
= kı/k, where kı denotes the number of neighbors having

label λı. In fact, this approach can also be justified theoretically, as will be shown
in the following.

The Nearest Neighbor approach to density estimation (not to be confused
with the one to classification) is closely related to kernel-based density estimation.
An NN density estimator is a kernel estimator with variable kernel width [343]:
The size of the neighborhood of a point x0 is adapted so as to include exactly
k observations. Thus, consider a sample of n observations x1, . . . , xn ∈ Rl which
are realizations of an l-dimensional random vector X with probability density
φ : Rl −→ R≥0. For x0 ∈ Rl let v be the volume of the smallest sphere V (x0)
around x0 that contains k of these observations. The relation



2.2 Similarity-based methods 25

P(X ∈ V (x0)) ≈ φ(x0) · v

(which holds true for small spheres) then suggests the following estimation of
φ(x0), the density at point x0:

φest(x0) =
k

n · v (2.3)

Coming back to NN classification, consider a sample S that comprises n = n1 +
. . . + nm observations, where nı denotes the number of tuples 〈x, λx〉 ∈ S such
that λx = λı. Let x0 be a new observation. Again, we choose an as small as
possible hypersphere around x0 which contains a set Nk(x0) of k instances from
S, where k = k1 + . . .+km with kı = card{x ∈ Nk(x0) |λx = λı}. The conditional
probability density of x0 (given the label) can now be estimated by

φest(x0 |λı) =
kı

nı · v
, (2.4)

where v denotes the volume of the hypersphere around x0. Moreover, the uncon-
ditional density of x0 and the prior probability of the label λı can be estimated
by

φest(x0) =
k

n · v , pest(λı) =
nı

n
, (2.5)

respectively. For the probabilities in (2.2) one thus obtains

px0(λı) = pest(λı |x0) =
φest(x0 |λı) · pest(λı)

φest(x0)
=

kı

k
. (2.6)

Remark 2.1. Note that the NN estimation of the conditional probability density
(2.4) is actually given by

φest(x0 |λı) =
kı

nı · vı

,

where vı is the volume of the smallest sphere around x0 that contains all of the
kı neighbors with label λı. Then, however, the probabilities

px0(λı) =
kı · v
k · vı

(2.7)

do not necessarily add up to 1. This problem is related to a general difficulty
of NN density estimation. Namely, deriving (2.3) for all x ∈ X leads to a non-
normalized density function φest since each x requires a different hypersphere.17 �

Of course, (2.6) might be considered as a formal justification of the original kNN

(decision) rule: The label estimated by the (majority vote) kNN rule is just
the one of maximal (posterior) probability [79]. Still, one should be cautious

17 Apart from that, an NN density estimation may suffer from very heavy tails and an infinite integral.
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with the distribution (2.6). Particularly, it is not clear how reliable the estimated
probabilities px0(λı) = kı/k actually are. It is possible to construct corresponding
confidence intervals, but these are only asymptotically valid [343]. In fact, k is
generally small and, hence, (2.6) not very reliable.18 Improving the quality of
predictions by simply increasing k obviously does not work since it also entails
an enlarging of the hypersphere around x0.

19

Weighted NN rules. A straightforward modification of the kNN rule is to
weight the influence of a neighboring sample point by its distance. This idea
leads to replace (2.1) by

λest
x0

= arg max
λ∈L

∑
x∈Nk(x0) : λx=λ

ω(x |x0, S), (2.8)

where ω(x |x0, S) is the weight of the neighbor x. There are different possibilities
to define these weights. For example, let the neighbors Nk(x0) = {x1, . . . , xk} be
arranged such that dı = ∆X (xı, x0) ≤ ∆X (x, x0) = d for ı ≤ . In [137], the
weights are then determined as20

ω(xı |x0, S) =

{
dk−dı

dk−d1
if dk "= d1

1 if dk = d1

. (2.9)

The weighting of neighbors appears reasonable from an intuitive point of view.
For instance, a weighted kNN rule is likely to yield LIGHT rather than DARK

as a classification in Fig. 2.1 (above). More general evidence for the usefulness of
distance-weighting is provided in [257, 288], at least in the practically relevant case
of finite samples. In fact, in [20] it was shown that the asymptotic performance of
the kNN rule is not improved by distance-weighting.

Note that the original kNN rule corresponds to the weighted rule with

ω(x |x0, S) =

{
1 if x ∈ Nk(x0)

0 if x "∈ Nk(x0)
. (2.10)

Thus, the NN rule can be expressed as a global principle involving the complete
sample S of observations without loss of generality:

λest
x0

= arg max
λ∈L

∑
〈x,λx〉∈S : λx=λ

ω(x |x0, S). (2.11)

Interestingly enough, it is also possible to consider the probabilistic NN prediction
(2.6) in the context of the weighted NN approach. Namely, (2.6) can be written
as
18 An estimated probability is always a multiplicity of 1/k. Particularly, px0(λı) ∈ {0, 1} in the special

case k = 1, i.e., for the 1NN rule.
19 Good estimations are obtained for small hyperspheres containing many points. Besides, asymptotic

convergence generally assumes an adaptation of k as a function of n.
20 See [257] for a modification that performed better in experimental studies; for other types of weight

functions see, e.g., [398].
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px0(λ) =
∑

〈x,λx〉∈S : λx=λ

ω(x |x0, S), (2.12)

with the weight function ω now being defined by

ω(x |x0, S) =

{
1/k if x ∈ Nk(x0)

0 if x "∈ Nk(x0)
. (2.13)

Again, (2.11) then amounts to choosing the label with maximal posterior proba-
bility.

Of course, in the following situation one would hardly advocate a uniform distri-
bution suggesting that labels DARK and LIGHT have the same probability:

This example reveals a shortcoming of the weight function (2.13), namely the
disregard of the arrangement of the neighbors [198]. In fact, the derivation of the
probabilistic NN estimation (2.6) disregards the actual distances and positions
in the estimation of probability densities.21 This, however, is only justified if the
sphere containing the k nearest neighbors is indeed very small, which is usually
not the case in practice. (Note that the label DARK is assigned a higher degree
of probability than LIGHT according to (2.7), cf. Remark 2.1).

In order to account for this problem, it is possible to combine the idea of weighting
and probabilistic estimation. The use of the uniform weights (2.13) corresponds
to the use of the (uniform) Parzen window in kernel-based density estimation
[289]. By making use of a more general kernel function K : Rl −→ R≥0, a density
function which is usually symmetric around 0, the NN density estimation (2.3)
can be generalized as follows:

φest(x0) =
1

n
·

n∑
ı=1

Kdk
(x0 − xı) , (2.14)

where dk is the distance between x0 and its k-th nearest neighbor and Kdk
is a

re-scaling of a kernel function K (with K(u) = 0 for |u| > 1):

Kd : u �→ 1/dl · K(u/d).

The same reasoning as in Section 2.2.1 then suggests a weighted counterpart of
(2.6):

pest(λ |x0) ∝
∑

〈x,λx〉∈S : λx=λ

Kdk
(x0 − x) . (2.15)

21 Taking positions into account becomes very tricky in instance spaces of higher dimension [420].
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As can be seen, (2.15) is nothing else than an estimation derived from the weighted
NN rule by means of normalization.22 Thus, proceeding from weights such as
(2.9), one simply defines a probability distribution px0 such that

px0(λ) ∝
∑

〈x,λx〉∈S : λx=λ

ω(x |x0, S). (2.16)

Related to this approach are extensions of NN classification which make use of
fuzzy sets [27, 33, 216, 218]. By weighting neighbors according to their distance,
these methods compute a “fuzzy” classification

λest
x0

=
(
uλ1(x0), . . . , uλm(x0)

)
(2.17)

for a new instance x0. That is, x0 is not assigned a unique label in an unequivocal
way. Rather, a degree of membership, uλ(x0), is specified for each label λ. Consider
as an example the fuzzy kNN algorithm proposed in [218]. The degree to which
x0 is assigned the label λı (is classified into the ı-th class) is given by

uλı(x0) =

∑k
=1 uı |x0 − x|−2/(m−1)

∑k
=1 |x0 − x|−2/(m−1)

, (2.18)

where uı = uλı(x) is the membership degree of the instance x in the ı-th class.
The possibility of assigning fuzzy membership degrees uı to labeled instances x

is seen as a decisive feature. Turning the (non-fuzzy) label λx of an observed
instance x into a fuzzy label allows one to adjust the influence of that instance if
it is not considerded prototypical of its class. The constant m in (2.18) determines
the weighting of the distance between x0 and its neighbors.

Clearly, (2.18) still has a probabilistic flavor since degrees of membership add up
to 1.23 However, the use of fuzzy labels makes it more general than (2.16). In fact,
a fuzzy classification (2.17) can be written as

uλ0(x0) ∝
n∑

ı=1

uλ0(xı) · ω(xı |x0, S).

Formally, the main difference between a probabilistic estimation and a fuzzy
classification is hence the use of fuzzy labels in the latter approach: In the prob-
abilistic case, an observed instance 〈x, λx〉 supports the label λx only. Depending
on the “typicality” of the instance (it might concern a “boundary case” whose
labeling was not unequivocal), it may also support labels λ "= λx in the case of
fuzzy classification. We shall return to fuzzy-set based approaches of that kind in
Chapter 5.

22 Note, however, that (2.15) actually considers more than k instances if the k-th nearest neighbor is
not unique. See [288] for an alternative type of distance-weighting in kNN which unifies classification
and density estimation.

23 Formally, (2.18) might hence be interpreted as a probability distribution as well. It should be noted,
however, that this interpretation might be criticized since the derivation of (2.18) does not assume
an underlying probabilistic model.
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2.2.2 Instance-based learning

Instance-based learning (IBL) algorithms, which belong to the class of lazy (su-
pervised) machine learning methods (cf. Section 2.1), are incremental variants
of the NN algorithm.24 They are inspired by exemplar-based models of catego-
rization which have been developed in cognitive psychology [351]. IBL classifies
instances based on the assumption that “similar instances have similar classifi-
cations.” The simplest IBL algorithm, known as IB1 [11], mainly differs from
the NN algorithm in that it normalizes the (numeric) attribute values of in-
stances (which are characterized by means of an attribute–value representation),
processes instances incrementally, and uses a simple method for tolerating missing
attribute values. IB2 extends IB1 by using an editing strategy, i.e., it maintains
a memory (case base) of selected cases called prototypes (falsely classified points
are added as references). A further extension, IB3, aims at reducing the influence
of noisy observations.25 To this end, a classification record is maintained, which
counts the correct and incorrect votes of the stored references. By weighting at-
tribute values in the computation of the distance measure, IB4 and IB5 [5] take
the relevance of features into account. The weights are adapted each time a new
classification has been made.

Not only have IBL algorithms been used for estimating (discrete) class labels
(i.e., for classification), they have also been employed for predicting real-valued
attributes (i.e., for regression and function approximation) [221, 420]. Further im-
provements of IBL algorithms include the incorporation of tolerance toward noisy
instances [10], the elimination of irrelevant features [7, 224, 345], the weighting of
features [396] or instances [327], approaches to dealing with novel attributes [5],
and the consideration of (class-dependent) misclassification costs [290, 364].

IBL algorithms basically consist of three components:

– A similarity function computes a numeric similarity between instances.

– A classification function estimates the class of a newly presented instance, given
the similarities between the new instance and the stored examples as well as the
classes (and classification performance) of these examples. It yields a complete
concept description (a mapping which assigns classes to instances) when being
applied to all (still unclassified) instances.

– After each classification task, a concept description updater derives a modi-
fied concept description by maintaining the memory of instances. The decision
whether to retain or remove an instance is based on records of previous clas-
sification performance and the information provided by the new classification
task.

24 Though the idea of incremental learning is also contained in basic NN algorithms.
25 See also [397] for an early work along these lines.
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As for the basic NN rule, some efforts have been made to improve the performance
of IBL algorithms. Important points, some of which have already been mentioned
above, include conceptual aspects such as the reduction of storage requirements
by editing and prototype selection [264], the toleration of noise [11], the definition
of similarity functions [399], and feature weighting or selection [396], as well as
practical issues such as efficient techniques for indexing training examples [394].

2.2.3 Case-based reasoning

Case-based reasoning (in a narrow sense, cf. Chapter 1) is one of the more recent
developments26 in AI research and has now become an important and widely
applied problem solving technology [234, 315]. It is based on the assumption that
“similar problems have similar solutions,” another version of the CBI hypothesis
(cf. Chapter 1). In fact, this assumption is the guiding principle underlying most
CBR systems. More precisely, the idea of CBR is to exploit the experience
gained from similar problems in the past and to adapt then successful solutions
to the current situation. In order to realize this idea, a CBR system has to
maintain (at least) a structured memory of cases (also called a case base) which
represents the experience and a means for specifying the similarity between cases
(cf. Section 2.3). The basic notion of a case is thought of as a representation of
knowledge about a specific situation or episode (an episodic chunk of knowledge).
In its standard form it consists of two parts, namely a problem description and
an associated solution. The concepts of problem and solution are very general in
nature and have no universally valid definition. Rather, their meaning depends
on the respective application.

Case-based reasoning is strongly related to the field of cognitive modeling.27 In-
deed, CBR has its origin in the cognitive model of scripts [333] and dynamic
memory models of cognition [332], and it has always been motivated by the idea
of providing computational models which are closer to psychology than traditional
AI methods.

At a formal level, CBR is built upon the principles of IBL, but involves more
complex data structures. In fact, CBR can be seen as an instance-based ap-
proach in which instances are complex objects (= cases) rather than points in a
Euclidean space and which goes beyond classification as a problem solving task. In
comparison to IBL, this additional complexity makes inference more difficult and
necessitates further system features, such as the efficient organization of the case
base, case retrieval techniques and methods of case adaptation. Broadly speak-

26 The first and by now well-known CBR conference (DAPRA [233]) was held in the USA in 1988.
The first European conference was held in 1993 [314], and the first international conference took
place in 1995 in Lisbon, Portugal [382].

27 The relation between CBR and cognitive science is strongly developed in the USA, whereas in
Europe CBR is typically seen as a more technical discipline related to computer science and AI.



2.2 Similarity-based methods 31

ing, inference in IBL is only based on observed cases and a similarity relation,28

whereas CBR systems also incorporate general domain knowledge.

Case-based reasoning research has largely focused on issues such as the organiza-
tion of case bases, the efficient retrieval of cases, the assessment of the similarity of
cases, and the adaptation of past solutions to the current problem. Considerable
research efforts have also been motivated by real-world problems and, hence, have
been relatively application-oriented. Until recently, however, only few attempts
have been made at formalizing the process of similarity-based inference and its
underlying assumptions in a systematic way [101, 99, 141, 199, 296, 105, 201].

The structure of CBR systems. A widely accepted CBR methodology which
is realized by many practical systems is characterized by the so-called “CBR cy-
cle.” It reflects the main components necessary for realizing case-based reasoning,
namely the maintenance, the retrieval, the intelligent use, and the update of ex-
periences. The (informal) R

4 model of the CBR cycle consists of the following
phases [1]:

– Retrieve the case(s) from the memory which is (are) most similar to the
target problem,

– Reuse the information provided by this case in order to solve the new problem,

– Revise the proposed solution according to the special requirements of the new
problem,

– Retain the new experience obtained in the current problem solving episode
for future problem solving.

The above outline gives an idea of the principal factors which determine the
efficiency of a CBR system, such as

– methods for maintaining and organizing the case base (a simple but common
structure is that of a flat case base which involves the comparison of the new
problem with each case in the memory; more advanced approaches make use of
hierarchical structures),

– case indexing and case retrieval techniques (indexing means assigning indices
to cases for future retrieval and comparison),

– the formalization of the similarity concept (generally in the form of numerical
measures, see Section 2.3),

– methods of case adaptation (i.e., the adaptation of solutions of retrieved cases
to the problem at hand).

Besides, different types of learning can be incorporated into a CBR system. From
a very general perspective, every change of the system in response to its envi-
ronment can be considered as learning. Thus, the simplest type of learning is

28 Such methods are called “casuistic” in [296].
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perhaps that of storing a new case. Other aspects of learning include the acquisi-
tion or adaptation of similarity measures, the learning of retrieval knowledge or
the improvement of case adaptation [12].

In its basic form, CBR puts the above model into action by simply retrieving the
most similar case from the memory and by using this case for solving the new
problem. Since the CBI hypothesis is thus realized in a more or less implicit way
(and only for selecting a case from the memory), it is perhaps not astonishing
that an explicit formalization has hardly received an attention as yet.

Applications. The performance task which is perhaps most often considered in
CBR is that of classification. Based on the assumption that a case consists of a
problem description in the form of a set of symptoms or features, and a class to
which it belongs, the task is to determine the class of a new problem. This type
of CBR is in fact very close to IBL. However, CBR has also been applied to a
wide range of other tasks for which case knowledge plays an important role, such
as configuration, diagnosis, decision support, design, and planning [249].

The above types of application (as well as the representation of a case in the form
of a problem and a solution) clearly stress the aspect of problem solving. Still,
let us mention that CBR can also be used for other purposes. In interpretative
CBR, for instance, the focus is on arguing whether a new situation should be
treated in the same way as a previous one [80]. Again, the similarity between the
two situations plays a crucial role. Needless to say, a clear differentiation between
problem solving CBR and interpretative CBR is often not possible in practice.
In fact, most CBR systems combine aspects of both types.

Integration with other techniques. Hybrid representations combining differ-
ent paradigms belong to the relatively recent developments in intelligent systems
research. In this connection, it is interesting to mention that CBR (or principles
thereof) can well be integrated with other methods. Particularly, the combination
of CBR and methods of rule induction has led to several interesting approaches
[89, 90, 174, 29]. Rule-based reasoning has been used, e.g., for supporting the
adaptation task in CBR [246], for assessing similarity measures [14], and for
guiding the search and matching process in the retrieval task. CBR can also
play the role of a supporting technique in rule induction [346]. Besides, more bal-
anced approaches have been developed in which CBR and rule-based techniques
support each other in a common learning and problem solving environment [61].
An interesting architecture in which cases are used for handling exceptions to
approximately correct rules has been proposed in [175]. A combined approach is
particularly advocated by the complementary properties of the two techniques,
namely the representation of general knowledge of a domain in rule induction and
the representation of domain-specific knowledge in the form of observed cases in
CBR. A thorough elaboration of the potential to integrate CBR with soft com-
puting techniques has more recently been given in [285]. Another current research
topic is the use of CBR in reinforcement learning [159].
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2.3 The concept of similarity

The problem of measuring a kind of similarity or, alternatively, determining a
distance between (pairs of) objects naturally arises in many fields of theoretical
and application-oriented research. Correspondingly, a large number of special-
ized similarity or distance measures can be found in literature, such as distance
(similarity) measures for vectors, sets, probability measures, sequences, or graph-
structured objects. This section is meant as a brief introduction to the concept of
similarity from the viewpoint of case-based reasoning and fuzzy set theory, two
fields in which similarity plays an important role. We shall not go into too much
detail, however, and refrain from a systematic discussion of particular measures,
as this is not necessary for subsequent chapters.

2.3.1 Similarity in case-based reasoning

As suggested by the CBR cycle, the retrieval of cases which are similar to the new
query is an important step of the overall problem solving process. This process
hence assumes a quantification of the similarity between objects. In fact, the
efficiency of case-based problem solving crucially depends on the adequacy of
this quantification. Ideally, the similarity-guided retrieval process provides a case
which is useful in the sense that the associated solution can easily be adapted to
the new problem.

Let X be an arbitrary class of objects. Typically, the similarity between two
objects x, y ∈ X is expressed in terms of a (non-negative) real number σ(x, y),
i.e., similarity is formalized as a real-valued function σ : X × X −→ R≥0.

29 The
latter is also called a similarity measure or similarity function. Yet, similarity can
also be formalized by means of a relational approach. Indeed, a relation R ⊆ X4

with the intended meaning that

(x, y, u, v) ∈ R ⇔ x is at least as similar to y as u to v

already allows for defining a nearest neighbor of an object x:

NN(x, z)
df⇔ ∀ y ∈ X : (x, z, x, y) ∈ R.

The relational approach hence suffices for realizing the CBR process outlined
above. This also shows that CBR does generally not assume a cardinal interpre-
tation of a similarity measure. In fact, what is important is only the order relation
between degrees of similarity.

From a mathematical point of view, similarity and distance can be seen as dual
concepts [371, 378]. A similarity function σ and a distance measure ∆ (also defined
over X) are compatible if Rσ = R∆, where the relation Rσ is induced by σ via

29 One could also think of relaxing the assumption that σ ≥ 0, but such measures are usually not
considered.



34 2. Similarity and Case-Based Inference

(x, y, u, v) ∈ Rσ
df⇔ σ(x, y) ≥ σ(u, v),

and R∆ is defined in an analogous way.

There are a number of (more or less reasonable) properties which may be required
of a similarity function σ, notably reflexivity, symmetry, and transitivity (the
latter being expressed in terms of a related distance ∆):

– ∀x ∈ X : σ(x, x) = 1,

– ∀x, y ∈ X : σ(x, y) = σ(y, x),

– ∀x, y, z ∈ X : ∆(x, z) ≤ ∆(x, y) + ∆(y, z).

All these properties are discussed controversially in literature, however. Several
authors argue in favor of reflexivity and symmetry, whereas Tversky claims that
both properties are too strong [373]. His main argument against symmetry relies
on a differentiation between a subject and a referent. For instance, people generally
find an ellipse (the subject) more similar to a circle (the referent) than vice
versa. On the one hand, Tversky’s argument is quite convincing. Besides, it is
confirmed by a number of examples and experimental studies. On the other hand,
however, it shows that a careful distinction between similarity as a descriptive and
similarity as a normative concept has to be made. From a descriptive point of
view, which is clearly dominant in cognitive psychology, it seems that similarity
should indeed be considered as an asymmetric concept. From a normative point of
view, however, one might well argue that symmetry is a reasonable requirement.
Similar arguments also apply in connection with the property of reflexivity.

The objections which can be raised to transitivity are more convincing, even from
a normative point of view. For instance, the {0, 1}-valued measure which assigns
a similarity of 1 to real numbers x, y iff |x − y| < ε might be advocated as being
useful for certain applications, but it is obviously not transitive. (As will be seen
below, weaker concepts of transitivity can be handled within the framework of
fuzzy sets.)

An interesting framework in which different classes of similarity measures are
distinguished has been proposed in [47]. Each of the classes is identified by some
requirements a measure must satisfy, and specific applications it might be useful
for: Measures of similitude are non-symmetrical and quantify the extent to which
an object comes close to a reference object. Measures of inclusion, also non-
symmetrical, quantify the degree to which an object can be considered as a special
case of a reference object. Measures of resemblance do not assign specific roles to
the objects under consideration and are hence symmetric.

The computation of similarity largely depends on the representation of objects.
Several approaches have been developed, including
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– the feature-based approach, where an object is represented by a set of features
(properties that apply to the object) and similarity is derived from the com-
monality or difference of the features associated with two objects [373],

– the geometric approach, in which objects are coded as points in some n-
dimensional (metric) space and similarity is inversely related to distance [341],

– the structural approach, in which the relation between cases is represented by
means of a graph structure and similarity is based on graph matching [58].

Anyway, the most common approach is to make use of an attribute–value repre-
sentation, i.e., to characterize a case (input, output) as a vector a = (a1, . . . , an)
of attribute values. Denote by Aı the domain of the ı-th attribute and let A =
A1 × . . . ×An. Moreover, suppose a global similarity measure σ : A×A −→ R≥0

to be given. The so-called local-global principle makes the following assumption:
There are local similarity measures σı : Aı × Aı −→ R≥0 and a composition
function f : (R≥0)

n −→ R≥0 such that

σ(a, a′) = f
(
σ1(a1, a

′
1), . . . , σn(an, a′

n)
)

(2.19)

for all a = (a1, . . . , an), a′ = (a′
1, . . . , a

′
n) ∈ A.30 There are some reasonable prop-

erties which might be assumed in connection with the representation (2.19). For
example, the global monotonicity axiom states that

σ(a, a′) < σ(a, a′′) ⇒ ∃ ı ∈ {1, . . . , n} : σı(aı, a
′
ı) < σı(aı, a

′′
ı ).

for all a, a′, a′′ ∈ A.

Example 2.2. Commonly used similarity measures are often derived from the
weighted Euclidean metric

∆ : (a, a′) �→
(

n∑
ı=1

ωı · (aı − a′
ı)

2

)1/2

.

This measure obviously assumes numeric attributes. An example of a more general
similarity measure is

σ : (a, a′) �→ 1 −
n∑

ı=1

ωı · ∆ı(aı, a
′
ı),

where ∆ı is a normalized Euclidean distance in the case of numeric attributes and
the discrete distance measure (which takes the value 0 if aı = a′

ı and 0 otherwise)
in the case of categorical variables (the ωı are non-negative weights such that
ω1 + . . . + ωn = 1). �
30 Similar assumptions on the decomposition of a high-dimensional measure into several low-

dimensional ones are made in utility theory.
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It should be mentioned that more general formalizations of similarity can be ob-
tained by weakening the assumption that a measure is numeric [213]. Moreover,
it is not compulsory to measure similarity on a completely ordered scale, as al-
ready suggested by the relational approach. For instance, a similarity measure
might be a X × X −→ L mapping with L being a lattice structure [283, 56].
See [252, 399] for an overview and a comprehensive analysis of special similarity
(distance) measures used in CBR.

It goes without saying that (case-based) reasoning and problem solving will often
turn out as inadequate from a reuse perspective if similarity is simply derived as
a function of certain properties of objects, e.g., features or attribute values. In
other words, it might not be appropriate to assume that the case which is most
similar in the sense of a “surface measure” of this kind can easily be adapted to
fit the target problem. Consequently, similarity measures should be augmented
by deeper, domain-specific knowledge about the adaptability of cases, at least if
CBR is realized in its basic form (namely by retrieving the most similar case and
by adapting the corresponding solution to the new problem). The adaptation-
guided retrieval technique proposed in [354], for instance, improves the efficiency
and accuracy of case-retrieval by means of an algorithmic measure of adaptability.

The CBI hypothesis is trivial (circular) when saying that two problems are sim-
ilar if the related solutions are similar, a fact which is often criticized in the
philosophical and psychological literature [178]. As already pointed out in Chap-
ter 1, however, this objection to CBR as a useful reasoning principle is hardly
relevant from a practical point of view: Since the solution to the target problem
is unknown, this “ideal” similarity measure cannot be computed. Rather, the ob-
jective is to define similarity between problems (without knowing the solutions)
in such a way that the CBI hypothesis holds at least approximately. The more
knowledge about the domain is available, the better a similarity measure will
generally meet this requirement [160]. The problem of similarity assessment, i.e.,
the learning and adaptation of similarity measures, is one of the central topics
in CBR research [358]. Learning is usually realized by adapting the parame-
ters of a (parameterized) similarity function. So-called feature weighting methods
[395, 396] can be mentioned as a typical example.

In this connection, let us make a remark on the semantics of the similarity con-
cept. In CBR, it is sometimes proposed to interpret similarity in terms of other
concepts, such as (gradual) truth or probability [312]. For instance, the idea to
define the similarity between two problems as the probability that the associated
solutions are similar (identical) can be seen as a straightforward generalization
of the above-mentioned “ideal” similarity measure. However, we prefer to con-
sider similarity as a (cognitive) concept in its own right. In fact, it can hardly
be denied that similarity plays an independent role in human reasoning, as do
related concepts such as belief and preference. In this sense, the cognitive basis of
similarity-based reasoning is clearly undermined when reducing similarity to other
concepts. Besides, it should be noted that a similarity measure might be ideal in
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the above-mentioned sense but, at the same time, rather counter-intuitive. In this
respect, one might think of expressing the CBI hypothesis in a more restrictive
way as follows: “There are intuitively reasonable measures of similarity σ, σ′ such
that two inputs are similar in the sense of σ′ if the related outputs are similar in
the sense of σ.” This hypothesis is indeed non-trivial, since measures which are
ideal and reasonable at the same time need not necessarily exist.

2.3.2 Similarity and fuzzy sets

The concept of similarity is also closely related to the theory of fuzzy sets [412,
284]. In fact, one of the main semantics of the membership function of a fuzzy
set A ⊂ X is that of encoding degrees of similarity between elements of X and
elements which are prototypical (and for which the degree of membership in A is
1) of a certain (fuzzy) concept characterized by A [26, 320]. In the same way as the
idea of a fuzzy subset generalizes that of a classical set, the concept of similarity
can be seen as a generalization of the classical notion of equivalence. That is, a
similarity relation can be interpreted as a generalization of an equivalence relation.
By taking fuzzy equivalence, also referred to as indistinguishability, as a basic
concept, it is even possible to view fuzzy sets as an induced concept [225]. This
point of view suggests a way to provide meaningful semantics for certain fuzzy
reasoning schemes. In [226], for instance, fuzzy control has been interpreted as
interpolation in the presence of indistinguishability. Likewise, “fuzzy granules”
are considered as “objects forming a granule drawn together by similarity” in
connection with the modeling of fuzzy graphs [31].

Let � be a triangular norm (t-norm), i.e., a function � : [0, 1] × [0, 1] −→ [0, 1]
which is associative, commutative, nondecreasing in both arguments, and such
that �(x, 1) = x for all 0 ≤ x ≤ 1 [227]. A �-similarity on a set X is a fuzzy
relation σ : X × X −→ [0, 1] satisfying reflexivity, symmetry, and �-transitivity:

– ∀x ∈ X : σ(x, x) = 1,

– ∀x, y ∈ X : σ(x, y) = σ(y, x),

– ∀x, y, z ∈ X : �(σ(x, y), σ(y, z)) ≤ σ(x, z).

Depending on the choice of �, the assumption of transitivity turns out to be
more or less restrictive. In fact, it is maximally restrictive for the largest t-norm,
namely the minimum operator. It is minimally restrictive for the drastic product,
which is given by the mapping

� : (x, y) �→
{

min(x, y) if max(x, y) = 1

0 if max(x, y) < 1
.

A similarity measure σ is called separating if σ(x, y) = 1 ⇔ x = y holds true for
all x, y ∈ X. (The same property is denoted strong reflexivity in case-based rea-
soning.) A relation which satisfies reflexivity and symmetry is called a proximity
relation [100].
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Suppose a similarity relation σ : X ×X −→ [0, 1] to be given. Then, each element
u ∈ X induces a fuzzy equivalence class [u]σ, namely the fuzzy set of elements
close to u. This fuzzy subset of X is characterized by the membership function
x �→ σ(x, u).

As already mentioned above, there is a close relation between the notions of
similarity and distance. A mapping ∆ : X × X −→ [0,∞] is an extended (real-
valued) pseudometric on X if

– ∀x ∈ X : ∆(x, x) = 0,

– ∀x, y ∈ X : ∆(x, y) = ∆(y, x),

– ∀x, y, z ∈ X : ∆(x, y) ≤ ∆(x, z) + ∆(z, y),

where x+∞ = ∞+x = ∞ for all x ∈ [0,∞] by definition. Let f : [0, 1] −→ [0,∞]
be a continuous and strictly decreasing function satisfying f(1) = 0. The function

σ : X × X −→ [0, 1] , (x, y) �→ f (−1)(∆(x, y))

is then a �-similarity on X, where f (−1) denotes the pseudoinverse

f (−1) : [0,∞] −→ [0, 1] , x �→
{

f−1(x) if x ∈ f([0, 1])

0 if x "∈ f([0, 1])
,

and � is the continuous Archimedean t-norm31 generated by f(·). In this case,
we shall say that σ is ∆-related (via f(·)). The other way round, the function
∆ : X×X −→ [0,∞] defined by ∆(x, y) = f(σ(x, y)) is an extended pseudometric
if f(·) is an additive generator of a continuous Archimedean t-norm �, i.e., if �
is given by the mapping

(x, y) �→ f (−1)(f(x) + f(y)),

and if σ is a �-similarity on X.

2.3.3 Aggregation of local similarity measures

According to the above-mentioned local-global principle (page 35) for similarities,
deriving a global similarity relation from a set of individual relations comes down
to defining an adequate aggregation operator. Ideally, such an operator should
preserve certain properties of the individual relations. Most aggregation operators
do preserve reflexivity and symmetry, but not necessarily transitivity. This remark
does already apply to the simple arithmetic mean, i.e., the measure σ with f(·)
in (2.19) given by

f : (x1, . . . , xn) �→ 1

n

n∑
ı=1

xı. (2.20)

31 A t-norm � is called Archimedean if �(x, x) < x for all 0 < x < 1.
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Still, for a t-norm � it is not difficult to show that the global measure

σ : (a, a′) �→ σ1(a1, a
′
1)�σ2(a2, a

′
2)� . . . �σn(an, a′

n)

is �-transitive whenever the same holds true for the local measures σı (1 ≤ ı ≤ n).

Simple examples of aggregation operators which have been studied extensively
in the literature on fuzzy sets are the minimum and the maximum. Weighted
aggregations [151] are of particular interest in connection with CBI since they
allow for assigning a level of importance to the attributes.

In this connection, it should be noted that literature offers weighted aggregation
operators other than the weighted arithmetic mean. Such operators are impor-
tant when dealing with non-numeric attributes or ordinal scales of similarity (cf.
Chapter 5) where averaging does not make sense [112]. As an example consider
the following similarity function which is a weighted version of the min-operator:

σ : (a, a′) �→ min
1≤ı≤n

max{σı(aı, a
′
ı), 1 − λı} (2.21)

with 0 ≤ λı ≤ 1 and max1≤ı≤n λı = 1. The value λı defines the level of importance
of the ı-th attribute. As can be seen, λı = 1 corresponds to full importance,
whereas λı = 0 means that the ı-th attribute is completely ignored. Let us mention
that (2.21) preserves reflexivity, symmetry, and transitivity.

So-called ordered weighted averaging (OWA) operators, which generalize several
well-known operators, such as the average and the minimum, have also been
proposed as aggregation operators in the context of case-based reasoning [409].
Another interesting aggregation operator (apparently not yet considered in con-
nection with similarity evaluation) is the Choquet integral [67, 180]. Not only does
this operator allow for weighting individual attributes, it can also take interde-
pendencies between attributes into account. The Choquet integral of an extended
real-valued function f(·) on a topological space Ω is defined as

∫ ch

f dη
df
=

∫ ∞

0

η([f > t]) dt +

∫ 0

−∞
(η([f > t]) − 1) dt,

where [f > t] = {ω ∈ Ω | f(ω) > t} and η is a so-called capacity (a special type
of set function).

For our purpose, it suffices to consider the Choquet integral for the finite case,
namely for Ω = {1, . . . , n}. Let σ1, . . . , σn be local similarity measures. By making
use of the Choquet integral as an aggregation operator we obtain the following
global measure:

σ : (a, a′) �→
∫ ch

h dη, (2.22)

where h : {1, . . . , n} −→ [0, 1] is given by the mapping ı �→ σı(aı, a
′
ı). Thus,

h(ı) denotes the similarity between the attribute values aı and a′
ı. Moreover,
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η : 2Ω −→ [0, 1] is a normalized and inclusion-monotone measure, i.e., η(∅) = 0,
η(Ω) = 1, and η(A) ≤ η(B) for A ⊂ B ⊂ Ω.

Let π denote a permutation of {1 . . . n} such that h(π(ı)) ≤ h(π(ı + 1)) for
1 ≤ ı < n. That is, π arranges the attributes according to the degree of similarity.
The similarity function (2.22) can then be written as follows:

σ : (x, x′) �→
n∑

ı=1

h(π(ı)) · (η({π(1) . . . π(ı)}) − η({π(1) . . . π(ı − 1)})) , (2.23)

where η(∅) df
= 0. Note that (2.23) includes several known aggregation operators as

special cases. For instance, with η being the counting measure X �→ 1/n · |X| we
obtain the arithmetic mean. More generally, let η be the additive measure with
η({ı}) = αı for all 1 ≤ ı ≤ n, where 0 ≤ αı ≤ 1 and α1 + . . .+αn = 1. The global
measure (2.23) is then given by the weighted arithmetic mean

σ : (x, x′) �→
n∑

ı=1

αı · σı(aı, a
′
ı).

OWA operators are recovered if η(·) is symmetric (commutative), i.e., if η(X)
only depends on the cardinality of X. For example, a kind of threshold similarity
can be modeled by letting, for a fixed k ∈ {1 . . . n}, η(X) = 1 if |X| ≥ n − k + 1
and η(X) = 0 otherwise. The similarity between two objects is then given by the
k-th highest among the similarity degrees, that is,

σ(a, a′) = h(π(n − k + 1)), (2.24)

expressing that the objects must resemble each other according to “at least k
out of n” criteria. The special case k = n yields the minimum operator as an
aggregation function:

σ : (a, a′) �→ min
1≤ı≤n

σı(aı, a
′
ı). (2.25)

As already mentioned above, an interesting aspect in connection with the Choquet
functional as an aggregation operator is its capability to take interdependecies
between different attributes into account. In fact, in many applications the global
similarity between two objects does not simply correspond to the (weighted) sum
of the local similarities. Suppose, for example, that the ı-th and the -th attribute
are complementary in a certain sense. In order to call two objects similar, it might
hence be required that both, aı is similar to a′

ı and a is similar to a′
. The minimum

in (2.25), for instance, might be seen as an adequate aggregation operator if all
attributes are complementary in this sense. The measure (2.24) combines this type
of complementarity of attributes with a compensation effect, since the similarity
with regard to one attribute can compensate for the dissimilarity with respect to
another one.
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The Choquet integral can be seen as a generalized (weighted) mean value oper-
ator.32 If similarity is measured on an ordinal scale, the Choquet integral can be
replaced by the Sugeno integral [362]. The latter defines a generalization of an
alternative location parameter, namely the median which can also be used within
a qualitative setting.

Again, let η be a normalized and monotone measure and denote by f(·) a mea-
surable Ω −→ R≥0 function. The Sugeno integral of f(·) with respect to η is
defined as follows: ∫ su

f dη
df
= sup

0≤α≤1
min{α, η([f > α])}. (2.26)

As can be seen, Sugeno’s integral is formally obtained by replacing addition
and multiplication in the classical Lebesgue integral by the supremum and infi-
mum, respectively. Applying (2.26) within our context yields the global similarity
measure

σ : (a, a′) �→ max
1≤ı≤n

min
{
hπ(ı), η({π(1), . . . , π(ı)})

}
. (2.27)

This section has only given a first idea of how to make use of generalized measures
and integrals in the context of similarity evaluation. Of course, there are questions
of practical importance which call for further investigation. In particular, this
concerns the definition (elicitation) of the measure η [179]. How should an expert
determine η to depict his view of similarity in an optimal way? Besides, it would
be interesting to solve the inverse problem: Given a set of examples in the form of
global similarity evaluations provided by some expert, induce (or approximate)
the measure η this expert has used in order to derive these evaluations. Likewise,
given a set of training examples, one might try to adapt the measure η so as to
maximize the performance of a CBI method, e.g., the predictive accuracy of an
NN classifier.

2.4 Case-based inference

In subsequent chapters, we shall propose several models of similarity-based (case-
based) inference which are based on explicit formalizations of the CBI hy-
pothesis. As already said, we concentrate on prediction as a performance task
[99, 100, 142, 265],33 which is in line with the idea underlying case-based learn-
ing algorithms [4], exemplar-based reasoning [220, 327], memory-based reasoning
[359], and instance-based learning [11].34 Thus, we consider the task of exploiting

32 It is used as such in non-additive expected utility.
33 Case-based prediction has already been applied to different domains, e.g., to real estate property

appraisal [176, 40] and the forecasting of power load [208] and retail sales [263].
34 These methods can be seen as non-generalization approaches to the concept learning problem ad-

dressed in machine learning (cf. Sections 2.1 and 2.2). They are generally concerned with a classifi-
cation task, i.e., the prediction of the class to which a case belongs.
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past experience represented by a memory of previously observed cases – against
background knowledge in the form of the CBI hypothesis – in order to predict or
characterize the output of a new (query) input. This is what we shall subsequently
understand by case-based inference (CBI).

In connection with case-based reasoning, CBI essentially concerns the Retrieve

(and Reuse) processes within the R
4 model of the CBR cycle [1]. In fact, CBI

does not cover the complete process of (case-based) problem solving, i.e., it will
generally not return the ultimate solution to a new problem. Rather, it is in-
tended to bring a promising set of solutions into focus. This way, CBI supports
subsequent stages of the overall problem solving process, in the sense that these
stages can then focus on the most promising candidates. These stages, which
roughly correspond to the Revise part of the R

4 model, are often not directly
“case-based” but make use of domain-specific knowledge, user input, or further
problem solving strategies. This can be exemplified by the combination of case-
based and generative planning: The plans which have been retrieved from the
memory and suggested by a case-based planner for solving a new problem are
used as a source of modification by a generative planning method [381]. A further
example is that of using similarity-based predictions in order to restrict search
spaces in heuristic search (cf. Chapter 8).

According to the point of view adopted above, case-based inference has important
aspects in common with statistical (prediction) methods and, more generally,
with approaches to machine learning. Namely, the main task is defined as one of
deriving predictions from observed data. Still, there are at least two aspects in
which case-based inference deviates from classical (model-based) approaches, as
will become clear in subsequent chapters. Both aspects have already been touched
on in Section 2.1. Firstly, CBI delays the processing of training examples until a
new query instance x0 is received, which qualifies it as a lazy learning method [6].
Secondly, CBI does not form an explicit hypothesis of the target function over
the entire instance space, as (model-based) eager methods do. Besides, let us also
mention that, as a CBR-related inference scheme, CBI is often concerned with
the prediction of complex outputs. In contrast, statistical inference and machine
learning are more focused on problems such as classification and regression, i.e.,
the prediction of categorical or numerical outputs.

� �Px y

Nevertheless, concerning the second point Section 2.1 has shown that even
instance-based approaches have to incorporate some kind of background

Fig. 2.2. A data generating process on a very abstract level.
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knowledge (in the form of a related hypothesis) into the process of generaliza-
tion. Let us elaborate on this aspect more closely by considering a data generating
process, P , on a very abstract level, as shown in Fig. 2.2. This process simply
transforms an input x ∈ X into an output y ∈ Y . The ensemble of all such
instances (x, y) (resp. their joint probability distribution) can be thought of as
defining the system under consideration. Now, given a certain input x0, the task
shall be to predict the associated output y0. To this end, model-based approaches
generally make some structural assumptions concerning the process P . Mathemat-
ically, such assumptions are represented by a (parameterized) set H of functions
h : X −→ Y , called the hypothesis space in machine learning [271]. Given a set
of data in the form of observed instances, one searches the space H for the hy-
pothesis h0 which – in a specific sense – fits or reproduces these observations best.
A prediction of the output y0 is then given by ŷ0 = h0(x0). As a simple example
consider a linear regression model

Y = h(X) = α1 · X1 + . . . + αn · Xn + ε. (2.28)

The main structural assumption about P made by this model is that of a linear
relationship between the output Y , the inputs X1, . . . , Xn (which constitute the
input vector X) and an error term ε. Thus, the hypothesis space H consists of
all functions of the form (2.28), where αk ∈ R (1 ≤ k ≤ n). In general, the
structure of P is characterized further by assumptions concerning the statistical
distribution of ε. Such assumptions have an essential impact on the definition
of criteria for selecting an optimal hypothesis.35 Assuming a certain statistical
distribution for ε, for instance, allows for the selection of a hypothesis according
to the Maximum Likelihood principle.

Typically, the hypotheses h ∈ H establish a direct relationship between properties
(attributes) of the instances (x, y) ∈ X×Y . The regression model (2.28) illustrates
this quite well: The value of a variable, e.g., the (monetary) income of a person,
is modeled as a function of several (explaining) properties of that person, such
as the age, sex, and education. The CBI hypothesis is obviously of a different
kind. In fact, it does not make assumptions about the properties of objects under
consideration, but about the similarity between such objects. The concept of
similarity is supplementary in the sense that it is generally not defined a-priori for
a certain system. Moreover, it can be seen as a derived property which is related to
tuples of instances. Thus, CBI makes structural assumptions about the process P
not directly at the system or instance level but at the, say, similarity level.36 Seen
from this perspective, the process of CBI should mainly take place in some kind
of similarity space instead of the instance space. Consequently, our formalization
of CBI will proceed from this level.

35 Besides, (2.28) would actually be meaningless without such assumptions since ε could simply be
defined (as a function of x and y) such that (2.28) holds.

36 The possibility of utilizing derived properties can be of great advantage not only in connection with
CBI. Feature generation methods in machine learning, for example, can improve the classification
power significantly.
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Let us illustrate the different nature of hypotheses concerning the instance level
and the similarity level by means of a simple example. To this end, consider some
(unknown) function f : [0, 1] −→ [0, 1] and suppose the similarity of two numbers
0 ≤ x, y ≤ 1 to be defined as 1 − |x − y|. A hypothesis at the instance level,
like a linear relationship, refers to f(·) directly. As opposed to this, a similarity
hypothesis concerns the variation of f(·), e.g., properties of its derivative. We
might assume, for instance, that the similarity of two outcomes, f(x) and f(x′),
is always greater or equal to the similarity of the respective inputs, x and x′.
Mathematically, this is nothing else than saying that f(·) is Lipschitz-continuous
(with Lipschitz-constant 1).

It should be clear that the expressiveness of a similarity hypothesis strongly de-
pends on the definition of the underlying similarity measures. Consider again
some (unknown) function f : X −→ Y as an example, where X and Y are en-
dowed with a metric ∆, and let the similarity of inputs, σ, be related to ∆. If ∆
is the discrete metric, the similarity of two inputs x and x′ is given by

σ(x, x′) =

{
1 if x = x′

0 if x "= x′ .

It will then hardly be possible to express a meaningful hypothesis in terms of
similarities. Fortunately, similarity measures will often be much more “discrimi-
nating” than in this extreme example (cf. Section 3.3). Exploiting the similarity
structure of a system will then lead to an overall gain of information.

Needless to say, the usefulness of different types of (inductive) inference strongly
depends on the application at hand. The success of model-based approaches
generally requires a relatively simple target function over the instance space.37

Similarity-based methods might hence be more appropriate if this assumption is
not satisfied. Consider a time series like a simple random walk as an example.
The function which maps time points t to system states x(t) does not have any
simple global structure.38 Still, it satisfies the CBI assumption in the sense that
the distance between states associated with neighbored time points is generally
small (cf. Section 3.5).39 This example also shows that the CBI hypothesis can
well be satisfied even though the target function has a rather complex global
structure.

Of course, similarity-based inference and model-based reasoning do not exclude
each other. That is, exploiting the similarity structure does not prevent us from
applying reasoning procedures at the instance level as well. On the contrary,
the combination of rule-based reasoning (at the instance level) and case-based

37 Approximation methods based on neural networks can handle rather complex functions and might
hence be seen as an exception. In fact, these (black box) methods do not require the specification of
a (simple) hypothesis. Nevertheless, good results will only be obtained with an appropriate network
structure. Thus, some background knowledge is still necessary.

38 Even most model-based approaches do not try to infer the global structure of stochastic processes
directly, but rather use models in order to explain the changes of system states.

39 See [276] for the application of CBR in the context of time series prediction.
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reasoning, briefly touched on in Section 2.2.3, shows that it can be reasonable
to combine corresponding approaches or the respective inference results. In fact,
what we shall realize in subsequent chapters can be seen as a combination of
similarity-based reasoning and constraint-based, probabilistic or fuzzy set-based
inference.

After having outlined the basic ideas underlying CBI in a rather informal way, we
are now going to introduce the formal framework from which we shall proceed in
subsequent chapters. Within this framework, a distinction between deterministic
and non-deterministic (prediction) problems is made.

2.4.1 Deterministic inference problems

In subsequent chapters, we shall adopt parts of the basic CBR terminology. In
particular, an observation, sample or training example will often be called a case
or an instance. This is somewhat more general than certain specialized terms
such as pattern (which is used in pattern recognition and, hence, refers to a
concrete application). Nevertheless, apart from the context all these expressions
do basically have the same meaning and can be considered as synonyms. A case
is defined as a tuple consisting of an input and an associated output or outcome,
usually denoted by s and r, respectively. Again, we prefer these slightly more
general expressions to the terms “problem” and “solution” which are commonly
used in CBR since we do not focus on problem solving as a performance task.

Definition 2.3 (deterministic CBI setup). A deterministic CBI setup is de-
fined as a 6-tuple

Σ =
〈
(S, µS),R, ϕ, σS , σR,M

〉
,

where S is a countable set of inputs endowed with a probability measure µS
(defined on 2S), R is a set of outputs, and ϕ : S −→ R assigns outputs to inputs.
The functions σS : S × S −→ [0, 1] and σR : R × R −→ [0, 1] define similarity
measures on the set of inputs and the set of outputs, respectively. M is a finite
memory

M =
(
〈s1, r1〉, 〈s2, r2〉, . . . , 〈sn, rn〉

)
(2.29)

of cases c = 〈s, ϕ(s)〉 ∈ S ×R.40 We denote by M↓ the projection of the memory
M to S, i.e., M↓ = (s1, . . . , sn). Moreover,

DS
df
=
{
σS(s, s′) | s, s′ ∈ S

}
DR

df
=
{
σR(ϕ(s), ϕ(s′)) | s, s′ ∈ S

}
define, respectively, the set of similarity degrees of inputs and outputs that can
actually be attained.41 �
40 We shall use the term “CBI setup” also without having defined a fixed memory, in which case it

actually refers to the 5-tuple 〈(S, µS),R, ϕ, σS , σR〉.
41 Note that card(S) ≤ ℵ0 implies the same to be true for the sets R, DS , DR.
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A few remarks on Definition 2.3 are in order. The probability measure µS models
the occurrence of inputs. Thus, we assume the inputs resp. the associated cases
which constitute the memory M to be chosen repeatedly and independently ac-
cording to µS . This assumption of independent and identically distributed (i.i.d)
observations is standard in statistics and machine learning. It is less restrictive
than it might appear and should, therefore, not be overrated. Subsequent chap-
ters will show that it is not necessary to make explicit assumptions about µS in
connection with similarity-based inference schemes.

In accordance with the above assumptions, we shall treat a memory M and
its projection M↓ not as a set but as a sequence of not necessarily different
cases (inputs). Still, we retain the standard notations for operations on sets. The
meaning of these operations in the new context will generally be obvious. For
example, (s1, . . . , sn) ∪ (s′1, . . . , s

′
m) defines the list (s1, . . . , sn, s′1, . . . , s

′
m) of (not

necessarily different) inputs.

We do not make special assumptions on the characterization of inputs or outputs.
Utilizing an attribute–value representation is common practice in CBR, or AI in
general (cf. Section 2.3). That is, inputs as well as outputs are marked as vectors
of (not necessarily numeric) attribute values. Yet, other types of representation,
for example graphs, are also possible, as long as they allow for a meaningful (and
efficient) computation of similarity measures. These measures are assumed to be
reflexive, symmetric and normalized in the sense that degrees of similarity are
elements of the unit interval [0, 1], where a value of 1 (0) corresponds to perfect
(dis)similarity.

The assumption that an input s ∈ S determines the associated outcome r =
ϕ(s) ∈ R (which is the reason for calling a corresponding CBI setup determinis-
tic) does not imply that the latter is known as soon as the input is characterized.
For example, let inputs correspond to instances of a class of combinatorial opti-
mization problems. Moreover, define the output associated with an input as the
set of all optimal solutions of the associated problem. Deriving these solutions
from the description of the problem might involve a computationally complex
process. Moreover, one might think of examples where the mapping ϕ is not even
computable. In this connection, similarity-based inference serves as a method
which supports the overall process of problem solving by predicting the output
associated with a certain input. To this end, CBI performs according to the
CBI principle: It exploits experience represented by precedent cases, to which it
“applies” background knowledge in the form of the heuristic CBI hypothesis.

Definition 2.4 (CBI problem). A CBI problem is a tuple 〈Σ, s0〉 consisting
of a CBI setup Σ and a new input s0 ∈ S. The task is to predict the output r0 =
ϕ(s0) associated with s0. To this end, the information provided by Σ (essentially
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the similarity measures and the observed cases) is to be exploited against the
background of the CBI hypothesis.42 �

According to Definition 2.4, the heuristic assumption underlying case-based rea-
soning and, related to this, the use of similarity as a major concept can be seen as
the characteristic properties of CBI. In fact, this is what makes a CBI problem
a special type of prediction problem. In this connection, let us mention that dif-
ferent kinds of knowledge can be distinguished in case-based problem solving:43

The CBI hypothesis itself can be seen as a kind of (heuristic) meta-knowledge,
whereas the similarity measures σS , σR often encode domain-specific knowledge.
The memory of cases, M, corresponds to the experience and represents empirical
knowledge. Needless to say, a clear separation is generally not possible, especially
since the above types of knowledge strongly influence each other.

Let us now introduce an illustrative example from the field of combinatorial
optimization to which we shall return occasionally in subsequent sections.

Example 2.5. A repetitive combinatorial optimization problem (RCOP) is iden-
tified by a class of combinatorial optimization problems, the instances of which
appear in only slightly different form. This kind of problem is particularly inter-
esting from a case-based reasoning perspective [238, 239]. As an example of an
RCOP let us consider a class of integer linear programs (ILPs)

A × x ≥ y, x × c −→ min,

where A and c are fixed and only the right-hand side y varies. We define two
concrete problems by means of

A1 =




1 1 0 0 0
0 2 −1 0 0
0 0 2 0 1
0 0 0 1 −1
0 0 0 0 3


 , c1 =




3
2
4
1
4


 ,

A2 =




1 3 0 −1 0
0 2 −1 0 0
0 −1 2 0 1
0 0 0 1 −1
1 0 0 0 3


 , c2 =




2
1
3
1
6


 .

In order to obtain corresponding CBI setups Σ1 and Σ2, we further formalize
these examples as follows:

42 Again, it should be noted that the mapping ϕ is not known, even though formally it is part of the
CBI setup.

43 The idea of knowledge containers [313] provides a useful concept for the representation and organi-
zation of different types of knowledge in CBR systems.
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S = {s = (y1, . . . , y5) | 0 ≤ y1, . . . , y5 ≤ 6},
R = N0,

σS(s, s′) = exp

(
−0.1

5∑
k=1

|yk − y′
k|
)

, (2.30)

σR(r, r′) = exp (−0.1 |r − r′|) ,

ϕ(s) = min {x × c |x ∈ N0, A × x ≥ s}.

That is, inputs correspond to the right-hand sides y, the entries of which are non-
negative integers not larger than six. We suppose the set of inputs to be endowed
with the uniform probability measure, i.e., the probability of each vector s ∈ S is
7−5. The output associated with an input is the cost x∗ × c of the corresponding
optimal solution x∗.

Finally, we define two further CBI setups Σ∗
1 and Σ∗

2 by modifying ϕ, R and
σR in (2.30) as follows: ϕ(s) corresponds to the optimal solution x∗ itself (rather
than its cost), R is the set of all such solutions, and σR is the same function as
σS in (2.30). �

2.4.2 Non-deterministic inference problems

A non-deterministic CBI setup is defined in the same way as a deterministic
one except that outputs are not assumed to be uniquely determined by inputs.
Instead, an output ϕ(s) is considered as a random variable. There are different
motivations for modeling problems within such a non-deterministic setting. The
first and most obvious one is the idea that the process which determines the
output associated with a certain input is indeed subject to random influences.
For example, suppose that an input is characterized by a tuple (b, w), the numbers
of black and white balls in an urn and let the outcome correspond to the number
of black balls in a random sample of a certain size. More generally, if observations
are chosen at random according to a joint probability measure µ over the input-
output space S ×R, as typically assumed in statistics and machine learning, the
output ϕ(s) associated with a fixed input s ∈ S corresponds to the conditional
measure µ(· | s).
The second motivation, which seems to be of considerable practical relevance, is
related to the completeness, precision, and granularity of information. It leads us
to the idea of problems which are apparently non-deterministic in the sense that
the outcome is principally determined by the input, but where the characteriza-
tion of the input is incomplete, imprecise, ambiguous, or not detailed enough. A
random outcome associated with an input s is then used for characterizing the
(subjective) uncertainty concerning the true but unknown output r = ϕ(s).
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As an example of incompleteness consider the description of an input which con-
tains missing attribute values.44 Sensor information of a mobile robot, which does
not allow one to determine the position unequivocally, is an example of ambiguity.
The following situation is particularly relevant in connection with (deterministic)
search algorithms as a problem solving method: Suppose that an input corre-
sponds to the state of some state space. The result (e.g., whether a solution will
be found or not) of applying a certain search operator in a certain situation may
then also depend on past as well as future decisions. In other words, the result of a
single search decision is uniquely determined for a deterministic (even if heuristic)
search algorithm, but it is not known at the time of decision making.

A third motivation for modeling CBI problems within a non-deterministic setting
is the assumption that observations might be imprecise. In this case, it is actually
true that an input s ∈ S determines the outcome r = ϕ(s). Yet, the latter cannot
be observed exactly. Again, this kind of uncertainty, which occurs frequently in
connection with experimental data, can be modeled by means of a probability
measure over R.

Non-determinism should not generally be seen as a drawback. Even if it might
be avoided, the gain of information provided by a deterministic setting will often
not compensate for the expense of a more precise or detailed characterization of
inputs. On the contrary, it may sometimes be advantageous to accept a slight
increase in uncertainty in order to reduce complexity.45

There are different possibilities of approaching non-deterministic CBI problems.
In fact, the way in which such problems are treated depends on the interpretation
of the CBI hypothesis within the generalized setting. Let us first consider a
hypothesis corresponding to the one in the deterministic setting. That is, it draws
conclusions about the similarity of outputs, given the similarity of inputs. As
before, a case is defined as a tuple 〈s, x〉 ∈ S × R consisting of an input and
an output, where x is a realization of the random variable X associated with
s. Observe, however, that the memory M may now contain cases 〈s, x〉 and
〈s, x′〉 such that x "= x′, which is not possible within the deterministic setting.
Indeed, x and x′ may be rather different even though the input is the same.
This becomes obvious if X follows a uniform distribution over a (large) set R of
outputs. Since realizations are obtained by means of independent experiments,
it may be very unlikely to obtain similar outputs for similar (or even identical)
inputs. Consequently, the original interpretation of the CBI hypothesis seems
rather questionable within the non-deterministic setting.

44 For certain types of problems, missing attribute values can actually not be avoided. In game playing,
for example, where the problem is to make an optimal move, the policy of the opponent can be seen
as a “missing attribute.”

45 This point of view seems to be more and more accepted in scientific practice and is in accordance with
a general change in the attitude toward uncertainty, which is now regarded as a useful concept [352].
The connection between uncertainty and complexity in the modeling of systems is an important
subject of current research in systems science [228, 231].
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In fact, it seems more reasonable to interpret the CBI hypothesis in such a way
that “similar inputs are characterized by similar random outcomes (i.e., probabil-
ity distributions on R).” A case is then defined as a tuple 〈s, µ〉 ∈ S×P(R), with
P(R) being the class of probability measures over R. Since the outcome associ-
ated with an input s is now a random variable X characterized by the measure
µ, it is again deterministic. In other words, we might treat the non-deterministic
problem as a special case of the deterministic one by simply defining the set R
of outputs as a class of probability measures (endowed with a related similarity
measure) over the set of original outcomes. The other way round, the determinis-
tic setting emerges as a special case of a non-deterministic setting by restricting
the class of probability measures to the Dirac measures and identifying the latter
with corresponding outputs. Thus, we could restrict ourselves to the deterministic
setting and generally think of R as a class of probability measures. For reasons of
clarity and notational convenience, however, we will continue to distinguish the
two settings.

Definition 2.6 (non-deterministic CBI setup). A non-deterministic setup is
defined as a 6-tuple

Σ =
〈
(S, µS),R, ϕ, σS , σP ,M

〉
,

where the set S of inputs and the set R of outputs are countable. The mapping
ϕ : S −→ P(R) assigns a probability measure µ ∈ P(R) to each input s ∈ S.
This measure defines the (conditional) probability of outcomes given s. Moreover,
σP : P(R) × P(R) −→ [0, 1] defines a similarity measure over P(R). �

It deserves mentioning that the definition of a similarity measure over P(R) is far
from being obvious. It might appear reasonable, for instance, to define similarity
in terms of the distance of distribution functions,46 e.g.,

σP(µ, µ′)
df
= 1 − sup

r∈R
|µ(r) − µ′(r)|.

This, however, implies σP(µ, µ′) = 0 if µ and µ′ are Dirac measures associated
with different outcomes, even if these outcomes are very similar. This example
might suggest to define the similarity of two measures as the expected similarity
E(σR(X1, X2)), where σR is a similarity measure over R. The (independent) ran-
dom variables X1 and X2 are distributed according to µ1 and µ2, respectively. In
this case, however, we will generally have σP(µ, µ) � 1, which is again a rather
questionable property (and contrasts the assumption of reflexivity). In fact, there
does not seem to exist an approach that will always lead to reasonable results.
Rather, the adequacy of a similarity over P(R) will depend on the respective
application. Often, it will make sense to compare certain characteristic properties
of probability distributions. If, for instance, an output r signifies a corresponding

46 Various proposals of distance measures, such as the Kullback-Leibler divergence, have been made in
the relevant literature which is often referred to as information geometry.
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monetary gain and if the expected gain is considered as the most important aspect
of an input, it seems reasonable to let σP(µ1, µ2) = 1 − f(|E(X1) − E(X2)|) for
some non-decreasing function f(·).
In connection with the first two types of non-determinism the observations related
to an input s ∈ S will often not be given in the form of complete measures µ.
Rather, such observations appear as (precise) outcomes r ∈ R, which correspond
to realizations of the random variable associated with s. This raises the question
of how to “collect” cases in the form of input–probability measure tuples in order
to construct a memory M. One possibility, for instance, is to replace cases by
“estimated cases” 〈s, µ̂〉, where µ̂ is an estimation of the measure µ derived from
observations by means of statistical methods (cf. Section 3.2.2). Such aspects
become relevant in connection with the idea of case-based learning.

Of course, the aforementioned problem (of collecting observations) does not arise
in connection with the third type of uncertainty, i.e., the modeling of imprecise
observations. A question related to this model, however, concerns the uniqueness
of the measure µ associated with an input s ∈ S. Two identical experiments, for
instance, might lead to different (imprecise) observations. If we assume this to be
caused by random influences, we principally obtain a combination of the first and
the third source of non-deterministic outputs. Thus, outcomes should be mod-
eled as probabilities over probability measures, i.e., as higher-order probabilities.
Of course, we might also suspect that only the two experimental setups (which
correspond to inputs) have not been specified precisely enough, which leads to a
combination of the second and the third source of non-determinism.47

The above examples of imprecision or ambiguity might suggest that not each type
of incomplete information is naturally modeled in a probabilistic way. Imprecise
observations in experiemental studies, for instance, could as well be considered
as “vague data” in the framework of fuzzy sets. Similar remarks also apply to
the probabilistic model characterizing the occurrence of inputs. Thus, it seems
reasonable to generalize Definition 2.6 correspondingly.

Definition 2.7 (generalized non-deterministic CBI setup). Let F(X) de-
note the class of normalized uncertainty measures over a (countable) set X, i.e.,
measures η : 2X −→ [0, 1] such that η(∅) = 0, η(X) = 1, and η(A) ≤ η(B) for all
A ⊆ B ⊆ X. A generalized non-deterministic CBI setup is defined as a 6-tuple

Σ =
〈
(S, ηS),R, ϕ, σS , σF ,M

〉
,

where the set S of inputs and the set R of outputs are countable. The information
about (the occurence/existence/plausibility of) inputs is characterized by the
measure ηS ∈ F(S). Moreover, ϕ : S −→ F(R) assigns a normalized uncertainty
measure η ∈ F(R) to each input s ∈ S. The function σF : F(R)×F(R) −→ [0, 1]
defines a similarity measure over F(R). �
47 Needless to say, the distinction between the first two types of non-determinism is often far from

being obvious. This distinction does even give rise to fundamental philosophical questions of (non-)
determinism.
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Remark 2.8. An obvious generalization of a functional relationship ϕ : S −→ R
is a relation ϕ′ ⊂ S × R. Given an input s, the set of possible outcomes is then
given by As = {r ∈ R | (s, r) ∈ ϕ′}. That is, an input s does not identify a
unique output but only a subset of R. This case corresponds to a special type
of generalized non-deterministic setup, where the measure ηs = ϕ(s) is a {0, 1}-
valued possibility measure [116]: ηs(A) = 1 ⇔ A ∩ As "= ∅. Likewise, ηS is a
{0, 1}-valued measure such that ηS(S) = 1 ⇔ ∃ s ∈ S : As "= ∅. This kind of
setting will be explored in Chapters 5 and 6. �

2.4.3 Formal models of case-based inference

Our comments in previous sections and in Chapter 1 suggest to distinguish be-
tween a strong version of the CBI hypothesis, which concludes from the similarity
of inputs on the similarity of outputs in a deterministic way, and a weak version,
which only concludes on the likelihood of outcomes to be similar. As will be
seen in subsequent chapters, these interpretations give rise to different types of
predictions. Particularly, outcomes will be considered as being either completely
possible or completely impossible according to the strong version, which is gener-
ally not the case for the weak interpretation.48 According to the kind of prediction
it seems reasonable to distinguish the following types of CBI models:

– A point-estimation (such as the predicted class label in IBL) of the unknown
outcome ϕ(s0) is derived.

– A set-valued prediction which does not further differentiate between possible
candidates is derived. The predicted set will generally be assumed to cover the
true outcome, at least with a certain degree of probability.

– The prediction of ϕ(s0) includes a valuation of possible outcomes, e.g., a ranking
of the outputs or degrees of likelihood associated with individual outcomes. Such
a valuation will generally be realized by means of an uncertainty measure over
the set of outputs, for example a probability or possibility measure.

To summarize, in connection with the CBI problem we distinguish the way an
output is produced, whereas the CBI model refers to the way (a prediction of) this
output is characterized. When combining the two types of problems discussed in
Sections 2.4.1 and 2.4.2, respectively, with the three types of models suggested
above, we obtain the types of case-based inference shown in Fig. 2.3.

As can be seen, the most involved situation arises when characterizing the out-
come of a non-deterministic problem by means of an uncertainty measure. In fact,
this requires uncertainty concepts of higher order, such as higher-order probabil-
ities.

48 The terms deterministic and non-deterministic case-based reasoning as used in [99] refer to these
properties. It should be noted that the same terms have been introduced with a different meaning
in Section 2.4.1 and Section 2.4.2.
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prediction in the form of
problem outcome set measure

deterministic r̂0 ∈ R C ⊆ R η ∈ F(R)

non-deterministic µ̂0 ∈ P(R) C ⊆ P(R) η ∈ F(P(R))

Fig. 2.3. Possible types of case-based inference.

2.5 Summary and remarks

Summary

– Some background information on similarity-based reasoning resp. case-based
reasoning (in the broad sense) has been provided, including a brief outline of
the most important methods (NN estimation, IBL, CBR) as well as a discus-
sion concerning the formalization of the similarity concept. Since case-based
reasoning is strongly related to instance-based learning, some differences be-
tween model-based and instance-based approaches have been pointed out.

– A new approach to similarity evaluation has been outlined in Section 2.3.3.
This method makes use of the Choquet integral resp. the Sugeno integral as
an aggregation operator. Thus, a global degree of similarity between a pair
of objects is derived from (local) similarities of these objects with respect to
individual attributes. A main advantage of the two aggregation operators is
their ability to take interdependencies between different attributes into account.

– The difference between reasoning at the system (instance) level and reasoning
at the similarity level has been emphasized in connection with a comparison be-
tween CBI and model-based induction. This distinction will be further explored
in subsequent chapters.

– We have introduced a formal and rather general framework in which the task
of case-based inference has been defined as one of predicting the outcome r0

associated with a new input s0. The characteristic property which distinguishes
CBI from other prediction methods is the heuristic assumption underlying
case-based reasoning and, related to this, the use of similarity as an essential
component of the inference process.

– We have distinguished between deterministic CBI problems, in which an in-
put determines the associated output in a unique way, and non-deterministic
problems, in which the outcome is considered as a random variable.

– Finally, an overview of possible approaches to case-based inference has been
given. More precisely, we have distinguished models of CBI according to two
dimensions, namely the type of problem (deterministic or non-deterministic)
and the type of prediction (point-estimation, subset of possible outcomes, un-
certainty measure over the set of outcomes).
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Remarks

– It has already been said that the assumption of independent and identically dis-
tributed (i.i.d) data is typical of statistics and machine learning, even though
a weakening of this assumption is an important (and of course practically rel-
evant) objective of current research. In fact, the assumption that past obser-
vations are to some extent representative of (and hence relevant to) the future
seems to be a minimal prerequisite of inductive inference and, hence, a ba-
sic requirement of any type of prediction. From this point of view, statistical
reasoning lies somewhere in-between induction and deduction. Indeed, statis-
tical inference generally combines an inductive step, namely the estimation of
a (probabilistic) model from observed data, with a deductive step, namely the
derivation of (probabilistic) statements from that model.

– In CBR, it is common to speak of the similarity between a case (in the mem-
ory) and the target problem. This generally means the similarity between the
problem (input) associated with that case and the target problem (query input),
of course. Alternatively, one often speaks of the similarity between a stored case
and the new case. Again, what is actually meant is the similarity between the
respective problems.

– CBR systems have been granted several advantages, especially in compari-
son with model-based and rule-based systems. Notably, CBR can simplify the
knowledge acquisition task to a certain degree. In fact, knowledge acquisition
is basically realized by collecting relevant experiences (cases) which is clearly
less difficult than extracting a model or a set of rules. Moreover, CBR systems
dispose of a graceful degradation of performance, i.e., they are often able to
cope with ill-defined or incompletely specified problems. Finally, they improve
incrementally over time in a quite natural way, namely by adding experiences
in the form of successfully solved cases.

– In CBR, one usually distinguishes between two phases of case retrieval, namely
an initial matching process in which a set of plausible candidates is retrieved,
and a subsequent process in which a best case among these candidates is se-
lected. Case-based inference, as outlined in this chapter, can obviously be seen
as a method that supports the initial matching process.

– In some CBR systems the concept of similarity is actually not as important
as our previous comments might suggest. Eventually, the problem is that of
retrieving a useful or relevant case from the memory, and similarity might be
seen as only one among several aids (indicators) which can guide the search for
such cases. In fact, case retrieval can be realized by means of alternative tech-
niques as well, such as inductive or knowledge-guided indexing and structuring
of cases. Again, it is of course possible to consider the retrieved case as the
one which is most similar by definition. Needless to say, however, this might
contrast the intuitive idea of similarity (cf. Section 2.3).
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Moreover, a similarity measure is often defined for the set of inputs (problems)
but not for the set of outputs (solutions). In fact, such a measure is actually
superfluous if one completely concentrates on one solution, namely the solution
associated with the most similar input. As will be seen in later chapters, how-
ever, a similarity measure over the set of outcomes is an essential prerequisite
of modeling the CBI hypothesis, and for taking the aspect of uncertainty of
predictions into account. In this connection, it should be mentioned that in
practice, a reasonable similarity measure over the set of outputs is often less
difficult to define than a measure over the set of inputs.

– The framework of CBI proposed in this chapter is very generic. This is mainly
due to the flexibility in defining the concept of a case. The non-deterministic
setting even allows for taking uncertain or incomplete information concerning
the description of cases into account. Besides, the performance task of predic-
tion is of a rather general nature. As special cases it includes the prediction
of numeric and symbolic values as well as several task types considered in the
literature on expert systems [302]. According to [142], the fact that an output
is a function of a set of observable attributes (the input) is the main charac-
teristic of prediction. This may be contrasted with the task type of recognition
which assumes a functional relation in the reverse direction, i.e., it assumes the
observable attributes to be determined by the output.

Nevertheless, let us mention that more complex and perhaps less structured
domains might call for further generalizations. See [59] for a view of case-based
reasoning as case completion which even gives up the distinction between a
problem and a solution in connection with the representation of a case.

– Replacing a mapping from inputs to outputs by a (more general) functional
relation ϕ : S −→ P(R), as we have done in Definition 2.6, does more or less
invalidate the aforementioned distinction between the task types of prediction
and recognition. Namely, a functional relation ϕ−1 : R −→ P(S) in the reverse
direction – but of the same structure – can be obtained via

µS|(R=r)(s) =
µR|(S=s)(r) · µS(s)

µR(r)
, (2.31)

where µR = ϕ(µS) and µR|(S=s) = ϕ(s). Of course, this makes CBI applicable to
a wider range of problems. A näıve Bayesian classifier may serve as an example.
It assumes an unobservable variable Class (the input) to determine the prob-
ability distributions of a set of (independent) observable attributes A1, . . . , An

(the output). The task is to predict the value of Class, given the values of the
attributes. More generally, consider parametric methods in the context of sta-
tistical inference. In connection with the problem of parameter estimation, for
instance, the observed data (the output) is determined by the parameter vector,
which corresponds to the input and cannot be observed. However, according to
(2.31) we may also exchange the role of the data and the parameter vector.
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Thus, we simply consider the data as the input and the parameter vector as
the (uncertain) output.49

– Despite the differences between (model-based) statistical and case-based in-
ference discussed in Section 2.4, it should be mentioned that the concept of
similarity plays an important, even though less emphasized, role in (classical)
statistical techniques as well. Here are some examples:

– Kernel smoothing techniques such as the kernel-based estimation of probabil-
ity density functions rely on a closeness assumption which is quite comparable
to that of instance-based and case-based reasoning methods.

– Multidimensional (classical or ordinal) scaling takes (dis)similarities between
individuals as a point of departure and tries to derive a (vector-valued) de-
scription of individuals which is compatible with this information, i.e., which
preserves the distance between all pairs of individuals.

– Cluster analysis and mixture decomposition are techniques used for identifying
concentrations or groups of individuals in a space. A group is called a cluster
and should combine individuals which are similar in a certain sense. Thus,
similarity (or distance) is used as a basic concept for decomposing the sample
data. Besides, a preliminary grouping is often the first step of a data analysis.
The construction of a histogram, for instance, involves a decomposition of the
data into equivalence classes, a special type of similarity relation.

– The idea of similarity is also somewhat present in robust statistics. The latter
term refers to inference procedures which perform (more or less) well even
if not all assumptions are completely satisfied, i.e., which are robust to de-
partures from these assumptions. One might be interested, for example, in
an inference procedure which yields good estimations of a parameter even
if the form of the underlying true distribution does slightly deviate from the
assumed form of the distribution. Loosely speaking, we wish to obtain similar
estimations for similar types of distributions.

– Parameterized statistical models can often be interpreted as encoding the CBI

hypothesis in an implicit way. This is simply due to the fact that most para-
metric models are defined in terms of continuous functions (i.e., the hypothe-
sis space consists of continuous functions). According to the linear regression
model (2.28), for instance, the outcomes of similar (i.e., close with respect to
the Euclidean metric) inputs have similar (expected) values resp. probabil-
ity distributions. The smaller (in absolute size) the parameters αk are, the
stronger this property is developed. The assumption of a smooth variation
of outcomes becomes even more obvious in connection with generalized re-
gression techniques, such as kernel regression and regression based on spline

49 The inversion of causes (parameters of probabilistic data generating processes) and effects (observed
data) lies at the heart of the Bayesian paradigm [28] and does also provide the basis of other
approaches to statistical analysis, notably the fiducial approach of Fisher [147]. In fact, (2.31) does
formally correspond to Bayes’s Theorem, the first inversion of probabilities and a major conceptual
step in the history of statistics.
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functions [391]. In fact, since these models are very flexible and allow the
relationship between the input and the output to vary over time, only the
smoothness of this relation remains as a major assumption.

– A kernel function, one of the key concepts in modern kernel-based learning
methods [335, 339], can often be interpreted as a kind of similarity function.
In this research field, a kernel function is formally defined as finitely positive
semi-definite function κ : S × S −→ R.



3. Constraint-Based Modeling of Case-Based

Inference

In this chapter, we adopt a constraint-based view of the CBI hypothesis, accord-
ing to which the similarity of inputs imposes a constraint on the similarity of
associated outcomes in the form of a lower bound. A related inference mechanism
then allows for realizing CBI as a kind of constraint propagation. We also discuss
representational issues and algorithms for putting the idea of learning within this
framework into action. The chapter is organized as follows: Section 3.1 introduces
the aforementioned formalization of the CBI hypothesis. A case-based inference
scheme which emerges quite naturally from this formalization is proposed in Sec-
tion 3.2 and further developed in Section 3.3. Case-based learning is discussed
in Section 3.4. In Section 3.5, some applications of case-based inference in the
context of statistics are outlined. The chapter concludes with a brief summary
and some complementary remarks in Section 3.6.

3.1 Basic concepts

3.1.1 Similarity profiles and hypotheses

Proceeding from the framework introduced in Section 2.4, the system under con-
sideration can be thought of as the triple (S,R, ϕ).1 The (unknown) functional
relation ϕ completely determines the structure of this system at the instance
level, whereas a memory of observed cases provides only partial information. In
connection with CBI, we are interested in utilizing the additional information
provided by a CBI setup Σ for deriving a corresponding characterization of the
system at the similarity level. This additional information is mainly contained in
the similarity measures.

Definition 3.1 (similarity profile). Consider a CBI setup Σ. The function
hΣ : DS −→ [0, 1] defined by

hΣ(x)
df
= inf

s,s′∈S, σS(s,s′)=x
σR(ϕ(s), ϕ(s′))

is called the similarity profile of Σ. �
1 This is in agreement with general systems theory, where an abstract system is defined as a relation

on a set [228]. It should also be mentioned that this mathematical structure, even though formally
very simple, is general enough for modeling any kind of “real” system.

59
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The similarity profile hΣ is the “fingerprint” of the system (S,R, ϕ) at the simi-
larity level and (partly) defines the similarity structure of the setup Σ. Just like
ϕ determines dependencies at the instance level, hΣ depicts relations between de-
grees of similarity: Given the similarity of two inputs, it provides a lower bound
to the similarity of the respective outcomes. It hence conveys a precise idea of the
extent to which the application at hand actually meets the CBI hypothesis, i.e, it
can be interpreted as a (multi-dimensional) quantification of the degree to which
the CBI hypothesis holds true.2 In fact, the stronger the similarity structure of
(S,R, ϕ) is developed, the more constraining the similarity profile will be. Note
that the domain and the codomain of hΣ are one-dimensional, whereas S and R
are generally of higher dimension. Thus, a similarity profile represents knowledge
about the system structure ϕ in a condensed form. (We will return to the relation
between hΣ and ϕ in Section 3.2.)

Needless to say, the similarity profile of a CBI setup will generally be unknown.
This leads us to introduce the related concept of a similarity hypothesis.

Definition 3.2 (similarity hypothesis). A similarity hypothesis is identified
by a function h : [0, 1] −→ [0, 1] (and similarity measures σS , σR).3 The intended
meaning of the hypothesis h (or, more precisely, the hypothesis (h, σS , σR)) is the
assumption that

∀ s, s′ ∈ S : (σS(s, s′) = x) ⇒ (σR(ϕ(s), ϕ(s′)) ≥ h(x)) . (3.1)

A hypothesis h is called stronger than a hypothesis h′ if h′ ≤ h and h "≤ h′. Let Σ
be a CBI setup with similarity profile hΣ. We say that Σ satisfies the hypothesis
h, or that h is admissible, if h(x) ≤ hΣ(x) for all x ∈ DS . �

A similarity hypothesis h is thought of as an approximation of a similarity profile
hΣ. It thus defines a formal model of the CBI hypothesis for the application at
hand, as represented by the setup Σ. In Section 2.4, it has already been mentioned
that different types of hypotheses might be of different expressive power. This re-
mark becomes more obvious now. Since a similarity profile hΣ is a condensed rep-
resentation of ϕ, a similarity hypothesis h will generally be less constraining than
a hypothesis which is directly related to ϕ, that is, an approximation ϕ̂ : S −→ R
of ϕ. Yet, a similarity profile has a relatively simple structure which facilitates
the formulation, derivation, or adaptation of hypotheses (cf. Section 3.4).

A similarity hypothesis can originate from different sources. Firstly, it might ex-
press a purely heuristic quantification of the CBI assumption. In this case, it is
often expressed as “the more similar two inputs are, the more similar the corre-
sponding outputs are.” The concept of a similarity profile, as introduced above,

2 There are obvious ways of deriving a one-dimensional quantification, for example a (weighted) mean
of the values {hΣ(x) |x ∈ DS}.

3 Note that is would be sufficient to define a hypothesis on DS . Quite often, however, it will indeed
appear more convenient to let dom(h) = [0, 1], especially if |DS | is large. Otherwise, dom(h) = [0, 1]
can still be assumed without loss of generality, simply by letting h(x) = 1 for all x 	∈ DS .
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reveals that this kind of formulation implicitly makes a stronger assumption than
the simple “similar inputs imply similar outputs” hypothesis. Namely, it sug-
gests the function hΣ associated with a setup Σ to be increasing, or at least
non-decreasing. More precisely, this formulation may be understood as “the more
similar two inputs are, the larger is the lower similarity bound of the associated
outcomes.” Therefore, we call h a strict hypothesis if it is a non-decreasing func-
tion. Moreover, we say that a setup Σ satisfies the CBI hypothesis in the strict
sense if hΣ is non-decreasing.

Secondly, it is a natural idea to consider the acquisition of hypotheses as a problem
of (empirical) learning, i.e., to learn hypotheses from observed (pairs of) cases.
This way, CBI combines instance-based learning, which essentially corresponds to
the collection of cases, and model-based learning, namely the learning of similarity
hypotheses. The assumption that the CBI hypothesis applies in a strict sense
serves an (additional) inductive bias in connection with the model-based aspect
of learning. In fact, since it suffices to consider non-decreasing functions h as
candidates for approximating hΣ, the hypothesis space H under consideration is
reduced correspondingly.

Remark 3.3. Observe that the CBI hypothesis can be enforced to hold true
in the strict sense by adapting the similarity measure σS (and, hence, changing
the CBI setup correspondingly). In fact, one can always determine a bijective
mapping f : DS −→ DS such that hΣ is non-decreasing if σS is replaced by σ′

S =
f ◦ σS . Seen from this perspective, one may always assume that the strict CBI

hypothesis is actually valid and simply explain the opposite by the inadequacy
of the (originally) chosen similarity measure.4 �

Remark 3.4. A strict similarity hypothesis h is closely related to the concept
of a gradual inference rule in fuzzy set-based approximate reasoning. A gradual
rule is a special kind of fuzzy rule of the form “the more X is in A, the more
Y is in B,” where A and B are fuzzy sets modeling some gradual concepts. The
application of this kind of fuzzy rule in the context of CBI will be discussed in
Section 6.1. �

Example 3.5. Fig. 3.1 shows the similarity profiles hΣ1 and hΣ2 of the CBI

setups Σ1 and Σ2 defined by the (repetitive) ILP problems in Example 2.5.5

As can be seen, these functions are indeed increasing. Moreover, the similarity
structure of Σ1 is developed more strongly than the structure of Σ2. The same
remarks apply to the setups Σ∗

1 and Σ∗
2 , the similarity profiles of which are shown

in the same figure. �

4 Though this would again degrade the CBI hypothesis to a trivial assumption (see the discussion in
Section 2.2.3).

5 We plotted the polygonal line connecting the points {(x, hΣ(x)) |x ∈ DS}.
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Example 3.6. Let (S, ∆S) and (R, ∆R) be metric spaces and suppose ϕ :
S −→ R to be Lipschitz continuous, i.e., there is a constant L > 0 such that
∆R(ϕ(s), ϕ(s′)) ≤ L∆S(s, s′) for all s, s′ ∈ S. Moreover, suppose σS to be ∆S-
related (via f) and σR to be ∆R-related (via g). Then, h = g ◦ Lf−1 is an
admissible hypothesis for the corresponding CBI setup. �

Remark 3.7. It has already been suggested in Definition 3.2 to characterize a
similarity hypothesis in a more precise way, namely as a triple (h, σS , σR). Indeed,
the essential aspect in connection with a hypothesis h is the fact that it relates
degrees x of the similarity scale DS (resp. the unit interval) to degrees y = h(x)
of the scale DR (resp. the unit interval). Thus, the meaning of a hypothesis h
strongly depends on the similarity functions σS and σR in the sense that changing
these functions would also change the meaning of h. Particularly, two hypothe-
ses h, h′ as well as the similarity profiles associated with two systems (S,R, ϕ)
and (S,R, ϕ′) are not comparable unless the underlying similarity measures are
identical. �

3.1.2 Generalized similarity profiles

There are two characteristic features of case-based reasoning which are worth
mentioning in connection with the concept of a similarity profile and which sug-
gest to generalize Definition 3.1. As will be seen, this generalization makes a
similarity profile more suitable for supporting certain (case-based) problem solv-
ing strategies.

Firstly, CBI methods do usually not take the complete memory M of cases into
account when solving a new problem. Rather, the attention is drawn to the most
similar cases,6 since less similar cases are assumed to hardly improve the solution
(prediction) quality. Indeed, utilizing the complete memory may affect the system

6 The problem of searching these cases efficiently is closely related to the topics of case retrieval and
case indexing (cf. Section 2.2).

Fig. 3.1. Left: Similarity profiles hΣ1 (solid line) and hΣ2 of the (repetitive) ILP problems defined in
Example 2.5. Right: Similarity profiles hΣ∗

1
(solid line) and hΣ∗

2
defined in the same example.
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efficiency adversely, at least if the latter does not only take the quality of a solution
(prediction) into consideration but also the time which has been spend on deriving
it [355, 353]. Secondly, CBI problems might be solved repeatedly by using the
same memory M of cases. One may then benefit from the fact that the memory
does not change by adjusting the formalization of the similarity structure to M.

As already announced above, we are now going to introduce some generalizations
of Definition 3.1 which are motivated by the two aforementioned aspects.

Definition 3.8 (k-selection). Let M = (〈s1, r1〉, . . . , 〈sn, rn〉), k ≤ n, and con-
sider an input s0 ∈ S. The extended k-selection N ex

k (M, s0) is defined as a sub-
sequence of M such that

〈s, r〉 ∈N ex
k (M, s0) ⇔

card{1 ≤ ı ≤ n |σS(s0, s) < σS(s0, sı)} < k.

The k-selection Nk(M, s0) is defined such that

〈s, r〉 ∈Nk(M, s0) ⇔
card{1 ≤ ı <  | 〈sı, rı〉 ∈ N ex

k (M, s0)} < k.

Thus, Nk(M, s0) is exactly of length k, whereas N ex
k (M, s0) might consist of

more than k cases. �

Definition 3.9 ((n, k)-similarity profile). Consider a CBI setup Σ. We define
the (n, k)-similarity profile

h
(n,k)
Σ : DS −→ [0, 1]

associated with Σ as follows: For all x ∈ DS , the value h
(n,k)
Σ (x) is given by the

maximal value y ∈ [0, 1] such that

∀M ∈ Mn ∀ s0 ∈ S ∀ 〈s, ϕ(s)〉 ∈ Nk(M, s0) :

σS(s, s0) = x ⇒ σR(ϕ(s), ϕ(s0)) ≥ y,

where Mn denotes the class of memories of size n. �

According to Definition 3.9, the concept of an (n, k)-similarity profile corresponds
to statements of the following form: “Let M be an arbitrary memory of size n.
If two inputs s0 ∈ S and s ∈ M are x-similar and s is among the inputs in
M which are most similar to s0, then the similarity of the outcomes ϕ(s0) and

ϕ(s) is at least h
(n,k)
Σ (x).” We have hΣ ≤ h

(n,k)
Σ for all 1 ≤ k ≤ n, where n ∈ N

and n ≤ |S| if S is finite. This inequality holds due to the fact that h
(n,k)
Σ is less

constrained than hΣ, which can be grasped as follows: For s, s0 ∈ S (and σS(s, s0)
small enough) it might happen that s ∈ S is not relevant for s0 in the sense that
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∀M ∈ Mn : 〈s, ϕ(s)〉 "∈ Nk(M, s0).

Now, if neither s is relevant for s0 nor vice versa, the value σR(ϕ(s), ϕ(s0)) does

no longer constrain the lower bound h
(n,k)
Σ (σS(s, s0)). Quite often, however, hΣ

and h
(n,k)
Σ will differ but slightly, at least if n − k is small in relation to the size

of the set S.

Remark 3.10. In connection with a “selective” CBI strategy it might be rea-
sonable to require the most similar cases to be (pairwise) different. This amounts
to considering only those memories induced by sequences of (pairwise) different
inputs. Statistically speaking, a memory M is then determined by a random
sample from S without replacement. Of course, Definition 3.9 can be modified
accordingly. �

Definition 3.11 (M-similarity profile). Consider a CBI setup Σ with mem-
ory M. We define hM

Σ : DS −→ [0, 1] by means of

hM
Σ (x)

df
= inf

s∈M↓,s0∈S,σS(s,s0)=x
σR(ϕ(s), ϕ(s0)).

This function is called the M-similarity profile of Σ. �

Definition 3.12 ((M, k)-similarity profile). Consider a CBI setup Σ with

memory M. We define h
(M,k)
Σ : DS −→ [0, 1] as follows: For all x ∈ DS , the

value h
(n,k)
Σ (x) is given by the maximal value y ∈ [0, 1] such that

∀s0 ∈ S ∀T ∈ Nk(M, s0) ∀〈s, r〉 ∈ T :

(σS(s, s0) = x) ⇒ (σR(r, ϕ(s0)) ≥ y)

holds true. The function h
(n,k)
Σ is called the (M, k)-similarity profile of Σ. �

The above definitions reveal that a (·, k)-profile corresponds to the idea of using
only k of the stored cases for CBI. Likewise, passing from a similarity profile
to an (M, ·)-similarity profile is motivated by the idea of repeatedly using a
fixed memory M of cases for solving CBI problems. A profile hM

Σ , for instance,
corresponds to rules of the following form: “Given the memory M and two x-
similar inputs s0 ∈ S and s ∈ M, the similarity of the outcomes ϕ(s0) and ϕ(s)

is at least hM
Σ (x).” The relations hΣ ≤ h

(n,k)
Σ ≤ hM,k

Σ and hΣ ≤ hM
Σ ≤ hM,k

Σ hold
obviously true for all memories M and k ≤ n = |M|. Passing from a profile hΣ

to a profile hM
Σ will generally have a considerable effect on the quantification of

the similarity profile, and the smaller the memory M is, the stronger this effect
will be. In fact, a profile hΣ is determined by the similarity relations between
arbitrary cases c and c′, whereas c must be an element of M in connection with
hM

Σ .
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The generalization of Definition 3.2 in accordance with the generalization of sim-
ilarity profiles is straightforward. We may then speak, e.g., of a similarity hy-
pothesis related to an M-similarity profile or to an (n, k)-profile. In subsequent
sections of this chapter we will restrict ourselves mainly to the consideration of
(ordinary) similarity profiles and related hypotheses, although a further general-
ization will be introduced in Section 3.3.2. Most often, it will be obvious how to
transfer corresponding results.

