
Chapter 3

More Natural Programming Languages
and Environments

JOHN F. PANE1 and BRAD A. MYERS2

1RAND Corporation, jpane@rand.org
2Carnegie Mellon University, bam+@cs.cmu.edu

Abstract. Over the last six years, we have been working to create programming languages and
environments that are more natural, by which we mean closer to the way people think about their
tasks. The goal is to make it possible for people to express their ideas in the same way they think
about them. To achieve this, we performed various studies about how people think about programming
tasks, and then used this knowledge to develop a new programming language and environment called
HANDS. This chapter provides an overview of the goals and background for the Natural Programming
research, the results of some of our user studies, and the highlights of the language design.

1. Introduction

The Natural Programming Project is studying ways to make learning to program sig-
nificantly easier, so that more people will be able to create useful, interesting, and
sophisticated programs. The goals of this project are to define and use a new program-
ming language design process; where we study how non-programmers reason about
programming concepts, create new programming languages and environments that
take advantage of these findings, and evaluate them. It is somewhat surprising that in
spite of over 30 years of research in the areas of empirical studies of programmers (ESP)
and human–computer interaction (HCI), the designs of new programming languages
have generally not taken advantage of what has been discovered. For example, the new
C#, Java, and JavaScript languages use the same mechanisms for looping, conditionals,
and assignments that have been shown to cause many errors for both beginning and
expert programmers in the C language. Our thorough investigation of the ESP and
HCI literature has revealed many results which can be used to guide the design of a
new programming system, many of which have not been utilized in previous designs.
However, there are many significant “holes” in the knowledge about how people reason
about programs and programming. For example, research about which fundamental
paradigms of computing are the most natural has not been conclusive. We are perform-
ing user studies to investigate this question. Another issue is that most of the prior
research has studied people using existing languages, and so there is little information
about how people might express various concepts if not restricted by these language
designs.

Henry Lieberman et al. (eds.), End User Development, 31–50.
C© 2006 Springer.

32 JOHN F. PANE AND BRAD A. MYERS

In the context of this prior work, as well as best practices in user-centered design, we
adopted a Natural Programming design process, which treats usability as a first-class
objective in programming system design by following these steps:

� Identify the target audience and the domain, that is, the group of people who will
be using the system and the kinds of problems they will be working on.

� Understand the target audience, both the problems they encounter and the existing
recommendations on how to support their work. This includes an awareness of
general HCI principles as well as prior work in the psychology of programming
and empirical studies. When issues or questions arise that are not answered by the
prior work, conduct new studies to examine them.

� Design the new system based on this information.
� Evaluate the system to measure its success, and understand any new problems that

the users have. If necessary, redesign the system based on this evaluation, and then
re-evaluate it.

In this design process, the prior knowledge about the human aspects of programming
is considered, and the strategy for addressing any unanswered questions is to conduct
user studies to obtain design guidance and to assess prototypes.

This chapter summarizes the results to date for the Natural Programming project.
More details were reported by Pane (2002), as well as in many other papers that are
available from our web site: (http://www.cs.cmu.edu/∼NatProg). First, we discuss why
naturalness might be better for developers, and then discuss a survey of prior work
as it relates to the design of more natural programming languages and environments.
Then we discuss three studies we performed to evaluate what might be more natural in
programs for graphics and data processing. The results were used in the design of a new
language and environment called HANDS (Human-centered Advances for the Novice
Development of Software). A user study showed that the novel aspects of HANDS
were helpful to novice fifth graders writing their first programs. Finally, we discuss the
current work of the Natural Programming project on making the debugging process
more natural.

2. Why Natural Might be Better for End-User Developers

In Natural Programming we aim for the programming system to work in the way that
people expect, especially end-user developers who may have little or no formal training
or experience in programming. The premise of this approach is that the developers will
have an easier job if their programming tasks are made more natural. We define natural
as “faithfully representing nature or life.”

Why would this make end-user programming easier? One way to define program-
ming is the process of transforming a mental plan in familiar terms into one that is
compatible with the computer (Hoc and Nguyen-Xuan, 1990). The closer the language
is to the programmer’s original plan, the easier this refinement process will be. This is
closely related to the concept of directness that, as part of “direct manipulation,” is a

NATURAL PROGRAMMING LANGUAGES AND ENVIRONMENTS 33

key principle in making user interfaces easier to use. Hutchins et al. (1986) describe
directness as the distance between one’s goals and the actions required by the system to
achieve those goals. Reducing this distance makes systems more direct, and therefore
easier to learn. User interface designers and researchers have been promoting direct-
ness at least since Shneiderman (1983) identified the concept, but it has not even been a
consideration in most programming language designs. Green and Petre (1996, p. 146)
also argue in favor of directness, which they call closeness of mapping: “The closer the
programming world is to the problem world, the easier the problem-solving ought to
be . . . Conventional textual languages are a long way from that goal.”

User interfaces in general are also recommended to be natural so they are easier
to learn and use, and will result in fewer errors. For example, Nielsen (1993, p. 126)
recommends that user interfaces should “speak the user’s language,” which includes
having good mappings between the user’s conceptual model of the information and the
computer’s interface for it. One of Hix and Hartson’s usability guidelines is to “use
cognitive directness,” which means to “minimize the mental transformations that a user
must make. Even small cognitive transformations by a user take effort away from the
intended task.” Conventional programming languages do not provide the high-level
operators that would provide this directness, instead requiring the programmer to make
transformations from the intended task to a code design that assembles lower-level
primitives.

