
Chapter 8

End User Development of Web Applications

JOCHEN RODE1, MARY BETH ROSSON2

and MANUEL A. PÉREZ QUIÑONES3

1Virginia Polytechnic Institute and State University, jochenrode@gmail.com
2Pennsylvania State University, mrosson@ist.psu.edu
3Virginia Polytechnic Institute and State University, perez@cs.vt.edu

Abstract. This chapter investigates entry barriers and approaches for facilitating end-user web
application development with the particular focus on shaping web programming technology and
tools according to end-users’ expectations and natural mental models. Our underlying assumption
and motivation is that given the right tools and techniques even nonprogrammers may become suc-
cessful web application developers. The main target audience for this research are “casual” webmasters
without programming experience—a group likely to be interested in building web applications. As an
important subset of web applications we focus on supporting the development of basic data collection,
storage and retrieval applications such as online registrations forms, staff databases, or report tools.

First we analyze the factors contributing to the complexity of web application development through
surveys and interviews of experienced programmers; then we explore the “natural mental models”
of potential end-user web developers, and finally discuss our particular design solutions for lowering
entry barriers, as embodied by a proof-of-concept development tool, called Click. Furthermore, we
introduce and evaluate the concept of “Design-at-Runtime”—a new technique for facilitating and
accelerating the development-test cycle when building web-based applications.

Key words. end user development, web applications

1. Introduction

Why would end users want to develop web applications? Why are they unable to do
this with today’s tools? Who are these end users? What are they like? To gain insight
into these questions—and the topic of this chapter—contrast these scenarios:

Anna uses today’s web tools Anna uses tomorrow’s web tools

As webmaster Anna manages a database for registering
clients in her company’s courses. Recently, she used
a survey authoring tool to build a web-based system:
clients now submit a registration form, which Anna
receives by e-mail. She reads and re-enters the infor-
mation she receives into a spreadsheet. If a course has
seats she registers the person and emails a confirma-
tion; if not, she contacts and coordinates with the client
to re-schedule. Often Anna’s boss asks for summary
reports, which she creates by hand, a tedious process.
Anna knows that these repetitive and time-consuming

A few weeks after her initial effort, Anna learns from a
friend about a web development tool that has been tar-
geted at nonprogrammers like her. She decides to give it
a try, clicking on the “create new web application” link.

The development environment guides her through
the process of creating the screens for her registra-
tion application as well as the database behind the
scenes. Designing the application becomes even en-
joyable when Anna notices that the tool asks her the
right questions at the right time and uses familiar lan-
guage instead of the typical “techno-babble.” At times it

(continued )

Henry Lieberman et al. (eds.), End User Development, 161–182.
C© 2006 Springer.



162 JOCHEN RODE ET AL.

(Continued )

Anna uses today’s web tools Anna uses tomorrow’s web tools

activities should be handled by the computer. But while
she knows how to create websites using WYSIWIG
editors she has no programming experience. She has
heard of Javascript, so she enters “javascript registration
database” into a web search engine. She is overwhelmed
with results and quickly becomes discouraged because
few of the pointers relate to her particular needs, and
the information is highly technical.

even seems that the tool reads her mind. It allows her
toquickly try out different options, entering her own test
data and seeing what happens. Anna loses track of time,
totally engaged by her design activity. Before the day
is over she has fully automated the registration process.
Anna has even managed to create a basic web-based
report generator for her boss. She feels empowered and
is proud of her achievement.

The contrast shown in these two scenarios sketches out the challenges and motivation
underlying the work we report here. Our goal is to understand what end-user developers
need, how they think, and what can be done, so that

a sophisticated user like Anna will not only be able to imagine that she should
automate the tedious computing procedures in her life, but also have at her fingertips
the support she needs to do it.

2. Related Work

The ubiquity of the World Wide Web and the resultant ease of publishing content to a
huge audience has been an important element in the expanding skills and expectations
of computer users. However, today, most web pages built by end users simply present
information; creation of interactive web sites or web applications such online forms,
surveys, and databases still requires considerable skill in programming and web technol-
ogy. Our preliminary studies indicate that these limitations in users’ web development
activities are not due to lack of interest but rather to the difficulties inherent in interac-
tive web development (Rode and Rosson 2003). Many end users can envision simple
interactive applications that they might try to build if the right tools and techniques
were available. If web development becomes possible for a wider audience, we may see
a greater variety of useful applications, including applications not yet envisioned or as
Deshpande and Hansen (2001) put it: “release the creative power of people.” For orga-
nizations that cannot afford a professional programmer, end-user development (EUD)
may help to streamline workflows, increase productivity and client satisfaction.

Tim Berners-Lee designed the web as a collaborative tool (Berners-Lee 1996). How-
ever, his early vision was one of document sharing, and recognition of the web’s potential
as a platform for dynamic collaboration has been an emergent phenomenon, with the
result that much of the web’s infrastructure is ill-suited for application development.
Currently, development of a typical web application requires knowledge not only of tra-
ditional programming languages like Java, but also technologies and problems specific
to the web, for example HTML, JavaScript, CSS, HTTP, and cross-platform, cross-
browser compatibility issues. When compared to “traditional” end-user programming



END USER DEVELOPMENT OF WEB APPLICATIONS 163

of single-user desktop applications, the sum of all these technological issues, the dis-
tributed nature of the web, and the highly volatile nature of requirements add the unique
flavor to end-user development for the web (EUDWeb).

Our research mission is making web application development accessible to a broader
audience. We are particularly interested in “informal web developers”, people who have
created a variety of web content, but who have not been trained in web programming
languages or tools. We believe that these individuals are good candidates for end-user
web programming—they have already shown themselves to be interested in web devel-
opment but have not (yet) learned the languages and tools needed to add interactivity
to their development efforts.

Two complementary domains of research and practice—web engineering and end-
user development—have focused on methods and tools that could better support the web
development needs of both programmers and nonprogrammers. Research in the domain
of web engineering concentrates on making web professionals more productive and the
websites that they produce more usable, reusable, modularized, scalable, and secure. In
contrast, web-related research in end-user development centers on the idea of empow-
ering nonprogrammer end users to autonomously create websites and web applications.

2.1. RESEARCH IN WEB ENGINEERING

The state-of-the-art in web engineering is the automatic generation of web applica-
tions based on high-level descriptions of data and application logic. Research ranges
from a few full-scale processes like WebML (Ceri, Fraternali, Bongio 2000) to many
light-weight code generators (e.g., Turau 2002). Typically, the developer can customize
the layout of HTML pages after they have been generated using an external web editor,
but these customizations are lost as soon as the code needs to be regenerated because
of a needed change in the data or behavior. The lack of support for evolutionary devel-
opment from start to finish is a major outstanding research problem.