3.2 Constraint-based inference

3.2.1 A constraint-based inference scheme

In this section, we shall introduce an inference scheme which emerges quite nat-
urally from the constraint-based view of the CBI hypothesis as formalized in the
previous section. Consider a CBI problem 〈Σ, s0〉 and suppose that Σ satisfies
the hypothesis h. If the memory M contains the input s0, i.e., if M contains a
case 〈s, r〉 such that s = s0, the correct outcome r0 = r can simply be retrieved
from M. Otherwise, we can derive the following restriction:

r0 ∈ ϕ̂h,M(s0)
df
=
⋂

〈s,r〉∈M

Nh(σS(s,s0))(r), (3.2)

where ϕ̂h,∅(s0)
df
= R by convention and the α-neighborhood of an output r ∈ R is

defined by the set of all outcomes r′ which are at least α-similar to r:

Nα(r)
df
= {r′ ∈ R |σR(r, r′) ≥ α}. (3.3)

Thus, according to the constraint-based interpretation the task of case-based
inference can be seen as one of deriving and representing the set (3.2), or an
approximation thereof. This may become difficult if, for instance, the definition
of the similarity σR and, hence, the derivation of a neighborhood are complicated.
The sets (3.3) may also become large, in which case they cannot be represented
by simply enumerating their elements.

In this connection, it should be noted that (3.2) remains correct if the intersection
is taken over k < n of the inputs s ∈ M↓. Since less similar inputs will often
hardly contribute to the precision of predictions, it might indeed be reasonable
to proceed from k inputs maximally similar to s0, especially if the intersection
of neighborhoods (3.3) is computationally complex. Besides, it is worth mention-
ing that (3.2) can be approached efficiently by means of parallel computation
techniques. In fact, the sets which have to be combined (via intersection) can
be derived independently of each other. Moreover, the (associative) combination
itself can be realized in an arbitrary order. Thus, a parallel implementation of
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(3.2) is (more or less) straightforward and will enable the exploitation of relatively
large memories.

Of course, while assuming the profile of a CBI setup to be unknown, one can-
not guarantee the admissibility of a hypothesis h and, hence, the correctness of
(3.2). That is, it might happen that ϕ(s0) "∈ ϕ̂h,M(s0). In fact, we might even
have ϕ̂h,M(s0) = ∅. Nevertheless, taking for granted that h is indeed a good
approximation of hΣ, it seems reasonable to derive ϕ̂h,M(s0) according to (3.2)
as an approximation of ϕ̂hΣ ,M(s0) (while keeping the hypothetical character of
h in mind). This situation reflects the heuristic character of CBI as a problem
solving method. Nevertheless, by quantifying the probability of obtaining correct
predictions, our results in Section 3.4 will provide a sound basis of this approach.

A similarity profile as well as a similarity hypothesis relate degrees of similarity to
one another: Given the similarity of two inputs, they conclude on the similarity
of the related outcomes. Thus, the similarity relations between observed cases
constitute the principal information from which a case-based inference scheme
proceeds. This motivates the following definition.

Definition 3.13 (similarity structure). Consider a CBI setup Σ with M be-
ing the associated memory (2.29) of cases and let s0 be a new input. The sim-
ilarity structure of the CBI problem 〈Σ, s0〉 is defined by the similarity profile
(hΣ, σS , σR) of Σ resp. a corresponding hypothesis (h, σS , σR) together with the
similarity structure

SST(M, s0)
df
=
{
zı = (xı, yı) | 1 ≤ ı <  ≤ n

}
∪
{
x0 | 1 ≤  ≤ n

}

of the extended memory (M, s0). Here, the values xı and yı are defined as

xı
df
= σS(sı, s) and yı

df
= σR(rı, r). We will generally assume the similarity

profile hΣ resp. the hypothesis h to be given and simply call SST(M, s0) the sim-
ilarity structure of 〈Σ, s0〉. Moreover, we define the partial similarity structure
pSST(M, s0) by the set {x0 | 1 ≤  ≤ n}. �

��

(S,R, ϕ) (M, s0)
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Fig. 3.2. Illustration of the case-based (similarity-based) inference process.
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Even though the inference scheme (3.2) is rather simple, it is worth reconsidering
it from an abstract point of view. This will reveal some basic ideas of our ap-
proach to CBI, which becomes more involved within the probabilistic setting of
Chapter 4. The overall CBI process as illustrated in Fig. 3.2 can be characterized
as follows:

– In a first step, the problem 〈Σ, s0〉 is characterized at the similarity level by
means of its similarity structure. In fact, hΣ resp. zΣ = SST(M, s0) can be seen
as the “image” of the system (S,R, ϕ) resp. the (extended) memory (M, s0) un-
der the transformation defined by the similarity measures σS and σR. This map-
ping realizes a projection from an often high-dimensional (and non-numerical)
instance space S ×R into the two-dimensional similarity space DS ×DR, which
is usually more accessible to analytical methods. Still, this projection is not
(information-)theoretically justified like, say, dimension reduction techniques
such as principal component analysis in statistics. Rather, it is guided by the
heuristic assumption that the similarity structure of the problem 〈Σ, s0〉 repre-
sents useful information.

– The main step of the CBI process is then to utilize the similarity structure of the
problem for constraining the unknown outcome r0 at the similarity level. The
corresponding constraints C are implicit in the sense that they are expressed
in terms of the (bilateral) concept of similarity, i.e., they do not refer to the
output itself.

– Finally, the observed outputs come into play. In conjunction with a transfor-
mation σ

(−1)
R : R × [0, 1] −→ 2R, which is inversely related to σR via

σ
(−1)
R (r, α)

df
= {r′ ∈ R |σR(r, r′) ≥ α}, (3.4)

they are used for translating the constraints C at the similarity level into con-
straints on outcomes at the instance level. According to (3.2), these constraints
are combined conjunctively by means of an intersection.

Two characteristics of case-based (similarity-based) inference as introduced above
are worth mentioning. Firstly, CBI is indirect in the sense that the given infor-
mation is not used for drawing inferences about the unknown output r0 directly.
Rather, it is used for deriving evidence concerning similarity degrees σR(r0, rk),
which are then translated into evidence about outcomes. Secondly, CBI is local
in the sense that the rules (3.1) associated with a hypothesis h derive evidence
concerning the value r0 from single cases. These pieces of evidence have still to be
combined in order to obtain the constraint implied by the complete memory M.
Within the deterministic framework of this chapter, the combination of evidence
derived from different cases is accomplished by (3.2), i.e., by means of a simple
intersection of sets. As will be seen in Chapter 4, this problem becomes more
complicated within a probabilistic setting.

Needless to say, the stronger the similarity structure of a setup Σ is developed,
the more successful CBI will be. Within our framework, we have quantified the
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degree to which the CBI hypothesis holds true for the setup Σ by means of the
similarity profile hΣ. This quantification, however, may appear rather restrictive.
In fact, the derivation of valid predictions according to (3.2) necessitates the use
of lower similarity bounds, which leads to a kind of worst case analysis. The
existence of some “exceptional” pairs of cases, for instance, might call for small
values hΣ(x) of the similarity profile hΣ. Consequently, the predictions (3.2) which
reflect the success of the CBI process (cf. Section 3.4) might become imprecise
even though the similarity structure of Σ is otherwise strongly developed. This
observation serves as a main motivation for the consideration of local similarity
profiles in Section 3.3.2 and for the probabilistic generalization of the constraint-
based approach which we will turn to in Chapter 4.

From a mathematical point of view, the decisive aspect of the inference scheme in
Fig. 3.2 is the fact that it is based on the analysis, not of the original data, but of
transformed data which depicts a certain relation between original observations.
Considering these observations in pairs, the original data (represented by the
memory M ⊆ S × R) is transformed into the new set of data{

(σS(s, s′), σR(r, r′)) | 〈s, r〉, 〈s′, r′〉 ∈ M
}

. (3.5)

As opposed to functional relations related to the instance level, which are map-
pings of the form S −→ R, the result h of the analysis of (3.5) provides informa-
tion about the relation σR(ϕ(s), ϕ(s′)) between outcomes ϕ(s), ϕ(s′), given the
relation σS(s, s′) between inputs s and s′. Then, given an observation 〈s, r〉 and
a new input s0 and, hence, the relation σS(s, s0), h is used for specifying the
relation σR(r, r0) between r and r0 = ϕ(s0). Finally, the inverse transformation

σ
(−1)
R is used for translating information about r and σR(r, r0) into information

about r0 itself. Moreover, the combination of evidence concerning r0 becomes
necessary if this kind of information has been derived from different observations
〈s1, r1〉, . . . , 〈sn, rn〉.
In our case, the relation between observations corresponds to their similarity, the
function h defines an (estimated) lower bound in the form of (an approximation
of) the similarity profile, and the combination of evidence is realized by the in-
tersection of individual predictions. This, however, is by no means compulsory.
Indeed, one might think of basing inference procedures on alternative specifica-
tions, such as the differences σS(s, s′) = s − s′ and σR(r, r′) = r − r′.7 Then, a
least squares approximation h of the transformed data provides an estimation of
the difference between two outcomes, given the difference between the respective
inputs. Examples of this kind of inference can, e.g., be found in economic analysis
where a functional relation is often assumed, not between the economic quanti-
ties themselves, but between the (temporal) change of these quantities. Economic
time series (x1, . . . , xT ), for instance, are often analyzed in terms of (first-order)
differences ∆tk = tk+1 − tk. Likewise, in preference analysis, a frequently encoun-
tered problem is to induce an absolute rating of given entities (in terms of utility

7 In this example, S and R are assumed to be numerical, of course.
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degrees) based on pairwise comparisons expressing to what extent one object is
preferred to a second one.

Remark 3.14. The non-deterministic setting of Section 2.4.2 takes account of
the fact that an input s ∈ S does not determine a unique outcome or that
observed outputs might be imprecise. A respective generalization of the inference
scheme based on (3.2) will be discussed in Section 3.2.2 below. Simple types of
imprecision, however, can also be incorporated directly into (3.2). Suppose for
instance, that an output cannot be observed exactly but only up to a certain
(similarity) degree α of precision. That is, an observed case 〈s, r〉 does not imply
ϕ(s) = r but only ϕ(s) ∈ N1−α(r). Moreover, suppose that σR is �-transitive,
i.e., �(σR(r, r′), σR(r′, r′′)) ≤ σR(r′, r′′) for all r, r′, r′′ ∈ R (cf. Section 2.3). We
then obtain

ϕ(s0) ∈
⋂

〈s,r〉∈M

N�(hΣ(σS(s,s0)),1−α)(r), (3.6)

for all s0 ∈ S as a valid generalization of (3.2). Observe that (3.6) might be
interesting in connection with non-deterministic CBI problems, namely when
having to use “estimated cases” 〈s, µ̂〉 due to the problem that the true measure
µ might not be observable (cf. Section 2.4.2). In fact, this inference scheme can
be applied if a minimal similarity between the true measure µ and the estimation
µ̂ is guaranteed. �

3.2.2 Non-deterministic problems

Within the non-deterministic setting of Section 2.4.2, a similarity profile hΣ of
a setup Σ is defined by replacing the similarity measure over outputs, σR, by a
similarity measure over probability distributions, σP :

hΣ : DS −→ [0, 1] , x �→ inf
s,s′∈S, σS(s,s′)=x

σP(ϕ(s), ϕ(s′)).

Then, a similarity hypothesis h corresponds to the assumption that

∀ s, s′ ∈ S : σS(s, s′) = x ⇒ σP(ϕ(s), ϕ(s′)) ≥ h(x)

holds true for all x ∈ [0, 1]. Given a memory M of cases 〈sk, µk〉 (1 ≤ k ≤ n), the
inference scheme (3.2) presents itself in the form

µ0 ∈ ϕ̂h,M(s0)
df
=
⋂

〈s,µ〉∈M

Nh(σS(s,s0))(µ), (3.7)

where µ0 is the probability measure associated with the new input s0 and Nα(µ)
df
=

{µ′ ∈ P(R) |σP(µ, µ′) ≥ α} for µ ∈ P(R) and 0 ≤ α ≤ 1. Thus, the set
ϕ̂h,M(s0) now defines a class of probability measures, namely the measures which
are considered as being possible in connection with the unknown measure µ0.
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Upper and lower probability bounds. For a memory M and a new input
s0 ∈ S, the set ϕ̂h,M(s0) as defined in (3.7) corresponds to a set of probability
measures. Instead of the inference result ϕ̂h,M(s0) itself, which might have a
relatively complicated structure, one might be interested in the lower and upper
probability of individual outputs r ∈ R according to this set, i.e.

µ↓
0(r) = min

µ∈ϕ̂h,M(s0)
µ(r) and µ↑

0(r) = max
µ∈ϕ̂h,M(s0)

µ(r). (3.8)

Let us, therefore, consider a particular (but still reasonable) choice of the simi-
larity σP which supports an efficient derivation of these probability bounds:

σP(µ, µ′)
df
= 1 − f

(
max
r∈R

|µ(r) − µ′(r)|
)

(3.9)

for all µ, µ′ ∈ P(R), where f : [0, 1] −→ [0, 1] is (strictly) increasing.8 The
constraint on µ0 induced by the k-th case 〈sk, µk〉 is now given in the form of an
interval probability [µl

0k, µ
u
0k], where

µl
0k(r) = max

{
µk(r) − f−1(1 − σS(s0, sk)), 0

}
, (3.10)

µu
0k(r) = min

{
µk(r) + f−1(1 − σS(s0, sk)), 1

}
, (3.11)

and

[µl
0k, µ

u
0k]

df
= {µ ∈ P(R) | ∀ r ∈ R : µl

0k(r) ≤ µ(r) ≤ µu
0k(r)}. (3.12)

Suppose ϕ̂h,M(s0) "= ∅ for the overall constraint (3.7). The latter is then also an
interval probability:

ϕ̂h,M(s0) = [µl
0, µ

u
0 ], (3.13)

where
µl

0(r) = max
1≤k≤n

µl
0k(r), µu

0(r) = min
1≤k≤n

µu
0k(r) (3.14)

for all r ∈ R. It deserves mentioning that the representation of an interval prob-
ability in the sense of (3.12) is not unique. In general, it is possible to represent a
given class of probability measures µ over a set X by means of different intervals
[µl, µu] (i.e., lower and upper envelopes µl : X −→ [0, 1] and µu : X −→ [0, 1]
such that µl ≤ µu). In fact, the intervals [µl

0(r1), µ
u
0(r1)] are not necessarily min-

imal, i.e., the lower and upper bounds (3.14) do not necessarily correspond to
the optimal bounds (3.8). That is, it might be possible that µl

0(r1) < µ↓
0(r1) or

µ↑
0(r1) < µu

0(r1) and, hence, that one can increase µl
0(r1) or reduce µu

0(r1) for some
r1 ∈ R without changing the associated class (3.13) of probability measures. In
other words, it might happen that µl

0(r1) (resp. µu
0(r1)) is actually not attained

by any measure µ ∈ ϕ̂h,M(s0). In the case of finite R, the optimal individual

bounds µ↓
0(r1) and µ↑

0(r1) can be found by solving two simple linear programming
problems:

8 The maximum in (3.9) obviously exists.
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minimize (maximize) µ0(r1) s.t.




µl
0(r) ≤ µ0(r) ≤ µu

0(r) (r ∈ R)

µ0(r) ≥ 0 (r ∈ R)∑
r∈R µ0(r) = 1

Remark 3.15. The bounds (3.10) and (3.11) associated with a single constraint
are already optimal. This can be seen as follows. Let α0 = f−1(1 − σS(s0, sk))
and α1 = min{µk(r1), α0} for some r1 ∈ R. That is, µl

0k(r1) = µk(r1) − α1. If
α1 = α0 then µk(r1) ≥ α0, i.e., there is some r2 ∈ R such that µk(r2) ≤ 1 − α0.
The probability measure µ defined by

µ(r) =




µk(r) − α0 if r = r1

µk(r) + α0 if r = r2

µk(r) if r1 "= r "= r2

is then an element of [µl
0k, µ

u
0k], i.e., the lower bound µl

0k(r1) = µk(r1) − α0 is
indeed attained. Now, suppose α1 < α0 which means that µl

0k(r1) = 0. Since
µk(r1) = 1 −

∑
r1 =r∈R µk(r) and µk(r1) < α0 it is obviously possible to distribute

the probability mass α1 = µk(r1) over the elements r "= r1 such that the measure
µ defined by

µ(r) =

{
0 if r = r1

µk(r) + α(r) if r "= r1

for all r ∈ R is an element of the class [µl
0k, µ

u
0k], where α(r) ≥ 0 and∑

r1 =r∈R α(r) = α1. Thus, the lower bound µl
k0(r1) = 0 is again attained. Analo-

gously it is shown that the upper bound µu
k0(r1) is always attained. �

A Maximum Likelihood approach. In Section 2.4.2, we have pointed out that
it might not be possible to observe the probability measure µ associated with an
input s. Rather, a case is often given in the form of a tuple 〈s, x〉, where x has
been chosen at random according to µ. We shall now consider a framework which
allows for deriving estimated cases 〈s, µ̂〉 by means of a Maximum Likelihood

(ML) approach.

Let P(R) consist of a class of parameterized probability measures µθ (θ ∈ Θ)
and suppose that σP : P(R) × P(R) −→ [0, 1] can be expressed as a function of
parameter vectors, i.e., the similarity σP(µθ, µθ′) can be written in terms of the
parameter vectors θ and θ′ for all θ, θ′ ∈ Θ. Thus, we can associate a parameter
θ with each input s. By thinking of the parameter as an output, we can also
identify Θ by the set of outputs, R, and write σP(µθ, µθ′) = σR(θ, θ′).9

Now, consider a non-deterministic CBI problem. Suppose that n cases 〈sk, xk〉
(1 ≤ k ≤ n) have been observed. A reasonable approach to estimating the prob-
ability measures µk associated with the inputs sk is to maximize the likelihood
function

9 Observe that this assumption does not exclude (3.9).
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λ : (θ1, . . . , θn) �→
∏

1≤k≤n

µθk
(xk)

subject to the constraints

∀ 1 ≤ ı,  ≤ n : σR(θı, θ) ≥ σS(sı, s).

That is, we let µ̂k = µθ̂k
, where the parameter vectors θ̂1, . . . , θ̂n denote the

(constrained) ML estimations. The measure µ0 associated with a new input s0 is
then estimated according to

µ0 ∈
⋂

1≤k≤n

Nh(σS(s0,sk))(µ̂k).

3.3 Case-based approximation

Suppose a hypothesis h (with associated similarity functions σS , σR) and a mem-
ory M to be given. By applying (3.2) to all s ∈ S (not only to one input s0 ∈ S),
we obtain a set-valued mapping ϕ̂h,M : S −→ 2R:10

ϕ̂h,M : s �→
⋂

〈s′,r′〉∈M

Nh(σS(s,s′))(r
′). (3.15)

It is readily shown that ϕ̂h,M defines an outer approximation of ϕ in the sense
that ϕ(s) ∈ ϕ̂h,M(s) for all s ∈ S if the hypothesis h is admissible. The mapping
ϕ̂hΣ ,M, induced by the similarity structure of a CBI setup, can be seen as a
simplified but imprecise representation of the system structure ϕ. We call ϕ̂h,M
a case-based approximation (CBA) of ϕ. Clearly, the stronger the (admissible)
hypothesis h is, the more precise the approximation ϕ̂h,M becomes. The CBA

obtained for the similarity profile hΣ, ϕ̂hΣ ,M, is the smallest outer approximation
of ϕ in the sense that ϕ̂hΣ ,M(s) ⊆ ϕ̂h,M(s) holds true for all s ∈ S and admissible
hypotheses h.

Remark 3.16. Definition (3.15) is not exactly in agreement with our CBI ap-
proach in the sense that we may have ϕ̂h,M(s) "= {r} for some case 〈s, r〉 ∈ M.
That is, the prediction ϕ̂h,M(s) might contain additional outcomes even though
the output r could be retrieved from the memory. It can easily be verified, how-
ever, that ϕ̂h,M(s) = {r} is guaranteed if both measures σS and σR are separating.
Clearly, a further way of ensuring ϕ̂h,M(s) = {r} is to modify the definition of a
case-based approximation as follows: ϕ̂h,M(s) is determined according to (3.15)
only if s "∈ M↓, otherwise the output is retrieved from M and is hence given by
{ϕ(s)}. �
10 This mapping corresponds in some way to what is called the extensional concept description in

instance-based learning [11].
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Let us again mention that (3.2) resp. (3.15) are easily generalized such that
only k < n of the most similar cases (represented by a sub-memory M′ ⊆ M)
are used for constraining the outcome. Then, we can define an approximation
ϕ̂h,M,k : S −→ 2R by means of

ϕ̂h,M,k : s �→
⋂

〈s′,r′〉∈T (s)

Nh(σS(s,s′))(r
′), (3.16)

where T (s)
df
= Nk(M, s) or T (s)

df
= N ex

k (M, s).

3.3.1 Properties of case-based approximation

It deserves mentioning that the similarity measures principally play the role of
ordinal concepts within our approach.11 According to (3.2), the set ϕ̂h,M(s0) de-
pends only on the relative order of similarity degrees, as specified by the hypoth-
esis h (cf. Remark 3.7). In other words, the sets DS and DR can be interpreted as
linearly ordered scales of similarity for which only the ordering of the grades of
similarity is important. In fact, the numerical encoding is just a matter of conve-
nience and the interval [0, 1] could be replaced by any other linearly ordered scale.
In fact, the inference scheme (3.2) can even be generalized in a straightforward
way to similarity measures which are defined on a (complete) lattice structure
[56, 283].

In order to make the ordinal character of similarity more explicit let us call two
similarity measures σ and σ′ (defined over a set A) coherent if

σ(a, b) ≤ σ(c, d) ⇔ σ′(a, b) ≤ σ′(c, d) (3.17)

holds true for all a, b, c, d ∈ A. This definition is in accordance with the relational
approach to similarity discussed in Section 2.3 (coherent similarity measures in-
duce the same relation R).

Lemma 3.17. Let σ : A × A −→ [0, 1] and σ′ : A × A −→ [0, 1] be coherent
similarity measures and let X = {σ(a, b) | a, b ∈ A}. Then, a strictly increasing
function f : X −→ [0, 1] exists such that σ′ = f ◦ σ. �

Proof. For a, b ∈ A, let x = σ(a, b) and define f(x) = σ′(a, b). Obviously, f is
well-defined, since the coherency of σ and σ′ implies

σ(a, b) = σ(c, d) ⇔ σ′(a, b) = σ′(c, d) (3.18)

for all a, b, c, d ∈ A. Moreover, f is strictly increasing, since (3.18) remains valid
when replacing the equality relation by the <-relation. �
11 This should be regarded as a reasonable property. Indeed, considering similarity as a cardinal concept

complicates its formalization and raises some difficult semantical questions.
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Proposition 3.18. Consider a system (S,R, ϕ) and a memory M of cases and
let σS and σ′

S resp. σR and σ′
R be coherent similarity measures. Moreover, de-

note by hΣ resp. h′
Σ the similarity profiles induced by these measures and let

ϕ̂hΣ ,M resp. ϕ̂h′
Σ ,M be the case-based approximations defined by (hΣ, σS , σR)

resp. (h′
Σ, σ′

S , σ′
R) via (3.15). We then have ϕ̂hΣ ,M = ϕ̂h′

Σ ,M. �

Proof. According to Lemma 3.17 there are strictly increasing functions f and
g such that σ′

S = f ◦ σS and σ′
R = g ◦ σR. From (3.18) and f(σR(r, r′)) ≤

g(σS(s, s′)) ⇔ σ′
R(r, r′) ≤ σ′

S(s, s′) for all s, s′ ∈ S and r, r′ ∈ R then follows
that h′

Σ ◦ f = g ◦ hΣ. Now, consider s, s′ ∈ S, r, r′ ∈ R and suppose that
(hΣ ◦ σS)(s, s′) ≤ σR(r, r′). It follows that

σ′
R(r, r′) = (g ◦ σR)(r, r′)

≥ (g ◦ hΣ ◦ σS)(s, s′)

= (h′
Σ ◦ f ◦ σS)(s, s′)

= (h′
Σ ◦ σ′

S)(s, s′).

In the same way it is shown that (h′
Σ ◦ σ′

S)(s, s′) ≤ σ′
R(r, r′) implies (hΣ ◦

σS)(s, s′) ≤ σR(r, r′). Consequently, we have NhΣ(σS(s,s′))(r) = Nh′
Σ(σ′

S(s,s′))(r)
for all s, s′ ∈ S, r ∈ R and, hence, ϕ̂hΣ ,M = ϕ̂h′

Σ ,M. �

In Section 2.4, it was already pointed out that similarity measures might be
more or less “discriminating.” We are now in the position to put this into more
precise terms. Let us call a similarity measure σ a refinement of a measure σ′ if
σ′ = f ◦ σ, where f is non-decreasing (i.e., order-preserving) but not (strictly)
increasing. Loosely speaking, the measure σ uses a richer similarity scale which
includes more degrees of similarity, that is rg(σ′) � rg(σ).

Proposition 3.19. Consider a system (S,R, ϕ) and a memory M of cases.
Let σS be a refinement of σ′

S and σR a refinement of σ′
R. Moreover, de-

note by hΣ resp. h′
Σ the similarity profiles induced by these measures and let

ϕ̂hΣ ,M resp. ϕ̂h′
Σ ,M be the case-based approximations defined by (hΣ, σS , σR)

resp. (h′
Σ, σ′

S , σ′
R) via (3.15). Then, ϕ̂hΣ ,M(s) ⊆ ϕ̂h′

Σ ,M(s) for all s ∈ S. �

Proof. Consider values s, s′ ∈ S and r, r′ ∈ R. Suppose that r′ ∈ NhΣ(σS(s,s′))(r),
i.e., σR(r, r′) ≥ hΣ(σS(s, s′)). Thus, we find t, t′ ∈ S such that σR(r, r′) ≥
σR(ϕ(t), ϕ(t′)) and σS(s, s′) = σS(t, t′). Since σ′

S = f ◦ σS and σ′
R = g ◦ σR

for non-decreasing functions f, g, we have σ′
S(s, s′) = σ′

S(t, t′) and σ′
R(r, r′) ≥

σ′
R(ϕ(t), ϕ(t′)). Therefore,

h′
Σ(σ′

S(s, s′)) ≤ σ′
R(ϕ(t), ϕ(t′)) ≤ σ′

R(r, r′)

and, hence, r′ ∈ Nh′
Σ(σS(s,s′))(r). �
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Of course, generally we will not only have ϕ̂hΣ ,M(s) ⊆ ϕ̂h′
Σ ,M(s), as guaranteed

by Proposition 3.19, but also ϕ̂hΣ ,M(s) "= ϕ̂h′
Σ ,M(s) for some s ∈ S. As an obvious

example consider the “least discriminating” case where g ≡ 1 on DR and, hence,
σ′
R ≡ 1 on R × R, which leads to the trivial prediction ϕ̂h′

Σ ,M ≡ R on S.

For us to be able to study the approximation capability of (3.15) more thoroughly
the system (S,R, ϕ) must have a structure which allows us to quantify the quality
of a case-based approximation. To this end, let us endow S and R with a metric,
i.e., let (S, ∆S) and (R, ∆R) be metric spaces. Clearly, a good approximation of
ϕ can only be expected if the similarity measures σS and σR are related to the
distance measures ∆S and ∆R. We can prove the following result.

Proposition 3.20. Suppose that σS = f ◦ ∆S and σR = g ◦ ∆R with strictly
decreasing functions f and g, and

∃ ε > 0∃S ′ ⊆ S : card(S ′) < ∞ ∧ S =
⋃
s∈S′

B̄ε(s), (3.19)

where B̄ε(s)
df
= {s′ ∈ S |∆S(s, s′) ≤ ε}. Moreover, assume the Lipschitz condition

∃L > 0∀ s, s′ ∈ S : ∆R(ϕ(s), ϕ(s′)) ≤ L ∆S(s, s′) (3.20)

to hold. Then, a finite memory M exists such that

diam(ϕ̂hΣ ,M(s))
df
= max{∆R(r, r′) | r, r′ ∈ ϕ̂hΣ ,M(s)} ≤ 2 L ε

for all s ∈ S. �

Proof. Let ε > 0 and S ′ ⊆ S satisfy (3.19) and define M =
⋃

s′∈S′〈s′, ϕ(s′)〉. For
s, s′ ∈ S such that σS(s, s′) = x ∈ DS we have ∆S(s, s′) = f−1(x). Thus, accord-
ing to (3.20), σR(ϕ(s), ϕ(s′)) ≥ g(Lf−1(x)), which means hΣ(x) ≥ g(Lf−1(x))
for all x ∈ DS . Now, consider some s ∈ S. According to (3.19), the memory
M contains a case 〈s0, r0〉 such that ∆S(s, s0) ≤ ε. Hence, hΣ(σS(s, s0)) ≥
g(Lf−1(σS(s, s0))) ≥ g(Lε), which means that ∆R(r0, r

′) ≤ L ε for all r′ ∈
NhΣ(σS(s,s0))(r0). The result then follows from ∆R(r, r′) ≤ ∆R(r, r0) + ∆R(r0, r

′)
for all r, r′ ∈ NhΣ(σS(s,s0))(r0) and ϕ̂hΣ ,M(s) ⊆ NhΣ(σS(s,s0))(r0). �

Since ϕ(s) ∈ ϕ̂hΣ ,M(s) for all s ∈ S, Proposition 3.20 guarantees the existence of
a case-based approximation of ϕ which determines all outcomes up to a precision
of δ = 2 L ε. The following corollaries follow immediately.

Corollary 3.21. Suppose the assumptions of Proposition 3.20 to hold true with
“∃ ε > 0” in (3.19) replaced by “∀ ε > 0.” Then, the mapping ϕ can be approxi-
mated to any degree of accuracy δ > 0 via (3.15) with a finite memory M. �
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Corollary 3.22. Let S ⊆ Qp be bounded, R ⊆ Qq, and ∆S and ∆R be defined
by the corresponding Euclidean distances. Moreover, suppose that ϕ satisfies
(3.20) and that σS = f ◦∆S and σR = g ◦∆R with f, g strictly decreasing. Then,
ϕ can be approximated to any degree of accuracy δ > 0 via (3.15) with a finite
memory M. �

Assumption (3.19), which requires the existence of a finite cover of S, cannot be
dropped, as can easily be seen by constructing a counter-example with ∆S defined
by ∆S(s, s′) = 0 for s = s′ and ∆S(s, s′) = 1 for s "= s′ (and card(S) = ℵ0).
Likewise, (3.20) is necessary, as an example with ϕ(s) defined on [0, 1] ∩ Q by
ϕ(s) = 1 for s = 0 and ϕ(s) = 0 for s > 0 (and ∆R the standard metric) shows.

The discussion so far has shown that the inference scheme presented in Section 3.2
can basically be seen as a set-valued approximation method. The essential part
of this inference procedure is realized in what we have called the similarity space,
not in the instance space itself (cf. Fig. 3.2). That is, CBI is not directly based on
the information provided at the system level. Rather, the concept of similarity,
quantified in terms of similarity functions σS and σR, is exploited in order to
transform this information into information which is represented at the similarity
level. An approximation at the instance level is then derived within a two-stage
process from inferences about the similarity of an unknown outcome to already
observed ones.

It is this indirect derivation of approximations that constitutes the main dif-
ference between CBA and other approximation techniques. In fact, an implicit
notion of similarity is also present in other methods, since the (local) transfer
of observed outputs is generally based on the concept of distance. Typically, a
(scalar) estimation of an unknown value f(x) of a function f is derived in the
form of a weighted combination of training examples f(x1), . . . , f(xn), where the
weight of an example f(xk) decreases with the distance of the associated point
in the input space, xk, to the query point x.12 Consider an approximation of the
form

f̂(x) =

∑n
k=1 K(xk − x) · f(xk)∑n

k=1 K(xk − x)
,

where K(·) is a kernel function (centered at 0), as an example.

In some approximation methods the observed outcomes f(xk) appear only implic-
itly, in the sense that they determine parameters of an approximating function.
In a special version of locally weighted regression, for instance, the parameters of
a linear function f̂(·) are determined such that

n∑
k=1

(f(xk) − f̂(xk))
2K(d(x, xk))

12 The input space must hence be endowed with a distance measure.
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is minimized, where d(·) is a distance measure, and K(·) is a kernel function. The

value of f(·) for the query point x is then estimated by f̂(x).

As a further example consider again the k-Nearest Neighbor (kNN) method
(cf. Section 2.2) from which several instance-based learning algorithms have
emerged. It derives predictions according to

f̂(x) = F (f(x1), . . . , f(xk)),

where f(x1), . . . , f(xk) are the training examples associated with the k points
which are most similar to (or have the smallest distance from) the query point x.
If f(·) is a numerical function, F (·) is often defined as a weighted average, i.e.

f̂(x) =
k∑

=1

(
1 − |x − x|∑k

ı=1 |x − xı|

)
· f(x).

If rg(f) is discrete, F (·) generally returns the value which is most frequent among
f(x1), . . . , f(xk).

As can be seen, the approximation methods outlined above are based on the
same data as CBA, namely a set of observed values of a function (= outcomes)
and some kind of similarity or distance relation between points (= inputs) in the
input space. This data can be defined as an extension of the similarity structure
(cf. Definition 3.13 and Fig. 3.3).

Definition 3.23 (outcome structure). Let Σ be a CBI setup, s0 a new input,
and M the memory (2.29) associated with Σ. The set of values

OST(M, s0)
df
= SST(M, s0) ∪ {r | 1 ≤  ≤ n}

(together with (hΣ, σS , σR)) defines the outcome structure of the CBI problem
〈Σ, s0〉. �

Usual approximation methods employ the outcome structure directly within one
inference step. As opposed to this, the first step of the CBA scheme uses only
the similarity structure, and the observed outcomes rk are called in for the second
inference step.

The aforementioned difference becomes obvious, e.g., when comparing CBA to
the kNN algorithm. Firstly, this algorithm applies the similarity measures directly
at the instance level in order to find the most similar cases, whereas in CBA these
measures are used for defining the similarity structure hΣ. Secondly, the kNN
method does also perform the inference step at the instance level, in the sense
that predictions are derived directly from the observed outcomes. As opposed to
this, CBA uses the given information for drawing inferences, not about outputs,
but about similarities. It makes use of observed outcomes by more indirect means,
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r1 r2x11

y11

x01 x02

x11

y11

x01 x02

in the sense that each output defines an instantiation of a similarity constraint
at the system level.

In connection with the kNN method it should also be observed that CBA (espe-
cially (3.16)) can be seen as an interesting set-valued version of this algorithm. As
an advantage of CBA let us mention that it also takes the quality of the similar-
ity structure into account when predicting an outcome. In fact, (3.15) will not be
very constraining if this structure is poorly developed, thus indicating that the
application of the Nearest Neighbor principle (and, hence, the original kNN
method) does not seem advisable. We shall come back to this point in Chapter
4.

The following points deserve mentioning when comparing case-based to other lo-
cal approximation methods. On the one hand, CBA is less demanding in the sense
that it requires the specification of a similarity hypothesis, i.e., a relatively simple
one-dimensional function, whereas other methods derive approximating functions
with dom(f) = S and codom(f) = R. Moreover, CBA still works if S and R are
not as well-structured as certain number spaces, a situation regularly encountered
within the context of CBR. In fact, the assignment of similarity degrees can then
be seen as a reasonable quantification of the approximation problem. This kind of
quantification will often be more obvious than a quantification of S and R which
allows for deriving a good approximation f̂ : S −→ R.

On the other hand, the transformation from a high-dimensional (instance) space
into a low-dimensional (similarity) space is usually afflicted with a loss of informa-
tion. This becomes especially apparent in connection with the (pseudo-)inverse
of the similarity measure σR. In fact, this transformation will generally be a
set-valued mapping.

In any case, a comparison between (indirect) case-based and direct approximation
methods remains a difficult (if not meaningless) task. Firstly, the success of any
approximation method largely depends on the application and properties of the

Fig. 3.3. The outcome (left) and similarity structure (right) of a CBI problem can be illustrated a
a graph, where the nodes are associated with (information about) cases and the edges are labeled
with information concerning the (similarity) relation between cases. This figure shows the graphs for a
memory with two cases.

s
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data.13 Thus, it will generally not be possible to qualify one approach as being
superior in comparison to other methods. Secondly, a case-based approximation
is not scalar-valued but derives set-valued approximations which either cover
the unknown outcome or, as will be seen in Section 3.4, define some kind of
confidence region. Thus, the usefulness of an approximation method will also
depend on whether the problem at hand requires an estimation in the form of a
scalar value r̂0 or whether it is important to have information about r0 in the form
of outer bounds. As can be seen, the aforementioned differences between case-
based and direct approximation suggest to combine (rather than to compare)
these approaches.

3.3.2 Local similarity profiles

In Section 3.2.1, it has already been pointed out that CBA is local in the sense
that the information provided by different cases is processed and combined inde-
pendently.14 It is, however, global in the sense that the similarity profile represents
information which holds true for the complete similarity space. In fact, the con-
straint NhΣ(σS(s,s0))(r) provided by a case 〈s, r〉 for the prediction of an unknown
outcome ϕ(s0) contains a local component, namely the case 〈s, r〉 itself, as well
as a global component, namely the similarity hypothesis h. CBA can thus be
characterized as a local processing of global information.

Often, the CBI assumption is not satisfied equally well for all parts of the instance
space S×R.15 The global validity of the similarity profile might then prevent one
from defining tight bounds for those regions where the CBI hypothesis actually
applies rather well. In fact, a globally admissible similarity hypothesis might lead
to (local) predictions which are unnecessarily imprecise. This is illustrated by the
following simple example.

Example 3.24. Let S = R = [−1, 1] \ {0},16 ϕ(s) = −1 if −1 ≤ s < 0, and
ϕ(s) = 1 if 0 < s ≤ 1. Moreover, let σS(u, v) = σR(u, v) = 1 − |u − v|/2.
Obviously, for all 1 "= x ∈ DS there are s, s′ ∈ S such that σS(s, s′) = x and
σR(ϕ(s), ϕ(s′)) = 0. We hence have hΣ(x) = 0 for all x ∈ DS \ {1}, which means
that ϕ̂hΣ ,M(s0) = [−1, 1] if 〈s0, ϕ(s0)〉 "∈ M. �

Loosely speaking, a CBI strategy is not applicable in Example 3.24 because the
CBI hypothesis is not globally valid. Still, it seems desirable to make use of
the observation that this assumption is satisfied at least locally. One possibility
of doing this is to partition the set S of inputs and to derive respective local

13 Recall the selective superiority problem mentioned in footnote 9.
14

CBA is also local in the sense that it is a local approximation method. These two meanings of
locality should not be confused.

15 In a game playing context, for instance, the CBI principle hardly applies to certain “tactical” situ-
ations [310].

16 More specifically, to comply with our formal framework, we should set S = R = ([−1, 1] ∩ Q) \ {0}.
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approximations.17 In Example 3.24, it suggests itself to partition S into [−1, 0)
and (0, 1]. However, since ϕ is generally unknown, the definition of such a partition
will not always be obvious, all the more if S is non-numerical. Here, we consider
a second possibility, namely that of associating an individual similarity profile
with each input of the memory. This approach is somehow comparable to the use
of local kernels in kernel-based density estimation [385], and to the use of local
metrics in kNN algorithms and instance-based learning (e.g., metrics which allow
feature weights to vary as a function of the instance [342, 157, 9, 311]). It leads
us to introduce the concept of a local similarity profile.

Definition 3.25 (local similarity profile). Consider a CBI setup Σ and let
s ∈ S. We define hs

Σ : DS −→ [0, 1] by the mapping

x �→ inf
s′∈S, σS(s,s′)=x

σR(ϕ(s), ϕ(s′)).

This function is called the local similarity profile associated with s, or the s-
similarity profile of Σ. A collection hM

Σ = {hs
Σ | s ∈ M↓} of local profiles is

referred to as the local M-similarity profile. �

The following relations hold between the different types of similarity profiles:

hΣ =
∧
s∈S

hs
Σ, hM

Σ =
∧

s∈M↓

hs
Σ.

That is, the similarity profile hΣ and M-similarity profile hM
Σ are lower envelopes

of the class of local profiles associated with inputs in S and M↓, respectively.
Consequently, hΣ ≤ hM

Σ ≤ hs
Σ for all memories M and inputs s ∈ M↓.

As can be seen, a local similarity profile is closely related to the idea of an
M-similarity profile. In fact, an s-profile corresponds to the M-profile with
M↓ = (s). Besides, a class of local profiles will generally be specified – by means
of respective learning methods (cf. Section 3.4) – for a memory which does not
change frequently. In connection with approximation methods, the inputs which
constitute the memory and for which local profiles are defined play a role some-
what similar to the so-called knots in, say, approximation with spline functions,
and the local profiles correspond to basis functions.

Given a hypothesis hM = {hs | s ∈ M↓} related to a local M-similarity profile
and a new input s0 ∈ S, the inference scheme (3.2) is replaced by

ϕ(s0) ∈ ϕ̂hM,M(s0)
df
=
⋂

〈s,r〉∈M

Nhs(σS(s,s0))(r). (3.21)

The respective case-based approximation, i.e., the local counterpart to (3.15), is
called a local case-based approximation:

17 This idea is related to that of feature space partitioning in classification [77]. See also [261] for a
related idea in connection with memory-based learning.
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ϕ̂hM,M : s �→
⋂

〈s′,r′〉∈M

Nhs′ (σS(s,s′))(r
′).

Example 3.26. Consider again Example 3.24 and suppose that the memory M
contains the cases 〈−1,−1〉 and 〈1, 1〉. The respective local profiles are given by

x �→
{

1 if 1/2 ≤ x ≤ 1

0 if 0 ≤ x < 1/2
.

These two profiles can already guarantee an exact representation of ϕ. That is,
ϕ̂hM

Σ
(s) = {ϕ(s)} for all s ∈ S with M = (〈−1,−1〉, 〈1, 1〉). �

Note that a local profile indicates the validity of the CBI hypothesis for individual
cases. That is, the local profile associated with an input s ∈ S can be utilized
for rating the quality of the case 〈s, ϕ(s)〉.18 An input with a strongly developed
local profile (i.e., its outcome is locally representative) will generally support
precise predictions, whereas an input with a poorly developed profile will hardly
be useful from the viewpoint of CBA. Local profiles might hence serve as a
(complementary) criterion for selecting “competent” cases to be stored in (or
removed from) the memory [357]. It should be noted, however, that the similarity
profile can only be taken as an indication of the precision of predictions. In fact,
the predictions also depends on the neighborhood structure of R. For instance, it
is quite possible that card(Nα(r)) < card(Nβ(r′)) for two outcomes r "= r′, even
though β < α.

3.4 Learning similarity hypotheses

3.4.1 The learning task

The inference scheme (3.2) reveals that CBI can essentially be seen as an instance-
based approach. Still, it also contains a model-based component, namely the simi-
larity hypothesis h. Consequently, learning can be realized in (at least) two ways
in CBI: By storing new cases in the memory and by estimating the similarity
profile. Here, we concentrate on the latter (model-based) aspect.

Definition 3.27 (CBL). Consider a CBI setup Σ with a memory

M ⊆ D = DN = (c1, . . . , cN),

where D denotes the sequence of cases which have been encountered so far (these
are the first N cases, given the assumption that cases arrive successively). More-
over, let H be a hypothesis space of functions h : [0, 1] −→ [0, 1]. The task
of case-based learning (CBL) is understood as deriving an optimal hypothesis
h∗ ∈ H from the data given. �
18 See Section 4.6 for a more detailed discussion of the assessment of cases.
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Observe that different similarity measures define different similarity structures of
the system under consideration and that the measures originally chosen might
not be optimal in the sense that similarity structures induced by alternative
measures are, in a certain sense, more suitable for CBI. Suppose, for instance,
that we have measures (σS , σR) and (σ′

S , σ′
R) and let ϕ̂h,M resp. ϕ̂′

h,M denote the
case-based approximations induced by these measures via (3.15) with h = hΣ. If
ϕ̂h,M(s) ⊆ ϕ̂′

h,M(s) for all s ∈ S, then (σ′
S , σ′

R) should not (at least not strictly) be
preferred to (σS , σR). This gives rise to defining a partial order relation on a class
of measures. Therefore, it might also be reasonable to allow for the adaptation of
similarity measures. The problem of CBL can thus be extended as follows.

Definition 3.28 (extended CBL problem). Let a set S of inputs, a set R of
outputs, and a memory M ⊆ D = (c1, . . . , cN) be given, where D denotes the
sequence of cases which have been encountered so far. Moreover, let H be a class
of functions h : [0, 1] −→ [0, 1] and HS , HR classes of similarity measures over
S and R, respectively. The task of (extended) CBL is defined as searching the
hypothesis space H × HS × HR for an optimal hypothesis h∗ = (h, σS , σR). �

Remark 3.29. Relating the interpretation of a similarity hypothesis h (resp. a
similarity profile hΣ) to the idea of modifying the measure σS has already been
suggested in Remark 3.4. If h is strict, such a modification corresponds to a
“stretching” and “squeezing” of the similarity scale underlying σS . Moreover,
the modification is restricted in the sense that the original measure σS and its
modified version σ′

S are coherent in the sense of (3.17). As opposed to this, a
non-monotone hypothesis additionally puts the similarity degrees x ∈ DS in a
different order, which corresponds to a re-arranging of the (ordinal) similarity
scale DS . Then, (3.17) holds true only with ≤ replaced by the equality relation.
In other words, two inputs s1, s2 which are more similar than the inputs s3, s4

according to σS might be seen as being less similar according to σ′
S . Now, one

possibility to approach the extended CBL problem is to allow for a re-arranging
of the similarity scale underlying σR as well, i.e., to allow for replacing σR by
σ′
R = m ◦ σR for some m : [0, 1] −→ [0, 1]. A similarity hypothesis h is then

related to (σS , σ′
R) instead of (σS , σR). In connection with the extended CBL

problem, this amounts to defining HR as the class of all measures which can be
written in the form m ◦ σR. �

Definition 3.27 has not commented on the criteria which decide on the optimality
of hypotheses. In order to derive such criteria we fall back on two principles. The
first one is the obvious demand that an optimal hypothesis h∗ should be consistent
with observed data in the sense that (3.1) is satisfied at least for elements of D,
i.e.

(σS(s, s′) = x) ⇒ (σR(r, r′) ≥ h∗(x)) (3.22)

should hold true for all 〈s, r〉, 〈s′, r′〉 ∈ D. This consistency principle is closely re-
lated to the inductive learning hypothesis in machine learning. Namely, we suspect



3.4 Learning similarity hypotheses 83

a hypothesis h, which is consistent with a large number of observations, also to
be consistent with the overall similarity structure of the system (in the sense
that it is admissible). Observe that (3.22) implies ϕ(s) ∈ ϕ̂h,M(s) for all s with
〈s, ϕ(s)〉 ∈ D and M ⊆ D. Again, we may assume that a mapping which defines
an outer approximation of ϕ|S ′ for a (large) subset S ′ ⊆ S also defines an outer
approximation of the complete mapping ϕ = ϕ|S. We denote by HD ⊆ H the
class of hypotheses which are consistent with a set D of cases in the sense of
(3.22).

As will be seen in Section 3.4.3, it may become necessary to weaken the aforemen-
tioned consistency principle. In fact, testing consistency of a hypothesis according
to (3.22) requires the consideration of all pairs (c, c′) ∈ D ×D of cases. However,
as suggested by Definition 3.27, the memory M of stored cases will generally be
a (proper) subset of the set D of successively encountered cases. It is hence not
possible to take the tuple, say, (c1, cN) into consideration if c1 was not stored long
enough and has been removed before the arrival of cN . Thus, a weaker version of
the consistency principle should require (3.22) to hold true for all

(c, c′) ∈ C = CN
df
=
⋃

1≤n≤N−1

Mn × (cn+1),

where Mn denotes the memory after the observation of the n-th case cn. We
denote by HC the class of hypotheses which are consistent with D in this weaker
sense. Thus, we generally have HD ⊆ HC ⊆ HM, where HM is defined in a
canonical way.

In order to motivate the second principle recall that the case-based approxima-
tion (3.15), which is induced by a hypothesis (h, σS , σR) and a memory M, can
be seen as a simplified representation of the system structure ϕ. Indeed, ϕ̂h,M is
represented by card(M) cases and the hypothesis (h, σS , σR), whereas the repre-
sentation of ϕ – if it cannot be expressed in closed form – requires the enumeration
of the complete set

D∗ df
= {〈s, ϕ(s)〉 | s ∈ S}

of cases. Of course, in passing from ϕ to ϕ̂h,M it is usually unavoidable to loose
some information. The corresponding increase in uncertainty is reflected by the
fact that ϕ̂h,M is a set-valued mapping and that we will generally have {ϕ(s)} �

ϕ̂h,M(s) for at least some inputs s ∈ S. According to the principle of minimum
uncertainty, which is one of the general principles of systems theory, one should,
among a set of candidates, accept only those simplifications of a system for which
the increase in uncertainty is minimal [231]. Thus, let U be some measure which
quantifies the uncertainty associated with ϕ̂h,M.19 A hypothesis h∗ is then optimal
if h∗ ∈ HC and U (ϕ̂h∗,M) ≤ U (ϕ̂h,M) holds true for all h ∈ HC. We denote by
H∗ ⊆ HC the class of all optimal hypotheses. Of course, this definition does
neither guarantee the existence nor the uniqueness of an optimal hypothesis.

19 Various proposals for such uncertainty measures can be found in systems science literature.
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In connection with the learning of hypotheses it makes sense to consider admissi-
bility as a further property which is more restricting than consistency. We denote
by H∗ the class of optimal admissible hypotheses. Thus, H∗ consists of those
uncertainty minimizing hypotheses h∗ which are consistent with D∗.20

Let us now consider the CBL problem in its basic form. Of course, deriving the
uncertainty U(ϕ̂h,M) associated with a hypothesis h is intractable if it requires
the computation of the complete mapping ϕ̂h,M. Observe, however, that any
reasonable measure U should satisfy U(ϕ̂h,M) ≤ U(ϕ̂h′,M) if ϕ̂h,M(s) ⊆ ϕ̂h′,M(s)
for all s ∈ S. Since the latter holds true if h′ ≤ h, U should be consistent with
the partial order defined by ≤ over H.

Observation 3.30. Suppose the hypothesis space H to satisfy h ≡ 0 ∈ H and
(h, h′ ∈ H) ⇒ (h ∨ h′ ∈ H), where h ∨ h′ is defined by the mapping x �→
max{h(x), h′(x)}. Moreover, suppose the measure U to satisfy

(h′ ≤ h) ⇒ (U(ϕ̂h,M) ≤ U(ϕ̂h′,M))

for all h, h′ ∈ H and memories M. Then, a unique optimal hypothesis h∗ ∈ H
exists, and HC = {h ∈ H |h ≤ h∗}. �

Given the assumptions of Observation 3.30, CBL can be realized as a candidate-
elimination algorithm [269], where h∗ is a compact representation of the version
space, i.e., the subset HC of hypotheses from H which are consistent with the
training examples.

Note that (3.22) guarantees consistency in the “empirical” sense that r ∈ ϕ̂h,M(s)
for all observed cases 〈s, r〉 ∈ D. Still, one might think of demanding furthermore
a kind of “logical” consistency, namely ϕ̂h,M(s′) "= ∅ for the set of all possible
inputs s′ ∈ S. Of course, this additional demand would greatly increase the
complexity of testing consistency. Moreover, the assumptions of Observation 3.30
would no longer guarantee the existence of a unique optimal hypothesis.

Since two hypotheses h and h′ are only comparable for the same underlying simi-
larity measures (cf. Remark 3.7), the above remarks do not apply to the extended
CBL problem. Thus, considering the maps ϕ̂h,M themselves cannot be avoided in
this case. Nevertheless, one can think of efficient (heuristic) approaches for realiz-
ing corresponding learning procedures. A value U(ϕ̂h,M) might be approximated,

for instance, by some value Û({ϕ̂h,M(s) | s ∈ S ′}) derived from a sample S ′ ⊆ S.
The usefulness of different (generalized) learning procedures will, however, highly
depend on characteristics of the similarity measures and the way in which these
measures can be adapted, i.e., on the classes HS and HR. In this section, we shall
restrict ourselves to the basic version of the CBL problem.

20 Observe that H∗ ⊆ H∗ does generally not hold.
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3.4.2 A learning algorithm

Let hypotheses be represented by step functions

h : x �→
m∑

k=1

βk · IAk
(x), (3.23)

where Ak = [αk−1, αk) for 1 ≤ k ≤ m − 1, Am = [αm−1, αm] and 0 = α0 <
α1 < . . . < αm = 1 defines a partition of [0, 1].21 The hypothesis h can then be
associated with a set of rules (implications) of the form

(σS(s, s′) ∈ Ak) ⇒ (σR(ϕ(s), ϕ(s′)) ≥ βk). (3.24)

Observe that by simply defining one interval for each element x ∈ DS , hΣ itself
can be seen as a step function if S is finite. A combination (3.24) of such similarity
degrees seems still reasonable if S is not finite (or even if card(S) is large).

The class Hstep of functions (3.23), defined for a fixed partition, does obviously
satisfy the assumptions of Observation 3.30. The optimal hypothesis h∗ is defined
by the values

βk
df
= min

(s,s′)∈C↓,σS(s,s′)∈Ak

σR(ϕ(s), ϕ(s′)) (3.25)

for 1 ≤ k ≤ m, where min ∅ df
= 1 by convention; see Fig. 3.4 for an illustration.

Since this hypothesis is directly derived from the case base M, we also call it the
empirical similarity profile.

Now, suppose that M is the current memory and that a new case c0 = 〈s0, r0〉 has
been observed. Updating h∗ can then be accomplished by passing the iteration

βκ(s0,s) = min{βκ(s0,s), σR(r0, r)} (3.26)

for 1 ≤  ≤ card(M); the index 1 ≤ κ(s, s′) ≤ m is defined for inputs s, s′ ∈ S
by κ(s, s′) = k

df⇔ σS(s, s′) ∈ Ak. As (3.26) shows, the representation (3.23) is
computationally efficient. In fact, the time complexity of updating a hypothesis
is linear in the size of the memory.22 In other words, the model-based part of
learning in CBI is not critical from a computational point of view. We refer to
the algorithm defined by (3.26) as CBLA and denote by CBLA(C) the hypothesis
(3.25).

For obvious reason we call h∗ ∈ Hstep defined by

β∗
k

df
= inf

x∈DS∩Ak

hΣ(x) (3.27)

(1 ≤ k ≤ m) the optimal admissible hypothesis. Since admissibility (in the sense
of Definition 3.2) implies consistency, we have h∗ ≤ h∗.

21 In Section 3.3.1 we have hinted at the ordinal character of the similarity measures σS , σR. In con-
nection with the representation of hypotheses according to (3.23) it should, therefore, be noticed
that a scaling of σS might influence the optimal similarity hypothesis if the underlying partition is
assumed to be fixed.

22 We assume that κ is computed in constant time.
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σS(sı, s)

σR(rı, r)

0

0

1

1

Fig. 3.4. Each pair of observed cases 〈sı, rı〉 and 〈s, r〉 contributes a point (x, y) in the “similarity
space”, where y = σS(sı, s) and r = σR(rı, r). By definition, these points are located above the
similarity profile, which is here shown by the solid curve. The optimal similarity hypothesis h∗ is given
by the step function indicated by the solid horizontal lines.

Remark 3.31. Assuming the CBI hypothesis to hold true in the strict sense
restricts the class Hstep to the class H↑

step of non-decreasing step functions, which
is also closed under ∨. Consider a hypothesis h∗ ∈ Hstep represented by values

(β1, . . . , βm). Moreover, denote by h↑
∗ ∈ H↑

step the corresponding strict hypothesis

represented by values (β↑
1 , . . . , β

↑
m). The relation between h∗ and h↑

∗ is obviously
given by β↑

k = min{β | k ≤  ≤ m} for all 1 ≤ k ≤ m. Thus, an optimal strict
hypothesis can always be derived easily from h∗. �

Remark 3.32. If a similarity hypothesis h is defined by a step function, the same
is actually true for a case-based approximation ϕ̂h,M itself. Namely, for s, s′ ∈ S
we have ϕ̂h,M(s) = ϕ̂h,M(s′) if κ(s, sı) = κ(s′, sı) for all 1 ≤ ı ≤ n. A correspond-
ing equivalence relation on S × S, where each equivalence class is identified by
some vector (k1, . . . , kn) of indices k = κ(s, s) ∈ {1, . . . , m}, offers some inter-
esting possibilities of representing the mapping ϕ̂h,M and deriving values thereof.
For instance, since ϕ̂h,M(s) = ϕ̂h,M(s′) whenever s and s′ are elements of the same
equivalence relation, the values associated with the equivalence classes might be
computed in advance and stored by means of an adequate data structure. The
derivation of a value ϕ̂h,M(s) then reduces to a (simple) “look-up” procedure.
Admittedly, the number mn of (potential) classes is generally extremely large,
even though most of them will be empty. �

3.4.3 Properties of case-based learning

We shall now consider an iterative scheme which is in accordance with the idea
of CBI as a repeated process of problem solving and learning. This case-based
learning process, called CBLP and outlined in Algorithm 1, is based on a random
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sequence (SN)N≥1 of inputs SN ∈ S which are independent and identically dis-
tributed according to µS , and a sequence p = (pN)N≥1 ∈ [0, 1]∞.

Algorithm 1 CBLP

Input: a sequence of query inputs
Output: a sequence of estimation for outputs

1: M0 = ∅, h0 ≡ 1
2: N = 0
3: repeat
4: compute r̂N+1 = ϕ̂hN ,MN (sN+1)
5: solve-problem(sN+1, r̂N+1)
6: hN+1 = update(hN , cN+1,MN )

7: MN+1 =

{ MN ∪ (cN+1) with probability pN+1

MN with probability 1 − pN+1

8: N = N + 1
9: until no more queries exist

Here, solve-problem is a procedure in which the prediction r̂N+1 is used for
supporting the derivation of the true outcome ϕ(sN+1). Moreover, the procedure
update(hN , cN+1,MN) returns the hypothesis obtained from hN by passing the it-
eration (3.26) for MN and the case cN+1 = 〈sN+1, ϕ(sN+1)〉. Observe that CBLP

guarantees hN = CBLA(CN) but that we generally have hN "= CBLA(DN ×DN).
The probabilistic extension of the memory in CBLP takes into account that
adding all observations to M, i.e., taking p ≡ 1, might not be advisable [353].
Of course, efficient problem solving will generally assume a more sophisticated
strategy for the instance-based aspect of learning, i.e., for maintaining the mem-
ory of cases. It might be reasonable, e.g., to take the “quality” of individual cases
into account and to allow for removing already stored cases from the memory
[355, 286]. Nevertheless, the probabilistic extension in CBLP allows for gaining
insight into theoretical properties of the learning scheme. Observe that pN = 0
for N ≥ N0 (with N0 being a constant number) comes down to using a fixed
memory M.

Given a CBI setup and the sequence (pN)N≥1, the hypotheses hN induced by
CBLP are random functions with well-defined (even though tremendously com-
plicated) distributions. We are now going to derive some important properties
of the sequence (hN)N≥1. It goes without saying that one of the first questions
arising in connection with our learning scheme concerns the relation between
(hN)N≥1 and the optimal admissible hypothesis h∗.

Proposition 3.33. Suppose p ≥ δ > 0, i.e., pN ≥ δ for all N ∈ N, and let
(hN)N≥1 be the sequence of hypotheses induced by CBLP. Then, hN ↘ h∗

stochastically as N → ∞. That is, hN ≥ h∗ for all N ∈ N and

P(‖hN − h∗‖∞ ≥ ε) → 0

for all ε > 0. �
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Proof. From the definition of h∗ and the updating scheme (3.26) it becomes
obvious that h∗ ≤ hN for all N ≥ 1 and that the sequence of functions
(hN)N≥0 is decreasing. Let ε > 0 and consider some 1 ≤ k ≤ m. Accord-
ing to (3.27), there is some x ∈ Ak such that |hΣ(x) − β∗

k| < ε/2. Since we
have hΣ(x) = inf

{
σR(ϕ(s), ϕ(s′)) | s, s′ ∈ S, σS(s, s′) = x

}
, there are also values

sk1 , sk2 ∈ S such that σS(sk1 , sk2) = x and |σR(ϕ(sk1), ϕ(sk2)) − hΣ(x)| < ε/2.
Hence, |σR(ϕ(sk1), ϕ(sk2)) − β∗

k| < ε. This implies |hMN
(x) − β∗

k| < ε as soon as
the memory MN contains the inputs sk1 and sk2 , where hMN

= CBLA(MN).
Since this argumentation applies to all 1 ≤ k ≤ m and since h∗ ≤ hN ≤ hMN

, we
obtain

‖hN − h∗‖∞ ≤ ‖hMN
− h∗‖∞ = max

0≤x≤1
|hMN

(x) − h∗(x)| < ε

if MN contains the (at most 2 m) inputs sk1 , sk2 (1 ≤ k ≤ m). Since µS(sk1) > 0
and µS(sk2) > 0 for all 1 ≤ k ≤ m and pN ≥ δ > 0 for all N ∈ N, the probability
for this tends toward 1 for N → ∞. �

Observe that the stochastic convergence (from above) of the hypotheses (hN)N≥0

toward h∗ ∈ Hstep, which is guaranteed by Proposition 3.33, does not imply that
hN(x) → hΣ(x) for all x ∈ DS . In fact, it might happen that h∗|DS is already
a poor approximation of hΣ (at least in the strong sense of the ‖ · ‖∞ metric)
regardless of the (finite) partition underlying the definition of the hypothesis
space Hstep. The following example shows that this cannot be avoided even if the
system (S,R, ϕ) satisfies strong structural assumptions:

Example 3.34. Let S = {sk = k − (1/2)k | k ∈ N0}, R = {0, 1}, and

ϕ(sk) =

{
0 if �k/2� is odd

1 if �k/2� is even
.

Moreover, let σS(s, s′) = |s − s′|−1 and σR(r, r′) = 1 − |r − r′| (and note that
ϕ : (S, | · |) −→ (R, | · |) does even satisfy a Lipschitz condition). Now, for
αk = 2k/(2k + 1) (k ∈ N) there are exactly two inputs s, s′ ∈ S such that
σS(s, s′) = αk, namely s = sk−1 and s′ = sk (or vice versa). Thus, we have

hΣ(αk) = σR(ϕ(sk−1), ϕ(sk)) =

{
1 if k is odd

0 if k is even
.

Obviously, each finite partition of [0, 1] contains an interval A such that αk, αk+1 ∈
A for some k ≥ 1. Consequently, h∗|A ≡ 0 and, hence, ‖h∗|DS − hΣ‖∞ = 1. �

The convergence from above established by Proposition 3.33 already suggests
that we will generally have hN(x) > hΣ(x) for some x ∈ DS in the course of
a CBL process. Thus, we might work with inadmissible hypotheses (see also
Fig. 3.4, where h∗ ≤ hΣ does not hold). This, of course, seems to conflict with
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the objective of providing an outer approximation of ϕ. Indeed, it can easily be
shown that hΣ is the largest function h (defined on DS) such that ϕ(s) ∈ ϕ̂h,M(s)
for all s ∈ S is guaranteed regardless of the memory M. In other words, for
each function h with h(x) > hΣ(x) for at least one x ∈ DS , a memory M can be
found such that ϕ(s) "∈ ϕ̂h,M(s) for at least one s ∈ S. Observe, however, that the
approximation ϕ̂hN ,MN

is derived from the specific memory MN . Thus, the fact
that hN(x) > hΣ(x) for some x ∈ DS does by no means rule out the possibility of
ϕ̂hN ,MN

being an outer approximation of ϕ. In connection with CBLP one might
therefore be interested in the probabilities

qN+1 = P
(
ϕ(SN+1) "∈ ϕ̂hN ,MN

(SN+1)
)

(3.28)

of incorrect predictions.

Consider a memory M, a hypothesis h, and an input s0 ∈ S. We call s0 extremal23

(with respect to M and h) if h "= update(h, s0,M), i.e., if there is some 1 ≤ k ≤
m and a case 〈s, r〉 ∈ M such that σS(s, s0) ∈ Ak and

∀ 〈s′, r′〉 ∈ M : (σS(s, s′) ∈ Ak) ⇒ (σR(r, r0) < σR(r, r′)) .

Lemma 3.35. For a memory M, a hypothesis h ≤ CBLA(M), and an input
s0 ∈ S suppose that ϕ(s0) "∈ ϕ̂h,M(s0). Then, s0 is extremal. �

Proof. Suppose r0 "∈ ϕ̂h,M(s0). Then, we find a case 〈s, r〉 ∈ M such that
r0 "∈ Nh(σS(s,s0))(r). This means that σR(r, r0) < h(σS(s, s0)) and, since h ≤
CBLA(M), σR(r, r0) < σR(r, r′) for all cases 〈s′, r′〉 ∈ M satisfying σS(s, s′) ∈
Aκ(s,s0). Hence, s0 is extremal. �

Proposition 3.36. The following estimation holds true for the probability (3.28):

qN+1 ≤
N∑

n=0

2m

n + 1
· P(card(MN) = n) (3.29)

≤ 2m

1 + E(card(MN))
=

2m

1 +
∑N

k=1 pk

, (3.30)

where m is the size of the partition underlying Hstep and E denotes the expected
value operator. �

Proof. Suppose MN to consist of n ≤ N cases, i.e., MN is defined by some
random (sub-)sequence (Sπ(1), . . . , Sπ(n)) of inputs, where 1 ≤ π(1) < π(2) <
. . . < π(n) ≤ N . Moreover, consider a new input S0 = SN+1 and observe that

P(ϕ(S0) "∈ ϕ̂hN ,MN
(S0)) ≤ P(ϕ(S0) "∈ ϕ̂hMN

,MN
(S0)),

23 This definition of being extremal is to some extent related to the concept of “strangeness” of an
observation in the context of so-called confidence machines [162, 301].
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where hMN
= CBLA(MN). From the random sequence (Sπ(1), . . . , Sπ(n), S0) of

inputs we can choose a set M′ of (at most) 2m inputs resp. associated cases
such that CBLA(MN ∪ {〈S0, ϕ(S0)〉}) = CBLA(M′). Obviously, 〈S0, ϕ(S0)〉 /∈
M′ implies that S0 is not extremal. Now, recall that inputs are independent
and identically distributed according to µS . Thus, the value 2m/(n + 1) defines
an (upper) bound to the probability that 〈S0, ϕ(S0)〉 ∈ M′ due to reasons of
symmetry. We hence obtain

P(ϕ(S0) "∈ ϕ̂hN ,MN
(S0) | card(MN) = n) ≤

P(ϕ(S0) "∈ ϕ̂hMN
,MN

(S0) | card(MN) = n) ≤ 2m/(n + 1)

from Lemma 3.35. Then, (3.29) and (3.30) follow from the theorem of total prob-
ability and Jensen’s inequality, respectively. �

Corollary 3.37. Suppose p ≥ δ > 0. Then, qN+1 ≤ 2m/(δN + 1). Particularly,
qN+1 ≤ 2m/(N + 1) if p ≡ 1. �

According to the above results, the probability of an incorrect prediction becomes
small for large memories, even though the hypotheses hN might be inadmissible.
Under the assumptions of Corollary 3.37, this probability tends toward 0 with a
convergence rate of order O(1/N).

Corollary 3.38. Suppose p ≥ δ > 0. Then, the expected proportion of incorrect
predictions in connection with CBLP converges toward 0. �

Proof. Define the random variable Vn (n ≥ 1) by means of Vn = 1 if the n-th
prediction is incorrect, i.e., if ϕ(Sn) /∈ ϕ̂hn−1,Mn−1(Sn), and Vn = 0 otherwise.
Then, E(Vn) = qn, where E(Vn) denotes the expected value of Vn, and

E

(
1

N

N∑
n=1

Vn

)
=

1

N

N∑
n=1

E(Vn)

(Cor. 3.37)

≤ 1

N

N∑
n=1

2m/(δn)

≤ 2m(1 + ln(N))

δN
→ 0

as N → ∞. �

Example 3.39. Fig. 3.5 shows the optimal hypothesis h∗ for the setup Σ1 defined
in Example 2.5 (cf. Section 2.4.1) and the hypothesis hM for a typical memory M
of size 250, generated by a sequence of inputs chosen at random. The underlying
partition has been defined by the values αk = k/10 (k = 0, . . . , 10). The same
figure shows a characterization of the evolution of the approximation quality in
the form of the values ‖h∗ − hMn‖2 and ‖h∗ − hMn‖∞ (n = 1, . . . , 300), where
‖ · ‖p denotes the corresponding Lp-norm. �
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The upper bound established in Proposition 3.36 might suggest to reduce the
probability of an incorrect prediction by reducing the size m of the partition
underlying Hstep. Observe, however, that this will also lead to a less precise ap-
proximation of hΣ and, hence, to less precise predictions of outcomes. “Merging”
two neighbored intervals Ak and Ak+1, for instance, means to define a new hy-
pothesis h with h|(Ak ∪ Ak+1) ≡ min{βk, βk+1}. In fact, the probability of an
incorrect prediction can be made arbitrarily small by increasing the size of the
memory. The precision of the predictions, however, is limited by the precision
to which hΣ can be approximated by h∗ and, hence, by the granularity of the
partition underlying the definition of the hypothesis space Hstep. Of course, noth-
ing prevents us from extending our approach to CBL such that it allows for the
adaptation of the partition. A refinement of the latter will make sense, e.g., if the
size of the memory becomes large.

Let us now consider the fixed memory-model, i.e., the case where CBI is based
on a fixed memory M = (c1, . . . , cn) of size n ≥ 1. The objective of CBL is then
to find an approximation of the M-similarity profile hM

Σ . Thus, the consistency
principle (3.22) should hold true for C = M × D. Again, the class H∗ consists of
the uncertainty minimizing hypotheses in HC. Likewise, H∗ is made of those un-
certainty minimizing hypotheses that satisfy (3.22) for M×D∗. Observation 3.30
does obviously remain correct. The hypothesis h∗ = CBLAM(D) is now defined
by the values

βk = min
{
σR(r, r′) | 〈s, r〉 ∈ M, 〈s′, r′〉 ∈ D, σS(s, s′) ∈ Ak

}
.

Thus, given a new observation, the update of the current hypothesis is realized
by passing the iteration (3.26) for the n cases in M. The fixed-memory version
of CBLP, denoted CBLPM, is outlined in Algorithm 2.

For the hypotheses hN induced by CBLPM we do not only obtain an upper
approximation but even hN = CBLAM(DN).

Fig. 3.5. Left: Optimal hypothesis h∗ for the setup Σ1 in Example 2.5 and the hypothesis hM for a
memory M of size 250. Right: Evolution of approximation quality ‖h∗ − hMn‖2 and ‖h∗ − hMn‖∞
(cf. Example 3.39).
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Algorithm 2 CBLPM
Input: a sequence of query inputs
Output: a sequence of estimation for outputs

1: h0 = CBLA(M)
2: N = 0
3: repeat
4: compute r̂N+1 = ϕ̂hN ,M(sN+1)
5: solve-problem(sN+1, r̂N+1)
6: hN+1 = update(hN , cN+1,M)
7: N = N + 1
8: until no more queries exist

Proposition 3.40. For the sequence (hN)N≥1 induced by CBLPM it holds true
that hN ↘ h∗ stochastically as N → ∞, where h∗ is defined by the values
β∗

k = inf{hM
Σ (x) |x ∈ DS ∩ Ak} (1 ≤ k ≤ m). �

Proposition 3.41. In connection with the fixed memory-model we obtain the
estimation qN+1 ≤ 2m/(N + 1) for the probability (3.28), where m is the size of
the partition underlying Hstep. �

Proof. Consider the random sequence (S1, . . . , SN , S0) of N + 1 inputs. From
this sequence we can choose a set D of (at most) 2m inputs resp. associated
cases such that CBLAM(DN ∪ {〈S0, ϕ(S0)〉}) = CBLAM(D). Now, recall that
〈S0, ϕ(S0)〉 /∈ D implies that S0 is not extremal with respect to hN and M and
that inputs are independent and identically distributed according to µS . Thus, the
value 2m/(N+1) defines an (upper) bound to the probability that 〈S0, ϕ(S0)〉 ∈ D
due to reasons of symmetry. The rest follows from Lemma 3.35. �

Corollary 3.42. The expected proportion of incorrect predictions in connection
with CBLPM converges toward 0. �

It should be noticed that CBLPM is closely related to CBLP in the case where
some N0 ∈ N exists such that pN = 0 for all N ≥ N0. Suppose for instance,
that pN = 1 for 1 ≤ N < N0 and pN = 0 for N ≥ N0. Then, Proposition 3.41
remains correct with CBLPM replaced by CBLP. Proposition 3.40 remains cor-

rect if, moreover, hM
Σ is replaced by h

MN0−1

Σ . The result of Proposition 3.41 can
also be used for deriving the following generalizations of Proposition 3.36 and
Corollary 3.38.

Proposition 3.43. Let N0 ∈ N and suppose pN = 1 for N ≥ N0. We then
obtain the estimation

qN+1 ≤ 2m

(
1 + max{0, N − N0} +

N0−1∑
k=1

pk

)−1

,

where m is the size of the partition underlying Hstep. �
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Corollary 3.44. Let N0 ∈ N and suppose pN = 1 for N ≥ N0. Then, the
expected proportion of incorrect predictions in connection with CBLP converges
toward 0. �

Summing up, the results of this section throw light on some interesting properties
of our approach to case-based learning. In fact, the combination of case-based
inference and case-based learning, i.e., the application of the prediction scheme
of Section 3.2.1 with a hypothesis derived by means of CBLA, allows for deriving
a set-valued prediction ϕ̂(s0) = ϕ̂h,M(s0) which covers the true outcome with a
high probability. In a statistical sense, ϕ̂h,M(s0) can thus be seen as a kind of
confidence region or credible output set, a justification for designating the above
inference scheme as credible case-based inference.

Remark 3.45. In many applications one is interested in both, a credible output
set and a “point-estimation” of the output r0, i.e., a distinguished element r̂0 ∈ R
that can be considered as representative. The latter can be derived from the
credible output set ϕ̂h,M(s0) as a generalized median:

r̂0
df
= arg max

r∈ϕ̂h,M(s0)

∑
r′∈ϕ̂h,M(s0)

σR(r, r′) (3.31)

As can be seen, the generalized median is a kind of center-point, namely the
element of the credible output set which is maximally similar to all other ele-
ments. �

Note that the concrete probability of a correct prediction depends on the number
of observed cases and can thus be estimated in advance. Moreover, it can be made
arbitrarily large by extending the size of the memory. CBLP, the combination of
CBI and CBL, can thus be seen as an interesting method of statistical inference.
Principally, it defines a generalized instance-based learning algorithm which takes
uncertainty in connection with the prediction of outcomes into account. This
aspect will be discussed in more detail in Section 3.5 below.

Let us finally mention that results similar to the ones derived in this section can
also be obtained in connection with other types of similarity profiles. Recall, for
instance, the concept of a local similarity profile: Let M be a memory of cases,
namely a subset M ⊆ D of the cases 〈sn, rn〉 (1 ≤ n ≤ N) which have been
encountered so far. For 〈s, r〉 ∈ M we define the local hypothesis hs by the values

βk
df
= min

1≤n≤N :σS(s,sn)∈Ak

σR(ϕ(s), ϕ(sn)). (3.32)

The local M-hypothesis is given by hM df
= {hs | s ∈ M↓}. We can then prove a

result similar to Proposition 3.36:
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Proposition 3.46. Suppose that N (independent and identically distributed)
cases have been encountered so far. For a subset M containing |M| cases let a
local M-hypothesis be defined according to (3.32). Moreover, let s0 ∈ S be a
new problem (chosen at random from S). The probability that the true outcome
r0 = ϕ(s0) is not covered by

ϕ̂hM,M(s0) =
⋂

〈s,r〉∈M

Nhs(σR(s,s0))(r) (3.33)

is bounded from above by |M|m/(N + 1). �

A prediction (3.33) based on a local M-hypothesis is generally more precise than
a prediction (3.2). At the same time, however, the associated confidence level is
smaller. Still, Proposition 3.46 shows that this level can be made arbitrarily large
by increasing the number of observed cases.

Note that it might not be possible to compute the hypothesis (3.32) exactly
if only some of the encountered cases 〈sn, rn〉 ∈ D are added to M. However,
Proposition 3.46 remains valid (up to some minor modifications) if the minimum
in (3.32) is not taken over all (pairs) of cases.

3.4.4 Experimental results

The basic learning scheme presented in Section 3.4.2 offers a convenient frame-
work which enables the realization of methods for predicting unknown outcomes
based on a sequence of observed cases. The results of Section 3.4.3 show that
corresponding predictions take the form of confidence regions which cover the
unknown output with a certain probability. In this section, we shall present some
small examples in order to convey how this approach works in practice. These
examples are not meant as an empirical evaluation of our CBI method, they are
only intended to provide an illustration of the theoretical results derived above.

We have organized two experimental studies as follows: First of all, a target func-
tion ϕ with domain S and range D is specified. A single run of a simulation
corresponds to the CBLP scheme presented in Section 3.4.3, where p ≡ 1, a new
input is chosen according to the uniform distribution, and the length of the gen-
erated random sequence of inputs is 1000. The size of the partition underlying
the learned similarity hypothesis is m = 20. Given a new input SN+1, a pre-
diction ϕ̂hN ,MN

(SN+1) is derived from the hypothesis hN and the memory MN

according to (3.15) or (3.16). Two characteristic quantities are recorded for this
estimation. Firstly, the correctness is captured by means of VN ∈ {0, 1}, where
VN = 1 iff (ϕ(SN+1) ∈ ϕ̂hN ,MN

(SN+1)). Secondly, the precision is specified by

PN
df
= diam(ϕ̂hN ,MN

(SN+1)). The behavior of the prediction method can then be
characterized by means of the expected values E(VN) and E(PN) associated with
the sequences (V1, . . . , V1000) and (P1, . . . , P1000), respectively. Approximations of
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these expected values have been obtained by deriving mean values V N and PN

from a large number of simulation runs. The respective sequences (V 1, . . . , V 1000)
and (P 1, . . . , P 1000) constitute the results which are finally presented in Appen-
dix D. Note that 1−V N is an estimation of the probability qN specified in (3.28).

For the first example, we have chosen the relatively simple function

ϕ : s �→ sin(s + 1) · cos2(s),

where S = [0, π/2] ∩ Q (and R = ϕ(S) ⊆ [0, 1.2]). The results are shown in
Fig. D.1–Fig. D.3. As it was to be expected from the theoretical results of Sec-
tion 3.4.3, the probability of an incorrect prediction soon becomes very small. Of
course, the more cases are used for constraining the outcome, the more precise the
predictions become. At the same time, however, this also increases the probability
of an incorrect prediction. The approximation (3.16), using a constant number of
k = 10 cases, shows that the expected precision of a prediction is not necessarily
a monotone function of the size of the memory (cf. Fig. D.2). This effect is not
restricted to (3.16) but can also occur in connection with (3.15), i.e., if all cases
are used. It is caused by two opposite effects related to the extension of a memory.
On the one hand,

M′ ⊆ M ⇒ ϕ̂h,M(s) ⊆ ϕ̂h,M′(s)

for all hypotheses h, memories M,M′, and s ∈ S. That is, the larger a memory
is, the more precise the approximation becomes. On the other hand,

h ≤ h′ ⇒ ϕ̂h′,M(s) ⊆ ϕ̂h,M(s)

for all hypotheses h, h′, i.e., the less strong a hypothesis is, the less precise the
approximation becomes. The aforementioned effect is then explained by the fact
that a case-based approximation is derived from a memory M and the associated
hypothesis hM and that M′ ⊆ M implies hM ≤ hM′ .

The simulation results might give the impression that the expected precision of
predictions converges toward some value which is larger than 0. Even though
this might happen in certain cases, it is actually not true for our example. In
fact, this example reflects a typical situation where the expected precision indeed
converges toward 0, but where the improvement due to additional observations
decreases with the size of the memory. In other words, the convergence rate
might be rather low. This can also be illustrated by means of the simple example
ϕ : s �→ s2, s ∈ S = [0, 1].24 For the CBI setup using σS : (s, s′) �→ 1 − |s − s′|
and σR : (r, r′) �→ 1 − |r − r′| we obtain hΣ(x) = x2. Moreover, it can be
shown that (3.15) leads to ϕ̂hΣ ,M(0) = [0, 2 min{s1, . . . , sn}], where s1, . . . , sn

denote the inputs which have already been observed, i.e., which define the memory
M. That is, the expected precision of the prediction of ϕ(0), i.e., the length

of the above interval, is given by the random variable X
df
= 2 min{S1, . . . , Sn},

24 For the sake of simplicity, we put up with the fact that S violates our assumption of countability.
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where S1, . . . , Sn are independent random variables distributed according to µS .
If the latter is taken as the uniform measure over [0, 1], it is not difficult to show
that E(X) = 2/(n + 1). Thus, the expected precision converges toward 0 with a
convergence rate of O(1/n).

The second experimental study uses the CBI setup Σ1 which has been introduced
in Example 2.5, i.e., a value ϕ(s) is defined as the cost of the optimal solution
associated with the combinatorial optimization problem encoded by s. The results
of this study, shown in Fig. D.4–Fig. D.7, are qualitatively similar to those of the
first experiment. As can be seen in Fig. D.4, the non-monotone behavior of the
expected precision of predictions now also occurs in connection with the case-
based approximation (3.15). It should be remarked that the results are quite
satisfactory in the sense that a rather small fraction of the card(S) = 75 cases
suffices for deriving relatively precise predictions of cost values (which are between
0 and 48). A memory of size 1000, for instance, corresponds to a fraction of
approximately 6/100, i.e., a prediction based on the 10 most similar cases uses
only slightly more than 0.06% of the cases.

Let us finally consider a “real-world” application. In connection with the Hous-

ing Database,25 we have used CBI for predicting prices of houses which are
characterized by 13 attributes. Similarity was defined as an affine-linear func-
tion of the distance between (real-valued) attribute values. For randomly chosen
memories of size 30 we have used 450 cases as training examples in order to
learn the respective local M-profiles. Based on (local) hypotheses thus obtained,
CBI allowed for predicting prices of the remaining 56 cases with a precision of
approximately 10,000 dollars and a confidence level around 0.85. Taking the gen-
eralized median (3.31) as a point-estimation, which here simply corresponds to
the center of the interval, one thus obtains predictions of the form x ± 5, 000
dollars. As can be seen, these estimations are quite reliable but not extremely
precise (the average price of a house is approximately 22,500 dollars). In fact,
this example clearly points out the limits of an inference scheme built upon the
CBI hypothesis. Our approach takes these limits into account and makes them
explicit: A case-based prediction of prices cannot be confident and extremely pre-
cise at the same time, simply because the housing data meets the CBI hypothesis
but moderately. Needless to say, problems of such type are of a general nature
and by no means specific to case-based inference. Linear regression, for example,
assumes a linear relationship between the dependent and independent variables.
It yields poor predictions and imprecise confidence intervals if this assumption is
not satisfied (which is often the case in practice).

25 Available at http://www.ics.uci.edu/˜mlearn.
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3.5 Application to statistical inference

It has already been mentioned that our approach to case-based learning (Sec-
tion 3.4) gives rise to an extension of the inference scheme of Section 3.2 which
provides us with an interesting statistical inference mechanism. In fact, it is just
the attached level of confidence which makes a (set-valued) prediction (3.2) at-
tractive from a statistical perspective. In order to emphasize this point, we have
already used the term credible CBI, referring to the combination of the inference
scheme (3.2) and the case-based learning algorithm of Section 3.4: Given a ran-
domly chosen memory M of cases and a new input s0, CBI derives a hypothesis
h = CBLA(M) and delivers a prediction

(ϕ̂h,M(s0), α)

such that
P (ϕ(s0) ∈ ϕ̂h,M(s0)) ≥ 1 − α.

This section is meant to outline briefly two applications which show that credible
CBI can complement existing statistical methods in a reasonable way.

3.5.1 Case-based parameter estimation

In order to show how credible CBI might support classical approaches to statis-
tical inference let us consider the idea of case-based parameter estimation. Thus,
the task is to estimate an unknown parameter ϑ ∈ Θ, where Θ denotes an under-
lying class of parameters. Quite often, the estimation of ϑ according to, say, the
Maximum Likelihood (ML) principle, is a computationally complex problem
involving numerical optimization methods. The computation of an ML estima-
tion (MLE) is hence impossible if such estimations have to be made available
frequently, perhaps even under strict time constraints. As an example one might
think of a control problem where data is obtained from monitoring a technical
system and where the MLE serves as a control parameter [219]. Likewise, on-
line data analysis and estimation problems arise in mining so-called data streams
[92, 161].

If the (repeated) derivation of an MLE is computationally too complex, credible
CBI might be used for estimating it. More specifically, we can derive a confi-
dence region for the MLE based on a set of data–MLE tuples and a new set of
data. Using our terminology, the data plays the role of an input and the MLE

corresponds to the output. The data–MLE tuples which constitute the memory
may originate from other estimations or may have been derived during a less
time-critical preprocessing phase.

The CBI hypothesis now means that similar data leads to similar ML estima-
tions, an assumption which appears reasonable for many applications. Still, the
choice of an adequate measure for determining the similarity between two sets of
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data will generally not be obvious. Since the adequacy of a measure depends on
the respective application, we will not go into detail here. Let us only mention
that it will often be possible to simplify the problem by passing from the data
itself to sufficient statistics thereof, i.e., to consider sufficient statistics as inputs
which determine the output in the form of an MLE.

In general, one will be interested in a confidence region not for the MLE ϑML

but for the true parameter ϑ of an underlying stochastic model. Suppose that
a confidence region for ϑ takes the form ϑML ⊕ CML, where CML ⊆ Rn can
be constructed from the data and does not depend on ϑ. A simple example is
the estimation of the mean µ of a normal distribution with standard deviation
σ. In this case, the (1 − α)-confidence region CML corresponds to an interval
[−tα · σ/

√
n, tα · σ/

√
n],26 i.e., CML depends only on the number of observations.

Now, let (ϕ̂h,M, β) be a CBI prediction of ϑML. Since

(ϑML ∈ ϕ̂h,M) ∧ (ϑ ∈ ϑML ⊕ CML) ⇒ (ϑ ∈ ϕ̂h,M ⊕ CML),

we obtain
P(ϑ ∈ ϕ̂h,M ⊕ CML) ≥ (1 − α)(1 − β).

That is, the set ϕ̂h,M ⊕ CML defines a (1 − α)(1 − β)-confidence region for ϑ.
This way, a confidence region for the true parameter ϑ can be derived by means
of purely case-based reasoning, i.e., without any reference to a likelihood function
and corresponding maximization problems.

3.5.2 Case-based prior elicitation

The determination of prior probability distributions is a main burden of Bayesian
analysis, and it has become a focus of criticism of the Bayesian approach. As a
second application let us therefore consider the possibility of exploiting (credible)
CBI in order to support the elicitation of such priors, i.e., the determination of
prior distributions from previous cases. The idea is thus to treat a CBI prediction
(ϕ̂h,M, α) of an MLE ϑML as prior information about the unknown parameter ϑ.

In general, there will exist several possibilities of utilizing a CBI prediction. A
relatively straightforward choice of a prior based on a prediction (ϕ̂h,M, α) is
defined by the associated probability density function

f : ϑ �→
{

(1 − α)(
∫

ϕ̂h,M
dt)−1 if ϑ ∈ ϕ̂h,M

α(
∫

Θ\ϕ̂h,M
dt)−1 if ϑ "∈ ϕ̂h,M

,

where we assume (
∫

Θ
dt) < ∞.27 For very small α one might even completely

concentrate on the predicted region and define a corresponding uniform prior
only over ϕ̂h,M:

26 The value tα is defined through the equality
∫ tα

−tα
φ(t) dt = 1 − α, where φ denotes the probability

density function of the standard normal distribution.
27 Otherwise it might still be possible to work with improper priors.
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f : ϑ �→
{

(
∫

ϕ̂h,M
dt)−1 if ϑ ∈ ϕ̂h,M

0 if ϑ "∈ ϕ̂h,M
.

The prior distribution is often assumed to belong to a certain parameterized
class C = {fγ | γ ∈ Γ} of distributions, where C is chosen in such a way that the
prior is conjugate to the likelihood function. This guarantees that the posterior
distribution belongs to the same class. A CBI prediction can then be utilized
for constraining (or even determining) the parameters of a prior distribution,
the so-called hyper-parameters. More precisely, a prediction (ϕ̂h,M, α) serves as a
constraint in the sense that the parameter γ has to satisfy

∫
ϕ̂h,M

fγ(t) dt = α. For

example, if the prior is normal with mean µ and standard deviation σ, the CBI

prediction ([β−, β+], α) entails
∫ β+

β− φµ,σ(t) dt = α, which in turn suggests

µ =
β− + β+

2
, σ =

β+ − β−

2tα
.

3.6 Summary and remarks

Summary

– We have adopted a constraint-based view of the CBI hypothesis, according to
which the similarity of inputs imposes a constraint on the similarity of asso-
ciated outcomes in the form of a lower bound. This interpretation allows for
exploiting the reasoning principle underlying CBI within a formal inference
process.

– The concept of a similarity profile has been introduced. It establishes a con-
nection between the system level and the similarity level and represents the
similarity structure of a CBI setup. Several generalizations of this concept have
been proposed in order to take special characteristics of CBI into consideration
and to improve case-based inference.