Norman also discusses the conceptual gap between the representations that people
use in their minds and the representations that are required to enter these into a computer.
He calls these the “gulfs of execution and evaluation.” He says; “there are only two ways
to . . . bridge the gap between goals and system: move the system closer to the user;
[or] move the user closer to the system” (Norman, 1986, p. 43). We argue that if the
computer language expressed algorithms and data in a way that was closer to people’s
natural expressions, the gaps would be smaller. As Smith et al. (1996, p. 60) have said,
“regardless of the approach, with respect to programming, trying to move most people
closer to the system has not worked.”

The proposed research is closely aligned with the concept of “Gentle Slope Systems”
(MacLean et al., 1990; Myers et al., 1992), which are systems where for each incremen-
tal increase in the level of customizability, the user only needs to learn an incremental
amount. This is contrasted with most systems, which have “walls” where the user must
stop and learn many new concepts and techniques to make further progress (see Figure
3.1). We believe that systems can use direct manipulation and demonstrational tech-
niques, where users give examples of the desired outcome (Myers, 1992), to lower the
initial starting point and enable users to get useful work done immediately. Systems
and languages can also be self-disclosing and easy to learn, so the number and height
of the walls is minimized, if they cannot be eliminated entirely.

We note that a programming system that is designed to be natural for a particular
target audience may not be universally optimal. People of different ages, from different
backgrounds and cultures, or from different points in history, are likely to bring different
expectations and methods to the programming task. This is why identifying the target

34 JOHN F. PANE AND BRAD A. MYERS

Goal

Hy r C a r d

Hy perTa lk

xCm ds

Basic

C P

Lin go

Difficulty

of

Use

Sophistication of what can be created

Goal

HyperCard

Visual Basic

Director (v6)

HyperTalk

xCmds

Basic

C Programming

Lingo

C Programming

Programming in Java

Swing

Click and

Create

Figure 3.1. The ideal of a gentle slope system. The intent of this graph is to portray how difficult it is to use various
tools to create customizations of different levels of sophistication. For example, with Java, it is quite hard to get
started, so the Y intercept is high up. The vertical walls are where the designer needs to stop and learn something
entirely new. For Java, the wall is where the user needs to learn Swing to do graphics. With Visual Basic, it is
easier to get started, so the Y intercept is lower, but Visual Basic has two walls—one when you have to learn the
Basic programming language, and another when you have to learn C programming because Visual Basic is no
longer adequate. Click and Create was a menu based tool from Corel, and its line stops because it does not have
an extension language, and you can only do what is available from the menus and dialog boxes.

audience is an intrinsic part of the design process, and why the process itself is important.
It will have to be applied over and over again, in order to best support the particular
characteristics of the people who will use each new programming system.

3. Survey of Earlier Work

Programmers are often required to think about algorithms and data in ways that are very
different than the ways they already think about them in other contexts. For example,
a typical C program to compute the sum of a list of numbers includes three kinds of
parentheses and three kinds of assignment operators in five lines of code:

sum = 0;
for (i=0; i<numItems; i++) {

sum += items[i];
}
return sum;

In contrast, this can be done in a spreadsheet with a single line of code using the
sum operator (Green and Petre, 1996). The mismatch between the way a programmer
thinks about a solution and the way it must be expressed in the programming lan-
guage makes it more difficult not only for beginners to learn how to program, but also
for people to carry out their programming tasks even after they become more experi-
enced. One of the most common bugs among professional programmers using C and
C++ is the accidental use of “=” (assignment) instead of “==” (equality test). This

NATURAL PROGRAMMING LANGUAGES AND ENVIRONMENTS 35

mistake is easy to make and difficult to find, not only because of typographic similarity,
but also because the “=” operator does indeed mean equality in other contexts such as
mathematics.

Soloway et al. (1989) found that the looping control structures provided by modern
languages do not match the natural strategies that most people bring to the programming
task. Furthermore, when novices are stumped they try to transfer their knowledge of
natural language to the programming task. This often results in errors because the
programming language defines these constructs in an incompatible way (Bonar and
Soloway, 1989). For example, “then” is interpreted as meaning “afterwards” instead of
“in these conditions.”

One of the biggest challenges for new programmers is to gain an accurate under-
standing of how computation takes place. Traditionally, programming is described to
beginners in completely unfamiliar terms, often based on the von Neumann model,
which has no real-world counterpart (du Boulay, 1989; du Boulay et al., 1989). Begin-
ners must learn, for example, that the program follows special rules of control flow for
procedure calls and returns. There are complex rules that govern the lifetimes of vari-
ables and their scopes. Variables may not exist at all when the program is not running,
and during execution they are usually invisible, forcing the programmer to use print
statements or debuggers to inspect them. This violates the principle of visibility, and
contributes to a general problem of memory overload (Anderson and Jeffries, 1985;
Davies, 1993).

Usability could be enhanced by providing a different model of computation that uses
concrete and familiar terms (Mayer, 1989; Smith et al., 1994). Using a different model
of computation can have broad implications beyond beginners, because the model
influences, and perhaps limits, how experienced programmers think about and describe
computation (Stein, 1999).