Research on tailorability (e.g., MacLean et al. 1990; Stiemerling, Kahler, Wulf 1997)
has focused on techniques that allow software to be customized by end users. The under-
lying assumption in this work is that customizable systems may address a large fraction
of end users’ needs. In a previous survey of webmasters (Rode and Rosson 2003), we
found that approximately 40% of the web applications envisioned by respondents could
in fact be satisfied by five customizable generic web applications: resource reservation,
shopping cart and payment, message board, content management, and calendar.

The analysis of web developers’ needs has received only little attention in the web
engineering literature. A survey conducted by Vora (1998) is an exception. Vora queried
web developers about the methods and tools that they use and the problems that they
typically encounter. Some of the key problems that developers reported include ensur-
ing web browser interoperability and usability, and standards compliance of WYSIWIG
editors. In a similar vein, Fraternali (1999) proposes a taxonomy for web development
tools that suggests some of the major dimensions of web development tasks. For exam-
ple, he categorizes available web tools into Visual HTML Editors and Site Managers,



164 JOCHEN RODE ET AL.

HTML-SQL integrators, Web-enabled form editors and database publishing wizards,
and finally, Web application generators.

Newman et al. (2003) investigated the process of website development by interview-
ing 11 web development professionals. They found that these experts’ design activities
involve many informal stages and artifacts. Expert designers employ multiple site rep-
resentations to highlight different aspects of their designs and use many different tools
to accomplish their work. They concluded that there is a need for informal tools that
help in the early stages of design and integrate well with the tools designers already use.

2.2. RESEARCH IN END-USER WEB DEVELOPMENT

Well before the development of the World Wide Web, end-user programming (EUP)
of basic data management applications was a topic for academia and industry. Apple’s
HyperCard is an early example of a successful EUP tool. More recently, web devel-
opment research projects such as WebFormulate (Ambler and Leopold 1998), FAR
(Burnett, Chekka, Pandey 2001), DENIM (Newman et al. 2003), and WebSheets
(Wolber, Su, Chiang 2002) have explored specific approaches to end-user programming
of web applications. WebFormulate is an early tool for building web applications that is
itself web-based and thus platform independent. FAR combines ideas from spreadsheets
and rule-based programming with drag-and-drop web page layout to help end users de-
velop online services. DENIM is a tool that can assist professional and nonprofessional
web developers in the early stages of design with digital sketching of interactive proto-
types. The WebSheets tool, although currently limited in power, is close to our holistic
vision of end-user web development. It uses a mix of programming-by-example, query-
by-example, and spreadsheet concepts to help nonprogrammers develop fully functional
web applications.

2.3. COMMERCIAL WEB DEVELOPMENT TOOLS

The research community has devoted little effort to studying approaches and features
found in commercially available web application development tools. There are a few
notable exceptions including the aforementioned survey of web developers (Vora 1998)
and the taxonomy of tools offered in (Fraternali 1999). Brief reviews of CodeCharge
Studio, CodeJay, Microsoft Visual Studio, and Webmatrix from the perspective of
productivity tools for programmers can be found in (Helman and Fertalj 2003).

3. A User-Centered Approach to Web Development Tools

Our review of existing tools and research literature indicates that there is great interest
in supporting general web development needs, and that there is an emerging recog-
nition that the tools used by professionals are not appropriate for less sophisticated
users. However, very little work has been directed at understanding the requirements
for web development from an end users’ perspective. Thus we have adopted an ap-
proach that combines analytic investigations of features and solutions currently in use



END USER DEVELOPMENT OF WEB APPLICATIONS 165

Figure 8.1. User-centered methods for building web development tools.

or under research with detailed empirical studies of end users’ needs, preferences, and
understanding of web development (Figure 8.1).

Although many tools for web development are already available, we do not yet know
whether and how these tools meet the requirements of end users. For example, it is quite
likely that professional development tools provide more functionality than is needed
by nonprogrammers; we must understand what end users envision as web development
projects, so that we can scope the supporting tools appropriately. At the same time, we
must investigate how nonprogrammers think about the activities of web development,
what concepts are more or less natural to them, what components or features they are
able to comprehend.

Once we better understand the requirements for end-user web development tools, we
can begin to explore techniques for meeting these requirements. This work takes place
in two parallel streams, one aimed at developing and refining prototype tools, and the
other at gathering detailed empirical evidence concerning the efficacy of the prototypes
we build, along with comparative studies of other tools.

In the balance of the chapter we summarize our work on end-user web develop-
ment. First we report a survey of sophisticated nonprogrammers (webmasters) that
assessed their needs and preferences for web development; a complementary survey
of programmer developers is also reported. We next describe our analysis of features
present in existing web applications, as well as a usability analysis of commercial web
development tools. We report two empirical studies of nonprogrammers that investigate
how our target audience naturally thinks about typical web programming problems. We
conclude with a brief description of our prototyping efforts in EUDWeb.

4. Needs Analysis for EUDWeb

Our first step toward defining a scope for our work in EUDWeb was to investigate the
kinds of web applications our target population would like to build. Thus we conducted



166 JOCHEN RODE ET AL.

an online survey of webmasters at our university (Virginia Tech). We reasoned that
while some webmasters may have been professionally trained in web development, in
a university environment most are more casual developers, people who have not been
trained as programmers but nonetheless have learned enough about web development
to take responsibility for site development and maintenance. Typical examples are the
webmasters for academic departments, research labs, or student organizations. Such
individuals represent the population we wish to target: end users who are sophisticated
enough to know what they might accomplish via web programming but unlikely to
attempt it on their own.

Our analysis of the survey responses (67 replies) indicated that approximately one
third of end users’ needs could be addressed by a high-level development tool that
offered basic data collection, storage and retrieval functionality. Another 40% of the
requests could be satisfied through customization of five generic web applications (re-
source reservation, shopping cart and payment, message board, content management,
calendar). Research on tailorability (e.g., MacLean et al. 1990) has shown that soft-
ware can be designed for easy customization by end users. Diverse requests for more
advanced applications comprised the remaining 25%. We were especially interested
in the requests for applications involving basic data collection and management; such
functionality seems quite reasonable to provide via an EUDWeb tool. Although this sur-
vey was a useful start, it was modest in size and restricted to one university computing
population. Thus we are currently conducting a larger survey with the results expected
for the first quarter of 2005 (excerpts of the results and a reference to the full results will
be available at http://purl.vt.edu/people/jrode/publish/2005-05-webdevelopersurvey/).