– A similarity hypothesis is thought of as an approximation of a similarity profile.
It thus defines a formal model of the CBI hypothesis for the system under
consideration.

– CBI has been realized as a process of constraint propagation which allows for
predicting an unknown output r0 ∈ R by means of a set ϕ̂h,M(s0) ⊆ R of
possible outcomes. This set is derived from an underlying hypothesis h and a
memory M of cases. It is guaranteed to cover r0 if h is admissible. An efficient
implementation of this inference scheme can be realized by means of parallel
computation techniques.

– We have studied some properties of case-based approximations, i.e., set-valued
mappings ϕ̂h,M : S −→ 2R derived from a hypothesis h and a memory of cases
M.
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– The idea of case-based learning can be realized in different ways within our
framework. Here, we have concentrated on the learning of a suitable similarity
hypothesis from a sequence of observations.

– Utilizing the hypothesis space Hstep, which consists of a class of step functions
on [0, 1], allows for realizing CBL by means of an efficient candidate-elimination
algorithm, CBLA. Particularly, the time complexity of updating a hypothesis
hM is linear in the size of the memory M.

– A sequence of hypotheses derived by CBLA from a random sequence of cases
converges stochastically toward the optimal admissible hypothesis h∗ ∈ H.
Even though these hypotheses may be inadmissible, they allow for deriving
predictions which define outer bounds with high probability. We thus obtain a
method of credible case-based inference that produces predictions in the form
of credible output sets which cover the true output with high probability. In
fact, our CBI method can be seen as a non-parametric approach to estimating
confidence regions.

– In Section 3.5, it has been argued that credible CBI is also interesting in the
context of classical statistical inference. More specifically, we have outlined the
ideas of case-based parameter estimation and case-based prior elicitation in
Bayesian analysis.

Remarks

– Within our framework, the concept of similarity should be seen as an essen-
tial but at the same time auxiliary concept. Indeed, the inference procedure
outlined in this chapter principally works with any pair of similarity functions
σS and σR, each of which defines a certain similarity structure. Of course, the
more suitably these functions are chosen, the more precise the inference results
will be. However, since our inference scheme takes into account the degree to
which the CBI hypothesis applies these results remain valid even if similarity is
not quantified in a meaningful way. The interpretation as an auxiliary concept
contrasts with other formalizations of CBI [99, 141, 296], in which inference
becomes more or less meaningless without a reasonable measure of similarity.

– It has already been remarked that the CBI scheme in Section 3.2.1 is based
on the transformation of original data, i.e., instances in the space S × R, into
points of the similarity space DS × DR. In this connection, it is interesting
to note that the transformation of data from a high-dimensional into a low-
dimensional space is also used by several other methods, e.g., in statistical data
analysis or self-organizing neural networks. Of course, the underlying objective
which is common to these methods is to capture essential properties of a system
structure by means of a simplified representation.

– In [221], an instance-based prediction method has been advocated as an alter-
native to linear regression techniques. By deriving set-valued instead of point
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estimations, credible CBI somehow combines advantages from both methods:
It requires less structural assumptions than (parametric) statistical methods as
does the instance-based approach. Still, it allows for quantifying the uncertainty
related to predictions by means of confidence regions. We shall return to this
point in the following chapter.

– We have argued that our approach to CBI combines model-based and instance-
based learning (cf. Section 3.1). Let us mention, therefore, another idea of es-
tablishing a relationship between model-based and instance-based reasoning.
According to the point of view adopted in [236], an instance-based prediction is
obtained within a Bayesian framework by marginalizing over all possible model
families and all (parameterized) individual models within those families. The
basic idea can be expressed by writing (in a somewhat sloppy notation)

P(x |X) =

∫
M

P(x |M) P(M |X) dM, (3.34)

where X and x denote, respectively, the observed data and a new vector x, and
M is a class of models. Equation (3.34) suggests that the prediction does not
depend on a model, only on the data X. However, apart from some technical
difficulties, this approach is not very convincing. In fact, (3.34) is nothing else
than the standard approach to higher-level Bayesian analysis (Bayesian aver-
aging): A prediction is derived by taking the average of the predictions made
by each possible model, weighted by the plausibilities of these models. Thus,
(3.34) corresponds to a weighted average of models of a certain class (sometimes
called the ensemble average).28 It is by no means “model-free” since the bias of
the model class is actually not “integrated out” by (3.34). Besides, it deserves
mentioning that our approach to combining model-based and instance-based
inference is very different. This becomes especially obvious by realizing that we
do not consider a model of any underlying data-generating process, but rather
of the CBI principle itself.

– The construction of confidence regions29 in the context of CBLP is in line with
classical (Neyman-Pearson) statistical inference. Particularly, the inference
procedure does not condition on the (structure of the) actually observed data
(as likelihood methods do). Rather, the claim that the n-th outcome is covered
with probability 1−αn by the confidence region Cn derived from the first n−1
cases should be interpreted in a “frequentistic” way: Let an experiment consist
of drawing a random sample of n cases, constructing a confidence region from
the first n − 1 cases, and noting a success if the outcome of the n-th case is
covered by that region. By repeating this type of experiment over and over
again, the relative frequency of successes will converge toward 1 − αn. In other
words, the probability αn is a property which has to be ascribed to the inference
procedure, not to the result.

28 Taking all model families (whatever this means) into account is impossible anyway. In practice, one
only considers one class, e.g., a certain type of neural networks.

29 Note that these regions are random variables.
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– In Section 3.1, we have hinted at limitations of a similarity-based analysis which
can occur due to the low dimensionality of the similarity space. In order to
overcome such limits one might think of using a more general, multi-dimensional
formalization of the concept of similarity. Such representations have indeed been
advocated in literature (e.g. [283]).

– In [247], the authors consider the problem to quantify the extent to which the
CBR hypothesis holds for a particular application at hand. To this end, they
propose a measure of the problem–solution regularity. In contrast to our concept
of a similarity profile, however, this is a one-dimensional measure. Besides, it
is not used for the purpose of prediction but rather as a kind of trigger for the
maintenance of the CBR system.



4. Probabilistic Modeling of Case-Based

Inference

The main idea of case-based inference is to exploit the information provided by
the similarity structure of a problem 〈Σ, s0〉 in order to improve the prediction of
an unknown outcome r0 = ϕ(s0). In Chapter 3, this structure has been charac-
terized by means of the similarity profile (hΣ, σS , σR) and the similarity structure
SST(M, s0). The specification of lower similarity bounds by hΣ allows for the
derivation of (set-valued) predictions which are guaranteed to cover the unknown
outcome. Still, hΣ gives only a relatively crude picture of the similarity structure
of the setup Σ, and predictions thus derived may turn out to be rather imprecise.

In particular, due to the fact that a similarity profile provides worst case estima-
tions in the form of lower similarity bounds, it is rather sensitive toward outliers,
i.e., similarity pairs

(x, y) = ( σS(sı, s), σR(rı, r) ) (4.1)

with comparatively small y. In fact, as hΣ(x) is a lower bound to the similarity
of outputs that belong to x-similar inputs, even the existence of a single pair of
x-similar inputs having rather dissimilar outcomes entails a small lower bound
hΣ(x). Small bounds in turn will obviously have a negative effect on the pre-
cision of (set-valued) predictions (3.2). This problem is illustrated in Fig. 4.1
for the auto-mpg data set, a benchmark from the UCI repository.1 The picture
clearly reveals the aforementioned outlier effect: The similarity profile (similarity
hypothesis) is “pressed down” by a relatively small number of similarity pairs
(4.1).

Due to the above problem, credible case-based predictions will often be very im-
precise. The concept of a local similarity profile, that has already been proposed
in Chapter 3, may alleviate this problem, as the similarity bounds in local profiles
only refer to a local region in the input space. An alternative or rather complemen-
tary idea is to weaken the concept of a similarity profile by looking for similarity
bounds that are “almost valid”, that is, valid with a certain probability. Before
formalizing this idea in a rigorous way, let us introduce a simpler example that
we shall use for illustration purposes throughout this chapter.

Example 4.1. Consider the 30× 30 grid shown in Fig. 4.2. This grid is thought
of as encoding a fuzzy concept or category. An input s ∈ S corresponds to an

1 Here, the problem is to predict the fuel consumption (= outputs) of cars (= inputs) which are
characterized by a number of attributes like horsepower or size. See section 4.4 for more details,
including the specification of the underlying similarity measures.
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0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fig. 4.1. Similarity hypothesis for the auto-mpg data (step function). Each point corresponds to a pair
(x, y) with x = σS(sı, s) (abscissa) and y = σR(rı, r) (ordinate).

instance and is identified by the coordinates of a grid point, i.e., S = {(ι, κ) | 1 ≤
ι, κ ≤ 30}. Let µS be the uniform measure over S. The set of outputs is defined as
R = {0, 1/2, 1} and encodes the degree of membership of an associated instance:
ϕ(s) = 1 means that the instance s is a positive example for the concept, ϕ(s) = 0
corresponds to the case of a negative example, and ϕ(s) = 1/2 means that s
belongs “more or less” to the category. Let

σS
(
(ι, κ), (ι′, κ′)

)
= max

{
0, 1 − 1

7
· max{|ι − ι′|, |κ − κ′|}

}
.

example, a white circle to a negative one, and a black and white circle indicates a membership degree
of 1/2. Right: Illustration of a prediction task.

Fig. 4.2. Illustration of the fuzzy concept of Example 4.1 (left): A black circle corresponds to a positive
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Moreover, let σR be defined as (r, r′) �→ 1−|r− r′|. This setup will henceforth be
referred to as Σ3. In connection with the problem of predicting membership de-
grees of instances, we might take advantage of the CBI hypothesis suggesting that
instances which are “close” to each other have “similar” degrees of membership.
Consider, for instance, the prediction task which is also illustrated in Fig. 4.2.
The observation of some of the surrounding instances will obviously have an effect
on our belief concerning the membership of the new instance which is marked by
a cross. However, even if intuitively justified, the CBI assumption is actually not
valid, at least if taken literally: One will always find (at least) one pair of instances
which are neighbored (similar) to a certain extent and for which the claim of sim-
ilar membership degrees does not apply. In fact, formally we derive the lower
bounds hΣ(x) = 0 for all x ∈ DS \ {1} = {0, 1/7, 2/7, . . . , 6/7}. The important
point, however, is the observation that the hypothesis holds true for most of the
examples and, hence, could still support the aforementioned prediction task. �

In this chapter, we shall approach the problem of deriving better predictions
by means of probabilistic methods. An obvious approach to achieving this is
to consider probability measures as a refinement of set-valued predictions. In
accordance with the constraint-based approach of Section 3.2, we might thus
look at the probabilities

P
(
R0 = r |OST(M, s0)

)
. (4.2)

(4.2) specifies the probability that the outcome ϕ(s0), which is now treated as a
random variable R0, is realized by r ∈ R, given the information provided by the
outcome structure of the problem 〈Σ, s0〉. More specifically, the indirect character
of CBI (cf. the remarks on page 67) suggests to proceed from the similarity
structure of 〈Σ, s0〉 and, hence, to derive probabilities

P
(
Y = y | SST(M, s0)

)
(4.3)

of corresponding similarity degrees y ∈ (DR)n first. Evidence concerning the
outcome r0 is then derived in a second step from (4.3).

Remark 4.2. Treating r0 as a random variable can be justified (from a “fre-
quentist” viewpoint) even if we do not adopt a subjective (Bayesian) position. In
Section 2.4, we have mentioned the idea of using a memory repeatedly for solving
instances drawn at random from a certain class of (combinatorial optimization)
problems. If the similarity structure of the setup Σ is indeed informative, the
probabilistic approach will make problem solving more efficient on the average.
In fact, the idea of repetitive problem solving is bound up with CBI.
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Note that CBI does not take information about the new input itself into account,
but only about the similarity between the new and already observed inputs.
Indeed, looking at r0 as a random variable would otherwise become more dubious,
even from a “subjectivist” point of view. Namely, for a deterministic CBI problem
the output r0 is actually determined as soon as s0 is known, even though its
derivation might involve a computationally complex process.2 �

A further possibility of generalizing the method presented in Chapter 3 is to fall
back on the idea underlying the likelihood principle in statistical inference and,
hence, to look at the likelihood function [139]

λ : r �→ P
(
OST(M, s0) |R0 = r

)
. (4.4)

In fact, the constraint-based approach of Chapter 3 can also be interpreted as
a special realization of this idea: Using only the likelihood degrees 0 and 1, the
likelihood of a (hypothetical) outcome r ∈ R is 0 as soon as it is not compatible
with the outcome structure of a problem 〈Σ, s0〉. Besides, an approach based on
(4.4) also presents the possibility of realizing a Bayesian reasoning procedure in
which the likelihood function serves as evidence for updating a (probabilistic)
quantification of the (prior) belief about the outcome r0.

The remaining part of this chapter is organized as follows: Section 4.1 provides
probabilistic generalizations of the concepts which have been introduced in Sec-
tion 3.1. In Section 4.2, some general aspects concerning the relation between
CBI, probabilistic reasoning and statistical inference are discussed. Section 4.3 is
concerned with approaches to case-based learning within the probabilistic setting.
Moreover, it proposes a generalization of the constraint-based inference scheme
from the previous chapter which produces a nested sequence of credible output
sets associated with different levels of confidence. Related experimental results
are presented and discussed in Section 4.4. The subsequent sections are devoted
to alternative types of probabilistic inference: The representation of case-based
evidence in the form of belief functions and the combination of individual pieces
of evidence in the framework of information fusion (Section 4.5), CBI based on
more complex (probabilistic) similarity profiles (Section 4.7), and approximate
probabilistic inference schemes which can be seen as a direct generalization of the
constraint-based approach to CBI (Section 4.8).

4.1 Basic probabilistic concepts

In this section, we introduce probabilistic generalizations of the concepts which
have been discussed in Section 3.1. Consider a problem 〈Σ, s0〉 with

2 This is related to a problem discussed under the slogan “logical omniscience” by philosophically
minded logicians and probabilists. See [182] for an interesting discussion and a related extension of
Savage’s framework of subjective probability theory.
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M =
(
〈s1, r1〉, . . . , 〈sn, rn〉

)
(4.5)

being the memory of the setup Σ. According to our probabilistic modeling of the
occurrence of inputs, the sequence (s1, . . . , sn, s0) can be seen as the realization
of a random sequence of inputs which is characterized by the probability measure

(µS)n+1 df
= µS ⊗ µS ⊗ . . . ⊗ µS ⊗ µS︸ ︷︷ ︸

n + 1 times

∈ P(Sn+1). (4.6)

This measure defines the (discrete) probability space (Sn+1, (µS)n+1) underlying
the CBI problem. It determines the probability of the occurrence of certain in-
formation structures, such as the outcome structure OST(M, s0). Observe that
the memory (4.5) is distributed according to µS×R, where

µS×R({(s, r)}) =

{
µS({s}) if ϕ(s) = r

0 if ϕ(s) "= r
.

In accordance with the CBI hypothesis, case-based inference is particularly con-
cerned with modeling the (similarity) relation between pairs of cases. Thus, we
shall pay special attention to (4.6) with n = 1. The more general case n > 1 and
the related problem of combining (probabilistic) evidence obtained from different
cases will be discussed in subsequent sections.

4.1.1 Probabilistic similarity profiles and hypotheses

Consider a random tuple (S, S ′) ∈ S × S of inputs. The random variable
Z = (X,Y ), with X = σS(S, S ′) being the similarity of the inputs and
Y = σR(ϕ(S), ϕ(S ′)) denoting the similarity of the associated outcomes, is then
defined on the probability space (S × S, µS ⊗ µS) as the mapping

(s, s′) �→
(
σS(s, s′), σR(ϕ(s), ϕ(s′))

)
.

Let µZ
df
= Z(µS ⊗ µS) be the induced probability measure on DS × DR and

define µX on DS and µY on DR in the same way. We shall use notations such as

(X = x) for events X−1(x) and µY |(X=x)
df
= Y ((µS ⊗ µS)(· |X−1(x))) to denote

corresponding conditional probabilities. We also make use of intuitive notations
such as P(Z = z) for µZ(z) or P(Y = y |X = x) for µY |(X=x)(y). Besides, we
employ the same symbol for a probability measure and the related distribution,
i.e., we write µS(s) rather than µS({s}).

Remark 4.3. (1) The random variables S and R = ϕ(S) can be thought of as
being defined over the same probability space as Z under the mapping (s, s′) �→ s
resp. (s, s′) �→ ϕ(s). We then obviously have µS = S(µS ⊗ µS) = µS and µR =
(ϕ ◦ S)(µS ⊗ µS) = ϕ(µS).
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(2) Subsequently, conditional probabilities which do actually not exist may appear
in certain expressions (e.g., in a sum of measures). The probability

P(Y = y |X = x,R = r),

for instance, is not well-defined unless there exist cases s, s′ ∈ S with σS(s, s′) = x
and ϕ(s) = r exist. Such probabilities and corresponding measures should simply
be ignored. �

Definition 4.4 (probabilistic similarity profile). Consider a CBI setup Σ
and let P(DR) denote the class of probability measures over DR. The mapping

HΣ : DS −→ P(DR) , x �→ µY |(X=x)

is called the probabilistic similarity profile (PSP) of Σ. �

The probabilistic similarity profile HΣ provides a much more precise picture of the
similarity structure of a CBI setup Σ than a (deterministic) similarity profile hΣ

does. For each degree of similarity x ∈ DS , it specifies the probability distribution
µY |(X=x) of the similarity of outputs, i.e., of the random variable Y , given that
the similarity of two inputs is x. Compared to this, the function hΣ provides only
a lower bound to the support of Y :

hΣ(x) = inf
{
y ∈ DR |µY |(X=x)(y) > 0

}
.

Definition 4.5 (stochastic dominance). Let Ω ⊂ [0, 1] and denote by P(Ω,A)
the class of probability measures over the measurable space (Ω,A).3 The decu-
mulative distribution function of µ ∈ P(Ω,A) is defined as

Gµ : [0, 1] −→ [0, 1] , x �→ µ(Ω ∩ [x, 1]).

A probability measure µ is said to dominate a measure µ′ stochastically, µ′ � µ,
if Gµ′ ≤ Gµ. �

Definition 4.6 (probabilistic similarity hypothesis). A probabilistic simi-
larity hypothesis is identified by a mapping H : DS −→ P(DR). Let Σ be a
CBI setup with probabilistic similarity profile HΣ. The hypothesis H is admis-
sible (with respect to Σ) if H(x) � HΣ(x) for all x ∈ DS . H is called a strict
probabilistic hypothesis if

∀x, x′ ∈ DS : x < x′ ⇒ H(x) � H(x′). (4.7)

A hypothesis H ′ is called stronger than H if H(x) � H ′(x) for all x ∈ DS and
H ′(x0) "� H(x0) for at least one x0 ∈ DS . �
3 P(Ω) stands for P(Ω, 2Ω) if Ω is countable.
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The stochastic dominance relation � over P(Ω) is a natural generalization of
the ≤-relation over Ω ⊂ [0, 1]. A hypothesis H is admissible if it is “pessimistic”
enough in the sense that it never over-estimates the probability that, for any
0 ≤ α ≤ 1, the similarity of the outcomes associated with two inputs is equal
to or larger than α. Within the probabilistic setting, the CBI hypothesis should
be understood in the sense that “similar inputs probably have similar outcomes.”
Apparently, this is a special case of the non-deterministic version of the CBI

hypothesis, suggesting that similar inputs are likely to have similar outcomes
(cf. Chapter 1). A PSP gives a precise meaning to this assumption. In fact, it
clarifies the meaning of “likely” in terms of probability distributions, and de-
picts its dependency on the similarity of inputs. Note that the strict version of
a probabilistic hypothesis corresponds to the claim that, for all 0 ≤ α ≤ 1, the
more similar two inputs are, the larger the probability will be that the associated
outputs are at least α-similar.

Example 4.7. The probabilistic similarity profiles of the setups Σ1 and Σ2 in-
troduced in Example 2.5 (cf. Section 2.5) are plotted in Fig. 4.3. More precisely,
the pictures show the decumulative distribution functions GHΣ1

(x), GHΣ2
(x) for

x ∈ DS . As can be seen, (4.7) with H = HΣ1 resp. H = HΣ2 holds true with a
few exceptions,4 i.e., the CBI hypothesis holds “almost” true in the strict sense.
Fig. 4.4 depicts the decumulative distribution functions for the setups Σ∗

1 and
Σ∗

2 , for which an output corresponds to the (optimal) solution of an ILP. For
these setups, the CBI hypothesis holds indeed true in the strict sense. �

Example 4.8. The probabilistic similarity profile of the CBI setup Σ3, as de-
fined in Example 4.1, is shown in Table 4.1. For HΣ3 , the condition (4.7) is indeed
completely satisfied, i.e., the CBI hypothesis applies in the strict sense. This can

4 It should be taken into account that the number of observations is relatively small for some degrees
of similarity.

Fig. 4.3. Decumulative distribution functions associated with the probabilistic similarity profiles of
the setup Σ1 (left) and the setup Σ2 (cf. Example 4.7).
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x 0 1/7 2/7 3/7 4/7 5/7 6/7 1

µY | (X=x)(0) 0.11 0.08 0.07 0.05 0.04 0.03 0.02 0.00
µY | (X=x)(1/2) 0.47 0.46 0.44 0.42 0.38 0.35 0.34 0.00
µY | (X=x)(1) 0.42 0.47 0.50 0.53 0.58 0.62 0.64 1.00
GHΣ3 (x)(0) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

GHΣ3 (x)(1/2) 0.89 0.92 0.94 0.95 0.96 0.97 0.98 1.00

GHΣ3 (x)(1) 0.42 0.47 0.50 0.53 0.58 0.62 0.65 1.00

be gathered immediately from the decumulative distribution functions which are
shown in the same table.5 �

4.1.2 Generalized probabilistic profiles

In Chapter 3, we have motivated several alternative definitions of the concept of
a similarity profile. We are now going to introduce corresponding probabilistic
versions.

Definition 4.9 ((n, k)-PSP). Consider a CBI setup Σ with associated memory
M ∼ (µS×R)n, an input S0 ∼ µS , and 〈S, ϕ(S)〉 ∼ µuni

N ex
k (M,S0), where µuni

N ex
k (M,S0)

denotes the uniform measure over the (extended)
k-selection N ex

k (M, S0) (cf. De-
finition 3.9). Moreover, let the random variables X and Y be given by

X = σS(S, S0), Y = σR(ϕ(S), ϕ(S0)).

The mapping
H

(n,k)
Σ : DS −→ P(DS) , x �→ µY |(X=x)

5 Due to rounding errors not all columns i
n Table 4.1 sum up to 1.

Fig. 4.4. Decumulative distribution functions associated with the probabilistic similarity profiles of
the setup Σ∗

1 (left) and the setup Σ∗
2 (cf. Example 4.7).

Table 4.1. Probabilistic similarity profile of the setup Σ3 and the corresponding decumulative distrib-
ution functions (cf. Example 4.8).
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is called the (n, k)-probabilistic similarity profile ((n, k)-PSP) of the setup Σ.6

Thus, [H
(n,k)
Σ (x)](y) is the probability that the similarity between ϕ(S) and ϕ(S0)

is y, given that the similarity between S and S0 is x, and that S is chosen at
random from the k most similar cases in M. �

The definition of an (n, k)-PSP is based on the same idea as the definition of an
(n, k)-similarity profile (cf. Definition 3.9). Two inputs S, S0 ∈ S, the similarity
relation between which is explored, are no longer chosen at random according to
µS ⊗ µS . Rather, S is selected randomly from the set of inputs in the memory
which are most similar to S0. For the special case k = 1 the concept of an (n, k)-
PSP corresponds to rules of the following form: “If the similarity between a new
input and an input of maximum similarity is x, then the similarity between the
corresponding outcomes is distributed according to H

(n,k)
Σ (x).”

Definition 4.10 (M-PSP). Consider a setup Σ with fixed memory M and
let S0 ∼ µS , 〈S, ϕ(S)〉 ∼ µuni

M . Moreover, let X = σS(S, S0) and Y =
σR(ϕ(S), ϕ(S0)). The mapping

HM
Σ : DS −→ P(DR) , x �→ µY |(X=x)

is called the M-probabilistic similarity profile (M-PSP) of Σ. �

Definition 4.11 ((M, k)-PSP). Consider a setup Σ with a fixed memory M,
an input S0 ∼ µS , and 〈S, ϕ(S)〉 ∼ µuni

N ex
k (M,S0). Moreover, let X = σS(S, S0) and

Y = σR(ϕ(S), ϕ(S0)). The mapping

H
(n,k)
Σ : DS −→ P(DS) , x �→ µY |(X=x)

is called the (M, k)-probabilistic similarity profile ((n, k)-PSP) of Σ. �

Definition 4.12 (local PSP). Consider a setup Σ and a fixed input s ∈ S
and let S0 be distributed according to µS . Moreover, let Xs = σS(s, S0), Ys =
σR(ϕ(s), ϕ(S0)). The local probabilistic similarity profile associated with s, or
s-PSP, is defined as

Hs
Σ : DS −→ P(DR) , x �→ µYs|(Xs=x).

A collection HM
Σ = {Hs

Σ | 〈s, ϕ(s)〉 ∈ M} of local profiles is called a local M-
PSP. �

One verifies that the (global) PSP (cf. Definition 4.4) is a (pointwise) weighted
average of the local profiles associated with individual cases:

6 In fact, it may happen that some conditional measures do actually not exist. Then, the PSP of order
(n, k) is well-defined only on a subset of DS . The same remark applies to Definitions 4.10 and 4.11
below.
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∀x ∈ DS : HΣ(x) ∝
∑
s∈S

α(s, x) · Hs
Σ(x), (4.8)

where HΣ denotes the PSP of a setup Σ, and Hs
Σ is the local PSP associated with

s ∈ S. Moreover, α(s, x) = µS(s) · [Xs(µS)](x) for all s ∈ S, where Xs : S −→ DS
denotes the mapping s′ �→ σS(s, s′).

4.2 Case-based inference, probabilistic reasoning, and
statistical inference

Within the probabilistic setting of this chapter, the memory M as well as the in-
formation structures SST(M, s0) and OST(M, s0) appearing in (4.2) and (4.3) are
random variables, the distribution of which can be derived from the measure (4.6).
By combining the variables which constitute the similarity structure (cf. Defini-
tion 3.13) into one vector ZS, we obtain a random variable defined over the prob-

ability space (Sn+1, (µS)n+1). As before, we use the notation µZS

df
= ZS((µS)n+1).

We denote by ZS −A the vector ZS reduced by a set A of variables. For instance,
ZS − {X01, X02} marks the vector ZS reduced by X01 and X02. Moreover, we
denote by ZO the vector which combines the values associated with the outcome
structure of a CBI problem.

The fact that the information used within the process of case-based inference
can be seen as data emerging from a well-defined stochastic process allows for
relating CBI to probabilistic reasoning. At the same time this framework makes
the application of methods from statistical inference within the context of case-
based reasoning possible. Let us illustrate these important aspects by means of
two examples.

1/2 1/2

?

4/7

1

4/7 6/7

1/2 1/2

r

4/7

1

4/7 6/7

Example 4.13. For n = 2 the similarity structure corresponds to a vector
ZS = (X01, X02, X12, Y12), and the outcome structure defines the (extended)
vector ZO = ZS ∪ (R1, R2). Suppose M = (〈(3, 14), 1/2〉, 〈(4, 17), 1/2〉) and
s0 = (5, 17) in connection with the CBI setup Σ3 defined in Example 4.1. Thus,
ZS and ZO are realized by zS = (4/7, 6/7, 4/7, 1) and zO = zS ∪ (1/2, 1/2), re-
spectively. For a certain value r ∈ R we then have

Fig. 4.5. Illustration of the outcome structures occurring in Example 4.13.
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P(R0 = r |OST(M, s0)) =
(µS ⊗ µS ⊗ µS)(S2)

(µS ⊗ µS ⊗ µS)(S1)
, (4.9)

where S1,S2 ⊂ S ×S ×S are the sets of triples of instances which are compatible
(i.e., which can be “matched”) with the first and the second structure in Fig. 4.5,
respectively. This way, we obtain the following probabilities:

r 0 1/2 1

P(R0 = r|ZO = zO) 0.319 0.566 0.115

Observe that we have derived this result by means of a simple enumeration of
the sets S1 and S2. Of course, this kind of inference is not in line with the idea
of case-based reasoning. Besides, the information provided by a PSP does not
permit the (exact) derivation of probabilities which condition on the complete
outcome structure. As will be seen below, the probabilistic approach to CBI will
generally result in approximations of these probabilities. �

Example 4.14. In order to illustrate the applicability of (inductive) statistical
methods to CBI, let us consider two examples, namely the test of a simple hy-
pothesis and a problem of parameter estimation related to the similarity structure
of a CBI setup. In connection with our setup Σ3, a hypothesis might be given,
e.g., by the supposition that π ≥ 0.7, where π = P(Y = 1 |X = 6/7) is the prob-
ability that two directly neighbored instances have identical outcomes. Based
on a number of (independently) observed pairs of inputs, well-known statistical
methods can be employed for realizing such a test procedure.

Recall that each value HΣ(x) of a PSP corresponds to a probability distribution
on R. In the case of Σ3, such a value and, hence, the value H(x) of a corresponding
hypothesis H can simply be specified as a stochastic vector(

[H(x)](0), [H(x)](1/2), [H(x)](1)
)
.

If the set R of outputs is large or even infinite, however, it might be advantageous
to specify H(x) as a parameterized distribution, i.e., by means of a parameter
vector which identifies a probability distribution. The specification of H(x), i.e.,
the estimation of HΣ(x), then turns out to be a problem of parameter estimation.
This example already suggests that the task of (probabilistic) case-based learning,
i.e., the learning of a PSP, can be seen as a problem of statistical inference. We
shall expand on this point in Section 4.3. �

Fig. 4.6 provides an overview of the probabilistic approach to CBI. Essentially,
this approach realizes a process of probabilistic reasoning in similarity space7 plus
respective transformations between the instance level and the similarity level.
The structure of this process corresponds to the one of constraint-based CBI

(cf. Section 3.2):

7 This contrasts with other probabilistic approaches to case-based inference [237, 275, 274, 369] which
generally use a more implicit model of the CBI principle.
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– In a first step, the problem 〈Σ, s0〉 is again characterized at the similarity level
by means of its similarity structure. In fact, the profile HΣ and the structure ZS

can be seen as the respective “image” of the system (S,R, ϕ) and the (extended)
memory (M, s0) under the transformation defined by the similarity measures
σS and σR. This mapping realizes a projection from an often high-dimensional
(and non-numeric) instance space S × R into the two-dimensional similarity
space DS × DR, which is usually more accessible to analytical methods. Still,
this projection is not (information-)theoretically justified as is, say, principal
components analysis in statistics are. Rather, it is guided by the heuristic as-
sumption that the similarity structure of the problem 〈Σ, s0〉 represents useful
information which is contained (implicitly) in the similarity measures.

– The similarity structure ZS plays the role of statistical data within the CBI

process. Moreover, the hypothesis H defines the stochastic model which explains
the occurrence of such structures and which underlies the reasoning process. In
a second step, CBI makes use of this model and the given data in order to
derive a (probabilistic) characterization of the unknown outcome ϕ(s0). This
characterization, which corresponds to a probability measure µ ∈ P(DR) resp. a
class C of such measures, is implicit in the sense that it is expressed in terms of
similarity degrees, i.e., it does not refer to the output itself.

– Finally, the (probabilistic) information about similarity degrees has to be inter-
preted in the light of observed outcomes. That is, it has to be transformed into
information at the instance level. In Fig. 4.6, this transformation is indicated
by the (pseudo-)inverse mapping σ

(−1)
R . It will be discussed in more detail in

subsequent sections.

As already mentioned in Example 4.14, the task of case-based learning, if un-
derstood as the estimation of the similarity profile HΣ, corresponds to statistical
inference. Comparing Fig. 3.2 and Fig. 4.6 reveals that passing from constraint-
based CBI to probabilistic CBI essentially means replacing a similarity profile hΣ

Fig. 4.6. Illustration of the probabilistic approach to CBI which is a generalization of the constraint-
based approach illustrated in Fig. 3.2.
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by a probabilistic profile HΣ, constraint-propagation by probabilistic reasoning,
and sets (representing constraints) by uncertainty measures.

Realizing a transformation between the (high-dimensional) instance space and
the similarity space does not mean that CBI leaves any information out of ac-
count: The information available at the instance level is utilized when computing
degrees of similarity. In fact, passing from the complete description of instances
to degrees of similarity is common to all inference schemes based on the NN

principle and simply corresponds to an intermediate step of the complete infer-
ence procedure. It is a major assumption of this principle that similarity degrees
represent the essential information in a condensed form. Observe, however, that
our method does not only consider similarity degrees. In fact, it uses an addi-
tional concept, namely the similarity profile which provides an explicit model of
the (otherwise implicitly used) NN principle. This way, CBI combines instance-
based and model-based reasoning: Given a new query, each instance provides a
prediction by making use of a model in the form of a similarity hypothesis.

The discussion so far has shown that the fields of case-based reasoning and prob-
abilistic reasoning/statistical inference can benefit from each other. Firstly, a
probabilistic interpretation of the CBI hypothesis allows for realizing CBI in the
form of probabilistic reasoning and case-based learning as statistical inference.
Secondly, Section 3.5 has shown that CBI can support statistical inference, or
can even be interpreted as inductive statistical reasoning by itself.

More generally, a probabilistic formalization of case-based inference can be seen
as a step toward an extended (probabilistic) approach to statistical reasoning.
Classical statistical methods are principally based on the same kind of experi-
ence as case-based reasoning, namely a sequence of observations. As a decisive
difference, however, let us mention that statistical methods concentrate on the
probability distribution of the respective random variables directly and assume
these random variables to be distributed identically. In other words, observa-
tions are generated under identical conditions. The occurrence of observations is
explained by making assumptions about the data-generating process,8 and con-
clusions about this process are drawn from the frequency of observed cases. As
opposed to this, case-based reasoning assumes observations to be generated un-
der conditions which are at most similar, i.e., it takes different data-generating
processes into account.9 Roughly speaking, it assumes only similarly instead of
identically distributed random variables. This becomes apparent especially in con-
nection with the non-deterministic framework proposed in Section 2.4.2, where
an input determines the distribution of a random variable. That is, an individual
probability distribution is associated with each input. A similarity hypothesis es-
tablishes a (probabilistic) relationship between these distributions, which in turn

8 Consider Bayesian cluster analysis, where an individual data-generating process is associated with
each cluster (= input), as an example. These processes, however, are completely independent of each
other.

9 One might argue that – stricto sensu – observations are never generated under identical conditions,
at best under conditions which appear (approximately) identical from a certain perspective [299].
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allows for making a connection between outcomes from different data-generating
processes. Thus, case-based inference does not only make statistical assumptions
about a data-generating processes itself, but also about the relation between sev-
eral (similar) processes.10 This way, it combines the concepts of frequency and
similarity. Further points of contact between CBI and statistical inference which
are in line with these ideas will be revealed in Section 4.3, where the (extended)
problem of case-based learning is shown to provide an interesting approach to
statistical modeling.

Let us conclude this section with an example illustrating the possibility of exploit-
ing the similarity concept within an extended statistical framework. Consider two
random samples X and Y induced by two data-generating processes. These shall
be characterized by (unknown) parameters θ1 and θ2, respectively. Now, suppose
the two processes to be similar in the sense that ∆ = |θ1−θ2| is small. This might
suggest to use not only the sample X in order to estimate θ1, but also to include
the sample Y (at least to some extent). Indeed, we can shown the following result.

Proposition 4.15. Let θe
1 = f1(X ) and θe

2 = f2(Y) be unbiased estimators of
two parameters θ1 resp. θ2, where V(θe

1) > 0. We then have MSE(θ̃e
1) < MSE(θe

1)
for the estimator

θ̃e
1 =

θe
1 + α θe

2

1 + α
(4.10)

if the conditions 0 ≤ α ≤ 1 and

α <
2 V(θe

1)

∆2 + V(θe
2) − V(θe

1)
(4.11)

with ∆ = |θ1 − θ2| are satisfied. �

Proof. Some transformations show that condition (4.11) is equivalent to

α2 ∆2

(1 + α)2
+

1

(1 + α)2

(
V(θe

1) + α2 V(θe
2)
)

< V(θe
1). (4.12)

Note that MSE(θe
1) is simply given by the variance of θe

1 (i.e., by the right-hand
side of (4.12)) since θe

1 is assumed to be unbiased. Since

bias(θ̃e
1) =
(
E(θ̃e

1) − θ1

)2

=

(
θ1 + α θ2

1 + α
− θ1

)2

=
α2 ∆2

(1 + α)2
.

and

V(θ̃e
1) =

1

(1 + α)2

(
V(θe

1) + α2 V(θe
2)
)
,

the left-hand side in (4.12) corresponds to MSE(θ̃e
1). �

10 It is worth mentioning that assumptions of this kind have implicitly been made for a long time,
e.g., when assuming that a family of probability density functions fθ depends continuously on the
parameter (= input) θ [73].
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According to Proposition 4.15 the biased estimator (4.10) is superior to the un-
biased estimator θe

1 in the sense of the mean squared error criterion.11 Roughly
speaking, the increased sample size (of |X | + α |Y|) leads to a reduced variance,
and this compensates for the bias of θ̃e

1.

4.3 Learning probabilistic similarity hypotheses

In Section 4.2, we already pointed out that the learning of probabilistic similarity
hypotheses can be seen as a statistical problem, namely that of estimating a
probability distribution from observed data. In this section, we shall consider this
problem in more detail. However, for the following reasons our treatment of the
subject will remain superficial: Firstly, the estimation of probability distributions
is by now a well-developed subfield of statistics, and a large number of methods is
already available. Secondly, it would be difficult to develop standard techniques in
connection with CBI, since different applications will generally call for different
estimation methods.

4.3.1 Simple hypotheses and credible case-based inference

Despite its simplicity, the idea of approximating (deterministic) similarity profiles
in terms of step functions, as proposed in Section 3.4, turned out to be useful
and eventually produced the inference scheme of credible case-based inference.
Now, this representation of similarity hypotheses can easily be extended to the
probabilistic setting. Let Ak be an interval in the representation (3.23) of hy-
potheses. Moreover, let Uk be the set of similarity degrees σR(rı, r) such that
σS(sı, s) ∈ Ak. Rather than assigning to the coefficient βk the minimum of Uk, as
in (3.25), we now define this bound by the (1−p)-quantile of Uk, where p is a usu-
ally small value such as 0.05. As an empirical quantile, βk is hence an estimation
of the corresponding true quantile of the distribution y �→ P(Y = y |X ∈ Ak).
We call the step function hp given by hp(x) = βk for x ∈ Ak, with βk as defined
above, the empirical p-profile.

Now, suppose that we employ hp in order to derive a prediction

ϕ̂hp,M(s0) =
k⋂

ı=1

Nhp(σS(sı,s0))(rı), (4.13)

where s1 . . . sk are the k nearest neighbors of the query input s0. What is the level
of confidence of this prediction? Unfortunately, we do not have enough informa-
tion to compute the probability of an incorrect prediction exactly. In fact, the

11 This criterion goes back to Gauss and is currently the most popular one. Alternative criteria in-
clude the mean absolute deviation proposed by Laplace and the measure of closeness developed by
Pitman.
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individual predictions derived from the k neighbors are obviously not independent
in a stochastic sense. (We shall return to this problem in later sections.)

Still, by making a simplifying independence assumption, as it is often made in
statistics, for example in connection with the well-known näıve Bayes classifier,
one might justify assigning the confidence level (1 − p)k to the prediction (4.13).
Our practical experience has shown that this level still underestimates the true
confidence level in most applications.

Of course, probabilistic estimations of the above type can be derived for different
values p1 < p2 < . . . < p�. Thus, by using this probabilistic variant of credible
case-based inference one obtains a nested sequence

ϕ̂hp� ,M(s0) ⊆ ϕ̂hp�−1,M(s0) ⊆ . . . ⊆ ϕ̂hp1 ,M(s0) (4.14)

of credible output sets with associated confidence levels. As an advantage of
this kind of “stratified” prediction note that it differentiates between predicted
outcomes better than a single credible output set does: The outputs in ϕ̂hp� ,M(s0)
are the most likely ones, those in ϕ̂hp�−1,M(s0)\ϕ̂hp� ,M(s0) are somewhat less likely,
and so on.

4.3.2 Extended case-based learning

While the above approach is a direct extension of the credible case-based inference
scheme of Section 3.4, we are now going to reconsider the problem of learning a
PSP from a more general point of view. Actually, the latter corresponds to the
problem of learning a class

{µY |(X=x) ∈ P(DR) |x ∈ DS} (4.15)

of (conditional) probability measures or a joint measure µZ over DS × DR from
which the measures (4.15) can be derived. Since DS and DR are countable, we
only have to deal with discrete probability distributions.

Consider a memory M of n cases 〈sk, rk〉 (1 ≤ k ≤ n). This memory defines an
independent instance sample, i.e., a sample of instances drawn at random from
S × R. The data underlying the estimation of the PSP is then given by the set
of similarity relations

X =
{
(xı, yı) | 1 ≤ ı ≤  ≤ n

}
, (4.16)

where (xı, yı) = (σS(sı, s), σR(rı, r)).

Learning a PSP based on a sample (4.16) can be seen as a probabilistic coun-
terpart to the basic CBL problem discussed in Section 3.4 (cf. Definition 3.27).
Let us now consider the corresponding extended version of case-based learning,
namely the learning of an adequate similarity measure σS and a hypothesis simul-
taneously. This problem is of special interest in a probabilistic setting. Besides,
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the simultaneous learning of similarity measures and probabilistic hypotheses
provides an interesting approach to statistical modeling and inference.

Consider a parameterized class {Hθ | θ ∈ Θ} of probabilistic similarity profiles
and let µθ

Y |(X=x) denote the associated conditional probability measures, i.e.

µθ
Y |(X=x) = Hθ(x).

Likewise, let {σγ
S | γ ∈ Γ} be a parameterized class of similarity measures. We

assume the measure σR to be fixed. This assumption is necessary for technical
reasons. Otherwise, the resulting model would have too many degrees of freedom,
and a reasonable adaptation would not be possible. Besides, the assumption is not
very critical since a reasonable definition of the similarity of outputs is possible
for most applications. In fact, it is generally the specification of the similarity of
inputs which is more difficult.

Let X be a sample (4.16) of similarity relations derived from a memory M. More
precisely, the elements of X are triples

(s, s′, y) ∈ S × S × DR,

where y = σR(ϕ(s), ϕ(s′)). The similarity degrees x = σS(s, s′) are still unknown,
since the measure σS has not yet been defined. Now, consider the likelihood
function λ : Γ × Θ −→ R≥0 which specifies the probability of observing the
similarity degrees y given the respective inputs:

λ(γ, θ) =
∏

(s,s′,y)∈X

P(Y = y | γ, θ, s, s′)

=
∏

(s,s′,y)∈X

µθ
Y |(X=σγ

S(s,s′))(y),

where the random variable Y denotes the similarity of outputs. The similarity
measure σS and the PSP can be estimated by maximizing this likelihood function.
That is, σS is estimated by σγML

S and the PSP by HθML
, where γML and θML

denote the respective ML estimations.

The main difference between the case-based approach to statistical modeling out-
lined above and classical statistical methods is the structural assumption under-
lying the data-generating process (cf. Section 2.4). In case-based models, these
assumptions are given in the form of the the CBI hypothesis. This hypothesis
is used for explaining observations and thus plays a role somewhat similar to,
say, the assumption of a linear relationship between input variables and output
variables in regression analysis. A hypothesis related to the probabilistic similar-
ity profile corresponds to the stochastic model. In linear regression, this model is
specified by the linear structure and the distribution of an error term.

Thus, classical methods assume a (statistical) relationship between input vari-
ables and output variables. Typical models in economics or the social sciences,
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for instance, try to explain a certain attribute related to an individual by means
of several other attributes of the same individual. As opposed to this, case-based
models employ the attributes by more indirect means. Namely, these attributes
specify the similarity relations between statistical entities, which in turn are uti-
lized for explaining observations (cf. the discussion in Section 4.2).

Such models might hence be preferable if an observation is not really explained
by the input variables. Let us consider an example from the field of economics,
where the explaining (predictor) variables correspond to certain properties of a
product and the variable to be predicted is the number of produced units. If
it can be assumed that production is strongly influenced by the latest fashion,
one will observe different production rates for the same product over time. That
is, the number of produced units is actually not a function of the properties
of the product. Of course, it is still possible to define such a function, but the
related model would be valid only for a certain point of time. In other words, the
corresponding statistical model does not describe a (time-)invariant relationship
between variables. As opposed to this, the (rather plausible) CBI assumption,
saying that similar products are produced in similar scope, remains valid over
time. The CBI principle suggests not to guide the estimation of the current
production rate of a product by its properties but by the current production rate
of similar products.

Let us mention that the meaning of the parameters of a (parameterized) similarity
measure is comparable, say, to that of the coefficients of a linear function in
regression analysis. From an application-oriented point of view, the estimated
measure might even be more interesting than the predictions themselves. Namely,
this measure reveals the decisive properties which qualify statistical entities as
being similar (with respect to the output variable). Consider again the above
example and suppose that a skirt which is characterized as (long, tight, red) is
found to be more similar to (long, tight, blue) than to (short, tight, red) as far as
the number of produced units is concerned. This finding might suggest that the
length of a skirt is a more important property than the color.

A more general application for which case-based inference seems appropriate is
time series analysis. Consider a time series (x(t))t∈T and let inputs s correspond
to time points t, i.e., S = T .12 Moreover, let outputs be given by respective
states x(t). According to the general assumption underlying time series analysis,
the state at time t is determined by previous states and additional (external)
influences which are modeled as a random variable. Thus, the output is actually
not determined by the attributes of the input, i.e., the index of time. The CBI

principle, however, generally holds true, at least if the influence of the random
component is not too strong. Consider as an example a simple random walk with
T = N and X(t + 1) = X(t) + Z(t), where (Z(t) + 1) ∼ BV(2, 1/2). It is readily
verified that

12 Instead of data ordered by time one might also consider spatial data [316]. In that case S is of higher
dimension.
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P(∆(x(t), x(t′)) = δ) = c(δ)

(
2|t − t′|

δ + |t − t′|

)(
1

2

)2|t−t′|
,

where the distance measure ∆ is given by (a, b) �→ |a − b|, c(δ) = 1 if δ = 0 and
c(δ) = 2 otherwise. The PSP associated with these probabilities (and similarity
measures related to the distance | · |) shows that the CBI hypothesis applies
extremely well.13

Let us finally mention that classical statistical models and case-based models can
well be combined. Suppose, for instance, that a linear regression model is indeed
appropriate, i.e., that a certain output variable can be explained by the linear
combination of certain input variables. Moreover, consider a number of popula-
tions and suppose that each population gives rise to a different linear model, i.e.,
to a different vector of coefficients. Moreover, assume that the populations can
be compared somehow, based on a set of further attributes. One might then con-
sider the (CBI) assumption that similar populations have similar models. Note
that the case-based model thus defined does no longer refer to the same input
and output variables as the regression models. Rather, it is the class of regression
models itself (i.e., the coefficients which identify such models) which constitute
the set of outcomes of the case-based model. In this sense, the latter can be seen
as a kind of meta-model characterizing the structure of a class of classical models.
This way, it becomes possible to establish a link between estimation results of
different populations, i.e., to support the estimation of one model based on the
estimation results of other models or on observations related to these models.

4.4 Experiments with regression and label ranking

This section is meant to convey a first idea of how CBI can be applied to pre-
diction problems and how it performs in practice. To this end, we present some
experiments, in which we compared our approach to standard IBL (nearest neigh-
bor estimation). It should be noted in advance, however, that a fair comparison
is difficult, especially since the methods provide predictions of different kind. For
example, the main purpose of CBI is to derive estimations in the form of credible
sets, whereas IBL aims at producing good point estimations in the first place. As
a consequence, standard IBL and CBI are not directly comparable. And indeed,
the main purpose of our studies is not to show that one approach is better than
the other one, but instead that CBI can reasonably complement standard IBL.
Besides, the experiments are intended to support the theoretical results of the
previous sections and to underpin our claim that CBI combines advantages from
both instance-based and model-based learning.

We performed experiments for two types of prediction problems, namely regres-
sion (sections 4.4.1 and 4.4.2) and so-called label ranking (section 4.4.3). In the

13 Observe that causality does not really matter in connection with CBI, in the sense that a value x(t)
can well be used for reasoning about x(t′) even if t′ < t.
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case of regression, a training example is a tuple 〈s, r〉, where s = (s1 . . . sm) is a
vector of values for the input attributes, numerical or nominal, and r is a value
for the (numerical) output attribute. As a similarity measure, we used

σS(x, y)
df
= exp

(
− γ

1

m

∑
ı

d(xı, yı)

)
, (4.17)

where the distance d(·) is defined as |xı−yı| for numerical attributes and assumes
values 0 and 1 for ordinal features (i.e., d(xı, yı) = 0 if xı = yı and = 1 otherwise).
To guarantee that all attributes do approximately have the same influence – a
point of critical importance in IBL [221] – each input attribute is first re-scaled
linearly to the unit interval. To facilitate the interpretation of quality measures,
we re-scaled the output attribute in the same way.

Since our main objective is to compare IBL and CBI under equal conditions, we
refrained from “tuning” both methods. Particularly, we neither included feature
selection nor feature weighting.14 Besides, we did not put much effort in optimiz-
ing the constant γ in (4.17); γ = 5 seemed to produce reasonable results, and we
used this value throughout our experiments. The partition of the unit interval
underlying the similarity hypothesis in CBI was always defined as a simple equi-
width partition of size 10 for the global version and (since there are less training
examples in the local approach) of size 5 for the local variant.
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Fig. 4.7. Approximation of x �→ x2 (solid line) in the form of a confidence band, using CBI (shaded
region) and linear regression (region between dashed lines). The examples are indicated by black points.

4.4.1 Regression: artificial data

The first example is a simple regression problem and mainly serves an illustration
purpose. The function to be learned is given by the polynomial x �→ x2. Moreover,

14 It is well-known that irrelevant features can badly deteriorate instance-based learning methods and,
on the other hand, that feature weighting can greatly improve performance [396].
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Fig. 4.8. Approximation of x �→ x2 (solid line) in the form of a confidence band, using CBI with local
profiles and linear regression (region between dashed lines).

n training examples 〈sı, rı〉 are given, where the sı are uniformly distributed in
S = [0, 1] and the associated outcomes rı are normally distributed with mean
(sı)

2 and standard deviation 1/10. As mentioned above, we employed (4.17) with
γ = 5 as a similarity measure for both inputs and outputs. Given a random
sample (memory) M, we first induce a similarity hypothesis for an underlying
equi-width partition of size m = 5. A case-based approximation of the mapping
x �→ x2 is then derived from this hypothesis and the memory M (more precisely,
a prediction ϕ̂h,M(s) was derived for all s ∈ {0, 0.01, 0.02 . . . 1}). Note that each
prediction is simply an interval, so the case-based approximation (union of these
intervals) yields a confidence band for the true mapping x �→ x2. Fig. 4.7 shows a
typical inference result for n = 25. Moreover, Fig. 4.8 shows a result for n = 75,
using CBI with local similarity profiles.

According to our theoretical estimation, the degree of confidence for n = 25 is (at
least) 16/26. This, however, is only a lower bound, and empirically (namely by
averaging over 1,000 experiments) we found that the level of confidence is almost
0.9. To draw a comparison with standard statistical techniques, the figures also
show the 0.9-confidence band obtained for the regression estimation (and the same
samples). As can be seen, CBI yields predictions of roughly the same precision,
and CBI with local profiles is even slightly more precise. This finding was also
confirmed for estimation problems with other functions and input spaces of higher
dimension.

In this connection, it should again be mentioned that linear resp. polynomial
regression makes much more assumptions than CBI. Especially, the type of func-
tion to be estimated must be specified in advance: Knowing that this function is
a polynomial of degree 2 in our example, we took the model x �→ β0 +β1x+β2x

2

as a point of departure and estimated the coefficients βı. Usually, however, such
knowledge will not be available. For instance, the performance of LR becomes
much worse due to typical overfitting effects when adapting a polynomial of de-
gree k > 3 to the data. Moreover, the confidence band for LR is only valid if
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the error terms follow a normal distribution (as they do in our case but not in
general).

4.4.2 Regression: real-world data

We also applied CBI to several real-world data sets from the UCI repository and
the Statlib archive.15 The data is summarized in table 4.2.

name size # var.
01 breast-tumor 277 1/8
02 cholesterol 297 6/7
03 cleveland 297 6/7
04 cpu 209 6/1
05 housing 506 12/1
07 pharynx 193 1/10
08 sensory 576 0/11
09 strike 625 5/1
10 bodyfat 252 14/0
11 pollution 60 15/0
12 pw-linear 200 10/0
13 auto-price 159 15/0
15 bolts 40 7/0
16 cloud 108 4/2
18 fruitfly 125 2/2
19 lowbwt 189 7/2
20 fishcatch 71 5/2
21 echo-months 61 6/3
22 quake 2178 3/0
23 auto-mpg 392 4/0

Table 4.2. Data sets used in the experiments: name, number of examples, number of predictor variables
(numerical/nominal).

In order to test the effectiveness of the probabilistic version of CBI, we have
applied this approach to the data sets with different values for the parameter p
(namely p = 0, 0.02, 0.04). The following performance measures were derived by
means of a leave-one-out cross-validation:

1.The correctness or empirical confidence (CONF) measured in terms of the rel-
ative frequency of correct predictions (predicted interval covers true value).

2.The precision of predictions (PREC) measured in terms of the average length
of a predicted interval.

3.The mean absolute error (MAE) measured in terms of the average distance
between the true value and the point estimation (center of the interval).

As a neighborhood size for CBI we used k = 20. Again, note that this parameter
is less important in CBI than in k-NN estimation. As mentioned previously, dis-
similar neighbors will often hardly influence the prediction in terms of a credible

15 http://www.ics.uci.edu/˜mlearn, http://lib.stat.cmu.edu/
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set. And indeed, we observed that even though varying this parameter has an
effect for small k, increasing k beyond ≈ 15 hardly changed the results.

The results for this series of experiments are summarized in table 4.3. As can
be seen, the use of probabilistic bounds yields an extreme gain of precision at
the cost of a mostly slight deterioration of the confidence. This finding, which
basically holds true for all data sets, clearly provides strong evidence for the
effectiveness of the probabilistic extension of CBI: By varying the parameter p, a
smooth tradeoff between confidence and precision can be achieved. Regarding the
quality of the CBI point estimation, the influence of p is less strong, though in
general, more precise estimations come along with a slightly more accurate point
estimation.

Admittedly, there are some data sets for which CBI performs poorly, either in
terms of confidence or in terms of precision or both. Looking at the characteristics
of these data sets, there are two plausible explanations. Firstly, confidence and
precision is weak if the size of the data set is too small. Of course, this is natural,
since statistically confident and precise predictions cannot be made on the basis
of sparse data. Secondly, CBI seems to have problems with data sets in which
nominal attributes prevail. As a plausible explanation, note that in this case there
exist only a small number of different similarity degrees σS(x, y). If these degrees
are not well distributed over the unit interval, an equi-with partition is likely
to produce a poor and unbalanced similarity profile. In this case, the use of an
adaptive partition (in line with equi-frequency histograms) seems to be advised,
an option that we did not exploit so far but that should definitely be given a try.

CONF PREC MAE CONF PREC MAE CONF PREC MAE
01 0.9856 .8817 .1680 .8159 .5879 .1696 .7329 .4041 .1714
02 0.9663 .5918 .1271 .8013 .3310 .0909 .6599 .2398 .0909
03 1.0000 .8695 .3136 .9024 .5800 .2555 .7576 .3981 .2344
04 0.9809 .0665 .0187 .8278 .0404 .0177 .7608 .0274 .0187
05 1.0000 .6134 .0904 .8538 .3185 .0689 .7787 .2146 .0643
07 0.9896 .7895 .2069 .8083 .5596 .1807 .7202 .4670 .1791
08 1.0000 .9184 .1194 .8333 .4118 .1250 .7326 .2826 .1222
09 0.9888 .7758 .3506 .8368 .1551 .0727 .7296 .1104 .0608
10 0.9802 .3946 .0607 .8333 .2095 .0620 .6984 .1881 .0663
11 0.9500 .4974 .1173 .7500 .3267 .1232 .6333 .2682 .1140
12 0.9800 .5526 .0955 .8200 .3267 .0908 .7300 .2727 .0921
13 0.9623 .2484 .0583 .7547 .1404 .0509 .6792 .1223 .0544
15 0.9250 .5802 .2021 .6250 .3903 .1801 .4750 .1965 .1483
16 0.9537 .2956 .0714 .7963 .2157 .0739 .7315 .1848 .0779
18 0.9520 .8692 .2411 .7760 .5743 .2004 .6240 .4549 .1947
19 0.9577 .5292 .0934 .7937 .3281 .0950 .6508 .2584 .0983
20 0.9437 .2014 .0506 .8732 .1876 .0544 .7183 .1330 .0487
21 0.9344 .7245 .2520 .8033 .6601 .2542 .7049 .5443 .2322
23 0.9923 .6389 .1180 .8316 .3775 .0956 .7015 .2855 .0905

Table 4.3. Results for probabilistic CBI: Confidence, precision, and mean absolute error of predictions
for p = 0 (left), p = 0.02 (middle), and p = 0.04 (right).
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1-NN 3-NN 5-NN 7-NN 9-NN

01 .4200 .4626 .4195 .4009 .3841
02 .4093 .4641 .4561 .4675 .4544
03 .6664 .6097 .5906 .6330 .6302
04 .6386 .6719 .6448 .6882 .6663
05 .2555 .4667 .4782 .4976 .5532
07 .4554 .5771 .5881 .5964 .6172
08 .6387 .6549 .6310 .6136 .6338
09 .5718 .6936 .7131 .7202 .7153
10 .1626 .2128 .2394 .2200 .2303
11 .4279 .1371 .2812 .3102 .3739
12 .1154 .3805 .5039 .4627 .4535
13 .5752 .7048 .6967 .6977 .7094
15 .7270 .7618 .7600 .6863 .6584
16 .7001 .7730 .7332 .7509 .7337
18 .4511 .5618 .5145 .4881 .4462
19 .2180 .3312 .3412 .3601 .3513
20 .4904 .4205 .3090 .3384 .2839
21 .4783 .5938 .6030 .6412 .6642
22 .3050 .3441 .3497 .3478 .3558
23 .4407 .4522 .4713 .4466 .4586

Table 4.4. Statistical correlation between precision of CBI predictions and mean absolute error of the
k-NN estimations for k = 1, 3, 5, 7, 9.

We also found that the CBI point estimations are on average slightly inferior to
the point estimations produced by standard k-NN estimation (see also table 4.5
below), even though there are some exceptions where the former are even better
than the latter. Nevertheless, table 4.4 shows the statistical (Pearson) correlation
between the precision (PREC) of CBI estimations and the mean absolute error
of the standard k-NN estimations. As can be seen, there is a strong positive
correlation between these two quantities throughout. This finding suggests that
the width of the CBI confidence interval is a good indicator of the accuracy of
a k-NN prediction. Consequently, it might be an interesting idea to complement
the latter by the former, i.e., to take the k-NN prediction as a point estimation
and the CBI prediction as a confidence interval.

In a second series of experiments, we have employed the local version of CBI. The
results are summarized in table 4.5. As it was to be expected from our theoretical
analysis, predictions become more precise but less confident in comparison with
the global version of CBI. Apart from that, it is interesting to note that local
CBI yields extremely good point estimations. In fact, more often than not, these
point estimations are better than those of standard k-NN. Recalling that CBI is
actually not intended to produce point estimations, at least not in the first place,
this is a surprisingly good an indeed unexpected result.

4.4.3 Label ranking

In principle, CBI can be applied to classification problems in the same way as
to regression problems. In this connection, however, it should be mentioned that
CBI is useful only if the number of class labels is not too small, since otherwise
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CONF PREC MAE 1-NN 3-NN 5-NN 7-NN 9-NN

01 0.8159 .3700 .1387 .2349 .1798 .1747 .1736 .1738
02 0.7407 .2159 .0782 .1263 .1020 .0960 .0926 .0899
03 1.0000 .2104 .0934 .1692 .1546 .1549 .1556 .1531
04 0.8038 .0530 .0202 .0165 .0241 .0288 .0306 .0309
05 0.8261 .1416 .0516 .0683 .0573 .0612 .0653 .0680
07 0.7254 .2926 .1135 .1989 .1578 .1429 .1394 .1367
08 0.8281 .1326 .0663 .1431 .1279 .1288 .1236 .1178
09 0.8432 .0913 .0328 .0344 .0279 .0296 .0291 .0293
10 0.8254 .1608 .0580 .0686 .0523 .0533 .0556 .0568
11 0.8333 .2263 .0865 .1234 .1166 .1044 .1098 .1087
12 0.8600 .1899 .0696 .1138 .0879 .0832 .0823 .0851
13 0.7547 .1203 .0424 .0498 .0502 .0539 .0562 .0589
15 0.7000 .1718 .0754 .1482 .1285 .1112 .1311 .1397
16 0.7407 .2432 .0916 .0887 .0805 .0773 .0872 .0963
18 0.7680 .4226 .1458 .2317 .1690 .1641 .1597 .1580
19 0.8201 .2087 .0724 .1074 .0961 .0901 .0889 .0891
20 0.7042 .0928 .0342 .0305 .0396 .0583 .0634 .0639
21 0.7541 .4917 .1660 .1999 .2020 .1965 .1869 .1878
22 0.9752 .4235 .1472 .1710 .1448 .1412 .1402 .1396
23 0.8571 .2757 .0727 .0900 .0765 .0750 .0735 .0742

Table 4.5. Results for CBI with local profiles: Confidence, precision, and mean absolute error of
predictions; mean absolute error for k-NN point estimations with k = 1, 3, 5, 7, 9.

the prediction of credible (label) sets does hardly make sense. Anyway, CBI

somehow unifies diverse types of prediction problems. Moreover, as it does not
make strong structural assumptions for the output space R but only requires a
similarity measure σR to be given, it is widely applicable and especially interesting
for learning problems involving structured output spaces [372]. This section is
meant to illustrate this point by applying CBI to the problem of label ranking.

The problem of label ranking has been introduced quite recently [184, 156] and can
be considered as a generalization of standard classification. In the classification
setting, each instance s ∈ S is associated with a single label y ∈ Y , where
Y = {y1, y2 . . . y�} is a finite set of class labels. Given a set of examples in the
form of labelled instances (s, y), the problem is to induce a classification function,
i.e., a S −→ Y mapping from the input to the output space. In label ranking,
each instance s is instead associated with a complete ranking (total order) of the
labels Y . Correspondingly, the problem is to learn a ranking function that maps
instances to rankings over Y .

A ranking can be expressed in terms of a permutation τs of {1, 2 . . . �}, where
τs(ı) =  if the class label yı has position  in the ranking associated with instance
s. Thus, the output space R in our CBI framework can now be defined by the
set of all permutations of {1, 2 . . . �}. As a similarity measure σR we employ the
well-known Spearman rank correlation:

σR(τ, τ ′)
df
= 1 − 6

∑�
ı=1 ( τ ′(ı) − τ(ı) )2)

�(�2 − 1)
.
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More specifically, since the rank correlation (just like the standard Pearson corre-
lation for numerical attributes) assumes values in [−1, 1], we use an affine trans-
formation of this measure to the unit interval.

Since benchmark data for label ranking is not yet available, we generated such
data from standard classification data in the following way: We first trained a
näıve Bayes classifier16 on a given classification data set. Then, for each example
instance sı, all the labels were ordered with respect to decreasing predicted class
probabilities (in the case of ties, labels with lower indices are ranked first). By
substituting the single labels contained in the original (multiclass) data set with
the complete rankings, we finally obtained a label ranking data set as desired. As
an aside, note that the problem of learning a ranking function may thus also be
viewed as learning a qualitative replication of the näıve Bayes predictions.

In the following, we present results for the glass data, again a well-known bench-
mark from the UCI repository. This data set contains 9 predictive attributes.
Since all these attributes are numerical, we again used (4.17) with γ = 5 as a
similarity measure σS . The number of classes in this data set is � = 6.17 After
the data has been transformed into a label ranking data set as described above,
the same performance measures as in section 4.4.2 were derived, again by means
of a leave-one-out cross-validation: The confidence (CONF) is again measured in
terms of the relative frequency of correct predictions, i.e., predictions covering
the true ranking. The precision (PREC) was measured in terms of the mean of
|ϕ̂h,M(s0)| · |R|−1 = |ϕ̂h,M(s0)| · (�!)−1, i.e., the average relative size of the cred-
ible output set. Instead of the mean absolute error as derived in section 4.4.2,
we determined the mean similarity (MS) between the true ranking and the point
estimation of CBI (generalized median (3.31) of ϕ̂(s0)).

k p CONF PREC MS
3 .00 1.00 0.412 0.962
3 .02 0.95 0.136 0.971
3 .04 0.93 0.110 0.972
7 .00 1.00 0.405 0.960
7 .02 0.94 0.131 0.970
7 .04 0.91 0.107 0.972

15 .00 1.00 0.401 0.959
15 .02 0.92 0.128 0.967
15 .04 0.88 0.105 0.970

Table 4.6. Experimental results obtained by applying the probabilistic variant of CBI (cf. Section 4.3.1)
to the label ranking version of the glass data.

Table 4.6 shows results for different sizes k of the neighborhood, using the proba-
bilistic version of CBI as an inference method. The results are quite comparable to
those of Section 4.4.2. Again, the use of probabilistic bounds yields a considerable

16 We employed the implementation of the Weka machine learning package [400].
17 Actually, the number is 7, but since the fourth attribute never occurs we only considered the re-

maining 6.
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gain of precision at the cost of a slight deterioration of the precision. The quality
of the point estimations is not affected very much, but it seems that the more
precise the credible output set, the better the point estimation derived thereof.

Table 4.7 summarizes the performance of standard IBL (k-nearest neighbor es-
timation) in terms of the mean similarity between predicted and true rankings.
Here, IBL predictions were derived by the median of the query’s k nearest neigh-
bors.18 Again, it turns out that, regarding point estimations, CBI is more than
competitive with standard IBL.

k 1 3 5 7 15
MS 0.969 0.965 0.957 0.947 0.926

Table 4.7. Mean similarity between predicted and true rankings for standard IBL (k-nearest neighbor
estimation).

4.5 Case-based inference as evidential reasoning

The symbol η in Fig. 4.6, characterizing the prediction derived by means of prob-
abilistic CBI, designates a normalized uncertainty measure (fuzzy measure [388])
over R, i.e., a mapping 2R �→ [0, 1] such that

– η(∅) = 0, η(R) = 1,

– ∀A,B ∈ R : A ⊂ B ⇒ η(A) ≤ η(B).

In fact, the probabilistic approach to CBI will generally not allow for the deriva-
tion of a unique probability distribution on R. This is caused by the two prop-
erties of CBI mentioned in Section 3.2.1. Firstly, the indirect derivation of pre-
dictions necessitates the transformation of constraints on similarity degrees into
constraints on outcomes. Secondly, the locality of inference rules calls for the
combination of probabilistic evidence obtained from individual cases. Both, the
transformation as well as the combination of probabilistic constraints are part of
the (pseudo-)inverse σ

(−1)
R .

In the constraint-based setting of Chapter 3, evidence concerning similarity de-
grees is given in the form of lower similarity bounds, i.e., intervals of similarity
degrees, and the transformation of this evidence is realized by means of the set-
valued mapping (3.4). Moreover, the intersection of corresponding constraints on
the output level is accomplished by a simple intersection. The derivation of a
nested sequence (4.14) of credible output sets in Section 4.3.1 can be considered

18 This is sometimes called the set median [215]. While the generalized median of a set U ⊂ X of
objects is an element of X, the set median is searched among the given objects only (the k nearest
neighbors in our case) and, hence, is an element of U .



130 4. Probabilistic Modeling of Case-Based Inference

as a direct probabilistic generalization of this approach, justified by a simplifying
assumption of independence.

In this section, the problem of combining probabilistic evidence in connection
with CBI will be considered in a more general context, namely as a parallel
combination of information sources. The problem of combining concurrent pieces
of (uncertain) evidence arises in many fields, such as robotics (sensor fusion) or
knowledge-based systems (expert opinion pooling), and it has been dealt with
in a probabilistic setting [153, 165] as well as alternative uncertainty frameworks
[25, 44, 120, 207]. The combination of evidence derived from individual cases is
perhaps best compared to that of expert opinion pooling. That is, each (observed)
case is seen as an expert, and its prediction of the unknown outcome of the
new input is interpreted as an expert statement. The task is to synthesize these
statements.

A general framework for the parallel combination of information sources which
seems suitable for our purpose has been introduced in [164]. A basic concept
within this framework is that of an imperfect specification: Let Ω denote a set of
alternatives consisting of all possible states of an object under consideration and
let ω0 ∈ Ω be the actual (but unknown) state.19 An imperfect specification of ω0

is a tuple Γ = (γ, pC), where C is a (finite) set of specification contexts, γ is a
C −→ 2Ω mapping, and pC is a probability measure over C.20 The problem of
combining evidence is then defined as generating one imperfect specification Γ of
ω0 from n imperfect specifications Γ1, . . . , Γn, issued by n different information
sources.

From a semantical point of view, a specification context c ∈ C can be seen as
a physical or observation-related frame condition, and γ(c) is the (most specific)
characterization of ω0 that can be provided by the information source in the
context c. Consider the testing of the equality of two numbers, realized in the form
of a predicate P (α, β) ≡ (α = β), as a simple example and let Ω = {0, 1}×{0, 1}.
We can then distinguish the contexts c1 and c2 in which the predicate P is true
and in which P is false, respectively, when being applied to ω0. This leads to
γ(c1) = {(0, 0), (1, 1)} and γ(c2) = {(0, 1), (1, 0)}.
The value pC(c) can be interpreted as an (objective or subjective) probability of
selecting c as a true context. An imperfect specification is thus able to model
imprecision as well as uncertainty. The consideration of (probabilistic) uncer-
tainty is accomplished by the probability measure pC . Moreover, the modeling of
imprecision is possible due to the fact that γ is a set-valued mapping.

19 The fact that ω0 can always be represented as an element of Ω is a consequence of the (often
implicitly made) closed world assumption [348].

20 Formally, an imperfect specification is nothing but a set-valued mapping on a probability space, a
well-known concept in connection with random sets [82, 280, 360].
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x11

y11

x1 x2 −→ Y01 Y02

Y01 Y02

r1 r1

−→

R0

4.5.1 Transformation of probabilistic evidence

According to the indirect approach realized by CBI, evidence concerning out-
comes is derived in two stages, where the second step consists of translating
(probabilistic) evidence about similarity degrees into constraints on outcomes
(cf. Fig. 4.9).

Within the probabilistic setting of this chapter, evidence concerning similarity
degrees is given in the form of probability measures. Consider a probability mea-
sure µ over DR which has been derived from a case 〈s, r〉 and which is taken as
evidence about the similarity between r and the unknown outcome ϕ(s0). When
interpreting this case as an information source Γ = (γ, pC), the set of specifica-
tion contexts is given by the set of possible degrees of similarity x = σS(s, s0).

21

That is,
C = DR,

γ(c) = σ
(−1)
R (r, c),

pC(c) = µ(c),

where
σ

(−1)
R (r, c)

df
= {r′ ∈ R |σR(r, r′) = c} (4.18)

for all c ∈ C. The set γ(c) is obviously the most specific restriction of ϕ(s0) that
can be derived in the context c, i.e., from the assumption that σR(ϕ(s), ϕ(s0)) = c
and the fact that ϕ(s) = r.

Let Γ = (γ, pC) denote the imperfect specification of an unknown outcome ϕ(s0)
associated with a case 〈s, ϕ(s)〉. It may happen that γ(c) = ∅ for some c ∈ C,
which means that c cannot be a true context and that Γ is contradictory [164]. It
is then necessary to replace Γ by a revised specification Γ ′ = (γ′, pC′). The latter
is defined by

21 For the sake of simplicity, we assume in this section that DR is finite .

Fig. 4.9. Illustration of probabilistic CBI as a procedure consisting of two steps.
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C ′ = {c ∈ C | γ(c) "= ∅},
γ′(c′) = γ(c′),

pC′(c′) = k · pC(c′)

for all c′ ∈ C ′, with k being the normalization factor, i.e.

1/k =
∑

c∈C : γ(c)=∅

pC(c). (4.19)

Subsequently, the imperfect specification associated with a case 〈s, r〉 will always
refer to the already revised specification.22

Note that the imperfect specification Γ thus defined is closely related to the
concept of a mass distribution in the belief function setting [336, 350]: Let m :
2Ω −→ [0, 1] be a mass distribution over a set Ω, i.e., m(∅) = 0 and

∑
A⊂Ω m(A) =

1. Moreover, let A = {A1, . . . , An} = {A ⊂ Ω |m(A) > 0} denote the (finite) set
of focal elements. We can then associate an imperfect specification Γ = (γ, pC)
with m:

C = {c1, . . . , cn},
γ(ck) = Ak,

pC(ck) = m(Ak)

for all 1 ≤ k ≤ n. The other way round, each imperfect specification Γ = (γ, pC)
induces an (information-compressed23) representation in the form of a mass dis-
tribution m, where

m(A) =
∑

c∈C : γ(c)=A

pC(c) (4.20)

for all A ⊂ Ω and m(A) > 0 for a finite number of sets.

By making use of the relation between the mass function (4.20) and the imper-
fect specification (γ, pC) associated with a case 〈s, ϕ(s)〉, the evidence about the
outcome ϕ(s0) derived from 〈s, ϕ(s)〉 can be represented in the form of a belief
function Bel resp. an associated plausibility function Pl over R, where

Bel(A) =
∑
B⊂A

m(B), Pl(A) =
∑

B∩A=∅

m(B)

for all A ⊂ R. Bel(A) and Pl(A) define degrees of belief and plausibility that
ϕ(s0) is an element of A, respectively. These values can also be interpreted as
lower and upper probabilities. Since the imperfect specification and, hence, the
mass distribution associated with 〈s, ϕ(s)〉 is derived from the outcome ϕ(s) and
the probability measure H(σS(s, s0)), the above belief (plausibility) function cor-

responds to a transformation σ
(−1)
R which is now a R×P(DR) −→ F(R) mapping,

where F(R) denotes, say, the class of normalized uncertainty measures over R:

22 We disregard cases for which k in (4.19) is not well-defined.
23 A mass function does not define a unique imperfect specification.
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Bel = Bel(H, s0) = σ
(−1)
R
(
ϕ(s), H(σS(s, s0))

)
. (4.21)

This transformation defines a generalization of σ
(−1)
R in (4.18).

Remark 4.16. The transformation (4.18) defines a kind of equivalence (indistin-
guishability) relation: An information source 〈s, r〉 does not distinguish between
outcomes r′ and r′′ such that σR(r, r′) = σR(r, r′′). Thus, the belief function (4.21)
has a special structure. In fact, the focal elements define a partition of R. �

Let Γ = (γ, pC) be the imperfect specification induced by a case 〈s, ϕ(s)〉. The
application of a generalized insufficient reason principle [350] makes it possible
to characterize ϕ(s0) by means of a probability measure P over R. The latter is
defined by

P(A)
df
=

∑
c∈C : γ(c)∩A=∅

pC(c) · |A ∩ γ(c)|
|γ(c)| (4.22)

for all A ⊂ R, where |X| denotes the cardinality of the set X. This measure is
also called betting function, a term referring to the use of (4.22) in the context of
decision making [350].

4.5.2 Inference from individual cases

Suppose a new input s0 ∈ S to be given and let 〈s, ϕ(s)〉 be an observed case (cho-
sen at random according to µS×R). Translating probabilistic evidence referring to
degrees of similarity into evidence about outcomes, as outlined in Section 4.5.1,
leads to a prediction in the form of the belief function

Bel = σ
(−1)
R
(
ϕ(s), H (σS(s, s0))

)
(4.23)

over the set R of outputs. As already mentioned above, the transformation σ
(−1)
R

realizes a R × P(DR) −→ F(R) mapping and defines a generalization of (4.18).
If CBI proceeds from a local M-hypothesis, (4.23) becomes

Bel = σ
(−1)
R
(
ϕ(s), Hs (σS(s, s0))

)
. (4.24)

As (4.23) and (4.24) show, the framework introduced in this section gives rise to
the (uncertain) specification of ϕ(s0) in the form of a belief function over R.

In Section 4.5.3, we shall discuss the problem of combining several predictions
(4.23) which have been derived from individual cases of the memory M. Though
let us mention that one might also think of selecting merely one previous case
(maximally similar to the new input) from M for solving a new problem. This
strategy, which is common practice in CBR, obviously avoids any kind of com-
bination problem. Observe, however, that inputs are no longer determined by
means of pure random choice. In fact, the idea of drawing inferences from the
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most similar case is supported by the concepts of an (n, k)-PSP and an (M, k)-
PSP which have been introduced in Section 4.1. Indeed, what is basically needed
is the kind of inference rules provided by these similarity profiles for the special
case k = 1. Even though these inference rules appear more complicated (com-
pare the formulation on page 138) the specification of a hypothesis related to an
(n, 1)-PSP or an (M, 1)-PSP does not seem to be more demanding than the
specification of a hypothesis related to a PSP (all the more if these hypotheses
are derived by means of machine learning methods).

Consider a memory M, a new input s0 ∈ S, and let H be a hypothesis related to
an (n, 1)-PSP or an (M, 1)-PSP. We can then derive the following counterpart
to (4.23) (for the mapping N1 see Definition 3.8):

Bel = σ
(−1)
R
(
ϕ(N1(M, s0)), H (σS(s0,N1(M, s0)))

)
.

x 0 1/7 2/7 3/7 4/7 5/7 6/7 1

P(Y = 0 |X = x) 0.14 0.10 0.03 0.01 0.01 0.01 0.00 0.00
P(Y = 1/2 |X = x) 0.55 0.57 0.53 0.45 0.37 0.24 0.19 0.00
P(Y = 1 |X = x) 0.31 0.33 0.44 0.54 0.62 0.75 0.81 1.00

Table 4.8. (M, 1)-PSP for the setup Σ3

Example 4.17. Table 4.8 shows the (M, 1)-PSP H
(M,1)
Σ3

for the setup Σ3 and
a memory M of size 10 which has been generated at random. Consider the fol-
lowing inference scheme: Given a new input s0, the memory M and the profile
H

(M,1)
Σ3

are used in connection with (4.23) for deriving evidence about the un-
known outcome ϕ(s0) in the form of a belief function. An estimation of ϕ(s0) is
then chosen at random according to the betting function (4.22) associated with
this belief function. It can be shown that this procedure yields a correct estima-
tion with a probability of approximately 1/2. Thus, exploiting the memory M
(the size of which is only 10) increases the probability of a correct classification
from 1/3 (which corresponds to a random choice) to 1/2. The percentage of cor-
rect classifications is even larger when making a deterministic choice by simply
selecting the class with the highest degree of plausibility. �

4.5.3 Combining evidence from several cases

After having discussed the transformation of probabilistic evidence and its uti-
lization for deriving inference results from an individual case, let us now turn
to the problem of combining evidence from several cases. That is, suppose we
are given n imperfect specifications of the unknown outcome ϕ(s0), which have
been derived from a memory M containing n cases 〈s1, ϕ(s1)〉, . . . , 〈sn, ϕ(sn)〉
in connection with a probabilistic similarity hypothesis H. The task shall be to
aggregate these (uncertain) pieces of evidence.

and a memory M of size 10 (cf. Example 4.17).
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The problem of interdependence. Within the framework of Section 3, ev-
idence derived from an individual case 〈s, ϕ(s)〉 is given in the form of the α-
neighborhood Nα(ϕ(s)), where α = h(σS(s, s0)). This corresponds to a particular
imperfect specification Γ = (γ, pC), namely

C = DR,

γ(c) = Nc(ϕ(s)),

pC(c) =

{
1 if c = h(σS(s, s0))

0 if c "= h(σS(s, s0))
.

The probability measure pC thus defined reveals the cautious character of the
inference scheme (3.2). In fact, the complete probability mass is attached to the
(most pessimistic) context c = h(σS(s, s0)), thus suggesting that the similarity
between s and s0 might not be larger than the lower bound h(σS(s, s0)). Within
the setting of this section, where pC is not restricted to one-point measures, one
could think of generalizing the conjunctive combination (3.2) by considering the
prediction of r0 as a random set.

Suppose the similarity between ϕ(s0) and ϕ(sk) to be given by yk, i.e.

∀ 1 ≤ k ≤ n : σR(ϕ(s0), ϕ(sk)) = yk. (4.25)

We can then derive the prediction ϕ(s0) ∈ ϕ̂y,M(s0), where y = (y1, . . . , yn) and

ϕ̂y,M(s0)
df
=
⋂

1≤k≤n

σ
(−1)
R (ϕ(sk), yk). (4.26)

This corresponds to a conjunctive combination of the individual (set-valued) pre-

dictions σ
(−1)
R (ϕ(sk), yk). Within our probabilistic setting, the vector of similarity

degrees is actually a random variable Y = (Y1, . . . , Yn), and the related prediction
(4.26) can hence be seen as a random set ϕ̂Y,M(s0).

This approach comes down to considering the n cases as one information source,
inducing the imperfect specification Γ = (γ, pC), where

C = (DR)n,

pC = µ(c),

γ(c) =
⋂

1≤k≤n σ
(−1)
R (ϕ(sk), ck)

(4.27)

for all c = (c1, . . . , cn) ∈ C. The measure µ is the joint probability over (DR)n

characterizing the occurrence of similarity vectors. That is, µ(y) is the probability
of the event (4.25), where y = (y1, . . . , yn).

Example 4.18. Let us reconsider Example 4.13. The following table shows the
probabilities P((Y01, Y02) = (y01, y02) |ZS = zS):
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0 1/2 1
0 238

24203
0 0

1/2 0 6559
24203

0
1 0 0 17406

24203

By making use of this probability distribution and the observed outcomes
r1 = r2 = 1/2, we obtain the imperfect specification Γ = (γ, pC), where
C = {0, 1/2, 1} × {0, 1/2, 1}, pC is specified by the above probabilities, and

γ((0, 0)) = ∅
γ((1/2, 1/2)) = {0, 1}

γ((1, 1)) = {1/2}.

Observe that c = (c1, c2) is only a possible context if c1 = c2, i.e., values γ((c1, c2))
for which c1 "= c2 are not relevant. Moreover, this imperfect specification has to be
revised, since γ((0, 0)) = ∅. The revised specification leads to a mass distribution
m such that m({1/2}) = 0.726 and m({0, 1}) = 0.274. For the induced belief
function we have

Bel({0}) = Bel({1}) = 0.274, Bel({1/2}) = 0.726.

As already mentioned before, these values can be seen as upper probabilities of
the respective outcomes r ∈ R. �

Treating n cases as one information source in the sense of (4.27) is an obvious
way of combining evidence. What makes things difficult, however, is the fact that
the joint probability measure µ over (DR)n and, hence, the probability pC in
(4.27) are generally not known. It is also not possible to derive this measure from
the information provided by a PSP. The PSP informs about the (conditional)
distributions of individual similarity degrees, i.e., it specifies the (unknown) sim-
ilarity yk between ϕ(s0) and ϕ(sk) by means of a probability measure, given
the similarity of the respective inputs: Yk ∼ µY |(X=σS(s0,sk)). It is by no means
obvious, however, how to derive the joint measure µY |ZS

which takes the infor-
mation provided by the complete similarity structure into account. In fact, the
random variables Xı, Yı, X0 (1 ≤ ı <  ≤ n), which constitute the similarity
structure, are not stochastically independent. For instance, the similarities Xı

(1 ≤ ı <  ≤ n) between the inputs in the memory depict important information
about dependency structures which cannot be taken from a PSP. Needless to
say, extending the PSP to a probabilistic model which provides the required in-
formation is generally intractable due to the enormous number of joint measures
µY |ZS

which would have to be specified.

The aforementioned type of interdependence is already revealed by Example 4.13.
In fact, one obtains completely different sets of “matching” (triples of) cases S1

and S2 in (4.9) when ignoring the similarity x12 between the observed cases.
However, the problem can also be grasped intuitively. Consider the two prediction
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Fig. 4.10. Illustration of two prediction tasks.

tasks illustrated in Fig. 4.10. The left and the right picture in this figure show a
partial neighborhood of the instance s1

0 = (8, 14) and the instance s2
0 = (24, 3),

respectively. Interestingly enough, one obtains the same individual predictions
in both cases and, therefore, the same overall prediction when combining them
independently. Intuitively, however, the plausibility of ϕ(s1

0) = 1 seems to be
larger than the plausibility of ϕ(s2

0) = 1.

This estimation is of course suggested by the locations of the neighbored points (s1
0

is “surrounded” by black points).24 In a more general context, where cases are not
necessarily points in a Euclidean space, it is just the similarity among the observed
cases which has an important influence on their individual contribution to the
overall prediction. For example, the increase in evidence due to the observation
of a second case, pointing in the same direction as a first case, does also depend
on the similarity between these two cases. In fact, the more similar the two
inputs are, the less astonishing it is that their outcomes are similar. This follows
immediately from the CBI hypothesis itself. Thus, interdependence of the above
type should not be ignored when taking this hypothesis for granted (as instance-
based reasoning methods actually do).

As can be seen, it might not be advisable to consider individual cases as pieces of
evidence which are distinct in the sense of [336, 349]. Therefore, we shall not apply
the orthogonal sum operation as proposed by Dempster in order to combine
individual predictions.

Example 4.19. Consider again Example 4.13. From the PSP in Table 4.1 we
can take the measures µY |(X=x) ∈ P(DR), i.e., the following (conditional) distri-
butions:

y 0 1/2 1

P(Y01 = y |X01 = 4/7) 0.04 0.38 0.58
P(Y02 = y |X02 = 6/7) 0.02 0.33 0.65

There is obviously now way of deriving the joint distribution of Y01 and Y02

(tabulated in Example 4.18) from these individual distributions without taking
further information into account. The fact that the conditional probability of
(Y01, Y02) = (y01, y02) is 0 whenever y01 "= y02, for instance, becomes obvious only
from y11 = 1 and the special structure of (R, σR). �

24 The example becomes especially convincing when thinking of black and white points as places with
cloudy and sunny sky, respectively.
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Remark 4.20. If the conditional probability measures

µY |(ZS=zS) ∈ P((DR)n) (4.28)

were known for all similarity structures zS, the combination of evidence from
different cases could be avoided completely. Since each measure (4.28) can be
seen as a collection of inference rules, this would require some kind of “higher
order CBI hypothesis.” For instance, rules of the following form would have to
be specified for each possible vector zs = (x01, x02, x11, y11) ∈ (DS)3 × DR if
n = 2: “Given two x11-similar inputs with y11-similar outcomes such that the
similarity between the first resp. second input and the new input is x01 resp. x02,
the similarities Y = (Y01, Y02) between the corresponding pairs of outcomes are
distributed according to µY |(ZS=zs).” Even though this approach appears rather
complex, we will take it up again in Section 4.7. �

Convex combination of evidence. If knowledge about the dependency struc-
ture is incomplete, a still reasonable way of combining evidence is to define the
aggregated imperfect specification as the convex combination of the individual
imperfect specifications [164].25 Let Γk = (γk, pCk

) denote the imperfect specifi-
cation associated with the case 〈sk, ϕ(sk)〉, where

Ck = {k} × DR,

γk(c) = σ
(−1)
R (ϕ(sk), y),

pCk
(c) = µY |(X=σS(s0,sk))(y)

for all c = (k, y) ∈ Ck. Thus, an element c = (k, y) specifies the context in which
the k-th case is considered, and the similarity between the corresponding outcome
ϕ(sk) and the unknown outcome r0 is given by y. The convex combination Γ =
(γ, pC) of Γ1, . . . , Γn is then defined by

C = C1 ∪ . . . ∪ Cn,

γ(c) = γk(c),

pC(c) = αk · pCk
(c)

(4.29)

for all c = (k, y) ∈ C, where αk ≥ 0 (1 ≤ k ≤ n) and α1 + . . . + αn = 1.

Notice that the set of specification contexts in (4.29) is given by the union of
the individual contexts, whereas it is defined as the product in (4.27). In fact, the
incomplete specification (4.29) does not consider combined events (4.25) since the
probabilities of these events are unknown. Rather, an interpretation of the convex
combination Γ can be given in terms of the following semantic model: Since a
well-justified combination of the information sources cannot be accomplished,

25 Often, other combination modes will actually be more appropriate, e.g., conjunctive or disjunctive
pooling methods. In general, however, such methods assume more knowledge about the dependency
structure or reliability of the information sources.
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only one expert (case) is singled out and the corresponding belief (estimation)
is adopted. The selection of the expert is realized by means of a random choice,
where αk is the probability of selecting the k-th expert. The convex combination
Γ can then be seen as the “expected belief” (i.e., the belief before the choice
has been made). The weights αk might be interpreted as an estimation of the
relative reliability or specificity of the information sources. The question of how
to determine these weights will be discussed in Section 4.6.