In the 1970s, Miller (1974; 1981) examined natural language procedural instruc-
tions generated by non-programmers and made a rich set of observations about how
the participants naturally expressed their solutions. This work resulted in a set of rec-
ommended features for computer languages. For example, Miller suggested that con-
textual referencing would be a useful alternative to the usual methods of locating
data objects by using variables and traversing data structures. In contextual refer-
encing, the programmer identifies data objects by using pronouns, ordinal position,
salient or unique features, relative referencing, or collective referencing (Miller, 1981,
p 213).

Although Miller’s approach provided many insights into the natural tendencies of
non-programmers, there have only been a few studies that have replicated or extended
that work. Biermann et al. (1983) confirmed that there are many regularities in the
way people express step-by-step natural language procedures, suggesting that these
regularities could be exploited in programming languages. Galotti and Ganong (1985)
found that they were able to improve the precision in users’ natural language specifi-
cations by ensuring that the users understood the limited intelligence of the recipient
of the instructions. Bonar and Cunningham (1988) found that when users translated

36 JOHN F. PANE AND BRAD A. MYERS

their natural-language specifications into a programming language, they tended to use
the natural-language semantics even when they were incorrect for the programming
language. It is surprising that the findings from these studies have apparently had little
impact on the designs of new programming languages that have been invented since
then.

4. Initial User Studies

We conducted two studies that were loosely based on Miller’s work, to examine the
language and structure that children and adults naturally use before they have been
exposed to programming. A risk in designing these studies is that the experimenter
could bias the participants with the language used in asking the questions. For example,
the experimenter cannot just ask: “How would you tell the monsters to turn blue when
the PacMan eats a power pill?” because this may lead the participants to simply parrot
parts of the question back in their answers. This would defeat the prime objective of
these studies, which is to examine users’ unbiased responses. Therefore our materials
were constructed with great care to minimize this kind of bias, with terse descriptions
and graphical depictions of the problem scenarios.

In our studies, participants were presented with programming tasks and asked to
solve them on paper using whatever diagrams and text they wanted to use. Before
designing the tasks, a list of essential programming techniques and concepts was enu-
merated, covering various kinds of applications. These include: use of variables, assign-
ment of values, initialization, comparison of values, Boolean logic, incrementing and
decrementing of counters, arithmetic, iteration and looping, conditionals and other flow
control, searching and sorting, animation, multiple things happening simultaneously
(parallelism), collisions and interactions among objects, and response to user input.

Because children often express interest in creating games and animated stories, the
first study focused on the skills that are necessary to build such programs. In this study,
the PacMan video game was chosen as a fertile source of interesting problems that
require these skills. Instead of asking the participants to implement an entire PacMan
game, various situations were selected from the game because they touch upon one or
more of the above concepts. This allowed a relatively small set of exercises to broadly
cover as many of the concepts as possible in the limited amount of time available. Many
of the skills that were not covered in the first study were covered in a second study,
which used a set of spreadsheet-like tasks involving database manipulation and numeric
computation.

A set of nine scenarios from the PacMan game were chosen, and graphical depic-
tions of these scenarios were developed, containing still images or animations and a
minimal amount of text. The topics of the scenarios were: an overall summary of the
game, how the user controls PacMan’s actions, PacMan’s behavior in the presence and
absence of other objects such as walls, what should happen when PacMan encounters
a monster under various conditions, what happens when PacMan eats a power pill,

NATURAL PROGRAMMING LANGUAGES AND ENVIRONMENTS 37

Figure 3.2. Depiction of a problem scenario in study one.

scorekeeping, the appearance and disappearance of fruit in the game, the completion
of one level and the start of the next, and maintenance of the high score list. Figure 3.2
shows one of the scenario depictions. Figure 3.3 shows excerpts from participants’
solutions.

We developed a rating form to be used by independent analysts to classify each
participant’s responses (Figure 3.4). Each question on the form addressed some facet
of the participant’s problem solution, such as the way a particular word or phrase was
used, or some other characteristic of the language or strategy that was employed.

Each question was followed by several categories into which the participant’s re-
sponses could be classified. The analyst was instructed to look for relevant sentences in
the participant’s solution, and classify each one by placing a tick mark in the appropriate
category, also noting which problem the participant was answering when the sentence
was generated. Each question also had an “other” category, which the rater marked
when the participant’s utterance did not fall into any of the supplied categories. When
they did this, they added a brief comment.

To see whether the observations from the first study would generalize to other do-
mains and other age groups, a second study was conducted. This study used database
access scenarios that are more typical of business programming tasks, and was admin-
istered to a group of adults as well as a group of children.

38 JOHN F. PANE AND BRAD A. MYERS

Figure 3.3. Excerpts from participants’ solutions to problems from Study 1.

Some observations from these studies were:

� An event-based or rule-based structure was often used, where actions were taken
in response to events. For example, “when pacman loses all his lives, its game
over.”