5. Challenges Faced by Web Developers

As a second source of input to requirements development, we surveyed sophisticated
developers regarding the challenges, tools, and processes within the domain of web
application development. Our rationale was simple: issues that are troublesome for
experienced developers may be insurmountable hurdles for novices.

We surveyed 31 experienced web developers and subsequently conducted in-depth
interviews with 10 additional developers (still focusing on a university computing con-
text). On average, the 31 respondents rated themselves just above the mid-point on a
scale from “no knowledge in web application development” to “expert knowledge”.
Their self-reported years of experience in web application development were approx-
imately equally distributed between “less than a year” and “more than 5 years.” The
10 interview participants rated themselves in an average of 5.1 (SD = 1.3) on a scale
from 1 (no knowledge) to 7 (expert knowledge). The average self-reported experience
of the interview participants is somewhat higher than the mean experience of the survey
participants which was only 4.3.

In both the survey and interviews we asked the developers to rate a list of potential
web development problems and issues. Their responses are summarized in Figure 8.2.
As the figure suggests, none of the concerns were considered to be particularly “severe”;



END USER DEVELOPMENT OF WEB APPLICATIONS 167

Figure 8.2. Ratings of problems in web application development (1 = not a problem at all; 7 = severe problem).
The square markers are the mean ratings from the survey (value to right marker in italics; N = 31). The round
markers are ratings from a pre-interview questionnaire (value to left of marker; N = 10). To facilitate comparison,
the survey responses have been scaled from a 1–5 scale to a 1–7 scale.

most mean ratings were in the middle or lower half of the scale. This underscores the
expected expertise of these respondents, who seem to be generally confident in their
abilities to design and implement a range of web applications.

The top-rated issue in both the survey and interviews was ensuring security. Web
applications are vulnerable against exploits on many different levels (e.g. operating
system, web server software, database, dynamic scripting language, interactions of
the aforementioned). Today it is very difficult to build even a “reasonably” secure
application or to assess whether and when an application is secure. Web developers are
not confident about these procedures and therefore are concerned.

The inconsistencies between different browsers, versions and platforms are another
source of complaints of web developers. According to our respondents, compatibility
problems are also a major reason for avoiding the development of advanced user in-
teraction designs using Javascript, CSS2, or Flash. Such techniques are seen as ways
to improve the user experience but very risky for applications that must run on a vari-
ety of different platforms. A similar concern was the complexity of web engineering
technologies: while classical desktop applications typically use only one programming
language (perhaps two when considering database interactions), most web applications
combine five or more (HTML, Javascript, CSS, server-side language, SQL, and perhaps
Flash, Java applets, Active X).



168 JOCHEN RODE ET AL.

The resulting complexity leads to code that is hard to develop and maintain. Given
these complexity and compatibility issues, it is not surprising that debugging was also
acknowledged as an important concern.

The developers we surveyed were generally confident in their ability to solve web
engineering problems, but even so acknowledged moderate concerns for the issues we
probed. Several implications we drew from the survey were that EUDWeb tools should
provide extensive support for security management; that cross-platform compatibility
should be as transparent as possible; that the tools should automate integration of
different web technologies; and that a debugger should be a basic service.

6. Cataloguing Key Components of Web Applications

In response to the needs analysis described earlier, we have chosen one particular genre
of web applications as the focus of our research in EUDWeb: software that enables basic
data collection and management. Once we had decided to concentrate on this specific
class of applications, we needed a clear understanding of what components, concepts,
and functionality would be needed to implement such software. We wanted to obtain a
naturalistic sample of web components associated with this type of web application, so
we gathered and analyzed the structure of database-centric websites that already existed
at our university.

We used Google and its filtering capabilities (e.g., “filetype:asp site:vt.edu”) to find
applications in use at our institution. Using file extensions that indicate dynamic con-
tent (.asp, .aspx, .php, .php3, .cfm, .jsp, .pl, .cgi) we were able to find a large number
of cases. We disregarded simple dynamic websites (scripting only used for navigation,
header and footers, no database) and focused on those applications that were close to
the needs expressed by the end-user survey respondents, ending up with a set of 61 ex-
ample applications. These included databases for people, news items, publications, job
offers, policies, conference sessions, plants, service providers and so on. We reviewed
the applications that were publicly accessible and constructed a list of concepts and
components found within these basic web applications. The essence of this analysis is
shown in Table 8.1.

The components, concepts and functions that we derived can be viewed as high-
level equivalents to low-level language constructs, predefined functions, objects and
methods in classical text-based programming languages (e.g., for-loop, while-loop,
if, print). Of course, commercial Web development tools already offer much of the
high-level functionality listed in Table 8.1, but most of these tools are not aimed at
nonprogrammers. We expect the list of elements to change and grow along with our
knowledge about web applications and the progress of technology. We see this list as
simply a start towards a functional requirements list for EUDWeb tools.

7. Analysis of State-of-the-Art Tools

Some of the most active work on EUDWeb is in commercial web development tools.
Thus as yet another source of requirements, and to better ground our research in related



END USER DEVELOPMENT OF WEB APPLICATIONS 169

Table 8.1. Components, concepts and functionality of basic web applications.

Concept or function Description

Session management Maintaining state information when going from page to page, “fixing”
HTTP’s connectionless nature

Input validation Validating user inputs for increased usability but also for increased security to
preventing hacker attacks

Conditional output e.g. only show “Hi John!” when John is logged in
Authentication and

authorization
Restricting who can use the web application and which features can be used

by whom
Database schema The structure of the tables holding the data
Database lookup e.g. resolving a user-ID to a full name
Overview-detail relationships e.g. showing a list of employees on one web page and when clicking on the

name, the details on another
Normalization & use of

foreign keys
Addressing data redundancy issues

Uniqueness of data records Being able to identify each record even though the data be the same
Calculating database statistics e.g. showing the number of registrations in online registration database
Search e.g. finding a person’s e-mail in a staff database

work, we reviewed nine commercial web development tools. We analyzed each tool
from the perspective of suitability for end-user development; looking across the nine
tools we were able to compare and contrast alternative and best-of-breed approaches
for many aspects of web application development (Rode et al. 2005).