Now, consider a CBI problem 〈Σ, s0〉. Let mk(H, s0) and Belk(H, s0) denote,
respectively, the mass distribution and belief function induced by the k-th case
〈sk, ϕ(sk)〉, which corresponds to the k-th specification Γk. That is,

Belk(H, s0) = σ
(−1)
R
(
ϕ(sk), H(σS(s0, sk))

)
, (4.30)

with H being a hypothesis related to HΣ. The corresponding functions m and Bel
associated with the convex combination (4.29) are then given by

m(H,M, s0) = α1 · m1(H, s0) + . . . + αn · mn(H, s0), (4.31)

Bel(H,M, s0) = α1 · Bel1(H, s0) + . . . + αn · Beln(H, s0). (4.32)

In plain words, combining evidence at the instance level comes down to deriving
the convex combination of the belief functions induced by individual cases, where
the weight of a case depends on characteristics such as similarity, typicality, or
precision. Observe that the global hypothesis H in (4.32) is replaced by the local
hypotheses associated with the respective cases if CBI proceeds from a local
M-hypotheses HM:

Bel(HM,M, s0) =
n∑

k=1

αk · Belk(H
sk , s0) (4.33)

Given a setup Σ with memory M, a prediction (4.32) can principally be derived
for all inputs in S. This way, the case-based inference scheme can be generalized
to a “belief function-valued” approximation of ϕ:26

ϕ̂H,M : S −→ F(R) , s �→ Bel(H,M, s). (4.34)

Of course, it is not necessary to derive a prediction (4.32) for those inputs which
have already been observed and are stored in M since the corresponding outcome
can simply be retrieved from the memory. That is, ϕ̂H,M should actually be
defined as

ϕ̂H,M(s) =

{
Bel{ϕ(s)} if 〈s, ϕ(s)〉 ∈ M

Bel(H,M, s) if 〈s, ϕ(s)〉 "∈ M , (4.35)

where Bel{ϕ(s)} is the belief function focused on ϕ(s): Bel{ϕ(s)}(A) = 1 for A ⊇ ϕ(s)
and Bel{ϕ(s)}(A) = 0 otherwise.

26 This mapping corresponds to what is called an extensional concept description in instance-based
learning [11].
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4.6 Assessment of cases

A problem of practical relevance is the choice of the weights αk in (4.31) and
(4.32). As already mentioned above, these weights should reflect the reliability
or quality of the individual information sources. At the same time, the deter-
mination of weights makes it possible to take the problem of interdependence
(cf. Section 4.5.3) into account. This section is meant to suggest concrete criteria
for defining the weights. Due to the involved nature of the problem, however, our
results will not go beyond some heuristic approaches.

4.6.1 Similarity-weighted approximation

In locally weighted approximation [17] and weighted kNN [327], the influence of
an observation is usually determined as a function of its distance to the query
point. Thus, it is assumed that more similar cases are also more reliable or relevant
in the current context. This idea suggests to define weights as normalized degrees
of similarity:

αk = σS(s0, sk)

(
n∑

ı=1

σS(s0, sı)

)−1

(4.36)

if
∑n

ı=1 σS(s0, sı) > 0 and ak = 1/n otherwise.

Remark 4.21. Note that (4.36) might appear questionable as soon as we have
σS(s0, sk) = 1 for some 1 ≤ k ≤ n. However, when assuming that σS is separating
in the sense that (σS(s, s′) = 1) ⇔ (s = s′) this means that s0 itself has already
been observed. Therefore, the output ϕ(s0) is retrieved from the memory accord-
ing to (4.35), i.e., the determination of weights is actually not necessary. If, on
the other hand, σS is not separating (and s0 is not stored in M), it can indeed
happen that two completely similar inputs have different outcomes. In this case
(4.36) does again make sense. �

r = 0 r = 1/2 r = 1
[Pl(HΣ ,M, (5, 4))]({r}) 0.61 0.36 0.03
[Pl(HΣ ,M, (14, 15))]({r}) 0.31 0.39 0.30

[Pl(HM
Σ ,M, (5, 4))]({r}) 0.91 0.07 0.02

[Pl(HM
Σ ,M, (14, 15))]({r}) 0.37 0.49 0.14

Table 4.9. Prediction based on a memory of size n = 25 (cf. Example 4.22).

Example 4.22. In connection with Example 4.1, we have derived the prediction
(4.32) with H = HΣ for two new inputs, namely s1

0 = (5, 4) and s2
0 = (14, 15).

To this end, we have chosen a memory M of size n = 25 at random. Table 4.9



4.6 Assessment of cases 141

shows values of the associated plausibility functions. As can be seen, the highest
degree of plausibility is assigned to the true outcomes ϕ(s1

0) = 0 and ϕ(s2
0) = 1/2,

respectively. By making use of the local M-PSP HM
Σ , we have also derived the

prediction (4.33). The corresponding degrees of plausibility are again shown in
Table 4.9. The results provide a nice illustration of the fact that some predictions
might be more critical than others: The prediction of r2

0 is obviously more equiv-
ocal than that of r1

0. In fact, a high degree of plausibility is assigned to r1
0 = 0,

whereas r1
0 = 1/2 and r1

0 = 1 are rather unlikely. In the case of s2
0 it is also true

that the actual output 1/2 is the most plausible outcome, yet r2
0 = 0 and r2

0 = 1
are regarded as more or less plausible candidates as well. The different precision
of the predictions (see Section 4.6.2 below) is easily understood by inspecting
Fig. 4.2: The neighborhood of s1

0 is obviously more homogeneous than that of
s2
0. �

Example 4.23. Fig. 4.11 shows a (case-based) approximation ϕ of the fuzzy
concept of Example 4.1. This approximation, which corresponds to a S −→ R
mapping, is again based on a randomly chosen memory M of size n = 25. By
considering each instance (ı, ) as a new input, the approximation (4.34) has
been derived for H = HΣ, where the weights αk were chosen according to (4.36).
Finally, ϕ has been determined by

ϕ(s) = arg max
r∈R

[Pl(H,M, s)]({r})

for all s ∈ S, where Pl(H,M, s) denotes the plausibility function associated with
the belief function ϕ̂(s) in (4.34). That is, the membership degree of “maximum
plausibility” has been chosen as a prediction. As can be seen, this approximation

Fig. 4.11. Left: The fuzzy concept of Example 4.1 which is also shown in Fig. 4.2. Right: Approximation
of this concept (cf. Example 4.23).
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scheme yields a rather good “reconstruction” of the fuzzy concept based on a
relatively small number of observations. �

4.6.2 More general criteria

In connection with our approach to CBI, a case 〈sk, rk〉 does not provide a simple
point estimation, but rather a prediction in the form of a belief function. When
rating a case, the following points have thus to be taken into consideration. Firstly,
the correctness of the prediction does not only depend on the similarity between
rk and the new outcome r0. In fact, the ultimate prediction Belk = Belk(H, s0)
results from the combination of two components, namely the outcome rk and an
attached probability measure characterizing the similarity y = σR(r0, rk). That
is, rk is not taken directly as an estimate. Rather, it is interpreted in the context
of the probabilistic model. Therefore, Belk might provide a fair prediction even if
rk itself does not: If the probabilistic model is correctly adapted to 〈sk, rk〉, Belk
will support outputs which are not similar to rk.

Secondly, a prediction in the form of an uncertainty measure suggests not only to
rate the correctness of an estimation, but also its precision. A prediction specified
by the vacuous belief function (i.e., by the mass distribution m with m(R) = 1),
for instance, might be considered correct, since it makes the true outcome r0

fully plausible. Yet, it does actually not provide any information since it causes
the same for all other outcomes as well. This problem (of rating the precision of
expert judgements) does also arise in connection with the assessment of human
experts which generally specify their incomplete knowledge in the form of, say,
probability or possibility distributions [72, 329].

The above considerations suggest to define the weights αk in accordance with two
criteria, namely the correctness and the precision of predictions. As will be seen,
both criteria are in fact closely related: In general, a more precise prediction is – in
a specific sense – also more correct. It seems, therefore, reasonable to determine
the weight of a case in proportion to the precision of the prediction derived from
that case.

Assessing the precision of the information obtained from a case 〈sk, rk〉 can be ac-
complished by quantifying the “amount of uncertainty” related to the prediction
Belk(H, s0) in (4.30). To this end, one can make use of (generalized) measures of
uncertainty which have been proposed for belief functions [114, 308, 347, 401]. For
a mass distribution m, the following measure defines a reasonable generalization
of the non-specificity of a set [229, 230]:

I(m) =
∑
A∈A

m(A) log2(|A|),

where A denotes the set of focal elements of m. Thus, a counterpart to (4.36)
which is based on the precision of individual estimations can be obtained by
letting
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αk =
Inf(mk(H, s0))∑n
ı=1 Inf(mı(H, s0))

, (4.37)

where mk(H, s0) denotes the mass distribution associated with Belk(H, s0) and
Inf is a specificity measure which is normalized and inversely related to I. When
making use of a local M-hypothesis, (4.37) becomes

αk =
Inf(mk(H

sk , s0))∑n
ı=1 Inf(mı(Hsı , s0))

.

Of course, the precision I(m) of mass distributions over R is in general strongly
correlated with the precision of the underlying probability measures H(x) from
which the mass distributions are derived. The precision of a probability measure
µ = H(x) can be defined, e.g., in terms of the Shannon entropy [338]:

I(µ) = −
∑

y∈DR

µ(y) log2(µ(y)). (4.38)

One might therefore think of replacing (4.37) by

αk =
Inf(H(σS(s0, sk)))∑n
ı=1 Inf(H(σS(s0, sı)))

, (4.39)

where Inf is again normalized and inversely related to I as defined in (4.38).

Interestingly enough, (4.38) can also be seen as a measure of the correctness
of a prediction. In fact, it is readily shown that I(H(σS(s0, sk))) corresponds to
the expected correctness of the prediction Plk(H, s0) if the (in)correctness of this
prediction is defined as log2([Plk(H, s0)]({ϕ(s0)})), i.e., as the logarithm of the
degree of plausibility assigned to the true outcome ϕ(s0).

As can be seen, the weighting of a case according to our two criteria, the precision
and the (expected) correctness of its prediction, will point in the same direction.
Quite often, precision is not only correlated (positively) with correctness, but also
with similarity. This observation, which provides a justification for the heuristic
approach (4.36), is easily understood by considering two extreme cases: If the
similarity x = σS(s, s′) is close to 1, one does expect a large probability for
large values y = σR(ϕ(s), ϕ(s′)) and a small probability for small values y. The
corresponding probability distribution H(x) will hence have a small entropy. This
is to be contrasted with a similarity x close to 0, which will hardly allow for
making accurate predictions about related similarity degrees y and outcomes r.
The associated probability distribution might have a stronger tendency toward
a uniform distribution27 and, therefore, will have a larger entropy. Even though
rather plausible, the situation will not always be like this, of course. In fact, it is
not difficult to construct a counterexample. Anyway, in our example (cf. Table 4.1)
the entropy of the distribution H(x) is indeed a decreasing function of x which is
very accurately approximated by the mapping x �→ 1.39 − 0.38 x (when leaving
the special case x = 1 out of account).

27 Depending on the similarity measure, it will generally reflect but the relative frequency of outcomes.
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4.6.3 Assessment of individual cases

A weight ak in (4.36) or (4.39) does not depend on the case 〈sk, rk〉 itself, but
only on the similarity between s0 and sk. Even though Section 4.6.2 has given a
(heuristic) justification of the case-based determination of weights, these criteria
do actually not take the “prediction performance” of an individual case into
account. In fact, an observation 〈sk, rk〉 might be rather misleading in the sense
that it provides poor predictions, even if sk is very similar to s0. A simple (but
rather drastic) step in this connection is to classify observations into acceptable
and non-acceptable ones and to leave the latter out of account. This idea leads
to the elimination of what is called outliers in statistics and noisy instances in
instance-based learning [10].

As already mentioned above, the correctness of a prediction Belk does not nec-
essarily require that rk is close to r0. Rather, it assumes that the similarity
y = σR(r0, rk) is accurately specified. Now, recall that the probability measure
correctly adapted to the case 〈sk, rk〉 is given by Hsk

Σ (σS(s0, sk)), where Hsk
Σ is the

local measure associated with sk (cf. Definition 4.12). Consequently, the predic-
tion Belk might be misleading if CBI proceeds from the global PSP HΣ resp. a
related hypothesis H, and the measure HΣ(σS(s0, sk)) deviates considerably from
the local PSP Hsk

Σ (σS(s0, sk)). In fact, relation (4.8) reveals that the sk-PSP can
be more or less similar to HΣ which represents the “average case” (and is in-
tended to maximize average performance). The more “typical” the input sk is in
this sense, the better the predictions derived from the case 〈sk, rk〉 will be.

Example 4.24. The following table shows the probability distributions HΣ(x)
and Hs

Σ(x) for the setup Σ = Σ1, x = 6/7, and s = (2, 8) (cf. Example 4.1 and
Table 4.1):

y 0 1/2 1

[HΣ1(6/7)](y) 0.022 0.338 0.640
[Hs

Σ1
(6/7)](y) 0.875 0.125 0

Thus, given a new input s0 directly neighbored to the rather “untypical” input s,
the measure HΣ1(6/7) suggests σR(ϕ(s), ϕ(s0)) = 1 and, hence, ϕ(s0) = ϕ(s) = 1
with a probability of 0.64. However, this probability is actually 0, as indicated by
Hs

Σ1
(6/7). In fact, it is highly probable that σR(ϕ(s), ϕ(s0)) = 0, which means

that ϕ(s0) = 0. �

If CBI proceeds from a (global) PSP, the above considerations suggest refining
the specification of weights ak by estimating the performance of the cases 〈sk, rk〉.
The performance measures can be used, e.g., for adapting the weights which have
been determined as a function of similarity. Another possibility is to leave the
(case-based) weights as they are, and to discount the information provided by a
case in accordance with its performance. This can be accomplished by changing
a mass distribution mk into
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m′
k : A −→

{
(1 − λk) mk(A) if A "= R

(1 − λk) mk(A) + λk if A = R ,

where the discounting factor λk is a decreasing function of the performance of the
case 〈sk, rk〉.
There are, of course, different approaches to eliciting the performance of a case.
Here, let us only indicate one possibility, namely that of learning the prediction
performance in a sequence of prediction problems by deriving an estimation of
the expected correctness

∑
s∈S

µS(s) log2 ([Plk(H, s)]({ϕ(s)})) (4.40)

associated with a case 〈sk, rk〉.28 To this end, (4.40) can be approximated by

1

|T |

N∑
ı=1

log2 ([Plk(H, s)]({ϕ(sı)})) ,

where T = (s1, . . . , sN) is a sequence of observed inputs. This approach is in line
with the idea of assessing (human) experts by evaluating their performance in
the elicitation of a set of “seed” variables [72, 329].

The above discussion reveals that not all cases support the prediction task to the
same extent. In fact, the probabilistic model of the CBI hypothesis shows how
a case may contradict the similarity-guided extrapolation principle underlying
CBI. This way, it can provide the basis of a more sophisticated assessment of cases
which goes beyond a simple classification into, say, acceptable and noisy instances.
The characterization of cases by means of their local profiles, for example, might
be taken as a point of departure for improving heuristic replacement strategies
[5, 195, 355, 363] and for complementing other criteria for maintaining optimal
memories of cases [253, 282, 356, 357].

Let us make a final remark on a reasonable refinement of the approach discussed
so far: Here, we have only been concerned with rating individual cases. In Sec-
tion 4.5.3 is has however been argued that different cases should not be seen
as independent or distinct information sources. Therefore, a case-based inference
scheme should take corresponding interdependencies into consideration. As a first
step in this direction, we have developed an inference principle that combines
(point) predictions from potentially interacting cases by means of the (discrete)
Choquet-integral [198]. This method can be seen as a generalization of weighted
nearest neighbor estimation. It is not immediately clear, however, how this ap-
proach can be further generalized to the setting of this section, where the indi-
vidual pieces of evidence are belief functions instead of simple point estimations.

28 This estimation can be seen as a generalization of the classification record in instance-based learning,
i.e., the number of correct and incorrect classification attempts of each saved instance. Note that the
expected correctness depends on the memory M, i.e., it actually assumes M to be fixed.
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An alternative approach could proceed from the specification of dependencies
between information sources by means of correlation coefficients, as in random
fields [203] or Bayesian methods (with expert opinions modeled as probability
distributions [273]). In an extended Bayesian approach, corresponding correla-
tions are taken into consideration when updating a prior belief concerning the
new outcome in light of the information provided by different cases.29 Again, it
might be interesting to extend this method to the more general framework of
belief functions.

4.7 Complex similarity hypotheses

The discussion in Section 4.5 has revealed a main problem of probabilistic infer-
ence based on a stochastic model in the form of a PSP, namely the combination
of evidence which has been derived from individual cases. This problem is caused
by the incomplete knowledge of the dependency structure of these information
sources. As shown by Example 4.19, such dependencies cannot be reconstructed
without taking further information into account, i.e., information which is not
provided by a PSP. The combination of evidence proposed in Section 4.5.3 offers
a reasonable solution. Nevertheless, the different possibilities to determine the
weights αk used for combining information sources might be seen with suspicion
since they rely on more or less heuristic principles.

There are at least two possibilities for avoiding heuristic reasoning in connection
with the transformation of evidence from the similarity level to the instance
level. Firstly, one can try to utilize the information available in order to derive
approximate results in the form of valid bounds. A corresponding approach to
approximate probabilistic inference will be discussed in Section 4.8. The second
way out is avoiding the combination problem completely. This will be our main
concern in the remaining part of this section. Again, there are two possibilities for
proceeding. The first approach is to derive inference results from an individual
case. This idea has already been discussed in Section 4.5.2 below. The second
possibility is the consideration of additional information which is specified by
similarity profiles of a more complex nature.

Table 4.10 provides a brief summary of the ideas underlying the probabilistic
similarity profiles which have been introduced in Section 4.1. All these profiles
realize a DS −→ P(DR) mapping. That is, given the similarity X of two in-
puts, the respective PSP provides a probabilistic specification of the similarity Y
between the associated outcomes. In this section, we shall consider probabilistic
profiles which correspond to more general mappings.

29 The approach pursued in this section is a direct aggregation closely related to the consensus method
[383]. The direct aggregation of distributions and the Bayesian method are the two basic approaches
to combining probability distributions.
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PSP Specification of the similarity relation between S
and S0, both chosen at random from S.

(n, k)-PSP Memory of size n, S is taken from the k most
similar inputs.

M-PSP Fixed memory M, S is taken from M.
(M, k)-PSP Fixed memory M, S is taken from the k most

similar inputs in M.
s-PSP Profile for a fixed input s.

Table 4.10. Basic ideas underlying the probabilistic similarity profiles introduced in Section 4.1.

4.7.1 Inference schemes of higher order

The idea of a CBI hypothesis of higher order, i.e., the extension of local inference
rules to similarity structures induced by more than two cases, has already been
touched upon in Remark 4.20: Given the similarity structure of an extended
memory (M, s0), the task is to specify a joint probability distribution of the set
of similarity degrees

{σR(ϕ(s), ϕ(S0)) | s ∈ M↓}.

Admittedly, the number of similarity structures which might occur in connection
with a (partial) memory of size k will generally be huge, and this observation
remains valid even though this class can be reduced due to symmetry relations
and many structures will never occur. It seems, therefore, hopeless to specify a
related (probabilistic) hypothesis “by hand.” One might still think, however, of
employing machine learning methods. This motivates the consideration of the
similarity structure introduced in the following definition.

Definition 4.25 (n-PSP of order k). Denote by Zk the class of similarity
structures zS = SST(Ms0 , s0), where s0 ∈ S, and Ms0 denotes the s0-ordered
version of a memory M. That is, Ms0 is a permutation of M such that the
vector

(x01, . . . , x0k, x12, x13, . . . , xk−1,k, y12, y13, . . . , yk−1,k),

with xı = σS(sı, s) and yı = σR(ϕ(sı), ϕ(s)) for 0 ≤ ı <  ≤ k, is minimal
with respect to a lexicographic order. Now, consider a CBI setup and let M ∼
(µS×R)n, S0 ∼ µS ,

Mk = Nk(M, S0) =
(
〈S1, ϕ(S1)〉, . . . , 〈Sk, ϕ(Sk)〉

)
.

Moreover, let ZS = SST(MS0
k , S0), Y0 = σR(ϕ(S0), ϕ(S)), and Y = (Y01, . . . , Y0k).

The n-PSP of order k is the mapping

H
(n,k)
Σ : Zk −→ P((DR)k) , zS �→ µY |(ZS=zS).

That is, [H
(n,k)
Σ (zS)](y1, . . . , yk) is the probability that σR(ϕ(S0), ϕ(S)) = y

for all 1 ≤  ≤ k, given the information provided by the similarity structure
SST(MS0

k , S0). �
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The idea of averaging over similarity profiles has already been mentioned in Sec-
tion 4.1. Equations (4.47) and (4.48) reveal that such an averaging corresponds
to the weighted aggregation of local inference rules. The same principle can ob-
viously be applied in connection with profiles of higher order. A local inference
rule associated with a PSP of order 2, for instance, assigns to each similarity
structure zS = (x01, x02, x12, y12) the (conditional) probability distribution of the
similarity vector (Y01, Y02) and, hence, can be illustrated graphically as follows:

x12

y12

x01 x02 −→ Y01 Y02

Now, suppose that we ignore the similarity relation between the observed cases,
expressed by the variables x12 and y12. That is, we deduce the probability dis-
tribution of the random vector (Y01, Y02) from the partial similarity structure
(x01, x02):

x01 x02 −→ Y01 Y02

The resulting inference rule corresponds to the weighted aggregation of those
rules the precedent of which can be “matched” with the partial structure zS =
(x01, x02, ·, ·). On the one hand, such an aggregation is obviously connected with
a loss of information. On the other hand, the complexity of inference schemes
can be reduced considerably this way. In fact, ignoring the similarity relations
between the cases in the memory reduces the size of a similarity structure from
k2 to k and, hence, the number of different structures to (DS)k. Therefore, the
following definition seems reasonable.

Definition 4.26 (partial n-PSP of order k). Denote by Zk the class of par-
tial similarity structures zS = pSST(Ms0 , s0), where s0 ∈ S and M is a memory
of size k. Consider a CBI setup and let M ∼ (µS×R)n, S0 ∼ µS ,

Mk = Nk(M, S0) =
(
〈S1, ϕ(S1)〉, . . . , 〈Sk, ϕ(Sk)〉

)
.

Moreover, ZS = pSST(MS0
k , S0), Y0 = σR(ϕ(S0), ϕ(S)), and Y = (Y01, . . . , Y0k).

The mapping
H

(n,k)
Σ : Zk −→ P((DR)k) , zS �→ µY |(ZS=zS).

is called the partial n-PSP of order k. �
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The assumption of a fixed memory M underlying CBI leads to the definition
of a (partial) M-PSP of order k. The idea of considering only partial similarity
structures arises quite naturally in this context. In connection with the M-PSP

of order n = card(M), for instance, it is not necessary to take the similarity
relations between cases in M into account since these relations do not change.

Definition 4.27 (M-PSP of order k). Consider a CBI setup Σ with a fixed
memory M, where card(M) ≥ k. For S0 ∼ µS , let

Mk = Nk(M, S0) =
(
〈s1, ϕ(s1)〉, . . . , 〈sk, ϕ(sk)〉

)
.

Moreover, ZS = SST(MS0
k , S0), Y0 = σR(ϕ(S0), ϕ(s)), and Y = (Y01, . . . , Y0k).

The mapping
H

(n,k)
Σ : Zk −→ P((DR)k) , zS �→ µY |(ZS=zS)

is called the M-PSP of order k. �

Definition 4.28 (partial M-PSP of order k). Consider a CBI setup Σ with
a fixed memory M, where card(M) ≥ k. For S0 ∼ µS , let

Mk = Nk(M, S0) =
(
〈s1, ϕ(s1)〉, . . . , 〈sk, ϕ(sk)〉

)
.

Moreover, ZS = pSST(MS0
k , S0), Y0 = σR(ϕ(S0), ϕ(s)), and Y = (Y01, . . . , Y0k).

The mapping
H

(n,k)
Σ : Zk −→ P((DR)k) , zS �→ µY |(ZS=zS)

is called the partial M-PSP of order k. �

Consider a CBI problem 〈Σ, s0〉, with M being the memory of Σ. A probabilistic
inference scheme (of higher order) can now be realized in the form

η = σ
(−1)
R
(
Nk(M, s0), H(zS)

)
, (4.41)

where H is a hypothesis related to a (partial) n-PSP or M-PSP of order k and zS

is the (partial) similarity structure defined by s0 and the k-selection Nk(M, s0).

The transformation σ
(−1)
R can be realized as in Section 4.5.1. In fact, the k cases

Nk(M, s0) can now be considered as one information source. They induce an
imperfect specification Γ = (γ, pC), where

C = (DR)k,

pC = H(zS),

γ(c) =
⋂

1≤k≤n σ
(−1)
R (ϕ(sk), ck)

for all c = (c1, . . . , cn) ∈ C. This is nothing else than the imperfect specification
(4.27) which has already been proposed in Section 4.5.3 as an “ideal” combination
of evidence but which could not be realized due to the fact that the measure µ
was not known. This measure is now given by H(zS).
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Example 4.29. For the CBI setup Σ3 we have carried out an experimental study
in which we were interested in the partial M-PSP of order 3 for memories of size
n. Based on such a profile, the following inference strategy is realized: Given a
new input s0, a measure η ∈ F(R) is derived according to (4.41), and the outcome
ϕ(s0) is estimated by ϕ̂(s0) = arg maxr∈R η(r).30 For a certain memory M let
pM = P(ϕ̂(S0) = ϕ(S0) |M) denote the probability of a correct estimation. From
a large sample of memories we have derived an approximation of the expected
value

E(pM) =
∑

M⊂S×R
pM · µS×R(M)

of this probability. Fig. 4.12 shows the results for different values of n. �

4.7.2 Partially admissible profiles

In Section 3.2, we argued that the inference scheme (3.2) provides correct predic-
tions if the similarity hypothesis h is admissible. More precisely, admissibility of h
is a sufficient condition. It is, however, not a necessary one. In fact, the prediction
(3.2) is already correct if h is partially admissible in the sense that it obtains for
the subset of cases 〈sk, rk〉 (0 ≤ k ≤ n) actually involved in the inference process:

∀ 1 ≤ ı ≤ n : h(σS(s0, sı)) ≤ σR(ϕ(s0), ϕ(sı)). (4.42)

We say that a hypothesis h : [0, 1] −→ [0, 1] is admissible with respect to a
sequence (s0, s1, . . . , sn) ∈ Sn+1 if (4.42) holds true.

30 Ties are broken by coin flipping.

Fig. 4.12. Probability of a correct estimation based on the partial M-PSP of order 3, where M is a
memory of size n (cf. Example 4.29).
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Definition 4.30 (H-PSP). Consider a setup Σ and let H be a set of profiles
h : DS −→ [0, 1] such that (H,≤) is a complete order. The mapping

HΣ : N × H −→ [0, 1] (4.43)

with
HΣ(n, h)

df
= (µS)n+1

(
{s ∈ Sn+1 |h is admissible w.r.t. s}

)
is called the H-PSP of Σ. For each n ∈ N and hypothesis h ∈ H, the profile HΣ

specifies the probability HΣ(n, h) that h is admissible with respect to a (random)
sequence (S0, S1, . . . , Sn) of n inputs. �

Definition 4.31 (H-probabilistic similarity hypothesis). Let H be a set of
hypotheses h : [0, 1] −→ [0, 1] completely ordered by ≤. A mapping H : N×H −→
[0, 1] such that

∀h, h′ ∈ H : h ≤ h′ ⇒ H(n, h) ≥ H(n, h′),

∀n, n′ ∈ N : n ≤ n′ ⇒ H(n, h) ≥ H(n, h′)

is called an H-probabilistic similarity hypothesis. A hypothesis H is admissible
with respect to a setup Σ if H(n, h) ≤ HΣ(n, h) for all n ∈ N and h ∈ H. H is
called stronger than a hypothesis H ′ if H ′ ≤ H and H "≤ H ′. �

For a CBI problem 〈Σ, s0〉 and a hypothesis h ∈ H, the prediction

ϕ(s0) ∈ ϕh,M(s0)
df
=
⋂

1≤k≤n

Nh(σS(s0,sk))(ϕ(sk))

is correct with probability HΣ(card(M), h). That is, the prediction

ϕHΣ ,M(s0)
df
= {ϕh,M(s0) |h ∈ H}

defines a class of confidence regions for the unknown outcome ϕ(s0).

The concept of an H-PSP can be generalized in accordance with the ideas of uti-
lizing a fixed memory M, or of basing CBI on the k most similar cases (cf. Sec-
tion 3.1). Assuming a fixed memory M simplifies the specification of a hypothesis
since the H-PSP does no longer depend on the parameter n. That is, the par-
tial admissibility of a hypothesis depends only on the new input s0, and (4.43)
becomes a mapping

HM
Σ : H −→ [0, 1].

Again, a hypothesis related to an H-PSP may originate from different sources.
A reasonable idea is to take a parameterized class H of hypotheses as a point
of departure and to learn the probabilities HΣ(n, h) associated with different
hypotheses h ∈ H from observed data. Based on a sequence of CBI problems,
the probability of a hypothesis h to be admissible can simply be estimated from
the relative frequency of correct predictions, or a prior estimation thereof can be
revised accordingly.
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0 1/7 2/7 3/7 4/7 5/7 6/7 1
0 0.00 0.02 0.05 0.11 0.20 0.27 0.33 0.36

1/7 0.28 0.36 0.48 0.59 0.69 0.75 0.78
2/7 0.39 0.52 0.65 0.75 0.82 0.86
3/7 0.55 0.68 0.80 0.87 0.91
4/7 0.69 0.82 0.90 0.95
5/7 0.84 0.92 0.98
6/7 0.94 0.99
1 1

Example 4.32. For the setup Σ3 (cf. Example 4.1) we have specified a class
of (strict) hypotheses by means of two parameters u, v ∈ {0, 1/7, . . . , 1}, where
u ≤ v:

hu,v : DS −→ DR , x �→




0 if x < u

1/2 if u ≤ x ≤ v

1 if v ≤ x

. (4.44)

Table 4.11 shows the probability of the admissibility of these hypotheses in con-
nection with a memory of size n = 20.31 A subset H of hypotheses (4.44) com-
pletely ordered by ≤ can be chosen in order to define (4.43) for n = 20. �

4.8 Approximate probabilistic inference

4.8.1 Generalized uncertainty measures and profiles

A value hΣ(x) of a similarity profile can be written as

hΣ(x) = inf
r∈R

h′
Σ(x, r) (4.45)

= inf
r∈R,s∈S

h′′
Σ(x, r, s), (4.46)

where the (more specific) profile h′
Σ in (4.45) is defined on DS × R by

h′
Σ : (x, r) �→ inf

s,s′∈S:σS(s,s′)=x,ϕ(s)=r
σR(ϕ(s), ϕ(s′)),

and h′′
Σ : DS × R × S −→ DR is defined correspondingly. The profile h′

Σ can
be associated with rules of the following form: “If the similarity between two
inputs is x and the outcome of the first input is r, then the similarity between
the associated outputs is at least h′

Σ(x, r).” Equations (4.45) and (4.46) show that
a similarity profile provides a lower bound to the respective underlying class of

31 Actually, these probabilities are estimations from a large number of randomly generated memories.

Table 4.11. Probability of the admissibility of hypotheses hu,v (cf. Example 4.32). Rows and columns
correspond to the parameters u and v, respectively.
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more specific profiles. Within the probabilistic setting of this chapter, “bounding”
is replaced by “averaging.” Consider the probabilistic counterparts to (4.45) and
(4.46) as an example, i.e., profiles of the form H ′′

Σ : DS × R × S −→ P(DR) and
H ′

Σ : DS × R −→ P(DR). The distribution H ′
Σ(x, r), for instance, specifies the

similarity σR(ϕ(S), ϕ(S ′)) given that σS(S, S ′) = x and ϕ(S) = r for two inputs
S, S ′ ∈ S. We have

H ′
Σ(x, r) ∝

∑
s∈S

α(x, r, s) · H ′′
Σ(x, r, s), (4.47)

HΣ(x) ∝
∑
r∈R

β(x, r) · H ′
Σ(x, r), (4.48)

for x ∈ DS , r ∈ R and x ∈ DS , respectively, where

β(x, r) = µR(r) · µX|(R=r)(x),

α(x, r, s) = µS(s) · µR|(S=s)(r) · µX|(R=r,S=s)(x).

In other words, the PSP HΣ is a weighted average of the more specific profiles
H ′

Σ and H ′′
Σ, respectively.

The derivation of bounds instead of averages of similarity profiles may become
interesting within the probabilistic setting as well. We might utilize, for instance,
upper probabilities in the inference rules instead of probability measures. For
example, rather than deriving µY |(X=x) according to (4.47) and (4.48), one could
aggregate the information contained in the measures on the right-hand side by
means of upper envelopes [83]

ηY |(X=x)
df
=
∨

r∈R,s∈S
µY |(X=x,R=r,S=s). (4.49)

Note that (4.49) is a natural generalization of the constraint-based approach of
Section 3, where

[hΣ(x), 1] =
⋃

r∈R,s∈S
[h′′

Σ(x, r, s), 1] (4.50)

for all x ∈ DS .

In connection with the derivation of upper bounds, the concept of a normalized
uncertainty measure (cf. Section 4.5) turns out to be useful. Denote by F(Ω,A)
(or simply F(Ω) = F(Ω, 2Ω)) the class of normalized uncertainty measures de-
fined on a measurable space (Ω,A), i.e., the class of measures η : A −→ [0, 1]
satisfying

– η(∅) = 0, η(Ω) = 1,

– ∀A,B ∈ A : A ⊂ B ⇒ η(A) ≤ η(B).
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Definition 4.33 (generalized similarity profile). It was already mentioned
that the PSP HΣ is a weighted average of the more specific profiles (4.47)
resp. (4.48). A mapping GΣ : DS −→ F(DR) which has been derived by means
of an alternative aggregation

GΣ(x) = A
(
{µY |(X=x,R=r,S=s) | s ∈ S, r ∈ R}

)
is called a generalized similarity profile (GSP) of the setup Σ. �

Definition 4.34 (generalized similarity hypothesis). A generalized similar-
ity hypothesis is identified by a mapping G : DS −→ F(DR). Let Σ be a CBI

setup with PSP HΣ. The hypothesis G is admissible if HΣ(x) dominates G(x) for
all x ∈ DS in the sense that FHΣ(x) ≤ FG(x). (For all η ∈ F(DR), Fη : DR −→ [0, 1]
denotes the mapping x �→ η(DR ∩ [0, x]).) G is called a strict generalized hypoth-
esis if

∀x, x′ ∈ DS : x′ < x ⇒ FG(x) ≤ FG(x′).

A hypothesis G′ satisfying FG′(x) ≤ FG(x) for all x ∈ DS and FG(x0) "≤ FG′(x0) for
at least one x0 ∈ DS is called stronger than G. �

Observe that we compare the cumulative distribution function of a probability
measure to that of a generalized measure in Definition 4.34. It should be men-
tioned, therefore, that a GSP has been introduced with a probabilistic interpreta-
tion of a generalized measure in mind. Particularly, a measure η ∈ F(Ω,A) might
be thought of as an upper probability in the sense that it provides an estimation
of a probability µ ∈ P(Ω,A) in the form of upper bounds: η(A) ≥ µ(A) for all
A ∈ A. Likewise, η might define an upper envelope of a family C of (probability)
measures, i.e., η(A) = supµ∈C µ(A) for all A ∈ A. Thus, a generalized hypothesis
G is associated with implications of the form

σS(S, S ′) = x ⇒ µY |(X=x) ≤ G(x),

whereas a corresponding probabilistic hypothesis H defines implications

σS(S, S ′) = x ⇒ µY |(X=x) = H(x).

Seen from this perspective, a generalized hypothesis H is again admissible if it
is “pessimistic” enough: For all y ∈ [0, 1], the probability that the degree of
similarity between two outcomes is equal to or less than y is not under-estimated
by H.

Example 4.35. Consider again the CBI setup Σ3 which has been introduced in
Example 4.1. Table 4.12 shows the probabilistic profiles H ′

Σ3
(x, r) = µY |(X=x,R=r)

for x ∈ DS3 and r ∈ R = {0, 1/2, 1}. Table 4.13 shows the values of the upper
envelope η(x) =

∨
r∈R µY |(X=x,R=r). This measure defines a generalized similarity

profile. �
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µY | (X=x,R=r)(0) 0 1/7 2/7 3/7 4/7 5/7 6/7 1
0 0.53 0.59 0.62 0.66 0.69 0.73 0.75 1.00

1/2 0.35 0.37 0.39 0.42 0.47 0.52 0.54 1.00
1 0.06 0.13 0.18 0.24 0.33 0.41 0.47 1.00

µY | (X=x,R=r)(1/2) 0 1/7 2/7 3/7 4/7 5/7 6/7 1
0 0.37 0.34 0.32 0.29 0.27 0.25 0.23 0.00

1/2 0.65 0.63 0.61 0.57 0.53 0.48 0.46 0.00
1 0.34 0.47 0.49 0.50 0.46 0.43 0.41 0.00

µY | (X=x,R=r)(1) 0 1/7 2/7 3/7 4/7 5/7 6/7 1
0 0.10 0.07 0.06 0.05 0.04 0.03 0.02 0.00

1/2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 0.60 0.41 0.33 0.26 0.21 0.15 0.13 0.00

x 0 1/7 2/7 3/7 4/7 5/7 6/7 1

ηY | (X=x)(0) 0.60 0.41 0.33 0.26 0.21 0.15 0.13 0.00
ηY | (X=x)(1/2) 0.65 0.63 0.61 0.57 0.53 0.48 0.46 0.00
ηY | (X=x)(1) 0.53 0.59 0.62 0.66 0.69 0.73 0.75 1.00

4.8.2 An approximate inference scheme

We shall now take up the idea of the likelihood approach (4.4) for estimating
the unknown outcome r0 = ϕ(s0). However, due to the problem of combining
probabilistic evidence (cf. Section 4.5) we will derive not the likelihood itself but
only an upper approximation thereof.

Consider a CBI problem 〈Σ, s0〉. Proceeding from the outcome structure zO =
OST(M, s0) we can write the likelihood function (4.4) as follows:

λ(r)
df
= P
(
ZO = zO |R0 = r

)
(4.51)

for all r ∈ R. Now, for 1 ≤ k ≤ n we have

λ(r) = P
(
X0k = x0k, Rk = rk |R0 = r

)
· λ′

k(r)

≤ P
(
X0k = x0k, Rk = rk |R0 = r

)
,

where
λ′

k(r)
df
= P
(
Z ′

k = z′k |R0 = r,X0k = x0k, Rk = rk

)
with Z ′

k = ZO − {X0k, Rk} and z′k = zO − {x0k, rk}.
Since (R0 = r ∧ Rk = rk) ⇒ Y0k = σR(r, rk), we also have

P
(
X0k = x0k, Rk = rk |R0 = r

)
=

= P
(
X0k = x0k |R0 = r

)
· P
(
Rk = rk |R0 = r, X0k = x0k

)
≤ P
(
Yk = σR(r, rk) |R0 = r, X0k = x0k

)
.

Table 4.12. Probabilistic profiles H ′
Σ3 (cf. Example 4.35). Columns correspond to values of x, rows to

values of r.

Table 4.13. Generalized similarity profile of the setup Σ3 (cf. Example 4.35).
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Thus, we finally derive the estimation

λ(r) ≤ min
1≤k≤n

P
(
Yk = σR(r, rk) |R0 = r, X0k = x0k

)
(4.52)

= min
1≤k≤n

µY |(X=x0k,R=r)(σR(r, rk)).

For x ∈ DS , let ηY |(X=x) denote an upper approximation of the class

{µY |(X=x,R=r) | r ∈ R} (4.53)

of measures. That is,

∀x ∈ DS : ηY |(X=x) ≥
∨
r∈R

µY |(X=x,R=r).

These measures, which define a generalized similarity profile G : x �→ ηY |(X=x),
are upper approximations of the probability measures HΣ(x) (x ∈ DS). In other
words, G is an upper approximation of HΣ. We now obtain the following approx-
imation of (4.51):

λ(r) ≤ min
1≤k≤n

ηY |(X=σS(s0,sk))(σR(r, rk)).

Proposition 4.36. Consider a CBI problem 〈Σ, s0〉 and suppose the generalized
hypothesis G to satisfy G(x) ≥

∨
r∈R µY |(X=x,R=r) for all x ∈ DS . The function

λ : r �→ min
〈s,ϕ(s)〉∈M

[G(σS(s, s0))](σR(ϕ(s), r)) (4.54)

is an upper approximation of the likelihood function (4.51), i.e., λ(r) ≤ λ(r) for
all r ∈ R. �

The result of Proposition 4.36 can directly be used for putting the idea of approx-
imate case-based inference (cf. page 146) into action. Given the CBI problem
〈Σ, s0〉 and a related generalized similarity hypothesis, i.e., a mapping G such
that G(x) is a normalized uncertainty measure for all x ∈ SS , approximate prob-
abilistic CBI comes down to predicting ϕ(s0) according to (4.54).

Example 4.37. Reconsider Example 4.35 where we have derived a generalized
similarity profile related to the CBI setup Σ3. This profile, which is shown in
Table 4.13, satisfies the assumptions of Proposition 4.36. In Example 4.13, we have
considered the CBI problem 〈Σ3, s0〉 with M = (〈(3, 14), 1/2〉, 〈(4, 17), 1/2〉) and
s0 = (5, 17). Applying the approximate reasoning scheme (4.54) to this problem,
we obtain the following results:

r 0 1/2 1

λ(r) 0.46 0.75 0.46
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Since this rating of outcomes is expressed in terms of (approximations of) degrees
of likelihood it is not directly comparable to the probabilities P(R0 = r|ZO = zO)
tabulated in Example 4.13. Nevertheless, the results are qualitatively similar and
r = 1/2 is promoted as the most likely outcome in both cases. �

An alternative approach to approximating (4.4) is to proceed from the case struc-
ture zC = CST(M, s0) instead of the outcome structure of a CBI problem 〈Σ, s0〉.

Definition 4.38 (case structure). Let Σ be a CBI setup with M being the
associated memory (2.29) of cases and let s0 be a new input. The set of values

CST(M, s0)
df
= OST(M, s0) ∪ {s | 1 ≤  ≤ n}

(together with (hΣ, σS , σR)) defines the case structure of the CBI problem
〈Σ, s0〉. �

Making use of the information provided by a case structure, (4.51) becomes

λ(r)
df
= P
(
ZC = zC |S0 = s0, R0 = r

)
(4.55)

for all r ∈ R. We have

λ(r) = P
(
Z ′

C = z′C |S0 = s0, R0 = r
)
· λ′(r) (4.56)

≤ P
(
Z ′

C = z′C |S0 = s0, R0 = r
)
,

where
λ′(r) = P

(
Z ′′

C = z′′C |S0 = s0, R0 = r, Z ′
C = z′C

)
with z′C = zC − z′′C and z′′C = zC − {sk, rk, x0k | 1 ≤ k ≤ n}. Since the random
variables Zk = (Sk, Rk, X0k) (1 ≤ k ≤ n) are conditionally independent given
(S0, R0), (4.56) becomes

λ(r) = λ′(r) ·
n∏

k=1

P
(
Sk = sk, Rk = rk, X0k = x0k |S0 = s, R0 = r

)

≤
n∏

k=1

P
(
Rk = rk, X0k = x0k |S0 = s0, R0 = r

)
.

Again, using (R0 = r ∧ Rk = rk) ⇒ Y0k = σR(r, rk), we derive

P
(
X0k = x0k, Rk = rk |S0 = s0, R0 = r

)
=

= P
(
X0k = x0k |S0 = s0, R0 = r

)
·P
(
Rk = rk |S0 = s0, R0 = r, X0k = x0k

)
≤ P
(
Yk = σR(r, rk) |S0 = s0, R0 = r,X0k = x0k

)
.
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Finally, we obtain the following counterpart to (4.52):

λ(r) ≤
∏

1≤k≤n

P
(
Yk = σR(r, rk) |S0 = s0, R0 = r, X0k = x0k

)
. (4.57)

The probabilities in (4.57) now correspond to measures

µY |(X=x,R=r,S=s), (4.58)

where x ∈ DS , r ∈ R, s ∈ S. Again, suppose the measures ηY |(X=x) (x ∈ DS) to
provide upper bounds:

∀x ∈ SS : ηY |(X=x) ≥
∨

s∈S,r∈R
µY |(X=x,R=r,S=s).

As before, these measures define a generalized similarity profile G which is an
upper approximation of the probabilistic similarity profile HΣ. The approximation
of (4.51) is now given by

λ(r) ≤
∏

1≤k≤n

ηY |(X=σS(s0,sk))(σR(r, rk)).

Proposition 4.39. Consider a CBI problem 〈Σ, s0〉 and suppose the generalized
hypothesis G to satisfy G(x) ≥

∨
r∈R,s∈S µY |(X=x,R=r,S=s) for all x ∈ DS . The

function
λ : r �→

∏
〈s,ϕ(s)〉∈M

[G(σS(s0, s))](σR(r, ϕ(s))) (4.59)

is an upper approximation of the likelihood function (4.55), i.e., λ(r) ≤ λ(r) for
all r ∈ R. �

When comparing the reasoning schemes based on (4.54) and (4.59) one can see
that, on the one hand, the aggregation by means of the minimum operator in
(4.54) yields less precise approximations than the aggregation by means of the
product operator. On the other hand, however, the measures G(x) employed in
(4.59) will generally approximate the classes of underlying probability measures
more accurately since these classes are smaller than the classes approximated by
the corresponding measures in (4.54).

Interestingly enough, (4.54) and (4.59) define natural generalizations of the
constraint-based inference scheme (3.2). Particularly, we recover (3.2) as a spe-
cial case of (4.54) resp. (4.59) with G(x) ≡ 1DS∩[H(x),1]. Recall that each value
[G(x)](y) is thought of as an upper approximation of the probability that the
similarity of two outcomes is y given that the similarity of the respective in-
puts is x. In the context of probabilistic CBI, the constraint-based inference
scheme (3.2) can thus be interpreted as an “all or nothing” approach in the
sense that a similarity degree y is either regarded as being completely possible
(H(x) ≤ y resp. [G(x)](y) = 1) or as being completely impossible (y < H(x)
resp. [G(x)](y) = 0).



4.9 Summary and remarks 159

4.9 Summary and remarks

Summary

– In this chapter, a probabilistic generalization of the constraint-based approach
to CBI (cf. Chapter 3) has been proposed. To this end, the basic concepts of
a similarity profile and a similarity hypothesis have been replaced by corre-
sponding probabilistic counterparts. A probabilistic formalization of the CBI

hypothesis seems particularly suitable since it emphasizes the heuristic nature
of this assumption. Again, this formalization guarantees a clear semantics un-
derlying case-based inference.

– Based on the probabilistic model of CBI, the learning of similarity hypothe-
ses can be realized within the context of statistical inference. Corresponding
approaches have been developed in Section 4.3.

– Various approaches to probabilistic inference have been proposed. A major
problem of probabilistic CBI is the fact that the random variables (similarity
relations between cases) involved in the inference process are not stochastically
independent. This leads to difficulties when it comes to combining probabilistic
evidence concerning the unknown outcome ϕ(s0) which has been derived from
different cases.

– To overcome this problem, a simplifying assumption of independence has been
made in Section 4.3.1. On the basis of this assumption, a generalization of the
constraint-based inference scheme could be developed which produces a nested
sequence of credible output sets with associated confidence levels. Despite the
admitted näıvety of the independence assumption, quite satisfactory results
have been obtained in the experimental studies (for regression and label ranking
problems) in Section 4.4.

– In connection with these studies, it is again worth mentioning that CBI in a
sense unifies diverse types of prediction problems, and that it is quite general
and widely applicable. In fact, since no kind of transitivity is assumed for the
similarity measures and, hence, the structure of the input space S and the out-
put space R might be weaker than that of a metric space, CBI is applicable in
many situations where standard methods (e.g. from statistics) cannot be used.
Besides, CBI combines advantages from both, instance-based and model-based
(statistical) learning: As an instance-based approach it requires less structural
assumptions than (parametric) statistical methods, and yet it allows for speci-
fying the uncertainty related to predictions.

– The problem of combining different pieces of probabilistic evidence concerning
the unknown outcome ϕ(s0) has been reconsidered in Section 4.5 within the
framework of information fusion. A main idea of the inference scheme proposed
in this section is to look at previous cases as individual information sources.
Loosely speaking, each observed case serves as an uncertain piece of informa-
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tion which provides evidence concerning the outcome associated with the new
input. This evidence is represented in the form of a belief function. CBI comes
down to combining these individual pieces of evidence, i.e., the belief functions
derived from individual cases. In Section 4.5.3, a convex combination has been
proposed as a reasonable aggregation. Thus, we finally obtain from CBI a char-
acterization of the solution to the new problem in the form of a belief function
over the set of possible candidates.

– A convex combination of individual belief functions requires the weighting of
the involved cases. In this connection, Section 4.6 has touched on the idea
of rating (and eventually discounting) cases in order to optimize predictive
performance. The assessment of individual cases can also support the design of
optimal memories.

– In addition to the generalizations already introduced in Chapter 3 (profiles
supporting the ideas of utilizing a fixed memory and of drawing inferences
from the k most similar cases as well as profiles associated with individual
inputs) we have proposed similarity profiles of higher order (Section 4.7.1) and
H-profiles (Section 4.7.2). Based on these concepts, it is possible to develop
inference schemes which avoid the problem of combining individual pieces of
probabilistic evidence.

– Similarity hypotheses based on generalized uncertainty measures have been in-
troduced in Section 4.8, where they have been employed in order to realize an
approximate probabilistic inference procedure. This approach allows for deriv-
ing upper approximations of a likelihood function characterizing the unknown
outcome.

– This chapter has revealed interesting relations between CBI on the one side,
and probability theory and statistics on the other side. Firstly, realizing CBI

in the context of probabilistic reasoning and statistical inference makes a pow-
erful methodological framework accessible to CBI (cf. Section 4.2). Secondly,
case-based inference provides the basis of a generalized approach to statisti-
cal modeling (cf. Section 4.3) and can be seen as a step toward an extended
(probabilistic) approach to experience-based reasoning.

Remarks

– It should be stressed that the probabilistic formalization developed in this chap-
ter does not rely on very specific assumptions but emerges quite naturally as a
generalization of the constraint-based approach in connection with the proba-
bilistic modeling of the occurrence of inputs. Moreover, this formalization is not
related to particular inference schemes. Rather, it provides the basic concepts
for “translating” a CBI problem into one of probabilistic reasoning and, hence,
for deriving such schemes.
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– Probabilistic models, particularly Bayesian networks, have been used in connec-
tion with case-based reasoning by several authors [8, 54, 63, 275, 317]. As main
differences between most of these approaches and our work let us emphasize two
points. Firstly, the concept of similarity is often derived from that of probability
or vice versa. In [317], for instance, similarity is interpreted as a certain prob-
ability related to a classification task. In our approach, similarity is seen as an
additional and independent concept, containing important information which
is not already (implicitely) provided by other concepts: A similarity hypothe-
sis (including the function h and the respective measures σS , σR) complements
an original model description and, hence, supports the (heuristic) derivation of
inferences about a system.

Secondly, a probabilistic model is often related to the features (attributes) of
cases (at the system level) directly, whereas our formalization proceeds from
the similarity level. For example, the problem considered in [317] is to estimate
the (conditional) probability P(Cj | c) of a case c = (f1, . . . , fn) to belong to
category Cj as a function of the features fk. Thus, whereas inference results are
here derived from cases at the system level, our approach derives them from
the similarity structures at the similarity level.

– The approaches in Section 4.3 and Section 4.5 are closely related to algorithms
based on the Nearest Neighbor principle, such as instance-based learning.
However, there are also important differences. Without going into detail, let us
briefly mention two points. Firstly, CBI fits an explicit model of the CBI hy-
pothesis to the current application, whereas IBL uses this assumption by more
indirect means. Secondly, IBL derives point-estimations in the form of, say,
numeric outputs or predicted class labels.32 As opposed to this, our approach
provides a characterization of the unknown outcome by means of credible out-
puts sets or, more generally, an uncertainty measure. This way, it allows for
taking the validity of the CBI hypothesis into account. In fact, a prediction
will hardly support specific outcomes by means of high degrees of plausibility if
the similarity structure of the system under consideration is poorly developed,
thus indicating that the NN principle should be applied with caution.

– Needless to say, hinting at the credibility of proposed solutions seems indispens-
able for certain applications of CBI, such as evidential reasoning in medicine
[35]. In this connection, one has to bear in mind that an indication of the con-
fidence in a prediction is possible only under certain conditions. Firstly, the
quantification of the deviation of the prediction from the true outcome assumes
the set of outputs to be equipped with a concept of distance or similarity.33

Secondly, quantifying the possibility of an error (an incorrect prediction) or,
more generally, a certain deviation from the true outcome requires the instance

32 Yet it should be mentioned that the (distance-weighted) relative frequency of a class label among
the k nearest neighbors is often interpreted as a (posterior) probability of that class. Such an inter-
pretation, however, seems to be reasonable only under special assumptions.

33 Observe that (instance-based) concept learning algorithms do generally not assume a similarity or
distance measure over the set of classes (= outcomes).
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space to be equipped with some probabilistic structure. In fact, the basic ques-
tion which has to be answered concerns the probability that the observations
have emerged from a data-generating process which would suggest a different
prediction. Next to standard probabilistic models (in the form of probability
distributions), for example, so-called random fields over the instance space, i.e.,
some n-dimensional Euclidean space, have been used in NN classification [254].
Of course, the definition (and justification) of a probabilistic structure becomes
more involved if the instance space is not given as a simple numeric space, which
is rarely the case in CBR. We avoid this problem by defining a corresponding
structure (namely a PSP) over the (numeric) similarity space.

– In [142], it is shown that a special version of the CBR hypothesis is correct
on average, in the sense that problems with similar features are more likely
to have the same solution, given that the similarity measure is appropriately
defined. Two important differences to our approach deserve mentioning: Firstly,
we assume a similarity measure to be given, that is, our approach does not
require the specification of an ideal measure but remains valid regardless of
the similarity measure employed. Secondly, we are not directly concerned with
the probability of a correct versus incorrect prediction (which only makes sense
if the output set is small, a requirement rarely fulfilled in CBR), but rather
with the derivation of credible sets which are likely to cover the true output
(solution).

– Regarding the aspect of uncertainty in CBR, the importance of being able
to assign degrees of confidence to predictions has been pointed out by several
authors (e.g. [65]). In [66], different confidence measures for case-based (near-
est neighbor) predictions are proposed and evaluated, and this work has been
continued in [81] in connection with a concrete CBR application (Spam filter-
ing). More generally, the problem to characterize the reliability of an estimation
has recently received attention in the machine learning field as well [243, 301].
Again, however, note that assessing the confidence of a single point estimate,
as done in the aforementioned papers, is quite different from our goal to derive
predictions in the form of credible sets.

– A generalization of the k-Nearest Neighbor classifier which is closely related
to our approach of Section 4.5.3 has been developed in [84]. In this method, each
neighbor xı of a new query point (pattern) x0 specifies the unknown class c0 ∈ C
of x0 by means of a belief function Belı resp. an associated mass distribution
mı such that

mı({cı}) = αı, mı(C) = 1 − αı. (4.60)

The weight 0 < αı < 1 expresses the degree of support of the hypothesis c0 = cı.
A further generalization, in which the class of a training pattern is specified by
means of a possibility distribution on C (rather than by a precise class label),
has been proposed in [85].
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As in our approach, individual predictions are hence specified in terms of belief
functions. Still, let us mention some major differences. Firstly, (4.60) assigns a
positive mass only to the class cı (and to the complete set of classes C). Thus,
an observed case (pattern) can either support its own class – as in the original
NN method – or it can express ignorance by attaching a (more or less large)
mass to C. As opposed to this, a case can also support similar outcomes in
our approach. In fact, it might even support outcomes which are quite different
from its own output. In this connection, it deserves mentioning that [84] does
not assume a similarity structure over the set C of classes.

Secondly, the masses themselves are derived from an additional concept in our
approach, namely from a model in the form of a probabilistic similarity profile.
In (4.60), the degree of support αı is assumed to be a decreasing function of
the distance between x0 and xı.

34

A further difference concerns the way of aggregating the predictions induced by
different cases. In [84], this is accomplished by means of Dempster’s rule of
combination. As discussed in Section 4.5.3, we advocate a different aggregation
method – namely a convex combination – since we do not consider the belief
functions provided by neighbored cases as distinct pieces of evidence.

– As has been pointed out in Section 4.6, the assessment of cases can support the
selection of useful cases to be memorized. Of course, further aspects, including
the size, density, and distribution of a case base, have to be taken into account
for maintaining an optimal memory of cases [253, 282]. In [356], an interesting
model of the competence of a case base has been proposed which is based on the
concept of so-called competence groups. However, by assuming regular problem
spaces and cases which are representative of the target problem, this model dis-
regards the problem of exceptionality of cases completely. Thus, it takes a more
global look at a memory, whereas we have concentrated on properties of indi-
vidual cases. Needless to say, these two aspects could reasonably complement
each other.

– Interestingly enough, the probabilistic nature of analogical reasoning or, more
generally, inductive generalization has been emphasized by philosophically
minded scholars for a long time. In fact, the traditional approach to decid-
ing whether an analogy is reasonable, which goes back at least to Mill [266], is
to consider each observed similarity as a piece of extra evidence in favor of the
correctness of the conclusion. Mill’s idea is to associate a “probability” with
an analogical inference pattern such as the following:

F (a) ∧ sim(a, b) ⇒ F (b).

34 See [421] for an approach to adapting this function in an optimal way.
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(If predicate F applies to object a and if a is similar to b, then F does also apply
to b.) According to his probabilistic interpretation, the strength (probability of
correctness) of the above rule corresponds to the similarity between the objects
a and b. Thus, similarity provides a probabilistic basis of inference.



5. Fuzzy Set-Based Modeling of Case-Based

Inference I

A close connection between fuzzy set-based (approximate reasoning) methods
and the inference principle underlying similarity-based (case-based) reasoning
has been pointed out recently [99, 407]. Besides, some attempts at combining
case-based reasoning (or, more generally, analogical reasoning) and methods from
fuzzy set theory have already been made [408], including the use of fuzzy sets for
supporting the computation of similarities of situations in analogical reasoning
[144], the formalization of aspects of analogical reasoning by means of similarity
relations between fuzzy sets [48], the use of fuzzy set theory in case indexing
and retrieval [209, 214], the case-based learning of fuzzy concepts from fuzzy
examples [295], the use of fuzzy predicates in the derivation of similarities [40],
and the integration of case-based and rule-based reasoning [138]. See [45, 49] for
a more general framework of analogical reasoning.

This chapter continues this promising line of research. It is argued that fuzzy
rules in conjunction with associated inference procedures provide a convenient
framework for modeling the CBI hypothesis and for supporting the task of case-
based inference as outlined in Section 2.4.

The remaining part of the chapter is organized as follows: Even though we as-
sume the reader to be familiar with basics of fuzzy set theory, we recall the most
important concepts from possibility theory in Section 5.1. The basic CBI frame-
work we proceed from and the key idea of fuzzy rule-based modeling of the CBI

hypothesis are introduced in Section 5.2. Diverse types of extensions of the basic
model will then be discussed in Sections 5.3 and 5.4. Section 5.5 presents some
experimental studies in the field of classification. The idea of calibrating a CBI

model by combining qualitative modeling techniques with data-driven optimiza-
tion methods is addressed in Section 5.6. Finally, some connections between the
approach introduced in this chapter and related approaches in the field of fuzzy
set theory are discussed in Section 5.7.

5.1 Background on possibility theory

In this section, we recall some basic concepts from possibility theory, as far as
required for the current chapter. Possibility theory deals with “degrees of pos-
sibility”. The term “possibility” is hence employed as a graded notion, much in

165
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the same way as the term “probability”. At first sight, this might strike as odd
since “possibility” is usually considered a two-valued concept in natural language
(something is possible or not). Before turning to more technical aspects, let us
therefore make some brief remarks on the semantics underlying the notion of
“possibility” as used in possibility theory.

Just as the concept of probability, the notion of possibility can have different se-
mantic meanings. To begin with, it can be used in the (physical) sense of a “degree
of ease”. One might say, for instance, that it is more possible for Hans to have two
eggs for breakfast than eight eggs, simply because eating two eggs is more easy
(feasible, practicable) than eating eight eggs [416]. However, as concerns the use
in most applications, and in this book in particular, possibility theory is consid-
ered as a means for representing uncertain knowledge, that is, for characterizing
the epistemic state of an agent. For instance, given the information that Hans has
eaten many eggs, one is clearly uncertain about the precise number. Still, three
eggs appears somewhat more plausible (possible) than two eggs, since three is
more compatible with the linguistic quantifier “many” than two.

It is important to note that a degree of possibility, as opposed to a degree of
probability, is not necessarily a number. In fact, for many applications it is suffi-
cient, and often even more suitable, to assume a qualitative (ordinal) scale with
possibility degrees ranging from, e.g., “not at all” and “hardly” to “fairly” and
“completely” [251, 127]. Still, possibility degrees can also be measured on the
cardinal scale [0, 1], again with different semantic interpretations. For example,
possibility theory can be related to probability theory, in which case a possibil-
ity degree can specify, e.g., an upper probability bound [122]. For convenience,
possibility degrees are often coded by numbers from the unit interval even within
the qualitative framework of possibility theory.

As a means of representing uncertain knowledge, possibility theory makes a dis-
tinction between the concepts of certainty and plausibility of an event. As opposed
to probability theory, possibility theory does not claim that the confidence in an
event is determined by the confidence in the complement of that event and, con-
sequently, involves non-additive measures of uncertainty. Taking the existence of
two quite opposite but complementary types of knowledge representation and
information processing into account, two different versions of possibility theory
will be outlined in the following. For a closer discussion refer to [131] and [104].

5.1.1 Possibility distributions as generalized constraints

A key idea of possibility theory as originally introduced by Zadeh [416] is to
consider a piece of knowledge as a (generalized) constraint that excludes some
“world states” (to some extent). Let Ω be a set of worlds conceivable by an
agent, including the “true world” ω0. With (incomplete) knowledge K about the
true world one can then associate a possibility measure ΠK such that ΠK(A)
measures the compatibility of K with the event (set of worlds) A ⊆ Ω, i.e., with
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the proposition that ω0 ∈ A. Particularly, ΠK(A) becomes small if K excludes
each world ω ∈ A and large if at least one of the worlds ω ∈ A is compatible with
K. More specifically, the finding that A is incompatible with K to some degree
corresponds to a statement of the form ΠK(A) ≤ p, where p is a possibility degree
taken from an underlying possibility scale P .

The basic informational principle underlying the possibilistic approach to knowl-
edge representation and reasoning is stated as a principle of minimal specificity:1

In order to avoid any unjustified conclusions, one should represent a piece of
knowledge K by the largest possibility measure among those measures compat-
ible with K, which means that the inequality above is turned into an equality:
ΠK(A) = p. Particularly, complete ignorance should be modeled by the measure
Π ≡ 1.

Knowledge K is usually expressed in terms of a possibility distribution πK, a
Ω −→ P mapping related to the associated measure ΠK through

ΠK(A) = sup
ω∈A

πK(ω).

Thus, πK(ω) is the degree to which world ω is compatible with K.

Apart from the boundary conditions ΠK(Ω) = 1 (at least one world is fully
possible) and ΠK(∅) = 0, the basic axiom underlying possibility theory after
Zadeh involves the maximum-operator:

ΠK(A ∪ B) = max
{
ΠK(A), ΠK(B)

}
. (5.1)

In plain words, the possibility (or, more precisely, the upper possibility-bound) of
the union of two events A and B is the maximum of the respective possibilities
(possibility-bounds) of the individual events.

As constraints are naturally combined in a conjunctive way, the possibility mea-
sures associated with two pieces of knowledge, K1 and K2, are combined by using
the minimum-operator:

πK1∧K2(A) = min{πK1(A), πK2(A)}
for all A ⊆ Ω. Note that πK1∧K2(Ω) < 1 indicates that K1 and K2 are not fully
compatible, i.e., that K1 ∧ K2 is contradictory to some extent.

The distinction between possibility and certainty of an event is reflected by the
existence of a so-called necessity measure NK that is dual to the possibility mea-
sure ΠK. More precisely, the relation between these two measures is given by

NK(A) = 1 − ΠK(Ω \ A) (5.2)

for all A ⊆ Ω:2 An event A is necessary in so far as its complement (logical
negation) is not possible.

1 This principle plays a role quite comparable to the maximum entropy principle in probability theory.
2 If the possibility scale P is not the unit interval [0, 1], the mapping 1 − (·) on the right-hand side of

(5.2) is replaced by an order-reversing mapping of P .
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Worth mentioning is the close relationship between possibility theory and fuzzy
sets. In fact, the idea of Zadeh [416] was to induce a possibility distribution from
knowledge stated in the form of vague linguistic information and represented
by a fuzzy set. Formally, he postulated that πK(ω) = µF (ω), where µF is the
membership function of a fuzzy set F . To emphasize that ω plays different roles
on the two sides of the equality, the latter might be written more explicitly as
πK(ω |F ) = µ(F |ω): Given the knowledge K that ω is an element of the fuzzy
set F , the possibility that ω0 = ω is evaluated by the degree to which the fuzzy
concept (modeled by) F is satisfied by ω. To illustrate, suppose that world states
are simply integer numbers. The uncertainty related to the vague statement that
“ω0 is a small integer” (ω0 is an element of the fuzzy set F of small integers)
might be translated into a possibility distribution that lets ω0 = 1 appear fully
plausible (µF (1) = 1), whereas, say, 5 is regarded as only more or less plausible
(µF (5) = 1/2) and 10 as impossible (µF (10) = 0).

5.1.2 Possibility as evidential support

Possibility theory as outlined above provides the basis of a generalized approach
to constraint propagation, where constraints are expressed in terms of possibility
distributions (fuzzy sets) rather than ordinary sets (which correspond to the spe-
cial case of {0, 1}-valued possibility measures). A constraint usually corresponds
to a piece of knowledge that excludes certain alternatives as being impossible
(to some extent). This “knowledge-driven” view of reasoning is complemented by
a, say, “data-driven” view that leads to a different type of possibilistic calculus.
According to this view, the statement that “ω is possible” is not intended to
mean that ω is provisionally accepted in the sense of not being excluded by some
constraining piece of information, but rather that ω is indeed supported or, say,
confirmed by already observed facts (in the form of examples or data).

To distinguish the two meanings of a possibility degree, we shall denote a degree
of evidential support or confirmation of ω by δ(ω),3 whereas π(ω) denotes a degree
of compatibility.

To illustrate, suppose that the values a variable V can assume are a subset of
V = {1, 2, . . . , 10} and that we are interested in inferring which values are possible
and which are not. In agreement with the example-based (data-oriented) view,
we have δ(v) = 1 as soon as the instantiation V = v has indeed been observed
and δ(v) = 0 otherwise. The knowledge-driven approach can actually not exploit
such examples, since an observation V = v does not exclude the possibility that
V can also assume any other value v′ "= v. As can be seen, the data-driven and
the knowledge-driven approach are intended, respectively, for expressing positive
and negative evidence [108]. As examples do express positive evidence, they do
never change the distribution π ≡ 1. This distribution would only be changed if

3 In [393], this type of distribution is called σ-distribution.
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we knew from some other information source, e.g., that V can only take values
v ≥ 6, in which case π(v) = 1 for v ≥ 6 and π(v) = 0 for v ≤ 5.

The difference between modeling positive and negative evidence becomes espe-
cially clear when it comes to expressing complete ignorance. As already mentioned
above, this situation is adequately captured by the possibility distribution π ≡ 1:
If nothing is known, there is no reason to exclude any of the worlds ω, hence each
of them remains completely possible. At the same time, complete ignorance is
modeled by the distribution δ ≡ 0. The latter does simply express that none of
the worlds ω is actually supported by observed data.

Within the context of modeling evidential support, possibilistic reasoning accom-
panies a process of data accumulation. Each observed fact, φ, guarantees a certain
degree of possibility of some world state ω, as expressed by an inequality of the
form δφ(ω) ≥ d. The basic informational principle is now a principle of maximal
informativeness that suggests adopting the smallest distribution among those
compatible with the given data and, hence, to turn the above inequality into an
equality. The accumulation of observations φ1 and φ2 is realized by deriving a
distribution that is pointwise defined by

δφ1∧φ2(ω) = max{δφ1(ω), δφ2(ω)}.

As can be seen, adding new information has quite an opposite effect in connection
with the two types of possibilistic reasoning: In connection with the knowledge-
driven or constraint-based approach, a new constraint can only reduce possibility
degrees, which means turning the current distribution π into a smaller distribution
π′ ≤ π. In connection with the data-driven or example-based approach, new data
can only increase (lower bounds to) degrees of possibility.

Closely related to the view of possibility as evidential support is a set-function
that was introduced in [121], called measure of “guaranteed possibility”: ∆(A)
is the degree to which all worlds ω ∈ A are possible, whereas an event A is
possible in the sense of the usual measure of “potential possibility”, namely Π(A)
as discussed above, if at least one ω ∈ A is possible.4 For the measure ∆, the
characteristic property (5.1) becomes

∆(A ∪ B) = min{∆(A), ∆(B)}.

5.2 Fuzzy rule-based modeling of the CBI hypothesis

Rule-based modeling plays an important role in fuzzy systems research and will
also turn out to be useful in the context of case-based inference. Fuzzy rules
provide a local, rough and soft specification of the relation between variables X

4 The latter semantics is clearly in line with the measure-theoretic approach underlying probability
theory.
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and Y ranging on domains DX and DY , respectively [124]. They are generally
expressed in the form “if X is A then Y is B,” where A and B are fuzzy sets
associated with symbolic labels and modeled by means of membership functions
on DX resp. DY .5

There are several aspects which motivate the use of fuzzy rules in connection with
case-based reasoning [100, 205]. Firstly, the CBI hypothesis itself corresponds to
an if-then rule: “If two inputs are similar, then the associated outcomes are similar
as well.” Secondly, the notion of similarity, which lies at the heart of case-based
reasoning, is also strongly related to the theory of fuzzy sets. Indeed, one of
the main interpretations of the membership function of a fuzzy set is that of a
similarity relation, i.e., degrees of membership can be thought of as degrees of
similarity [126]. Thirdly, linked with the framework of possibility theory, fuzzy sets
provide a tool for the modeling and processing of uncertainty. In connection with
the heuristic character of CBR, this aspect seems to be of special importance. As
already mentioned in Chapter 1, the CBI principle should not be understood as
a deterministic rule. Within the context of fuzzy rules considered in this chapter,
it will rather be interpreted in the following sense: “If two inputs are similar, it
is possible that the associated outcomes are similar as well.”

At a formal level, fuzzy rules can be modeled as possibility distributions con-
strained by a combination of the membership functions which define the an-
tecedent and consequent part of the rule, where the concrete form of the con-
straint depends on the interpretation of the rule [124]. This way, they relate the
concepts of similarity and uncertainty, thus providing the basis for methods of
uncertain similarity-based inference. This is the main reason for their convenience
as formal models of the CBI hypothesis

5.2.1 Possibility rules

The aforementioned interpretation of the CBI hypothesis is nicely captured by
means of a so-called possibility rule, a special type of conjunction-based fuzzy
rule. A possibility rule involving fuzzy sets A and B, subsequently symbolized by
A ⇁ B, corresponds to the statement that “the more X is A, the more possibly
B is a range for Y .” More precisely, it can be interpreted as a collection of rules
“if X = x, it is possible at least to the degree A(x) that B is a range for Y .”
The intended meaning of this kind of possibility-qualifying rule is captured by
the following constraint which guarantees a certain lower bound to the possibility
δ(x, y) that the tuple (x, y) is an admissible instantiation of the variables (X,Y ):

δ(x, y) ≥ min{A(x), B(y) }. (5.3)

As suggested by the rule-based modeling of the relation between X and Y , these
variables often play the role of an input and an output, respectively, and one

5 We shall usually use the same notation for a label, the name of an associated fuzzy set, and the
membership function of this set. Thus, A(x) is the degree of membership of the element x in the
fuzzy set A.
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is interested in possible values of Y while X is assumed to be given. By letting

δ(y |x)
df
= δ(x, y), the constraint (5.3) can also be considered as a lower bound

to a conditional possibility distribution. That is, given the value X = x, the
possibility that Y = y is lower-bounded by δ(x, y) according to (5.3). Observe
that nothing is said about Y in the case where A(x) = 0 since we then obtain the
trivial constraint π(y |x) ≥ 0. Besides, it should be noticed that the lower bound-
interpretation is also consistent with conditional distributions δ(· |x) which are
not normalized, i.e., for which supy δ(y |x) < 1 (cf. Section 5.1).

5.2.2 Modeling the CBI hypothesis

The basic framework we shall proceed from in this chapter is a special type of
generalized non-deterministic CBI setup (see Definition 2.7 and Remark 2.8 in
Section 2.4.2). As in Chapters 3 and 4, a case c is a tuple 〈s, r〉 ∈ C = S × R
consisting of an input s ∈ S and an associated output r ∈ R. However, we do no
longer assume that an input determines a unique outcome, i.e., cases c = 〈s, r〉
and c′ = 〈s′, r′〉 such that s = s′ but r "= r′ might be encountered. In fact,
the assumption of a functional relation ϕ : S −→ R mapping inputs to unique
outcomes would be too restrictive for the type of applications we have in mind in
connection with the possibilistic approach. Rather, ϕ is now defined as a relation

ϕ ⊆ S × R (5.4)

and corresponds to a set of potential observations, i.e., existing (but perhaps not
yet encountered) cases. As before, we assume data to be given in the form of a
memory

M =
{
〈s1, r1〉, 〈s2, r2〉, . . . , 〈sn, rn〉

}
of observed cases. As an aside, note that M was formally treated as a sequence
rather than a set in Chapters 3 and 4. This is not necessary within the possibilistic
framework of this section. Moreover, we can abandon the assumption that S and
R are countable.

As before, our focus is on case-based inference: Given a new input s0 ∈ S, the
task is to predict the outcome r0 ∈ R associated with s0. This actually comes
down to predicting the set {r ∈ R | 〈s0, r〉 ∈ ϕ} of potential outcomes, since we
do no longer assume uniqueness. To this end, we shall derive a quantification
of the possibility that r0 = r, i.e., 〈s0, r〉 ∈ ϕ, for each outcome r ∈ R. As
will be seen in the remainder of this chapter, this kind of prediction makes the
formulation of rather general types of queries possible, especially if s0 is allowed
to be incompletely specified.

The basic idea of the approach discussed in this chapter is to use a possibility rule
as defined above in order to formalize the CBI hypothesis. In fact, interpreting the
variables X and Y as degrees of similarity between two inputs and two outputs,
respectively, and A and B as fuzzy sets of “large similarity degrees” (with strictly
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increasing membership functions) amounts to expressing the following version of
the CBI hypothesis: “The more similar two inputs are, the more possible it is that
the corresponding outcomes are similar” [99]. In the same way as the probabilistic
model of Chapter 4, this formalization takes the heuristic nature of the CBI

hypothesis into account. In fact, it does not impose a deterministic constraint,
but only concludes on the possibility of the outcomes to be similar.

In the sense of the above principle, an observed case 〈s1, r1〉 ∈ M is taken as
a piece of evidence which qualifies similar (hypothetical) cases 〈s, r〉 as being
possible. According to (5.3) it induces lower bounds6

δ(s, r) ≥ min
{

σS(s, s1), σR(r, r1)
}

(5.5)

to the possibility that 〈s, r〉 ∈ ϕ. This can be interpreted as a similarity-based
extrapolation of case-based information: The observation 〈s1, r1〉 is considered as
a typical case or, say, prototype, which is extrapolated in accordance with the
CBI hypothesis. The more similar 〈s, r〉 and 〈s1, r1〉 are in the sense of the (joint)
similarity measure

σC :
(
〈s, r〉, 〈s′, r′〉

)
�→ min

{
σS(s, s′), σR(r, r′)

}
, (5.6)

the more plausible becomes the (hypothetical) case 〈s, r〉 and, hence, the larger
is the (lower) possibility bound (5.5). In other words, a high degree of possibility
is assigned to a hypothetical case as soon as the existence of a very similar case
is guaranteed (by observation).

Applying (5.5) to all cases in the memory M we obtain the possibility distribution
δC defined by

δC(s, r) = max
1≤ı≤n

min
{
σS(s, sı), σR(r, rı)

}
(5.7)

for all c = 〈s, r〉 ∈ S × R. This distribution can be interpreted as a possibilistic
approximation of the relation ϕ in (5.4). It is of provisional nature and actually
represents lower bounds to possibility degrees (the equality in (5.7) is justified by
the principle of maximal informativeness, see Section 5.1.2). In fact, the degree
of possibility assigned to a case c may increase when gathering further evidence
by observing new sample cases, as reflected by the application of the maximum
operator in (5.7).

Observe that similarity degrees (on the right-hand side) are turned into possibility
degrees (on the left-hand side) by virtue of the functional relation (5.7). In fact,
the latter reveals at a formal level that – according to our formalization – similarity
is in direct correspondence with possibility: From the similarity of a case 〈s, r〉 to
an observed case, (5.7) concludes on the possibility of this case itself.

The distribution (5.7) can be taken as a point of departure for various inference
tasks. In particular, given a new input s0, a prediction of the associated outcome
r0 is obtained in the form of the conditional distribution δs0 defined by

6 Without loss of generality, we assume the membership functions of the fuzzy sets of “large similarity
degrees” to be given by the identical function id : x �→ x on [0, 1].
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δs0(r) = δ(r | s0)
df
= max

1≤ı≤n
min
{
σS(s0, sı), σR(r, rı)

}
, (5.8)

for all r ∈ R, where δs0(r) denotes the (estimated) possibility of the output r,
i.e., the possibility that r corresponds to the true outcome r0.

Example 5.1. The (real-world) Automobile Database
7 contains 205 cars,

each of which is characterized by 26 attributes. Thus, let a case correspond to a
car which is characterized by means of an attribute–value representation including
properties, such as its horsepower and fuel-type. For the sake of simplicity, we
shall consider only some of the attributes available, i.e., the memory M is actually
a projection of the complete database. One of the attributes, namely the price of
a car, has been chosen as the outcome associated with a case. The latter is hence
a tuple 〈s, r〉, where the input s = (a1, . . . , aL) is a vector of attribute values
describing a car, and r is the associated price. The similarity between two cars
s and s′ is defined as a combination of the similarities between the respective
attribute values a and a′

 (1 ≤  ≤ L).

To illustrate, suppose a car to be characterized by only one attribute, namely its
horsepower. Thus, the CBI hypothesis should simply be understood in the sense
that “cars with similar horsepowers (possibly) have similar prices.” Let σS(s, s′) =
σhp(s, s

′) = max{1 − |s − s′|/100, 0}. Likewise, let the similarity between two
outcomes (= prices) be given by σR(r, r′) = max{1 − |r − r′|/10000, 0}. Fig. 5.1
shows the prediction (5.8) for s0 = 100. This prediction corresponds to the “more
or less” possible range of prices for the class of cars whose horsepower is 100. As
can be seen, the evidence contained in the memory M of cases strongly supports
prices between $10, 000 and $17, 000. At the same time, however, it does not
completely rule out prices which are slightly lower or higher. �

The possibility distribution δs0. According to (5.8), r is regarded as a possible
output if there is a case 〈sı, rı〉 such that both, sı is close to s0 and rı is close to r.
Or, if we define the joint similarity between the case 〈sı, rı〉 and the (hypothetical)
case 〈s0, r〉 according to (5.6), this can be expressed by saying that the case 〈s0, r〉
is regarded as possible if the existence of a similar case 〈sı, rı〉 is confirmed by
observation. In other words, a similar case provides evidence for the existence of
〈s0, r〉 in the sense of possibility qualification.8

Following the notational convention of Section 5.1, possibility degrees δs0(r) de-
note degrees of “guaranteed possibility”. Thus, they are actually not considered
as degrees of plausibility in the usual sense but rather as degrees of confirmation
as introduced in Section 5.1.2. More specifically, the distribution δs0 : R −→ [0, 1]
is thought of as a lower rather than an upper bound. Particularly, δs0(r) = 0 must

7 Available at http://www.ics.uci.edu/˜mlearn.
8 The idea of possibility qualification, already mentioned in Section 5.1, is usually considered in connec-

tion with natural language propositions [328, 417]. Here, possibility qualification is casuistic rather
than linguistic.
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not be equated with the impossibility of r0 = r but merely means that no evi-
dence supporting the outcome r is available so far! In fact, δs0 is of provisional
nature, and the degree of possibility assigned to an outcome r may increase when
gathering further evidence by observing new cases, as reflected by the application
of the maximum operator in (5.8). These remarks also make clear that the dis-
tribution δs0 is not necessarily normalized (in the sense that supr δs0(r) = 1). In
this connection, also note that there is not necessarily a unique actual world in
the sense of the possible worlds semantics [51]. Since s0 is not assumed to have a
unique output, δs0 rather provides information about the set {r ∈ R | 〈s0, r〉 ∈ ϕ}
of potential outcomes. Thus, the state of “complete knowledge” corresponds to
the distribution δs0 with δs0(r) = 1 if 〈s0, r〉 ∈ ϕ and δs0(r) = 0 otherwise.

In a classification context, where the outcomes r are class labels (i.e., R is a
finite number of classes), the set of all inputs s ∈ S with the same output is
sometime referred to as a concept. When being applied to all s ∈ S, (5.8) yields
“fuzzy” concept descriptions, that is possibilistic approximations of the concepts
Cr (r ∈ R):

Cest
r = {(s, δs(r)) | s ∈ S}, (5.9)

where δs(r) is the degree of membership of s ∈ S in the fuzzy concept Cest
r ,

i.e., Cest
r (s) = δs(r). Note that these fuzzy concepts can overlap in the sense

that min{Cest
r (s), Cest

r′ (s)} > 0 for r "= r′ and s ∈ S (s has a positive degree of
membership in two concepts Cest

r and Cest
r′ , r "= r′).9

The similarity measures σS and σR. Let us make some remarks on the sim-
ilarity measures σS and σR. As mentioned previously, according to (5.8), the

9 In practice, fuzzy and/or overlapping concepts seem to be the rule rather than the exception [3].

Fig. 5.1. Prediction (5.8) of the price of a car with horsepower s0 = 100 (solid line) and prediction
(5.32) for 90 ≤ s ≤ 110.



5.2 Fuzzy rule-based modeling of the CBI hypothesis 175

similarity of cases is in direct correspondence with the possibility assigned to an
outcome. Roughly speaking, the principle expressed by (the fuzzy rule underlying)
equation (5.8) gives rise to turn similarity into possibilistic support. Consequently,
σS and σR are thought of as, say, support measures rather than similarity mea-
sures in the usual sense. They do actually serve the same purpose as the weight
functions in NN estimation (cf. Section 2.2.1). Particularly, σS(s0, sı) = 0 means
that the ı-th case is not considered as a relevant piece of information since it is
not sufficiently similar to s0. For computation, irrelevant cases in (5.8) can clearly
be left out of account. Thus, it is enough to consider cases in a certain region
around s0. As opposed to the kNN approach, it is the size of this region rather
than the number of neighboring cases which is fixed.

As in previous chapters, we assume σS and σR to be reflexive and symmetric,
whereas no special kind of transitivity is required.10 In fact, the application of
the maximum operator in (5.8) does even permit a purely ordinal approach. In
this case, the range of the similarity measures is a finite subset A ⊂ [0, 1] that
encodes an ordinal scale such as

{completely different, . . . , very similar, identical}. (5.10)

Correspondingly, degrees of possibility are interpreted in a qualitative way [251,
127]. That is, δs0(r) < δs0(r

′) only means that outcome r is less supported than
outcome r′; apart from that, the difference between the possibility degrees has no
meaning.

Needless to say, a scale such as (5.10) is more convenient if cases are complex
objects rather than points in a Euclidean space and if similarity (distance) be-
tween objects must be assessed by human experts (which is common practice
in case-based reasoning). Note that an ordinal structure is also sufficient for the
original kNN rule. In connection with distance-weighting (cf. Section 2.2.1), how-
ever, the structures of the involved measures become more important. In any case,
one should be aware of the fact that a cardinal interpretation of similarity raises
some crucial semantic questions if corresponding measures cannot be defined in
a straightforward way. In the weighted kNN rule, for example, one patient that
died from a certain medical treatment compensates for two patients that sur-
vived if the former is twice as similar to the current patient. But what exactly
does “twice as similar” mean in this context?

Looking at (5.8) from the point of view of observed cases, this estimation princi-
ple defines a (possibilistic) extrapolation of each case 〈sı, rı〉. In the original NN

approach, which does not involve a distance measure on R, a case 〈sı, rı〉 ∈ M
can only support the output rı. This corresponds to the special case where σR in
(5.8) is given by

10 Let us mention again that relations satisfying reflexivity and symmetry are often called proximity
relations in the fuzzy set literature, where similarity relations are defined as transitive proximity
relations [100]. Anyway, we shall use the term similarity relation (similarity measure) henceforth
without assuming transitivity.
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σR(r, r′) =

{
1 if r = r′

0 if r "= r′
, (5.11)

which is reasonable if R is a nominal scale, as, e.g., in concept learning.

By allowing for graded distances between outcomes, the possibilistic approach
provides for a case 〈sı, rı〉 to support similar outcomes as well. This type of
extended extrapolation is reasonable if R is a cardinal or at least ordinal scale.
In fact, it should be observed that (5.8) applies to continuous scales in the same
way as to discrete scales and thus unifies the performance tasks of classification
and function approximation. For example, knowing that the price (= ouput) of
a certain car is $10,500, it is quite plausible that a similar car has exactly the
same price, but it is plausible as well that it costs $10,700. Interestingly enough,
the same principle is employed in kernel-based estimation of probability density
functions, where probabilistic support is allocated by kernel functions centered
around observations [318, 289]. Indeed, (5.8) can be considered as a possibilistic
counterpart of kernel-based density estimation. Let us furthermore mention that
the consideration of graded distances between outputs is also related to the idea
of class-dependent misclassification costs [290, 364].

5.3 Generalized possibilistic prediction

The possibility distribution δs0 , which specifies the fuzzy set of well-supported
outputs, is a disjunctive combination of the individual support functions

δı
s0

: r �→ min
{
σS(s0, sı), σR(r, rı)

}
. (5.12)

In fact, the max-operator in (5.8) is special t(riangular)-conorm and serves as a
generalized logical or-operator: r0 = r is regarded as possible if 〈s0, r〉 is similar
to 〈s1, r1〉 OR to 〈s2, r2〉 OR . . . OR to 〈sn, rn〉.
Now, fuzzy set theory offers t-conorms other than max and, hence, (5.8) could be
generalized as follows:

δs0(r)
df
= δ1

s0
(r) ⊕ δ2

s0
(r) ⊕ . . . ⊕ δn

s0
(r)

=
⊕

1≤ı≤n

min
{
σS(s0, sı), σR(r, rı)

}

= 1 −
⊗

1≤ı≤n

max
{
1 − σS(s0, sı), 1 − σR(r, rı)

}

for all r ∈ R, where ⊗ and ⊕ are a t-norm and a related t-conorm, respectively.
Recall that a t-norm is a binary operator ⊗ : [0, 1]2 −→ [0, 1] which is commuta-
tive, associative, monotone increasing in both arguments and which satisfies the
boundary conditions x ⊗ 0 = 0 and x ⊗ 1 = x [227]. An associated t-conorm is
defined by the mapping (α, β) �→ 1 − (1 − α) ⊗ (1 − β). The t-norm associated
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with the t-conorm max is the min-operator. Other important operators are the
product ⊗P : (α, β) �→ αβ with related t-conorm ⊕P : (α, β) �→ α + β − αβ and
the Lukasiewicz t-norm ⊗L : (α, β) �→ max{0, α + β − 1} the related t-conorm of
which is the bounded sum ⊕L : (α, β) �→ min{1, α + β}.
Observe that the minimum operator employed in the determination of the joint
similarity between cases can be considered as a logical operator as well, namely as
a fuzzy conjunction: Two cases 〈s0, r〉 and 〈sı, rı〉 are similar if both, s0 is similar
to sı and r is similar to rı. Consequently, this operator might be replaced by a
t-norm, too. By doing so, (5.12) and (5.8) become

δı
s0

: r �→ σS(s0, sı) ⊗ σR(r, rı) (5.13)

and
δs0(r)

df
=
⊕

1≤ı≤n

σS(s0, sı) ⊗ σR(r, rı), (5.14)

respectively. Note, however, that a (fuzzy) logic-based derivation of the joint sim-
ilarity is not compulsory. Particularly, the t-norm ⊗ in (5.14) need not necessarily
be the one related to the t-conorm ⊕. For example, one might thoroughly take
⊗ = min and ⊕ = ⊕P , or even combine the similarity degrees σS(s0, sı) and
σR(r, rı) by means of an operator which is not a t-norm. In that case, however,
the “logical” interpretation of (5.14) is lost.

5.3.1 Control of compensation and accumulation of support

By choosing an appropriate t-conorm ⊕ in (5.14) one can control the accumu-
lation of individual degrees of evidential support, especially the extent of com-
pensation. To illustrate, consider the following classification scenario (with labels
DARK and LIGHT), where σS(s0, s1) = 3/4, σS(s0, s2) = σS(s0, s3) = 1/2, and
σS(s0, s4) = 1/4:

x1 x2x3x4

Should one prefer DARK or LIGHT as a classification of the new input
(indicated by the cross)? The use of the max-operator as a t-conorm yields
δs0(DARK) = 3/4 and δs0(LIGHT) = 1/2 and, hence, the decision DARK.
The three moderately similar instances with label LIGHT do not compensate
for the one very similar instance with label DARK. As opposed to this, the prob-
abilistic sum (α, β) �→ α+β −αβ brings about a compensation effect and entails
δs0(DARK) = 3/4 and δs0(LIGHT) = 13/16, that is, a slightly larger possibility
for LIGHT.

More generally, different t-conorms can model different accumulation modes,
which typically entail a kind of saturation effect. In the case of the probabilistic
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sum ⊕P , for example, an additional β-similar observation increases the current
support α by β(1−α). Thus, the larger the support already granted is, the smaller
the absolute increase due to the new observation will be. This appears reasonable
from an intuitive point of view: If the support of an output is already large, one
is not surprised to see another (close) input having the same output. A small
support increment then reflects the low information content related to the new
observation [203].

5.3.2 Possibilistic support and weighted NN estimation

A t-norm ⊗ is called Archimedian if the following holds: For all x, y ∈ ]0, 1[ there
is a number n ∈ N such that ⊗(n)(x) < y (where ⊗(n)(x) = ⊗(n−1)(x) ⊗ x and
⊗(1)(x) = x). It can be shown that ⊗ is a continuous Archimedian t-norm iff
there is a continuous, strictly decreasing function g : [0, 1] −→ [0,∞] such that
g(1) = 0 and

α ⊗ β = g(−1)(g(α) + g(β)) (5.15)

for all 0 ≤ α, β ≤ 1, where the pseudo-inverse g(−1) is defined as

g(−1) : x �→
{

g−1(x) if 0 ≤ x ≤ g(0)

0 if g(0) < x
.