NATURAL PROGRAMMING LANGUAGES AND ENVIRONMENTS 39

3. Please count the number of times the student uses these various
methods to express concepts about multiple objects. (The situation
where an operation affects some or all of the objects, or when
different objects are affected differently.)

a) 1___ 2___ 3___ 4___ 5___ 6___ 7___ 8___ 9___
Thinks of them as a set or subsets of entities and operates on those,
or specifies them with plurals.
Example: Buy all of the books that are red.

b) 1___ 2___ 3___ 4___ 5___ 6___ 7___ 8___ 9___
Uses iteration (i.e. loop) to operate on them explicitly.
Example: For each book, if it is red, buy it.

c) 1___ 2___ 3___ 4___ 5___ 6___ 7___ 8___ 9___
Other (please specify) ____________________________

Figure 3.4. A question from the rating form for study one. The nine blanks on each line correspond to the nine
tasks that the participants solved.

� Aggregate operations, where a set of objects is acted upon all at once, were used
much more often than iteration through the set to act on the objects individually.
For example, “Move everyone below the 5th place down by one.”

� Participants did not construct complex data structures and traverse them, but
instead performed content-based queries to obtain the necessary data when needed.
For example, instead of maintaining a list of monsters and iterating through the
list checking the color of each item, they would say “all of the blue monsters.”

� A natural language style was used for arithmetic expressions. For example, “add
100 to score.”

� Objects were expected to automatically remember their state (such as motion), and
the participants only mentioned changes in this state. For example, “if pacman
hits a wall, he stops.”

� Operations were more consistent with list data structures than arrays. For example,
the participants did not create space before inserting a new object into the middle
of a list.

� Participants rarely used Boolean expressions, but when they did they were likely
to make errors. That is, their expressions were not correct if interpreted according
to the rules of Boolean logic used in most programming languages.

� Participants often drew pictures to sketch out the layout of the program, but re-
sorted to text to describe actions and behaviors.

Additional details about these studies were reported by Pane et al. (2001).

5. Studying the Construction of Sets

Because operations on groups of objects and content-based queries were prevalent in
non-programmers’ problem solutions, we began to explore how this might be supported

40 JOHN F. PANE AND BRAD A. MYERS

Figure 3.5. Match forms expressing the query:(blue and not square) or (circle and not green).

in a programming language. Queries are usually specified with Boolean expressions,
and the accurate formulation of Boolean expressions has been a notorious problem in
programming languages, as well as other areas such as database query tools (Hildreth,
1988; Hoc, 1989). In reviewing prior research we found that there are few prescriptions
for how to solve this problem effectively. For example, prior work suggests avoiding
the use of the Boolean keywords AND, OR, and NOT (Greene et al., 1990; McQuire
and Eastman, 1995; Michard, 1982), but does not recommend a suitable replacement
query language.

Therefore we conducted a new study to examine the ways untrained children and
adults naturally express and interpret queries, and to test a new tabular query form that
we designed.

Although some graphical query methods had been shown to be more effective than
Boolean expressions, many of them were limited to expressing very simple queries. We
wanted a solution that is fully expressive. Also, many of the graphical systems would not
integrate well into a programming language, where the entire computer screen cannot
be devoted to this one subtask of the programming process. We required a format that is
compact and readable in the context of a larger program. With these points in mind, we
designed a tabular form that is fully expressive and compatible with the programming
language we were developing.

Since we were planning to represent data on cards containing attribute-value pairs
in the HANDS programming language, we designed the query form to also use a card
metaphor. For the purposes of this study, we simplified the forms by leaving out the
attribute names, and limiting the number of terms to three. We called these match
forms (see Figure 3.5). Each match form contains a vertical list of slots. Conjunction
is specified by placing terms into these slots, one term per slot. Negation is performed
by prefacing a term with the NOT operator, and disjunction is specified by placing
additional match forms adjacent to the first one. This design avoids the need to name
the AND and OR operators, provides a clear distinction between conjunction and dis-
junction, and makes grouping explicit. Match forms are compact enough to be suitable
for incorporation into programming systems.

The study used a grid of nine colored shapes, where a subset of the shapes could be
marked (see Figure 3.6). Children and adults who participated in this study were given
two kinds of problems: code generation problems, where some shapes were already

NATURAL PROGRAMMING LANGUAGES AND ENVIRONMENTS 41

Figure 3.6. Sample problem from the study. In this problem, the participant is asked to write a textual query to
select the objects that are marked. The color of each object is red, green, or blue on the computer screen.

marked and they had to formulate a query to select them; and code interpretation
problems, where they were shown a query and had to mark the shapes selected by the
query. They solved all of these problems twice, once using purely textual queries, and
once using match forms.

The results suggest that a tabular language for specifying Boolean expressions can
improve the usability of a programming or query language. On code generation tasks,
the participants performed significantly better using the tabular form, while on code
interpretation tasks they performed about equally in the textual and tabular condi-
tions. The study also uncovered systematic patterns in the ways participants interpreted
Boolean expressions, which contradict the typical rules of evaluation used by program-
ming languages. These observations help to explain some of the underlying reasons
why Boolean expressions are so difficult for people to use accurately, and suggest that
refining the vocabulary and rules of evaluation might improve the learnability and us-
ability of textual query languages. A general awareness of these contradictions can
help designers of future query systems adhere to the HCI principle to speak the user’s
language (Nielsen, 1994). Additional details about this study were reported by Pane
and Myers (2000).