7.1. OVERVIEW OF TOOLS ANALYSIS PROCESS

For our review we selected tools based on both their apparent market dominance and
their potential sophistication. Although most web development tools have a particular
focus regarding target development project and user group, we found that the majority of
tools can be grouped into one of three categories: database-centric tools (we reviewed:
FileMaker Pro 7), form-centric tools (we reviewed: Quask Form Artist), and website-
centric tools (we reviewed: Microsoft Visual Web Developer 2005 Beta, YesSoft-
ware CodeCharge Studio, H.E.I. Informations-systeme RADpage, Instantis SiteWand,
Macromedia Dreamweaver 2004 MX, Macromedia Drumbeat 2000, Microsoft Front-
Page 2003). To structure and constrain our review, we analyzed the commercial tools
with a focus on how they approach the implementation of particular features that are
common in web application development (Table 8.1). To make these features more
concrete and to convey our assumptions about a likely end-users’ goals and activities,
we had constructed a reference scenario and persona. In the scenario, a nonprogrammer
was attempting to build what we feel is a typical example of a data-driven website—an
online employee database. We reviewed each tool for the approach and features needed
to implement this scenario.

7.2. USABILITY FINDINGS

What does the ideal web application development tool look like? We believe that there
cannot be only one such tool. Because developers have different needs and different



170 JOCHEN RODE ET AL.

skill sets, different developers will be best served by different tools. In general, our
review suggests that while productivity tools for programmers like Microsoft Visual
Web Developer have matured to provide significant support for web development, tools
for nonprogrammer developers are still in their infancy.

Most of the end-user tools that we reviewed do not lack functionality but rather
ease of use. For instance, even apparently simple problems such as implementing the
intended look and feel become difficult when a novice has to use HTML-flow-based
positioning instead of the more intuitive pixel-based positioning.

Although most tools offer wizards and other features to simplify particular aspects of
development, none of the tools that we reviewed addresses the process of development
as a whole, supporting end user developers at the same level of complexity from start to
finish. Indeed, Fraternali’s and Paolini’s (2000) comment about web tools of five years
ago seems to be still true today: “. . . a careful review of their features reveals that most
solutions concentrate on implementation, paying little attention to the overall process
of designing a Web application.”

The otherwise comparatively novice-friendly Frontpage, for example, begins the cre-
ation of a new application by asking the developer to make a premature commitment
to one of the following technologies: ASP, ASP.NET, FrontPage Server Extensions, or
SharePoint Server. An excerpt from an online tutorial for FP illustrates the problem:
“. . . You can also use the Form page Wizard and Database Interface Wizard with ASP or
ASP.NET to edit, view, or search records from a Web page. The Form page Wizard works
on a Web site running Windows SharePoint Services 2.0, yet the Database Interface Wiz-
ard does not.” Such a selection is likely to confuse anyone but a seasoned web developer.

Currently, none of the tools that we reviewed would work without major problems
for the informal web developer who wants to create more than a basic website. The
tool that a user like Anna (from our introduction scenario) is looking for needs to
provide multiple reference examples, well-guided but short wizards, an integrated zero-
configuration web server for testing purposes, and good support during the deployment
phase of the application. Also, as Anna becomes more familiar with the capabilities of
the tool and her applications become more ambitious, the tool should help her learn by
stepwise exposing the inner workings of the wizards and forms. Ideally, following the
concept of the “gentle slope” (MacLean et al. 1990), the skills required to implement
advanced features should only grow in proportion to the complexity of the desired
functionality—“Make simple things easy, and hard things possible”.

8. End Users’ Understanding of Web Development

We can build better EUD tools if we know how end-user developers think. If a tool works
in the way that a tool user expects and it feels “natural” from the beginning it is likely to
be easy to learn and use. Alternatively, a tool can be designed to reshape the way that end-
user developers think about a problem. In either way, it is beneficial to know the “mental
model” of the end-user developer. In this context, “mental model” is meant to character-
ize the way that people visualize the inner workings of a web application, the cognitive



END USER DEVELOPMENT OF WEB APPLICATIONS 171

representations they hold of the entities and workflows comprising a system. A person’s
mental model is shaped by his or her education and experience and will evolve as he or
she continues to learn. The concept of “natural” or “naturalness” refers to the mental
model that users hold before they start learning to use a tool or programming language.

What are the mental models of our target audience and how detailed are they? We
report two studies in an attempt to this question. The studies adapt the methods of Pane,
Ratanamahatana, and Myers (2001), who designed a “natural” programming language
for children by first studying how children and adults use natural language to solve
programming problems. In our variation of their method, we investigate how nonpro-
grammers naturally think about the behavior of web applications. The findings from this
work have guided the design of our prototype EUDWeb tool, as will be discussed later.

8.1. EXPLORING END USERS’ CONCEPTS AND LANGUAGE USE

Our first efforts at exploring end users’ mental models [MMODELS-1] (Rode and
Rosson 2003) were aimed at investigating the language, concepts, and the general level
of problem-solving that end users employed when solving web programming problems.

8.1.1. Participants and Study Procedures

We recruited participants for a two-part paper and pencil study. Participants were asked
to label screen elements and to specify the application behavior. We created a simple
web application (member registration and management) for the study. Ten participants
were sampled randomly from organizational webmasters who had reported in a pre-
vious survey that they had significant experience in web authoring but none or little
in programming. Five were female, and five male. Pre- and post-study interviews re-
vealed that one person had more programming experience than initially reported (use
of Macromedia ColdFusion for a simple web application).

Participants were given a general introduction to the goals of the study, then asked
to view and label all elements of three screenshots from the application (login, member
list, add member). The labelling instructions included a sample labelled image (a room
with objects), including nested items. This first phase of the study was intended to
inform us about the language our audience uses to reference visible screen elements
(left side of Figure 8.3).

Next, they were allowed to explore the application until they were comfortable
with how it worked. After the familiarization phase, participants were given seven
user tasks (login, paging, user-specific listing, add member, sort, search, delete) and
asked to “teach” these behaviors to a “magical machine”; the machine was said to
understand screenshots but not know which elements are static and which respond
to users’ actions. A paragraph of text within the written instructions explained this
scenario to the participants. The seven tasks were illustrated by concise instructions
that were designed to guide the user without biasing their response—for example,



172 JOCHEN RODE ET AL.

Figure 8.3. Annotated screenshot and a participant’s description of the behavior of the “Add Member” dialog
(MMODELS-1).

task 4 had the following description:

Add a new member (just make up some data). Assume you do not have an e-mail address.
Continue with “OK”. Now enter an e-mail address. Continue with “OK”. Describe how
the web application behaves.

The application was available for reference. Participants wrote responses using
screenshots and blank paper (right side of Figure 8.3). We emphasized that they were
free to choose how to communicate with the magical machine (using written words or
sketches), but also that they should fully specify the application’s behavior. We wanted
to see what end users consider sufficient as a behavior specification.