The function g is called the additive generator of ⊗. For example, x �→ 1 − x
and x �→ − ln(x) are additive generators of the Lukasiewicz t-norm ⊗L and the
product ⊗P , respectively.

Based on the representation (5.15), one can establish an interesting connection
between (5.14) and the weighted NN rule (cf. Section 2.2.1). To this end, let g
be the additive generator of the t-norm11 related to the t-conorm ⊕ used as an
aggregation operator in (5.14). With dı = 1−σS(s0, sı)⊗σR(r, rı) and ωı = g(dı),
we can write (5.14) as

δs0(r) = 1 − g(−1)(ω1 + ω2 + . . . + ωn). (5.16)

Since g is decreasing, it can be considered as a weight function that turns a
distance dı into a weight ωı associated with the ı-th input. Then, (5.16) tells us
that the possibility degree δs0(r) is nothing else than a (monotone increasing)
transformation of the sum of weights ωı. In other words, (5.14) can be seen as a
distance-weighted NN estimation, where the weight of a neighbor is determined
as a function of its similarity to the new instance. As opposed to (2.8), however,
the weight of a case according to (5.16) does not depend on other cases stored in
the memory (cf. Section 5.3.5 below).

Consider the Lukasiewicz t-(co)norm as an example, for which we obtain ωı =
1 − dı = σS(s0, sı) ⊗ σR(r, rı) and

11 This is not the t-norm used in (5.14) for defining a joint similarity measure.
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δs0(r) = min{1, ω1 + ω2 + . . . + ωn}. (5.17)

If, moreover, σR is given by (5.11), then δs0(r) is nothing else than the bounded
sum of the similarity degrees σS(sı, s0) between s0 and the inputs sı with output
rı = r. Thus, (5.17) is basically equivalent to the global NN method, i.e., the
weighted NN approach with k = n,12 apart from the fact that it does not distin-
guish between outputs whose accumulated support exceeds 1 (this is an extreme
type of saturation effect). For the probabilistic sum ⊕P , the mapping between
possibility degrees and the sum of weights is bijective:

δs0(r) = 1 − exp
(
− (ω1 + ω2 + . . . + ωn)

)
.

In connection with the generalized model (5.14), the t-conorm ⊕ used for com-
bining individual degrees of support defines another degree of freedom of the
model. It is hence interesting to mention the existence of parameterized families
of t-(co)norms which comprise commonly used operators as special cases. For
example, the Frank-family is defined as

⊕ρ : (α, β) �→




max{α, β} if ρ = 0
α + β − αβ if ρ = 1
min{1, α + β} if ρ = ∞
1 − lnρ

(
1 + (ρ1−α−1)(ρ1−β−1)

ρ−1

)
otherwise

. (5.18)

Proceeding from such a family of t-conorms, the degree of freedom of the model
reduces to a single parameter, here ρ, which can be adapted in a simple way, e.g.,
by means of cross-validation techniques.

5.3.3 Upper and lower possibility bounds

The possibility degree (5.14) represents the support (confirmation) of an output r
gathered from similar cases according to the CBI hypothesis. Now, in the sense of
this hypothesis, an observation 〈sı, rı〉 might not only confirm but also disqualify
an output r. This happens if sı is close to s0 but rı is not similar to r. A possibility
distribution expressing degrees of exclusion rather than degrees of support and,
hence, complementing (5.14) in a natural way is given by

πs0 : r �→
⊗

1≤ı≤n

(1 − σS(s0, sı)) ⊕ σR(r, rı). (5.19)

According to (5.19), an individual observation 〈sı, rı〉 induces a constraint on
the outcome of s0: An output r is disqualified by 〈sı, rı〉 if both, σS(s0, sı) is
large and σR(r, rı) is small. As opposed to this, 〈sı, rı〉 is completely ignored if

12 The proper kNN rule cannot be emulated as in (2.10) since the weights ωı depend on absolute
distance (again, see Section 5.3.5 below).
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σS(s0, sı) = 0, in which case the individual support on the right-hand side of
(5.19) is 1 (πs0 ≡ 1 is an expression of complete ignorance: all upper possibility
bounds are 1 since there is no reason to discredit any output). This approach is
obviously in agreement with the constraint-based view of possibilistic reasoning
(cf. Section 5.1.1). Moreover, the distribution (5.19) is again related to a special
type of fuzzy rule [107].

The possibility of an outcome r can now be characterized by means of an extended
estimation, namely as a tuple

δ∗s0
(r) = [ δs0(r), πs0(r) ]

with a lower bound δs0(r) expressing a degree of confirmation, and an upper
bound πs0(r) expressing a degree of plausibility. The following cases show that
the complementary distribution πs0 can greatly improve the informational content
of a possibilistic evaluation:13

– δ∗s0
(r) = [0, 1]: This is an expression of complete ignorance. Neither is r sup-

ported nor is it (partly) excluded by any observation. Thus, r is fully plausible
though not confirmed at all.

– δ∗s0
(r) = [0, 0]: Clear evidence against r has been accumulated in the form of

inputs similar to s0 with outputs dissimilar to r.

– δ∗s0
(r) ≈ [1, 1]: The output r is strongly supported through the observation of

similar cases.

Notice that
δs0(r) > πs0(r) (5.20)

indicates a kind of conflict [376] and is closely related to the problem of ambiguity
in connection with the NN principle (cf. Section 2.2.1). In fact, (5.20) can occur
if s0 has close neighbors sı and s with quite dissimilar outputs rı and r (mathe-
matically speaking, s0 is a point of discontinuity). In this case, the evaluation of r
is unsteady, and the support δs0(r) should be taken with caution. The inequality
in (5.20) might also trigger a revision process that aims at removing the conflict
by means of a model adaptation.

5.3.4 Fuzzy logical evaluation

The values δs0(r) in (5.14) can also be considered as membership degrees of a fuzzy
set, namely the fuzzy set of “well-supported outputs”. In fact, the possibility
degree δs0(r) can be seen as the truth degree, 〈P (r)〉, of the following (fuzzy)
predicate P (r): “There is an input close to s0 with an output similar to r.” P (r)
defines the property that qualifies r as a well-supported output.

13 Recall that positive and negative evidence cannot be distinguished in probability theory.
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Of course, one might easily think of alternative characterizations of well-supported
outputs. Fuzzy set-based modeling techniques allow for translating such charac-
terizations given in linguistic form into logical expressions. By using fuzzy logical
connectives including t-norms, fuzzy quantifiers such as “a few” and fuzzy re-
lations such as “closely located”, one can specify sophisticated fuzzy decision
principles that go beyond the simple NN rule. Example:

“There are at least a few closely located inputs, most
of these inputs have the same output, and none of the
moderately close inputs has a very different output.”

The logical expression P (·) associated with such a specification can be used in
place of the right-hand side in (5.14):

δs0(r)
df
= 〈P (r)〉. (5.21)

The decision rule related to (5.14) favors the outcome rest
0 that meets the require-

ments specified by P (·) best. This generalization appears especially interesting
since it allows one to adapt the NN principle so as to take specific characteristics
of the application into account.

Observe that (5.21) can also mimic the original kNN rule: Consider the fuzzy
proposition “r is supported by many of the k nearest neighbors of s0”, and let
the fuzzy quantifier “many (out of k)” be modeled by the mapping ı �→ ı/k.
Then, δs0(r) = ı/k iff ı among the k nearest neighbors have outcome r. In this
case, possibility degrees (derived from fuzzy truth degrees) formally coincide with
probability degrees.

5.3.5 Comparison of extrapolation principles

As already mentioned above, the possibilistic approach to CBI can also be con-
sidered as a kind of NN estimation. Thus, it seems interesting to have a closer
look at this type of “possibilistic NN estimation” as an alternative to the proba-
bilistic approach to estimation and decision making, which is in agreement with
the original kNN rule (cf. Section 2.2.1).

Both the possibilistic and the probabilistic approach can be considered as a two-
step procedure. The first step derives a distribution that will subsequently be
referred to as the NN estimation. This estimation defines a degree of support for
each output r ∈ R. The second step, the NN decision, chooses one output on
the basis of the NN estimation. Usually, the decision is given by the outcome
with maximal support, and ties are broken by coin flipping. Still, in the case of
a continuous (or at least ordinal) scale R, a decision might also be obtained by
some kind of averaging procedure.

In order to facilitate the comparison of the two approaches, we write degrees of
evidential support in the general form
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ν(r | s0,M) = α
(
{νsı(r | s0,M) | 〈sı, rı〉 ∈ M}

)
(5.22)

and thus obtain the (maximal support) decision as

rest
0 = arg max

r∈R
ν(r | s0,M). (5.23)

In (5.22), νsı(r | s0,M) is the support of the hypothesis r0 = r provided by the
case 〈sı, rı〉, and α is an aggregation function.

To reveal the original kNN rule and the probabilistic approach as special cases
of (5.23), note that the probability distribution (2.6) is obtained by using the
arithmetic sum as an aggregation function α and defining the support function
as

νp
sı
(r | s0,M) =

{
1/k if sı ∈ Nk(s0) and r = rı

0 otherwise
. (5.24)

More generally, if S is a metric space, a support function can be defined as

νp
sı
(r | s0,M) =

{
Kdk

(s0 − sı) if r = rı

0 otherwise
, (5.25)

where K is a kernel function. The index dk denotes the distance between s0 and
its k-th nearest neighbor. It signifies that the kernel function is scaled so as to
exclude exactly those inputs sı with ∆S(s0, sı) > dk. Proceeding from (5.25),
and assuming that R is a finite set {ρ1 . . . ρm}, the probability distribution ps0 is
obtained by normalizing the supports

νp(ρ | s0,M) =
∑

〈sı,rı〉∈M

νp
sı
(ρ | s0,M),

which yields

ps0(ρ) =
νp(ρ | s0,M)∑m
ı=1 νp(ρı | s0,M)

(5.26)

for all ρ ∈ R. That is, the aggregation α is now the normalized rather than the
simple arithmetic sum. Of course, since normalization does not change the mode
of a distribution it has no effect on decision making and could hence be omitted
from this point of view.

The possibilistic approach (5.14) is recovered by α = ⊕ and

νδ
sı
(r | s0,M) = σS(s0, sı) ⊗ σR(r, rı). (5.27)

As can be seen, the main difference between the probabilistic and the possibilistic
approach concerns the definition of the individual support function νs and the
aggregation of the corresponding degrees of support.

Apart from that, however, a direct comparison is complicated by the similarity
measure over outputs, σR, which is used in (5.27) but not in (5.25). One possibility
to handle this problem is to consider (5.27) only for the special case (5.11):
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νδ
sı
(r | s0,M) =

{
σS(s0, sı) if r = rı

0 otherwise
. (5.28)

Equation (5.28) reveals that the similarity measure σS now plays the same role
as the kernel function K in (5.25).

Absolute versus relative support. An important difference between (5.25)
and (5.28) is that an example 〈sı, rı〉 ∈ M provides relative support of an output
r in the probabilistic approach but absolute support in the possibilistic one. That
is, νδ

sı
(r | s0,M) depends on the absolute similarity between s0 and sı but is

independent of further observations. In fact, we can actually write νδ
sı
(r | s0) in

place of νδ
sı
(r | s0,M) since M does not appear on the right-hand side of (5.28):

The support provided by observed examples 〈sı, rı〉 is bounded to nearby cases,
decreases gradually with distance, and vanishes for completely dissimilar cases.

As opposed to this, the support νp
sı
(r | s0,M) is relative and depends on the

relation between the distance of sı to s0 and the distances of other observations
to s0. This is reflected by the scaling of the kernel function in (5.25). On the
one hand, this means that νp

sı
(r | s0,M) can be large even though sı is quite

distant from s0. On the other hand, the extension of the memory M by another
instance close enough to s0 might exclude a quite similar observation sı from
the neighborhood Nk(s0). The corresponding re-scaling of the kernel function
will then cancel the support provided by 〈sı, rı〉 so far. The induced thresholding
effect appears especially radical (and might be questioned on such grounds) in
connection with (5.24), where νp

sı
(r | s0,M) is reduced from 1/k to 0, that is from

full support to zero support.

The bounding of evidential support, as realized by the possibilistic approach, is
often advisable. Consider a simple example: Let S = [0, 1] and

ϕ = {(s, I[1/2,1](s)) | s ∈ S}

and suppose inputs to be chosen at random according to a uniform distribution.
Moreover, assume that a new input s0 must be labeled, given a memory that
consists of only a single observation 〈s1, r1〉. Using the 1NN rule, the probability
of a correct decision is obviously 1/2. Now, suppose that the NN rule is applied
only if |s0 −s1| ≤ d, whereas a decision is determined by flipping a coin otherwise
(this is exactly the procedure that results from the possibilistic approach by
defining σS in (5.8) by σS(s, s′) = 1 if |s − s′| ≤ d and 0 otherwise). A simple
calculation shows that the probability of a correct decision is now 1/2+ d(1− d).
As can be seen, dissimilar cases are likely to provide misleading information in this
example and, hence, the disregard of such cases is indeed advantageous. Loosely
speaking, it is better to guess an output at random than to rely on observations
not similar enough.

Of course, the concept of absolute support is actually not reserved to the possi-
bilistic approach but can be realized for the probabilistic method as well. To this
end, one simply replaces (5.25) by
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νp
sı
(r | s0,M) =

{
K(s0 − sı) if r = rı

0 otherwise
, (5.29)

where the kernel function K is now fixed. That is, K is no longer scaled by
the size of the neighborhood of s0. This is exactly the estimation one derives by
the reasoning in Section 2.2.1 if the generalized NN density estimation (2.14) is
replaced by the simple kernel estimator:

φest(s0) =
1

n
·

n∑
ı=1

K(s0 − sı). (5.30)

Here, the only problem occurs if νp(r | s0,M) = 0 for all r ∈ R. In this situ-
ation (of complete ignorance), a probability distribution cannot be derived by
normalization.

Apart from that, (5.29) might indeed be preferred to (5.25) due to the reasons
mentioned above. In fact, one should realize that one of the major reasons for
using the NN density estimator (2.14) rather than the kernel estimator (5.30) is
to guarantee the continuity of the density function φest. In the context of case-
based inference or, say, instance-based learning this is not important, however,
since one is not interested in estimating a complete density function but only a
single value thereof. To the best of our knowledge, (5.25) and (5.29) have not been
compared in a systematic way in IBL so far. Note that (5.29) should actually
be called a Near Neighbor estimation since it involves the near rather than
the nearest neighbors. The same remark applies to the possibilistic approach, of
course.

Above, it has been argued that the consideration of graded degrees of similarity
between outcomes is often advised (see also our example in Section 5.3.7 below). It
should be mentioned, therefore, that the probabilistic approach might be extended
in this direction as well. To this end, a joint probability density can be estimated
based on a kernel function K, which is now defined over S × R. An estimation
for the output r can then be derived by conditioning on s0:

ps0(r) ∝
∑

〈sı,rı〉∈M

νp
sı
(r | s0,M) =

∑
〈sı,rı〉∈M

K
(
s0 − sı, r − rı

)
.

This is the most general form of a probabilistic estimation. Still, one should keep
in mind that it requires S × R to have a suitable mathematical structure, an
assumption which is not always satisfied in applications (again, we refer to our
example below).

Similarity versus frequency. The estimation principle underlying the prob-
abilistic NN approach combines the concepts of similarity (distance) and fre-
quency: It applies a closeness assumption, typical of similarity-based reasoning,
that suggests to focus on the most similar observations (or to weight observations
by their distance). From the reduced set of supposedly most relevant instances,
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probabilities are then estimated by relative frequencies. This contrasts with the
basic (max–min) possibilistic approach (5.8) which relies on similarity alone: The
application of the maximum operator does not produce any compensation or re-
inforcement effect. Thus, possibility depicts the existence of supporting evidence,
not its frequency.14 The generalized possibilistic approach based on (5.14) allows
for modes of compensation which combine both aspects. Especially, the operators
mentioned above produce a kind of saturation effect, that is, a limited reinforce-
ment effect: The increase of support due to the observation of a similar instance
is a decreasing function of the support that is already available.

In this connection, it is important to realize the different nature of the concepts of
possibility and probability. Particularly, it should be emphasized that the former
is not interpreted in terms of the latter.15 For example, consider the standard
probabilistic setting where cases are chosen randomly and independently accord-
ing to a fixed probability measure over S × R. The possibility degree δs0(r) will
then converge to 1 with increasing sample size whenever 〈s0, r〉 has a non-zero
probability of occurrence. In fact, the possibilistic approach is interested in the
existence of a case, not in its probability. Roughly speaking, the major concern
of this approach is the approximation of the concepts Cr, r ∈ R, whereas the
probabilistic approach aims at estimating conditional probability distributions
ps0 = P(· | s0). Of course, this distinction is relevant only if the concepts are
overlapping, that is, if the query s0 does not have a unique outcome. Other-
wise, a possibilistic and a probabilistic approach are equivalent in the sense that
s0 ∈ Cr ⇔ P(r | s0) = 1.

It is beyond question that the frequency of observations usually provides valuable
information. Yet, the frequency-based approach does heavily rely on statistical
assumptions concerning the generation of training (and test) data. Thus, it might
be misleading if these assumptions are violated. Suppose, e.g., that the probabil-
ity of observing a positive example, while learning a concept C1 ⊆ S, depends
on the number of positive examples observed so far and hence contradicts an
independence assumption (the probability of an output r, given the input s, is
not independent of the data). In this case, a probabilistic estimation is clearly
biased, whereas the possibility distribution (5.8) is not affected at all. Indeed,
the information expressed by δs0 remains valid even if only negative examples
sı ∈ C0 = S \ C1 have been presented so far: δs0(1) = 0 then simply means that
no evidence for s0 ∈ C1 has been gathered as yet. Moreover, the value δs0(0)
reflects the available support for s0 ∈ C0. This support depends on the distance
of s0 to the observed negative examples. Note that δs0(0) = 0 is possible as well.
In this case, no evidence is available at all, neither for nor against s0 ∈ C1. See
Section 5.5.3 for a simulation experiment which concerns the aspect of robustness
of NN estimation toward violations of the standard statistical assumptions.

14 To a certain extent, this is related to the distinction between an existential and an enumerative
analogy factor in models of analogical induction [281].

15 Though such a relationship can be established, e.g., by interpreting possibility as upper probability
[122] or fuzzy sets as coherent random sets [111].
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Apart from statistical assumptions, the structure of the application has an im-
portant influence. To illustrate, consider two classes in the form of two clusters
such that the (known) diameter of both clusters is smaller than the distance be-
tween them, that is ∆S(s1, s2) < ∆S(s1, s3) whenever r1 = r2 "= r3. The output of
an input can then be determined with certainty as soon as the distance from its
nearest neighbor is known. In other words, the 1NN rule which does not involve
frequency information performs better than any kNN rule with k > 1.

5.3.6 From predictions to decisions

In addition to the extrapolation principles let us compare the induced distribu-
tions, referred to as NN estimations, from a knowledge representational point of
view, especially against the background of the two shortcomings of the NN rule
illustrated in Fig. 2.1.

A crucial difference between a possibility distribution δ and a probability func-
tion p is that the latter obeys a normalization constraint that demands a total
probability mass of 1, whereas no such constraint exists in possibility theory.
Consequently, a possibility distribution is more expressive in some situations.
Especially, the following points deserve mentioning:

– Possibility reflects ignorance: All possibility degrees δs0(r) remain rather small
if no sufficiently similar cases are available. Particularly, the distribution δs0 ≡ 0
is an expression of complete ignorance and reflects the absence of any relevant
observation (σS(s0, sı) = 0 for all sı). A learning agent using this estimation
“knows that it doesn’t know” [359]. As opposed to this, a distribution such as,
say, δs0 ≡ |R|−1 (in the case of finite R) indicates that some (small) evidence
is available for each of the potential outcomes. These two situations cannot
be distinguished in probability theory where they induce the same distribution
ps0 ≡ |R|−1 (if, as suggested by the principle of insufficient reason, complete
ignorance is modeled by the uniform distribution).

– Possibility reflects absolute frequency: For example, suppose σS(s0, sı) = 1 −
d > 0 and rı = r′ for all n inputs sı stored in the memory. The probabilistic
estimation (2.6) then yields the one-point distribution ps0(r

′) = 1 and ps0(r) = 0
for all r "= r′. Thus, it suggests that r0 = r′ is certain, even if n is rather small.
With a compensating t-conorm such as the probabilistic sum ⊕P , the extended
estimation (5.14) yields δs0(r

′) = 1− dn and δs0(r) = 0 for all r "= r′. Thus, not
only does the possibilistic support of the hypothesis r0 = r′ reflect the distance
but also the actual number of voting instances: δs0(r

′) is an increasing function
of n and approaches 1 for n → ∞.

As can be seen, a probabilistic estimation can represent ambiguity, whereas the
possibilistic approach captures both problems, ambiguity and ignorance: Ambi-
guity (Fig. 2.1, above) is present if there are several plausible outputs with similar
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degrees of support, and ignorance (Fig. 2.1, below) is reflected by the fact that
even the most supported output has a small degree of possibility. Thus, (5.14)
can be taken as a point of departure for a decision making procedure that goes
beyond the guessing of an outcome. For example, a possible line of action proceed-
ing from (5.14) might be expressed by the following rules (involving thresholds
0 < dmax < dmin < 1):

– If δs0(r
∗) ≥ dmin for the most supported outcome r∗ and δs0(r) ≤ dmax for all

r "= r∗, then let rest
0 = r∗.

– If δs0(r
∗) < dmin, then gather further information.

– If δs0(r
∗) ≥ δs0(r) ≥ dmin for two outcomes r∗, r ∈ R, then refuse a prediction.

The Echocardiogram Database
16 is a real-world example that is quite inter-

esting in this respect. One problem that has been addressed by machine learning
researchers in connection with this database is to predict from several attributes
whether or not a patient who suffered from a heart attack will survive at least one
year. Since data is rather sparse (132 instances and about 10 attributes), the pos-
sibilistic approach often yields estimations with low support for both alternatives,
surviving and not surviving at least one year. This is clearly reasonable from a
knowledge representational point of view and reveals an advantage of absolute
over relative degrees of support. For example, telling a patient that your experi-
ence does not allow any statement concerning his prospect of survival (δs0 ≡ 0)
is very different from telling him that his chance is 50% (ps0 ≡ 1/2).

The discrepancy between a probabilistic and a possibilistic approach disappears
to some extent if one is only interested in a final decision, that is, if a decision
must be made irrespective of the quality and quantity of the information at
hand. For example, the method in [84], which derives a prediction in terms of
a belief function (cf. Chapter 4), refers to the so-called transferable belief model
[350] and, hence, turns the belief function (at the “credal” level) specifying the
unknown outcome into a probability function (at the “pignistic” level) before
making a decision. Thus, the support of individual outputs is expressed in terms
of probability, and an NN estimation can be derived by taking one among the
most probable outcomes, breaking ties at random.

Observe that, as a consequence of applying the maximum operator, a possibilis-
tic NN decision derived from (5.8) coincides with the 1NN rule. The generalized
version (5.14), where several moderately similar examples can compensate for
one very similar instance, comes closer to the original kNN rule. In fact, for cer-
tain special cases, the possibilistic approach is equivalent – from a decision making
point of view – to the probabilistic approach based on the support function (5.29).
Equation (5.16) shows that a possibility degree δs0(r) is a monotone transforma-
tion of the sum of weights ωı, and this relation is one-to-one if the pseudo-inverse
g(−1) is actually the inverse g−1. The similarity function σS can then be chosen

16 Available at http://www.ics.uci.edu/˜mlearn.
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such that
δs0(r) ≤ δs0(r

′) ⇔ ps0(r) ≤ ps0(r
′).

That is, outcomes which are better supported in a possibilistic sense are also more
probable and vice versa.

To illustrate, consider the case where S = Rl and σR(r, r′) = 1 if r = r′ and 0 oth-
erwise. Let K be a kernel function and define σS as (x, y) �→ 1−exp (−K(x, y)).17

For the t-conorm ⊕P , the weights in (5.16) are then given by ωı = K(s0 − sı).
Therefore,

δs0(r) = 1 − exp


−

∑
〈sı,rı〉∈M : rı=r

K(s0 − sı)




= 1 − exp (−c · ps0(sı)) ,

where ps0(r) is the probability degree derived from (5.29) using the kernel function
K and c is the normalization factor c =

∑
r′∈R ps0(r

′).

5.3.7 An illustrative example

Here, we present a simple example for which the possibilistic approach might
be considered superior to the probabilistic one. The task shall be to predict a
student’s grade in physics given some information on other grades of that student.
Thus, an input is now a subject, and the output is given by the corresponding
grade. We assume that grades are taken from the scale R = {0, 1, . . . , 10}, where
10 is the best result. Moreover, we consider two scenarios S1 and S2:

Subject S1 S2

Chemistry – 10
French – 3
Philosophy – 3
Spanish – 3
Sports 5 –

Admittedly, it is not obvious how to define a reasonable similarity measure over
the set of subjects. In fact, an ordinal measure – sufficient for the possibilistic
approach (5.8) – appears much simpler than a cardinal one. Nevertheless, let us
assume the following (cardinal) degrees of similarity:

σS Chem. French Phil. Span. Sports
Physics 3/4 1/3 1/3 1/3 0

17 Formally, one might set K(0)
df
= ∞ to ensure that σS is reflexive.
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Concerning the set of outcomes R, graded degrees of similarity are clearly advised
in this example. Let us define the similarity between two grades a and b to be

σR(a, b) = max

{
1 − 1

5
|a − b|, 0

}
.

Needless to say, our application does not define a statistical setup par excel-
lence, which is a main reason why the probabilistic approach does hardly appear
suitable. To begin with, a scenario as defined above cannot be considered as an
independent sample (perhaps the information is censored if it comes from the
student himself), not to mention the small number of observations. Moreover, a
relative frequency interpretation does not make sense. Finally, the set S endowed
with the similarity measure σS (as partly specified above) is likely to lack a suffi-
ciently strong mathematical (metric) structure, so that the derivation of the kNN

estimation in Section 2.2.1 might no longer be valid. Clearly, nothing prevents us
from still applying the formulae and simply interpreting the normalized degrees
of additive support as degrees of probability. But one should keep in mind that
this approach actually lacks a solid foundation.

The first scenario is a typical example of complete ignorance, for one does not have
any relevant piece of information. It is true that the case base is not empty, but the
grade in sports does not allow one to draw any conclusion on the grade in physics
since these two subjects are very dissimilar. This is adequately reflected by the
possibilistic estimation which yields δs0 = δphysics ≡ 0. A probabilistic estimation
with relative support is obviously not appropriate in this example. Since sports
is the only neighbor one obtains a probability distribution that favors grade 5 for
physics. Thus, it is clearly advised to use absolute rather than relative support.
Then, however, a probability is actually not defined since the denominator in
(5.26) is zero. One way out is to take the uniform distribution ps0 ≡ 1/11 as a
default estimation, but this raises the well-known question whether the latter is
an adequate expression of complete ignorance (which is definitely denied by most
scholars).

Scenario S2 reveals problems of weighting and aggregation. Undoubtedly, a
weighted estimation should be preferred in this example. Still, the example shows
that the definition and aggregation of weights can be tricky. What is the most
likely grade? Particularly, is grade 3 for physics more likely than grade 10 or vice
versa? The weighted kNN rule favors grade 3 since the three subjects which are
moderately similar to physics compensate for the one (chemistry) which is very
similar. Of course, this result might be judged critically. Especially, this example
reveals a problem of interdependence which is not taken into account by means of
a simple summation of weights. Namely, the two subjects Spanish and French are
very similar by themselves. Thus, one might wonder whether the grade 3 should
really count twice. In fact, one might prefer to consider the grades in French and
Spanish as only one piece of evidence (suggesting that the student is not good at
languages) instead of two pieces of distinct information. Formally, the problem
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is that the probabilistic approach makes an assumption of (conditional) inde-
pendence which is no longer valid when taking structural assumptions about the
application into account [198]. Here, such assumptions correspond to the NN in-
ductive bias, namely the CBI hypothesis that similar inputs have similar outputs.
Given this hypothesis, the cases stored in the case base are no longer independent
(grade 3 in French, in conjunction with this hypothesis, makes grade 3 in Spanish
very likely).

The problem of interdependence cannot be taken into account as long as an
estimation disregards the similarity between the instances stored in the memory
(cf. Section 4.5.3), as do all the estimations presented so far. Still, the aggregation
operator ⊕ in the possibilistic approach provides a means for alleviating the
problem. With ⊕ = max, for example, frequency does not count at all and one
obtains δs0(3) = 1/3 < 3/4 = δs0(10). The probabilistic sum ⊕P brings about a
reinforcement effect but still yields δs0(3) = 0.7 < 3/4 = δs0(10), a result that
appears quite reasonable.

A second problem related to scenario S2 is that of ambiguity. Particularly, the
probabilistic approach yields a bimodal distribution ps0 , and the same is also true
for most aggregation operators in the possibilistic approach. For example, (5.14)
with ⊕ = ⊕P (and ⊗ = ⊗P ) yields δs0(3) > δs0(7) < δs0(10). This result is not
intuitive, for one might hardly judge an intermediate grade less possible than two
extreme grades. To solve this problem, δs0 can be replaced by its convex hull

r �→ min

{
max
r′≤r

δs0(r
′), max

r′≥r
δs0(r

′)

}
. (5.31)

In our example, this leads to the following distribution:

r 0 1 2 3 4 5 6 7 8 9 10
δs0(r) 0 0.3 0.53 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.75

Of course, this prediction is still ambiguous in the sense that is supports several
grades by means of high degrees of possibility. This is not a defect, however, but
rather an adequate representation of the ambiguity which is indeed present in the
situation associated with scenario S2.

The modification (5.31) of δs0 should not be considered ad-hoc. Rather, the con-
vexity requirement can be thought of as a possibility-qualifying rule that comple-
ments the case-based justification of possibility degrees: The more possible two
outputs are, the more possible is any outcome in-between. This type of back-
ground knowledge and the associated constraints can be met more easily in the
possibilistic approach than in the probabilistic one. In fact, the incorporation of
background information is hardly compatible with non-parametric density esti-
mation.

In summary, the example has shown the following advantages of the possibilistic
approach: Firstly, the interpretation of aggregated weights in terms of degrees
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of evidential support is often less critical than the interpretation in terms of de-
grees of probability. Secondly, a possibility distribution can represent ignorance.
Thirdly, the use of aggregation operators other than the arithmetic sum can be
useful. Fourthly, the possibilistic approach is more flexible and allows for incor-
porating constraints or background knowledge.

5.3.8 Complexity issues

A straightforward implementation of the prediction (5.13) has a running time
which is linear in the size |M| of the memory and the number |R| of outcomes
(resp. a discretization thereof). In this respect, it is hence completely comparable
to other case-based learning methods.

In order to reduce the computational complexity, instance-based approaches take
advantage of the fact that a prediction is already determined by the nearest
neighbors of the query instance. Thus, the consideration of each sample instance
is actually not necessary, and efficiency can be gained by means of fast algorithms
for finding nearest neighbors [154, 411, 222]. Such algorithms employ efficient
similarity-based indexing techniques and corresponding data structures in order
to find the relevant instances quickly.

The same idea can be applied in connection with the possibilistic approach. In
fact, a possibility degree δs0(r) is completely determined by the neighborhood
of the case 〈s0, r〉, that is the sample instances 〈sı, rı〉 satisfying σS(sı, s0) > 0
and σR(rı, r) > 0. As can be seen, apart from minor differences, the possibilistic
method is quite comparable to other instance-based methods from a complexity
point of view. One such difference concerns the relevant sample instances. In the
kNN approach, the number of relevant instances in always k, but the (degree of)
relevance of an instance may change when modifying the case base. As opposed to
this, the degree of relevance of a neighboring instance is fixed in the possibilistic
approach, but the number of relevant instances can change.

Let us finally mention that efficiency can also be gained if the complete possibility
distribution δs0 is not needed. In fact, quite often one will only be interested
in those outcomes having a high degree of possibility. For example, one might
be interested in a fixed number of maximally supported outcomes, or in those
outcomes whose support exceeds a given possibility threshold. In such cases, the
computation of δs0(r) can be omitted (or broken off) for certain outputs r.

5.4 Extensions of the basic model

The previous section has introduced the main principles of the possibilistic ap-
proach to case-based inference (subsequently, for the sake of brevity, sometimes
referred to as PoCBI). In this regard, the close connection to fuzzy rule-based



192 5. Fuzzy Set-Based Modeling of Case-Based Inference

reasoning was especially emphasized. Besides, we highlighted the fact that pos-
sibilistic CBI can be considered as an alternative approach to NN estimation.
This section presents some extensions of the basic model making PoCBI even
more powerful and practically useful.

5.4.1 Dealing with incomplete information

The problem of dealing with incomplete information such as missing attribute val-
ues in an important issue in case-based reasoning and machine learning [88, 305].
For example, suppose that the specification of the new query s0 is incomplete,
and let S0 ⊆ S denote the inputs compatible with the description of s0. Moreover,
recall the lower support-bound semantics of the possibilistic approach to CBI.
The following generalization of (5.14) is in accordance with these semantics:

δs0(r)
df
= inf

s∈S0

δs(r) = (5.32)

= inf
s∈S0

⊕
1≤ı≤n

σS(s, sı) ⊗ σR(r, rı).

Indeed, each potential candidate s ∈ S0 gives rise to a lower bound according
to (5.14), and without additional knowledge we can guarantee but the smallest
of these bounds to be valid. This is in agreement with the idea of guaranteed
possibility (cf. Section 5.1.2). The simplicity of handling incomplete information
in a coherent (namely possibilistic) way is clearly a strong point of possibilistic
CBI. Notice that the computation of the lower bound in (5.32) is in line with
the handling of missing attribute values in the IB1 algorithm (cf. Section 2.2.2),
where these values are assumed to be maximally different from the comparative
value. Yet, the possibilistic solution appears more appealing since it avoids any
default assumption. Indeed, inferring what is possible seems to be a reasonable
way of dealing with missing attribute values and for handling incomplete and
uncertain information in a coherent way.

Example 5.2. Reconsider Example 5.1 and suppose that we are interested in,
say, the price of a car whose horsepower is between 90 and 110. This amounts to
predicting the outcome of an income s0, in which the attributes are incompletely
specified. Fig. 5.1 shows the prediction obtained for the max–min version of (5.32)
for this example. �

More generally, imprecise knowledge about s0 can be modeled in the form of a
possibility distribution π on S, where π(s) corresponds to the degree of plausibility
that s0 = s. A graded modeling of this kind is useful, e.g., if some attributes are
specified in a linguistic way. It suggests the following generalization of (5.32):

δs0(r)
df
= inf

s∈S

(
π(s) � δs(r)

)
, (5.33)
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where � is a generalized implication operator that is reasonably chosen as the
Gödel implication [134]:

α � β
df
=

{
1 if α ≤ β
β if α > β

.

From a logical point of view, (5.33) specifies the extent to which the output r is
supported by all plausible candidates for s0. Notice that the distributions δs and π
in (5.32) have different semantics and express degrees of confirmation and plausi-
bility, respectively (cf. Section 5.1). Particularly, π is assumed to be normalized,
i.e., there is at least one input s with π(s) = 1. One obviously recovers (5.32)
from (5.33) for the special case where π is a {0, 1}-valued possibility distribution
π = IS0 and hence corresponds to a crisp subset S0 ⊆ S.

Similar generalizations can also be realized for coping with incompletely specified
examples. Let the ı-th case in the memory be characterized by the set Sı × Rı ⊆
S × R. Then, (5.14) becomes

δs0(r)
df
=
⊕

1≤ı≤n

inf
〈s′,r′〉∈Sı×Rı

σS(s0, s
′) ⊗ σR(r, r′),

which is in accordance with (5.32). Moreover, we obtain

δs0(r)
df
=
⊕

1≤ı≤n

inf
〈s′,r′〉∈S×R

max
{
σS(s0, s

′) ⊗ σR(r, r′), 1 − πı(s
′, r′)
}

if the ı-th case is characterized by means of a possibility distribution πı on S ×R
rather than by a crisp set Sı×Rı. Note that this expression can be combined with
(5.33) in order to handle incomplete specifications of both, the sample cases and
the new query. Moreover, notice that the distribution δs0 will generally remain
unaffected if an example is completely unspecified (πı ≡ 1), which is clearly a
reasonable property.

Interestingly enough, the above generalization does not only allow for dealing
with incomplete (fuzzy) cases. It also suggests to lump together several (similar)
cases stored in the memory. The idea, then, is to replace these cases by one “fuzzy
case”, the attributes of which are given by the disjunction of the attribute values
of the individual cases. On the one hand, this procedure might improve efficiency,
especially if the memory of cases is very large. On the other hand, some infor-
mation might be lost when basing a prediction on one or several fuzzy cases: In
fact, it is not difficult to show that the support δs0(r) of a (hypothetical) case
〈s0, r〉 derived from a set of observed cases can be larger (but not smaller) than
the support obtained from the fuzzy case which combines the original observa-
tions. Nevertheless, the more similar the combined observations are, the better
the approximation becomes. Of course, instead of replacing a set of cases by a
fuzzy case, one might also think of simply selecting one of these cases which is
prototypical of this set.18

18 This is in line with the idea of generating prototypes by merging training samples – and thus reducing
the size of the training set – which has been proposed in the context of NN classification [62].
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5.4.2 Discounting noisy and atypical instances

Since case-based prediction and instance-based learning are quite sensitive to
noisy instances, it is reasonable to discard those instances [5]. By noise one gen-
erally means incorrect attribute value information, concerning either the descrip-
tive part s of a case or the outcome r (or both). However, the problem of noise is
also closely related to the “typicality” of a case. A typical case is representative of
its neighbors, whereas an exceptional (though not incorrect) case has an outcome
quite different from the outputs of neighboring cases [419].

Recall that each case 〈sı, rı〉 ∈ M is extrapolated by placing the support function
or, say, “possibilistic kernel” (5.13) around the point 〈sı, rı〉 ∈ S × R, just like
a density (kernel) function is centered around each observation in kernel-based
density estimation. Of course, the less representative (i.e., noisy or exceptional)
a case is of its neighborhood, the smaller the extent of extrapolation should be.

A simple learning mechanism that adapts the extent of extrapolation of stored
cases can be realized by means of a slight generalization of the kernel function
(5.13):

δı
s0

: r �→ mı

(
σS(s0, sı)

)
⊗ σR(r, rı). (5.34)

Here, mı : [0, 1] −→ [0, 1] is a monotone increasing modifier function with
mı(1) = 1. This function allows for discounting atypical cases. Roughly speaking,
mı adapts the similarity between the instance sı and its neighbors. For example,
sı is made completely dissimilar to all other instances by letting (mı|[0, 1[) ≡ 0.
Replacing σS by the modified measure mı ◦ σS is closely related to the idea of
local distance measures in NN algorithms.

Suppose that a new observation s0 with output r0 has been made, and consider
a stored case 〈sı, rı〉. Should this case be discounted in the light of the new ob-
servation? The fact that 〈sı, rı〉 supports an outcome different from the observed
output r0 need not necessarily be a flaw. In fact, recall that s0 ∈ Cr0 does not
exclude that s0 ∈ Cr for some r "= r0. In other words, neither the non-support
of the observed nor the support of a different outcome can actually be punished.
However, what can be punished is the disqualification of the output r0 as ex-
pressed by the upper possibility model (5.19). Thus, it is reasonable to require
that the degree of disqualification induced by 〈sı, rı〉 is limited:

1 − mı(σS(s0, sı)) ⊗ σR(r0, rı) ≥ β, (5.35)

where β ' 0 is a constant.

The constraint (5.35) suggests an update scheme in which a stored case 〈sı, rı〉 is
(maybe) discounted every time a new observation 〈s0, r0〉 is made: Let F denote a
parameterized and completely ordered class of functions from which mı is chosen.
An adaptation is then realized by

mı ← min
{
mı, sup{f ∈ F | 1 − f(σS(s0, sı)) ⊗ σR(r0, rı) ≥ β}

}
. (5.36)
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The discounting of noisy and atypical instances through modifying possibilistic
kernel functions appears natural and somewhat simpler than the method used in
IB3 [5]. Firstly, possibilistic discounting is gradual, whereas an instance is either
accepted or rejected (or is temporarily in-between) in IB3. Secondly, the question
whether to discount an instance and to which extent is answered quite naturally
in the possibilistic approach, where support is absolute and graded. In IB3, an
instance is either punished or not, and the corresponding decision is based on a
rule that appears reasonable but might still be considered ad-hoc (sı is discounted
if ∆S(sı, s0) is smaller than or equal to the distance between s0 and its closest
accepted neighbor19).

The possibilistic adaptation scheme becomes rather simple for the special case
S = Rl, R = {0, 1} and mı = I]γı,1], where 0 ≤ γı < 1. If σS is a strictly decreasing
function of Euclidean distance, then the support function (5.13) corresponds to
a ball around sı: δı

s0
(r) = 1 if r = rı and s0 is located inside that ball and

δı
s0

(r) = 0 otherwise. The parameter γı is chosen as large as possible, but such
that the support function does not cover any observed input s with r "= rı, that
is γı ≤ |sı−s| holds true for all of those s. Fig. 5.2 gives an illustration for l = 2.

sı sı

s0

Fig. 5.2. Left: The large circle corresponds to the support function (possibilistic kernel) centered
around sı and marks the extrapolation of outcome rı. Right: The support function is updated after
observing a new instance which has a different outcome r0 	= rı and hence must not be supported.

This special case, that we shall subsequently refer to as PossIBL, is a useful point
of departure for investigating theoretical properties of the possibilistic approach
in the context of concept learning. In [11], some convergence properties of IB1

have been shown for a special setup which makes statistical assumptions about
the generation of training data and geometrical assumptions on a concept C1

to be learned. For PossIBL, one can prove similar properties under the same
assumptions. More specifically, let l = 2, S = [0, 1] × [0, 1] (the results can be
generalized to any dimension l > 2 and any bounded region S ⊂ Rl) and consider
a concept C1 ⊆ S. For the special case above, the PossIBL approximation of C1

is then given by

Cest
1 =

⋃
〈sı,1〉∈M

Bρ(sı)(sı), (5.37)

19 Auxiliary rules are used if s0 does not have an accepted neighbor.
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where Bd(sı) = {s ∈ S | |s − sı| < d} is the (open) d-ball around sı and

ρ(sı) = min
{
|s − sı| | 〈s, r〉 ∈ M, r "= rı

}
. (5.38)

Moreover, the approximation of C0 = S \ C1 is given by

Cest
0 =

⋃
〈sı,0〉∈M

Bρ(sı)(sı). (5.39)

It is readily verified that Cest
0 ∩ Cest

1 = ∅. However, Cest
0 ∪ Cest

1 = S does not
necessarily hold true. Thus, one may have δs0 ≡ 0 for some instances s0 ∈ S
(which are then classified at random). Consequently, an approximation of concept
C1 should actually be represented by the tuple (Cest

0 , Cest
1 ) which divides instances

s0 ∈ S into three groups: Those which (supposedly) belong to C1 (δs0(0) =
0, δs0(1) = 1), those which do not (δs0(0) = 1, δs0(1) = 0), and those for which no
evidence is available so far (δs0 ≡ 0).

Now, a first desirable property is the convergence of the concept approximation,
that is the convergence of Cest

0 and Cest
1 toward C0 and C1, respectively. In this

context, however, the property of convergence itself has to be weakened since ex-
act convergence cannot be achieved due to the fact that an NN classifier cannot
guarantee the avoidance of wrong decisions at the boundary of a concept. More-
over, some assumptions on the generation of samples and on the geometry of the
concept C1 have to be made. Here, we make the same assumptions as in [11]:
Instances are generated randomly and independently according to a fixed prob-
ability measure µ over S. Furthermore, C1 is a concept having a nice boundary,
which is the union of a finite number of closed (hyper-)curves of finite size.

We employ the following notation: The ε-neighborhood of C1 is the set

C+
1 (ε)

df
= {s ∈ S |Bε(s) ∩ C1 "= ∅},

and the ε-core of C1 is defined by

C−
1 (ε)

df
= {s ∈ S |Bε(s) ⊆ C1}.

A set A ⊆ S is called an (ε, γ)-approximation of C1 if there is a (measurable) set
N ⊆ S with µ(N) ≤ γ and such that

(C−
1 (ε) \ N) ⊆ (A \ N) ⊆ (C+

1 (ε) \ N).

Finally, let Cest
1,n and Cest

0,n denote, respectively, the possibilistic concept approxi-
mations (5.37) and (5.39) for |M| = n, i.e., after n observations have been made.

Lemma 5.3. The equalities

C−
1 (ε) = S \ C+

0 (ε) and C−
0 (ε) = S \ C+

1 (ε)

hold true for all 0 < ε < 1. �
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Proof. For s ∈ C−
1 (ε) we have Bε(s) ⊆ C1, which means that |s−s1| < ε implies

s1 ∈ C1. Consequently, there is no s0 ∈ C0 such that |s − s0| < ε and, hence,
s "∈ C+

0 (ε). Now, suppose s ∈ S \ C+
0 (ε). Thus, there is no s0 ∈ C0 such that

|s−s0| < ε, which means that |s−s1| < ε implies s1 ∈ C1 and, hence, s ∈ C−
1 (ε).

The second equality is shown in the same way. �

Theorem 5.4. Let C1 ⊆ S and 0 < ε, γ, d < 1. There is an integer n0 such
that the following holds true with probability at least 1 − d: The possibilistic
concept approximation Cest

1,n is a (2ε, γ)-approximation of C1 and Cest
0,n is a (2ε, γ)-

approximation of C0 for all n > n0. �

Proof. Let N denote the set of instances s ∈ S for which no sı ∈ M↓ exists such
that |s − sı| < ε. In [11], the following lemma has been shown: µ(N) ≤ γ holds
true with probability 1 − d whenever

n > )n0 =
√

2/ε*2/γ2 · ln
(
)
√

2/ε*2/d
)

. (5.40)

Subsequently, we ignore the set N , that is we formally replace S by S \N , C1 by
C1 \ N and C0 by C0 \ N . Thus, the following holds true by definition: For each
s ∈ S there is an instance sı ∈ M↓ such that |s − sı| < ε.

Now, consider any instance s ∈ C−
1 (2ε). We have to show that s ∈ Cest

1,n. Let sı ∈
M↓ be an instance such that |s− sı| < ε. For this instance we have sı ∈ Bε(s) ⊆
C1, which means that sı belongs to C1. Furthermore, Bε(sı) ⊆ B2ε(s) ⊆ C1 and,
hence, ρ(sı) ≥ ε for the value in (5.38). This implies that s ∈ Bρ(sı)(sı) and,
therefore, s ∈ Cest

1,n. Thus, we have shown that C−
1 (2ε) ⊆ Cest

1,n.

Since the same arguments apply to C0, the property C−
0 (2ε) ⊆ Cest

0,n can be shown
in an analogous way. Thus, using Lemma 5.3,

Cest
1,n ⊆ S \ Cest

0,n ⊆ S \ C−
0 (2ε) = C+

1 (2ε).

Likewise, one shows that Cest
0,n ⊆ C+

0 (2ε). �

Roughly speaking, Theorem 5.4 guarantees that the 2ε-core of both, C0 and C1 is
classified correctly (with high probability) if the memory M is large enough. In
other words, classification errors can only occur in the boundary region. For being
able to quantify the probability of an error, it is necessary to put restrictions on
the size of that boundary region and on the probability distribution µ. Thus, let
C denote the class of concepts C1 ⊆ S that can be represented as the union of a
finite set of regions bounded by closed curves with total length of at most L [11].
Moreover, let Pβ denote the class of probability distributions µ over S such that
µ(A) ≤ µL(A) · β for all Borel-subsets A ⊆ S, where µL is the Lebesgue measure
and β > 0.

Theorem 5.5. The concept class C is polynomially learnable with respect to Pβ

by means of the possibilistic concept approximation (Cest
0 , Cest

1 ). �
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Proof. If C1 ∈ C, then the size of the region C+
1 (2ε) \ C−

1 (2ε) is bounded by
4 εL. Consequently, the probability of that area is at most α = 4 εLβ. Since a
classification error can only occur either in this region or in the set N as defined
in Theorem 5.4 and the probability of N is at most γ, the probability of a clas-
sification error is bounded by α + γ. Now, fix the parameters γ and ε as follows:
γ = e/2, ε = e/(8Lβ). By substituting these parameters into (5.40) one finds
that the required sample size n is polynomial in 1/e and 1/d. In summary, the
following holds true for any 0 < e, d < 1, C1 ∈ C, and µ ∈ Pβ: If more than
n(1/e, 1/d) examples are presented, where n is a polynomial function of 1/e and
1/d, then, with probability 1 − d, the possibilistic concept approximation has a
classification error of at most e. This is precisely the claim of the theorem. �

5.4.3 From instances to rules

As already mentioned in previous chapters, selecting appropriate cases to be
stored in the memory M is an important issue in case-based reasoning and
instance-based learning that has a strong influence on performance. Especially
reducing the size of the memory is often necessary in order to maintain the
efficiency of the system. The basic idea is to remove cases which are actually
not necessary to achieve good predictive performance. For example, consider the
problem of concept learning and imagine a concept having the form of a circle
in some (two-dimensional) instance space. To classify inner points correctly by
means of the kNN rule it might then be sufficient to store positive examples of
that concept near the boundary.

In connection with PossIBL, where support is absolute rather than relative,
deleting cases from the memory might produce “holes” in the concept description.
An interesting alternative, which allows one to reduce the size of the memory and,
at the same time, to fill “holes” in the concept description by interpolation, is
based on the idea of merging cases and of generalizing cases into rules. This idea
appears particularly reasonable in light of the close relation between PoCBI and
fuzzy rule-based reasoning. More precisely, each observation can be interpreted
as a fuzzy rule, namely as an instance of a fuzzy meta-rule suggesting that similar
inputs (possibly) have similar outputs.

1 3 5 7 9 1 3 5 7 9 1 3 5 7 9

Fig. 5.3. Possibility distributions induced by two cases (left, middle) and the distribution associated
with the summarizing fuzzy rule (right).
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To illustrate this idea of a one-to-one correspondence between rules and cases,
let S = R, R = {0, 1} and suppose that two inputs s1 = 4 and s2 = 6 with
r1 = r2 = 0 have been observed. The possibilistic kernels (5.13) induced by these
cases are shown in Fig. 5.3. The first case is equivalent to the fuzzy rule “If s0

is approximately 4 then r = 0” if the fuzzy set “approximately 4” is modeled
by the possibility distribution δ1

s0
(the individual support function (5.13)). The

rules associated with the two cases can be merged into one rule, say, “If s0 is
about 5 then r = 0”, where the fuzzy set “about 5” is modeled by the pointwise
maximum, δ1

s0
∨ δ2

s0
, of δ1

s0
and δ2

s0
(Fig. 5.3, right).

The above procedure is closely related to several other techniques that have been
proposed in connection with IBL. Viewing cases as maximally specific rules and
the idea of generalizing cases into rules has been put forward in [89, 90]. The
method proposed in [327] generalizes cases by placing rectangles of different size
around them. A new instance is then labeled by the nearest rectangle rather than
by the nearest case. This is very similar to our approach, where rectangles are
replaced by possibility distributions. Relations also exist with the idea of merg-
ing nearest neighbors of the same output (class label in classification), thereby
generating new (pseudo-sample) prototypes [62].20 In our example, the point 5
may be regarded as a pseudo-instance replacing 4 and 6 (and also endowed with
a modified support function).

In the example in Fig. 5.3, the summarizing rule is exactly equivalent to the con-
junction of the two individual rules. Of course, by weakening the requirement of
equivalence, the merging procedure might also incorporate concepts of approxi-
mation and interpolation. For example, suppose s2 = 8 rather than s2 = 6. The
replacement of δ1

s0
∨ δ2

s0
by its convex hull δ : s �→ max{δ1

s0
(s), δ2

s0
(s), I[5,7]} then

goes beyond a simple combination since δ is larger than the pointwise maximum
of δ1

s0
and δ2

s0
(e.g. δ1

s0
(6) = δ2

s0
(6) = 0.5 < 1 = δ(6)). This kind of possibilis-

tic induction can be reasonable and often allows for incorporating background
knowledge. Particularly, replacing a possibilistic estimation δs0 by its convex hull
is advised whenever a multimodal distribution does not make sense (as in our
example in Section 5.3.7) or if the relation of observable cases (cf. page 22) is
even known to satisfy a convexity constraint of the form

s ∈ Cr ∩ Cr′′ ⇒ s ∈ Cr′ (5.41)

for all r < r′ < r′′.

As can be seen, the extensions discussed here basically suggest a system that
maintains an optimal rule base rather than an optimal case base, including the
combination and adaptation of rules. These extensions are well-suited to the
discounting of cases discussed in Section 5.4.2. Indeed, deriving one rule from
several cases (or other rules) can be accomplished by replacing the latter by a
pseudo-case and defining an appropriate modifier function m for that pseudo-
instance.
20 Compare also with the idea of “fuzzy cases” discussed at the end of Section 5.4.1.
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5.4.4 Modified possibility rules

The basic model of possibilistic CBI introduced in Section 5.2 can be rendered
more flexible by making use of (linguistic) modifiers [413] in (5.7), i.e., non-
decreasing functions m1, m2 : [0, 1] −→ [0, 1]. This leads to possibility rules m1 ◦
A

m2⇁ B with associated distributions

δs0(r) = max
1≤ı≤n

m2

(
min
{
m1(σS(s0, sı)), σR(r, rı)

})
, (5.42)

or, when using generalized logical operators as suggested in Section 5.3,

δs0(r) =
⊕

1≤ı≤n

m2

(
m1(σS(s0, sı)) ⊗ σR(r, rı)

)
.

Both modifiers in (5.42) control the extent to which a sample case is extrapo-
lated, i.e., the extent to which other (hypothetical) cases are supported by an
observation. The larger (in the sense of the partial order of functions on [0, 1])
m1 and m2 are, the stronger (in the sense of asserted possibility degrees) a case
〈sı, rı〉 is extrapolated.

The modification (5.42) can be interpreted in different ways. Let us first consider
the function m1. In connection with the linguistic modeling of fuzzy concepts,
modifiers such as x �→ x2 or x �→ √

x are utilized for depicting the effect of
linguistic hedges such as “very” or “almost” [413]. Applying the modifier m1

defined by the mapping x �→ x2 might thus be seen as replacing the original
hypothesis that “similar inputs (possibly) induce similar outcomes” by the weaker
assumption that only “very similar situations (possibly) induce similar outcomes.”
Thus, one interpretation of (5.42) is that of adapting the CBI hypothesis and,
hence, the inference mechanism (but of maintaining the similarity measures):
“The more two inputs are m1-similar in the sense of σS , the more possible it is
that the respective results are (at least) similar in the sense of σR.”

According to a second interpretation the similarity measure σS is replaced by
the measure σ′

S = m1 ◦ σS in such a way that the CBI hypothesis applies in its
original form:21 “The more two inputs are similar in the sense of σ′

S , the more
possible it is that the respective results are (at least) similar in the sense of σR.”
Roughly speaking, not the hypothesis is adapted to similarity, but similarity to the
hypothesis. The extreme example m1 = I{1}, indicating that the CBI hypothesis
is not satisfied at all, again reveals that a similarity measure which is reasonable
in the sense of inducing an appropriate extrapolation of observations does not
necessarily appear natural. Indeed, interpreting σ′

S = m1 ◦ σS as an improved
measure suggests that inputs are not comparable at all.

The modifier m2 does not act on a similarity measure but on the possibility-
qualifying part of a rule. It can be thought of as modifying the possibility distri-
bution
21 One has to be careful with this interpretation, since modified measures do not necessarily inherit all

(mathematical) properties of the original relations.
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(s, r) �→ max
1≤ı≤n

min{m1(σS(s, sı)), σR(r, rı)} (5.43)

associated with the possibility rule m1◦A ⇁ B. In fact, it allows for modeling rules
of the form “for m1-similar inputs it is m2-possible that the respective results are
similar,” where “m2-possible” stands for expressions like “more or less possible.”
Linguistic hedges such as “more or less” basically bring about a discounting of
the distribution (5.43) and, hence, of the rule m1 ◦ A ⇁ B.

Discounting a possibility distribution δ can be accomplished in different ways. A
simple approach which is also applicable within the framework of qualitative pos-
sibility theory (where similarity and possibility are measured on ordinal scales)
is to modify δ into min{1 − λ, δ} [120]. The constant λ plays the role of a dis-
counting factor and defines an upper bound to the support that can be provided
by an underlying (possibility) rule. Indeed, δ remains unchanged if λ = 0. As
opposed to this, the original support expressed by δ is completely annulled if the
discounting is maximal (λ = 1). By taking m2 as the mapping x �→ min{1−λ, x},
the distribution (5.42) becomes

δC : (s, r) �→ max
1≤ı≤n

min
{
1 − λ, min

{
m1(σS(s, sı)), σR(r, rı)

}}
. (5.44)

Note that the similarity measure σR is not modified directly. Thus, it somehow
determines the granularity of the extrapolation and, hence, the possibilistic ap-
proximation (5.44).

Example 5.6. Reconsider Example 5.1 with the hypothesis that “it is com-
pletely possible that cars with very similar horsepower have similar prices.” Ap-
plying the modifier m1 : x �→ x2 to the similarity relation σhp and modeling the

Fig. 5.4. Prediction (5.8) of the price of a car based on the original hypothesis (dashed line) and its
modified version (5.44).
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(non-)effect of “completely” by λ = 0, the prediction δs0 based on (5.44) yields
the possibility distribution shown in Fig. 5.4. Compared to the prediction (5.8),
the degree of possibility is smaller for most of the prices r ∈ R. This is caused by
the fact that the CBI hypothesis is now modeled in a more cautious way. �

5.4.5 Combination of several rules

Rather than making use of a single possibility rule, the CBI hypothesis can
be expressed by means of a combination (conjunction) of several rules. Suppose
m such rules to be specified. Denoting by δk

s0
the possibility distribution (5.8)

induced by the k-th rule (1 ≤ k ≤ m), the overall prediction is then given by

δs0(r) = δ1
s0

(r) ∨ δ2
s0

(r) ∨ . . . ∨ δm
s0

(r). (5.45)

The disjunctive combination in (5.45) shows that an outcome can be supported by
any observed case in connection with any rule. Notice that each rule might involve
different similarity relations, or different modifications of basic relations. Within
our framework, it seems particularly interesting to compose new measures from
a set of elementary relations (associated with individual attributes) by means of
fuzzy set-based modeling techniques.

Suppose, as in the Example 5.1, that an attribute–value representation is used
in order to characterize cases. That is, let inputs correspond to vectors s =
(a1, . . . , aL) ∈ S = A1 × . . . × AL, where A denotes the domain of the -th
attribute. Moreover, let σ be an elementary similarity relation defined over A.
By making use of logical connectives, the antecedent part of a possibility rule
can then be composed of these elementary measures or modified versions thereof.
Restricting ourselves to the logical connective ∧, we obtain rules of the form

m11(σ1(a1, a
′
1)) ∧ . . . ∧ m1L(σL(aL, a′

L))
m2⇁ σR(r, r′). (5.46)

Such rules can also be expressed as σ′
S

m2⇁ σR, where

σ′
S(s, s′) =

⊗
1≤≤L

m1(σ(a, a
′
)), (5.47)

provided that the elementary similarity relations in (5.47) are commensurate.

Of course, the antecedent part in (5.46) can be generalized such that only some
of the attributes are used, i.e., each rule can concern different attributes. Leaving
the -th attribute out of account can be interpreted in two ways. Firstly, this
attribute might be irrelevant for the similarity of inputs, which is adequately
reflected by m1 ≡ 1. Secondly, the rule might be interpreted as expressing a
ceteris paribus condition, i.e., it might be assumed implicitly that a = a′

. In this
case, m1 should be defined as m1(1) = 1 and m1(x) = 0 for 0 ≤ x < 1.22 For

22 Besides, σ should be separating.
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example, when saying that two cars with similar horsepower have similar prices,
it might be taken for granted that both cars have the same type of aspiration
(standard or turbo).

Suppose that m possibility rules have been defined by using the same modifier
m2. Moreover, let σk

S (1 ≤ k ≤ m) denote the (aggregated) measure (5.47) asso-
ciated with the antecedent part of the k-th rule. Thus, the rules specify different
conditions (in the form of conjunctions of similarity relations between attributes)
which allow for drawing the same conclusion. The m individual rules are then
equivalent to one (aggregated) rule of the form σS

m2⇁ σR, where

σS(s, s′) =
⊕

1≤k≤m

σk
S(s, s′).

That is, the antecedent part of the aggregated rule corresponds to the disjunction
of the antecedent parts of the individual rules.

Example 5.7. Reconsider Example 5.1 and let the following rules be given: (1)
Cars with very similar horsepower possibly have similar prices. (2) Cars with
similar engine-size and approximately similar peak-rpm (revolutions per minute)
possibly have similar prices. Making use of the similarity measures σeng(x, x′) =
max{1−|x−x′|/100, 0} and σrpm(x, x′) = max{1−|x−x′|/1000, 0}, respectively,
and modeling the effect of the linguistic hedge “approximately” by means of
x �→ √

x, the two rules yield the two predictions shown in Fig. 5.5. The overall
prediction associated with the conjunction of the rules (i.e., the disjunction of the
two premises) corresponds to the pointwise maximum of these distributions. �

Of course, different rules (5.46) will generally use different modifiers m2. They
should then be consistent in the sense that a strengthening of the antecedent

Fig. 5.5. Prediction (5.42) of the price of a car with horsepower 100, engine-size 110 and peak-rpm
5500, induced by two different rules.
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part of a rule does not entail a reduction of extrapolation. Thus, consider two
rules (5.46) modeled by means of modifiers m1

1, m
1
2 and m2

1, m
2
2 (1 ≤  ≤ L),

respectively. The first rule is obviously redundant with respect to the second one
if

∀ 1 ≤  ≤ L : m1
1 ≤ m2

1 and m1
2 ≤ m2

2.

In fact, we then have δ1
s0

≤ δ2
s0

for the possibility distributions induced by these
two rules in connection with any observed case.

Consider the following rules as an example: (1) For cars with similar horsepower
it is completely possible that the associated prices are similar. (2) For cars with
very similar horsepower it is more or less possible that the associated prices
are similar. This example reveals that redundancy always emerges in connection
with somewhat conflicting rules (a stronger condition entails a weaker conclusion).
Therefore, redundant rules should be avoided.

5.4.6 Locally restricted extrapolation

So far, the possibility rules which define a model of the CBI hypothesis have been
used globally in the sense that they apply to all cases of the input-output space
S × R. Needless to say, the CBI hypothesis does not necessarily apply equally
well to all parts of this space. That is to say, the degree of extrapolation of a case
〈s, r〉 that can be justified by the CBI hypothesis might depend on the region to
which it belongs.

In the Automobile Database database (cf. Example 5.1), for instance, the
variance of the price is smaller for cars with aspiration “turbo” than for cars with
aspiration “standard” (even though the average price is higher for the former).
Thus, the hypothesis that similar cars possibly have similar prices seems to apply
better to turbo than to standard cars. Likewise, a statistical analysis suggests
that the variation of the price is an increasing function of the size of cars. Again,
the smaller a car is, the better the CBI hypothesis seems to apply (at least if
the similarity of two lengths x, x′ is a function of |x − x′|). Consequently, the
extrapolation of case-based information should be larger for small cars than for
large cars.

In order to adapt the formalization of the CBI hypothesis one might think of
defining different rules for different regions of the input space. Restricting the
application of a rule to a certain (fuzzy) range of this space can be accomplished
by means of a fuzzy partition F of S. The condition part of a rule then appears
in the form

F (s) ∧ F (s′) ∧ m1(σS(s, s′)), (5.48)

where the fuzzy set F ∈ F is identified by its membership function F : S −→
[0, 1]. The antecedent (5.48) can be associated with an extended possibility rule
“the more both inputs are in F and the more similar they are, the more possible
it is that the related outcomes are similar.” This way, one might express, for
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instance, that “it is completely possible that small cars of similar size have similar
prices” and “it is more or less possible that large cars of similar size have similar
prices.” The fuzzy set F in (5.48) is then given by the set of small cars and large
cars, respectively. Note that the attribute “aspiration” defines a crisp rather than
a fuzzy partition.

On the basis of (5.48), the inference scheme (5.42) becomes

δs0(r) = max
1≤ı≤n

min
{
F (s0) , F (sı), (5.49)

m2 (min {m1(σS(s0, sı)), σR(r, rı)})
}

.

Note that δs0 ≡ 0 as soon as F (s) = 0, thus expressing that a rule has no effect
outside its region of applicability. Besides, it is worth mentioning that (5.49)
is closely related to ideas of discounting as discussed in previous sections. This
becomes especially apparent when writing (5.49) in the form

δs0(r) = max
1≤ı≤n

m2ı(xı), (5.50)

with xı = min{m1(σS(s0, sı)), σR(r, rı)} and m2ı : x �→ min{F (s0), F (sı), m2(x)}.
In fact, (5.50) shows that the original support provided by the cases is discounted
by means of the modifiers m2ı. As opposed to (5.44), however, this is not realized
by using a constant factor λ. Rather, the discounting of a rule now depends on
the inputs s and sı to which it is applied.

5.4.7 Incorporation of background knowledge

Our fuzzy set-based framework is also well-suited for incorporating background
knowledge of more general nature (i.e., not necessarily related to similarity). This
becomes especially apparent if such knowledge is also expressed in terms of fuzzy
rules. For instance, an expert might be willing to agree that “a price of slightly
more than $40,000 for a car with horsepower of approximately 200 is completely
possible.” This can be formalized as a possibility rule A ⇁ B, where A and B
model the fuzzy sets of “approximately 200” and “slightly more than $40,000.”
Such a rule can simply be added to the rule base induced by the memory of cases
(cf. Section 5.4.3), thereby supplementing the “empirical” evidence which comes
from observed cases.

A special type of (rule-based) background knowledge can be obtained by speci-
fying “fictitious cases”. One might specify, for instance, a fictitious car by means
of some attribute values (which can be uncertain or vague) and then ask an ex-
pert for a typical (or possible) price. The fictitious observation thus defined can
principally be treated in the same way as an observed one. This type of reasoning
provides a convenient way of filling up sparse memories. It is also interesting from
a knowledge acquisition point of view. Indeed, from a user (expert) perspective
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it might appear less difficult to give some specific examples (e.g., by estimating
prices of hypothetical cars) than to specify universally valid rules.

Apart from fuzzy rules, more general types of constraints can be used for ex-
pressing background knowledge. A nice example is the convexity constraint (5.41)
according to which intermediary predictions are not less possible than more ex-
treme ones. In order to satisfy such a constraint, a possibility distribution δs0 can
simply be replaced by its convex hull (see (5.31) in Section 5.3.7).

5.5 Experimental studies

5.5.1 Preliminaries

This section presents some experimental studies providing evidence for the excel-
lent practical performance of the possibilistic approach to case-based inference.
More specifically, we shall focus on simple classification problems and investigate
the PossIBL algorithm as introduced in Section 5.4.2. As in previous chapters,
however, we would like to emphasize that our experiments are not meant as an
exhaustive comparative study covering several competing learning algorithms –
and showing that PossIBL is superior to all of its competitors. In fact, one
should realize that the primary motivation underlying PossIBL (or, more gener-
ally, PoCBI) is not another ε-improvement in classification accuracy but rather
the enrichment of instance-based learning (case-based reasoning) by concepts of
possibilistic reasoning (though the latter does clearly not exclude the former).
Besides, one should keep the following points in mind. Firstly, PossIBL has not
been developed within a statistical framework. Thus, the type of problems for
which PossIBL is most suitable (see the example in Section 5.3.7) is perhaps
not represented in the best way by standard (public) data sets commonly used
for testing performance. Secondly, an important aspect of the possibilistic ap-
proach is the one of knowledge representation. But this aspect is neglected if – as
in experimental studies – only the correctness of the final decision (classification
accuracy) counts, not the estimated distribution. Thirdly, regarding other IBL

algorithms, a comparison might appear dubious since PossIBL – in its most gen-
eral form – is an extension of IBL and hence covers specific algorithms such as
kNN as special cases.

Due to these reasons, we have decided to apply a basic version of PossIBL to
several data sets from the UCI repository23 and to employ the kNN (resp. IB1)
algorithm as a reference (we use kNN with k = 1, 3, 5 and the weighted 5NN rule
with weight function (2.9)). Thus, we have refrained from tuning various degrees
of freedom in order to optimize the performance of PossIBL (an exception is
only the experimental study presented in Section 5.5.4). Instead, we have applied

23 http://www.ics.uci.edu/˜mlearn.
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the learning scheme from Section 5.4.2 with the original max–min version (5.8).
The function mı in (5.34) was defined as t �→ exp(−γı (1− t)), where γı ≥ 0 is the
discounting rate of the ı-th case. The constant β in (5.35) was taken as 0.8.24 In
order to avoid difficulties due to the different handling of non-nominal class labels
and the definition of similarity measures for non-numeric attributes, we have
restricted ourselves to data sets for which all predictive attributes are numeric
and for which the class label is defined on a nominal scale. The similarity σS is
always defined as 1 minus the normalized Euclidean distance and the similarity
σR is given by (5.11).

5.5.2 Classification accuracy

The experiments in this section were performed as follows: In a single simulation
run, the data set is divided at random into a training set (the memory M) and a
test set, and the discounting rates γı are adapted to the training set. A decision is
then derived for each element of the test set by extrapolating the training set (but
without adapting the discounting rates or expanding the memory any further),
and the percentage of correct decisions is determined. Statistics are obtained by
means of repeated simulation runs.

Algorithm mean std. min max 0.1–frac. 0.9–frac.
PossIBL 0.8776 0.0148 0.8215 0.9230 0.8584 0.8984
1NN 0.7837 0.0161 0.7323 0.8369 0.7630 0.8030
3NN 0.8117 0.0165 0.7630 0.8707 0.7907 0.8338
5NN 0.8492 0.0155 0.8030 0.8923 0.8307 0.8707
w5NN 0.7864 0.0164 0.7294 0.8428 0.7655 0.8067

Table 5.1. Results for the Balance Scale Database (625 observations, 4 predictive attributes, three
classes, training set of size 300, 1, 000 simulation runs).

Algorithm mean std. min max 0.1–frac. 0.9–frac.
PossIBL 0.9574 0.0204 0.8400 1.0000 0.9333 0.9733
1NN 0.9492 0.0196 0.8400 1.0000 0.9200 0.9733
3NN 0.9554 0.0175 0.8666 1.0000 0.9333 0.9733
5NN 0.9586 0.0181 0.8533 1.0000 0.9333 0.9866
w5NN 0.9561 0.0187 0.8400 1.0000 0.9333 0.9733

Table 5.2. Results for the Iris Plant Database (150 observations, 4 predictive attributes, three
classes, training set of size 75, 10, 000 simulation runs).

24 Variations of this parameter had no significant influence.
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Algorithm mean std. min max 0.1–frac. 0.9–frac.
PossIBL 0.6841 0.0419 0.5300 0.8400 0.6300 0.7400
1NN 0.6870 0.0410 0.5200 0.8200 0.6300 0.7400
3NN 0.6441 0.0421 0.4800 0.8100 0.5900 0.7000
5NN 0.6277 0.0412 0.4800 0.7800 0.5700 0.6800
w5NN 0.6777 0.0414 0.5000 0.8300 0.6200 0.7300

Table 5.3. Results for the Glass Identification Database (214 observations, 9 predictive attributes,
seven classes, training set of size 100, 10, 000 simulation runs).

Algorithm mean std. min max 0.1–frac. 0.9–frac.
PossIBL 0.7096 0.0190 0.6421 0.7711 0.6868 0.7316
1NN 0.6707 0.0199 0.6132 0.7289 0.6447 0.6947
3NN 0.6999 0.0183 0.6447 0.7500 0.6763 0.7237
5NN 0.7190 0.0183 0.6553 0.7684 0.6947 0.7421
w5NN 0.6948 0.0188 0.6421 0.7474 0.6684 0.7184

Table 5.4. Results for the Pima Indians Diabetes Database (768 observations, 8 predictive at-
tributes, two classes, training set of size 380, 1, 000 simulation runs).

Algorithm mean std. min max 0.1–frac. 0.9–frac.
PossIBL 0.7148 0.0409 0.5506 0.8652 0.6629 0.7640
1NN 0.7163 0.0408 0.5843 0.8652 0.6629 0.7640
3NN 0.6884 0.0407 0.5506 0.8315 0.6404 0.7416
5NN 0.6940 0.0392 0.5730 0.8090 0.6404 0.7416
w5NN 0.7031 0.0404 0.5730 0.8315 0.6517 0.7528

Table 5.5. Results for the Wine Recognition Data (178 observations, 13 predictive attributes, three
classes, training set of size 89, 1, 000 simulation runs).

Results are summarized in Tables 5.5.2–5.5.2 by means of statistics for the per-
centage of correct classifications (mean, standard deviation, minimum, maximum,
0.1–fractile, 0.9–fractile). The experiments show that PossIBL achieves compar-
atively good results and is always among the best algorithms. Thus, it is valid to
conclude that even a very basic version of PossIBL performs at least as well as
the basic IBL (NN) algorithms. In other words, possibilistic IBL is in no way
inferior to “standard” IBL as a basis for further improvements and sophisticated
learning algorithms.

Due to the special setting of our experimental studies, especially the choice of max
as an aggregation operator and the use of a {0, 1}-valued similarity measure over
R, one might wonder how to explain the different performance of PossIBL and
the NN classifiers. In fact, in Section 5.3.6 it was argued that the possibilistic NN

decision derived from (5.8) is actually equivalent to the 1NN rule when applying
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the maximum operator. It should hence be recalled that PossIBL, as employed
in the above experiments, involves an adaptation of the (absolute) possibilistic
support that comes from stored cases, which in essence is responsible for the
differences.

A very interesting finding is the following: In the above examples, classification
performance of the kNN algorithm is generally an increasing or a decreasing
function of k. PossIBL, on the other hand, performs very well irrespective of
the direction of that tendency, i.e., regardless of whether a smaller or a larger
neighborhood should be called in. This can be taken as an indication of the
robustness of the possibilistic approach.

5.5.3 Statistical assumptions and robustness

Let us elaborate a little more closely on the aspect of robustness. Above, it has
been claimed that the possibilistic approach is more robust than other methods
against violations of statistical assumptions of independence (see page 185). This
is clearly true for the possibilistic estimation δs0 the informational content of
which remains meaningful even if data is not independent. Here, we would like to
provide experimental evidence for the supposition that the possibilistic approach
can indeed be advantageous from both, an estimation and a decision making point
of view, if the sample is not fully representative of the population.

The experimental setup is as follows: The instance space is defined by S = R,
the set of class labels is R = {−1, +1}, the class probabilities are 1/2, the con-
ditional probability density of the input s given the outcome r is normal with
standard deviation 1 and mean r. In a single simulation run, a random sample
of size n = 20 is generated, using class-probabilities of 1/2 − α and 1/2 + α, re-
spectively (0 < α ≤ 1/2). Based on the resulting training set, which is not “fully
representative” in the sense of [78], predictions are derived for 10 new instances.
These instances, however, are generated with the true class-probabilities of 1/2.
For a fixed value α and a fixed prediction method, a misclassification rate f(α)
is derived by averaging over 10,000 simulation runs.

Fig. 5.6 shows the misclassification rates for several methods. As was to be ex-
pected, f(·) is an increasing function of the sample bias α. The best results are
of course obtained if the class-probabilities of the training set and the test set
coincide, that is for α = 0. The figure also reveals that the sensitivity of the
kNN classifier increases with k. On the one hand, it is true that a larger k leads
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to better results for α close to 0. On the other hand, the performance decreases
more quickly than for smaller k, and k = 1 is to be preferred for α close to 1/2.
This finding can also be grasped intuitively: The larger k, the more the kNN rule
relies on frequency information, and the more it is affected if this information is
misleading.

Fig. 5.6. Misclassification rates of kNN methods (left) and PossIBL (right, in comparison with 1NN).

Apart from kNN methods, we have tested PossIBL with ⊕ = ⊕P . The similarity
measure σS was defined by the triangle (x, y) �→ max{0, 1 − |x − y|/0.8}. Inter-
estingly enough, this approach yields the most satisfactory results. For α close
to 0 it is almost as good as the kNN rules with k > 1, and for α close to 1/2 it
equals the 1NN rule. Thus, the combination mode as realized by the probabilistic
sum (α, β) �→ α + β − αβ turns out to be reasonable under the conditions of this
experiment. As already explained in Section 5.3, this operator produces a kind
of saturation effect: It takes frequency information into account, but only to a
limited extent (the larger the current support already is, the smaller the absolute
increase due to a new observation). Thus, it is indeed in-between the 1NN rule
and the kNN rules for k > 1. Intuitively, this explains our findings in the above
experiment, especially that PossIBL is more robust against the sample bias than
kNN rules for k > 1.

Needless to say, what we considered here is only a particular setup in which
PossIBL appears to be superior to standard kNN with regard to robustness.
As robustness is a very multi-faceted aspect, one should not overlook that our
results are preliminary and of limited significance.

5.5.4 Variation of the aggregation operator

An interesting question concerns the dependence of PossIBL’s performance on
the specification of the aggregation operator ⊕ in (5.13). To get a first idea
of this dependence, we have performed the same experiments as described in
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Section 5.5.2 above. Now, however, we have tested PossIBL with different t-
conorms.

More precisely, we have specified a t-conorm by means of the parameter ρ in
(5.18), i.e., we have taken different aggregation operators from the Frank-family
of t-conorms. PossIBL was then applied to each data set with different operators
⊕ρ. The results are presented in Appendix E. Each figure shows the average
classification performance of PossIBL (over 100 experiments) as a function of
the parameter ρ. Please note the different scaling of the axes for the five data
sets.

Confirming our previous considerations, the results show that in general different
t-conorms are optimal for different applications. Still, PossIBL’s performance is
quite robust toward the variation of the aggregation operator. That is, classifica-
tion accuracy does not drop off too much when choosing a suboptimal operator.

A very interesting finding is the observation that the parameter ρ = 0 and, hence,
the maximum operator is optimal if simultaneously the 1NN classifier performs
well in comparison with other kNN classifiers. If this is not the case as, e.g., for
the Balance Scale and the Pima Indians Diabetes data, parameters ρ > 0
achieve better results. This finding is not astonishing and can also be grasped
intuitively. In fact, it was already mentioned that PossIBL with ⊕ = ⊕0 = max
is closely related to the 1NN classifier, as both methods do fully concentrate on
the most relevant information. As opposed to this, aggregation operators ⊕ = ⊕ρ

with ρ > 0 combine the information from several neighbors in much the same
way as do kNN classifiers with k > 1.

5.5.5 Representation of uncertainty

It was already mentioned that an important aspect of PossIBL concerns the
representation of uncertainty. The fact that PossIBL can adequately represent
the ignorance related to a decision problem is easily understood and does not
call for empirical validation. To get a first idea of PossIBL’s ability to represent
ambiguity we have derived approximations to two characteristic quantities, again
using the experimental setup as described in Section 5.5.1.

Let D1 denote the expected difference (margin) between the possibility degree of
the predicted label rest

0 and the possibility degree of the second best label, given
that the prediction is correct:

D1
df
= δs0 (r0) − max

r∈R,r =r0

δs0(r). (5.51)

Moreover, let D0 denote the expected difference between the possibility degree
of the predicted label rest

0 and the possibility degree of the actually true label r0,
given that r0 "= rest

0 :

D0
df
= δs0

(
rest
s0

)
− δs0 (rs0) . (5.52)
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Ideally, D0 is small and D1 is large: Wrong decisions are accompanied by a large
degree of uncertainty, as reflected by a comparatively large support of the actually
correct label. As opposed to this, correct decisions appear reliable, as reflected by
low possibility degrees assigned to all labels r "= r0.

Table 5.5.5 shows approximations to the expected values D0 and D1, namely
averages over 1, 000 experiments. As can be seen, the reliability of a prediction is
reflected very well by the possibilistic estimations.

Dataset D0 D1

Balance Scale 0,094 0,529
Iris Plant 0,194 0,693
Glass Identification 0,181 0,401
Pima Indians Diabetes 0,211 0,492
Wine Recognition 0,226 0,721

Table 5.6. Statistics (5.51) and (5.52) for PossIBL.

5.6 Calibration of CBI models

The methodological framework introduced in previous sections provides a broad
spectrum of techniques for building a CBI model. Needless to say, it would be
unrealistic to expect a human expert using these (linguistic) modeling techniques
to come up with precise mathematical formalizations of related fuzzy concepts.
Instead, a more reasonable approach is to let the expert specify the coarse struc-
ture of a model, in our case the fuzzy rules modeling the CBI hypothesis, and to
determine the ultimate model in a second step by adapting the expert model to
the observed data. This is to some extent comparable, say, to graphical modeling
techniques such as Bayesian networks, where the user specifies the structure of the
network (i.e., the qualitative part of the model), and the (conditional) probability
distributions (i.e., the quantitative part) is learned from data.

In Section 5.4.2, we have already presented a learning scheme for adapting a
possibilistic model to the application at hand, albeit for a very particular case
(namely PossIBL, our possibilistic variant of IBL). This section is meant to
discuss model calibration in more general terms, including the determination of
similarity measures and modifier functions. More specifically, we consider the
problem of determining modifiers m1 and similarity measures σS and σR in a set
of rules of the form m1◦σS ⇁ σR. Each of these rules induces a related possibility
distribution (5.7) or, when using aggregation operators other than max and min,
the generalized version

(s, r) �→
⊕

1≤ı≤n

m1(σS(s, sı)) ⊗ σR(r, rı). (5.53)
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The overall distribution δC : S×R −→ [0, 1], considered as a lower approximation
of the relation ϕ in (5.4), is given by the union (pointwise maximum) of these
distributions.

The basic idea is to proceed from similarity measures and modifiers which are
specified in the form of parameterized functions. For instance, the modifier asso-
ciated with the linguistic hedge “very” might be specified by the function x �→ xα

with α > 1. Likewise, the similarity of horsepowers, σhp, might be given by the
function

(x, x′) �→ max

{
1 − |x − x′|

M
, 0

}
, (5.54)

where M plays the role of a parameter (cf. Example 5.1). All these parameters can
be combined into one vector θ which determines the CBI model and, hence, has
a strong influence on the generalization beyond (via extrapolation of) observed
cases. In this sense, it plays a role somewhat similar to, e.g., the smoothing
parameter in kernel-based estimation of probability density functions.

In order to determine θ and, hence, a concrete CBI model from the memory M
of observed cases, a kind of optimization criterion is needed. A reasonable idea is
to minimize some distance, such as∫

C
(δC(c | θ) − δϕ(c))2 dc, (5.55)

between the estimated distribution δC(· | θ) and the (true) {0, 1}-valued distribu-
tion δϕ defined by δϕ(c) = 1 ⇔ c ∈ ϕ.

This is quite comparable with the determination of the kernel width or smooth-
ing parameter h in kernel-based density estimation, where an underlying density
function φ is estimated by

φh : x �→ 1

n

n∑
ı=1

κh (x − xı) =
1

n

n∑
ı=1

κ

(
x − xı

h

)
, (5.56)

with κ being the kernel function.25 The smoothing parameter h has an important
effect on the accuracy of the approximation (5.56). It plays a role somewhat
similar to the bin-width of histograms. One way of determining this parameter is
to minimize the integrated squared error

ISE(h) =

∫
(φ(x) − φh(x))2 dx (5.57)

between the true density φ and the estimation φh.

Unfortunately, (5.57) cannot be derived since the true density φ is unknown,
and the same remark of course also applies to (5.55), where πϕ(c) is not known

25 Typical examples of κ include the Parzen window u �→ I[−1/2,1/2]m [289] and the normal kernel, the
latter being defined as the density of the (multivariate) standard normal distribution.
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for all c ∈ C. A possible way out is to replace the true approximation error by
an empirical error, namely the error for the observed cases. This can be done
by means of a (leave-one-out) cross validation procedure which, in the case of
kernel-based density estimation, approximates the integral by a weighted sum
and replaces the density φ by a further estimation φ̂ [185]. This leads to the
minimization of

n∑
ı=1

(
φ̂h(xı) − φh(xı)

)2

, (5.58)

where φ̂h(xı) denotes the estimated (cross validation) density for the ı-th obser-
vation xı. Again, this value is obtained by means of a kernel-based estimation
(using h as a smoothing parameter). As opposed to the derivation of φh(xı), how-
ever, this estimation leaves the point xı itself out of account, i.e., it uses only the
observations {x1, . . . , xı−1, xı+1, . . . , xn}.
The same idea can also be applied to (5.55). In this case, we do not even have to
estimate the values δϕ(cı) since δϕ(cı) = 1 holds true for each observation cı ∈ M.
However, by restricting ourselves to the observed cases, the minimization problem
becomes ill-posed. In fact, a trivial solution to the problem of minimizing

∑
c∈M

(δC(c | θ) − δϕ(c))2 (5.59)

is given by δC(· | θ) ≡ 1. This simply means to choose the parameter θ such as to
maximize the extrapolation of cases, a hardly convincing result.

In this connection, recall the problem that a possibilistic prediction δC can princi-
pally not be “falsified” (cf. Section 5.4.2): The non-support of an actually observed
case can be justified by the fact that no cases have (as yet) been observed which
are similar enough. Thus, a small value δC(c | θ) is not necessarily a defect of the
model, i.e., it does not necessarily indicate a poor choice of the parameter θ.
(Predicted possibility degrees are only lower bounds, and low degrees are quite
natural if the memory M does not contain many cases similar to c!) Moreover, it
is hardly possible to object to the support of a yet unobserved case since it would
require knowledge about the non-existence of that case (which is of course not
available). As can be seen, the model based on possibility rules only indicates
which cases are (provably) possible. It does not, however, point to those cases
which appear impossible. In other words, the possibilistic model merely expresses
the support but not the exclusion of cases. This contrasts with a probabilistic
approach, where an event cannot be supported without (partly) excluding its
complement at the same time.

Fortunately, as already pointed out in Sections 5.3.3 and 5.4.2, the (partial) ex-
clusion of cases according to the CBI principle can be realized by means of
a complementary type of extrapolation principle induced by a different sort of
fuzzy rule, called certainty rule. The latter entails the distribution
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(s, r) �→
⊗

1≤ı≤n

(1 − σS(s, sı)) ⊕ σR(r, rı) (5.60)

which actually represents upper bounds and thus defines the counterpart to (5.53).
The overall prediction πC, associated with a set of rules of that type, is defined by
the intersection (pointwise minimum) of the distributions (5.60). As can be seen,
a certainty rule reduces the possibility of hypothetical cases which are somehow
in conflict with observed cases, in the sense that the inputs are similar but the
outcomes are rather different.

Example 5.8. Reconsider Example 5.1 with a case (100, 15000), i.e., a car with
horsepower 100 and price $15,000. In connection with the similar horsepower–
similar price hypothesis and the possibility rule model (5.53), this case (partly)
supports the case (110, 16000) which has a similar horsepower and a similar
price. According to the certainty rule model (5.60), it (partly) excludes the case
(110, 5000) which has a similar horsepower but a rather different price. Observe
that the possibility rule model will generally say little about the case (110, 5000),
as expressed by a small lower possibility bound. Likewise, the certainty rule model
has not much to say about the car (110, 16000) to which it assigns a large upper
bound. �

In connection with the determination of optimal similarity measures and modi-
fiers, the two models can complement each other in a reasonable way.26 As already
pointed out in Section 5.3.3, the prediction δC derived from (5.53) and the predic-
tion πC obtained from (5.60) might be conflicting in the sense that πC(c) < δC(c)
for a case c. This can happen if c is supported by some observation c1 ∈ M (ac-
cording to the possibility rule model) and, at the same time, excluded by another
observation c2 ∈ M (according to the certainty rule model). A situation of this
kind indicates a defect of the underlying CBI model (the lower possibility bound
is larger than the upper bound). It occurs if a case c is similar to both, c1 and
c2 (in the sense of the similarity measure σS), and if c1 indicates a result which
is quite different (in the sense of σR) from the one suggested by c2. Besides, it
should be noticed that a more or less isolated case c does not involve any conflict,
since δC(c) and πC(c) will be close to 0 and 1, respectively.

Example 5.9. Suppose, for instance, that we have observed the cars c1 =
(50, 5000), c2 = (100, 15000), and c3 = (75, 7000) and that we only distinguish
between similar and dissimilar horsepowers resp. prices:

σS(x, y) =

{
1 if |x − y| ≤ ∆

0 if |x − y| > ∆
,

σR(x, y) =

{
1 if |x − y| ≤ 5000

0 if |x − y| > 5000
.

26 The joint use of lower and upper possibility bounds (derived, respectively, from possibility and
certainty rules) has also been advocated in the context of approximate reasoning [376, 393].
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For ∆ = 30, c1 qualifies the case c3 as being (completely) possible. However, since
σS(75, 100) = 1 as well, c3 is disqualified by c2 at the same time. This suggests
to choose a smaller value for ∆, since otherwise the similar horsepower–similar
price rule becomes invalid. More generally, a memory of n cases 〈sı, rı〉 calls for

∆ ≤ min
1≤ı,≤n, σR(rı,r)=1

|sı − s|

in order to satisfy this rule. As can be seen, the stronger the variability in the
horsepower–price relation is, the more restrictive the similarity between horse-
powers has to be defined. In the more general case where similarity measures are
not {0, 1}-valued, a conflict might appear in a less obvious way, and the degree
to which the CBI hypothesis is satisfied can vary gradually. �

The above example reveals the following effect: The more similar the cases are
made (through the definition of corresponding similarity measures and modifiers),
the stronger is the degree of support resp. exclusion induced by a set of observa-
tions according to (5.53) resp. (5.60) and, hence, the larger the conflict becomes.
Here, we take advantage of this effect in order to define meaningful modifier func-
tions and measures of similarity. In fact, a reasonable optimization criterion is to
find a tradeoff between a principle of appropriate support (of observed cases) and
a consistency principle:

– Observed cases should be supported as much as possible by the other cases in
the memory (e.g., in connection with a leave-one-out cross-validation).