6. Hands Environment and Language

The next step was to design and implement HANDS, our new programming language
and environment. The various components of this system were designed in response to
the observations in our studies as well as prior work:

42 JOHN F. PANE AND BRAD A. MYERS

� Beginners have difficulty learning and understanding the highly-detailed, abstract,
and unfamiliar concepts that are introduced to explain how most programming
languages work. HANDS provides a simple concrete model based on the familiar
idea of a character sitting at a table, manipulating cards.

� Beginners have trouble remembering the names and types of variables, understand-
ing their lifetimes and scope, and correctly managing their creation, initialization,
destruction, and size, all of which are governed by abstract rules in most pro-
gramming languages. In HANDS, all data are stored on cards, which are familiar,
concrete, persistent, and visible. Cards can expand to accommodate any size of
data, storage is always initialized, and types are enforced only when necessary,
such as when performing arithmetic.

� Most programming languages require the programmer to plan ahead to create,
maintain, and traverse data structures that will give them access to the program’s
data. Beginners do not anticipate the need for these structures, and instead prefer
to access their data through content-based retrieval as needed. HANDS directly
supports queries for content-based data retrieval.

� Most programming languages require the programmer to use iteration when per-
forming operations on a group of objects. However, the details of iteration are
difficult for beginners to implement correctly, and furthermore, beginners prefer
to operate on groups of objects in aggregate instead of using iteration. HANDS
uniformly permits all operations that can be performed on single objects to also
be performed on lists of objects, including the lists returned by queries.

� Despite a widespread expectation that visual languages should be easier to use than
textual languages, the prior work finds many situations where the opposite is true
(Blackwell, 1996; Green and Petre, 1992; Whitley, 1997). In our studies, pictures
were often used to describe setup information, but then text was used to describe
dynamic behaviors. HANDS supports this hybrid approach, by permitting objects
to be created and set up by direct manipulation but requiring most behaviors to
be specified with a textual language. This design assumes that the environment
will provide syntax coloring and other assistance with syntax. These features are
commonly available in programming environments, but re-implementing them in
HANDS was beyond the scope of our work.

� Programming language syntax is often unnatural, laden with unusual punctuation,
and in conflict with expectations people bring from their knowledge in other
domains such as mathematics. The HANDS language minimizes punctuation
and has a more natural syntax that is modeled after the language used by non-
programmers in our studies.

� The prior research offers few recommendations about which programming
paradigm might be most effective for beginners (imperative, declarative, func-
tional, event-based, object-oriented, etc.). In our studies of the natural ways be-
ginners expressed problem solutions, an event-based paradigm was observed most
often, and program entities were often treated with some object oriented features.
HANDS therefore uses an event-based paradigm. Cards are the primary data

NATURAL PROGRAMMING LANGUAGES AND ENVIRONMENTS 43

structure, and they have some object-like properties: they are global, named, en-
capsulated, persistent, and have some autonomous behaviors.

� The prior work recommends that programming systems should provide high-level
support for the kinds of programs people will build, so they do not have to assemble
more primitive features to accomplish their goals. In our interviews with children,
they said they wanted to create interactive graphical programs like the games and
simulations they use every day. HANDS provides domain-specific support for this
kind of program.

All of these observations have influenced the design of HANDS. HANDS uses an
event-based language that features a new concrete model for computation, provides
queries and aggregate operators that match the way non-programmers express problem
solutions, has high-visibility of program data, and includes domain-specific features
for the creation of interactive animations and simulations.

6.1. COMPUTATIONAL MODEL

In HANDS, the computation is represented as an agent named Handy, sitting at a table
manipulating a set of cards (see Figure 3.7). All of the data in the system is stored on

Figure 3.7. The HANDS system portrays the components of a program on a round table. All data are stored on
cards, and the programmer inserts code into Handy’s thought bubble at the upper left corner. When the play button
is pressed, Handy begins responding to events by manipulating cards according to the instructions in the thought
bubble.

44 JOHN F. PANE AND BRAD A. MYERS

these cards, which are global, persistent and visible on the table. Each card has a unique
name, and an unlimited set of name-value pairs, called properties. The program itself is
stored in Handy’s thought bubble. To emphasize the limited intelligence of the system,
Handy is portrayed as an animal—like a dog that knows a few commands—instead of
a person or a robot that could be interpreted as being very intelligent.1

6.2. PROGRAMMING STYLE AND MODEL OF EXECUTION

HANDS is event-based, the programming style that most closely matches the problem
solutions in our studies. A program is a collection of event handlers that are automati-
cally called by the system when a matching event occurs. Inside an event handler, the
programmer inserts the code that Handy should execute in response to the event. For
example, this event handler would be run if the system detects a collision between a
bee and flower, changing the speed value on the bee’s card:

when any bee collides into any flower
set the bee's speed to 0

end when

6.3. AGGREGATE OPERATIONS

In our studies, we observed that the participants used aggregate operators, manipulating
whole sets of objects in one statement rather than iterating and acting on them individ-
ually. Many languages force users to perform iteration in situations where aggregate
operations could accomplish the task more easily (Miller, 1981). Requiring users to
translate a high-level aggregate operation into a lower-level iterative process violates
the principle of closeness of mapping.