8.1.2. Study Findings

Participants spent an average of about 90 minutes total on both parts of the study.
The participants’ annotated screenshots and written notes showed a general familiarity
with “visible” elements of web applications (e.g., page, link, data table); however, they
made little attempt to describe how “hidden” operations are accomplished. Given these
users’ background in web authoring, we were not surprised to find that they used terms
common in WYSIWIG web editors to label screen elements. When describing the
application’s behavior, participants tended to combine procedural steps and declarative
statements. They used declarative statements to specify constraints on behavior (e.g.,
“certain fields are required”). Procedural statements often conveyed a test and result
(e.g., “If the password is incorrect, that field is cleared”) or a page transaction (e.g., “Type
the correct password into the field and Enter; this action opens the Members page”).
With the exception of one participant, no one mentioned constructs such as variables
and loops in the behavior specifications. Where looping constructs are required (e.g.,
authenticating a user), the participants specified one iteration, seeming to expect that it
would apply (i.e., be repeated) as necessary.

We were particularly interested in how these users described web-specific data
processing—e.g., client-server interaction, HTML generation, the web’s stateless na-
ture, and so on. Only three users included any description of what happens “behind the
scenes” in a web application (e.g., mentioning interactions with a server). Even these



END USER DEVELOPMENT OF WEB APPLICATIONS 173

participants made no effort to describe page transactions in detail (e.g., no one discussed
how information is forwarded between pages). Most participants (7 of 10) referred to
application data as a database; another talked about a file. This is consistent with their
general use of a “technical” vocabulary. However, only one included communication
between the application and database (“sends command to the database on the server
telling it to query”). Though comfortable with the concept of a database, the others
seem to see it as a placeholder for a background resource.

In a similar fashion, users often referred to a “member list” or a “member” as if
these abstractions are simply available for use as needed; no one worried about how an
application obtains or manages data. We thought that the search and sort tasks might
evoke informal descriptions of algorithms, but most participants focused on a result
(e.g., what the user sees next in a table) rather than on how a data listing was obtained.
Six users seemed to assume that the “magical machine” manages user authentication;
four offered as a detail that user data must be checked against a list or table of valid IDs.

8.2. MENTAL MODELS OF SPECIFIC WEB DEVELOPMENT TASKS

One problem with our study of concepts and language for web programming
(MMODELS-1) was the generality of the problem-solving it required: we asked partic-
ipants how web programming tasks would take place but did not direct their attention
to specific constructs (e.g., iteration, input validation). Thus the results pointed to a few
general (and rather predictable) tendencies in end users’ mental models. We wanted
to find out how end users would think about the specific components and features we
had catalogued in our analysis of existing database-centric web applications (e.g., input
validation, database lookups, overview-detail relationships). We carried out a second
study [MMODELS-2] to explore these issues (Rode, Rosson, Pérez-Quiñones 2004).
Our goal was to determine how end users naturally think about typical concerns in web
application development.

We are concerned with naturalness in this sense: by studying the “stories” that
nonprogrammer webmasters can generate about how a specific programming feature
works, we hope to develop approaches for supporting this feature that will be intuitive
to this user population.

We wanted to begin our investigation with programming concerns that are com-
monly addressed by web developers when creating a web application. Thus we selected
a set of concerns that appeared frequently in an earlier analysis of 61 existing web
applications (as discussed before). As experienced web developers, we also relied on
our personal experiences to judge what programming concerns are most important in
web development. Because many, if not most web applications work with databases,
many of the programming issues are database-related.

8.2.1. Participants and Study Procedures

We recruited 13 participants (7 female, 4 male, and 2 who were later eliminated because
they did not match our target audience) who, in a screening survey, identified themselves



174 JOCHEN RODE ET AL.

as having at least some knowledge of HTML and/or of a WYSIWIG web editor (≥2
out of 5) but very little or no programming background.

The screening survey did not question participants for their experience with
databases. However, during the interview all but one participant indicated that they had
at least some experience with databases (9 with Microsoft Access, 1 with FileMaker
Pro). Although our sample size is too small to draw strong conclusions, this seems to in-
dicate that casual web developers (our target audience) are very likely to have database
experience. Assuming that this finding can be replicated in a more diverse sample,
EUDWeb tools may be able to expose database concepts without overwhelming their
users. Note though that our interviews suggest that the level of database understanding
is novice to intermediate rather than expert.

The goal of this study was to better understand how webmasters who do not know
how to program are able to imagine how a range of computational processes might
take place “inside” an interactive web application. Probing naive expectations of this
sort is a challenge, because the facilitator must provide enough information that a
nonprogrammer can understand what aspect of the application is being called out for
attention, but not so much that the inner workings of the application are revealed. So
as to describe the application feature of interest in as concrete a fashion as possible, we
presented and asked questions about nine scenarios (for full list of scenarios see Rode,
Rosson, Pérez-Quiñones 2003), each describing one or more programming concerns
related to a fictional web application—an online video library system.

Each scenario consisted of a mock-up of a screen shot, a short paragraph explaining
what the mocked-up screen depicts, and a series of questions. As an example, Figure 8.4
shows the first of the nine scenarios. This particular scenario was designed to probe end
users’ mental models regarding session management (1a), database lookup (1b), and
conditional output (1c). Some of the questions in the nine scenarios are targeted at the
same concerns, but approach them from a different perspective. Most of the questions
begin with the words: “What do you think the web site must do to . . . ”; we hoped that

Figure 8.4. Scenario 1 of 9 as shown to each participant.



END USER DEVELOPMENT OF WEB APPLICATIONS 175

this probe would prompt the webmasters to direct their attention “inside” to the inner
workings of the hypothetical application. Participants were asked to provide as many
details as they could when answering the questions; the facilitator often prompted them
for details if it seemed that the scenario had not been completely analyzed. Participants
were also encouraged to use sketches to clarify their thoughts. The interviews took
place in a one-on-one setting in a private atmosphere. Verbal responses were voice
recorded for later analysis.

Not all users answered all questions. Sometimes a participant responded simply that
“I have no idea” rather than attempting an explanation. In such cases we encouraged
participants to give a “best guess”, but occasionally we were forced to continue without
an explanation. In general we were sensitive to participants’ comfort level, and if an
interviewee conveyed or said that they were feeling “stupid” we quickly moved on to
another question.