– The conflict between the support and exclusion of these cases should be as small
as possible.

Formally, we define the support attached to a case c ∈ M by

suppθ(c)
df
= δC(c | θ), (5.61)

where δC(· | θ) is derived from M \ {c} according to (5.53) and m1, σS , σR are
determined by the parameter vector θ. Moreover, the conflict associated with the
case c can be defined as

confθ(c)
df
= max{0, δC(c | θ) − πC(c | θ)}, (5.62)
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where πC(c | θ) is the distribution obtained from the certainty rule model (5.60).
Note that, in the case where possibility is interpreted as an ordinal concept, one
might think of replacing the subtraction in (5.62) by a purely qualitative measure
of conflict:

confθ(c) =

{
1 if πC(c | θ) < δC(c | θ)
0 if πC(c | θ) ≥ δC(c | θ) .

The derivation of (5.61) and (5.62) for all cases in the memory yields n degrees of
support and conflict, respectively. The overall support induced by the parameter
θ, supp(θ), can then be obtained by aggregating these values:

supp(θ) = A({suppθ(c) | c ∈ M}) (5.63)

with A being an aggregation function. A measure conf(θ) of conflict can be de-
fined analogously. Finally, an optimal parameter θ is derived as a function of the
support and the conflict thus defined, e.g., by maximizing

supp(θ) − α · conf(θ) (5.64)

for some tradeoff parameter α ≥ 0 or by maximizing supp(θ) under the condition
that conf(θ) ≤ α.

In order to combine the degrees of support (conflict) associated with individual
cases, one might use a simple average as an aggregation function A in (5.63). Al-
ternatively, an aggregation which is more in accordance with a qualitative setting
is the Sugeno integral ∫ su

suppθ dµ = sup
α≥0

min{α, µ(Fα)}, (5.65)

where Fα = {c ∈ M| suppθ(c) ≥ α} for 0 ≤ α ≤ 1. The measure µ in (5.65) can
be taken as the counting measure, i.e., µ(A) = |A|/|M| for all A ⊆ M.

Fig. 5.7. Support (solid line) and conflict as a function of the parameter M which defines the similarity
measure for the attribute horsepower.
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Example 5.10. Consider as a simple example the choice of the parameter M
in (5.54) which defines the similarity measure σhp in connection with the similar
horsepower–similar price hypothesis (using the same function with M = 3000
for the similarity σR). Fig. 5.7 shows supp(M) and conf(M), defined according
to (5.61), (5.62), and the aggregation (5.65) as a function of M . The choice of
α = 3/4 in (5.64) suggests M = 76 as an optimal parameter and leads to the
prediction shown in Fig. 5.8. �

Remark 5.11. The calibration method outlined above can be seen as a general-
ization of related probabilistic approaches. In the latter case, the support and the
exclusion of a value always add up to 1. Therefore, a conflict cannot occur, and
only the principle of correct support remains relevant. Note that this principle
reduces to a principle of maximal support in the possibilistic model, as can be
gathered from (5.59). In the probabilistic case, the correct support corresponds
to the true probability, as expressed by (5.58). �

Let us finally mention that some standard estimation and optimization problems
have to be solved in connection with a concrete application. This concerns, for
example, the question whether all parameters can be identified by the optimiza-
tion criterion. Besides, it should be noted that the method of finding an optimal
CBI model outlined in this section amounts to solving a nonlinear optimization
problem. It might hence be considered critical from the viewpoint of computa-
tional complexity, especially since a new parameter has to be derived each time
the memory changes. One should realize, therefore, that a parameter estimation
is usually not a time-critical problem since it can be solved “off-line.” Note that
the current optimal parameter can serve as a good initial value when using itera-
tive improvement methods. In fact, a small variation of the memory, such as the
adding of a new case, will generally change the optimal parameter but slightly.

Fig. 5.8. Prediction of the price of a car with horsepower 100, where σhp is given by (5.54) with
M = 76.
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5.7 Relations to other fields

This section is meant to explore relationships between the possibilistic approach
to CBI outlined in previous sections (PoCBI) and some related methods. One
can look at PoCBI from different directions. From the viewpoint of statistics and
data analysis, it is formally somewhat similar to non-parametric (kernel-based)
density estimation. However, as was already discussed in Section 5.3.5, it differs in
using possibility theory and similarity instead of probability theory and frequency
as major concepts. The use of fuzzy sets and possibility distributions instead
of (in addition to) probability distributions is just the characteristic property
that PoCBI shares with fuzzy data analysis, the fuzzy set-based counterpart
(extension) to classical data analysis. Some relevant aspects of corresponding
methods will be discussed in Section 5.7.1.

PoCBI combines rule-based and instance-based reasoning techniques: A mem-
ory of cases induces a set of rules and allows CBI to be realized as rule-based
reasoning. Besides, Section 5.4.7 has shown that both techniques can be used in
a complementary way. The combination of case-based and rule-based reasoning
(as well as other hybrid approaches to machine learning) has recently received
considerable attention, and it has already led to several interesting approaches
[14, 61, 89, 174, 175, 246]. A combined approach is particularly advocated by the
complementary merits of the two techniques, namely the suitability for represent-
ing general (background) knowledge of a domain in rule induction and specific
knowledge in the form of observed cases in CBR. An obvious idea, for instance,
is to use a complementary representation in which those cases are stored in the
memory which are exceptions to a set of otherwise valid (default) rules. There
are, however, other possibilities of combining rule induction and case-based rea-
soning, some of which have been realized in the Patdex system [18]. PoCBI

can be considered from both directions. Since relationships between PoCBI and
instance-based learning have already been discussed in Section 5.3.5, this section
shall touch on some aspects in connection with more common approaches to fuzzy
set-based approximate (rule-based) reasoning.

5.7.1 Fuzzy and possibilistic data analysis

The term fuzzy data analysis can have different meanings, depending on whether
the adjective “fuzzy” refers to the observed data itself or to the methods used for
analyzing the data. That is, a main differentiation must be made between the
analysis of somehow uncertain or vague data (e.g., by means of generalized sta-
tistical methods [241]) and the use of fuzzy or possibilistic methods for processing
data that has been observed precisely (e.g., fuzzy clustering of crisp data [32]).
Fuzzy data analysis can also comprise both aspects, of course. It is then con-
cerned with using fuzzy or possibilistic methods for supporting the analysis of
vague data [22].
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In connection with fuzzy data analysis it is important to distinguish between
different types of incomplete knowledge, notably uncertainty and imprecision.
Traditional statistical methods take the first phenomenon into consideration: The
generation of data is modeled as a stochastic process, thus leading to random
(but still precise) observations. The analysis of fuzzy data does not only consider
uncertainty in the generation but also in the observation of data, i.e., it assumes
observations to be afflicted with imprecision. In fact, the latter type of uncertainty,
which must not be confused with randomness, is often present in practice. Firstly,
the observed object itself can be vague in the sense that it might not be possible
to identify or demarcate it exactly. Secondly, the measuring instrument or the
underlying scale might not allow for identifying the (principally well-defined)
object precisely. A standard example is the (linguistic) “value” of a number (which
is exact as such) on a scale of linguistic expressions.

Subsequently, we shall briefly discuss some aspects of PoCBI in the context of
different approaches to fuzzy data analysis. Qualitative data analysis generally
aims at discovering some kind of structure or patterns in the data and, hence, is in
line with desriptive statistics, exploratory data analysis, as well as much of current
research in the emerging field of data mining and knowledge discovery [183].
Corresponding methods, such as (fuzzy) cluster analysis, mainly focus on single
properties of the objects under study and are mainly interested in comparing
the data. As in PoCBI, the concept of similarity thus plays a major role in such
methods. Besides, PoCBI also helps in getting a more precise idea of the data. To
this end, however, it already generalizes beyond the given observations (against
the background of further knowledge), whereas qualitative methods consider these
observations alone. Seen from this perspective, PoCBI might be considered as
an extended form of exploratory or descriptive data analysis.

While qualitative methods focus on individual properties of an object, quantita-
tive analysis is rather concerned with finding (invariant) relations between dif-
ferent features, e.g., by estimating (fuzzy) functional relationships (as supervised
methods in machine learning).

Example 5.12. As a simple example of a quantitative method consider the fit-
ting of a (parameterized) fuzzy set-valued mapping Fθ : R −→ F(R) to a set of
(fuzzy) observations (xk, Yk) ∈ R×F(R) (1 ≤ k ≤ n). This can be accomplished,
e.g., by choosing the (fuzzy) parameter vector θ such that

n∑
k=1

‖Yk − Fθ(xk)‖

is minimized, where ‖ · ‖ is a (metric) distance measure on F(R), the class of
fuzzy subsets of R [86]. A further possibility is to minimize the spread of Fθ

while somehow covering the data, e.g., while satisfying Yk ⊆ Fθ(xk) for all 1 ≤
k ≤ n. The latter type of fuzzy regression analysis amounts to solving a linear
programming problem if Fθ has a certain linear structure. �
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Fuzzy methods like the one in Example 5.12 can be interpreted in different ways.
Firstly, they can be seen as a generalized approximation (resp. interpolation)
method, where scalar observations and functions are replaced by fuzzy set-valued
observations and mappings, respectively. Such methods should basically be un-
derstood as describing the given data, as opposed to inductive statistical methods
which draw conclusions about some underlying process which generates the data.
For instance, the parameter θ in Example 5.12 is chosen such that Fθ fits the data
optimally (e.g., in the sense of minimizing the sum of squared errors). It should
not be interpreted, however, as an estimation of some true (but unknown) pa-
rameter which identifies a data-generating process. Consequently, fuzzy methods
of such kind cannot fall back on a related model in order to make predictions.
Rather, they have to rely on the same kind of assumptions as CBI, namely that
the observations are to some degree representative and that similar outputs are
generated by similar inputs [21].27 It should be observed, however, that the ex-
tent of extrapolation (or interpolation) of outputs is principally not bounded, e.g.,
when fitting a fuzzy mapping to a set of observations and using that mapping for
making predictions [87]. Seen from this perspective, corresponding methods seem
to lack a solid basis for generalizing beyond observed data.

The use of fuzzy sets for modeling imprecision in the observation of (actually
exact) data gives rise to a second interpretation which is related to possibility
theory: A fuzzy set A attaches uncertainty to a crisp object (namely its core)
and a degree of membership A(x) is considered as the possibility of x being the
true (only incorrectly observed) object. This interpretation has motivated the
introduction of possibilistic variables as a counterpart to random variables. The
related idea of a possibilistic generation of data leads to parameter estimation
methods which parallel the maximum likelihood estimator in statistics (by using
the minimum operator instead of the product) [22]. Corresponding methods thus
fall into line with model-based approaches in mathematical statistics. Since each
observation induces a possibility distribution π = A, this type of modeling is
closely related to PoCBI. Still, the underlying semantics is very different. In the
first case, indistinguishability is taken as a necessary evil, and A(x) quantifies
the possibility that the real object, x0, is actually given by x. In the second
case, similarity is exploited as a useful concept for pointing to the existence
of other objects, and π(x) is considered as the plausibility of encountering x
(while knowing the current object x0). As a further difference let us mention
that the ensemble of fuzzy observations (the possibilistic data set) marks the
input in possibilistic data analysis. It is further processed by means of generalized
methods, such as possibilistic linear regression [367] or possibilistic cluster analysis
[191]. In PoCBI, the union of possibility distributions principally corresponds to
the output, whereas the input is given in the form of precise cases.

A third interpretation of fuzzy methods establishes a close connection between
fuzzy sets (fuzzy data) and probability theory and makes use of concepts such

27 Indeed, this assumption is implicitely made when fitting a continuous (fuzzy) mapping.
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as like probabilistic sets [189], fuzzy random variables [241] or random fuzzy sets
[303]. This approach calls for generalizations of classical statistical methods. It
also leads to possibilistic reasoning methods which can be seen as a kind of approx-
imate probabilistic inference. Let us mention the learning of possibilistic networks
from data which is based on a probabilistic interpretation of possibility degrees (in
terms of random sets) as an example [42, 43]. Possibilistic networks emerge from
probabilistic networks (including Bayesian networks [292] and Markov networks
[245]) by using possibility distributions instead of probability measures. This al-
lows one to take uncertainty as well as imprecision into account [41]. Apart from
the probabilistic semantics, they can hence be seen as the possibilistic counterpart
to probabilistic networks in much the same way as PoCBI can be considered as
the possibilistic counterpart to kernel-based density estimation.

Graphical modeling by means of network structures is an example of a model-
based approach which is capable of combining knowledge and data in various
ways, a property which is often emphasized as a major benefit [187]. Typically,
an expert specifies the structure of a network, i.e., the qualitative part, while
the associated (conditional) probability or possibility distributions are learned
from data. Compared with the use of rules (which define the qualitative part of
the model in PoCBI), knowledge hence appears in the form of (in)dependence
relations between variables represented by means of a directed (acyclic) graph.
Besides, the (conditional) probabilities or possibilities, i.e., the quantitative part
of a network, correspond to the similarity measures and modifier functions in
PoCBI, which can be adapted to observed data by means of corresponding learn-
ing method (cf. Section 5.4.2).

In summary, PoCBI has characteristics in common with both, qualitative and
quantitative data analysis. It is close to qualitative approaches in making use of
similarity as a basic concept and in supporting the description of data. Still, it is
also concerned with generalizing and making predictions, a property it shares with
possibilistic approximation or parameter estimation. As opposed to PoCBI, how-
ever, such methods are mostly model-based. Besides, the meaning of a possibility
distribution in PoCBI greatly differs from the interpretation in the methods out-
lined in this section, the latter using such distributions for modeling uncertain or
vague data, parameters or predictions.

5.7.2 Fuzzy set-based approximate reasoning

Fuzzy rule-based modeling and related approximate reasoning techniques are
among the most popular applications of fuzzy set theory. Fuzzy rules have been
used extensively for the linguistic modeling of functional relationships. The main
idea of fuzzy control, for instance, is to simulate a human expert by constructing
a control function from a set of linguistically specified if-then rules. In this con-
text, a rule “if X is A then Y is B” represents (vague) partial knowledge about
the graph of an underlying (control) function and is usually not considered as



5.7 Relations to other fields 223

a logical implication. Rather, it defines an (ordered) pair of (fuzzy) data (A,B)
and should be understood in the sense of a possibility-qualifying rule. The union
of fuzzy relations A × B associated with a number of rules defines a fuzzy graph
[418]. It is thought of as a vague approximation of the underlying (control) func-
tion in much the same way as δs0 is interpreted as a (lower) approximation of the
relation ϕ of cases.

Seen from this perspective, PoCBI is close to the interpretation of fuzzy rules
originally outlined by Zadeh [414] and put into practice by Mamdani [259, 258].
Still, a major difference deserves mentioning: A human expert specifying points
of the graph of a function is assumed to have knowledge about absolute values of
that function. By providing similarity-based rules in PoCBI, he rather gives a
description of how these values vary when changing the argument of the function.
For example, an expert might know very little about prices of cars of a certain
manufacturer. Still, his (case-based) experience might tell him that (at least in
general) cars with similar horsepower and similar engine-size have similar prices.
Then, learning about the price of one (typical) car of a certain manufacturer,
he will also have an idea of the price of a similar car (produced by the same
manufacturer).

Mathematically speaking, PoCBI assumes that a human expert can somehow
specify, not a function itself, but the variation or derivative of the function. This
knowledge can then be used for extrapolating observed data in the form of con-
crete values. By instantiating observed cases, PoCBI thus transforms a set of
similarity-based rules into a (larger) set of ordinary fuzzy rules. In other words,
an ordinary rule base is derived from a set of similarity-based rules in connection
with a set of observations. Needless to say, this type of case-based derivation of a
rule base might be interesting not only for CBR itself but also for other domains.
In fuzzy control, for instance, it might reasonably complement other techniques
for learning fuzzy rules (e.g. [2, 386]). In this sense, PoCBI can be seen from
two perspectives. Firstly, as a method which makes use of fuzzy set-based mod-
eling techniques in order to specify a CBR model, i.e., as an application of fuzzy
set (possibility) theory in case-based reasoning. Secondly, as a method which al-
lows one to transform case-based information into a fuzzy rule base, i.e., as an
application of CBR techniques in (rule-based) approximate reasoning.

Of course, if the expert is also able to specify some values of a function it seems
reasonable to combine PoCBI and the approach to approximate reasoning used in
fuzzy control, an idea which has already been discussed in Section 5.4.7. Besides,
it should be mentioned that a rule base thus obtained can be “tuned” in different
ways. For instance, in order to reduce the size of the case base it will often
be reasonable to merge several rules which originate from similar cases, i.e., to
derive one general rule from a number of more specific rules (see, e.g., [406] and
Section 5.4.3).
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5.8 Summary and remarks

Summary

– In this chapter, we have outlined a possibilistic approach to case-based infer-
ence. The basic principle of this approach, referred to as PoCBI, is a kind
of similarity-guided, possibilistic extrapolation of observed cases. According to
this principle, which relies on the CBI hypothesis and which has been formal-
ized within the framework of fuzzy rules, an already encountered case is taken
as evidence for the existence of similar cases. This evidence is expressed in
terms of degrees of possibility assigned to hypothetical cases and thus defines
a possibilistic approximation of an underlying (but only partially observed) set
of potential cases.

– A distinctive feature of PoCBI is the ability to combine knowledge and data in
a flexible way. Even though it can be considered as a case-based method in the
first place, (expert) knowledge still plays an essential role. Firstly, such knowl-
edge is used for controlling the “possibilistic extrapolation” of sample cases,
i.e., the local generalization beyond observed examples. Secondly, general back-
ground knowledge can supplement case-based information when it comes to
making predictions. A prediction in the form of a possibility distribution may
thus result from the combination of several ingredients, namely the observed
cases, the (heuristic) “CBR knowledge” which dictates how to extrapolate the
data, and background knowledge which supplements or modifies the extrapo-
lation.

– One of the basic ideas of our approach is that of exploiting the merits of linguis-
tic modeling techniques in the context of CBR. It does not mean, however, that
a human expert is expected to come up with an optimal model from the start.
Rather, it might be sufficient if he specifies a broad structure in a first step,
including, e.g., the selection and combination of important attributes which
appear together in a rule. A corresponding rule base can then be calibrated
afterwards by means of the adaptation technique proposed in Section 5.6.

– From a learning point of view, the possibilistic approach has much in common
with non-parametric statistical inference (kernel-based density estimation) and
instance-based learning. In fact, the application of possibility theory allows
for realizing a graded version of the similarity-based extrapolation principle
underlying IBL which appears to be very natural and intuitively appealing. We
have presented a detailed comparison of the possibilistic extrapolation principle
and the commonly used approach which can be endowed with a probabilistic
basis. Even though the two methods are based on quite different semantics,
the possibilistic variant (PossIBL) can formally be seen as an extension of
the probabilistic approach. Indeed, it has been shown that the former – at least
in its general form – can mimic the latter. Apart from that, the possibilistic
approach seems to have some advantages:
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From a knowledge representation point of view, a possibilistic (instance-based)
prediction is more expressive than a probabilistic one. Especially, the former is
able to represent the absolute amount of evidential support as well as partial
ignorance, a point which seems to be of major importance in IBL. Further-
more, the interpretation of aggregated degrees of individual support in terms of
(guaranteed) possibility (degrees of confirmation) is generally less critical than
the interpretation in terms of degrees of probability.

Regarding the applicability, the possibilistic approach is more robust and may
thus extend the range of applications. Particularly, it makes no statistical as-
sumptions about the generation of data and less mathematical assumptions
about the structure of the underlying instance space. In fact, it was shown
that PossIBL performs at least as well as standard NN techniques for typical
(real-word) data sets. Beyond that, however, it can also be applied to data that
violates certain statistical assumptions. Also worth mentioning is that the max–
min version of PossIBL can even be applied within a purely ordinal setting.

Finally, the possibilistic method is more flexible and supports several extensions
of IBL. This includes the adaptation of aggregation modes in the combination
of individual degrees of support, the coherent handling of incomplete infor-
mation, and the graded discounting of atypical cases. Moreover, it allows one
to complement the similarity-based extrapolation principle by other inference
procedures.

– PoCBI is also related to possibilistic data analysis. In this regard, it was found
that it combines aspects of qualitative (descriptive, exploratory) and quanti-
tative (inductive) methods and that it can be seen as a kind of extended ex-
ploratory data analysis. The comparison between PoCBI and fuzzy set-based
approximate reasoning has shown that PoCBI applies fuzzy rules at a higher
level. In connection with observed data, a set of such rules induces or, say,
instantiates an “ordinary” (fuzzy) rule base. Thus, case-based and rule-based
reasoning techniques can complement each other in a reasonable way.

Remarks

– The type of possibilistic prediction realized by PoCBI can be used in vari-
ous ways, e.g., as in this chapter for classification or function approximation.
Besides, it can be embedded into more complex reasoning procedures. In the
context of case-based reasoning, for example, PoCBI can support the overall
process of problem solving by bringing a set of potential solutions into focus: By
providing estimations δs0(r) of the possibility that r is the solution (= outcome)
of the new problem (= input) s0, or that r can at least be adapted in a suitable
way, PoCBI allows one to focus on the most promising candidates and, hence,
to improve the efficiency of case-based problem solving. Likewise, a prediction
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in the form of a possibility distribution can provide useful information in the
context of decision making (cf. Chapter 7).

– A case is often characterized by a set of attributes, and a similarity relation is
given for each of these attributes (cf. Section 2.3.3 and Example 5.1). In this
connection, it deserves mentioning that the derivation of a global similarity by
means of an aggregation of individual similarity relations presupposes the in-
dividual measures to be commensurate: Given two measures σ1 and σ2 ranging
on (numeric) scales L1 and L2, respectively, the objects x and y are as similar
as u and v iff the equality σ1(x, y) = σ2(u, v) holds. This remark is particularly
important in connection with ordinal scales (which might even have different
cardinalities). At a formal level, commensurability can also be achieved by map-
ping similarity degrees from different (heterogeneous) scales into one common
scale L before aggregation takes place.

– We have stressed the aspect that a possibilistic CBI model is essentially derived
from the knowledge of an expert, and that data is only used for calibrating the
model. Of course, other approaches which partly rely on user advice in model
building exist as well, but often the user plays a less significant role or intervenes
in a more indirect way. In the memory-based reasoning methodology presented
in [217], for instance, the user can specify causal dependencies between variables
by (partially) determining the structure of a probabilistic network. This network
(eventually in a corrected form) is then used for deriving a similarity-measure
which in turn controls the retrieval of cases (and, hence, the labeling of new
cases in a classification task).

– Note that the possibilistic approximation of the relation ϕ in (5.4) will in gen-
eral not converge toward (the {0, 1}-valued possibility distribution associated
with) ϕ with an increasing sample size. Rather, some hypothetical cases similar
to observed cases will always be supported with a positive degree of similarity
even though they do actually not exist. This problem could be alleviated by
controlling the extent of extrapolation as a function of the sample size.28 This
is comparable to a corresponding adaptation of the smoothing parameter in
kernel-based density estimation. Notice, however, that an adaptation of this
kind is already realized by the calibration of a CBI model (cf. Section 5.6), al-
beit in a more implicit way. Besides, it should be mentioned that an asymptotic
influence of similarity might indeed be reasonable. It makes sense, e.g., if the
sample is not representative and some cases are not accessible to observation
[281].

– The generalization of the kNearest Neighbor algorithm which has been pro-
posed in [84] is also closely related to the possibilistic approach of this chapter.
As already explained in Section 4.9, this approach specifies the unknown class
c0 of a new pattern x0 in terms of a belief function. This belief function is

28 The opinion that the influence of similarity should decrease if the sample size increases was already
held by Carnap in connection with the inductive logic-based modeling of analogical reasoning [60].
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obtained by combining the individual belief functions induced by the neighbors
of x0, where the ı-th neighbor xı specifies c0 by means of a mass distribution
mı such that

mı({cı}) = αı, mı(C) = 1 − αı. (5.66)

Note that the belief structure (5.66) is consonant, which means that it can also
be expressed in terms of a possibility distribution.

The main differences between [84] and PoCBI are as follows: Firstly, the com-
bination of individual pieces of evidence is realized in different ways, namely by
means of a ⊕-aggregation in PoCBI and by means of Dempster’s rule in [84].
Note that the latter assumes the pieces of evidence to be distinct [349] which, as
argued in Chapter 4, might not always be true in the context of classification.

Secondly, as in IBL, the method in [84] does not consider a similarity structure
over the set of outcomes (classes). In fact, an instance only supports the class
to which it belongs. As opposed to this, a case also supports similar outcomes
in PoCBI.

Thirdly, by focusing on classification as a performance task, the method in
[84] has been developed with a specific application in mind and can be seen as
a purely data-driven approach. As has been seen in previous sections, PoCBI

supports the combination of data and domain-specific (expert) knowledge in the
more general context of case-based reasoning. This becomes possible through
the close connection between possibility theory and the theory of fuzzy sets.
In particular, this connection allows one to adapt a possibilistic CBI model by
means of fuzzy set-based (linguistic) modeling techniques.

– When comparing the extrapolation principle of the possibilistic and the proba-
bilistic NN principle (Section 5.3.5) we have emphasized the difference between
absolute and relative support of a case. A similar distinction has also been made
in the context of clustering. In fuzzy clustering, a point is not assigned to one
class in an unequivocal way; rather, it may have a positive degree of member-
ship in several classes. Still, in the classical approach the membership degrees
are forced to sum to 1 [32]. Consequently, these membership degrees must be
interpreted as relative numbers. This constraint (which has a probabilistic fla-
vor) is relaxed in possibilistic clustering [240], where a membership degree does
indeed reflect the (absolute) compatibility of a point with the prototype of a
cluster.

– In the qualitative (max-min) version of PoCBI, the evidential support of a
hypothetical case c basically corresponds to the maximal similarity between
c and an observed case. Interestingly enough, the same value also plays an
important role in a probabilistic model of analogical induction proposed in [281].
This value, which corresponds to the possibility degree (5.7) in our approach, is



228 5. Fuzzy Set-Based Modeling of Case-Based Inference

called analogy factor.29 In [281], however, this factor is not directly considered as
a measure of evidence. Rather, it is used for modeling the influence of experience
from similar situations when it comes to updating a degree of probability (of
occurrence) associated with c.

29 More precisely, it is qualified as an existential analogy factor. An enumerative factor which depends
on the similarity of c, not only to the nearest neighbor, but to all observed cases is considered as an
alternative.
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Inference II

In Chapter 5, it has already been shown that fuzzy rules can be modeled formally
as possibility distributions constrained in terms of a combination of the member-
ship functions which define, respectively, their antecedent and consequent part.
This way, they relate the concepts of similarity and uncertainty, which is the main
reason for their convenience as formal models of the CBI hypothesis. Work on
fuzzy if–then rules has mainly concentrated on algebraic properties of (general-
ized) logical operators. However, going into the semantics of such rules, it turns
out that different interpretations lead to different types of fuzzy rules, which can
be associated with corresponding classes of implication operators [117].

The logical operator used for modeling the type of fuzzy rule that we have focused
on in Chapter 5, a so-called possibility rule, is a conjunction (t-norm) rather than
an implication. In fact, a possibility rule is considered, not as a logical implication
in the strict sense, but rather as an example-oriented rule which encodes and
extrapolates information derived from observations. In this context, a fuzzy rule
“if X is A then Y is B” defines a case in the form of an ordered pair of data
(A,B) which suggests the feasibility of further (similar) cases (or, more precisely,
guarantees a certain degree of possibility of such cases).

As already pointed out, however, an alternative, implication-based type of fuzzy
rule can be very useful in the context of CBI, both from a knowledge represen-
tation (Section 5.3.3) and a learning point of view (Section 5.6). In this chap-
ter, we shall consider implication-based fuzzy rules in more detail. As will be
seen, formalizing the CBI hypothesis in terms of implication-based rules involves
a completely different approach to knowledge representation and inference. In
fact, the use of implication-based fuzzy rules leads to a constraint-based approach
which can be seen as a generalization of the constraint-based modeling of CBI

in Chapter 3. That is, each rule associated with an observed case 〈s1, r1〉 serves
as a constraint: Given a new input s0 similar to s1, it rules out those outcomes
which are not sufficiently similar to r1. This way, an observation restricts the set
of possible outputs resp. decreases the possibility of certain outcomes. Loosely
speaking, a constraint-based (implication-based) fuzzy rule excludes outcomes
which are dissimilar (while not saying anything about the similar ones), whereas
an example-oriented (conjunction-based) rule supports outcomes which are sim-
ilar (while reserving judgement concerning the ones which are dissimilar). The
difference between the two approaches, which exactly corresponds to the distinc-
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tion between certainty and plausibility resp. upper and lower possibility in Section
5.1, becomes also apparent from the way in which evidence from multiple cases
is combined. In connection with implication-based rules, this evidence is aggre-
gated by means of an intersection (resp. the application of a t-norm) which is a
natural approach to combining constraints. As opposed to this, the disjunctive
aggregation (resp. the application of a t-conorm) in the case of possibility rules
corresponds to a data accumulation process.

The remaining part of the chapter is organized as follows: In Section 6.1 and
Section 6.2, two basic models which make use of two types of implication-based
fuzzy rules, namely gradual rules and certainty rules, are introduced. Section 6.3
considers case-based inference in the context of information fusion and provides
a probabilistic interpretation which relates the gradual rule and the certainty
rule model. The rating of cases based on the information they provide and the
related idea of “exceptionality” of cases is considered in Section 6.4. Section 6.5
generalizes the previously introduced models by applying the CBI hypothesis in
a locally resticted way.

Before going on, let us make a note on notation. As in Chapter 5, we shall
denote by ϕ ⊆ S × R the set of potential observations, i.e., a case is always
an element of the relation ϕ. Alternatively, we shall look at ϕ as a set-valued
mapping ϕ : S −→ 2R, i.e., we denote by ϕ(s) the set ϕ ∩ ({s} × R) of possible
outcomes of the input s. We shall further abuse this notation and write r = ϕ(s)
instead of (s, r) ∈ ϕ or {r} = ϕ(s) if ϕ is an ordinary function. Again, we assume
data to be given in the form of a (finite) memory

M =
{
〈s1, r1〉, 〈s2, r2〉, . . . , 〈sn, rn〉

}
of precedent cases. Let M∗ denote the class of all finite memories M ⊂ ϕ.

Finally, we restrict ourselves in this chapter to the qualitative version of possi-
bility theory and, hence, to the operators min and max as t-norm and t-conorm,
respectively. Thus, we assume that possibility (and hence similarity) is measured
on an ordinal scale L. (Though an exception is made in Section 6.3, where a
possibilistic prediction is endowed with a probabilistic semantics.) We note, how-
ever, that all results can be transferred to the quantitative case in a more or less
straightforward way.

6.1 Gradual inference rules

6.1.1 The basic model

Gradual rules [119] depict relations between variables X and Y which correspond
to propositions of the form “the more X is A, the more Y is B,” where A and B
are fuzzy sets modeling certain symbolic labels. This can also be stated as “the
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larger the degree of membership of X in the fuzzy set A, the larger the degree
of membership of Y in B” or, even more precisely, as “the larger the degree of
membership of X in the fuzzy set A, the larger the guaranteed lower bound to
the degree of membership of Y in B.” The intended semantics of such a rule can
be expressed in terms of membership degrees by

A(X) ≤ B(Y ), (6.1)

which is equivalent to the collection of constraints

∀ 0 < α ≤ 1 : X ∈ Aα ⇒ Y ∈ Bα,

where Aα = {x |A(x) ≥ α} denotes the α-cut of the fuzzy set A [119].

The constraint (6.1) induces a {0, 1}-valued (conditional) possibility distribution
πY |X , where πY |X(y |x) denotes the possibility of Y = y given that X = x:

∀x ∈ DX ∀ y ∈ DY : πY |X(y |x) = A(x)
rg� B(y), (6.2)

where
rg� is the Rescher-Gaines implication (α

rg� β = 1 if α ≤ β and 0 otherwise)
and DX and DY are the domains of X and Y , respectively.

More generally, fuzzy gradual rules can be classified as truth-qualifying rules, the
semantics of which are adequately modeled by means of so-called R(esiduated)-
implications. An R-implication is derived from a t-norm ⊗ through residuation
[118]:

∀α, β ∈ [0, 1] : α � β
df
= sup{ γ |α ⊗ γ ≤ β }. (6.3)

An example is the implication operator � defined as

α � β
df
=

{
1 if α ≤ β

β if α > β
.

Using this implication, the possibility of Y = y is not restricted to the values 0
and 1 but may take any value in the interval [0, 1]. Nevertheless, subsequently we
will adhere to the model (6.2) which is referred to as a pure gradual rule in [46].

Within the context of our CBI framework, a gradual rule reads “the more similar
two inputs are, the more similar are the associated outcomes” or, more precisely,
“the more the similarity of inputs is in F , the more the similarity of outcomes
is in G,” with F and G being fuzzy sets of “large similarity degrees” (F and G
are non-decreasing L −→ L functions). In connection with (6.1) and an observed
case 〈s1, r1〉, this rule (completely) excludes the existence of other (hypothetical)
cases 〈s, r〉 which would violate

F (σS(s, s1)) ≤ G(σR(r, r1)). (6.4)

Thus, given a new input s0 and assuming F = G = id, (6.4) becomes
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∀ 〈s, r〉 ∈ ϕ : σS(s, s1) ≤ σR(r, r1) (6.5)

and, hence, leads to the restriction

r0 ∈
{
r ∈ R |σS(s0, s1) ≤ σR(r, r1)

}
(6.6)

for the output r0 associated with s0. Since corresponding constraints are obtained
for all cases of a memory M, we finally derive the following prediction [99, 101]:

r0 ∈ ϕ̂M(s0)
df
=
⋂

1≤ı≤n

{
r ∈ R |σS(s0, sı) ≤ σR(r, rı)

}
. (6.7)

Clearly, the extent to which the CBI hypothesis holds true depends on the re-
spective application. Consequently, the formalization of this principle by means
of the constraint (6.1) might be too strong, at least in connection with the un-
derlying similarity relations σS and σR. That is, cases 〈s, r〉, 〈s′, r′〉 might exist
such that σS(s, s′) > σR(r, r′), i.e., although the inputs are similar to a certain
degree, the same does not hold for the associated outputs. This, however, con-
tradicts (6.4). Thus, calling a prediction ϕ̂M(s0) correct (with respect to the case
〈s0, r0〉) if r0 ∈ ϕ̂M(s0), the (general) correctness of the inference scheme (6.7) is
not guaranteed in the sense that it might yield an incorrect prediction:

∃M ∈ M∗ ∃ 〈s0, r0〉 ∈ ϕ : r0 "∈ ϕ̂M(s0).

That is, there are a memory M and a case 〈s0, r0〉 such that the set-valued
prediction derived from M does not cover r0. Note that the complete class ϕ of
cases would have to be known in order to guarantee the correctness of (6.7) in
the above sense. Needless to say, this condition is usually not satisfied.

6.1.2 Modification of gradual rules

Again, more flexibility can be introduced in the basic model (6.1) by means of a
modifier, i.e., a non-decreasing function m : L −→ L. This leads to

∀ 〈s, r〉 ∈ ϕ : m(σS(s, s1)) ≤ σR(r, r1) (6.8)

instead of (6.5). Moreover, (6.7) becomes

r0 ∈ ϕ̂m,M(s0)
df
=
⋂

1≤ı≤n

{
r ∈ R |m(σS(s0, sı)) ≤ σR(r, rı)

}
. (6.9)

The application of the modifier m can be seen as “calibrating” the similarity
scales underlying the set of inputs and the set of outputs such that (6.1) is al-
ways satisfied. As an extreme example of (6.8) consider the case where m ≡ 0,
expressing the fact that the CBI hypothesis does not apply at all. In other words,
the similarity of inputs (in the sense of σS) does not justify any conclusions about
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the similarity of outcomes (in the sense of σR). Observe, however, that m can as
well be utilized in order to strengthen (6.1). We might take, for instance, m ≡ 1
if all outcomes are always perfectly similar according to σR! This type of modi-
fication of a gradual rule can be interpreted in the same way as the modification
of a possibility rule (cf. Section 5.4.4).

We call a modifier admissible if it guarantees the correctness of the inference
scheme (6.9), i.e.

∀M ∈ M∗ ∀ 〈s0, r0〉 ∈ ϕ : r0 ∈ ϕ̂m,M(s0). (6.10)

The modifier m defined by

m(x) = sup
{
h(x′) |x′ ∈ DS , x′ ≤ x

}
(6.11)

for all x ∈ DS , where

h(x) = inf
〈s,r〉,〈s′,r′〉∈ϕ:σS(s,s′)=x

σR(r, r′),

is admissible. Moreover, it is maximally restrictive in the sense that

∀M ∈ M∗ ∀ s0 ∈ S : ϕ̂m,M(s0) ⊆ ϕ̂m′,M(s0)

holds true for each admissible (and non-decreasing) m′ : DS −→ L.1 Taking the
upper bound in (6.11) only guarantees that m is non-decreasing. In fact, (6.10) re-
mains valid when replacing m by h, which obviously corresponds to the similarity
profile as introduced in Section 3.1.2 In other words, a modifier m defines a strict
similarity hypothesis (see page 61) and thus obeys the “the more... the more...”
assumption underlying the concept of a gradual rule: The modification by means
of a non-decreasing function corresponds to the “stretching” and “squeezing” of
the similarity scale underlying σS . When interpreting m ◦ σS as a new (adapted)
similarity measure, m ◦ σS and σS are still coherent in the sense that

σS(s1, s2) ≤ σS(s3, s4) ⇒ m(σS(s1, s2)) ≤ m(σS(s3, s4)) (6.12)

for all s1, s2, s3, s4 ∈ S. As opposed to this, a non-increasing function h also puts
the similarity degrees x ∈ DS in a different order and, hence, violates (6.12).

Loosely speaking, (6.11) can be seen as a solution to the (optimization) problem of
finding a modifier maximally restrictive among all the admissible ones. Estimating
(6.11) from observed data (in the form of the memory M) can be considered
as a problem of case-based learning. Of course, a corresponding estimation will
generally not allow for verifying the admissibility of a modifier in the sense of
(6.10). In fact, (6.10) can be checked only for the observed cases, which means

1 Here, we assume that m′(x) ∈ L for all x ∈ DS . More generally, a modifier is a DS −→ [0, 1]
mapping.

2 Recall, however, that ϕ as defined here is not necessarily a functional relation.
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that the requirement of (global) admissibility has to be weakened. An obvious
idea is to look for a maximally restrictive modifier m which is admissible, not
necessarily for the complete relation ϕ, but at least for the memory M. That is,

∀ 〈s, r〉 ∈ M : r ∈ ϕ̂m,M(s). (6.13)

In addition to (6.13), it might appear natural to require

∀ s ∈ S : ϕ̂m,M(s) "= ∅. (6.14)

That is, for each input s which might be encountered, the inference scheme (6.9)
yields a non-empty (even if perhaps incorrect) prediction [100]. Needless to say,
the additional requirement (6.14) makes the learning of a modifier more complex.3

Note that the problem of learning the maximally restrictive modifier (6.13) can
be approached by the algorithm proposed in Section 3.4 (cf. Remark 3.31).

Observe that F = G = id can be assumed for the fuzzy sets F and G in (6.4)
without loss of generality (as long as G is strictly increasing). This becomes obvi-
ous from the constraint (6.8). Namely, m(F (σS(s, s′)) ≤ G(σR(r, r′)) is equivalent
to m′(σS(s, s′)) ≤ σR(r, r′) with m′ = G−1 ◦ m ◦ F .

Even though the approach (6.8) allows for the adaptation of the formal CBI

model based on a gradual rule, this model remains rather restrictive. In fact, the
above discussion has shown that the gradual rule model is closely related to the
constraint-based approach of Chapter 3.4 Consequently, it might lead to imprecise
predictions for exactly the same reasons. Consider the following example, to which
we shall return occasionally in subsequent sections.

Fig. 6.1. Graph of the function a �→ a mod 100.

3 Verifying (6.14) is closely related to testing the coherence of a set of gradual rules [133].
4 The approaches basically differ in the sense that the latter does not only allow for strict similarity

hypotheses.
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Example 6.1. Let a CBI setup be defined as follows:

S = R = N0, DS = DR = {0, 1},
σS(a, b) = σR(a, b) = 1 ⇔ |a − b| ≤ 10,

ϕ : S −→ R , a �→ a mod M.

Thus, inputs and outputs correspond to natural numbers, and two inputs (out-
puts) are either completely similar or not similar at all. According to the definition
of ϕ,

ϕ(a) = q ⇔ q ∈ {0, 1, . . . , M − 1}
∧ ∃ p ∈ N0 : a = pM + q.

Assuming M to be a rather large integer, we can hence say that ϕ(s) and ϕ(s′)
are “almost surely” similar whenever s and s′ are similar. (See Fig. 6.1, where the
graph of ϕ is illustrated for M = 100). Nevertheless, “exceptional” pairs of inputs
s, s′ for which σS(s, s′) = 1 and σR(ϕ(s), ϕ(s′)) = 0 still exist (e.g., s = M − 1,
s′ = M). Thus, one has to take m ≡ 0 in order to guarantee the correctness of
(6.9). Then, however, case-based inference via (6.7) becomes meaningless, since
ϕ̂m,M(s0) = R = N0 for all s0 ∈ S. �

This example suggests looking for generalized inference schemes which are less
restrictive. In this chapter, we consider two possibilities of weakening the for-
malization of the CBI principle based on gradual rules. Firstly, we give up the
requirement of its global validity, i.e., the fact that one modifier has to be deter-
mined such that (6.8) is satisfied for all (tuples of) cases. A related approach will
be proposed in Section 6.5, where case-based inference will not be formalized by
means of a single modifier, but by means of a set of (“locally valid”) fuzzy rules.
This idea is similar to the use of local similarity profiles in the constraint-based
approach to CBI.

Secondly, (6.8) is obviously not very flexible in the sense that it does not allow
for incorporating some tolerance toward exceptions into the inference process. In
fact, the above example suggests looking for inference schemes which do not only
distinguish between the possibility and impossibility of outcomes, but which are
able to derive more expressive predictions using a graded notion of possibility.
For this reason, we shall consider so-called certainty rules in Section 6.2 below.
Replacing gradual rules by certainty rules is motivated in the same way as passing
from constraint-based to probabilistic CBI as proposed in Chapter 4.

6.2 Certainty rules

A certainty rule corresponds to statements of the form “the more X is A, the
more certain Y lies in B.” More precisely, it can be interpreted as a collection
of rules “if X = x, it is certain at least to the degree A(x) that Y lies in B”
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(x ∈ DX), which amounts to saying that the possibility of values outside B
is bounded by 1 − A(x). This translates into the following constraint on the
conditional possibility distribution πY |X [124]:

∀x ∈ DX , y ∈ DY : πY |X(y |x) ≤ max{1 − A(x), B(y)}. (6.15)

More generally, rules of this kind can be classified as certainty-qualifying rules
[118]. The semantics of such rules is adequately captured by means of so-called

S(trong)-implication operators. The latter is of the form α � β
df
= n(α)⊕β, where

n(·) is a strong negation and ⊕ a t-conorm. A special case of an S-implication
is the Kleene-Dienes implication in (6.15). Note that the mapping x �→ 1 − x in
(6.15) is actually thought of as the order-reversing mapping of the ordinal scale
L.

The upper bound (6.15) implies that the possibility of Y = y is bounded by
1−A(x) if X = x and B(y) = 0, which means that y is outside of the support of B.
Thus, the larger A(x), the smaller the possibility that y lies outside of B. Within
the framework of possibility theory, certainty is closely related to impossibility5

and, hence, (6.15) indeed means that y lies in B with certainty A(x).

Since a certainty rule is thought of as a constraint which holds true in general but
still allows for exceptions (see e.g. [376]), it is more flexible than the approach
based on gradual rules and seems to be particularly suitable as a formal model of
CBI. In connection with the concept of a certainty rule, the CBI hypothesis can
be understood as “the larger the similarity of two inputs is, the more certain it is
that the similarity of corresponding outcomes is large,” an interpretation which
emphasizes the heuristic nature of this assumption.

Given a new input s0, an observed case 〈s1, r1〉 ∈ M constrains the possibility of
similarity degrees y = σR(r0, r1) according to the certainty rule model (6.15):

π(y |x) ≤ πcert(x, y) = max{1 − y, x}, (6.16)

where x = σS(s0, s1) is the similarity between s0 and s1. Since r0 = r implies
y = σR(r, r0), we thus obtain

πs0(r) = π(r | s0) ≤ max
{
1 − σS(s0, s1), σR(r, r1)

}
(6.17)

for the possibility that r ∈ R corresponds to the unknown outcome r0. The more
similar the inputs s0 and s1 are, the more constrained the possibility of outcomes
becomes according to (6.17). If, for instance, σS(s0, s1) is close to 1, the possibility
bound π(r | s0) can only be large for outcomes which are very similar to r1. If,
however, σS(s0, s1) is very small, we also obtain a large possibility bound for
outputs hardly similar to r1. Particularly, (6.17) becomes trivial if σS(s0, s1) = 0.
The resulting possibility distribution π ≡ 1 reveals complete ignorance. That is,

5 Formally, the certainty c of an event A and the possibility p of the complement of A are related
according to c = 1 − p (cf. Section 5.1).
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the observed outcome r1 says nothing about the unknown outcome r0, because
the corresponding inputs are not similar at all.

Since (6.17) applies to all cases of the memory, we obtain the possibility distrib-
ution

πs0 : r �→ π(r | s0) (6.18)

df
= min

1≤ı≤n
max
{
1 − σS(s0, sı), σR(r, rı)

}
,

which emerges from (6.15) under the application of the minimal specificity prin-
ciple.6 The constraint (6.18) can be generalized to

πs0 : r �→ π(r | s0) (6.19)

= min
1≤ı≤n

m2

(
max
{
1 − m1(σS(s0, sı)), σR(r, rı)

})

by means of modifier functions m1, m2 : L −→ L. The associated certainty rule,
denoted m1 ◦ σS

m2� σR, corresponds to statements of the form “for m1-similar
inputs it is m2-certain that the respective outputs are similar.” As in the case of
possibility rules, the modifier m2 can be used for bounding the effect of a rule
(cf. Section 5.4.4). Discounting a certainty rule can be realized, e.g., by means of
a modifier x �→ max{x, λ}, where the discounting factor λ guarantees a minimal
degree of possibility.7

Remark 6.2. The modifier x �→ max{x, λ} corresponds to a special case of
the discounting operation x �→ (1 − λ) ⊗ x + λ [402]. It is obtained by taking
the generalized conjunction ⊗ as (α, β) �→ max{0, α + β − 1}. The modifier
x �→ min{x, 1−λ}, used as a discounting operation in the possibilistic framework
of Chapter 5, emerges under the same conjunction from x �→ (1 − λ) − (1 − λ) ⊗
(1 − x). �

According to the gradual rule model, an observed case 〈s1, r1〉 rules out the exis-
tence of other (hypothetical) cases completely, namely those which do not obey
(6.8). Particularly, the set

{
r ∈ R |m(σS(s0, s1)) ≤ σR(r, r1)

}
of outcomes regarded as possible for the input s0 excludes outputs which are not
similar enough, namely those outcomes r ∈ R with σR(r, r1) < m(σS(s0, s1)). As
opposed to this, a certainty rule (6.17) only gradually restricts the possibility of
a case 〈s, r〉:
6 According to this principle, each element of the domain of a possibility distribution is assigned the

largest possibility in agreement with the given constraints. The principle is already discussed under
the name principle of maximal possibility in [415] and has been introduced as an information-theoretic
principle in [113].

7 This contrasts with the discounting of possibility rules, where the application of the min-operator
instead of the max-operator yields an upper rather than a lower possibility bound.
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π(s, r) ≤ πC(s, r) = max
{
1 − σS(s, s1), σR(r, r1)

}
. (6.20)

Thus, it does generally not exclude other cases completely. In fact, the possibility
of a case 〈s, r〉 is 0 only if both, s is perfectly similar to s1 and r is completely
different from r1. Given a new input s0, we hence obtain πs0(r) > 0 as soon as
σS(s0, s1) < 1 or σR(r, r1) > 0. It is exactly this property which allows for the
modeling of exceptional inputs and which seems advantageous in connection with
the adaptation of CBI models.

Example 6.3. To illustrate this, let us reconsider Example 6.1. The fact that
we have to take m ≡ 0 in connection with the gradual rule model means that a
case 〈s, r〉 no longer constrains the possibility of outcomes associated with a new
input s0. Now, suppose that we define m1 by m1(0) = 0 and m1(1) = 1 − ε (and
that we take m2 = id) in the certainty rule approach (6.19), where 0 < ε � 1.
Given a case 〈s1, r1〉 and a new input s0 similar to s1, we obtain

πs0(r) =

{
1 if σR(r, r1) = 1

ε if σR(r, r1) = 0
. (6.21)

Thus, outcomes which are similar to r1 are regarded as completely possible, but a
positive (even if small) degree of possibility is also assigned to outcomes r which
are not similar to r1. This takes the existence of exceptional pairs of inputs into
account. �

As pointed out in [99], a certainty rule (6.17) fails to modulate the width of the
neighborhood around an observed outcome r1 in terms of the similarity between
s0 and s1, which a gradual rule would do. As expressed by (6.17), it only attaches a
level of uncertainty (which depends on σS(s0, s1)) to the fuzzy set r �→ σR(r, r1) of
outcomes close to r1. A way of remedying this problem would be to use implication
operators such as

α � β =

{
1 if α ≤ β

1 − α if α > β
(6.22)

or

α � β =

{
1 if α ≤ β

max{1 − α, β} if α > β
(6.23)

in place of max{1 − α, β} in (6.15).8 Implications of that kind can be obtained
from an R-implication → by contraposition, i.e., α � β = (1 − β) → (1 − α).

We then obtain the (generalized) model

πs0 : r �→ π(r | s0) = min
1≤ı≤n

m2 (m1(σS(s0, sı)) � σR(r, rı)) . (6.24)

8 (6.23) is the R-implication and, at the same time, the S-implication related to a t-norm called the
nilpotent minimum. Given a strong negation n, the latter is defined as x⊗y = min{x, y} if y > n(x)
and x ⊗ y = 0 otherwise [150].
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This approach avoids the following effect which occurs under the application of the
constraint (6.17): If the inputs s0 and s1 are similar enough, the bound of π(r | s0)
in (6.17) only reflects the similarity between r and r1. This, however, means that
we generally have π(r | s0) < 1 even for outcomes r which are rather similar to
r1. In fact, (6.17) reduces the possibility of r0 = r even if σS(s0, s1) ≤ σR(r, r1).
In this situation it appears to be more restrictive than a gradual rule. Observe
that (6.22) to some degree combines the effect of gradual and certainty rules since
r0 ∈ σR(rı, ·)α with certainty α = m1(σS(s0, sı)) for all 1 ≤ ı ≤ n (if m2 = id).
Now, however, the certainty level and the level of the cut of the similarity relation
σR(rı, ·) are directly related (through m1).

6.3 Cases as information sources

As in Section 4.5, we shall now look at cases as individual information sources
and consider case-based inference as the parallel combination of such information
sources. A corresponding (probabilistic) framework allows for a semantic inter-
pretation of the prediction πs0 = π(· | s0) derived from a (modified) certainty rule.
This interpretation gives a concrete meaning to a degree of possibility π(r | s0)
and might hence be helpful in connection with the acquisition of modifiers (which
act on possibility distributions). At the same time, it establishes a connection be-
tween the approaches presented in Section 6.1 and Section 6.2, showing that the
latter can be seen as a generalization of the former (from a probabilistic point
of view). Again, let us mention that we give up the ordinal interpretation of the
underlying possibility scale in this section.

6.3.1 A probabilistic model

When making use of the CBI hypothesis formalized by means of a fuzzy rule,
each observed case provides some evidence concerning the unknown outcome r0.
Given a memory M of n cases, the individual pieces of evidence have to be
combined into a global constraint. Seen from this perspective, each case serves
as an information source, and one task arising in connection with CBI is the
parallel combination of these information sources. In Section 6.1, for instance,
the evidence derived from an individual case 〈s1, r1〉 is given in the form of a set
Nm(σS(s,s0))(r) of possible candidates, where

Nα(r1)
df
=
{
r ∈ R |α ≤ σR(r, r1)

}
denotes the α-neighborhood of the outcome r1. Moreover, the (conjunctive) com-
bination of evidence is realized by means of the intersection (6.9).

Recall the framework of the parallel combination of information sources which has
been outlined in Section 4.5: Let Ω denote a set of alternatives, consisting of all
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possible states of an object under consideration and let ω0 ∈ Ω be the actual (but
unknown) state. An imperfect specification of ω0 is a tuple Γ = (γ, pC), where C
is a (finite) set of specification contexts, γ is a mapping γ : C −→ 2Ω, and pC is
a probability measure over C. The problem of combining evidence is defined as
generating an imperfect specification Γ of ω0 which performs a synthesis among
the n imperfect specifications Γ1, . . . , Γn issued by different information sources.

In Section 6.1, the evidence derived from an individual case 〈s1, r1〉, namely the
set Nm(x)(r1) with m(x) = m(σS(s0, s1)) being the lower similarity bound (6.11),
corresponds to a particular imperfect specification Γ = (γ, pCx):

Cx = DR,

γ(c) = Nc(r1),

pCx(c) =

{
1 if c = m(x)

0 if c "= m(x)
.

(6.25)

A context c is hence thought of as the lower similarity bound m(x) ∈ DR asso-
ciated with the similarity degree x ∈ DS . Observe that the information source
〈s1, r1〉 is correct in the sense that the prediction γ(c) = Nc(r1) contains the ob-
ject ω0 = r0 under the assumption that the context c is true (and the modifier m
is admissible). It is also of maximum specificity since Nc(r1) is the most specific
characterization of r0 that can be inferred by 〈s1, r1〉 in this context.

The one-point distribution pCx in (6.25) suggests the lower similarity bound to be
known precisely. In general, however, knowledge about m(x) will be incomplete.
Let us therefore assume pCx to be defined in a more general way, such that pCx(c),
the probability that m(x) = c, can take values between 0 and 1. Since m(x) = c
means that c defines the (largest) lower similarity bound, it implies σR(r0, r1) ∈
[c, 1]. That is, the true similarity between r1 and the unknown outcome r0 is at
least c. For y ∈ DR, the probability that σR(r0, r1) = y is hence bounded as
follows:

P(y) ≤
∑

c∈DR:c≤y

pCx(c).

When interpreting a possibility distribution π on DR as an encoding of upper
degrees of probability9 – by virtue of the correspondence π(y |x) = P(y) – it is
possible to trace the possibility distribution

πcert : y �→ πcert(y |x) = m(x) � y (6.26)

derived from a (modified) certainty rule10 back to a probabilistic specification
of the similarity bound m(x). Consider as an example (6.26) for the implication
operator (6.22):

πcert(y |x) =

{
1 if m(x) ≤ y

1 − m(x) if m(x) > y
. (6.27)

9 Here, we clearly give up the ordinal interpretation of the possibility scale.
10 For the sake of simplicity, we restrict ourselves to certainty rules with one modifier in this section.
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For m(x) > 0, (6.27) corresponds to the probability pCx defined by

pCx(c) =




1 − m(x) if c = 0

m(x) if c = m(x)

0 if c "∈ {0, m(x)}
. (6.28)

This model can be interpreted as follows: The lower similarity bound is esti-
mated by m(x), but this estimation is only correct with a certain probability.
Particularly, (6.28) assigns a positive probability to the value 0, i.e., it does not
exclude the existence of outcomes which are not similar at all (and hence entail
m(x) = 0). Associating m(x) with the interval [m(x), 1], we might also interpret
this model as a kind of confidence interval for a similarity degree y = σR(r0, r1),
supplemented with a corresponding level of confidence.

Since m(x) = c also implies

r0 ∈
{
r ∈ R |σR(r, r1) ≥ c

}
,

the possibility distribution

πs0(r) = m(σS(s0, s1)) � σR(r, r1), (6.29)

which is induced by an observed case 〈s1, r1〉 in connection with a certainty rule,
can be interpreted in the same way as the corresponding distribution (6.26). That
is, the value πs0(r) can be interpreted as an upper bound to the probability that
r0 = r.

The probability (6.28) reveals a special property of the uncertain prediction de-
rived from the rule (6.27). Namely, the certainty level associated with the estima-
tion of a similarity bound is in direct correspondence with the similarity degree
itself. That is, the larger the estimation of the similarity bound m(x) is, the larger
will be the level of confidence attached to the confidence interval [m(x), 1].11

6.3.2 Combination of information sources

So far, we have considered only one piece of evidence, derived from a single case
〈s1, r1〉, and the imperfect specification related to the corresponding similarity
bound m(x), where x = σS(s0, s1). In general, the memory M contains several
cases, and uncertainty concerning the complete modifier (6.11) has to be specified.
Thus, let us define the set of specification contexts as C = DDS

R . Each context
c ∈ C corresponds to a function c : DS −→ DR and, hence, specifies a lower
similarity bound c(x) for all x ∈ DS . Moreover, suppose a certainty rule with
modifier m to be given and let pC be defined on C in such a way that the
marginal distributions correspond to the distributions pCx (x ∈ DS) induced by
this rule.
11 Needless to say, this property is not always appropriate.
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The different information sources associated with cases in the memory now share
a common set C of specification contexts. Let Γı = (γı, pC) (1 ≤ ı ≤ n) denote
the imperfect specification associated with the ı-th case 〈sı, rı〉. The mapping γı

is then given by
γı(c) = Nc(σS(sı,s0))(rı)

for all c ∈ C. Making use of all cases and assuming the specification context c ∈ C
to be true, we can derive the prediction r0 ∈ ϕ̂c,M(s0), where

ϕ̂c,M(s0) =
⋂

1≤ı≤n

{
r ∈ R | c(σS(s0, sı)) ≤ σR(r, rı)

}
. (6.30)

This is in accordance with the gradual rule model that considers only one modifier
and, hence, provides the corresponding set-valued prediction (6.30). In fact, (6.30)
reveals that each context c ∈ C corresponds to some modified gradual rule. In
other words, a certainty rule can be interpreted as a “random” gradual rule, i.e.,
a class of (modified) gradual rules with associated probabilities. This relation
between gradual and certainty rules is further explored in Appendix B.

When considering the modifier m as a random variable, the prediction of r0

according to (6.30) becomes a random set, where ϕ̂c,M(s0) occurs with probability
pC(c).12 The probability that a certain output r ∈ R is an element of this set is
given by

P(r ∈ ϕ̂c,M(s0)) =
∑

c : r∈ϕ̂c,M(s0)

pC(c) (6.31)

and defines an upper bound to the probability that r0 = r. In connection with the
idea of a randomized gradual rule model, (6.31) corresponds to the probability of
selecting a (modified) gradual rule c which does not exclude the (hypothetical)
case 〈s0, r〉, i.e., for which (6.30) holds.

The imperfect specification Γ = (γ, pC) defined by

γ(c) = ϕ̂c,M(s0)

for all c ∈ C (and C, pC as above) corresponds to the conjunctive pooling of the
information sources Γ1, . . . , Γn. This kind of combination is justified by the fact
that all information sources are correct with respect to all specification contexts
c ∈ C. Within a possibilistic setting, conjunctive pooling comes down to deriving
the intersection of possibility distributions. In fact, it is not difficult to show that
(6.31) is bounded from above by the possibility distribution πs0 derived from a
certainty rule in connection with a number of cases. That is,

P(r ∈ ϕ̂c,M(s0)) ≤ πs0(r) = min
{
π1

s0
(r), . . . , πn

s0
(r)
}

(6.32)

for all r ∈ R, where πı
s0

denotes the possibility distribution derived from the
ı-th case according to (6.29). The interpretation of possibility degrees as upper

12 Observe, however, that c 	= c′ 	⇒ ϕ̂c,M(s0) 	= ϕ̂c′,M(s0).
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approximations of probabilities is hence in agreement with the application of the
minimum operator in (6.19), i.e., with making use of this operator in order to
combine the possibility distributions derived from individual cases.

Appendix B shows that the above probability distribution pC , where pC(c) is
the probability of the gradual rule associated with the context (= modifier) c, is
unique under the assumption that the operator modeling the implication-based
fuzzy rule satisfies a certain (non-)monotonicity condition. This might be consid-
ered as an interesting result, especially with regard to the combination of evidence
in the probabilistic framework of Section 4.5.3. As pointed out there, the joint
probability measure µ in (4.27) is generally not defined in a unique way.

According to the interpretation proposed in this section, the certainty rule ap-
proach can be seen as a generalization of the approach based on gradual rules,
in the sense that the lower similarity bounds, which guarantee the correctness
of the set-valued prediction of r0, are no longer assumed to be precisely known.
The incomplete knowledge concerning these bounds is characterized by means of
a probability distribution. This allows for interpreting the case-based inference
scheme in Section 6.2 as a kind of approximate probabilistic reasoning. More pre-
cisely, a prediction π(· | s0) specifies possibility degrees π(r | s0) which can be seen
as upper bounds to the probability that the unknown output r0 is given by the
outcome r.

6.4 Exceptionality and assessment of cases

Considering cases as individual information sources, as we have done in Sec-
tion 6.3, suggests to rate their contribution to the prediction of outcomes. In
fact, the assessment of information sources is supported by most frameworks
for the combination of evidence. The basic idea, then, is to realize some kind of
weighted aggregation procedure or to modify (discount) the information provided
by a source according to its reliability.13 In Section 4.6, this idea has already been
discussed in the context of the probabilistic approach to CBI.

Recall that, given the same information in the form of a context c ∈ C, i.e., a
modifier specifying lower similarity bounds, different cases provide different speci-
fications of the unknown outcome r0: Considering this modifier and the new input
s0, a case 〈s, r〉 provides a prediction of r0 in the form of a possibility distribution
which supports outcomes in the neighborhood of r. Such a specification might
hence be misleading, e.g., if the outcome r is rather “untypical.”

Example 6.4. Consider again Example 6.1 and suppose that s0 = M − 1 and
s1 = M + 1. In accordance with the certainty rule model (6.21) of this example

13 See e.g. [272] for various approaches to the discounting of expert opinions within a generalized
probabilistic framework.
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(cf. Section 6.2), the case 〈s1, r1〉 = 〈M + 1, 1〉 strongly supports the outcomes
{0, . . . , 11} which are similar to r1 = 1. It almost rules out all other outputs,
including the true outcome r0 = M − 1. Loosely speaking, the (otherwise useful)
information about similarity relations, specified by the certainty rule, is “misin-
terpreted” by 〈s1, r1〉. Even though the advice to disqualify outcomes which are
not similar to r will lead to good predictions for the majority of cases 〈s, r〉, it
is hardly reasonable when taken up in connection with an “exceptional” pair of
cases, such as 〈s0, r0〉 and 〈s1, r1〉. �

The above example makes clear that exceptionality is not necessarily a property
of an individual input or case. Rather, the label of exceptionality applies to pairs
of cases. In fact, 〈s1, r1〉 is exceptional only in connection with inputs s = M − k,
where 1 ≤ k ≤ 9, but it will lead to correct predictions for all other inputs.
Moreover, the decision whether to call two cases exceptional will often not be
as obvious as in our example, where only two degrees of similarity are distin-
guished. Making use of richer scales including intermediate degrees of similarity,
exceptionality will become a gradual property.

Interestingly enough, the certainty rule framework suggests computing a degree
of exceptionality in the following way:

ex(〈s, r〉, 〈s′, r′〉) df
= 1 − πcert(σR(r, r′) |σS(s, s′)). (6.33)

That is, the exceptionality of the tuple of cases 〈s, r〉, 〈s′, r′〉 is inversely related to
the possibility of observing σR(r, r′)-similar outcomes for σS(s, s′)-similar inputs,
as specified by the certainty rule model.14 The more 〈s, r〉 and 〈s′, r′〉 violate the
certainty rule, the more exceptional they are in the sense of (6.33).

It is worth mentioning that (6.33) also makes sense in connection with the grad-
ual rule model. Applying (6.33) to the possibility distribution (6.2) induced by
a gradual rule, a tuple of cases is either completely exceptional or not excep-
tional at all. In fact, (6.33) may also be seen as a reasonable generalization of
this rather obvious definition of exceptionality. This again reveals the difference
between the gradual and the certainty rule model: The former is indeed not tol-
erant toward exceptions in the sense that each violation of the rule is “punished”
by classifying the involved cases as completely exceptional ones. As opposed to
this, exceptionality is a gradual property in the certainty rule model.

Even though a gradual or certainty rule can only be violated by tuples of cases
and, hence, exceptionality should be considered as a property of pairs of cases,
it seems intuitively clear in our example that the most unreliable information
sources are those cases 〈s, r〉 with s close to integers kM (k ∈ N0). The closer
an input is to such a point, the more likely the case might be called exceptional.
In fact, one possibility of regarding exceptionality as a property of an individual

14 Again, note that x �→ 1−x in (6.33) actually represents the order-reversing mapping of a possibility
scale.
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case 〈s, r〉 is to consider the likelihood or possibility of 〈s, r〉 to be exceptional
with respect to a new case 〈s0, r0〉. Thus, one might think of generalizing (6.33)
as follows:

ex1(〈s, r〉) df
= sup

〈s′,r′〉∈ϕ

ex(〈s, r〉, 〈s′, r′〉). (6.34)

Assigning a degree of exceptionality to a case in the sense of (6.34) can be inter-
preted as rating the reliability of this case. Of course, this degree of exceptionality
depends on the formalization of the underlying rule. In other words, a case is ex-
ceptional not by itself but only with respect to a particular rule: Changing the
rule by means of a modifier also changes the degree of exceptionality of the case.
For instance, the modification of a gradual rule, as proposed in Section 6.1.2, can
be interpreted as adapting the rule in such way that no exceptional cases exist
at all. Likewise, no case is exceptional with respect to the certainty rule in its
weakest form, as formalized by m1 ≡ 0 in (6.19). In connection with the certainty
rule model (6.21) of Example 6.1, we obtain

ex1(〈s, r〉) =

{
1 − ε if ∃ k ∈ N0 : |s − kM | ≤ 10

0 otherwise

for all 〈s, r〉 ∈ ϕ.

Let us briefly hint at two properties of (6.34). Firstly, this definition of exception-
ality is completely independent of any kind of frequency, i.e., the value ex1(〈s, r〉)
should not be understood as a probability of 〈s, r〉 being exceptional with respect
to some other case. Of course, defining exceptionality of an individual case by
using an averaging operator in place of the supremum in (6.34) seems intuitively
appealing and would clearly make sense within a probabilistic setting. Recall, for
instance, the probabilistic interpretation of the certainty rule model proposed in
Section 6.3. According to this interpretation, a certainty rule can be seen as a
collection of (modified) gradual rules to each of which is attached a certain proba-
bility. Since a case is either exceptional or not with respect to a fixed gradual rule,
it is an obvious idea to derive a corresponding probability of being exceptional
with respect to a certainty rule.

Secondly, (6.34) is rather strict in the sense that it implies

ex(〈s, r〉, 〈s′, r′〉) ≤ min{ex1(〈s, r〉), ex1(〈s′, r′〉)} (6.35)

for all cases 〈s, r〉 and 〈s′, r′〉. In other words, having encountered an exceptional
tuple of cases, both cases are considered to be exceptional. This principle can
obviously be weakened by concluding on the exceptionality of at least one of the
two cases. This leads to the constraints

ex(〈s, r〉, 〈s′, r′〉) ≤ max{ex1(〈s, r〉), ex1(〈s′, r′〉)} (6.36)

for all 〈s, r〉, 〈s′, r′〉 ∈ S. Indeed, (6.36) will often appear more reasonable than
(6.35). For instance, modifying the mapping ϕ in Example (6.1) according to
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ϕ(s) =

{
M if a mod M "= 0

0 if a mod M = 0

suggests to call the cases 〈0, 0〉, 〈M, 0〉, 〈2M, 0〉 . . . exceptional and to consider
all other cases to be (completely) normal. As opposed to this, (6.35) does not
only qualify a case 〈kM, 0〉 itself as exceptional, but also all neighbored cases
〈kM + a, M〉 such that 1 ≤ |a| ≤ 10.

A natural idea is to discount the information provided by a case based on its
level of exceptionality. As already mentioned before, discounting a fuzzy restric-
tion F over a domain D within the qualitative min-max framework amounts to
modifying F into max{λ, F}, where λ is a discounting factor [120]. Indeed, F
remains unchanged if λ = 0. As opposed to this, the modified restriction becomes
trivial (and corresponds to the complete referential D) if the discounting is max-
imal (λ = 1). This approach can be applied to the result of case-based inference
by identifying discounting factors with degrees of exceptionality. It amounts to
computing

π(r | s) = min
1≤ı≤n

max
{
ex1(〈sı, rı〉), m(σS(s, sı)) � σR(r, rı)

}
. (6.37)

If exceptionality is equivalent to complete exceptionality, as in the gradual rule
model, (6.37) comes down to removing the exceptional cases from the memory.
Apart from that, the usual inference process is realized. In other words, (6.37) then
corresponds to the gradual rule approach (� is the Rescher-Gaines implication)
restricted to the normal cases. When using the certainty rule model in (6.37), i.e.,
when modeling � by implication operators such as (6.22) or (6.23), the level of
uncertainty of an individual prediction is increased in accordance with the degree
of exceptionality of the corresponding case. The CBI hypothesis underlying the
generalized approach might then be characterized as follows: “The larger the
similarity between s and s0 and the less exceptional the input s, the more certain
our conclusion on the similarity between the associated outputs r and r0.”

Interestingly enough, the modifications outlined above suggest a further way of
adaptation: Not the strength of the rule is adapted to the class ϕ of cases, but the
influence of each case is modulated in accordance with its exceptionality relative
to the (predefined) rule. In this connection, it also seems worth mentioning that
assigning degrees of exceptionality to cases in such way that (6.36) is satisfied
leads to an interesting problem from both, a mathematical as well as a semantical
point of view. In addition to observed cases, one might think of using an (a priori)
expert assessment of the exceptionality of cases (which then correspond to triples
〈s, r, e〉) in order to solve this problem, all the more since the minimization of
some objective function subject to the constraints (6.36) might not guarantee a
unique solution.
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6.5 Local rules

The rule-based approaches to CBI outlined in previous sections are local in the
sense that the information provided by different cases is processed and com-
bined independently. They are, however, global in the sense that a (modified)
fuzzy rule constitutes a constraint which is assumed to be globally valid. This
becomes especially apparent in connection with the gradual rule approach, where
an (admissible) modifier m specifies (conditional) lower bounds to the similarity
of outcomes which hold true for all (pairs of) cases. It has already been pointed
out in Section 6.1 that this requirement often entails rather imprecise predictions,
caused by the fact that admissible modifiers might not be very restrictive.

Instead of looking for a global rule, which is valid up to some exceptions – as
discussed in connection with the certainty rule model in previous sections – one
might weaken the principle of a gradual rule by specifying rules which are some-
how “locally” valid. In this section, we follow the idea of adapting a fuzzy rule
to each case of the memory more directly rather than the one of associating in-
stantiations of a global rule with all observed cases (and perhaps discounting
these instantiations in the sense of Section 6.4). This approach is quite similar
to the specification of local similarity profiles and hypotheses in connection with
the constraint-based and probabilistic approaches to CBI discussed in previous
chapters. It differs, however, from the solution proposed in connection with the
possibility rule model (cf. Section 5.4.6), where local rules have not been defined
for individual cases, but for different (fuzzy) regions of the space of inputs.

Let us again consider the gradual rule model. The problem that global validity
might lead to (local) predictions which are unnecessarily imprecise is already
certified by Example 6.1. In fact, the necessity of taking m ≡ 0 leads to the
useless predictions ϕ̂m,M(s0) = N0. Loosely speaking, a CBI strategy is not
applicable because the hypothesis of similar inputs having similar outcomes is
not globally satisfied. Still, it seems desirable to make use of the observation that
the mapping ϕ in the example is piecewise linear, i.e., that the CBI hypothesis
is satisfied at least locally. One possibility of doing this is to partition the set
S of inputs and to derive corresponding local models (cf. Section 5.4.6). In our
example, the idea to partition S into sets of the form

{kM, kM + 1, . . . , kM + (M − 1)} (k ∈ N0)

suggests itself. However, since ϕ is generally unknown, the definition of a partition
will not always be obvious, all the more if S is non-numerical.

Here, we consider a second possibility, namely that of associating an individual
(local) rule with each case of the memory. Thus, the idea is to define rules of the
form “the more similar an input is to s, the more similar the associated outcome
is to r” for each case 〈s, r〉 in the memory. The validity of such a (gradual) rule
is already guaranteed by the (non-decreasing) modifier
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m〈s,r〉(x) = sup
{
h〈s,r〉(x

′) |x′ ∈ DS , x′ ≤ x
}

, (6.38)

for all x ∈ DS , where

h〈s,r〉(x) = inf
〈s′,r′〉∈ϕ : σS(s,s′)=x

σR(r, r′). (6.39)

Since the infimum in (6.39) is taken over a smaller set of cases, (6.38) is obviously
more restrictive than (6.11). Based on (6.38), the inference scheme (6.9) can be
replaced by

r0 ∈
⋂

1≤ı≤n

{
r ∈ R |m〈sı,rı〉(σS(s0, sı)) ≤ σR(r, rı)

}
. (6.40)

In our example, the maximally constraining (admissible) modifier for a case
〈s, r〉 = 〈s, ϕ(s)〉 is simply given by

m〈s,r〉(x) =

{
x if 10 ≤ s mod M ≤ M − 9

0 otherwise
.

Based on a sufficiently large number of observations, the mapping ϕ can hence be
approximated rather accurately. More precisely, the prediction (6.40) converges
toward

ϕ̂(s0) =




{ϕ(s0), . . . , 20} if 0 ≤ ϕ(s0) < 20

{ϕ(s0)} if 20 ≤ s0ϕ(s0) < M − 20

{2M − 12 − ϕ(s0), . . . , M + 9} if M − 20 ≤ ϕ(s0) < M

with an increasing number of observations.

Observe that a local rule can be taken as an indication of the (prediction) quality
of a case 〈s, r〉 and can hence support the design of an optimal case base. The
more restrictive a rule can be made by means of a modifier m〈s,r〉, the more it
will contribute to precise predictions. As in our example, good local rules will
generally be provided by “typical” cases, the outcomes of which are at least to
some degree representative of similar inputs. In this sense, a modifier can also
be seen as an assessment of a case (cf. Section 6.4). A modifier m〈s,r〉 < id, for
instance, brings the discounting of a case about, whereas a modifier m〈s,r〉 > id
produces the opposite effect. Particularly, letting m〈s,r〉 ≡ 0 comes down to leaving
the corresponding case out of account, i.e., to remove it from the memory.

Let us mention that a (globally admissible) gradual rule can be seen as a collection
of rules

α(x) : σS(s1, s2) = x ⇒
∀ r1 ∈ ϕ(s1)∀ r2 ∈ ϕ(s2) : σR(r1, r2) ≥ m(x),
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each of which is an aggregation of more specific (local) rules [115] associated with
cases 〈s, r〉 ∈ ϕ. More precisely, a rule α(x) can be seen as an approximation in
the form of a disjunction

α(x) =
∨

〈s,r〉∈ϕ

α(〈s, r〉, x) (6.41)

of local rules

α(〈s, r〉, x) : (〈s1, r1〉 = 〈s, r〉) ∧ (σS(s1, s2) = x) ⇒ (6.42)

∀ r2 ∈ ϕ(s2) : σR(r, r2) ∈ [m〈s,r〉(x), 1].

Since the disjunction in (6.41) is taken over all cases 〈s, r〉 ∈ ϕ, the global rule
α(x) depends on the similarity degree alone. Observe that (6.11) and (6.38) are
related through

∀x ∈ DS : m(x) = inf
〈s,r〉∈ϕ

m〈s,r〉(x),

which shows that taking the disjunction of the consequent parts in (6.42) comes
down to bounding similarity degrees from below and which again reveals the
restrictive nature of the gradual rule model.

Interestingly enough, a certainty rule can be seen as a more general fusion of local
rules (6.42), taking into account that some conclusions might be less plausible (or
might occur less often) than others and, hence, may lead to a weighted union of
conclusions instead of a disjunction.

Let us finally mention that the idea of adapting a rule-based formalization of the
CBI hypothesis to individual cases applies to certainty rules in the same way as
to gradual rules. Observe that local certainty rules can be seen as a combination
of the two aforementioned generalizations of the gradual rule model. In fact, these
rules are local and tolerant toward exceptions at the same time.

6.6 Summary and remarks

Summary

– The objective of this chapter was to elaborate in more detail on implication-
based fuzzy rules as an alternative model of the inference process in case-based
reasoning. It has been shown that this type of rule leads to an approach which
deviates considerably from the possibility rule model discussed in Chapter 5. In
fact, implication-based fuzzy rules realize a constraint-based approach in much
the same way as the method proposed in Chapter 3: Already encountered cases
are looked at as evidence for (partially) ruling out other (hypothetical) cases,
not similar enough to the observed ones. As opposed to this, a possibility rule
is a conjunction-based rule and gives rise to an example-oriented approach:
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Observed cases are considered as pieces of data which provide evidence for the
possibility of observing similar cases.

– We have distinguished between two types of implication-based rules. The first
type (gradual rules) assumes a kind of closeness relation between the similarity
of inputs and the similarity of outcomes which is not tolerant toward excep-
tions. Given a new input, the observed cases which constitute the memory are
taken as evidence for either allowing or completely excluding certain outcomes.
A second type of rules (certainty rules) only uses case-based information for de-
riving conclusions about the possibility of outcomes. They are more expressive
and allow for the partial exclusion of outputs. Moreover, they can formalize
situations in which the CBI hypothesis holds true “in general” up to some
exceptions to the “similar inputs-similar outputs” rule.

– The use of modifier functions has been proposed for modulating the “strength”
of fuzzy rules. This way, it becomes possible to adapt the formal model ac-
cording to the extent to which the CBI hypothesis actually holds true for the
respective application.

– The meaning of exceptionality of cases has been discussed in connection with
the idea of discounting cases which might be seen as somewhat unreliable or
misleading information sources. The discounting of cases, in conjunction with
a modification of the basic inference scheme, presents a further possibility of
model adaptation.

– Local rules have been introduced as a second direction of generalizing the basic
model. There are different motivations for this step: In the gradual rule model,
it is true that the instantiation of a (globally) admissible rule by different cases
leads to correct predictions. However, inference results might be poor since this
rule will often hardly be constraining. In the certainty rule model, the multiple
instantiation of the same global rule leads to difficulties in connection with
exceptional (still not discounted) cases. This might cause inconsistencies and
an exaggerated exclusion of (rather possible) cases. We have also pointed out
a close relation between local rules and the assessment of cases. In fact, the
determination of a modifier for an individual case can be seen as a rating of the
typicality or prediction quality of that case. Particularly, a modifier can make a
local rule completely ineffective, which amounts to removing the corresponding
case from the memory. Next to the idea of exceptionality with respect to a global
rule, the concept of local rules thus presents a further possibility of rating and
discounting cases.

Remarks

– In this chapter, we have refrained from discussing several issues which have
already been considered in connection with the possibility rule model in Chap-
ter 5. This concerns especially the extensions of the basic model, discussed in
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Sections 5.3 and 5.4. These techniques can as well be applied to the CBI model
which proceeds from implication-based fuzzy rules.

– The combination of possibility and certainty rules has already been proposed
as a basis of the calibration method in Section 5.6. Besides, there are other
motivations for using implication-based and conjunction-based rules jointly. In
[205], for instance, it is argued that a combination of the two types of rules can
greatly improve the informational contents of (possibilistic) case-based predic-
tions. In fact, as already pointed out in Section 5.3.3, the degree δs0(r) derived
from a possibility rule can be seen as a degree of confirmation of the outcome r
and actually defines a lower possibility bound. As opposed to this, the degree
πs0(r) obtained in connection with a certainty rule model reflects the degree
to which past experience (in the form of the memory M) excludes the output
r and determines an upper degree of possibility. Recall the following extreme
examples from Section 5.3.3:

(a) δs0(r) = 0, πs0(r) = 1: A situation of complete ignorance. Neither is r
supported nor (partly) excluded by any observation. Thus, r is fully plausible
though not confirmed at all.

(b) δs0(r) = 0, πs0(r) = 0: Clear evidence against r has been accumulated in
the form of inputs similar to s0 with outputs dissimilar to r.

(c) δs0(r) = 1, πs0(r) = 1: The output r is strongly supported through the
observation of similar cases.15

The above cases emphasize the advantage of the combined approach. The
example-based (possibility rule) model alone cannot distinguish between (a)
and (b). It goes without saying, however, that it makes a great difference from
an epistemic point of view whether a case is not supported simply because no
similar cases have been observed or whether indeed some evidence against this
case has been accumulated (through the certainty-rule model of the CBI princi-
ple). The constraint-based model cannot distinguish between the cases (a) and
(c). Again, however, it might be important to know whether an outcome r seems
completely possible for the input s0 only because no input has been observed
which is similar to s0 or whether r is indeed supported by the observation of
cases 〈s, r〉 such that s is similar to s0 (which requires πs0(r) > 0).

15 In fact, a possibility degree of 1 requires the observation of a perfectly similar case. If the similarity
relations are separating, this means that 〈s, r〉 itself has already been encountered.



7. Case-Based Decision Making

Early work in AI has mainly focused on formal logic as a basis of knowledge rep-
resentation and has largely rejected approaches from (statistical) decision theory
as being intractable and inadequate for expressing the rich structure of (human)
knowledge [193]. However, the recent development of more tractable and expres-
sive decision-theoretic frameworks and inference strategies such as, e.g., graph-
ical formalisms [292, 187], in combination with the analysis of restrictions of
traditional AI reasoning techniques have stimulated renewed interest in decision
theory. In fact, ideas from decision theory now play a predominant role in the
modeling of rationality, one of the major topics of current research in AI [95].
Loosely speaking, the AI paradigm has undergone a shift from “acting logically”
to “acting rationally” [322]. The related view of intelligent behavior deviates fun-
damentally from the classical “logicist” approach. While the latter emphasizes the
ability to reach correct conclusions from correct premises, the decision-theoretic
approach considers AI as the design of (limited) rational agents [324]. For this
“agent-based” view of AI, intelligence is strongly related to the capacity of suc-
cessful behavior in complex and uncertain environments and, hence, to rational
decision making.1

Decision theory and AI can fertilize each other in various ways [298]. As already
suggested above, classical decision theory provides AI with important ideas and
concepts of rationality, thus contributing to a formal basis of intelligent agent
design. Yet, it has been less concerned with computational and knowledge repre-
sentational aspects. AI can particularly contribute in this direction. It has been
realized very soon, for instance, that perfect rationality, in the sense of generat-
ing behavior which leads to maximal (expected) utility, cannot be achieved once
computational aspects come into play [321]. In fact, an agent having to make a
decision under limited computational (time, memory) resources not only has to
reason about the decision itself but also about the computations it uses for de-
riving the decision: A more elaborated computation might yield a better decision
but also requires more time (or other resources). Being perfectly rational in the
aforementioned sense, it has to perform the reasoning about its computations in
the same decision-theoretic way. This, however, leads to the problem of realizing
some kind of metalevel rationality [23, 38, 324] and, hence, results in a concep-
tual regress. Problems of this kind have motivated the definition of alternative

1
J. Doyle has suggested to define AI itself as the computational study of rational behavior [94].

253
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concepts which are weakenings of perfect rationality. They serve as candidates for
putting the agent-based understanding of intelligence and the related approach
to the design of intelligent systems on a formal basis. Among the proposals, the
concept of bounded optimality seems to be the one which is most relevant for
practical as well as theoretical AI research [323].

As far as the aspect of knowledge representation is concerned, research in AI has
shown various possibilities of extending the decision-theoretic frameworks usually
considered in classical approaches. Recent developments include the modeling of
decision problems within qualitative [52, 53, 123, 129] and constraint-based [143]
settings and make use of formal logic in order to represent the knowledge of a
decision maker in a more flexible way [39, 50, 98, 293, 326, 365, 366]. These ap-
proaches are intended to make decision-theoretic models more realistic, tractable
and expressive.

In this chapter, we are mainly concerned with the idea of case-based decision
making (CBDM) which is originally due to Gilboa and Schmeidler [167]. The
notion CBDM stands for the application of the CBI principle in the context of
decision making: An agent faced with a decision problem relies upon its experience
from similar problems encountered in the past. Loosely speaking, it chooses an act
based on the (cumulative or average) performance of (potential) acts in previous
problems which are similar to the current one.

Even though the model in [167] has mainly been introduced with economic ap-
plications in mind, CBDM is particularly interesting from an AI perspective.
Firstly, it combines principles from two important subfields of AI, namely deci-
sion theory and CBR. Secondly, it touches on interesting aspects of knowledge
representation and reasoning. In fact, the mental notions of preference and belief
constitute the main concepts of classical decision theories. Corresponding mathe-
matical models are based on formalizations of these concepts, such as preference
relations, utility functions, and probability distributions. The aforementioned ap-
proach of Gilboa and Schmeidler leads to a decision theory in which the
cognitive concept of similarity plays a predominant role. Needless to say, in-
corporating this concept into formal approaches to decision making raises some
interesting (semantical) questions. Particularly, it has to be clarified which role
similarity plays and, hence, what the relation between this and other concepts
such as preference and belief could be (cf. Section 7.6). Clearly, this question
concerns basic assumptions underlying a decision-theoretic model. One should
therefore not expect to find definite answers. Classical works by Ramsey [309],
de Finetti [146], von Neumann and Morgenstern [278] and Savage [331]
as well as recent developments in the field of decision theory, such as non-additive
expected utility [334, 166] or qualitative decision making, show various ways of
formalizing the notions of preference and belief (including measure-theoretic ap-
proaches, such as fuzzy measures [384] and different types of probability [145],
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as well as more logic-oriented symbolic methods [365]).2 Moreover, a consensus
concerning the actual meaning of the concept itself seems to exist even less in the
case of similarity than in the case of preference or uncertainty. As will be seen,
the approaches to case-based decision making discussed in this chapter not do
only differ with respect to the mathematical formalization, they are also based
on different principles and ideas for incorporating similarity and principles of CBI

into decision making.

The remaining part of the chapter is organized as follows: In Section 7.1, we
provide a brief review and discussion of case-based decision theory as introduced
by Gilboa and Schmeidler. In Section 7.2, we consider the idea of case-based
decision making in connection with the Nearest Neighbor principle which is
commonly used in instance-based learning. A fuzzy set-based approach to CBDM

which is due to Dubois and Prade [101] will be discussed in Section 7.3. A
generalization of the latter is proposed in Section 7.4. Section 7.5 is devoted to
an alternative framework of case-based decision making which is based on the
methods of case-based inference proposed in previous chapters. A discussion of
some selected aspects of CBDM models follows in Section 7.6. Finally, Section 7.7
introduces a framework of experienced-based decision making as a generalization
of case-based decision making.

7.1 Case-based decision theory

This section gives a brief review of the model introduced by Gilboa and Schmei-

dler [167], referred to as case-based decision theory (CBDT) by the authors.
Putting it in a nutshell, the setup they proceed from can be characterized as fol-
lows: Let Q and A be (finite) sets of problems and acts, respectively, and denote
by R a set of outcomes (outputs) or results. Choosing act a ∈ A for solving prob-
lem p ∈ Q leads to the outcome r = r(p, a) ∈ R. A utility function u : R −→ U
resp. u : Q×A −→ U assigns utility values to such outcomes; the utility scale U
is taken as the set of real numbers. Let

σQ : Q × Q −→ [0, 1], σR : R × R −→ [0, 1]

be similarity measures quantifying the similarity of problems and outputs, re-
spectively. Suppose the decision making agent to have a (finite) memory

M = {(p1, a1, r1), . . . , (pn, an, rn)} (7.1)

of cases at its disposal, where (pk, ak) ∈ Q × A, rk = r(pk, ak) (1 ≤ k ≤ n),
and suppose furthermore that it has to choose an act for a new problem p0 ∈ Q.
If a certain act a0 ∈ A has not been applied to the problem p0 so far (i.e.,

2 Needless to say, a validation or comparison of decision-theoretic models is generally difficult, no
matter whether from a descriptive or a normative point of view.
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there is no case (p0, a0, r) ∈ M) the agent will generally be uncertain about
the result r(p0, a0) and, hence, about the utility u(r(p0, a0)). According to the
assumption underlying the paradigm of CBDT it then evaluates an act based
on its performance in similar problems in the past, as represented by (parts of)
the memory M. More precisely, the decision maker is supposed to choose an act
which maximizes a linear combination of the benefits experienced so far:

V (a0) = Vp0,M(a0)
df
=
∑

(p,a0,r)∈M

σQ(p, p0) · u(r). (7.2)

The summation over an empty set yields the “default value” 0 which plays the
role of an “aspiration level.” Despite the formal resemblance between (7.2) and
the well-known expected utility formula one should not ignore some substantial
differences between CBDT and expected utility theory (EUT). This concerns not
only the conceptual level but also mathematical aspects. Particularly, it should be
noted that the similarity weights in (7.2) do not necessarily sum up to 1. Conse-
quently, (7.2) must not be interpreted as an estimation of the utility u(r(p0, a0)).

As an alternative to the linear functional (7.2), an “averaged similarity” version
has been proposed. It results from replacing σQ in (7.2) by the similarity measure

(p, p0) �→ σQ(p, p0)


 ∑

(p′,a0,r′)∈M

σQ(p′, p0)




−1

(7.3)

whenever the latter is well-defined. (Note that this measure is defined separately
for each act a0.) Theoretical details of CBDT including an axiomatic character-
ization of decision principle (7.2) are presented in [167].