HANDS has full support for aggregate operations. All operators can accept lists as
well as singletons as operands. For example, all of the following are legal operations in
HANDS:

1 + 1 evaluates to 2
1 + (1,2,3) evaluates to 2,3,4
(1,2,3) + 1 evaluates to 2,3,4
(1,2,3) + (2,3,4) evaluates to 3,5,7

6.4. QUERIES

In our studies, we observed that users do not maintain and traverse data structures.
Instead, they perform queries to assemble lists of objects on demand. For example, they
say “all of the blue monsters.” HANDS provides a query mechanism to support this.

1 HANK (Mulholland & Watt, 2000) is another end-user programming system where the program is represented
as a set of cards and an agent was represented by a cartoon dog in early prototypes. The resemblance of HANDS
to HANK is coincidental.

NATURAL PROGRAMMING LANGUAGES AND ENVIRONMENTS 45

Figure 3.8. When the system evaluates the query allflowers it returns orchid, rose, tulip.

The query mechanism searches all of the cards for the ones matching the programmer’s
criteria.

Queries begin with the word “all.” If a query contains a single value, it returns all
of the cards that have that value in any property. Figure 3.8 contains cards representing
three flowers and a bee to help illustrate the following queries.

all flowers evaluates to orchid, rose, tulip
all bees evaluates to bumble
all snakes evaluates to the empty list

HANDS permits more complex queries to be specified with traditional Boolean
expressions, however the intention is to eventually incorporate match forms into the
system as an option for specifying and displaying queries.

Queries and aggregate operations work in tandem to permit the programmer to
concisely express actions that would require iteration in most languages. For example,

set the nectar of all flowers to 0

6.5. DOMAIN-SPECIFIC SUPPORT

HANDS has domain-specific features that enable programmers to easily create highly-
interactive graphical programs. For example, the system’s suite of events directly sup-
ports this class of programs. The system automatically detects collisions among objects
and generates events to report them to the programmer. It also generates events in re-
sponse to input from the user via the keyboard and mouse. It is easy to create graphical
objects and text on the screen, and animation can be accomplished without any pro-
gramming.

7. Evaluation of the Hands Environment and Language

7.1. USER STUDY

To examine the effectiveness of three key features of HANDS—queries, aggregate
operations, and data visibility—we conducted a study comparing the system with a
limited version that lacks these features. In the limited version, programmers could
achieve the same results but had to use more traditional programming techniques. For

46 JOHN F. PANE AND BRAD A. MYERS

example, in this limited version aggregate operations were not available, so iteration
was required to act upon a list of objects.

Volunteers were recruited from a fifth-grade class at a public school to participate in
the study. The 23 volunteers ranged in age from 9 to 11 years old. There were 12 girls
and 11 boys. All were native speakers of English, and none had computer programming
experience. They came to a university campus on a Saturday morning for a three-hour
session. 12 of the children used HANDS and 11 used the limited version of the system.

The HANDS users learned the system by working through a 13-page tutorial. A
tutorial for the limited-feature version was identical except where it described a feature
that was missing in the limited system. In those places, the tutorial taught the easiest way
to accomplish the same effect using features that remained. These changes increased
the length of the tutorial slightly, to 14 pages. After working through the tutorial, the
children attempted to solve five programming tasks.

In this three-hour session, the children using HANDS were able to learn the sys-
tem, and then use it to solve programming problems. Children using the full-featured
HANDS system performed significantly better than their peers who used the reduced-
feature version. The HANDS users solved an average of 2.1 programming problems,
while the children using the limited version were able to solve an average of 0.1 prob-
lems (p<.05). This provides evidence that the three key features improve usability over
the typical set of features in programming systems. Additional details about this study
were reported by Pane and Myers (2002).

7.2. DISCUSSION

The ease with which these children were able to learn the system and use it to solve
tasks suggests that HANDS is a gentle slope system; or, at least its curve has a gentle
slope near the origin of the sophistication-difficulty chart (Figure 3.1). The system
has a broad range of capabilities. Adults have used it to create interactive games and
scientific simulations, as well as solutions to classical computer science problems such
as Towers of Hanoi and the computation of prime numbers. However, additional testing
is necessary to see how far the gentle slope persists, and, if there are any walls, where
and how high they are.

Although HANDS was designed for children, we expect that many of its features
are generally useful for end-user developers of all ages. This is because most of the
factors that drove the design of HANDS (see section 6) were general to beginners and
not specific to children. Anecdotally, several of the features of HANDS are attractive
to highly experienced programmers; however we have not gathered any empirical
evidence on whether this design is generally suitable for programmers across all levels
of experience.

HANDS was designed to support the domain of highly interactive graphical pro-
grams. HANDS is not well suited to problems outside this domain, such as word
processing, technical drawing, or web browsing. It is lacking domain-specific features
such as text layout support; and features of HANDS such as collision detection may

NATURAL PROGRAMMING LANGUAGES AND ENVIRONMENTS 47

have little use in these other domains. However, the natural programming design pro-
cess could be used to design other systems to support any of these domains. Since most
of the underlying computational features, such as queries and aggregate operations, are
not domain-specific, they are likely to be important features of these other systems as
well.