We analysed the study in the following manner. First, we transcribed the recorded
interview for each participant (focusing on analysis questions, and excluding unrelated
remarks). If participants had made sketches we used those to understand and annotate
their remarks. Second, in a separate document we listed the eleven web development
concerns of interest, and inserted pieces of the transcribed interview under the aspects
they referred to. Each remark was coded with a reference to the participant to enable
later quantitative analysis. Often, we combined across answers from different scenarios
or questions to give us a better understanding about a particular aspect of a webmaster’s
mental model. Finally, we summarized the results for each development concern by
referring back to this document, and when necessary the transcribed interviews or even
the original recordings.

8.2.2. Study Findings

In the balance of this section, we discuss what we have learned from our participants re-
garding their understanding of specific aspects of web application development and how
these findings have influenced our thoughts about the design of future EUDWeb tools.

Session management. The majority of our participants assumed that session man-
agement is implicitly performed, and thus is not something that a developer would
have to consciously consider. This suggests that an EUDWeb tool should automatically
maintain the state of an application, perhaps even without exposing this fact to the de-
veloper. For novice web application developers this concept may introduce unnecessary
complexity.

Input validation. The typical approach of defining an input mask using patterns or
placeholders (as used by many existing tool, e.g. Microsoft Access) seems to be an
appropriate abstraction for end users. Certainly, this result is unsurprising in light of
the fact that ten participants had previous database experience and were familiar with
this notion.

Conditional output. Although, the concept of “if-then” branching was frequently
mentioned informally, the exact implementation (in particular when and where if-then



176 JOCHEN RODE ET AL.

rules would be applied) did not appear trivial to most participants. This suggests that
while an EUD tool may use the notion of “if-then” at a high level of abstraction, it may
need to automatically develop an implementation or guide the developer as to where to
place these rules.

Authentication and authorization. Overall, the problems involved in permission man-
agement did not appear too taxing for our participants. However, the proposed imple-
mentations were rather variable and almost always incomplete, and were not powerful
enough for a real-world application. We believe that our participants would not have
many difficulties in understanding a good permission scheme, however may not be able
to create a sufficiently powerful and secure one on their own. Therefore, an easy-to-use
EUDWeb tool should offer permission management as a built-in feature and make it
customizable by the developer.

Database schema. Overall, the table paradigm seems to be the prevalent mental
model among our participants. This suggests that an EUDWeb tool may safely use
the table metaphor for managing data. However, the management of more than one
related data table may not be a trivial problem, as discussed further under the aspect of
“Normalization and use of foreign keys.”

Database lookup. Although the concept of database lookup (or select) did not seem
difficult to the participants, the majority did not provide a detailed algorithm. This
suggests that an EUDWeb tool should offer database lookup as predefined functionality
that is customizable by the developer.

Overview-detail relationships. Overall, imagining how the linkage between overview
page (list of all movies) and detail page (movie details) is implemented was quite a
challenge for our participants. Almost all of the participants immediately stated that
the information was “linked”, “associated”, “connected,” or “referenced;” but the details
of this linkage were quite unclear. This suggests that although an EUDWeb tool may
be able to use words like “linking” to describe a relationship between two views, it will
likely need to guide the developer as to what kind of information the link will carry (or
abstract this detail completely).

Normalization and use of foreign keys. The results suggested that most of our partici-
pants would not design a normalized database representation but rather some redundant
form of data storage such as that familiar from spreadsheet applications (which lack the
concept of foreign key relationships). Therefore, if non-redundant data storage is re-
quired (of course, this may not be the case for small or ad hoc applications), an EUDWeb
tool may have to make the developer aware of data redundancy problems and propose
potential solutions and perhaps (semi-) automatically implement these solutions.

Uniqueness of data records. Our participants had no difficulties imagining the util-
ity of a unique record identifier. However, as the results from the “Overview-detail
relationships” aspect show, the correct use of this unique identifier often was unclear.
Therefore, an EUDWeb tool may either automatically introduce a unique identifier as
a data field or guide the developer towards defining one.

Calculating database statistics. Participants were asked to describe how the web ap-
plication calculates the total number of checked-out movies. Most participants naturally



END USER DEVELOPMENT OF WEB APPLICATIONS 177

selected the most likely implementation (application counts records on request). For
the others, their prior knowledge of the workings of spreadsheet programs seemed to
influence their mental models (self-updating counter). Overall, this question was not
perceived as a stumbling block. We suggest that an EUDWeb tool should offer familiar
predefined statistics such as column sums, averages etc. to aid the developer.

Search. The concept of searching appears to be well understood at a high-level
of abstraction, including the possibility of multiple search parameters. However, the
implementation of a search function was beyond the mental models of most of our
participants. Therefore, EUD tools should offer a built-in query mechanism that lets
developers specify parameters and connecting operators but does not expose the details
of the implementation.

8.3. IMPLICATIONS FOR EUDWeb RESEARCH

From a methodological point of view we learned a number of lessons about studying
webmasters’ (or other end users’) mental models. Extracting the participants’ mental
models was difficult and required a very involved interview. Participants frequently
expressed that they simply did not know or had never thought about the implementation
of a particular aspect. We are considering a refinement of the approach that has a more
“graduated” set of scenarios and questions. For example, we might start out with a very
straightforward question about database structure and follow that up with more explicit
probes about how retrieval or filtering might be done. We are also considering the use of
examples as a prop in the discussions: for example, when a nonprogrammer states that
they have no idea how a process takes place, we might present them with two plausible
alternatives (where one is “correct”) and ask them to evaluate the differences.

We noted that in many cases participants had very sparse models of the programming
functions we presented. Although a sort of “non-result”, this observation is interesting
in itself because it underscores the need for tools that provide transparent support
of certain frequently-used functionality (e.g., session management, search). Note that
participants often used appropriate language to refer to technical concepts even when
they did not understand how they worked (e.g. key fields). Therefore, it seems plausible
that casual web developers will be able to understand a toolkit that employs constructs
like key fields or foreign-key relationships.

Based on our results so far, we would characterize a “prototypical” end-user web
developer in the following way. He or she:

� Often uses technical terminology (e.g. fields, database) but without being specific
and precise,

� Is capable of describing an application’s visible and tangible behavior to a nearly
complete level (if under-specification is pointed out to them),

� Naturally uses a mix of declarative language (e.g. constraints) and procedural
language (e.g. if-then rules) to describe behavior, while being unclear about where
and when these rules should be applied (lack of control flow),



178 JOCHEN RODE ET AL.

� Does not care about, and often is unable to describe exactly how functionality is
implemented “behind the scenes” (e.g. search, overview-detail relationships)

� Disregards intangible aspects of implementation technologies (e.g. session man-
agement, parameter passing, security checking),

� Understands the utility of advanced concepts (e.g. unique key fields, normaliza-
tion) but is unlikely to implement them correctly without guidance,

� Thinks in terms of sets rather than in terms of iteration (e.g. show all records that
contain “abc”),

� Imagines a spreadsheet table when reflecting on data storage and retrieval.