The basic model has been generalized with respect to several aspects. The problem
of optimizing decision behavior by adjusting the aspiration level in the context of
repeated problem solving is considered in [168] (see also Section 7.6). In [169], the
similarity measure in (7.2) is extended to problem–act tuples: Given two similar
problems, it is assumed that similar outcomes are obtained for similar acts (not
only for the same act). Indeed, it is argued convincingly that a model of the form

V (a0) =
∑

(p,a,r)∈M

σQ×A((p, a), (p0, a0)) · u(r), (7.4)

where σQ×A is a (problem–act) similarity measure over Q × A, is more realistic
than (7.2). For example, an act a0 which has not been applied as yet is generally
not evaluated by the default utility 0 if experiences with a comparable act a have
been made. In fact, an outcome r(p, a) will then influence the rating of a0 in
connection with a problem p0 which is similar to p. Besides, it should be noticed
that (7.4) allows for realizing some kind of analogical reasoning. Suppose, for
instance, that the effect expected from applying a0 to p0 is comparable to the
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effect of applying a to p. In that sense, (a0, p0) might appear to be quite similar
to (a, p), although a and a0 as well as p and p0 as such are rather dissimilar.

With regard to alternative models of CBDM proposed in subsequent sections it
is useful to picture again the following properties of the decision criteria outlined
above:

– Accumulation/averaging: The criteria (7.2) and (7.4) realize a simple summa-
tion of (weighted) degrees of utility. Consequently, a decision maker might prefer
an act a, which always brought about rather poor results, to an act a∗ which
has so far yielded very good results, simply because a has been tried more often
than a∗. This effect is annulled by (7.3), where the use of a normalized similarity
measure yields an average utility.

– Compensation: Both decision rules compensate between good results and bad
results associated with an act a.

Gilboa and Schmeidler especially emphasize the cognitive plausibility of their
model [171]. In fact, a main motivation behind CBDT is to provide a more
faithful description of human decision making than EUT does. Indeed, in some
situations this axiomatic theory seems rather restrictive. Particularly, it assumes
the decision maker to have very detailed information at its disposal: a list of the
states of nature, a probability distribution over these states, a list of potential
acts, and a numerical utility value for all act–state pairs.3 Since this information
is generally not completely available, the decision maker is forced to engage in
hypothetical reasoning.4 Moreover, some well-known paradoxes [13, 140] as well
as psychological studies [375] show that EUT can be challenged as a descriptive
theory of (human) decision making. Still, it deserves mentioning that CBDT is
not seen as a competing theory, but rather as an alternative (or complementary)
“language” for modeling decision problems. It seems especially useful if a problem
description is not naturally cast in the framework of decision making under risk or
if a problem is very unfamiliar, in which case the modeling of states of nature and
associated probabilities might be difficult. A thorough discussion of the relation
between CBDT and EUT can again be found in [167].

Let us conclude with a remark on the concept of similarity as used in CBDT.
One might argue that the measures σQ and σQ×A need not be interpreted as
similarities at all: Basically, the valuation (7.2) can be seen as a weighted sum

V (a0) = Vp0,M(a0) =
∑

(p,a,r)∈M

ωp0,a0,M(p, a) · u(r) (7.5)

of utility degrees encountered in the past,5 where the weights reflect the relevance
of a case. This relevance, however, might not only depend on similarity. Rather,

3 Still, it has to be noticed that an unequivocal model does generally not exist. Rather, there is much
freedom in the definition of, e.g., states and acts.

4 What is the effect of choosing a certain act in a certain state of nature?
5 The linearity of the representation (7.2) is mainly due to the separability axiom in [167].
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it can capture other (or further) aspects as well and, hence, leaves much freedom
for different types of cognitive interpretation.6 In this connection, it is worth
mentioning that the axiomatic frameworks in [167, 169] do not impose special
restrictions (such as symmetry) on σQ and σQ×A which might appear natural
when interpreting the latter as similarity measures.

The indexing of a weight ωp0,a0,M(p, a) in (7.5) suggests that the relevance of a
case (p, a, r) is not necessarily a function of (p, a) and (p0, a0) alone but might also
depend on other cases in the memory M. An example of this type of “context-
sensitive” relevance will be presented in the next section.

7.2 Nearest Neighbor decisions

Interestingly enough, the modification (7.3) of decision criterion (7.2) corresponds
to a special version of a k-Nearest Neighbor approximation, namely Shep-

hard’s interpolation method which makes use of the complete set of observations
[340]. It is used for making predictions in other CBI approaches as well (e.g., in
the ELEM2-CBR system [61]). Indeed, case-based decision making can basically
be seen as a special type of CBI or, more specifically, of case-based inference as
discussed in previous chapters: Evaluating the act a0 comes down to estimat-
ing the associated outcome r(p0, a0) (resp. the utility thereof) when viewing a
problem–act tuple (p0, a0) as an input in the sense of CBI. In this sense, a sin-
gle decision problem gives rise to several CBI problems since a corresponding
estimation has to be derived for all acts a ∈ A. Of course, the estimation of an
outcome can principally be realized by any method of instance-based prediction.7

In particular, one might think of replacing (7.2) by the NN rule in its basic form,
an idea that we shall discuss below.

7.2.1 Nearest Neighbor classification and decision making

Recall the problem–act similarity model (7.4) and let σS = σQ×A denote a sim-
ilarity measure over the set of inputs which now corresponds to the set Q × A
of problem–act tuples. Moreover, let M↓ be the projection of the memory M to
Q × A. The NN-based counterpart to the evaluation (7.4) of an act a0 ∈ A is
then given by

V (a0) = u(r(NNM(p0, a0)), (7.6)

where NNM(p0, a0) is the nearest neighbor of the problem–act tuple (p0, a0):

NNM(p0, a0) = arg max
(p,a)∈M↓

σQ×A((p, a), (p0, a0)). (7.7)

6
Gilboa and Schmeidler fully agree in this point. See [71] for a related discussion and [36] for an
application of CBDT where the notion of “relevance” might be preferred to that of “similarity.”

7 In fact, other machine learning methods could be used as well (cf. Section 7.7).
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Of course, definition (7.7) should be refined in order to handle the non-uniqueness
of the nearest neighbor. However, for the sake of simplicity we assume that each
problem–act tuple (p0, a0) has a unique nearest neighbor in M↓ (according to the
similarity σQ×A).

Observe that the CBDT criteria (7.2) and (7.4) use all cases in order to eval-
uate an act. As opposed to this, the decision maker concentrates completely on
the most relevant experience when evaluating an act according to (7.6). More
precisely, (7.6) corresponds to (7.5) with the relevance given by

ωp0,a0,M(p, a) =

{
1 if (p, a) = NNM(p0, a0)

0 otherwise
.

On the one hand, some information is clearly lost by reducing the number of
cases taken into account.8 On the other hand, the nearest neighbor does gener-
ally provide the most relevant information, i.e., the loss of information is limited.9

Moreover, (7.6) can be seen as an approximation of (7.4) which appears reasonable
from a computational point of view. Indeed, since the retrieving of all previous
cases might be very time consuming, a decision maker will generally not fall back
on its entire experience when having to perform a prompt action. Besides, (7.6)
might appear more natural in some situations since it avoids the accumulation
and compensation effect produced by (7.2) and (7.4) (cf. Section 7.1). Particu-
larly, the estimation (7.6) corresponds to the true utility if a0 has already been
applied to p0 in the past (which means that (p0, a0) ∈ M↓). The addition of
further (weighted) utility degrees or any kind of averaging might then be coun-
terproductive (cf. Section 7.6).

Note that the NN-decision rule (7.6) partitions the set A into equivalence classes
[a], where

b ∈ [a] ⇔ a ∼ b ⇔ NNM(p0, a) = NNM(p0, b).

In fact, two acts a and b are rated equally in the sense of (7.6) whenever a ∼ b,
i.e., as soon as both acts have the same nearest neighbor (in connection with a
problem p0). The criterion (7.6) hence ignores the actual degrees of similarity,
a problem already mentioned in connection with the comparison of instance-
based and kernel-based extrapolation of case-based information (cf. Section 5.3.5).
This, however, does not appear reasonable from a decision making point of view.
Consider, for instance, a case (p, a, r) with high utility u(r). Moreover, let b and
c be acts such that σQ×A((p, a), (p0, b)) is large and σQ×A((p, a), (p0, c)) is small.
Still, assume that NNM(p0, b) = NNM(p0, c) = (p, a). In this situation, a risk-
averse decision maker will generally prefer b to c. The criterion (7.6), however,
does not differentiate between these two acts. The NN principle (as any other
estimation method) seems hence questionable in the context of decision making.

8 Though formally only the relevance of some cases is set to 0.
9 This claim can be proved in a formal way. The result in [74], for instance, can be interpreted as follows:

Under certain technical assumptions, at least half of the information that a complete random sample
contains about an outcome in already represented by the nearest neighbor of the query instance.
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Indeed, at this point one should realize an important difference between decision
making and prediction, the performance task which is commonly solved by NN

algorithms: In a prediction problem, an estimation has to be derived for only
one instance and this estimation is not considered as a valuation which supports
any kind of comparison. Having to choose one among the potential candidates
anyway, it might then be acceptable to base an estimation on the nearest neighbor
even if it turns out to be quite dissimilar.

Let us mention that the averaged similarity criterion (7.3) suffers from a similar
problem. In fact, it is readily seen that the valuation of an act according to (7.3)
can be very large even though this act has only been applied in situations which
are hardly similar to the current problem.

7.2.2 Nearest Neighbor decision rules

In order to overcome the aforementioned problem it seems natural to not only
associate the utility v of the nearest neighbor (p, a) ∈ M↓ with each act a0 ∈ A
(i.e., with the tuple (p0, a0)), but rather the tuple (v, σ), where σ denotes the
similarity between (p0, a0) and (p, a). The preferences of an agent should then be
expressed in terms of a preference relation over the class of such utility–similarity
tuples. This is somewhat comparable to generalized decision rules which take
not only the expected utility into account but also the variance (i.e. uncertainty)
related to an act.

More specifically, one might think of the following generalization of (7.6):

V (a0) = σQ×A
(
(p0, a0), NNM(p0, a0)) · u(r(NNM(p0, a0))

)
. (7.8)

This valuation, which represents a preference relation over the set of tuples (v, σ)
by means of

(v, σ) � (v′, σ′) ⇔ v · σ ≤ v′ · σ′,

combines (7.4) and (7.6) to some extent. Again, it considers only one previous
case (namely the nearest neighbor) rather than all cases when evaluating an act.
The corresponding utility, however, is now weighted by the degree of similarity.
In fact, (7.8) can be seen as a special version of (7.4) when interpreting σQ×A as
a measure of relevance (cf. Section 7.1), which is then given by

ωp0,a0,M(p, a) =

{
σQ×A((p, a), (p0, a0)) if (p, a) = NNM(p0, a0)

0 otherwise
. (7.9)

According to (7.9), only the nearest neighbor is considered as a relevant obser-
vation. Of course, this idea might be generalized by taking the k ≥ 1 nearest
neighbors into account, or by introducing a threshold such that the relevance of
an observation is set to 0 in case its similarity is too small.

The valuation (7.8) defines a reasonable tradeoff between the goodness (in terms
of utility) and the relevance (in terms of similarity) of an experience. Still, it
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deserves mentioning that the degree of similarity is nothing else than a heuristic
indication of the actual degree of uncertainty of an NN estimation. In fact, it is
not true in general that a larger similarity comes along with a higher precision of
an estimation.

It has already been mentioned that a reduction of observations as realized by
(7.8) might be reasonable from a computational point of view. Particularly, this
is true if the decision maker has a large memory of cases but a relatively small
number of acts (and if it disposes of an efficient method of case retrieval). In the
reverse case where the memory is small and the set of acts to be evaluated is
large, a different strategy which passes through the set of cases, M, rather than
the set of acts, A, might be preferred: Instead of considering the most relevant
observation for each act one can proceed from an observation and attach the
related experience to the most relevant act. This idea is realized by the following
counterpart to (7.8):

V (a0) =
∑

(p,a)∈M↓:NNp0,A(p,a)=a0

σQ×A((p, a), (p0, a0)) · u(r(p, a)). (7.10)

Here,
NNp0,A(p, a) = arg max

a0∈A
σQ×A((p, a), (p0, a0)) (7.11)

denotes the problem–act tuple (p0, a0) ∈ {p0} × A which is maximally similar to
the observation (p, a) ∈ M↓. We assume (7.11) to be unique whenever some a0 ∈
A exists such that σQ×A((p, a), (p0, a0)) > 0; otherwise we let NNp0,A(p, a) = ∅ by
definition.

7.2.3 An axiomatic characterization

In [169], an axiomatization of (7.4) is proposed which assumes a preference rela-
tion +x ⊂ A × A over the set of acts to be given. As suggested by the attached
index, this preference relation depends on the experience of the decision maker: x
defines a M↓ −→ Rn function which assigns utility degrees to problem–act pairs.
It can simply be thought of as the vector

x = (x1, . . . , xn) =
(
u(r(p1, a1)), . . . , u(r(pn, an))

)
,

where xı = u(r(pı, aı)) ∈ R corresponds to the utility obtained in connection
with the ı-th problem–act tuple (pı, aı). The vector x represents the history of
the decision maker and determines the context of the new decision problem. The
information available to a decision maker which has to evaluate an act a ∈ A
might thus be illustrated in the form of a table as follows:

utility x1 x2 . . . xn

similarity σ1(a) σ2(a) . . . σn(a)
(7.12)
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The (case-based) rating of a will then be a function of the values in this table,
namely the degrees of utility obtained so far and the similarities

σı(a) = σQ×A((p0, a), (pı, aı))

between the already encountered problem–act tuples and the new tuple (p0, a).
The criterion (7.4), for instance, is given by the weighted sum

V (a) =
n∑

ı=1

σı(a)xı.

Clearly, this criterion and table (7.12) remind one of expected utility theory. In
fact, the context x plays formally the role of the probability distribution on the
set of states of nature, and the degrees of similarity σı correspond to degrees of
utility in EUT.

For the NN-rules (7.8) and (7.10) we can show representation theorems similar to
the one obtained in [169]. Consider the following axioms, which are basically for-
mulated in terms of contexts10 (,x and -x denote the asymmetric and symmetric
part of +x, respectively):

A1 Order: +x is complete and transitive for all x ∈ Rn.

A2 Continuity: For all (xk)k≥1 ⊂ Rn and all a, b ∈ A it holds true that
(
xk → x ∧ ∀ k ≥ 1 : a +xk b

)
⇒ a +x b.

A3 Additivity: For all x, y ∈ Rn and a, b ∈ A it holds true that

a ,x b ∧ a +y b ⇒ a ,x+y b.

A4 Neutrality: For all a, b ∈ A it holds true that a -(0,...,0) b.

A5 Diversity: For all distinct acts a, b, c, d ∈ A a vector x ∈ Rn exists such
that

a ,x b ,x c ,x d.

The following result has been shown in [169]: A1–A5 imply the existence of
vectors ω(a) = (ω1(a), . . . , ωn(a)) for all a ∈ A such that

a +x b ⇔
n∑

ı=1

ωı(a) · xı ≥
n∑

ı=1

ωı(b) · xı, (7.13)

where the xı are the utility degrees in (7.12). Moreover, the vectors ω(a) are
unique up to an affine transformation. Of course, the weights ωı(a) can be inter-
preted as the similarity degrees σı(a) in (7.12).

10 This contrasts with classical decision-theoretic models which are formalized in terms of acts (in the
Savage setting) or probabilistic lotteries (in the Von Neumann-Morgenstern framework).
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The valuations (7.8) and (7.10) are obviously special cases of the weighted sum
in (7.13). In order to obtain a set of axioms which imply a nearest neighbor
representation it is hence possible to extend A1–A5 in such a way that some
of the weights ωı become 0. Consider the following axiom (the k-th entry of the
vector ek is 1 and all other entries are 0):

A6 For all acts a, b, c ∈ A, x ∈ Rn, γ ≥ 0 and 1 ≤ k ≤ n it holds true that

c ,x a ∧ c ,x b ⇒ c ,x+γek
a ∨ c ,x+γek

b. (7.14)

In a certain sense, the meaning of A6 is opposite to that of axiom A5. The
latter demands that a set of acts can be put in any order by defining the context
appropriately. As opposed to this, A6 demands that a certain modification of
the context, namely the increase of one utility degree xk, can only have a limited
influence: It can reverse but one of the preferences in the antecedent part of
implication (7.14).

Lemma 7.1. Suppose A1-A6 to hold and let 1 ≤ k ≤ n. The vector

λ = (λ1, . . . , λm) = (ωk(a1), . . . , ωk(am)),

where m = card(A) ≥ 4, is of the form

λ = αeı0 + β (7.15)

for some 1 ≤ ı0 ≤ m, α ≥ 0 and β ∈ R. �

Proof. Consider a permutation π of {1, . . . , m} such that

λπ(1) ≥ λπ(2) ≥ . . . ≥ λπ(m). (7.16)

We obviously have λπ(2) = . . . = λπ(m) if (7.15) holds. Suppose by way of negation
that

λπ(2) ≥ . . . ≥ λπ(−1) > λπ() ≥ . . . ≥ λπ(m).

Axiom A5 guarantees the existence of x ∈ Rn such that aπ() ,x aπ(1) and
aπ() ,x aπ(2). Since ωk(aπ()) = λπ() < λπ(1) = ωk(aπ(1)) and ωk(aπ()) = λπ() <
λπ(2) = ωk(aπ(2)), there is obviously some γ > 0 such that

n∑
ı=1

ωı(aπ(ı0)) · (xı + γek) >
n∑

ı=1

ωı(aπ()) · (xı + γek)

for ı0 = 1 and ı0 = 2. This means aπ(1) ,x+γek
aπ() and aπ(2) ,x+γek

aπ()

according to (7.13) and, hence, contradicts A6. Consequently, the representation
(7.15) must hold with ı0 = π(1), α = λπ(1) − λπ(2) and β = λπ(2). �
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Theorem 7.2. Consider a decision problem with card(A) ≥ 4. The preference
relations +x can be represented by (7.10) iff they satisfy A1–A6. �

Proof. It is readily verified that the preference relations +x defined by (7.10)
satisfy A1–A6. Concerning the converse direction, we make use of Lemma 7.1
and the fact that β in (7.15) can be set to 0 without loss of generality. In fact,
the variation of β does not influence the relation on the right-hand side of (7.13).
Thus, for each 1 ≤ k ≤ n there is at most one 1 ≤ ı0 ≤ m such that ωk(aı0) "= 0.
We hence obtain the representation (7.10) by letting

NNp0,A(pı, aı) = {a ∈ A |ωı(a) > 0}

for all (pı, aı) ∈ M↓. �

Note that a value ωı(a) > 0 is interpreted as the similarity between (pı, aı) and
(p0, a) = NNp0,A(pı, aı). It hence corresponds to the value σı(a) in (7.12). It
is clear, however, that the complete similarity relation σQ×A cannot be deter-
mined by the preferences +x. In fact, ωı(b) = 0 does not necessarily mean that
σQ×A((pı, aı), (p0, b)) = 0 but only implies σQ×A((pı, aı), (p0, b)) < ωı(a). This
is caused by the behavior of a decision maker applying the NN principle. Ac-
cording to (7.9) it concentrates on the nearest neighbors of the observations but
completely ignores other acts to which it assigns a relevance of 0. Thus, the pref-
erences +x can determine only the relevance of a case but not its similarity to
(p0, a0).

Now, consider again the decision rule (7.8). Axiom A5 is obviously not satisfied
in connection with this criterion. Indeed, we have

b +x c +x d or d +x c +x b

for all x ∈ Rn if the acts b, c, d ∈ A have the same nearest neighbor (p, a) and if

σQ×A((p, a), (p0, b)) < σQ×A((p, a), (p0, c)) < σQ×A((p, a), (p0, d)).

Observe, however, that the act c will then be ignored by the decision maker in the
sense that it is not chosen anyway (except perhaps if V (b) = V (c) = V (d) = 0).
Besides, act b becomes interesting only if all acts have a negative (estimated)
utility according to (7.8), a situation that can formally be avoided (see below).
We can hence restrict the decision rule (7.8) to a set Ap0 of acts as follows: For
the problem–act tuple (pı, aı) ∈ M↓ define

Ap0(pı, aı) = arg max
a∈A : NNM(p0,a)=(pı,aı)

σQ×A((p0, a), (pı, aı))

whenever the set on the right-hand side is not empty. For the sake of simplicity,
we again assume Ap0(pı, aı) to be unique. The set Ap0 is then defined as

Ap0 = {Ap0(pı, aı) | 1 ≤ ı ≤ n,Ap0(pı, aı) exists }. (7.17)
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It can be thought of as the set of relevant acts. As already suggested above, a de-
cision based on (7.8) might appear somewhat peculiar if V (a0) < 0 for all a0 ∈ A.
Observe, however, that this problem can formally be avoided by means of a proper
definition of acts. For instance, one might introduce a new act a∗ which stands for
“doing anything” or “trying something completely new.” When adding a dummy
case (p∗, a∗, 0) to M, V (a∗) = 0 is guaranteed by letting σQ×A((p, a), (p∗, a∗)) = 1
if (p, a) = (p∗, a∗) and 0 otherwise. Thus, a∗ is preferred to each act with a nega-
tive estimated utility. This is clearly in accordance with the idea of an aspiration
level in [167].

Note that each act a ∈ Ap0 in (7.17) has a unique nearest neighbor in M↓.
Moreover, for each (pı, aı) ∈ M↓ there is at most one act a ∈ A such that (pı, aı)
is the nearest neighbor of (p0, a) (which implies card(Ap0) ≤ card(M)). It is hence
obvious that A5 is satisfied for Ap0 . Besides, it is not difficult to show that the
preference relations induced by (7.8) also satisfy the following axiom:

A7 For all x, y ∈ Rn and a, b ∈ A it holds true that

a +x b ∧ a +y b ⇒ a +max{x,y} b,

where the maximum of the vectors x and y is defined component-wise.

Theorem 7.3. Consider a decision problem with card(A) ≥ 4. The preference
relations +x can be represented by (7.8) iff they satisfy A1–A7. �

Proof. Again, A1–A7 are obviously satisfied when representing +x by (7.8).
In order to show the converse direction suppose A1–A7 to be satisfied. Given
A1–A6, is has been shown in Theorem 7.2 that (7.13) holds in such a way that
ωı(a)ωı(b) = 0 for all acts a "= b. In order to establish a representation of +x

by (7.8), we further have to show that ı "=  ⇒ ωı(a)ω(a) = 0 for all acts a.
Thus, assume the existence of an act a such that ωı(a) > 0 and ω(a) > 0 for
1 ≤ ı "=  ≤ n. Moreover, let the contexts x and y be defined as follows:

xk =




ω(a) if k = ı

−ωı(a) if k = 

0 if ı "= k "= 

, yk =




−ω(a) if k = ı

ωı(a) if k = 

0 if ı "= k "= 

.

It is readily verified that V (a) = 0 in both contexts. Moreover, V (b) = 0 does
also hold true for all other acts since b "= a entails ωı(b) = ω(b) = 0. Thus,
b +x a and b +y a for any act b "= a. In the context max{x, y}, however, we have
V (a) = 2ωı(a)ω(a) > 0 and, hence, a ,max{x,y} b. This contradicts A7. �

7.3 Fuzzy modeling of case-based decisions

Case-based decision making has been realized in [101] as a kind of case-based ap-
proximate reasoning. This approach is in line with methods of qualitative decision
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theory. In fact, the assumption that uncertainty and preference can be quantified
by means of, respectively, a precise probability measure and a cardinal utility
function (as it is assumed in classical decision theory) does often appear unreal-
istic. As opposed to (7.2), the approach discussed in this section only assumes an
ordinal setting for modeling decision problems, i.e., ordinal scales for assessing
preference and similarity. This interpretation should be kept in mind, especially
since both scales will subsequently be taken as (subsets of) the unit interval.

7.3.1 Basic measures for act evaluation

Let � be a multiple-valued implication connective. Given a memory M and
a new problem p0, the following (estimated) utility value is assigned to an act
a ∈ A:

V ↓
p0,M(a)

df
= min

(p,a,r)∈M
σQ(p, p0) � u(r). (7.18)

This valuation supports the idea of finding an act a which has always resulted in
good outcomes for problems similar to the current problem p0. Indeed, (7.18) can
be considered as a generalized truth degree of the claim that “whenever a has
been applied to a problem p similar to p0, the corresponding outcome has yield a
high utility.” An essential idea behind (7.18) is that of avoiding the accumulation
and compensation effect caused by the decision criterion (7.2) (cf. Section 7.1),11

since these effects do not always seem appropriate (cf. Section 7.6).

As a special realization of (7.18) the valuation

V ↓
p0,M(a)

df
= min

(p,a,r)∈M
max{n(h(σQ(p, p0))), u(r)},

is proposed, where h is an order-preserving function which assures the linear scales
of similarity and preference to be commensurable and n is the order-reversing
function of the similarity scale. By taking n as x �→ 1 − x in [0, 1] and h as the
identity, we obtain

V ↓
p0,M(a)

df
= min

(p,a,r)∈M
max{1 − σQ(p, p0), u(r)}. (7.19)

This criterion can obviously be seen as a qualitative counterpart to (7.2). Besides,
the criterion

V ↑
p0,M(a)

df
= max

(p,a,r)∈M
min{σQ(p, p0), u(r)} (7.20)

is introduced as an optimistic counterpart to (7.19). It can be seen as a formal-
ization of the idea to find an act a for which there is at least one problem which
is similar to p0 and for which a has led to a good result. Again, let us mention
that expressions (7.19) and (7.20) are closely related to decision criteria which

11 Note that the accumulation effect is also the main motivation for the normalization (7.3).
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have recently been derived in [123] in connection with an axiomatic approach to
qualitative decision making under uncertainty.

In the more general context of problem–act similarity, the decision rules (7.19)
and (7.20) become

V ↓
p0,M(a0)

df
= min

(p,a,r)∈M
max{1 − σQ×A((p, a), (p0, a0)), u(r)}, (7.21)

V ↑
p0,M(a0)

df
= max

(p,a,r)∈M
min{σQ×A((p, a), (p0, a0)), u(r)}. (7.22)

In order to make the basic principles underlying the above criteria especially
obvious, suppose the qualitative utility scale to be given by U = {0, 1}. That is,
only a crude distinction between “bad” and “good” outcomes is made. (7.21) and
(7.22) can then be simplified as follows:

V ↓
p0,M(a0)

df
= 1 − max

(p,a,r)∈M : u(r)=0
σQ×A((p, a), (p0, a0)), (7.23)

V ↑
p0,M(a0)

df
= max

(p,a,r)∈M : u(r)=1
σQ×A((p, a), (p0, a0)). (7.24)

According to (7.23), the decision maker only takes cases (p, a, r) with bad out-
comes into account. An act a0 is discounted whenever (p0, a0) is similar to a
corresponding problem–act tuple (p, a). Thus, the agent is cautious and looks
for an act that it does not associate with a bad experience. According to (7.24),
it only considers the cases with good outcomes. An act a0 appears promising if
(p0, a0) is similar to a tuple (p, a) which has yielded a good result. In other words,
the decision maker is more adventurous and looks for an act that it associates
with a good experience.

7.3.2 Modification of the basic measures

As noted in [125], (7.19) makes only sense if the memory contains at least one
problem p such that σQ(p, p0) = 1 and a has been chosen for solving p. Otherwise,
it may happen that (7.19) is very high even though none of the problems contained
in the memory is similar to the current problem p0.

12 Particularly,

({
p ∈ Q | (p, a, r) ∈ M ∧ σQ(p, p0) > 0

}
= ∅
)

⇒
(
V ↓

p0,M(a) = 1
)

,

which does not seem satisfactory.

Modifications of (7.19) and its optimistic counterpart have been proposed in order
to cope with these difficulties. The modified version of (7.19) is based on some
kind of normalization of the similarity function for each act a and a discounting

12 Notice that the averaged similarity criterion (7.3) suffers from the same drawback.
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which takes the absence of problems similar to p0 into account. More precisely,
the modified measure is given by

V ↓
p0,M(a) = min

{
hM(a, p0), min

(p,a,r)∈M
max{1 − σa

Q(p, p0), u(r)}
}

, (7.25)

where
hM(a, p0) = max

(p,a,r)∈M
σQ(p, p0),

and σa
Q(·, p0) denotes a normalization13 of σQ(·, p0), e.g.,

σa
Q(p, p0) =

{
1 if σQ(p, p0) = hM(a, p0)

σQ(p, p0) if σQ(p, p0) < hM(a, p0)
.

The idea behind (7.25) is that the willingness of a decision maker to choose act
a is upper-bounded by the existence of problems which are completely similar to
p0 and to which a has been applied. Moreover, σQ(·, p0) is normalized in order
to obtain a meaningful degree of inclusion. Thus, (7.25) corresponds to the com-
pound condition that there are problems similar to p0 to which act a has been
applied and the problems which are most similar to p0 are among the problems
for which a has led to good results. Observe that (7.19) is retrieved from (7.25)
as soon as hM(a, p0) = 1. Moreover, note that a corresponding modification can
also be defined for (7.20):

V ↑
p0,M(a) = max

{
1 − hM(a, p0), max

(p,a,r)∈M
min{σa

Q(p, p0), u(r)}
}

. (7.26)

The criteria (7.25) and (7.26) guarantee that V ↓
p0,M(a) ≤ V ↑

p0,M(a) which is not
necessarily the case for (7.19) and (7.20).

7.3.3 Interpretation of the decision criteria

As opposed to (7.2), the criteria (7.19) and (7.20) do obviously not focus on some
kind of average performance, which hardly makes sense within an ordinal setting.
Rather, they should be considered from the same point of view as qualitative
decision rules such as Maximin [123]. Indeed, the application of (7.18) seems
reasonable, for instance, if an agent aims at minimizing the occurrence of worst
case outcomes in competition with other agents or if only an ordinal preference
relation on outcomes is assumed [52].

We shall now propose two interpretations of (7.19).14 The first one is that of an
approximation of a (generalized) Maximin evaluation: Observe that we can write
(7.19) as

13 Note that this normalization is again defined for each act individually.
14 These interpretations can be transferred to (7.20) in a straightforward way.
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V ↓
p0,M(a) = min

0≤k≤m
max{1 − σk, vk}, (7.27)

where the values 0 = σ0 < σ1 < . . . < σm = 1 constitute the (finite) set
{σQ(p, p′) | p, p′ ∈ Q} of possible similarity degrees of problems and

vk = min Vk = min{u(r) | (p, a, r) ∈ M, σQ(p, p0) = σk}

is the lowest utility obtained in connection with act a for problems which are
σk-similar to p0. Moreover, vk = 1 by definition if Vk = ∅ (which is just the reason
for the problem that (7.19) becomes large if no similar observations have been
made).

According to (7.27), the valuation (7.19) of an act is completely determined by
the lower bounds vk (0 ≤ k ≤ m) which are derived from the memory M (and
discounted according to respective degrees of similarity). This reveals that (7.19)
can indeed be seen as some kind of “experience-based” approximation of the
Maximin principle. The case in which all problems are completely similar makes
this especially apparent. Then, (7.19) evaluates an act a simply according to the
worst consequence observed so far. More generally, the value vk can be seen as
an estimation of the lower utility bound

wk = min{u(r(p, a)) | p0 "= p ∈ Q, σQ(p, p0) = σk},

i.e., the smallest degree of utility which can be obtained in connection with act
a for (not necessarily encountered) problems from Q which are σk-similar to p0.
Then, V ↓

p0,M(a) can be interpreted as an approximation of

W ↓
p0

(a) = min
0≤k≤m

max{1 − σk, wk},

which defines a case-based generalization of a Maximin-evaluation. In fact,
W ↓

p0
(a) is equal to V ↓

p0,M(a) if a has already been applied to all problems (up
to p0) from Q, i.e., if {p | ∃ r ∈ R : (p, a, r) ∈ M} = Q \ {p0}.
According to a second (more logic-oriented) interpretation, (7.18) might be seen as
the (generalized) truth degree of a proposition characterizing the decision maker’s
preferences concerning acts. In our case, those acts are preferred which have al-
ways resulted in good outcomes for similar problems. Then, (7.18) defines the
degree to which an act meets the requirements and, hence, induces a correspond-
ing preference relation over acts. In a certain sense, this approach can be seen
as a “compiled” decision model which skips the estimation of utility and relates
similarity or, more generally, certain properties of an act to preference more di-
rectly. That is to say, the agent already knows which properties a preferred act
should have. The idea of such a compiled model becomes even more obvious if
we consider (crisp) rules of the form “if the problem has property x then choose
an act with property y”, such as “if it looks rainy then take an umbrella with
you.” Rules of this kind are often set up if a decision problem is solved frequently.
They represent a sort of routine decision and reflect the agent’s knowledge that
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a decision analysis, i.e., the estimation of utility degrees for all decisions, would
result in choosing a certain act if the problem has a related property anyway.

Even though formally equivalent, the two interpretations are different from a
semantical point of view. For instance, interpreting the value V (a) assigned to
an act a which has not yet been tried as a degree to which this act meets the
agent’s idea of an “ideal” decision seems less critical than viewing this value as
an estimated utility. In fact, the latter is merely a “default utility.” As opposed
to this, the former interpretation does principally not assume observations at all.
Rather, V (a) can be seen as reflecting the agent’s attitude toward uncertainty.
Assigning a high default value to a then simply means that a not yet applied
act seems attractive and, hence, amounts to model an uncertainty-prone decision
maker who is willing to try new acts.

7.4 Fuzzy quantification in act evaluation

In some situations, the extremely pessimistic and optimistic nature of the crite-
ria (7.19) and (7.20), respectively, might appear at least as questionable as the
accumulation in (7.2). Here we shall propose a generalization of the decision rule
(7.19) which is a weakening of the demand that an act has always produced good
results for similar problems. In fact, one might already be satisfied if a turned
out to be a good choice for most similar problems, thus allowing for a few excep-
tions [125]. In other words, the idea is to relax the universal “for all” quantifier.
Observe that a similar generalization of (7.20), which replaces “there exists” by
“there are at least several” and, hence, corresponds to a strengthening of this
decision principle, seems reasonable as well. It can be obtained analogously.

Consider a finite set A of cardinality m = |A|. In connection with propositions
of the form “most elements of A have property X” the fuzzy quantifier “most”
can be formalized by means of a fuzzy set [132, 403],15 the membership function
µ : {0, 1, . . . , m} −→ [0, 1] of which satisfies

∀ 1 ≤ k ≤ m − 1 : µ(k) ≤ µ(k + 1) and µ(m) = 1. (7.28)

The special case “for all” then corresponds to µ(k) = 0 for 0 ≤ k ≤ m − 1 and
µ(m) = 1. Given some µ satisfying (7.28), we define an associated membership
function µ by µ(0) = 0 and µ(k) = 1 − µ(k − 1) for 1 ≤ k ≤ m (see e.g. [109]). A
membership degree µ(k) can then be interpreted as quantifying the importance
that the property X is satisfied for k (out of the m) elements.

Consider a memory M of cases, a problem p0 ∈ Q, an act a ∈ A, and let
Ma = {(p′, a′, r′) ∈ M| a = a′}. Moreover, let µ formalize the above-mentioned
“for most” concept. A reasonable generalization of (7.19) is then given by

15 Other possibilities of expressing a fuzzy quantifier exist as well, including the use of order-statistics
[300] and an ordered weighted minimum or maximum [135].
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Vp0,M(a) = min
0≤k≤|Ma|

max {1 − µ(k), δa(k)} , (7.29)

where
δa(k) = max

M′⊂Ma : |M′|=k
min

(p,a,r)∈M′
max{1 − σQ(p, p0), u(r)}

defines the degree to which “the act a has induced good outcomes for similar
problems k times.” The extent to which a (small) degree δa(k) decreases the
overall valuation of a is upper bounded by 1−µ(k), i.e., by the respective level of
(un-)importance. Observe that we do not have to consider all subsets M′ ⊂ Ma

of size k for deriving δa(k). In fact, for computing Vp0,M(a) it is reasonable to
arrange the m = |Ma| values v = max{1 − σQ(p, p0), u(r)} in a non-increasing
order v1 ≥ v2 ≥ . . . ≥ vm. Then, (7.29) is equivalent to

Vp0,M(a) = min
0≤k≤|Ma|

max {1 − µ(k), vk} ,

where v0 = 1.

The generalized criterion (7.29) can be useful, e.g., in connection with the idea
of repeated decision making which arises quite naturally in connection with a
case-based approach to decision making. We might think of different scenarios
in which repeated problem solving becomes relevant. A simple model emerges
from the assumption that problems are chosen repeatedly from Q according to
some selection process which is not under the control of the agent, such as the
repeated (and independent) selection of problems according to some probability
measure. More generally, the problem faced next by the agent might depend on
the current problem and the act which is chosen for solving it. A Markov Deci-

sion Process extended by a similarity measure over states (which correspond to
problems) may serve as an example. Besides, we might consider case-based deci-
sion making as a reasonable strategy within a (repeated) game playing framework
like the iterated prisoner’s dilemma [19].

As a concrete example let us consider a very simple model of repeated decision
making: Suppose that the agent faces the same problem p repeatedly and that the
result associated with an act a ∈ A = {a1, a2, a3} depends on a state of nature
ω ∈ Ω = {ω1, ω2, ω3}. The state ω is assumed to be chosen randomly (every
time) and is not part of the problem description. We assume the probability for
ω = ω3, which is also not known to the decision maker, to be positive but relatively
small. Moreover, the results (= utilities) associated with act–state tuples shall be
specified as follows:

ω1 ω2 ω3

a1 1 1 0
a2 1 0 0
a3 0 0 0
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Recall that 0 and 1 are interpreted as ordinal degrees of utility; they only indicate
that one outcome is preferred to the other one, which might be encoded by −1
and 1 as well.16

Now, since a1 dominates a2 and a3 (strictly), it is obviously the best choice.
Observe, however, that the valuation of an act a according to (7.19) simply cor-
responds to the worst outcome observed in connection with this act, i.e.

V ↓
p0,M(a) =

{
0 if (p, a, 0) ∈ M
1 if (p, a, 0) "∈ M .

Thus, we have V ↓
p0,M(a1) = 0 as soon as a1 has been selected for solving p and

ω = ω3. From this moment of time, a1 and, sooner or later, a2 and a3 are rated
equally and an act might be selected, e.g., by flipping a coin. In other words,
the problem which occurs when basing decisions on (7.19) is the fact that this
criterion does not, in the long run, discriminate between two acts even though the
first one strictly dominates the second one. It is interesting to compare this with
the Maximin rule which also does not discriminate between a1 and a3.

17 This,
however, seems to be acceptable more easily than the same property for (7.19): If
used in connection with one-shot decisions, the Maximin rule does not memorize
experience from previous problem solving epochs. As opposed to a case-based
decision rule, it does not have the opportunity of learning and experimenting in
the course of a repeated problem solving process.18

The aforementioned drawback can be avoided by (7.29) in conjunction with a
proper formalization of the “for most” concept. In fact, since (7.29) allows for a
few exceptions (and ω3 is assumed to occur but seldom) we will probably have
Vp0,M(a2) = Vp0,M(a3) = 0 < 1 = Vp0,M(a1). Then, the relative frequency of
selecting a1 will converge toward 1 (instead of 1/3, as it would do in connection
with a random choice between equally rated acts a1, a2, a3). More precisely, sup-
pose the “for all” quantifier to be defined such that it yields 1 if the property
under consideration is satisfied in at least 100(1 − ε) percent of the cases and 0
otherwise. In terms of our notation above, this means

µ(k) =

{
1 if k/m ≥ 1 − ε

0 if k/m < 1 − ε
.

We will then have Vp0,M(a1) = 0 if the proportion πm of cases in which ω3 has
occurred in connection with a1 exceeds ε, where m is the number of times a1 has
been chosen. Otherwise, we have Vp0,M(a1) = 1. The probability that πm > ε and,
hence, the probability that Vp0,M(a1) = 0 will be small if ε is chosen sufficiently
large in relation to the probability of the occurrence of ω3. On the other hand, ε

16 This clearly exemplifies that the application of (7.2) does hardly make sense.
17 A discrimination can be achieved by extensions of Maximin, such as the ordinal decision rules

Discrimin and Leximin [152].
18 This argument is no longer valid in a game playing context. Then, however, Maximin can be justified

by the assumption of an opponent acting optimally.
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should not be made too large since otherwise Vp0,M(a2) = 1 as well, which means
that a1 and a2 are rated equally. An interesting idea arising in this context, which
leads to a further extension of the model, is that of learning an optimal “for most”
concept (from a parameterized class of membership functions). This can be seen
as the counterpart to learning an optimal aspiration level in CBDT [168]. In our
example, where the membership function µ depends only on ε, this parameter
itself can be considered as an aspiration level.

Notice that the probability of πm > ε decreases with m if the probability that
ω = ω3 is smaller than ε. Thus, the probability of disqualifying a1 is, if at all,
relatively large at the beginning of a decision sequence, i.e., as long as a1 has
not been tried very often. This problem can be alleviated by means of a more
flexible specification of the “for most” concept. Namely, the smaller the value of
m, the less restrictive this concept should be specified in terms of the membership
function µ. The definition above, for instance, could be generalized such that ε
depends on m, i.e., µ(k) = 1 if k/m ≥ εm and µ(k) = 0 otherwise, with a
non-increasing sequence (εm)m≥0.

Let us now pass over from the (case-based) valuation of single acts (in the context
of a certain problem) to the valuation of complete decision strategies. Of course,
the question when to prefer a certain decision rule to an alternative criterion is
by no means obvious in connection with the assumption of an ordinal setting
for decision making. In fact, all kinds of “averaging” like, e.g., the derivation of
the mean of the obtained utility values, are out of the question. Using the worst
outcome, which might appear natural if (7.19) is seen as a kind of (case-based)
analogue of the Maximin decision rule, seems critical as well. In fact, within a
case-based decision framework it is principally not possible to fully realize the
idea underlying this (pessimistic) principle. Namely, an agent knows the possible
consequences of a decision only after having applied the corresponding act. Then,
however, the worst outcome has already occurred. In other words, it is impossible
for a case-based decision maker to avoid the worst outcome in any case or to
choose acts according to a (proper) Maximin principle.

In connection with a model in which problems are chosen repeatedly according to
some probability it seems reasonable to prefer a decision strategy S to a strategy
S ′ if the former dominates the latter (stochastically) in the following sense: Let
U = {u1, u2, . . . , um} such that u1 < u2 < . . . < um define the (linearly ordered)
utility scale, and denote by P n

k (S) the probability of obtaining the utility uk in
the n-th step of a decision sequence if strategy S is used.19 Then, S dominates
S ′ (stochastically) if

∀n ∈ N ∀ 1 ≤ k ≤ m :
m∑

ı=k

P n
ı (S ′) ≤

m∑
ı=k

P n
ı (S). (7.30)

19 Observe that the sequences (a(n))n≥1 of decisions and (u(n))n≥1 of obtained outcomes resp. utility
values are well-defined stochastic processes. In fact, for a (deterministic or stochastic) case-based
decision procedure, the n-th decision is a function of the stochastic sequence of the first n problems
(p(1), . . . , p(n)).
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For our example above, we have U = {0, 1}, i.e., P n
0 (S) and P n

1 (S) simply corre-
spond to the probability of obtaining a “bad” and a “good” outcome, respectively,
in connection with the n-th decision. Moreover, a decision criterion S is preferred
to S ′ in the sense of (7.30) if P n

1 (S) ≥ P n
1 (S ′) for all n ∈ N.

Appendix F shows simulation results for different decision strategies Sε which
differ only with respect to the choice of ε, i.e., the definition of the “for most”
quantifier. The states ω1, ω2, ω3 occur with probability 0.6, 0.3, and 0.1, respec-
tively. Acts are evaluated according to (7.29), and ties between equally rated
decisions are broken by coin flipping.

The results confirm the supposition that ε should satisfy 0.1 < ε < 0.4. The
critical values are ε = 0.1 and ε = 0.4. For ε < 0.1, the agent is overly ambitious,
and all acts will sooner or later be judged equally and, hence, P n

1 (Sε) → 1/2 as
n → ∞. Letting 0.4 < ε is “too tolerant” in the sense that Vp0,M(a2) = 1 in
the long term, which means that (7.29) does not differentiate between a1 and a2

and, therefore, P n
1 (Sε) → 3/4 as n → ∞. Note that the estimation of P n

1 (Sε)
from the sequence (u(n))n≥1 of obtained utility values is a good starting point for
learning an optimal value for ε, i.e., for choosing an optimal “for most” concept
from {µε | 0 ≤ ε ≤ 1}.

7.5 A CBI framework of CBDM

CBDT as introduced in [167] is largely motivated by practical problems arising
in connection with EUT, notably the considerable need of precise information for
modeling decision problems. Indeed, the specification of an EUT model might
often be complicated and expensive, especially when having to solve relatively
novel decision problems. In this section, we shall propose a framework of CBDM

which also makes use of case-based reasoning in order to alleviate this problem,
but which remains closer to classical decision theory. Loosely speaking, the idea is
to apply the methods of case-based inference (CBI) discussed in previous chapters
in order to support the modeling of decision problems.

7.5.1 Generalized decision-theoretic setups

The basic EUT setup (in the finite case) can be illustrated in the form of a table
as follows:

ρ1 ρ2 . . . ρn

ω1 ω2 . . . ωn

a1 u11 u12 . . . u1n

a2 u21 u22 . . . u2n
...

...
...

. . .
...

am um1 um2 . . . umn

(7.31)
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The ω constitute the set Ω of states of nature, and each ω is assumed to occur
with probability ρ. Choosing act aı yields utility uı if the state of nature is ω,
which means that the expected utility of aı is given by

∑n
=1 ρuı. The expected

utility framework can be generalized in order to deal with infinite sets of acts
and/or states of nature. Subsequently, however, we assume A and Ω to be finite.

When modeling a decision problem, some of the information in (7.31) might be
incomplete or even missing. This concerns mainly the probability distribution on
Ω and the utility function u : A×Ω −→ U which assigns a utility degree to each
tuple consisting of an act and a state of nature. The basic idea which is discussed
in this section and which characterizes CBDM is the use of case-based inference
for deriving corresponding estimations. Of course, this approach presupposes the
existence of cases. As will be seen, there are different possibilities for defining a
case, each of which leads to a different extension of the basic EUT setup.

For instance, let Q be a set of problems and suppose an EUT setup (7.31) to be
associated with each problem p ∈ Q:

ρp
1 ρp

2 . . . ρp
n

ω1 ω2 . . . ωn

a1 up
11 up

12 . . . up
1n

a2 up
21 up

22 . . . up
2n

...
...

...
. . .

...
am up

m1 up
m2 . . . up

mn

(7.32)

A case is then defined as a triple (p, ρp, up), where ρp and up denote the probability
distribution and utility function associated with the problem p, respectively. (The
set of acts, A, and the set of states of nature, Ω, are assumed to be fixed.) Within
the framework of CBI, the problem p corresponds to an input. Moreover, ρp and
up mark the outcome associated with a case, which can hence be written as a
tuple 〈p, (ρp, up)〉. Note that such a case reduces to a tuple of the form 〈p, ρp〉 or
〈p, up〉 if either up or ρp is fixed in advance.

Suppose a decision maker to have a memory M of cases at its disposal. Given
a new problem p0, it can then make use of case-based inference in order to sup-
port the specification of a related EUT setup. This approach relies on the CBI

assumptions

– that similar problems give rise to similar probability distributions on Ω, and/or

– that an act yields similar utilities for similar problems (under the same state of
nature).

Example 7.4. Consider different types of urn experiments as an example: Let a
state of nature, ω, correspond to the number of black balls in a random sample
of size k. The sample is drawn from an urn which contains a large number K of
balls, each of which is either black or white. An act a corresponds to an estimation
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of ω, and the utility u(a, ω) depends on the accuracy of this estimation, i.e., on
the (absolute) difference |a − ω|. Moreover, suppose that a problem is associated
with the experimental conditions under which a sample is taken. The problems
“simple selection with replacement” and “simple selection without replacement”
can be considered as being similar if k/K is small. Indeed, the hypergeometric
distribution which defines ρ in the latter case can then be approximated by the
binomial distribution which is relevant if selected balls are replaced. From a CBI

perspective, knowledge of the distribution ρ for the first problem can hence be
seen as valuable information for defining the EUT setup for the (somewhat more
complicated) second problem. Observe that the utility function is assumed to be
known (and identical) for both problems. �

An alternative approach is to consider a setting in which the probability over Ω
and/or the utility function depend not only on the problem but also on the act:

ρ
(p,a)
1 ρ

(p,a)
2 . . . ρ

(p,a)
n

ω1 ω2 . . . ωn

a u
(p,a)
1 u

(p,a)
2 . . . u

(p,a)
n

(7.33)

A case can then be seen as a tuple 〈(p, a), µp,a〉, where µp,a is a probability distri-
bution on U . This definition is in accordance with the idea of a non-deterministic
CBI setup as introduced in Section 2.4.2, where a random outcome is associated
with each input. It can be considered as a generalization of CBDT which assumes
the outcome associated with a problem–act tuple (p, a) to be deterministic. Thus,
both frameworks (7.32) and (7.33) combine aspects from EUT and CBDT. The
former, however, seems to be closer to EUT, whereas the latter is quite similar
to CBDT.

Observe that a setup

ρ
(p0,a0)
1 ρ

(p0,a0)
2 . . . ρ

(p0,a0)
n

a0 u
(p0,a0)
1 u

(p0,a0)
2 . . . u

(p0,a0)
n

(7.34)

makes also sense within the original context of CBDT where a problem–act tuple
has a unique outcome, i.e., if a case is a triple (p, a, r) resp. a tuple 〈(p, a), r〉.
Then, however, an unknown outcome (or utility) is not considered as a random
variable (in the proper sense), and an uncertainty measure ηp0,a0 associated with
a new problem p0 and an act a0 is interpreted as a quantification of a (subjective)
belief concerning this outcome. Such a framework can be seen as defining an
extended Bayesian approach in which CBI is used for assessing a (prior) measure
of uncertainty over Ω. Symbolically, it can be illustrated as follows:

(p1, a1, r1), . . . , (pn, an, rn)
p0, a0

σQ×A, σR




CBI−→ ηp0,a0 . (7.35)
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7.5.2 Decision making using belief functions

The type of uncertainty measure derived in (7.35) depends on the way in which
CBI is realized. Within the probabilistic framework of Section 4.5, for instance,
the measure ηp0,a0 takes the form of a belief function:

ηp0,a0 = Bel(H,M, (p0, a0)) =
n∑

ı=1

αı · Belı(H, (p0, a0)),

where H is a probabilistic similarity hypothesis and

Belı(H, (p0, a0)) = σ
(−1)
R
(
rı, H(σQ×A((p0, a0), (pı, aı)))

)
denotes the belief function associated with the ı-th case (pı, aı, rı) ∈ M. In this
context, the probability distribution in (7.34) is replaced by a belief function.
Consequently, the concept of an expected utility has to be generalized in order
to evaluate an act. In other words, a framework of CBDM can be obtained by
combining the CBI method of Section 4.5 and a generalization of expected utility
based on belief functions. In recent years, several approaches to decision making
on the basis of belief functions have been proposed in literature. Subsequently,
we shall describe some of them very briefly.

Consider a belief function Bel on a set of outcomes, R, and let m denote the mass
distribution associated with Bel. Moreover, let F be the set of focal elements of
m. A generalized expected utility can then be defined in terms of the Choquet
integral

∫ ch

u dBel =

∫ ∞

0

Bel([u > t]) dt +

∫ 0

−∞
(Bel([u > t]) − 1) dt, (7.36)

where [u > t]
df
= {r ∈ R |u(r) > t}. This approach is a pessimistic strategy in

the sense that (7.36) is equal to the minimum (the infimum in the non-finite case
[390, 389]) of a class of associated classical expected utilities:

∫ ch

u dBel = min
µ∈PBel

∫
u dµ, (7.37)

where
PBel = {µ ∈ P(R) | ∀X ⊂ R : Bel(X) ≤ µ(X)} (7.38)

is the set of probability measures over R compatible with Bel. As (7.38) reveals,
this approach favors a lower probability interpretation of belief functions.

Choquet expected utility now plays an important role in research on axiomatic
non-expected utility. This research direction is motivated by the paradoxes of
Allais [13] and Ellsberg [140] which call the validity of the assumptions un-
derlying EUT into question. A “behavioral foundation” of Choquet expected
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utility in the context of decision making under uncertainty has first been given
by Schmeidler [334], who uses the decision-theoretic setup of Anscombe &

Aumann [15]. A corresponding extension of the approach of Savage [331] has
been proposed in [166]. These works have been refined by several authors. An
appealing axiomatic characterization of non-additive expected utility somehow
unifying [334] and [166] has been developed in [330]. In [190] it is shown that a
common characterizing property of this line of research is a certain weakening of
Savage’s axioms which essentially restricts the well-known sure thing principle
to so-called comonotonic acts.

Related models for decision making with belief functions have also been proposed
in [210]. The axiomatic theory developed in [212] gives a foundation to these de-
cision models. Here, situations are considered in which information is ambiguous
and not fully probabilizable. It is argued that entirely vague information should
be processed according to the (objective) symmetry principles of complete igno-
rance [16, 69] (rather than to the principle of insufficient reason). Again, the most
important aspect of the decision-theoretic framework developed in [212] is a nat-
ural weakening of Savage’s sure thing principle [331]. It is shown that, within
the resulting axiomatic setting, decisions can be represented by belief functions
on outcomes. More precisely, a representation of a preference relation on the set
of acts is of the form

f �→
∑
F∈F

mf (F ) v(rF , RF ) , (7.39)

where mf is the Möbius transform (mass distribution) associated with the belief
function induced by the act f : A −→ R on the set of outcomes. Moreover, rF is
the worst and RF is the best outcome within F ∈ F . As as special case of (7.39)
the functional∑

F∈F
mf (F ) (α(rF , RF ) u(rF ) + (1 − α(rF , RF )) u(RF )) (7.40)

is proposed, where u reflects the agent’s attitude toward outcomes in decision
under risk. The function α is interpreted as an index of the like or dislike of
ambiguity.

A related generalization of the Von Neumann-Morgenstern framework has
been proposed by Jaffray [211]. He combines the axioms of linear utility theory
with axioms of rational decision making under mixed uncertainty [70] in order
to justify a family of so-called Hurwicz α-criteria. According to these criteria, a
belief function Bel over the set of outcomes R is evaluated by

α inf{Eµ(u) |µ ∈ PBel} + (1 − α) sup{Eµ(u) |µ ∈ PBel}, (7.41)

where Eµ(u) denotes the expected utility under the probability measure µ. The
use of Hurwicz criteria is also advocated by Strat [361].

Yager [405] defines a generalized expected utility of the form
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∑
F∈F

m(F ) · φ(F ) (7.42)

which makes use of a set-function φ : 2R −→ R. The problem of assigning a
degree of utility, φ(F ), to a focal set F is considered in the context of decision
making under ignorance. It is proposed to solve this problem by applying an
OWA (Ordered Weighted Average) operator20 [404] to the collection u(F ) of
utility degrees u(r) (r ∈ F ).21 That is, φ(F ) = OWA(u(F )). Special cases of this
operator include the well-known decision rules

φ(F ) = min u(F ),

φ(F ) = α min u(F ) + (1 − α) max u(F ),

φ(F ) =
∑
r∈F

u(r)/ card(F ).

Note that the set-function φ in (7.42) allows one to model the agent’s decision
behavior under complete ignorance in a more general way than the extreme (pes-
simistic) valuation by means of the Choquet integral (where always the worst
case is assumed) or the Hurwicz criteria (7.40) (where φ(F ) depends only on the
worst and the best element in F ).

As (7.37) shows, the use of Choquet integration comes down to deriving a clas-
sical expected utility based on the selection of a probability measure compatible
with the belief function. In [350] it has been proposed to apply a generaliza-
tion of Laplace’s insufficient reason principle in order to select a corresponding
distribution:

µ({r}) =
∑
F∈F

IF (r) m(F )/ card(F ). (7.43)

The transformation (7.43), which corresponds to the betting function (4.22) in-
troduced in Section 4.5.1, has been justified axiomatically in the context of the
transferable belief model which favors a purely subjective (and non-probabilistic)
interpretation of belief functions. Note that (7.43) is the distribution of maximum
entropy among PBel, i.e., it can also be derived from the principle of maximum
entropy.

7.5.3 Possibilistic decision making

In Chapter 6, we have proposed a possibilistic method of case-based inference
which makes use of implication-based fuzzy rules. According to this approach,
uncertainty concerning the outcome r0 is characterized by means of a possibility
distribution:

20 Operators of this type are also known as linear order statistics in the field of robust statistics.
21 Each outcome r ∈ F contributes exactly one element to u(F ), i.e., the same utility degree might

appear several times in u(F ).
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πa0,M(r′) = min
(p,a,r)∈M

σQ×A((p0, a0), (p, a)) � σR(r, r′) (7.44)

for all r′ ∈ R, where � is a generalized implication operator. An alternative
approach using conjunction-based (example-based) fuzzy rules has been outlined
in Chapter 5. It leads to the possibility distribution22

πa0,M(r′) = max
(p,a,r)∈M

min{σQ×A((p, a), (p0, a0)), σR(r, r′)}. (7.45)

Suppose that outcomes are directly given in terms of utilities, i.e. U = R. (Oth-
erwise, a possibility distribution on the set of utility degrees can be obtained via
v �→ maxr : u(r)=v πa0,M(r).) The problem of choosing an act then turns out as one
of choosing among the possibility distributions

{πa0,M | a0 ∈ A}. (7.46)

This situation is quite similar to decision under risk where the agent has to choose
among probability distributions (lotteries).

There are different ways of realizing a corresponding selection. We can, for in-
stance, adopt a quantitative point of view and interpret possibility degrees as
upper probabilities. A possibility distribution then corresponds to a special type
of plausibility measure, which means that the methods discussed in Section 7.5.2
can be applied.

We can, however, also interpret the possibilistic approach in a purely qualitative
way. Dubois and Prade [123] have recently proposed a qualitative decision
theory in which uncertainty and utility are represented by possibility measures
and qualitative utility functions, respectively. The corresponding decision criteria
are derived from an axiomatic framework which can be seen as a qualitative
counterpart to the axioms of Von Neumann and Morgenstern’s expected
utility theory.

Let . be a preference relation on the class Π of normalized possibility measures
on a finite set R = {r1, . . . , rn} of outcomes. As usual, denote by ∼ and � the
symmetric and anti-symmetric part of ., respectively. Moreover, let V be a finite
linear scale of uncertainty such that min V = 0 and max V = 1. Likewise, let
U be a finite linear scale of preference such that min U = 0 and max U = 1.
The commensurability between the ordinal scales U and V is achieved via an
order-preserving mapping h from the plausibility scale to the preference scale
which satisfies h(0) = 0 and h(1) = 1. For λ, µ ∈ V with max{λ, µ} = 1 the
possibilistic mixture (λ/π, µ/π′) of two possibility distributions π and π′ again
defines a possibility distribution:

∀ r ∈ R : (λ/π, µ/π′)(r)
df
= max{min{λ, π(r)}, min{µ, π′(r)}} .

In [103], the following axiomatic system P has been proposed:

22 Note that in Chapter 5 this distribution has been denoted by δ instead of π. Here, this distinction
is not needed.
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P1 . is a total preorder.

P2 π ≤ π′ ⇒ π′ . π (uncertainty aversion).

P3 π1 ∼ π2 ⇒ (λ/π1, µ/π) ∼ (λ/π2, µ/π) (independence).

P4 ∀π ∈ Π ∃λ ∈ V : π ∼ (1/r∗, λ/r∗), where r∗ and r∗ denote a maximal
and a minimal element of R, respectively.23

Based on this set of axioms, the existence of a utility function u : R −→ U
and the following pessimistic decision criterion, which represents the preference
relation ., are derived:

QU−(π)
df
= min

r∈R
max {n(h(π(r))), u(r)} . (7.47)

That is π . π′ ⇔ QU−(π) ≤ QU−(π′). Here, n is the order-reversing function
on U .

As an alternative model, an axiomatic system O has been proposed in which
the uncertainty aversion axiom P2 is replaced by an uncertainty-prone postulate.
Moreover, P4 is slightly modified:

O1 . is a total preorder.

O2 π ≤ π′ ⇒ π . π′.

O3 π1 ∼ π2 ⇒ (λ/π1, µ/π) ∼ (λ/π2, µ/π).

O4 ∀π ∈ Π ∃λ ∈ V : π ∼ (λ/r∗, 1/r∗).

Based on these axioms one obtains the optimistic decision criterion

QU+(π)
df
= max

r∈R
min {h(π(r)), u(r)} . (7.48)

If we interpret the approach to CBI outlined in Chapters 5 and 6 as purely
qualitative ones (and also assure the commensurability of the plausibility scale
and the preference scale), the decision theory of [123] can be applied to the
distributions (7.44) or (7.45). That is, the decision criteria derived from the above
axioms can be used in order to choose the most preferred distribution from the
set (7.46), and, hence, the most preferred act. Applying (7.47) resp. (7.48) leads
to the following valuations of an act a ∈ A:

V↓(a) = QU−(πa,M) = min
r∈R

max {n(h(πa,M(r))), u(r)}, (7.49)

V↑(a) = QU+(πa,M) = max
r∈R

min {h(πa,M(r)), u(r)} . (7.50)

Let us finally mention that the uncertainty averse and uncertainty prone postu-
lates P2 and O2 can be replaced by (intuitively plausible and somewhat more

23 We extend � to R in the usual way: r � r′ iff πr � πr′ , where πr = I{r} and πr′ = I{r′}.
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appealing) possibilistic dominance criteria which are possibilistic counterparts to
the well-known concept of probabilistic dominance. This result is proved in Ap-
pendix A.

7.6 CBDM models: A discussion of selected issues

In this section, we shall discuss some selected issues in case-based decision making.
Our emphasis is on pointing out some principal differences between the models
outlined in previous sections. In order to demarcate the different approaches,
we shall reserve the acronym CBDM mainly for the framework presented in
Section 7.5. Since the methods from Sections 7.1–7.4 are closer to case-based
decision theory originally introduced by Gilboa and Schmeidler, they will be
referred to as CBDT.

7.6.1 The relation between similarity, preference, and belief

A main difference between the models outlined in Section 7.5 (CBDM) and the
approaches of previous sections concerns the way in which the concepts of belief,
preference, and similarity are related. The approaches of Sections 7.1–7.4 make
use of a decision-theoretic setup which is based on the concepts of similarity and
utility alone. As opposed to this, the framework of CBDM in Section 7.5 makes
also explicit the concept of belief and can thus be seen as an extension of classical
(statistical) decision-theoretic models. In fact, this approach realizes a two-stage
process, in which the actual decision problem is only solved in the second stage
by means of (more or less) common techniques from decision theory. Case-based
reasoning is not used for selecting an act directly. Rather, it has influence on the
formation of the belief of the decision maker. This belief is represented in the
form of a belief function or possibility distribution on the set of outcomes, R.
The cases contained in a memory M are treated as observations. For instance,
observing that an act a has led to a good result for a similar problem will increase
the agent’s belief that a is also a good choice for the problem at hand.

The derivation of (7.2) in [167] shows that an agent with a utility function u,
who obeys the respective axioms, behaves as if it had a similarity measure over
Q and evaluates acts according to (7.2). This way, similarity is directly related
to utility and indirectly to preference. The formal resemblance of (7.2) and the
EUT formula, i.e., the expected utility of an act, suggests that the meaning of
similarity in CBDT is to some extent comparable to the role that probability
plays in EUT.

Most approaches to decision making evaluate acts by combining preference and
belief in some way, where preference is quantified in the form of a utility function.
In fact, for estimating the utility one obtains when choosing a certain act it seems
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natural to consider the set V of possible utility degrees,24 to modify each degree v
in accordance with an associated degree of belief, and to aggregate these modified
utilities.25 In expected utility theory, for instance, degrees of belief associated
with v ∈ V (and an act a) correspond to probabilities pa(v), and modification
and aggregation are realized by multiplication and addition, respectively:

V (a) =
∑
v∈V

pa(v) · v. (7.51)

Within the qualitative approach proposed in [103, 123], belief is represented by
possibility degrees πa(v), modification corresponds to bounding the impact of less
possible utility degrees upon the valuation of an act, and the min-operator is used
as an aggregation function:

V (a) = min
v∈V

max{1 − πa(v), v}. (7.52)

Observe that the averaged similarity version of (7.2) corresponds to the expected
utility model (7.51) if the probability pa(v) is estimated according to

pa(v) =

∑
(p,a,r)∈M,u(r)=v σQ(p, p0)∑

(p,a,r)∈M σQ(p, p0)
. (7.53)

Likewise, (7.19) is equivalent to (7.52) with

πa(v) = max
(p,a,r)∈M,u(r)=v

σQ(p, p0). (7.54)

As can be seen, based on the idea that similarity is used for assessing a degree
of belief, namely (7.53) resp. (7.54), it is possible to interpret the approaches
(7.2) and (7.18) within an extended decision-theoretic framework which combines
similarity, preference, and belief, even though the latter only appears implicitly.

Still, there are several motivations for modeling the (causal) relation between
similarity and belief in a more explicit way, as we have done in Section 7.5. Firstly,
viewing the cases of a memory as an (additional) information source which has an
effect on the agent’s belief and, hence, utilizing case-based reasoning for decision
making only indirectly leads to a more expressive approach which also avoids some
technical difficulties. This becomes obvious, for instance, when considering the
extreme example of a memory that does not contain any case similar to the current
problem, which means that the memory is effectively empty. If, however, no cases
exist, it seems somewhat peculiar that a case-based (similarity-based) reasoning
procedure should be used for estimating the utility of choosing some act for solving
the problem. Instead of assigning a “default utility,” it appears more natural

24 For the sake of simplicity suppose this set to be finite.
25 Note that the consideration of single utility degrees may not be enough if belief is formalized by

means of non-additive measures of uncertainty [166, 330, 334].
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to expect the result of case-based (similarity-based) reasoning to be complete
ignorance about utilities, which is adequately reflected, e.g., by the possibility
distribution π ≡ 1 on the set of outcomes. Needless to say, an uncertainty measure
like a probability distribution, a belief function or a possibility distribution, is
able to reproduce certain characteristics of a memory M better than a “point
estimation.” The averaged similarity version of (7.2), for instance, can be seen
as a kind of weighted mean. It is unable, however, to represent the variance of
utility degrees associated with a certain act.

Secondly, making uncertainty related to decision problems explicit allows for tak-
ing the agent’s attitude toward uncertainty into account. Otherwise, this attitude
has to be encoded in the similarity measure or the utility function. Suppose, for
example, that a decision maker (repeatedly) faced with a problem p can choose
between two acts a and b. Act a yields utility 0 with certainty. The more risky
act b yields either an extremely high utility M or an extremely low utility −M ,
where the high utility occurs with a fixed but unknown probability every time b
is chosen. The willingness of an (uncertainty averse) agent to choose b will then
depend on the number of times the cases (p, b, M) and (p, b,−M) have been ob-
served.26 The memory M = {(p, b, M)} containing only one case, for instance,
might not be convincing enough, even though V (b) = M > 0 = V (a) according
to (7.2).

Thirdly, the distinction between two “mental” levels, one for representing knowl-
edge and one for making decisions, seems to have advantages with respect to the
design of intelligent systems [130], i.e., if a decision-theoretic model is understood
as a language for modeling the problem solving behavior of an agent. The inte-
gration of different information sources at the decision level, for instance, would
require a related extension of the underlying decision theory and seems to be more
difficult than doing the same at the knowledge representation level. Consider again
the approach of Section 7.5.3 as an example. There, case-based reasoning takes
place at the knowledge representation level and yields a possibility distribution
on the set of outcomes. It is hence not difficult to combine this case-based knowl-
edge with general background knowledge represented, e.g., in the form of fuzzy
rules. In fact, the possibility distributions associated with such rules can simply
be combined (via intersection) with the distribution(s) originating from CBI.

Let us finally mention that the (causal) relation Similarity → Belief is also
supported by psychological evidence. In fact, the finding that people rely on
similarity as a heuristic principle for assessing the probability of an uncertain event
or the value of an uncertain quantity was made by Tversky and Kahneman

in various psychological studies [374]. The authors call this heuristic approach
the representativeness principle. For example, the probability that a person has
a certain job seems to be assessed by the degree to which this person is similar
to the stereotype of a person having this job.

26 In other words, the agent estimates the unknown probability that M occurs by the corresponding
(relative) frequency of occurrence.
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7.6.2 The effect of observed cases

The impact that case-based information has upon the evaluation of acts is rather
different for the decision models discussed in this chapter. A major difference
concerns the question whether experienced cases can be compensated by other
cases, e.g., whether a good experience can compensate for a bad one, or whether
several moderately similar cases can outweigh one completely similar case.

Let us consider the last point first. Due to the accumulation of utility degrees
in (7.2), a good experience with a very similar problem can be compensated by
several good experiences with less similar problems. This contrasts, e.g., with the
Nearest Neighbor decision rule (7.8) which takes only one (namely the most
similar) observed case into account, i.e., which fully relies on the most relevant
experience. Needless to say, the adequacy of the two principles will strongly de-
pend on the application or, more precisely, the extent to which experience with
a certain act can be transferred from one problem to a similar one. Consider,
for instance, a medical agent having to choose between treatments T1 and T2.
The successful application of therapy T1 to several diseases with somewhat sim-
ilar symptoms will generally not compensate for T2’s curing exactly the same
symptoms, even if T2 has not been applied to any other disease.

Now, consider the second point, i.e., the question whether good experiences can
compensate for bad ones and vice versa. The CBDT decision rule (7.2) as well
as the averaged similarity version (7.28) do obviously allow for such a compensa-
tion, and the same is true for the Nearest Neighbor decisions in Section 7.2.
As opposed to this, the criteria (7.19) and (7.20) compensate in only one direc-
tion: According to (7.19), an observed case can only decrease the evaluation of
an act, which reflects the pessimistic or cautious character of this decision rule.
Consequently, a positive experience cannot compensate for a negative one. Con-
trariwise, each observation can only positively influence the evaluation according
to (7.20), i.e., a good experience is never annulled by a bad one.

Again, different evaluation principles will be adequate for different applications.
In this connection, it should be noted that (7.19) and (7.20) assume an ordinal
setting, whereas the addition and multiplication operators used by the CBDT

criteria (7.2) and (7.3) make sense only for cardinal utility and similarity func-
tions. Indeed, (7.19) and (7.20) might be preferred whenever it is difficult to define
such functions. Consider again an example from the medical domain: Treatments
T1 and T2 usually have the same effect. On the one hand, T2 is less expensive
than T1. On the other hand, it is also more risky in the sense that is has already
caused the death of some patients, whereas T1 cures the disease with certainty.
In this situation, it will of course be difficult to come up with a reasonable utility
function, or to fix a minimal success rate of T2 as a decision criterion.27 Rather,
one will generally be cautious and decide in favor of T1, a decision behavior which
is perfectly in line with (7.19).

27 Extreme examples of this kind are often raised against expected utility theory.
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It was pointed out above that (7.19) and (7.20) reflect very opposite attitudes
of a decision maker. Let us finally mention that a similar remark applies to the
indirect evaluations which deduce the possibility of outcomes. When using the
criterion (7.49) in connection with the possibility distribution (7.44), the decision
maker considers all outcomes as being fully possible as long as it has not made any
observations. Each new case serves as a constraint and decreases the possibility
of certain results. By applying the same decision rule to (7.45), the decision
maker starts with the possibility distribution π ≡ 0.28 Each new case serves as
evidence for certain results and increases the possibility correspondingly. Loosely
speaking, the agent learns what can happen, whereas it learns what can or should
not happen if it relies on (7.44). The difference between (7.44) and (7.45) becomes
also clear if we realize that (7.44) is based on the idea of an implication-based
fuzzy rule, whereas (7.45) is related to the concept of a possibility rule, i.e., an
example-based (conjunction-based) fuzzy rule.

7.6.3 Dynamic aspects of decision making

Since CBI is closely related to the idea of repeated problem solving and aspects of
learning it seems natural to consider a CBDM agent acting over time in a certain
environment. The question, then, is how successful a CBDM strategy proves to
be. Since the acquisition of experience in the form of cases is an inherent part
of CBDM, investigating a CBDM strategy in the context of repeated problem
solving seems to be the only reasonable way of judging its efficiency.29 Such an
analysis, which will have much in common with the analysis of heuristic problem
solving methods [291], is principally possible. For instance, given (among other
things) the precise specification of a stochastic environment in which the agent
acts as well as the specification of utilities of histories (which correspond to paths
in this environment), the expected performance of a CBDM strategy is well-
defined (cf. Section 7.4).

Let us mention, however, an interesting aspect of CBDM which makes the analy-
sis of a given strategy as well as the selection of an optimal strategy difficult.
Namely, a single decision at a certain point of time does not only affect the ex-
pected utility and future states of an agent directly. Rather, it has also an impact
on the agent’s experience and, hence, changes its future decision behavior. For
the analysis of a given decision strategy this means that it has to take the (ex-
pected) evolution of the agent’s memory into account. For the development of
an optimal strategy it means that a single decision should not only be judged on
the basis of some estimated (immediate) utility. Since a more experienced agent

28 Again, note that this is actually a distribution of guaranteed possibility, denoted by the symbol δ in
Section 5.

29 Considering something such as the performance of a decision strategy makes sense if we concede
to CBDM a normative character in connection with the idea of heuristic problem solving. Other
criteria become relevant if a case-based decision theory serves as a descriptive theory of (human)
decision making [171].
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will probably make better decisions in the future it should also take the aspect
of broadening experience into account. Informally speaking, the agent has to find
a tradeoff between the exploitation of its past experience and the exploration of
new decisions. This, of course, requires some kind of metalevel reasoning quite
comparable to the concept of metalevel rationality in connection with expected
utility theory (cf. the remarks on page 253). The aforementioned exploration–
exploitation tradeoff is also well-known in fields like optimization and machine
learning.

The above idea can be illustrated nicely for the model (7.2). As an interesting
consequence of this decision principle it has been pointed out in [167] that it
can be seen as a theory of “bounded rationality” formalizing Simon’s idea of
“satisficing” [260, 344]. Suppose, for example, that the selection of a certain act
a∗ for a problem p has led to a positive utility u(r(p, a∗)). When faced with the
same problem again, the decision maker will prefer this act to all other acts to
which the default utility 0 is assigned (since they have not been tried yet). More
generally, the agent may try several acts until one results in a positive utility, but it
will not attempt to maximize utility. Now, an intuitively reasonable modification
of the decision behavior prescribed by (7.2) is to try a new act a from time to
time. This way, an act a∗ such that u(r(p, a∗)) > u(r(p, a∗)) might eventually be
found. Since the agent will then go on choosing a∗, this would have a positive
impact on its (future) “welfare,” a prospect that justifies to put up with the risk of
sometimes obtaining a smaller utility. See [168] for a related strategy of realizing
an “experimenting” agent in CBDT.30 The idea is to adapt the aspiration level
α in the generalization

Vp0,M(a)
df
=
∑

(p,a,r)∈M

σQ(p, p0) · (u(r) − α)

of (7.2) by choosing an act at random from time to time. This way, the agent can
avoid to get stuck in a suboptimal strategy.31

7.7 Experience-based decision making

Case-based decision making, as presented in different versions in previous sections,
can basically be seen as a two-step procedure:

I. Estimation/evaluation: Given a set of experiences in the form of triples (p, a, u)
and a new problem p0, one estimates the utility u(p0, a0) for each act a0 ∈ A.

30 As the “conservative” decision strategy of always choosing the act “go to a restaurant which has not
been tried yet” shows, a careful distinction between the agent’s decisions and its actual behavior
has to be made. Particularly, a satisficing decision strategy does not necessarily entail conservative
behavior.

31 The same idea is also present in several approaches to learning in game theory.
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II.Decision: An (apparently) optimal act is then chosen on the basis of these
estimations.

It deserves mentioning that one actually has to distinguish between the estimation
of a utility degree and the evaluation of an act. As opposed to (7.3), for instance,
the value V (a0) in (7.2) is obviously not an estimation of the utility u(p0, a0)
but still an evaluation of the act a0. As can be seen, many possibilities of act
evaluation exist, although the estimation of an induced utility might be regarded
as the most natural one. Subsequently, we make the reasonable assumption that
the agent bases its decision on estimations of the utilities of acts a0. That is,
we assume that the agent is an estimated utility maximizer, just like a decision
maker applying EUT is an expected utility maximizer.

Experience-based decision making [196] generalizes case-based decision making
in the sense that the estimation of utility degrees as part of the above two-step
procedure is realized by any learning method, not necessarily a case-based one.
Note that EBDM thus defined is an indirect approach in which an approximation
∆ to the optimal decision function

∆∗ : P −→ A, (7.55)

which maps problems to (optimal) decisions, is derived from an estimation û of
the utility function u : P × A −→ R:

∆ : d �→ arg max
a∈A

û(p, a).

An obvious alternative is to realize EBDM in a more direct way. In this case, the
agent tries to learn the decision function (7.55) directly, without estimating the
utility function as an intermediate step.32 This kind of EBDM, which appears
especially appealing from an efficiency point of view, will be discussed in detail
in Section 7.7.1.

Case-based decision making, as case-based reasoning in general, is closely related
to learning from experience in the form of examples or facts. Investigating the
link between factual knowledge and beliefs derived from that knowledge, this
relation is also emphasized in [173], where the axiomatic foundation of CBDT is
developed in a more general context, not restricted to decision making.

In the field of machine learning, several standard types of learning problems
are distinguished. In this connection, it is interesting to note that the indirect
approach to EBDM (as realized by CBDT) is closely related to reinforcement
learning, at least from a formal point of view. There are different settings for
reinforcement learning, most of which fall back on concepts from Markov Decision
Processes: The decision making agent acts in some unknown environment defined
by a set of states S. At each point of time, the agent finds itself in a state s ∈ S,
where an action has to be performed. The consequences of performing action a in

32 Such agents are often called reflex agents in artificial intelligence.
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state s are determined by a reward function, r, and a transition function, δ: The
agent receives an immediate reward,33 r(s, a), and moves from state s to state
δ(s, a) ∈ S. This process is repeated until eventually a final state is reached.

As can be seen, the notions of state and reward in reinforcement learning play the
roles, respectively, of the concepts of problem and utility in CBDT. Moreover,
the optimal decision function ∆∗ in EBDM basically corresponds to what is
called an optimal policy in reinforcement learning. The basic difference between
CBDT and reinforcement learning (sequential decision making) concerns the
generation of problems resp. states. In sequential decision making, the next state
is a (perhaps non-deterministic) function of the current state s and the action
a. Consequently, an action does not only determine the immediate reward, but
also the next decision problem and, thereby, the prospect of future rewards. A
“myopic” decision maximizing only the immediate reward r(s, a) is hence not
necessarily optimal. Rather, an optimal action should be one that maximizes the
sum of the immediate reward and the (expected) future rewards.34 A function
taking this into account is the so-called Q-function, that can be defined as follows:

Q(s, a) = r(s, a) + γ
∑
s′∈S

p(s, a, s′) · max
a′

Q(s′, a′), (7.56)

where 0 ≤ γ ≤ 1 is a discounting factor. Moreover, p(s, a, s′) is the probability
that act a yields s′ as the successor state of s (here the transition function δ is
non-deterministic). This leads to Bellmann’s optimality equations

V ∗(s) = E
[
r(s, ∆∗(s)) + γV ∗(δ(s, ∆∗(s)))

]
, (7.57)

which determine the optimal decision function ∆∗. Thus, the value of being in
state s, V ∗(s), is the expected sum of the immediate reward and the discounted
future rewards under optimal behavior, as prescribed by ∆∗.

In CBDT, the action chosen for a problem p does not affect the occurrence of
future problems, which are not under the control of the decision maker. Thus, an
optimal decision is simply one that maximizes u(p, a). Note that the same strat-
egy, namely maximizing r(s, a), is also optimal in sequential decision problems if
either future rewards (utilities) are discounted by means of a discounting factor of
γ = 0 or if the transition function δ (as realized, e.g., by the probability function
p in (7.56)) does not depend on a. In other words, there are two possibilities of
viewing CBDT, at least formally, as a special type of reinforcement learning:
Either the case-based decision maker follows a myopic strategy, or future states
(problems) do not depend on actions.

The main objective in reinforcement learning is to estimate the Q-function on
the basis of rewards obtained so far.35 If Q̂ is such an estimation, an apparently

33 In a more general version, feedback can also be delayed (e.g., the win or loss of a game).
34 The addition of rewards might be replaced by an alternative aggregation operator, of course.
35 The reward function r and probability function p in (7.56) are assumed to be unknown. Otherwise,

classical approaches (e.g., dynamic programming techniques in the case of finite horizon decision
problems) can be used to find an optimal policy on the basis of (7.57).
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optimal strategy is given by the decision function

∆ : s �→ max
a

Q̂(s, a).

Even though ∆(s) does indeed maximize the estimated rewards, the strategy of
persistently choosing actions ∆(s) so as to maximize the current estimation of Q
is again somehow shortsighted and not necessarily optimal. Namely, the agent has
to bear in mind that it keeps learning over time: The estimation of the Q-function
is permanently revised in the light of new observations, and the improvement of
Q̂ might be larger for an alternative action a′ "= ∆(s). Consequently, choosing a′

might lead to better decisions in the future, even though the immediate reward
might be better for a. In other words, the agent has to find an exploration–
exploitation tradeoff (cf. page 287): It has to trade off (estimated) rewards against
the potential for learning useful new information. One strategy, for instance,
is to make random choices, where the probability of an action is proportional
to its estimated value. This way, preference is given to higher valued acts, but
apparently suboptimal acts are not completely ignored. Another possibility is to
assign relatively large default values to yet unknown states (or state–action pairs)
so as to offer an incentive for exploring such states.

As already mentioned in Section 7.6.3, the exploration–exploitation problem is
solved in a very similar way in CBDT, namely by assigning default utilities to
problem–act tuples for which relevant experience is not available as yet. The in-
duced satisficing behavior of a decision maker can be seen as a special exploration
strategy: The agent tries new actions until a satisfying one has been found.

7.7.1 Compiled decision models

The modification (7.3) of evaluation (7.2) can be seen as a special version of es-
timated utility maximization as discussed in Section 7.7. In fact, (7.3) is nothing
else than the application of Shephard’s interpolation method [340], a special
type of Nearest Neighbor (NN) estimation [76].36 This method is well-known
in machine learning, and it is used for making predictions in other CBR ap-
proaches as well (e.g., in the ELEM2-CBR system [61]).37

Of course, Shephard’s interpolation method is not the only way of realizing the
estimation step in EBDM. Principally, it could be replaced by any machine learn-
ing method. In this connection, it is especially interesting to distinguish between
instance-based and model-based approaches to (supervised) machine learning [79].
In particular, our discussion in Section 2.1 has shown that instance-based learn-
ing, as a lazy approach, is easy and quite appealing from a knowledge revision
and adaptation point of view, but not very efficient in the prediction phase. In

36 This is the weighted k-Nearest Neighbor approximation with k = n, i.e., it makes use of the
complete set of observations.

37 See the paper [173] of Gilboa and Schmeidler for a comparison between the nearest neighbor method
and their case-based approach.
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the context of EBDM, this means that a case-based approach appears reasonable
if the decision maker disposes of a limited number of experiences. If a large set of
observed cases is available, however, a compressed representation of the agent’s
knowledge in the form of a model might be more efficient. The aspect of efficiency
becomes especially relevant if deliberation time is costly or strictly limited as in
real-time decision making [64]. Then, model-based learning might be preferred
to instance-based learning, since it is the decision process itself rather than the
learning process that is time critical.

In this connection, it is convenient to classify decision problems with respect
to their novelty. According to a crude distinction, we can differentiate between
problems which are solved frequently and hence become almost automated, prob-
lems for which deliberation is required but which are still familiar, and problems
which are completely unfamiliar [167]. These problem types might be tackled
most efficiently by means of different approaches to learning and knowledge rep-
resentation:

– instance-based learning of the utility function for unfamiliar problems,

– model-based learning of the utility function for familiar problems,

– and a “compiled decision model” approach for routine decisions.

As already mentioned before, the idea of a compiled decision model is to learn
the optimal decision function (7.55) directly, rather than making a detour by
learning the utility function. In [325], compilation is understood as a method
for omitting intermediate computations in some input–output relation. Thus, a
compiled model is an execution architecture computing the original mapping, but
doing so in a more efficient way. This approach will now be discussed in more
detail.

When the decision maker tries to learn the utility function u : P×A −→ R, a case
(p, a, u) can be considered as an example of the form (x, u), where the input x =
(p, a) is a problem–act pair and the outcome y = u(p, a) is a utility degree. Thus,
learning the utility function fits the framework of supervised machine learning.
Still, a case (p, a, u) can also be interpreted in a different way, namely as a valued
example. That is, (x, y) = (p, a) is an example and u an evaluation thereof. The
target function is now the (optimal) decision function ∆∗ : P −→ A. Roughly
speaking, the utility u = u(p, a) indicates the quality of an associated example
(p, a).

The compiled model approach thus necessitates an extension of standard (super-
vised) learning methods which takes the valuation u of an example (p, a) into
account. To this end, we shall fall back on the idea of “satisficing” as discussed
above in connection with the model of CBDT: A “satisficing” decision maker
discriminates between only two types of decisions, namely acceptable and non-
acceptable ones. As will be seen below, the problem of inducing a (satisficing)
decision model thus comes close to the standard setting of supervised learning.
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7.7.2 Satisficing decision trees

In this section, we are going to propose a concrete approach to learning compiled
decision models, namely a modified version of decision tree induction. Thus, the
idea is to implement the decision function ∆ : P −→ A as a decision tree38

resp. a set of condition–action rules that yields as a classification the action to
be chosen, given a new problem (condition). This approach is adequate if the
set A of available acts is relatively small. Moreover, it assumes that problems
are represented by attribute–value pairs with discrete-valued attributes.39 Before
presenting our approach, we give a brief introduction to decision tree learning.

The basic principle underlying most decision tree learners, well-known examples
of which include the ID3 algorithm [304] and its successors C4.5 and C5.0 [306] as
well as the CART system [55], is that of partitioning the set of given examples,
S, in a recursive manner. Each inner node η of the decision tree defines a partition
of a subset Sη ⊆ S of examples assigned to that node. This is done by classifying
elements s ∈ Sη according to the value of a specific attribute T . The attribute
is selected according to a measure of effectiveness in classifying the examples,
thereby supporting the overall objective of constructing a small tree.

A widely applied “goodness of split” measure is the information gain, G(S, T ),
which is defined as the expected reduction in “impurity” (with regard to the class
distribution) which results from partitioning S according to T :

G(S, T ) = I(S) −
∑

t

|St|
|S| I(St), (7.58)

where St denotes the set of elements s ∈ S whose value for attribute T is t.
Moreover, I(·) is a measure of impurity, such as the GINI function [55]

I(S) =
∑

c =c′∈C
qcqc′ = 1 −

∑
c∈C

(qc)
2 (7.59)

with qc the proportion of elements s ∈ S having class c. Besides, a number of
alternative (im)purity measures, such as entropy, have been devised. See [268] for
an empirical comparison of splitting measures.

Suppose a set X of instances to be given, where each instance is characterized by
several attribute values. Moreover, each x ∈ X belongs to one class c = class(x) ∈
C. Given a set of training samples S = {(x1, c1), . . . , (xn, cn)} ⊆ X × C, the basic
ID3 algorithm derives a decision tree as follows:

– The complete set of training samples, S, is assigned to the root of the decision
tree.

38 Decision tree learning is actually a classification method. Even though classifications can be consid-
ered as decisions, it is not specifically used for decision making in the proper sense. Therefore, one
might prefer the alternative terms discimination or classification tree.

39 Continuous-valued attributes can be discretized before or during the learning of a decision tree [93].
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– A node η becomes a leaf (answer node) of the tree if all associated samples Sη

belong to the same class or if all attributes have already been used along the
path from the root of the tree to η.

– Otherwise, node η becomes a decision node: It is split by partitioning the as-
sociated set Sη of examples. This is done by selecting an attribute as described
above and by classifying the samples s ∈ Sη according to the value for that
attribute. Each element of the resulting partition defines one successor node.

Once the decision tree has been constructed, each path can be considered as
a rule. The precedent part of a rule is a conjunction of conditions of the form
T = t, where T is an attribute and t a specific value thereof. The consequent
part determines a value for the class variable. New examples are then classified
on the basis of these rules, i.e., by looking at the class label of the leaf node whose
attribute values match the description of the example. Notice that a unique class
label is associated with each answer node if the data is not noisy and, hence,
the original sample does not contain any clashes (cases with identical attribute
vectors but different classes). Otherwise, the distribution of class labels at the
leaf can be used for deriving a probabilistic estimate. Quite often, the induced
tree undergoes further (post-)processing [267]. Here, the objective is to prune
large trees in order to guarantee transparency. Moreover, pruning counteracts
the problem of overfitting.

An incremental decision tree algorithm has been proposed in [377]. Given the
same training data, this algorithm induces the same tree as ID3. Now, however,
instances are processed in a serial way, that is, the current decision tree is up-
dated each time a new example arrives. Since algorithmic aspects are not our
main concern, we refrain from describing the algorithm here. It should be noted,
however, that an incremental approach to learning has considerable advantages,
especially in the context of decision making. In fact, the idea of learning and
improving performance over time is one of the major aspects of case-based or
experience-based decision making.

In this connection let us also mention a method that combines decision tree learn-
ing and lazy learning [155]: Given a set of training data, new instances are classi-
fied by means of a decision tree. However, a new tree is built for each individual
instance (as in lazy learning, the complete data thus needs to be stored). Loosely
speaking, this algorithm induces decision trees which are optimal for the individ-
ual instances, whereas a usual decision tree is good on average. The algorithm is
efficient due to the fact that actually only one path of a tree is constructed, namely
the one needed to classify the new instance. Besides, computational efficiency is
improved by means of a caching scheme.

Let P = T1 × T2 × . . . × Tm be a set of potential problems, where Tı denotes the
(finite) domain of the ı-th attribute. Thus, each problem p ∈ P is represented as
a vector p = (t1, . . . , tm) of attribute values. Moreover, let A = {α1, . . . , αk} be
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a set of available actions. Finally, utility degrees are again measured on the real
number line.