8. Current Work

Understanding of code and debugging are significant areas of difficulty for novices
(du Boulay, 1989), but somewhat surprisingly, there has been little advancement in
the tools to help with these problems. Even environments aimed at novices have few
facilities to help with debugging. For example, systems such as MacroMedia’s Director
and Flash, Microsoft’s Visual Basic, and general-purpose programming environments
like MetroWerks’ CodeWarrior and Microsoft’s Visual C++, all provide basically the
same debugging techniques that have been available for 60 years: breakpoints, print
statements and showing the values of variables. In contrast, the questions that pro-
grammers need to answer are at a much higher level. Our current work is investigating
what questions are the most natural for users to ask when they are trying to under-
stand and debug their code. Our initial user studies (Ko and Myers, 2003) have shown
that often, users are trying to find the answers to “why” and “why not” questions
such as:

� Why did the object become invisible?
� Why does nothing happen when I click on this button?
� What happened to my graphical object?
� Where did this value get set?

We are now developing new tools that will allow users to ask such questions directly
in the programming environment while debugging. We are conducting user studies to
evaluate to what extent the tools enable users to ask questions in a natural way, and
to determine what kinds of code and data visualizations will provide the most helpful
answers (Ko and Myers, 2004).

9. Conclusions

While making programming languages and environments more natural may be con-
troversial when aimed at professional programmers, it has significant importance for
end-user development. In addition to supplying new knowledge and tools directly, the
human-centered approach followed by the Natural Programming project provides a
methodology that can be followed by other developers and researchers when designing
their own languages and environments. We believe this will result in more usable and
effective tools that allow both end-users and professionals to write more useful and
correct programs.

48 JOHN F. PANE AND BRAD A. MYERS

Acknowledgments

This research has been funded in part by the National Science Foundation under grants
IRI-9900452 and IIS-0329090, and as part of the EUSES Consortium under grant ITR-
0325273. Any opinions, findings and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect those of the National
Science Foundation.

References

Anderson, J.R. and Jeffries, R. (1985). Novice LISP errors: Undetected losses of information from
working memory. Human–Computer Interaction, 1, 107–131.

Biermann, A.W., Ballard, B.W. and Sigmon, A.H. (1983). An experimental study of natural language
programming. International Journal of Man–Machine Studies, 18(1), 71–87.

Blackwell, A.F. (1996). Metacognitive theories of visual programming: What do we think we are
doing? In: Proceedings of the VL’96 IEEE Symposium on Visual Languages. Boulder, CO: IEEE
Computer Society Press, pp. 240–246.

Bonar, J. and Cunningham, R. (1988). Bridge: Tutoring the programming process. In: J. Psotka, L.D.
Massey and S.A. Mutter (eds.), Intelligent Tutoring Systems: Lessons Learned. Hillsdale, NJ:
Lawrence Erlbaum Associates, pp. 409–434.

Bonar, J. and Soloway, E. (1989). Preprogramming knowledge: A major source of misconceptions in
novice programmers. In E. Soloway and J.C. Spohrer (eds.), Studying the Novice Programmer.
Hillsdale, NJ: Lawrence Erlbaum Associates, pp. 325–353.

Davies, S.P. (1993). Externalising information during coding activities: Effects of expertise, envi-
ronment and task. In: C.R. Cook, J.C. Scholtz and J.C. Spohrer (eds.), Empirical Studies of
Programmers: Fifth Workshop. Palo Alto, CA: Ablex Publishing Corporation, pp. 42–61.

du Boulay, B. (1989). Some difficulties of learning to program. In E. Soloway and J.C. Spohrer (eds.),
Studying the Novice Programmer. Hillsdale, NJ: Lawrence Erlbaum Associates, pp. 283–299.

du Boulay, B., O’Shea, T. and Monk, J. (1989). The black box inside the glass box: Presenting
computing concepts to novices. In E. Soloway and J.C. Spohrer (eds.), Studying the Novice
Programmer. Hillsdale, NJ: Lawrence Erlbaum Associates, pp. 431–446.

Galotti, K.M. and Ganong, W.F. III. (1985). What non-programmers know about programming:
Natural language procedure specification. International Journal of Man-Machine Studies, 22,
1–10.

Green, T.R.G. and Petre, M. (1992). When visual programs are harder to read than textual programs.
In: G.C. van der Veer, M.J. Tauber, S. Bagnarola and M. Antavolits (eds.), Human–Computer
Interaction: Tasks and Organisation, Proceedings of ECCE-6 (6th European Conference on
Cognitive Ergonomics). Rome: CUD.

Green, T.R.G. and Petre, M. (1996). Usability analysis of visual programming environments: A
‘Cognitive Dimensions’ framework. Journal of Visual Languages and Computing, 7(2), 131–174.

Greene, S.L., Devlin, S.J., Cannata, P.E. and Gomez, L.M. (1990). No IFs, ANDs, or ORs: A study
of database querying. International Journal of Man–Machine Studies, 32(3), 303–326.

Hildreth, C. (1988). Intelligent interfaces and retrieval methods for subject search in bibliographic
retrieval systems. In Research, Education, Analysis and Design. Springfield, IL.

Hix, D. and Hartson, H.R. (1993). Developing User Interfaces: Ensuring Usability Through Product
and Process. New York, New York: John Wiley & Sons, Inc.

Hoc, J.-M. (1989). Do we really have conditional statements in our brains? In: E. Soloway and J.C.
Spohrer (eds.), Studying the Novice Programmer. Hillsdale, NJ: Lawrence Erlbaum Associates,
pp. 179–190.