The type of mental models study we conducted can only determine what end users
“naturally” think. In order to determine whether or not certain design solutions are easy
to understand and easy to use we need to create and evaluate prototype tools—the focus
of our current work.

9. Prototyping and Evaluating EUDWeb Tools

Prototyping is an integral part of our research on EUDWeb. First, it has helped to assess
the feasibility of design ideas; second, prototypes serve as research instruments to sup-
port observational studies (e.g., end-user debugging behavior); and third, we are hoping
to soon discover new requirements for EUDWeb through participatory design with the
users of our prototype system in an ecologically valid manner. We have explored many
different paths, including extensions to a popular web development tool (Macromedia
Dreamweaver) to offer web application features more suitable to end users and imple-
menting an online tool using Macromedia Flash (Rode and Rosson 2003). Although
tools like Dreamweaver and FrontPage have substantial extension APIs, we found the
inflexibility in controlling the users’ workflow as the main hindrance to adopting this ap-
proach. Using Flash itself as a platform solves many layout and WYSIWYG issues but
presents the problem that most users still want to produce HTML-based web sites. From
many informal user studies we have learned that the web development tool that users
envision is typically “Word for Web Apps”, expressing a preference for a desktop-based
tool that embraces the WIMP, drag-and-drop, and copy-and-paste metaphors, offers wiz-
ards, examples and template solutions, but yet lets the developer see and modify the code
“behind the scenes.” Our current approach uses an HTML/JavaScript/PHP-based online
tool that is integrated with a database management system (MySQL). Figure 8.5 shows
a screenshot from Click (Component-based Lightweight Internet-application Construc-
tion Kit), our most recent prototype (Rode et al. 2005). In the depicted scenario, the
developer defines the behavior of a button component in a declarative way, that is, upon
pressing the “Register” button the application would redirect the user to the web page
“confirmationpage” if and only if the e-mail field is not left blank. Click distinguishes
itself from other state-of-the-art EUDWeb tools in that it fully integrates the process of
modelling the look and feel, component behavior, database connections, publishing and
hosting, while working on a high level of abstraction appropriate for nonprogrammers.



END USER DEVELOPMENT OF WEB APPLICATIONS 179

Figure 8.5. Screenshot of Click showing definition of a button’s behavior.

Click implements what we call “design-at-runtime”, applying Tanimoto’s concept
of liveness (Tanimoto 1990). This concept builds from the ideas of direct manipulation
(Shneiderman 1983) and the “debugging into existence” behavior (Rosson and Carroll
1996) studied in professional programmers. At its core it is similar to the automatic
recalculation aspect in spreadsheet programs. A critical piece of the concept is that the
user is able to both develop and use the application without switching back and forth
between programming and runtime modes. That is, the application is always usable to
the fullest extent that it has been programmed, and when its boundaries are tested, the
environment provides useful feedback suggesting next steps for the developer to take.

An important design goal for Click is to support evolutionary prototyping, to allow
the developer to easily change virtually every aspect of the web application at any point
in time For example, in the figure the user is updating the behavior of a submit button
while in the midst of testing her application. This can be contrasted to most state-of-
the-art tools that require significant “premature commitment”, as Green (1989) might
call it. For example, in many tools the database schema has to be fully defined before
the application is implemented and is difficult to change after the fact.

Finally, Click provides several layers of programming support. While novices can
customize existing applications or work with a predefined set of components and ac-
tions, more advanced developers can manually edit the underlying code which is based
on HTML, PHP, and the event-driven PRADO framework (Xue 2005). Click strives to
expose a “Gentle slope of complexity” as advocated by MacLean et al. (1990).



180 JOCHEN RODE ET AL.

9.1. EVALUATION AND LESSONS LEARNED

Click has been released as an open source tool (http://phpclick.sourceforge.net) and
may soon be formally released to the Virginia Tech computing community in an effort
to elicit important requirements for EUDWeb through large-scale participatory design
and as an instrument for field studies (see Figure 8.1). In the course of developing Click,
we have also begun to carry out a series of usability evaluations, gathering feedback
from representatives of our target audience. Although many usability issues are left to
be resolved, Click already addresses many problems. For example, Click completely
hides session management (all inputs entered on one web page are available at any later
point in time), integrates the database management within the tool (as the developer
creates a new input field on screen a matching database field is created), and allows the
developer to design the layout in a true WYSIWYG fashion without having to revert
to “tricks” like using HTML tables for alignment.

10. Summary and Conclusions

We have described the initial phases of a user-centered approach to understanding and
supporting EUDWeb. From investigating end users’ needs we have found that basic
data collection, storage and retrieval applications such as surveys, registration sys-
tems, service forms, or database-driven websites are an important target for end-user
development. These types of applications are also a feasible target considering that
most web applications are simple—at least conceptually speaking. While currently the
implementation of any non-trivial, secure, and cross-platform compatible web applica-
tion requires expert knowledge, it does not have to be this way. Most of what makes web
development difficult is not inherent complexity but rather an accumulation of many
technical challenges. Concerning the main challenges in web application development,
experienced web developers mentioned the issues of ensuring security, cross-platform
compatibility, the problems related to integrating different web technologies such as
Java, HTML, PHP, Javascript, CSS, SQL, and, the difficulties of debugging distributed
applications.

Many web applications are quite similar on a conceptual level. By analysing ex-
isting applications we have compiled a list of frequently used components, functions,
and concepts such as session management, search, and overview-detail relationships
(Table 8.1). The web development process will become much easier and more acces-
sible to nonprogrammers when tools integrate these concepts as building blocks on a
high level of abstraction rather than requiring low level coding.

Much progress has been made by commercial web development tools. Most of
the end-user tools that we reviewed do not lack functionality but rather ease-of-use.
We also found that while many tools offer wizards and other features designed to
facilitate specific aspects of end-user development, few (if any) take a holistic approach
to web application development and integrate layout, styling, behavioral description,
data modelling, publishing, and maintenance tasks. The “ideal” tool for end-user web



END USER DEVELOPMENT OF WEB APPLICATIONS 181

developers would provide ease-of-use with the appropriate abstractions, absence of
jargon, a library of examples and templates, wizards for complicated tasks and take
a holistic approach by integrating all aspects of web development. Finally, such a
tool would also support developers’ growing needs and knowledge, offer power and
flexibility by allowing the integration of user-defined and automatically-created code.