Assume a memory of cases

M =
{
(p1, a1, u1), . . . , (pn, an, un)

}
∈ P × A × R

to be given, where uı = u(pı, aı) is the utility that has resulted from applying act
aı to problem pı. Let MP , MA, and MP×A denote the projection of M to P, A,
and P × A, respectively. The idea pursued here is to compile this case base into
a decision tree which is then used for solving future decision problems.

Let u∗ ∈ R be a utility threshold defined by the decision maker. This threshold
corresponds to the aspiration level in the CBDT model of Gilboa and Schmei-

dler: An action a is acceptable for a problem p if u(p, a) ≥ u∗, and it is not
acceptable if u(p, a) < u∗.

In a first step, each case (pı, aı, uı) is changed into an example (pı, aı). The latter is
called a positive example if uı ≥ u∗ and a negative example if uı < u∗. In a second
step, a modified memory, S∗, is derived from M. For each problem p ∈ MP it
contains a generalized example (p, Ap), where Ap denotes the set of feasible acts
for problem p. This set is defined as follows:

a ∈ Ap ⇔
{

u(p, a) = umax(p,M) if umax(p,M) ≥ u∗

(p, a) /∈ MP×A if umax(p,M) < u∗ ,

for all a ∈ A, where

umax(p,M)
df
= max

(p,b)∈MP×A
u(p, b).

In plain words, an action a is feasible for p if it belongs to the best among the
actions known to be acceptable for p, or if no acceptable action is known and
a has not been tried as yet. Notice that Ap = ∅ if all available acts have been
applied to p but none of them was acceptable, that is, if an acceptable act for p
does actually not exist. In this case, the decision maker should reduce the utility
threshold u∗.40 Subsequently, we assume Ap "= ∅ for all p ∈ P.

Before proceeding, let us point to a meaningful weakening of the above feasibil-
ity condition u(p, a) = umax(p,M). In fact, this condition could be replaced by
u(p, a) ≥ umax(p,M) − ε, where ε ≥ 0 is a tolerance threshold. Here, the idea is
that an action is acceptable even if its utility is slightly below the utility of the
best (known) action. Of course, a decision maker being less ambitious in this sense
will usually be able to induce simpler decision functions, i.e., to gain efficiency at
the cost of decision quality.

We are now ready to formulate a generalized version of the decision tree learning
problem whose objective is to induce a decision tree that prescribes, for any

40 It would also be possible to maintain individual thresholds for the problems.
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problem, an acceptable action:41 Given a set of generalized examples

S∗ =
{
(p1, Ap1), (p2, Ap2), . . . , (pn, Apn)

}
⊆ P × 2A, (7.60)

induce a decision tree which implements a decision function ∆ : P −→ A such
that

∀ p ∈ MP : ∆(p) ∈ Ap.

In this problem, splitting a set of examples (7.60) is no longer necessary if

A(S∗) =
n⋂

ı=1

Apı "= ∅, (7.61)

hence, (7.61) defines a natural stopping condition. The corresponding node η in
the decision tree then becomes a leaf, and any action a ∈ A(S∗) can be chosen
as the prescribed decision aη associated with that node.

The main modification concerns the “goodness of split” measure. Let G(·) denote
the information gain (7.58) as used for classical decision tree learning. That is,
G(S, T ) quantifies the quality of the split of a (standard) sample S induced by
the attribute T . Now let the class of selections, F(S∗), of the generalized set of
examples (7.60) be given by the class of samples

{(p1, a1), (p2, a2), . . . , (pn, an)} ⊆ P × A

such that aı ∈ Apı for all 1 ≤ ı ≤ n. We extend the measure G(·) to generalized
samples S∗ as follows:

G(S∗, T )
df
= max

S∈F(S∗)
G(S, T ). (7.62)

As can be seen, the extended measure (7.63) is the ordinary measure obtained
for the most favorable instantiation of the generalized examples (p, Ap) and hence
defines a “potential” goodness of split. It corresponds to the “true” measure that
would have been derived for the attribute T if this instantiation is compatible
with the ultimate decision tree. Taking this optimistic attitude is clearly justified
since the tree is indeed constructed in an (apparently) optimal manner (hence
averaging would hardly make sense).

Computing (7.62) comes down to solving a combinatorial optimization problem,
namely to finding

I(S∗)
df
= min

S∈F(S∗)
I(S) (7.63)

for (sub-)sets S∗ of extended examples, where I(·) is a measure of impurity.
It might hence be regarded as critical from a time complexity point of view,

41 An alternative approach would be to learn, for any action, the class of decision problems to which it
can be applied. This type of problem fits into the framework of multi-label classification in machine
learning. However, it does not provide efficient condition-action rules.
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especially in the context of real-time decision making. One should keep in mind,
however, that not the construction (or revision) of the decision tree is time critical
but rather its application. In fact, real-time decision making must not be confused
with real-time learning; as in other decision support systems, learning will rather
be realized as an “off-line” procedure [64].

In Appendix G, we present a heuristic search method for computing (7.63) based
on a branch & bound technique. The efficiency of the method depends critically
on the number of actions (which is the maximal branching factor of the search
tree) and the average size of the sets Ap (which determines the average branching
factor). Even without a detailed complexity analysis, experience has shown that
no problems occur if the number of actions is small. For example, for six actions
and sample sizes up to n = 500 the generalized splitting measure can be computed
within the bounds of seconds. Still, if the number of actions is too large, the exact
computation of (7.63) becomes intractable.

As an alternative we therefore suggest the following heuristic approximation of
(7.63):

I(S∗) = I(S∗), (7.64)

where the selection S∗ ∈ F(S∗) is defined as follows: Let qı be the frequency of
the action αı in the set of examples S∗, i.e., the number of examples (p, Ap)
such that αı ∈ Ap . The αı are first “preferentially ordered” according to their
frequency qı (ties are broken by coin flipping), starting with the most frequent
one. Then, the most preferred action αı ∈ Apı is chosen for each example pı.
Clearly, the idea underlying this selection is to make the distribution of labels
as skewed (non-uniform) as possible, since distributions of this type are favored
by the impurity measure. In [204], we found that the measure (7.64) yields very
good results in practice and compares favorably with alternative extensions of
splitting measures.

Let us finally mention that the adequacy of a decision tree as a representation
of the decision function ∆ does of course depend on the structure of the opti-
mal decision function ∆∗. In fact, since a decision tree, at least in its standard
version, partitions the problem (attribute) space P by means of axis-parallel de-
cision boundaries, good results (in terms of both complexity and accuracy) are
to be expected only if ∆∗ is at least approximately compatible with this type of
inductive bias.

7.7.3 Experimental evaluation

In order to get an idea of how the satisficing decision tree approach performs we
have employed a procedure that generates decision problems in a systematic way.
A decision environment is specified by the following parameters:

– The number m of attributes describing a decision problem.
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– The number k of possible actions.

– The number of values for each attribute. For the sake of simplicity, we assume
that each attribute has the same number v of values. Without loss of generality
these values are represented by natural numbers, that is T = {1, 2, . . . , v} for
all 1 ≤  ≤ m.

– The utility function u that assigns a utility degree u(p, a) to each problem p ∈ P
and action a ∈ A. The generation of u is realized by a random procedure which
is under the control of a complexity parameter γ, as described below.

It has already been mentioned that the adequacy of a decision tree representa-
tion depends on the structure of the decision function ∆∗. In fact, ∆∗ can be
represented by small trees if its structure is in agreement with a decision tree-like
partitioning of the feature space; otherwise, the decision tree model might become
rather complex. In order to control the complexity of the decision environment we
have generated a utility function u as follows: In a first step, an optimal decision
tree is generated at random. This is done in a recursive manner by starting with
the root of the tree and deciding for each node whether it is an inner node or a
leaf of the tree. The probability of a node to become an inner node is specified by
a parameter 0 < γ < 1. Each inner node at level ı has v successors, each of which
corresponds to a value of the ı-th attribute. If the tree has been generated, each
leaf η covers a subset Pη of the set of problems P, namely those problems which
match the attribute values associated with η. The leaf node η is then assigned
an optimal decision aη at random. From the resulting optimal decision tree, the
utility function is finally derived by letting u(p, a) = 1 if a is the optimal solu-
tion to p, i.e., if a = aη, where η is the leaf node that covers p. For all other
(suboptimal) actions b the utility u(p, b) is defined as a decreasing function of
the distance between a and b (where the distance between act aı and act a is
|ı − |). Note that the complexity is completely determined by the parameter γ:
The larger γ, the larger the expected size of the optimal decision tree, i.e., the
more complex the decision environment (at least for an agent that employs a
decision tree representation of its decision model).

After having specified a concrete decision environment by generating the utility
function u at random, a simulation experiment is performed as follows: At the
beginning, the memory of the decision maker is empty, and its (satisficing) de-
cision tree corresponds to a single node. In the ı-th decision epoch, a decision
problem pı is chosen at random from P, according to a uniform distribution. For
this problem, the decision maker selects an action aı according to the current
decision tree model (ties are broken by coin flipping). The new case, consisting of
the problem pı, the act aı, and the experienced utility rı = u(p, a), is added to the
memory. Moreover, the satisficing decision tree is updated whenever necessary.
The simulation stops after the L-th decision epoch.

Illustrating example. To illustrate, we present a simple example step by step.
Let m = 6, k = 3, v = 3, L = 10, u∗ = 0.7 and consider the sequence of decision
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problems in Table 7.1 (and disregard, for the time being, the actions and utility
degrees shown in the same table).

problem act utility
t1 t2 t3 t4 t5 t6
2 1 2 1 1 2 α1 1
2 1 2 3 3 1 α1 1
1 1 2 3 2 3 α1 0.2
1 3 3 3 3 3 α2 0.8
1 1 3 2 1 3 α2 1
2 2 1 2 1 3 α1 0.9
3 2 2 2 2 3 α1 0
3 1 2 2 3 2 α2 0.5
3 1 1 3 3 1 α3 0
1 3 2 1 1 2 α1 0.8

Table 7.1. Sequence of decision problems specified by the values of six attributes (columns 1–6), the
action performed by the decision maker, and the resulting utility degree.

For the first decision problem, the agent chooses an action at random. As shown
in Table 7.1, this is action α1, for which it receives a utility of 1. Thus, the agent
generates a decision tree which corresponds to the following rules:

t1 t2 t3 t4 t5 t6 action
? ? ? ? ? ? α1

This tree prescribes action α1 regardless of the attribute values. Thus, for the
second problem the agent chooses again α1, and again obtains a utility of 1. Con-
sequently, it does not modify the decision tree. For the third problem, however,
α1 yields a utility of 0.2 which falls below the utility threshold u∗. Therefore, the
agent changes the decision tree according to the procedure outlined above:

t1 t2 t3 t4 t5 t6 action
1 ? ? ? ? ? α2

2 ? ? ? ? ? α1

This tree prescribes to choose α1 if the value of the first attribute is 2, but α2

if this value is 1. Thus, the agent’s hypothesis is that α1 yields bad outcomes if
t1 = 2 (note that t5 and t6 might have been chosen as splitting attributes as well).
The next update occurs after the 7-th problem. Since the decision tree does not
prescribe an action for t1 = 3, the agent chooses α1 at random. This leads to a
utility of 0. The new decision tree contains the following rules:

t1 t2 t3 t4 t5 t6 action
1 ? ? ? ? ? α2

2 ? ? ? ? ? α1

3 ? ? ? ? ? α2
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This tree is changed into

t1 t2 t3 t4 t5 t6 action
1 ? ? ? ? ? α2

2 ? ? ? ? ? α1

3 ? ? ? ? ? α3

after the 8-th problem, since α2 yields u = 1/2 < u∗ for a problem with t1 = 3.
Notice that, so far, the decision is completely determined by the first attribute.
After the 9-th problem, however, the agent realizes that this is not enough. The
new decision tree also involves attribute t6:

t1 t2 t3 t4 t5 t6 action
1 ? ? ? ? 3 α2

2 ? ? ? ? 3 α1

3 ? ? ? ? 3 α2

? ? ? ? ? 1 α1

? ? ? ? ? 2 α1

General findings. More generally, we were interested in effects of the complexity
of the decision environment and of the aspiration level of the decision maker.
Regarding the first factor, more complex decision environments are expected to
entail larger decision trees and smaller average utilities over time. As concerns
the aspiration level, it is to be expected that higher levels will probably guarantee
higher utilities on average but, at the same time, lead to more complex decision
models. To illustrate, consider the problem of choosing the optimal dose of a
drug for different patients. The simple decision tree shown in Fig. 7.1 might
lead to satisfying results (the utility of a decision depends on the patient’s state
of health after the treatment). Still, even better results might be obtained by
differentiating more precisely between patients, taking further attributes such as
weight into account. This would of course mean using a more complex decision
tree.

< 12 ≥ 12

malefemale

age

sex

20ml

10 ml

30 ml

Fig. 7.1. Decision tree implementing a simple strategy for choosing the dose of a drug.

One might furthermore suspect that the effect of increasing the threshold u∗ is
not independent of the complexity of the decision environment. Consider the
following example: Suppose that exactly one optimal action with utility 1 exists
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for each problem. An act applied to a problem for which it is not optimal yields
a utility of 0 < α < 1. Now, with a threshold u∗ ≤ α the decision maker is always
satisfied, regardless of what action it applies to a problem. In fact, its decision
model consists of only one rule which prescribes to choose act a, where a is the act
that has been applied to the first problem, perhaps randomly. The average utility
is exactly α + (1−α)/k. If the utility threshold u∗ exceeds α, the decision maker
is satisfied only with the optimal acts, and it will spend enormous effort in finding
these acts. The difficulty of this venture in turn depends on the generalization
capability of the induced decision trees. If a decision tree is indeed a good model
for the application at hand, the agent might succeed very quickly. Otherwise, it
might try several actions for each individual problem before finally finding the
optimal one it seeks for. Anyway, the decision model will become much more
complex in this case. Of course, this model will finally come up with an optimal
act for each problem. It should be noted, however, that it might take a long time
and many unsuccessful attempts before this model is constructed. Therefore, the
gain in utility might be poor over a limited time horizon and might hence not
compensate for the increased complexity.

For different combinations of utility thresholds u∗ and complexity measures γ,
we have performed 1,000 simulation runs with m = 6, k = 4, v = 4, L = 100,
respectively. For each simulation, the average utility (r1 + . . .+ r100)/100 and the
average size of the decision tree have been computed. (The size was measured
in terms of the number l of leaf nodes.) The corresponding results, documented
in Table 7.2 and Appendix H, permit the following conclusions which confirm
our above suppositions: Increasing u∗ always leads to more complex decision
models. However, it yields an improvement in average utility only if the decision
environment is not too complex. Roughly speaking, the decision maker should
be demanding for simple environments, where decision trees provide an adequate
model and, hence, looking for better decision models is likely to be successful.
If the environment is complex, however, it is urged to be modest: Searching for
better models will generally increase the size of decision trees but hardly the
quality of decisions.

γ = 0.5 γ = 1
u∗ = 0.2 0.59 0.59
u∗ = 0.9 0.79 0.56

γ = 0.5 γ = 1
u∗ = 0.2 8.84 15.76
u∗ = 0.9 19.82 48.79

Fig. 7.2. Average values of the (average) utility degrees (left) and (average) number of leaf nodes
(right), taken over the 1,000 simulation runs.
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7.8 Summary and remarks

Summary

– We have briefly reviewed the original idea of case-based decision making due
to Gilboa and Schmeidler (Section 7.1) as well as an alternative (fuzzy
set-based) model proposed by Dubois and Prade (Section 7.3). Rather than
concentrating on the accumulated or average performance of acts, the latter
gives preference to acts which have always led to good results for problems
which are similar to the current one.

– Methods of CBDM on the basis of the Nearest Neighbor principle have
been investigated and characterized axiomatically in Section 7.2. NN decision
rules can be seen as approximations of the decision criteria in CBDT. They
can be motivated, among other things, for reasons of computational efficiency.

– The fuzzy set-based approach to CBDM has been generalized in Section 7.4.
The extreme (worst case) valuation in the original model has been relaxed by
looking out for acts which have yielded good results at least in most (rather
than all) cases in the past. It has been shown that the relaxation of the “always”
requirement in the principle underlying the original decision criterion can be
advantageous in the context of repeated decision making.

– Section 7.5 has outlined an alternative CBDM framework. Corresponding
methods combine results of previous chapters and generalized decision theories
which have recently been proposed in literature in order to realize case-based
decision making. These methods are case-based in the sense that an agent makes
use of case-based reasoning (in the form of case-based inference) in order to sup-
port the modeling of a new decision problem, notably the specification of an
uncertainty measure over possible outcomes. Since the latter is not necessarily
a probability measure, the concept of an expected utility has to be generalized
in order to compare acts. Two concrete methods have been discussed: The CBI

approaches of Section 4.5 and Chapters 5 and 6 give rise to decision making
with “case-based” belief functions and “case-based” possibility distributions,
respectively.

– In Section 7.7, we introduced a framework of experienced-based decision making
as an extension of case-based decision making. In EBDM, an agent faced with
a new decision problem acts on the basis of experience gathered from previous
problems in the past, either through predicting the utility of potential actions
or through establishing a direct relationship between decision problems and
appropriate actions. A realization of the latter approach has been proposed in
the form of “satisficing decision trees”.
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Remarks

– A representation of cases which is similar to the one proposed by Gilboa and
Schmeidler was already suggested by Kolodner [234]. Apart from a problem
and a solution she introduced a third component of a case: the outcome is
thought of as the state of the world under the condition that the corresponding
solution is applied and usually comprises some kind of feedback (see also [30]).
According to this point of view, a triple (p, a, r) is seen as an extended decription
of a case, i.e., a usual case (p, a) supplemented by some valuation r. By using the
notation 〈(p, a), r〉 we have suggested a second interpretation in this chapter: p
and a are taken together and constitute the first component of an ordinary case.
This component is now partly under the control of the agent which can choose
a. The second component is the outcome associated with the problem–act tuple
(p, a). Even though formally equivalent to the first notation, considering a case
as a tuple 〈(p, a), r〉 seems more natural in the context of Section 7.5 where
case-based reasoning (case-based inference) is used in its basic form, namely
for predicting the outcomes associated with inputs (= problem–act tuples).

– In [172], Gilboa and Schmeidler provide an interesting comparison between
case-based and rule-based knowledge representation, with special emphasis on
the problem of induction. This article also contains further examples showing
that the linearity of the CBDT functionals will often be too restrictive in
practice. Particularly, this seems to be true if the decision maker is allowed
to learn a similarity function resp. the importance of cases.42 For instance, if
experience is better represented by subsets of cases, the weight of an individual
case depends on other observations as well. This effect, however, cannot be
captured by the (additively) separable CBDT functionals but rather calls for
the use of non-additive set-functions.

– As the summation of (weighted) degrees of utility in (7.2) reveals, CBDT ac-
tually assumes that the application of an act to similar problems yields similar
utilities rather than similar outcomes. Of course, the two principles are only
equivalent if outcomes are directly given in terms of utilities. Otherwise, the
use of utility degrees in (7.2) has to be justified by the additional assumption
that similar outcomes have similar utilities.

– The memory (7.1) of cases represents the experience of the decision maker.
This does not mean, however, that all cases have been collected by the agent
itself, or that the agent has made all related decisions. In fact, cases can also
be experienced in a passive way or might even be the product of some kind of
hypothetical reasoning.

– The simple accumulation of utility degrees in (7.2) does not always appear plau-
sible, of course. Let us mention, however, that it might well be reasonable in
connection with certain applications, such as the modeling of consumer behavior

42 The adaptation of the similarity function is interpreted as some kind of second-order induction in
[172].
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in economics [170]. Interestingly enough, some undesirable effects of the accu-
mulative nature of (7.2) can also be avoided by using the more general approach
(7.5): The relevance of an observation might be reduced if the same case has
already been encountered before. This idea seems quite plausible from a cogni-
tive point of view. In fact, it again reveals the advantage of a “relevance-based”
decision theory which is more general than a “similarity-based” approach.

– It has been mentioned that CBDT should not be seen as a competing the-
ory, but as an alternative model which complements expected utility theory in
a reasonable way. The claim that neither of them is superior in general and
that the adequacy of a model strongly depends on the kind of problem under
consideration is supported by a theoretical result of Matsui [262]. He shows
that EUT and (a slight modification of) Gilboa and Schmeidler’s CBDT

are equivalent in the sense that each EUT model can be represented in the
framework of CBDT and vice versa.43 The embedded model, however, might
be much more complex than the original model.

– Notwithstanding the cognitive appeal of CBDT, one might feel some uneasi-
ness concerning the manifold possibilities for defining a case-based decision
model. CBDT basically suggests that the current decision is a function of the
agent’s experience, considered against the background of a similarity relation
between inputs. The experience, as represented by the history of cases, is an
element of a quite complex and high-dimensional space on which various deci-
sion functions can be defined. Moreover, similarity is a rather vague concept,
and it is by no means obvious what a reasonable similarity function should look
like. In this respect, expected utility theory appears more restrictive. In fact,
a decision is derived from a utility function44 and a probability function which
can be seen as an (information-compressed) statistic of the agent’s experience
(at least if probabilities are obtained from relative frequencies). Besides, the
linear combination of probability and utility by means of the expected utility
formula seems more straightforward than a similarity-based evaluation. Loosely
speaking, EUT determines the information to be extracted from the agent’s
experience and the way in which this information is to be used more strictly.

– We have assumed the nearest neighbor (7.11) to be unique. The case of non-
uniqueness could be handled by means of a set-valued generalization in the
Dempster-Shafer style. Then, (7.11) defines the set of nearest neighbors,
thus playing a role somewhat comparable to a focal element of a belief structure
over A. (Observe, however, that the weights in (7.10) are utility degrees which
do not necessarily sum up to 1.) Moreover, (7.10) becomes

43 Consequently, the two theories are observationally equivalent.
44 Note that a utility function is principally required in CBDT as well. There, however, the function

needs to be known only partially, namely for the observed outcomes.
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V (a0) =
∑

(p,a)∈M↓:NNp0,A(p,a)�a0

σQ×A((p, a), (p0, a0)) · u(r(p, a)),

i.e., V (a0) defines the counterpart to the plausibility of a value a0 ∈ A.

– In the context of CBDM, the decision maker treats an uncertainty measure
derived via CBI as some kind of “intermediate result” of the complete decision
procedure. In Section 7.5.3, for instance, the possibility distributions (7.46) are
taken as primitives in the second step of this procedure, namely the ranking
of acts according to (7.49) or (7.50). In order to apply these qualitative deci-
sion criteria, the agent has to consider the distributions as being objectively
given. In fact, the axiomatic framework in [123] is set up in the style of Von

Neumann and Morgenstern: A utility function is derived from preferences,
but the concept of belief in the form of a possibility distribution on outcomes
is assumed to be given.45 The two-stage procedure realized by CBDM might
appear vulnerable from this point of view, particularly since the meaning of
objectivity seems less obvious in the case of a possibility distribution than in
the case of a probability [194].

– The idea of relating similarity and uncertainty (cf. Section 7.6.1) is also realized
in the theory of counterfactuals proposed by Lewis [250], where the plausibility
of an imaginary input is determined by its similarity to the current input.

– A combination of the concepts of similarity, preference (utility), and belief
(probability) has also been outlined in [319]. However, this approach is quite
different from the ideas discussed in this chapter. Particularly, it is not related
to case-based reasoning.

– In connection with NN decision rules (Section 7.2) it has been mentioned that
a decision maker will generally not utilize its complete memory when having to
perform a prompt action. This consideration reveals the importance of efficient
memory organization and case retrieval strategies. Needless to say, a computa-
tionally efficient (and cognitively plausible) case-based decision theory has to
take these aspects into account.

– The methods proposed in Section 7.5 are based on generalizations of expected
utility theory. Let us mention that one could also think of other ways of com-
bining case-based inference and EUT. The constraint-based approach to CBI

discussed in Chapter 3, for instance, can be used in order to suggest a subset
of acts or states of nature which should be taken into account. EUT can then
be applied to the reduced setup. Not only is an approach of this kind computa-
tionally efficient, it also appears cognitively plausible. In fact, human decision
makers will generally concentrate on a small number of acts and disregard states
of nature which are considered as being impossible anyway.

– The property of bounded optimality mentioned at the beginning of this chapter
can be paraphrased as “the optimization of computational utility given a set of

45 See [128] for an axiomatization of qualitative decision making in the style of Savage.
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assumptions about expected problems and constraints in reasoning resources”
[192]. According to [323], a program exhibits bounded optimality if it “is a
solution to the constrained optimization problem presented by its architecture.”
A relaxation of this concept is asymptotic bounded rationality [323] which to
some extent parallels the idea of asymptotic complexity. It aims at supporting a
constructive theory of bounded rationality which makes the design of bounded
optimal agents largely independent of the architecture of the computational
environment.

The fact that computational aspects of rational decision making have only
recently become a focus of research should not give rise to the impression that
related problems have been ignored before. Indeed, classical decision theory has
well been aware of computational problems [255]. See, for instance, [182] for a
generalization of the axioms of subjective probability taking related aspects
into account.



8. Conclusions and Outlook

In this book, we have developed various approaches to what we have called case-
based inference. The idea of CBI is to exploit experience in the form of a memory
of observed cases (a case base consisting of input–output tuples) in order to
predict a set of promising candidate outputs given a new query input. The corre-
sponding inference schemes are based on suitable formalizations of the heuristic
assumption that similar inputs yield similar outputs. Proceeding from a very sim-
ple, constraint-based model of this hypothesis, more sophisticated versions have
been developed within different formal frameworks of approximate reasoning and
reasoning under uncertainty. Let us again highlight the following properties of
our approaches:

– For many of the CBI inference schemes, it was possible to derive interesting
theoretical properties, for example the fact that a prediction covers the true
outcome with high probability. From a case-based reasoning point of view, such
CBI methods support a “reliable” retrieval of candidate solutions and, hence,
contribute to the formal foundation of an important step within a CBR process.

– As our inference schemes hardly assume more than the specification of similarity
measures for inputs and outputs, they are quite general and widely applicable.
In particular, since no kind of transitivity is assumed for the similarity measures,
the structure of the input and output space might be weaker than that of a
metric space. This is a point of great practical relevance for CBR, where inputs
and outputs can be complex objects. It also means that predictions can be
derived in many situations where standard methods (e.g. from statistics) are
not applicable.

– Our inference schemes are applicable for any pair of similarity measures, even
if these measures are not defined in an optimal way. That is, the predictions
remain correct, even though they might become rather imprecise. This, however,
should not be seen as a disadvantage. On the contrary, these methods do not
pretend a precision or credibility of case-based predictions which is actually
not justified. Instead, imprecise predictions can be taken as an indication that
either CBR is not appropriate for the application, or at least that the similarity
measures are not well specified.

Most experiments conducted in this book have focused on prediction problems
like classification and regression, for which benchmark data is available and pre-
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dictive accuracy can easily be measured. Of course, from a (case-based) problem
solving point of view, prediction appears to be the most simple problem class,
mainly because there is no need for adapting the predicted solution. Still, an open
question concerns the integration of our CBI methods into more complex CBR

systems, that is, the use of these methods for more general types of problem
solving.

A interesting idea in this regard is to apply CBI in the context of “search-
oriented” CBR. In fact, according to the view of transformational adaptation
taken in [30], case-based problem solving can be cast as a search process. Within
the related model, (potential) cases correspond to search states and adaptation
operators play the role of search operators. Now, the key idea is to use CBI

in order to complement this model in a reasonable way. In fact, in [30] the au-
thors note that, according to their approach, CBR could principally be realized
by enumerating the search space completely. Understandably, they look at this
idea with reservation, immediately pointing to the enormous complexity it brings
about. Our approach applies exactly to this problem: CBI supports problem solv-
ing by predicting a promising subset of search states (outputs), thereby focusing
search to promising regions of the search space and thus providing important
information to a search method which is applied for actually finding a solution.
From the perspective of CBR, this approach might not merely be seen as an
application. In conjunction with the ideas presented in [30], it could contribute in
a more general way to a formal framework of CBR in which (transformational)
adaptation is realized as a search process and (case-based) experience is used in
order to concentrate on promising regions of the related search space.

Indeed, in [30], the concept of similarity is integrated into problem solving by
means of a, say, “ideal” similarity measure. By pointing to optimal initial search
states, this measure somehow guarantees the retrieval of cases which can be
adapted easily. Needless to say, finding such measures will be difficult in practice,
if not impossible. As mentioned previously, our CBI methods take a different
(more pragmatic) approach: They take any similarity measure as a given input,
even if this measure is not “ideal”, and then derive a set of promising search states
rather than the optimal initial state.



A. Possibilistic Dominance in Qualitative

Decisions

Recall the axiomatic system O which has been discussed in the context of quali-
tative decision making in Section 7.5.3:

O1 . is a total preorder.

O2 π ≤ π′ ⇒ π . π′.

O3 Independence: π1 ∼ π2 ⇒ (λ/π1, µ/π) ∼ (λ/π2, µ/π).

O4 ∀π ∈ Π ∃λ ∈ V : π ∼ (λ/r∗, 1/r∗).

From these axioms one derives the decision criterion (7.48):

QU+(π)
df
= max

r∈R
min {h(π(r)), u(r)} .

The idea of possibilistic dominance is the following: Consider the possibility to
obtain an outcome which is equal to or better than some fixed outcome r. If this
possibility is never smaller under a distribution π than under a distribution π′,
regardless of the outcome r, then π′ should not be preferred strictly to π.

Definition A.1 (possibilistic dominance). A distribution π ∈ Π dominates
a distribution π′ ∈ Π possibilistically if1

∀ r ∈ R : π′({x ∈ R | r . x}) ≤ π({x ∈ R | r . x}) .

The relation . satisfies possibilistic dominance if π′ . π whenever π dominates
π′ possibilistically. �

If we introduce the decumulative possibility distribution function of a distribution
π ∈ Π via

Gπ : R −→ [0, 1] , x �→ π({r ∈ R |x . r}) = max{π(r) |x . r},

it can be seen that π dominates π′ possibilistically iff Gπ ≥ Gπ′ . Note that
π ∈ Π ⇒ Gπ ∈ Π and that GGπ = Gπ for all π ∈ Π.

1 We use the same symbol for a possibility distribution π on a (finite) set X and the associated measure
which is defined on 2X by A �→ supx∈A π(x).
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Remark A.2. Assume (without loss of generality) that r1 . r2 . . . . . rn. Let
π ∈ Π and define π′ as follows: π′(rn) = π(rn) and

π′(rk) = max {π(rk), π
′(rk+1)}

for k = n − 1, n − 2, . . . , 1. Then π′ = Gπ. �

Proposition A.3. The axiomatic system which consists of O1, O3, O4, and

PD . satisfies possibilistic dominance

is equivalent to the system O, i.e., O2 can be replaced by PD. �

Proof. Suppose that π ≤ π′ and that PD holds true. From π ≤ π′ follows
obviously that Gπ ≤ Gπ′ , and hence π . π′. Thus, PD implies O2. We are
now going to show that the axiomatic system O implies PD. Again, assume
r1 . r2 . . . . . rn. For 1 ≤ k ≤ n define the distributions πk and π≤k as follows:

πk(rj) =

{
1 if j = k

0 if j "= k
, π≤k(r) =

{
1 if j ≤ k

0 if j > k
.

It is readily seen that O implies πk ∼ π≤k. Therefore, by axiom O3,

π′ df
= (λ/π≤k, 1/π) ∼ (λ/πk, 1/π) (A.1)

for all π ∈ Π. For λ in (A.1) equal to π(rk) we obtain

(λ/πk, 1/π) = (π(rk)/πk, 1/π) = π

and

π′(rj) =

{
max {π(rj), π(rk)} if j ≤ k

π(rj) if j > k
.

Now, for π ∈ Π let π′
n = π and

π′
k = (π(rk)/π≤k, 1/π

′
k+1)

for k = n − 1, n − 2, . . . , 1. Then

π ∼ π′
n ∼ π′

n−1 ∼ . . . ∼ π′
1 .

Moreover, from the construction of π′
1 and Remark A.2 we obtain π′

1 = Gπ. We
have thus established that O implies π ∼ Gπ for all π ∈ Π. Now, consider π, π′ ∈
Π and suppose that π dominates π′ possibilistically, which means Gπ′ ≤ Gπ.
From axiom O2 we conclude that Gπ′ . Gπ and, therefore,

π′ ∼ Gπ′ . Gπ ∼ π .

This means that π′ . π and, hence, that PD holds true. �
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Remark A.4. The axiomatic system P can be modified in a similar way with
a slightly different definition of possibilistic dominance: A distribution π ∈ Π
dominates a distribution π′ ∈ Π possibilistically if

∀ r ∈ R : π({x ∈ R |x . r}) ≤ π′({x ∈ R |x . r}) .

That is, the possibility of obtaining an outcome which is equal to or worse than a
certain fixed outcome is never larger under π than under π′. Again, the pessimistic
resp. optimistic character of the decision criteria becomes obvious. According to
the axiomatic system O, an optimistic decision maker concentrates on the pos-
sibility of receiving a preferable outcome, whereas a pessimistic decision maker,
acting in accordance with the axiomatic system P, tries to avoid less preferred
outcomes. �



B. Implication-Based Fuzzy Rules as

Randomized Gradual Rules

The probabilistic interpretation of the certainty rule model of case-based infer-
ence (cf. Section 6.3) suggests to consider a certainty rule or, more generally, an
implication-based fuzzy rule as a class of gradual rules endowed with a proba-
bility measure. It has already been mentioned that this kind of representation is
unique for certain (implication-based) fuzzy rules. This uniqueness is particularly
interesting since a corresponding property does generally not hold in connection
with the probabilistic models discussed in Section 4.5. Here, we are going to study
the gradual rule representation of implication-based fuzzy rules in more detail.
More specifically, this representation is shown to be unique on the assumption
that the implication operator used for modeling the fuzzy rule does not have
a special kind of strict monotonicity condition. In this case, the crisp relations
induced by the involved gradual rules correspond to level-cuts of the fuzzy rela-
tion associated with the fuzzy rule. However, other representations might exist
if the aforementioned property is not satisfied. Under a slightly stronger (strict)
monotonicity condition, the existence of further (non-consonant) representations
is even guaranteed. Then, the crisp relations induced by gradual rules do not
necessarily correspond to level-cuts of the underlying fuzzy relation.

From a semantical point of view it is often useful to “decompose” a “fuzzy object”
into a collection of “crisp objects,” i.e., to consider the former as a kind of aggre-
gation of the latter. In fact, tracing the fuzzy case back to the crisp case often
supports the understanding of a fuzzy concept and clarifies the meaning of graded
degrees of membership (e.g., in terms of possibility, similarity or preference). A
clear semantics in turn facilitates the definition and the use of fuzzy concepts, e.g.,
the determination of membership functions in the context of linguistic modeling,
or the learning of fuzzy concepts from observed data.

A well-known example of the above type of decomposition is the interpretation of
a fuzzy set in terms of a random set [110, 177, 387]. According to this view, the
membership function A : X −→ [0, 1] of a fuzzy set A ⊂ X is considered as the
one-point-coverage of a random set, i.e., a random variable S : Ω −→ 2X defined
over a probability space (Ω,A, µ). If Ω is countable, that means

A(x) =
∑
x∈X

µ(S−1(X)).

It deserves mentioning that the representation of a fuzzy set in terms of a random
set is in general not unique [177]. However, a decomposition that appears natural

313
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is defined by the family of α-cuts of a fuzzy set. Let us consider the special case
where the fuzzy set is actually a fuzzy relation C = A × B with membership
function (x, y) �→ C(x, y) = min{A(x), B(y)}. The α-cuts of C are then of the
form Cα = Aα×Bα. A fuzzy relation of this type is closely connected with so-called
conjunction-based fuzzy rules which have originally been used by Mamdani in
the context of fuzzy control [259]. In fact, such a rule actually corresponds to
a conjunction rather than an implication, and it is combined disjunctively with
other rules (cf. Chapter 5). That is, a fuzzy rule “if X is A then Y is B” is
formally interpreted as a (fuzzy) logical conjunction (X ∈ A) ∧ (Y ∈ B). Thus,
looking at the fuzzy relation A × B associated with a conjunction-based rule as
a collection of crisp relations Aα ×Bα comes down to interpreting a fuzzy rule of
the Mamdani-type as an aggregation of crisp (Mamdani) rules “if X is Aα then
Y is Bα.”

Here, we are interested in a corresponding representation of implication-based
fuzzy rules. Thus, the idea is to represent an implication-based fuzzy rule as a
collection of crisp (implication-based) rules. As will be seen, crisp rules can again
be associated with α-cuts of the fuzzy relation C induced by an implication-based
fuzzy rule with antecedent X ∈ A and consequent Y ∈ B. However, in analogy to
the aforementioned non-uniqueness of the representation of a fuzzy set in terms
of a random set, other classes of rules can be defined which induce the same
fuzzy rule but which do not correspond to a collection of α-cuts Cα. That is, the
decomposition of C into level-cuts is only one possibility of defining a compatible
class of crisp rules. In fact, it should be noted that – in the context of implication-
based fuzzy rules – this type of decomposition does not appear more “natural”
than other decompositions, the associated rules of which do not correspond to
level-cuts.

In Section B.1, we introduce implication-based fuzzy rule and discuss (pure) grad-
ual rules as a special case of this type of rule. Even though some of the material
has already been presented in Chapter 6, we recall these concepts in order to
make this part self-contained. In Section B.2, an interpretation of fuzzy rules in
terms of a class of gradual rules endowed with a probability measure is proposed.
Section B.3 investigates relations between the uniqueness of this type of represen-
tation and monotonicity properties of the implication operator used for modeling
the fuzzy rule.

B.1 Implication-based fuzzy rules

Consider two variables X and Y ranging on domains DX and DY , respectively.
Moreover, let A and B denote fuzzy subsets of DX and DY . These fuzzy sets
are characterized by membership functions in the form of DX −→ [0, 1] and
DY −→ [0, 1] mappings, which we also refer to as A and B, respectively. That is,
A(x) denotes the degree of membership of x in A. For the sake of simplicity we
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assume the range of A and B to be a finite subset L ⊂ [0, 1]. That is, A(x) and
B(y) are elements of L = {λ1, . . . , λn}, where 0 = λ1 < λ2 < . . . < λn = 1.

Fuzzy rules of the form “if X is A then Y is B” can be used for depicting (partial)
dependencies between the variables X and Y , i.e., for characterizing an underlying
relation

ϕ ⊂ DX × DY (B.1)

of possible or admissible tuples (x, y). The concrete form of the constraint depends
on the interpretation of the rule, i.e., on the type of (multiple-valued) implication
operator which is used for modeling the rule at a formal level [124].

B.1.1 Gradual rules

λ2

λ3

� �

� �very A

more or less A

Consider a fuzzy rule like, e.g., “if X is very large then Y is extremely small.”
This rule can be modeled as a (crisp) constraint of the form

X ∈ Aα ⇒ Y ∈ Bβ, (B.2)

where Aα = {x |A(x) ≥ α}. A and B represent linguistic labels such as “large”
and “small” in our example, and the membership degrees α, β ∈ L correspond
to the related hedges such as “very” and “extremely” (cf. Fig. B.1). The value β
should be taken as large as possible, so as to make the constraint (B.2) restrictive.
On the other hand, β has to be defined in such a way that (B.2) is still valid,
that is y ∈ Bβ for all (x, y) ∈ ϕ such that x ∈ Aα.

Taking the fuzzy sets A and B as a point of departure, one can thus define a
collection

X ∈ Aλ ⇒ Y ∈ Bm(λ) (λ ∈ L) (B.3)

of constraints (B.2). The function m : L −→ L determines the maximal restriction
of Y entailed by conditions of the form X ∈ Aλ; such restrictions are expressed in

Fig. B.1. Linguistic hedges are associated with membership degrees λ ∈ L. Thus, they define level-cuts
Aλ when being applied to a fuzzy set A.
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terms of the membership of Y in B. One might ask, for instance, to which degree
Y is guaranteed to be small if X is very large (which means that X ∈ Aλ, where
λ ∈ L is associated with the hedge “very”), and the same question can be posed
under the condition that X is more or less large. Such queries can be answered
by an expert in terms of hedges ranging from “not at all” (which corresponds
to m(λ) = 0 in (B.3)) to “completely” (m(λ) = 1). This way, the expert defines
a (linguistic) rule which makes use of the fuzzy sets A and B (see Fig. B.2 for
an illustration). Notice that these sets are assumed to be given in advance. This
point of view is in line with the structure-based approach to rule extraction; it
contrasts with alternative (e.g. cluster-based) approaches to learning fuzzy rules
where (the membership functions of) A and B are adapted to a predefined rule
base [277].

Aλ

Bλ

Bλ′

ϕ

.............
...........
......... ........ ........ ....... ....... .......

. ........... .......... ........... ........... ............ ............ .............
.............
..............
...............

. ............... ................ .................
..................

The constraints (B.3) can be written compactly in terms of membership functions
as

m(A(X)) ≤ B(Y ). (B.4)

The inequality (B.4) is often used for expressing the semantics of a so-called
gradual fuzzy rule (cf. Section 6.1). Such rules, subsequently symbolized by F →
G, are of the form “the more X is F , the more Y is G” or “the larger the degree
of membership of X in F , the larger the degree of membership of Y in G” [119].
In connection with the level cut representation (B.4) we have F = m ◦ A and
G = B or, alternatively, F = A and G = m(−1) ◦ B, where m(−1) is defined by

m(−1)(λ) = max{λ′ ∈ L |m(λ′) ≤ λ}

for all λ ∈ L. According to (B.4), a gradual rule m ◦ A → B induces the relation

{
(x, y) |m(A(x)) ≤ B(y)

}
⊂ DX × DY

Fig. B.2. If X is more or less A (i.e., A(x) ≥ λ) then Y is guaranteed to be more or less B (i.e. B(y) ≥
λ), but not necessarily very B. In fact, there are tuples (x, y) in the relation ϕ, which here corresponds
to a simple function, such that x ∈ Aλ but y 	∈ Bλ′ . For the scale L = {0, λ, λ′, 1} one would hence
obtain m(λ) = λ in (B.3).
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of possible or admissible instantiations of (X,Y ).

Given two fuzzy sets A and B, we can associate a gradual rule m ◦ A → B with
each function m : L −→ L. Note that m should be non-decreasing since

{
y ∈ DY | ∃x ∈ Aλ′ : (x, y) ∈ ϕ

}
⊂
{
y ∈ DY | ∃x ∈ Aλ : (x, y) ∈ ϕ

}

for λ < λ′, where ϕ is the relation (B.1).1 Thus, the scale L gives rise to the class

G = GA,B = {m ◦ A → B |m(λ0) ≤ m(λ1) ≤ . . . ≤ m(λn)} (B.5)

of gradual rules induced by non-decreasing functions m : L −→ L.

Observe that m in (B.4) can be used for weakening as well as for strengthening
the constraint A(X) ≤ B(Y ) associated with the “genuine” rule “the more X
is A, the more Y is B.” In the extreme case where m ≡ 0, for instance, (B.4)
is trivially satisfied. Thus, m ≡ 0 means that Y cannot be constrained by X
in terms of A and B. More generally, the function m in (B.4) somehow acts as
a modifier on the rule A → B. In connection with the linguistic modeling of
fuzzy concepts, modifiers such as x �→ x2 or x �→ √

x are utilized for depicting
the effect of linguistic hedges such as “very” or “almost” [244, 413]. It should
be noted, however, that such hedges play a slightly different role in our context.
Usually, a single linguistic hedge such as “very” is associated with a complete
modifier, say, x �→ x2. In our approach, a hedge is associated with a membership
degree. Therefore, its application to a fuzzy set yields a level-cut of that fuzzy
set, not a modification thereof which is also a fuzzy set (see again Fig. B.1). (Still
one can interpret a level-cut resp. the associated interval as a special fuzzy set.
Thus, our approach can be seen as a special case of the general approach, using
modifier functions of the form x �→ I[λ,1].) None the less, it should be clear that
linguistic hedges are only an auxiliary concept which might be interesting from
a semantical or practical point of view. Apart from this, they are not needed for
the theoretical results discussed below.

B.1.2 Other implication-based rules

The constraint (B.4) induces a {0, 1}-valued possibility distribution πG on DX ×
DY , where πG(x, y) denotes the possibility that (X,Y ) = (x, y):

πG(x, y) = m(A(x))
rg� B(y) (B.6)

for all (x, y) ∈ DX × DY , with
rg� being the Rescher-Gaines implication, i.e.,

α
rg� β = 1 if α ≤ β and 0 otherwise. Gradual rules formalized in this way are

called pure gradual rules in [46]. In fact, a gradual rule F → G is a special case
of an (implication-based) fuzzy rule of the form F � G, where � is a residuated

1 This is also in agreement with the “the more ... the more ...” semantics of gradual rules.
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(multiple-valued) implication connective. Particularly, a pure gradual rule (which

has the same core as any gradual rule F � G) is obtained by taking → as
rg�.

More generally, the possibility distribution associated with a rule “if X is A then
Y is B” is given by

π�(x, y) = A(x) � B(y)

for all (x, y) ∈ L×L when making use of a (multiple-valued) implication operator
�. The latter is a [0, 1] × [0, 1] −→ [0, 1] function which is non-increasing in the
first and non-decreasing in the second argument, i.e.

α � β ≤ α′ � β for α′ ≤ α,

α � β ≤ α � β′ for β ≤ β′.
(B.7)

Besides, � is often assumed to satisfy the following properties [46]:

– identity: α � 1 = 1,

– exchange: α � (β � γ) = β � (α � γ),

– neutrality: 1 � β = β.

Gradual fuzzy rules belong to the class of truth-qualifying rules, the semantics
of which is adequately modeled by means of so-called R(esiduated)-implications
[118]. An R-implication is an operator of the form

(α, β) �→ sup{0 ≤ γ ≤ 1 | �(α, γ) ≤ β}, (B.8)

where � is a t-norm (i.e., a function � : [0, 1]×[0, 1] −→ [0, 1] which is associative,
commutative, nondecreasing in both arguments, and such that �(x, 1) = x for
all 0 ≤ x ≤ 1). The Rescher-Gaines implication introduced above is a special
case of an R-implication.2 Other important operators belonging to this class are
the Gödel implication and the Goguen implication (as well as the respective
contrapositions):

– The Gödel implication

α � β
df
=

{
1 if α ≤ β

β if α > β
(B.9)

is the R-implication induced by � = min.

– The contraposition of the Gödel implication is defined as

α � β
df
=

{
1 if α ≤ β

1 − α if α > β
. (B.10)

2 It is obtained for the conjunction � given by �(α, β) = α if β > 0 and 0 otherwise.
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– The Goguen implication

α � β
df
=

{
1 if α = 0

min{1, β/α} if α > 0
(B.11)

is obtained from (B.8) by taking � as the product (α, β) �→ αβ.

– The contraposition of the Goguen implication is defined as

α � β
df
=

{
1 if β = 1

min{1, (1 − α)/(1 − β)} if β < 1
. (B.12)

A further type of implication is given by so-called S(trong)-implication operators.
These are operators of the form (α, β) �→ S(n(α), β), with S and n being respec-
tively a t-conorm and a strong negation function. Such operators adequately cap-
ture the semantics of (un)certainty-qualifying rules [118]. A certainty rule A � B
corresponds to statements of the form “the more X is A, the more certain Y lies
in B.” More precisely, it can be interpreted as a collection of rules “if X = x, it
is certain at least to the degree A(x) that Y lies in B.” This translates into the
constraint π(x, y) ≤ max{1 − A(x), B(y)} when taking � as the Kleene-Dienes
implication

α � β = max{1 − α, β}. (B.13)

A further example of an S-implication is the Reichenbach implication

α � β
df
= 1 − α + αβ. (B.14)

There are also implication operators which belong to both the class of R-
implications and the class of S-implications:

– The Lukasiewicz implication

α � β
df
= min{1, 1 − α + β} (B.15)

is the R-implication induced by the t-norm (α, β) �→ max{0, α + β − 1} and
defines the S-implication for the t-conorm (α, β) �→ min{1, α + β}.

– The operator

α � β
df
=

{
1 if α ≤ β

max{1 − α, β} if α > β
(B.16)

is the S-implication and, at the same time, the R-implication related to a t-
norm called the nilpotent minimum (given a strong negation n, the latter is
defined as �(α, β) = min{α, β} if β > n(α) and �(α, β) = 0 otherwise [150]).

Since we consider implication operators defined on a finite scale L, each such
operator � is identified by an n × n-matrix γ = (γı)1≤ı,≤n, where
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γı = λı � λ. (B.17)

Given a fuzzy rule “If X is A then Y is B,” the knowledge of the set of values
(B.17) is also sufficient for comparing the effect of different operators as con-
straints on the relation ϕ in (B.1). In fact, γ determines the induced possibility
distribution π� on DX × DY completely: The possibility π�(x, y) assigned to a
tuple (x, y) is given by γı, where ı and  are such that A(x) = λı and B(y) = λ.

B.2 Randomized gradual rules

Our idea is to establish a relationship between an implication-based rule A � B
and the class (B.4) of (pure) gradual rules3 associated with A and B. As already
mentioned above, the latter can be seen as a class of modifications m ◦A → B or
A → m(−1)◦B of the genuine (gradual) rule with antecedent A and consequent B.
Of course, (B.4) is not the only class of crisp rules which might be associated with
the fuzzy rule A � B. Yet, it emerges quite naturally from the constraint-based
view expressed by (B.2) when defining the condition and conclusion parts of the
rules in terms of of the level-cuts of the fuzzy sets A and B. The constraint-based
view is in turn natural if rules are considered as implications.

In accordance with the random set interpretation of fuzzy sets we are now going
to represent fuzzy rules as randomized gradual rules.

Definition B.1 (randomized gradual rule). A randomized gradual rule (or
random rule for short) associated with a conditional statement “if X is A then Y
is B” is a tuple (G, p), where G = GA,B is the (finite) set of gradual rules (B.5),
and p is a probability distribution on G. Each rule m ◦ A → B is identified by
the corresponding modifier m : L −→ L. Moreover, p(m) = p(m ◦ A → B) is
interpreted as the probability of the rule m ◦ A → B. �

Since each gradual rule m ◦ A → B induces an admissible set

Γm =
{
(x, y) ∈ DX × DY |m(A(x)) ≤ B(y)

}
(B.18)

=
⋂
λ∈L

(Aλ × Bm(λ)) ∪ (Aλ × DY )

of tuples (x, y), a randomized gradual rule (G, p) gives rise to a random set over
DX × DY such that

P(Γ ) =
∑

m∈G : Γ=Γm

p(m)

for all Γ ⊂ DX × DY . This random set (which is not necessarily nested) defines
an upper probability on DX × DY according to

3 We shall henceforth use the term gradual rule as a synomym for pure gradual rule, i.e., we always
have the Rescher-Gaines formalization in mind when speaking of a gradual rule.
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p(x, y) =
∑

Γ : (x,y)∈Γ

P(Γ ).

A random rule (G, p) hence induces a possibility distribution π(G,p) on DX × DY ,
where possibility degrees are interpreted as upper probabilities:

π(G,p)(x, y) = p(x, y) (B.19)

for all (x, y) ∈ DX × DY . Observe that

π(G,p) =
∑
m∈G

p(m) · πm, (B.20)

where πm denotes the {0, 1}-valued possibility distribution associated with the
gradual rule m ◦ A → B. Moreover, (B.19) is completely determined by the
following implication operator associated with (G, p):

λı
(G,p)� λ = γı =

∑
m∈G : m(λı)≤λ

p(m). (B.21)

In fact, we have π(G,p)(x, y) = p(x, y) = γı whenever A(x) = λı and B(y) = λ.

Remark B.2. Equation (B.21) shows that γı < γı,+1 as soon as m(λı) =  + 1
for a modifier m such that p(m) > 0. In other words, γı = γı,+1 means that
m(λı) =  + 1 is impossible. �

Remark B.3. From a mathematical point of view, (B.20) is nothing else than
a convex combination of the implications m ◦ A → B. Interpreting the weights
p(m) as probabilities is of course not compulsory. �

Remark B.4. The implication
(G,p)� defined by (B.21) satisfies (B.7) as well as

the properties of identity and exchange, but not necessarily neutrality. �

Example B.5. Let L = {0, 1/2, 1}, and consider two gradual rules defined by
the modifiers m1 and m2 such that

m1(0) = 0, m1(1/2) = 1/2, m1(1) = 1,

m2(0) = 0, m2(1/2) = 0, m2(1) = 1/2.

These rules induce (crisp) implication operators
rg�1 and

rg�2, respectively:

rg�1 0 1/2 1
0 1 1 1

1/2 0 1 1
1 0 0 1

rg�2 0 1/2 1
0 1 1 1

1/2 1 1 1
1 0 1 1

(B.22)
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According to (B.21), the random rule (G, p) with p(m1) = p(m2) = 1/2 defines
the following implication operator:

(G,p)� 0 1/2 1

0 1 1 1
1/2 1/2 1 1
1 0 1/2 1

(B.23)

Note that (B.23) corresponds to the operator induced by (B.16) on L × L. �

B.3 A probabilistic representation of implication-based
fuzzy rules

In this section, we shall establish the following results: For each implication op-
erator �, a probability p exists such that the rule A � B is equivalent to the
random gradual rule (G, p) in the sense that π� = π(G,p), where the possibility
distribution π� is obtained from A � B and π(G,p) is given by (B.20). That is,
the rule A � B and the randomized gradual rule (G, p) induce the same possi-
bility distribution on DX × DY . Moreover, it is shown that the probability p is
guaranteed to be unique (resp. non-unique) under certain conditions on the im-
plication operator �. Henceforth, we suppose an implication operator to satisfy
the monotonicity conditions (B.7) and the condition of identity.

Before turning to the question of the uniqueness of a representation we show the
existence of an equivalent random rule.

Lemma B.6. For each rule A � B an equivalent random gradual rule (G, p)
exists. That is, there is a probability p such that π� = π(G,p), where π� is the
possibility distribution induced by A � B and π(G,p) denotes the distribution
(B.20). �

Proof. We prove this lemma by constructing a randomized gradual rule which is
equivalent to A � B. Denote by γ1 > γ2 > . . . > γK > 0 the elements of the set

L′ = {λ � λ′ |λ, λ′ ∈ L} \ {0}.

For 1 ≤ ı ≤ n and 1 ≤ k ≤ K let

λ(ı, k) = min{λ | 1 ≤  ≤ n, λı � λ ≥ γk}. (B.24)

Observe that the set on the right-hand side in (B.24) is not empty due to the
identity property and, hence, that (B.24) is well-defined. (Besides, the mapping
(λı, γk) �→ λ(ı, k) defines a conjunctive operation � whose residuation just yields
the implication �.4 In fact, we have λı � λ ≥ γk ⇔ λ(ı, k) = �(λı, γk) ≤ λ.)

4 Note, however, that this mapping is only defined on L′ × L.
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Now, let the modifier mk (1 ≤ k ≤ K) be defined by

∀ 1 ≤ ı ≤ n : mk(λı) = λ(ı, k). (B.25)

Moreover, let p(mk) = γk−γk+1 (and p(m′) = 0 for all m′ "∈ {m1, . . . , mK}), where
γK+1 = 0. Observe that mk thus defined is non-decreasing since the implication
� is non-increasing in the first argument. It hence determines a gradual rule
according to (B.5). Moreover, the probability distribution p defines a random
gradual rule (G, p) in the sense of Definition B.1.

Now, consider any 1 ≤ ı,  ≤ n such that λı � λ = γl. We obviously have
mk(λı) ≤ λ ⇔ γl ≥ γk. Thus,

γı =
∑

m∈G : m(λı)≤λ

p(m)

= (γl − γl+1) + (γl+1 − γl+2) + . . . + (γK − γK+1)

= γl

for the value γı = λı
(G,p)� λ according to (B.21). This means that

(G,p)� is equiv-
alent to � and, hence, that (G, p) induces the same possibility distribution on
DX × DY as the rule A � B. �

We shall call m ◦A → B a focal rule if p(m) > 0. Moreover, we denote by PC the
class of probability distributions p which induce a consonant random rule, where
(G, p) is called consonant if the sets

Λm = {(λı, λ) |m(λı) ≤ λ} (B.26)

associated with focal gradual rules can be arranged into a chain. That is, all pairs
of focal rules m ◦ A → B and m′ ◦ A → B are nested:

Λm ⊂ Λm′ or Λm′ ⊂ Λm. (B.27)

The focal rules of a consonant random rule can obviously be arranged according
to their restrictiveness: The rule associated with m is more restrictive than the
one associated with m′ if Λm ⊂ Λm′ , i.e., if the admissibility of a tuple (x, y)
according to the latter implies the admissibility of (x, y) according to the former.

Lemma B.7. Each implication operator has exactly one representation in terms
of a consonant randomized gradual rule. �

Proof. Consider the randomized gradual rule (G, p) constructed in Lemma B.6.
From (B.24) and (B.25) follows that mk ≤ ml and, hence, Λml

⊂ Λmk
for l < k.

Thus, (B.27) is satisfied, i.e., the probability p is an element of PC . This proves
the existence of a consonant representation. Uniqueness follows from the unique
representation of a possibility distribution (which here corresponds to (λı, λ) �→
γı) in terms of a consonant body of evidence [232]. �



324 B. Implication-Based Fuzzy Rules as Randomized Gradual Rules

The existence of a unique consonant random rule representing an implication
operator (which satisfies identity) does not exclude the existence of other repre-
sentations which are non-consonant. The following lemma gives a sufficient con-
dition for an implication to have a unique (and hence consonant) representation
in terms of a randomized gradual rule.

Lemma B.8. Let (G, p) be a randomized gradual rule and suppose focal rules
m1, m2 ∈ G and associated sets Λm1 , Λm2 ⊂ L × L to exist such that neither
Λm1 ⊂ Λm2 nor Λm2 ⊂ Λm1 . Then, the property

∃ ı < k ∃  < l : (γk < γı < γıl) ∧ (γk < γkl < γıl). (B.28)

is satisfied. �

Proof. Let (λı, λ) ∈ Λm1 \ Λm2 and (λk, λl) ∈ Λm2 \ Λm1 , i.e.

m1(λı) ≤ λ, m1(λk) > λl,

m2(λı) > λ, m2(λk) ≤ λl.

Assume without loss of generality that ı ≤ k. We first show that ı < k and  < l.
Indeed, ı = k and  ≤ l leads to the contradiction m1(λı) ≤ λ ≤ λl < m1(λk) =
m1(λı). Likewise, ı = k and  > l yields m2(λı) > λ > λl ≥ m2(λk) = m2(λı).
Therefore, ı < k must hold. Now, assume  ≥ l. We then obtain m2(λk) ≤ λl ≤
λ < m2(λı) which is impossible since m2 is non-decreasing. Thus, ı < k and
 < l.

Let us now show the inequalities in (B.28). From ı < k,  < l and the monotonicity
property of m2 follows

m1(λı) ≤ λ < λl, m2(λı) ≤ m2(λk) ≤ λl,

m1(λk) > λl > λ, m2(λk) ≥ m2(λı) > λ.

That means

(λı, λl) ∈ Λm1 ∩ Λm2 and (λk, λ) "∈ Λm1 ∪ Λm2 .

Hence, both probabilities p(m1) and p(m2) appear in the computation of γıl ac-
cording to (B.21), while p(m2) is not assigned to γı nor p(m1) to γkl. Moreover,
neither p(m1) nor p(m2) is assigned to γk. Therefore,

γıl − γı ≥ p(m2) > 0,

γıl − γkl ≥ p(m1) > 0,

γı − γk ≥ p(m1) > 0,

γkl − γk ≥ p(m2) > 0,

which completes the proof. �
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Remark B.9. The condition (B.28) can be illustrated by arranging the values
(B.21) in the form of a table. In fact, (B.28) is satisfied if this table contains two
rows and two columns such that the four entries at the respective intersections
have a unique minimum (the bottom left element) and a unique maximum (the
top right element):

λ1 . . . λ . . . λl . . . λn

λ1
...
λı γı < γıl
... > >

λk γk < γkl
...

λn

As can be seen, (B.28) means that the implication � is strictly monotone in both
places on a subset of L × L (namely on {λı, λk} × {λ, λl}). �

Theorem B.10. For each rule A � B formalized by means of an implication
operator � an equivalent (consonant) random rule (G, p) exists. Moreover, (G, p)
is a unique random rule representation if

∀ ı < k ∀  < l : ¬(γk < γı < γıl) ∨ ¬(γk < γkl < γıl), (B.29)

i.e., if � does not satisfy the monotonicity condition (B.28). �

Proof. Existence has already been shown in Lemma B.6. The uniqueness in the
case where � satisfies (B.29) follows from Lemma B.7 and Lemma B.8. �

Let us summarize the results obtained so far. We have shown that any fuzzy rule
A � B, where � is an implication operator (i.e., non-increasing in the first and
non-decreasing in the second argument) satisfying the identity property, can be
represented as a randomized gradual rule. One of these representations is always
consonant. Moreover, this consonant representation is the only way of expressing
A � B in terms of a randomized gradual rule if the (non-)monotonicity condition
(B.29) holds.

Corollary B.11. A rule A � B with � the Kleene-Dienes implication (B.13)
can be expressed uniquely in terms of an equivalent (consonant) random rule. �

Proof. According to Theorem B.10 we only have to show that (B.29) is satisfied
(i.e., that (B.28) is not satisfied) for the implication operator α � β = max{1 −
α, β}: We have γıl = max{1 − m(λı), λl} and γkl = max{1 − m(λk), λl}. Now,
suppose that (B.28) holds. Then, inequality γkl < γıl implies λl ≤ γkl < γıl and,
hence,
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γıl = 1 − m(λı) ≤ max{1 − m(λı), λ} = γı,

which is in contradiction to γı < γıl. �

Corollary B.12. A rule A � B with � being the Gödel implication (B.9) or
its contraposition (B.10) can be expressed uniquely in terms of an equivalent
(consonant) random rule. �

Proof. Again, we have to show that (B.29) is satisfied for (B.10): Suppose γk <
γkl. Since γk, γkl ∈ {1 − λk, 1}, we then have γkl = 1 and, hence, γıl = γk, which
means that (B.29) holds. Now, suppose that γkl < γıl. That means γkl = 1 − λk

(since otherwise γkl = 1 ≥ γıl) and, hence, γk = 1 − λk = γkl. Thus, it is not
possible to satisfy both, λk < λkl and λkl < λıl. The result for the operator (B.9)
is shown in the same way. �

The construction in Lemma B.6 shows that the (unique) consonant random rule
(G, p) is a “levelwise” reconstruction of the underlying rule A � B. That is, for
each level α ∈ L′ there is a focal rule with associated modifier mα. This gradual
rule corresponds to the α-cut of the fuzzy rule A � B in the sense that

{(x, y) |A(x) � B(y) ≥ α} = {(x, y) |mα(A(x)) ≤ B(y)}, (B.30)

where mα(β) = �(α, β) and � is the conjunctive operation whose residuation
yields the implication �. (Note that mα(A) is not necessarily normalized. In this
respect, the gradual rule mα(A) → B is somewhat different from the gradual
rules considered in [119, 124] which involve only normal fuzzy sets.) If the rep-
resentation of A � B is not unique, however, further equivalent random rules
exist, and these rules are not consonant. That is, they do not correspond to a
levelwise representation of the form (B.30).

Remark B.13. Note that the α-cuts of the fuzzy relation C induced by a fuzzy
rule A � B can generally not be expressed as a function of the α-cuts of A and B,
as it is the case for Mamdani rules. For instance, Cα does generally not correspond
to (Aα × DY ) ∪ (Aα × Bα), where DY is the domain of Y and Aα = DX \ Aα

denotes the complement of Aα. �

Example B.14. Consider as an example the implication � in (B.10) for L =
{0, 1/2, 1} and identify a modifier m : L → L with the vector

(m(0), m(1/2), m(1)) ∈ L3.

The fuzzy rule A � B is then equivalent to (G, p), where

p((0, 1/2, 1)) = 1/2, p((0, 0, 1)) = 1/2.

Observe that the set of constraints
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If A(x) = 0 then B(y) ≥ 0,
If A(x) = 1/2 then B(y) ≥ 1/2,
If A(x) = 1 then B(y) = 1,

(B.31)

can be associated with the gradual rule (0, 1/2, 1). Likewise, the rule (0, 0, 1) gives
rise to

If A(x) = 0 then B(y) ≥ 0,
If A(x) = 1/2 then B(y) ≥ 0,
If A(x) = 1 then B(y) = 1.

(B.32)

Obviously, (B.31) and (B.32) only differ with respect to the conclusion drawn
from A(x) = 1/2. The randomized gradual rule (G, p) can thus be interpreted as
follows: If the premise X ∈ A is not satisfied at all, nothing can be said about the
value of Y (as expressed by the trivial constraints B(y) ≥ 0 in (B.31) and (B.32)).
As opposed to this, the conclusion Y ∈ B is completely satisfied whenever the
same is true for the premise. However, the rule that Y is (at least) more or less
(i.e., to the degree 1/2) in B if X is more or less in A is valid only with probability
1/2. �

Example B.15. Interestingly enough, the uniqueness results shown in Theo-
rem B.10 does not apply to the implication operator (B.16): For L = {0, 1/2, 1},
the fuzzy rule based on (B.16) is equivalent to the randomized gradual rules (G, p)
and (G, p′), where

p((0, 0, 1/2)) = 1/2, p((0, 1/2, 1)) = 1/2,

p′((0, 0, 1)) = 1/2, p′((0, 1/2, 1/2)) = 1/2.

Observe that (G, p′) is not consonant since neither m1 ≤ m2 nor m2 ≤ m1 holds
true for m1 = (0, 0, 1) and m2 = (0, 1/2, 1/2). That is, neither is m1 more restric-
tive than m2 nor vice versa. �

Remark B.16. Simple counterexamples (using scales L which contain at least
two elements different from 0 and 1) can also be constructed in order to show
that the uniqueness in Theorem B.10 does not apply to the following operators:
The Goguen implication (B.11) and its contraposition (B.12), the Reichenbach
implication (B.14), and the Lukasiewicz implication (B.15). These examples again
reflect the fact that a fuzzy set (which here corresponds to the fuzzy relation
(λ, λ′) �→ λ � λ′) does generally not have a unique representation in terms of a
random set (which is given here in the form of a randomized gradual rule). �

Theorem B.10 has shown that the (non-monotonicity) property (B.29) is a suf-
ficient condition for the representation of a fuzzy rule in terms of a randomized
gradual rule to be unique. It is, however, not a necessary condition. In other
words, property (B.28) does not imply the existence of a non-consonant random
rule representation. This can be illustrated by means of the following implication
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operator which satisfies (B.28) (with ı = 2,  = 1, k = 4, l = 3), but which can
only be represented in terms of a consonant random rule:5

λ1 λ2 λ3 λ4

λ1 1 1 1 1
λ2 1/2 1/2 1 1
λ3 1/2 1/2 1/2 1
λ4 0 1/2 1/2 1

Even though (B.28) is not sufficient for the existence of a non-consonant rep-
resentation, it can be shown that a slightly stronger condition actually is. This
condition requires an implication operator � to be strictly monotone (in both
places) on an interval of the form {λa, λa+1}×{λb, λb+1} ⊂ L×L.6 That is, there
are values 1 ≤ a, b < n such that

(γa+1,b < γab < γa,b+1) ∧ (γa+1,b < γa+1,b+1 < γa,b+1), (B.33)

where γ denotes the matrix (B.17) induced by �. In order to prove this result
we need some preliminaries.

Definition B.17 (admissible fuzzy relation). We call a fuzzy relation γ ⊂
L × L identified by the matrix (γı)1≤ı,≤n admissible if it satisfies the weak
monotonicity property

(ı ≤ k) ∧ ( ≤ l) ⇒ (γk ≤ γıl) (B.34)

for all 1 ≤ ı, , k, l ≤ n and if
γın = γn (B.35)

for all 1 ≤ ı,  ≤ n. Note that an admissible relation is not assumed to be normal.
That is, max1≤ı,≤n γı < 1 is not excluded. �

Definition B.18 (partial random rule). Suppose two fuzzy sets A ⊂ DX and
B ⊂ DY to be given. A partial random rule is a tuple (G, p), where G = GA,B

is the (finite) set of gradual rules (B.5), and p is a mapping on G such that
0 ≤ p(m) = p(m ◦ A → B) ≤ 1 for all m ∈ G and

∑
m∈G p(m) ≤ 1. �

Lemma B.19. For each admissible fuzzy relation γ there is an equivalent partial
random rule (G, p), i.e., a rule (G, p) such that

γı =
∑

m∈G : m(λı)≤λ

p(m) (B.36)

for all 1 ≤ ı,  ≤ n. Moreover, each fuzzy relation induced by a partial random
rule via (B.36) is admissible. �
5 This follows immediately from Remark B.2.
6 In other words, the two rows as well as the two columns in the table in Remark B.9 are directly

neighbored.
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Proof. The first part can be shown by means of a slight adaptation of the proof
of Lemma B.6. The second part is obvious. �

Lemma B.20. Denote by γ� ⊂ L × L the fuzzy relation (B.17) induced by
the implication operator �. Let (G, p′) be a partial random rule and let γ′ be
the induced (admissible) fuzzy relation (B.36). Moreover, suppose that γ′ ≤ γ�
and that γ� − γ′ is admissible. There is a partial random rule (G, p′′) such that
(G, p′ + p′′) is a randomized gradual rule which is equivalent to A � B. �

Proof. Since γ′′ = γ� − γ′ is admissible, Lemma B.19 guarantees the existence
of an equivalent partial random rule (G, p′′). Let p = p′ + p′′. It is obvious that
(G, p) defines a partial random rule with induced fuzzy relation γ = γ′+γ′′ = γ�.
Now, recall that � is assumed to satisfy the identity property, which means that

max
1≤ı,≤n

γı = max
1≤ı,≤n

γ�(λı, λ) = 1.

Moreover, note that m(λ1) ≤ λn for all m ∈ G. Therefore,

∑
m∈G

p(m) = γ1n = 1,

i.e., (G, p) is a randomized gradual rule. �

Theorem B.21. Denote by γ = γ� ⊂ L × L the matrix (B.17) induced by
the implication operator � and suppose that γ satisfies the strict monotonicity
condition (B.33). There is a non-consonant randomized gradual rule (G, p) which
is equivalent to �. �

Proof. In order to prove the theorem we proceed as follows:

(i) We define two functions m1, m2 : L −→ L.

(ii) Both functions are shown to be monotone, i.e., m1 and m2 are elements
of G in (B.5).

(iii) It is verified that the sets Λ1 and Λ2 defined, respectively, by m1 and
m2 according to (B.26) are not nested. Therefore, a partial random rule
(G, p′) such that p′(m1) > 0 and p′(m2) > 0 is not consonant.

(iv) It is shown that positive values p′(m1) and p′(m2) can be defined such
that γ − γ′ is admissible, where γ and γ′ are the relations induced by �
and (G, p′), respectively.

(v) According to Lemma B.20, (G, p′) can be extended to a randomized grad-
ual rule (G, p) which is equivalent to �. Since (G, p′) is non-consonant,
so is (G, p). This concludes the proof.
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(i) Let 1 ≤ a, b < n be given such that (B.33) is satisfied. Note that we have
b < n − 1 due to the identity property of �. We define m1 : L −→ L as follows:
m1(λı) = λbı for all 1 ≤ ı ≤ n, where

bı =

{
min{ | γı ≥ γab} if ı ≤ a

min{ | γı > γa+1,b+1} if ı > a
.

Moreover, m2 : L −→ L is given by m2(λı) = λbı for all 1 ≤ ı ≤ n, where

bı =

{
min{ | γı ≤ γab} if ı ≤ a

min{ | γı > γa+1,b} if ı > a
. (B.37)

(ii) The monotonicity of m1 on {1, . . . , a} and {a+1, . . . , n} follows immediately
from the monotonicity property (B.34) of the relation γ induced by �. Moreover,

m1(λa) ≤ λb < λb+1 < m1(λa+1)

due to (B.33). Thus, m1 is indeed monotone. The monotonicity of m2 is shown
in the same way.

(iii) Denote by Λm1 and Λm2 the sets induced, respectively, by m1 and m2 accord-
ing to (B.26). From the definition of m1 and m2 follows that (λa, λb) ∈ Λ1 \ Λ2

and (λa+1, λb+1) ∈ Λ2 \ Λ1. Thus, Λm1 and Λm2 are not nested:

Λm1 "⊂ Λm2 and Λm2 "⊂ Λm1 .

(iv) First, we verify that the following property holds true:

(λı, λ) "∈ Λm1 ∧ (λk, λl) ∈ Λm1 ⇒ γı < γkl (B.38)

for all 1 ≤ ı, , k, l ≤ n. In view of (B.34) and the transitivity of ≤, (B.38) is
obviously equivalent to

(λı, λ) "∈ Λm1 ∧ (λı−1, λ) ∈ Λm1 ⇒ γı < γı−1,,

(λı, λ) "∈ Λm1 ∧ (λı, λ+1) ∈ Λm1 ⇒ γı < γı,+1.
(B.39)

Suppose (λı, λ) "∈ Λm1 and notice that  < n due to the identity property of �.
Moreover, the definition of m1 obviously implies that (B.39) is satisfied if ı = 1.
Thus, let 1 < ı ≤ n. We distinguish the following cases:

– (λı−1, λ) ∈ Λm1 and (λı, λ+1) "∈ Λm1 .

If ı ≤ a this means that γı < γab ≤ γı−1,. Likewise, if ı > a + 1 it means that
γı ≤ γa+1,b+1 < γı−1,. Thus, (B.39) is satisfied in both situations. For the case
ı = a + 1 we can make use of (B.33): If  ≤ b − 1 then

γı ≤ γa+1,b < γab ≤ γı−1,.
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If  = b then
γı = γa+1,b < γab = γı−1,b.

Finally, if  ≥ b + 1 then

γı ≤ γa+1,b+1 < γa,b+1 ≤ γı−1,.

– (λı−1, λ) "∈ Λm1 and (λı, λ+1) ∈ Λm1 .

If ı ≤ a this means γı < γab ≤ γı,+1. Likewise, if ı > a+1 then γı ≤ γa+1,b+1 <
γı,+1. The case ı = a + 1 is actually not possible. In fact, (λı, λ+1) ∈ Λm1

implies γa+1,+1 > γa+1,b+1, i.e.,  ≥ b + 1. Then, however, γı−1, ≥ γa,b+1 > γab,
which contradicts (λı−1, λ) "∈ Λm1 .

– (λı−1, λ) ∈ Λm1 and (λı, λ+1) ∈ Λm1 .

If ı ≤ a this means that γı < γab ≤ γı−1, and γı < γab ≤ γı,+1. If ı > a + 1
then γı ≤ γa+1,b+1 < γı−1, and γı ≤ γa+1,b+1 < γı,+1. Now, let ı = a + 1.
Again, γı ≤ γa+1,b+1 < γı,+1. Moreover, (λı, λ+1) ∈ Λm1 implies  ≥ b + 1.
Therefore,

γı < γa+1,b+1 < γa,b+1 ≤ γa = γı−1,.

Since property (B.38) holds true, we can find some number p′(m1) > 0 such that
the relation γ′ defined by

γ′
ı =

{
γı if (λı, λ) "∈ Λm1

γı − p′(m1) if (λı, λ) ∈ Λm1

satisfies the same monotonicity properties as the relation γ. That is, p′(m1) can
be chosen small enough such that

γı ≤ γkl ⇔ γ′
ı ≤ γ′

kl and γı < γkl ⇔ γ′
ı < γ′

kl (B.40)

for all 1 ≤ k ≤ ı ≤ n and 1 ≤  ≤ l ≤ n. In particular, γ′ still satisfies the
monotonicity property (B.34), i.e., it is still admissible. Indeed, (B.40) is obvious
if the tuples (ı, ) and (k, l) are such that (λı, λ) ∈ Λm1 and (λk, λl) ∈ Λm1 or
(λı, λ) "∈ Λm1 and (λk, λl) "∈ Λm1 . Otherwise, if (λı, λ) "∈ Λm1 and (λk, λl) ∈ Λm1 ,
we can find a sequence of elements γum,vm (m = 1, . . . , M) such that

– (u1, v1) = (ı, ), (uM , vM) = (k, l),

– (um+1, vm+1) = (um − 1, vm) or (um+1, vm+1) = (um, vm + 1),

– γum,vm ≤ γum+1,vm+1 for all 1 ≤ m < M ,

– there is exactly one 1 ≤ m < M such that

(λum , λvm) "∈ Λm1 , (λum+1 , λvm+1) ∈ Λm1

and, hence, γum,vm < γum+1,vm+1 .
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By choosing p′(m1) small enough, the strict inequality in the last point remains
unchanged, i.e., γ′

ı = γı < γkl − p′(m1) = γ′
kl.

By making use of (B.40), it can be shown in the same way as above that (B.38)
holds true with γ and Λm1 replaced by γ′ and Λm2 , respectively. Thus, there is
again a number p′(m2) > 0 such the relation γ′′ given by

γ′′
ı =




γı if (λı, λ) "∈ Λm1 ∪ Λm2

γı − p′(m1) if (λı, λ) ∈ Λm1 \ Λm2

γı − p′(m2) if (λı, λ) ∈ Λm2 \ Λm1

γı − p′(m1) − p′(m2) if (λı, λ) ∈ Λm1 ∩ Λm2

is still monotone in the sense of (B.34). Moreover, property (B.35) holds since
(λı, λn) ∈ Λm1 ∩Λm2 for all 1 ≤ ı ≤ n, i.e., γ′′ is admissible. Therefore, the partial
random rule (G, p′) defined by the positive numbers p′(m1), p

′(m2) (and p′(m) = 0
for m "∈ {m1, m2}) has the property mentioned in (iv) above.

The argument given in (v) hence concludes the proof. �



C. Similarity-Based Reasoning as Logical

Inference

The methods of similarity-based (case-based) inference presented in previous
chapters make use of special types of models in order to formalize the CBI hy-
pothesis, and thereby combine model-based and instance-based reasoning (cf. Sec-
tion 2.1). Each type of model especially supports a certain aspect of similarity-
based reasoning, such as the consideration of uncertainty or the incorporation
of background knowledge into the inference process. Moreover, our approaches
are data-driven in the sense that the models can be used for adapting similarity-
based inference to the application at hand. An alternative, more logic-oriented
formalization of similarity-based reasoning was proposed by Ruspini [320] and
has later been pursued by other authors as well (e.g. [102]). In the following we
briefly sketch the basic ideas underlying this approach.

Suppose a reflexive, symmetric, and �-transitive similarity relation σ to be de-
fined over the interpretations U associated with a formal language L, where � is
a t-norm (cf. Section 2.3). One might then be tempted to look for inference rules
which take the similarity between interpretations (i.e., assignments of truth values
for each propositional variable in L) into account. For instance, one could think
of generalizing the classical modus ponens as follows (α and β are propositions
in L):

α is close to being true
α approximately implies β
β is not far from being true

For an interpretation u and a proposition p we write u |= p if u is a model of p.
The set of models of p is denoted [p]. For a subset A ⊂ U , the fuzzy set

A∗ : u �→ sup
v∈A

σ(u, v)

is the fuzzy set of elements which are close to A. Thus, the proposition “approx-

imately p” can be identified with the fuzzy set of models [p∗]
df
= [p]∗, where p is

an ordinary proposition. Based on this, one can introduce a graded satisfaction
relation |=α as follows:

u |=α p iff ∃ v ∈ U : v |= p ∧ u ∈ [v∗]α,

where [v∗]α is the α-cut of the fuzzy set [v∗].

333
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A graded semantic entailment relation can be derived from |=α as follows: A
proposition p entails a proposition q at the level α if each model of p makes q at
least α-true:

p |=α q iff [p] ⊂ [q∗]α.

The relation |=α satisfies

nestedness: p |=α q and β ≤ α implies p |=β q,

�-transitivity: p |=α r and r |=β q implies p |=�(α,β) q,

reflexivity: ∀α ∈ [0, 1] : p |=α q,

right weakening: p |=α q and q |= r implies p |=α r,

left strengthening: p |= r and r |=α q implies r |=α q,

left OR: p ∧ q |=α r iff p |=α r and q |=α r.

Is is worth mentioning that |=α does not satisfy the “right and” property. That
is, p |=α q and p |=α r does not imply p |=α q ∧ r. Therefore, the class of
(approximate) consequences of p, in the sense of |=α, is not deductively closed.

See [410] and [34] for yet another type of similarity logic, where inference is
approximate in the sense that the antecedent clause of a rule is allowed to match
its premise only approximately. This approach is syntactical in nature, whereas
the one outlined above is a semantical one.
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Fig.  D.1.  Correctness and precision for the case-based approximation of the function s� → sin(s + 1)
cos2(s), using (3.15).

Fig. D.2. Correctness and precision for the case-based approximation of the function s �→ sin(s + 1)
cos2(s), using (3.16) with k = 10.
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Fig. D.3. Correctness and precision for the case-based approximation of the function s �→ sin(s + 1) ·
cos2(s), using (3.16) with 10% of the observed cases.

Fig. D.4. Correctness and precision for the case-based approximation of the function ϕ defined for the
CBI setup Σ1, using (3.15).

Fig. D.5. Correctness and precision for the case-based approximation of the function ϕ defined for the
CBI setup Σ1, using (3.16) with k = 10.
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Fig. D.6. Correctness and precision for the case-based approximation of the function ϕ defined for the
CBI setup Σ1, using (3.16) with k = 100.

Fig. D.7. Correctness and precision for the case-based approximation of the function ϕ defined for the
CBI setup Σ1, using (3.16) with 10% of the observed cases.



E. Experimental Results of Section 5.5.4

Experimental results for the Balance Scale data.

Experimental results for the Iris Plant data.
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Experimental results for the Glass Identification data.

Experimental results for the Pima Indian Diabetes data.

Experimental results for the Wine Recognition data.



F. Simulation Results of Section 7.4

The pictures on the left plot the performance e(n) of a decision strategy for several
simulation runs, where e(n) =

∑n
k=1 u(k)/n and u(k) ∈ U = {0, 1} denotes

the outcome for the k-th decision. The pictures on the right plot the respective
frequencies f(n) =

∑n
k=1 c(k)/n of “correct” decisions, i.e., c(k) = 1 if the k-th

decision was a1 and c(k) = 0 otherwise.
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G. Computation of an Extended Splitting

Measures

A possible approach to computing the extended splitting measure (7.63) in Sec-
tion 7.7.2 is to search the space of selections of S∗ in a systematic way. This can
be realized very efficiently by means of a branch & bound procedure when using
(7.59) as an impurity measure. In fact, a good bounding function can be derived
on the basis of the following result.

Proposition G.1. Consider subsets A1, . . . , An of a finite set {1, . . . , N}. For
each selection a = (a1, . . . , an) ∈ A1 × . . . × An define the probability vector
p(a) = (p1, . . . , pn) such that pı = Nı/N , where Nı = card{1 ≤  ≤ N | a = ı}.
Now, let (a1, . . . , am) be a partial selection of the first m < n values and denote
by C the class of possible completions a = (a1, . . . , an). Then the following holds
(p · p denotes the dot product p1 p1 + . . . + pN pN of a vector p):

max
a∈C

p(a) · p(a) ≤ p(ac) · p(ac),

where the vector ac (which is not necessarily a feasible selection!) is defined as

ac
ı =

{
aı if 1 ≤ ı ≤ m

amax if m + 1 ≤ ı ≤ n

and 1 ≤ amax ≤ N is any number (e.g., the smallest) such that

card{1 ≤ ı ≤ m | aı = amax} ≥ card{1 ≤ ı ≤ m | aı = k}

for all 1 ≤ k ≤ N . �

Proof. Without loss of generality we can assume amax = 1. Let k = n − m and
m = card{1 ≤ ı ≤ m | aı = } for 1 ≤  ≤ N . The probability vector p(ac) is
then given by (

m1 + k

n
,
m2

n
, . . . ,

mN

n

)
,

and any other completion a of (a1, . . . , am) yields the vector

(
m1 + k1

n
,
m2 + k2

n
, . . . ,

mN + kN

n

)
,

where k1 + . . . + kN = k. Thus, we have
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n2 (p(ac) · p(ac) − p(a) · p(a)) =

= (m1 + k)2 +
N∑

ı=2

(mı)
2 −

N∑
ı=1

(mı + kı)
2

=
N∑

ı=1

(mı)
2 + 2 m1 k + k2 −

N∑
ı=1

(mı)
2−

− 2
N∑

ı=1

mı kı −
N∑

ı=1

(kı)
2

= 2

(
m1 k −

N∑
ı=1

mı kı

)

︸ ︷︷ ︸
≥0

+

(
k2 −

N∑
ı=1

(kı)
2

)

︸ ︷︷ ︸
≥0

≥ 0,

which means p(a) · p(a) ≤ p(ac) · p(ac). �

The above proposition suggests an effective lower bound to the GINI function
(7.59) and, hence, an upper bound to the information gain (7.58). In fact, this
upper bound can be used as a bounding function in a branch & bound algorithm
which works as follows: Suppose a set S∗ of generalized examples (7.60) and
an attribute T to be given. In order to compute m(T, S∗), a selection of the
set Apm of actions is chosen at the mth level of the algorithm. That is, each
node of the branch & bound tree at level m has card(Apm) successors, each of
which corresponds to the choice of one particular act am ∈ Apm . At each node,
the aforementioned bounding function can be derived for the associated partial
selection (a1, . . . , am). A branch (partial selection) is continued only if the value
of the bounding function is above the current best solution (information gain).
Moreover, the following heuristic strategies turned out to be useful in practice:
The sets Apı in the extended sample (7.60) should be re-arranged according to
their size (smaller sets before larger ones). Moreover, the order in which actions
aı ∈ Apı are chosen (i.e., the order of successors of an inner node of the search
tree) should reflect the following preference: An act a is preferred to (chosen
before) an act a′ if it is more frequent among the sets Apı , that is, card{ı | a ∈
Apı} ≥ card{ı | a′ ∈ Apı}.



H. Experimental Results of Section 7.7.2

The following pictures show the empirical distributions (histograms) of the aver-
age utility degrees for different combinations of u∗ and γ:

The following pictures show the empirical distributions of the average number of
leaf nodes for different combinations of u∗ and γ:
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146. B. De Finetti. La prévision: Ses lois logiques, ses sources subjectives. Annales de l’Insitut Henri
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admissibility, 84
aggregation operator, 38
alpha-cut, 231
approximation
– case-based, 72

background knowledge, 7, 20
belief, 254, 282
belief function, 132, 226, 277
betting function, 133
bounded optimality, 254

candidate-elimination, 84
case adaptation, 31
case completion, 55
case indexing, 31
case retrieval, 31, 54
case-based inference, 8, 42
CBR cycle, 31
certainty rules, 214, 230
Choquet integral, 39, 277
classification, 32
cluster analysis, 56
cognitive modeling, 30
complete ignorance, 236
concept description, 29
confidence region, 9
consistency principle, 82
cost, 7
cross validation, 179, 214

data analysis, 219
data analysis
– fuzzy, 219
density estimation, 176, 213, 222
density estimation
– kernel-based, 213
Dirac measure, 50
distance, 33

equivalence, 37
equivalence class
– fuzzy, 38
exceptionality, 244, 245
expected utility, 256, 274, 275

frequency, 7, 184, 210, 219, 245
fuzzy graph, 223
fuzzy measure, 129
fuzzy partition, 204
fuzzy quantifier, 270
fuzzy random variables, 222

fuzzy sets, 37

graceful degradation, 54
gradual rules, 230
guaranteed possibility, 169, 173, 192

hyper-parameter, 99
hypothesis space, 17

imperfect specification, 130, 240
implication, 229
implication
– Kleene-Dienes, 236
– Rescher-Gaines, 231, 246
– residuated, 231
– strong, 236
imprecision, 220
induction
– implicit, 20
– rule, 32
inductive bias, 17
inductive learning
– hypothesis, 82
inductive reasoning
– principle, 7
inference
– case-based, 112
– statistical, 106, 112
– transductive, 20
instance level, 43
instance space, 42
interpretative CBR, 32
interval probability, 70

kernel function, 213
kernel smoothing, 56
knowledge revision, 22
knowledge-based systems, 11

learning
– case-based, 41, 81
– incremental, 21
– instance-based, 19, 29
– lazy, 19
– model-based, 19
likelihood principle, 106
linguistic hedges, 200, 201, 213
local-global principle, 35

mass distribution, 132, 143
maximal informativeness
– principle of, 169, 172

369
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maximum likelihood, 18, 71, 221
measurement, 6
meta-knowledge, 47
metric
– discrete, 44
– local, 80
minimal specificity
– principle of, 167, 237
minimum uncertainty principle, 83
mixed uncertainty, 278
modifier, 194, 200, 203, 212
multidimensional scaling, 56

non-specificity, 142

Occam’s Razor, 18
outlier, 144
overfitting, 21
OWA operator, 279

parallel computation, 65
plausibility function, 132
possibilistic mixture, 280
possibilistic networks, 222
possibilistic variables, 221
prediction, 8, 41, 55
preference, 6, 254, 282
prior probability, 98
prisoner’s dilemma, 271
probabilistic sets, 222
probability
– upper, 153
prototype, 172, 199
proximity relation, 37
pseudometric, 38

random fuzzy sets, 222
random set, 135
rationality, 253
rationality
– bounded, 287
– metalevel, 253
– perfect, 253
reasoning
– knowledge-driven, 13
– analogical, 165
– approximate, 12
– case-based, 30

– data-driven, 13
– exemplar-based, 41
– instance-based, 17
– memory-based, 41
– model-based, 17, 19
– plausible, 12
recognition, 55
regression
– analysis, 119
– linear, 10, 43
– locally weighted, 76
repeated problem solving, 271, 286
representation
– attribute–value, 46
representativeness principle, 284

Shannon entropy, 143
similarity hypothesis, 60
similarity hypothesis
– probabilistic, 108
similarity level, 43
similarity measure, 33
similarity profile, 59
similarity profile
– local, 80
specification context, 240
statistics
– non-parametric, 19
– robust, 56
– semi-parametric, 21
stochastic dominance, 108
structure
– case, 157
– outcome, 77
– similarity, 66
Sugeno integral, 41, 217
symmetry, 34

time series analysis, 120
transferable belief model, 279
transitivity, 34
triangular norm, 37

uncertainty, 6
utility theory, 7

vague data, 219
version space, 84
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