NATURAL PROGRAMMING LANGUAGES AND ENVIRONMENTS 49

Hoc, J.-M. and Nguyen-Xuan, A. (1990). Language semantics, mental models and analogy. In J.-M.
Hoc, T.R.G. Green, R. Samurçay and D.J. Gilmore (eds.), Psychology of Programming. London:
Academic Press, pp. 139–156.

Hutchins, E.L., Hollan, J.D. and Norman, D.A. (1986). Direct manipulation interfaces. In D.A. Norman
and S.W. Draper (eds.), User Centered System Design: New Perspectives on Human–Computer
Interaction. Hillsdale, NJ: Lawrence Erlbaum Associates.

Ko, A.J. and Myers, B.A. (2003). Development and evaluation of a model of programming errors.
In: Proceedings of IEEE Symposia on Human-Centric Computing Languages and Environments.
Auckland, New Zealand. pp. 7–14.

Ko, A.J. and Myers, B.A. (2004). Designing the Whyline: A debugging interface for asking questions
about program behavior. In Proceedings of CHI 2004 Conference on Human Factors in Computing
Systems. Vienna, Austria: ACM Press, pp. 151–158.

MacLean, A., Carter, K., Lövstrand, L. and Moran, T.P. (1990). User-tailorable systems: Pressing the
issues with buttons. In J.C. Chew and J. Whiteside (eds.), Proceedings of CHI’90 Conference on
Human Factors in Computing Systems. Seattle, WA: ACM Press, pp. 175–182.

Mayer, R.E. (1989). The psychology of how novices learn computer programming. In E. Soloway
and J.C. Spohrer (eds.), Studying the Novice Programmer. Hillsdale, NJ: Lawrence Erlbaum
Associates, pp. 129–159.

McQuire, A. and Eastman, C.M. (1995). Ambiguity of negation in natural language queries. In Pro-
ceedings of the 18th Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval. Seattle, WA: ACM Press, p. 373.

Michard, A. (1982). Graphical presentation of Boolean expressions in a database query language:
Design notes and an ergonomic evaluation. Behaviour and Information Technology 1(3), 279–288.

Miller, L.A. (1974). Programming by non-programmers. International Journal of Man—Machine
Studies 6(2), 237–260.

Miller, L.A. (1981). Natural language programming: styles, strategies, and contrasts. IBM Systems
Journal 20(2), 184–215.

Mulholland, P. and Watt, S.N.K. (2000). Learning by building: A visual modelling language for
psychology students. Journal of Visual Languages and Computing 11(5), 481–504.

Myers, B.A. (1992). Demonstrational interfaces: A step beyond direct manipulation. IEEE Computer
25(8), 61–73.

Myers, B.A., Smith, D.C. and Horn, B. (1992). Report of the ‘End User Programming’ working group.
In Languages for Developing User Interfaces. Boston, MA: Jones and Bartlett.

Nielsen, J. (1993). Usability Engineering. Chestnut Hill, MA: AP Professional.
Nielsen, J. (1994). Heuristic evaluation. In J. Nielsen and R.L. Mack (eds.), Usability Inspection

Methods. New York: John Wiley & Sons, pp. 25–62.
Norman, D.A. (1986). Cognitive engineering. In D.A. Norman and S.W. Draper (eds.), User Centered

System Design: New Perspectives on Human–Computer Interaction. Hillsdale, NJ: Lawrence
Erlbaum Associates.

Pane, J.F. (2002). A Programming System for Children that is Designed for Usability. Ph.D. Thesis,
Carnegie Mellon University, Pittsburgh, PA.

Pane, J.F. and Myers, B.A. (2000). Tabular and textual methods for selecting objects from a group.
In Proceedings of VL 2000: IEEE International Symposium on Visual Languages. Seattle, WA:
IEEE Computer Society, pp. 157–164.

Pane, J.F. and Myers, B.A. (2002). The impact of human-centered features on the usability of a
programming system for children. In CHI 2002 Extended Abstracts: Conference on Human
Factors in Computing Systems. Minneapolis, MN: ACM Press, pp. 684–685.

Pane, J.F., Ratanamahatana, C.A. and Myers, B.A. (2001). Studying the language and structure in non-
programmers’ solutions to programming problems. International Journal of Human–Computer
Studies 54(2), 237–264.

50 JOHN F. PANE AND BRAD A. MYERS

Shneiderman, B. (1983). Direct manipulation: A step beyond programming languages. IEEE Com-
puter, 16(8), 57–69.

Smith, D.C., Cypher, A. and Schmucker, K. (1996). Making programming easier for children. Inter-
actions 3(5), 59–67.

Smith, D.C., Cypher, A. and Spohrer, J. (1994). KidSim: Programming agents without a programming
language. Communications of the ACM 37(7), 54–67.

Soloway, E., Bonar, J. and Ehrlich, K. (1989). Cognitive strategies and looping constructs: An empirical
study. In: E. Soloway and J.C. Spohrer (eds.), Studying the Novice Programmer. Hillsdale, NJ:
Lawrence Erlbaum Associates, pp. 191–207.

Stein, L.A. (1999). Challenging the computational metaphor: Implications for how we think. Cyber-
netics and Systems 30(6), 473–507.

Whitley, K.N. (1997). Visual programming languages and the empirical evidence for and against.
Journal of Visual Languages and Computing, 8(1), 109–142.