Understanding how end users naturally think may help us design tools that better
match their expectations. In two studies we found, that end users frequently only have
vague ideas of how web applications works behind the scenes, and that end users expect
many aspects such as session management or search to work “out-of-the-box.” However,
the nonprogrammers we have observed, generally did not have problems to think on an
abstract level about the concepts behind web application development and for example
easily understood concepts like “if-then” branching although being unable to say where
and how it would be implemented.

We have begun constructing and evaluating an EUDWeb tool prototype called Click
that supports end user web application development from start (requirements elicitation
through application prototyping) to finish (deployment and maintenance). We are con-
fident that a tool like Click will soon make the “tomorrow” of the introduction scenario
and end-user development for the web a reality.

Acknowledgements

We thank Julie Ballin and Brooke Toward for their roles in development and admin-
istration of a large-scale survey of web developers; Yogita Bhardwaj, and Jonathan
Howarth for helping develop Click, our EUD prototype, and conducting a review of
existing web tools; Betsy and Erv Blythe for supporting the idea of EUDWeb within
Virginia Tech’s IT department, and last but most definitely not least, B. Collier Jones,
Jan Gibb, Kaye Kriz and Dr. Andrea Contreras for their valuable feedback and support
throughout our research.

References

Ambler, A. and Leopold, J. (1998). Public Programming in a Web World. IEEE Symposium on Visual
Languages, Nova Scotia, Canada: 100–107.

Berners-Lee, T. (1996). “WWW: past, present, and future.” IEEE Computer 29(10): 69–77.
Burnett, M., Chekka, S.K. and Pandey, R. (2001). FAR: An End user Language to Support Cottage

E-Services. HCC—2001 IEEE Symposia on Human-Centric Computing Languages and Envi-
ronments, Stresa, Italy: 195–202.

Ceri, S., Fraternali, P. and Bongio, A. (2000). “Web Modeling Language (WebML): A Modeling
Language for Designing Web Sites.” Computer Networks 33(1–6): 137–157.

Deshpande, Y. and Hansen, S. (2001). “Web Engineering: Creating a Discipline among Disciplines.”
IEEE MultiMedia 8(2): 82–87.

Fraternali, P. (1999). “Tools and Approaches for Developing Data-Intensive Web Applications: A
Survey.” ACM Computing Surveys 31(3): 227–263.

Fraternali, P. and Paolini, P. (2000). “Model-Driven Development of WebApplications: The Autoweb
System.” ACM Transactions on Information Systems 28(4): 323–382.



182 JOCHEN RODE ET AL.

Green, T.R.G. (1989). Cognitive dimensions of notations. In A. Sutcliffe & I. Macauley (eds.), People
and Computers IV. Cambridge: Cambridge University Press.

Helman, T. and Fertalj, K. (2003). A Critique of Web Application Generators. Information Technology
Interfaces (ITI), June 16–19, 2003, Cavtat, Croatia.

MacLean, A., Carter, K., Lövstrand, L. and Moran, T. (1990). User-Tailorable Systems: Pressing
Issues with Buttons. ACM CHI 1990: 175–182.

Newman, M., Lin, J., Hong, J.I. and Landay, J.A. (2003). “DENIM: An Informal Web Site
Design Tool Inspired by Observations of Practice.” Human-Computer Interaction 18: 259–
324.

Pane, J.F., Ratanamahatana, C.A. and Myers, B.A. (2001). “Studying the language and structure in non-
programmers’ solutions to programming problems.” International Journal of Human-Computer
Studies 54(2): 237–264.

Rode, J. and Rosson, M.B. (2003). Programming at Runtime: Requirements & Paradigms for Non-
programmer Web Application Development. IEEE HCC 2003. Auckland, New Zealand. Oct. 28–
31.

Rode, J., Rosson, M.B. and Pérez-Quiñones, M.A. (2003). Participant Instructions. http://
purl.vt.edu/people/jrode/publish/2003-09-interviews/instructions.pdf

Rode, J. Rosson, M.B. and Pérez-Quiñones, M.A. (2004). End users’ Mental Models of Concepts
Critical to Web Application Development. IEEE HCC 2004. Rome, Italy. Oct. 26–29.

Rode, J., Bhardwaj, Y., Rosson, M.B., Pérez Quiñones, M.A. and Howarth, J. (2005).
Click: Component-based Lightweight Internet-application Construction Kit. http://phpclick.
sourceforge.net

Rode. J., Howarth, J., Pérez Quiñones, M.A. and Rosson, M.B. (2005). An End-user Development
Perspective on State-of-the-Art Web Development Tools. Virginia Tech Computer Science Tech
Report #TR-05-03.

Rode, J., Bhardwaj, Y., Pérez-Quiñones, M.A., Rosson, M.B. and Howarth, J. (2005). As Easy as
“Click”: End-User Web Engineering. International Conference on Web Engineering. Sydney,
Australia. July 27–29.

Rosson, M.B. and Carroll, J.M. (1996). “The reuse of uses in Smalltalk programming.” ACM TOCHI
3(3): 219–253.

Rosson, M. B., Ballin, J., Rode, J. and Toward, B. (2005). Designing for the Web revisited: A Survey of
Casual and Experienced Web Developers. International Conference on Web Engineering. Sydney,
Australia. July 27–29.

Shneiderman, B. (1983). “Direct Manipulation: A Step Beyond Programming Languages.” IEEE
Computer 16: 57–60.

Stiemerling, O., Kahler, H. and Wulf, V. (1997). How to Make Software Softer—Designing Tailorable
Applications. Symposium on Designing Interactive Systems 1997, 365–376.

Tanimoto, S. (1990). “VIVA: A Visual Language for Image Processing.” Journal of Visual Languages
and Computing 1(2): 127–139.

Turau, V. (2002). A Framework for Automatic Generation of Web-based Data Entry Applications
Based on XML. 17th Symposium on Applied Computing, Madrid, Spain, ACM: 1121–1126.

Vora, P.R. (1998). Designing for the Web: A Survey. ACM interactions (May/June): 13–30.
Wolber, D., Su, Y. and Chiang, Y.T. (2002). Designing Dynamic Web Pages and Persistence in the

WYSIWYG Interface. IUI 2002. Jan 13–16. San Francisco, CA, USA.
Xue, Q. (2005). PRADO: Component-based and event-driven Web programming framework for PHP

5. http://www.xisc.com/




