
9
END-USER
DEVELOPMENT

Edited by
Henry Lieberman,
Fabio Paternò and
Volker Wulf

H U M A N - C O M P U T E R I N T E R A C T I O N S E R I E S

END-USER
DEVELOPMENT

Edited by
Henry Lieberman,
Fabio Paternò and
Volker Wulf

END USER DEVELOPMENT

HUMAN-COMPUTER INTERACTION SERIES

VOLUME 9

Editors-in-Chief

John Karat, IBM Thomas Watson Research Center (USA)

Jean Vanderdonckt, Université Catholique de Louvain (Belgium)

Editorial-Board

Gregory Abowd, Georgia Institute of Technology (USA)

Gaëlle Calvary, IIHM-CLIPS-IMAG (France)

John Carroll, School of Information Sciences & Technology, Penn State University (USA)

Gilbert Cockton, University of Sunderland (United Kingdom)

Mary Czerwinski, Microsoft Research (USA)

Steve Feiner, Columbia University (USA)

Elizabeth Furtado, University of Fortaleza (Brazil)

Kristiana Höök, SICS (Sweden)

Robert Jacob, Tufts University (USA)

Robin Jeffries, Sun Microsystems (USA)

Peter Johnson, University of Bath (United Kingdom)

Kumiyo Nakakoji, University of Tokyo (Japan)

Philippe Palanque, Université Paul Sabatier (France)

Oscar Pastor, University of Valencia (Spain)

Costin Pribeanu, National Institute for Research & Development

in Informatics (Romania)

Marilyn Salzman, Salzman Consulting (USA)

Chris Schmandt, Massachussetts Institute of Technology (USA)

Markus Stolze, IBM Zürich (Switzerland)

Gerd Szwillus, Universität Paderborn (Germany)

Manfred Tscheligi, Center for Usability Research and Engineering (Austria)

Gerrit van der Veer, Vrije Universiteit Amsterdam (The Netherlands)

Shumin Zhai, IBM Almaden Research Center (USA)

Fabio Paternò, ISTI-CNR (Italy)

End User Development

Edited by

Henry Lieberman

Fabio Paternò

and

Volker Wulf

ISBN-10 1-4020-4220-5 (HB)

ISBN-13 978-1-4020-4220-1 (HB)

Published by Springer,

P.O. Box 17, 3300 AA Dordrecht, The Netherlands.

Printed on acid-free paper

All Rights Reserved

No part of this work may be reproduced, stored in a retrieval system, or transmitted

in any form or by any means, electronic, mechanical, photocopying, microfilming, recording

or otherwise, without written permission from the Publisher, with the exception

of any material supplied specifically for the purpose of being entered

and executed on a computer system, for exclusive use by the purchaser of the work.

© 2006 Springer

A C.I.P. Catalogue record for this book is available from the Library of Congress.

www.springer.com

ISBN-13 978-1-4020-4221-8 (e-book)

ISBN-10 1-4020-4221-3 (e-book)

ISBN-13 978-1-4020-5309-2 (PB)

ISBN-10 1-4020-5309-6 (PB)

First edition 2006. Secont Printing

Contents

Preface vii
Acknowledgments xv

1. End-User Development: An Emerging Paradigm 1
Henry Lieberman, Fabio Paternó, Markus Klann and Volker Wulf

2. Psychological Issues in End User Programming 9
Alan F. Blackwell

3. More Natural Programming Languages and Environments 31
John F. Pane and Brad A. Myers

4. What Makes End-User Development Tick? 13 Design Guidelines 51
Alexander Repenning and Andri Ioannidou

5. An Integrated Software Engineering Approach for End-User
Programmers 87
Margaret Burnett, Gregg Rothermel and Curtis Cook

6. Component-based Approaches to Tailorable Systems 115
Markus Won, Oliver Stiemerling and Volker Wulf

7. Natural Development of Nomadic Interfaces Based
on Conceptual Descriptions 143
Silvia Berti, Fabio Paternò and Carmen Santoro

8. End User Development of Web Applications 161
Jochen Rode, Mary Beth Rosson and Manuel A. Pérez Quiñones

9. End-User Development: The Software Shaping Workshop Approach 183
Maria Francesca Costabile, Daniela Fogli, Pero Mussio and
Antonio Piccinno

10. Participatory Programming: Developing Programmable
Bioinformatics Tools for End-Users 207
Catherine Letondal

vi CONTENTS

11. Challenges for End-User Development in Intelligent Environments 243
Boris de Ruyter and Richard van de Sluis

12. Fuzzy Rewriting 251
Yasunori Harada and Richard Potter

13. Breaking it up: An Industrial Case Study of Component-Based
Tailorable Software Design 269
Gunnar Stevens, Gunter Quaisser and Markus Klann

14. End-User Development as Adaptive Maintenance 295
Yvonne Dittrich, Olle Lindeberg and Lars Lundberg

15. Supporting Collaborative Tailoring 315
Volkmar Pipek and Helge Kahler

16. EUD as Integration of Components Off-the-Shelf: The Role of
Software Professionals Knowledge Artifacts 347
Stefania Bandini and Carla Simone

17. Organizational View of End-User Development 371
Nikolay Mehandjiev, Alistair Sutcliffe and Darren Lee

18. A Semiotic Framing for End-User Development 401
Clarisse Sieckenius De Souza and Simone Diniz Junqueira
Barbosa

19. Meta-design: A Framework for the Future
of End-User Development 427
Gerhard Fischer and Elisa Giaccardi

20. Feasibility Studies for Programming in Natural Language 459
Henry Lieberman and Hugo Liu

21. Future Perspectives in End-User Development 475
Markus Klann, Fabio Paternò and Volker Wulf

Index 487

Preface

Imagine, for a moment, that you hired a new assistant to work for you. He came highly
recommended, and had a long and extensive resume of experience in the general area
of what you wanted him to work on. The first day on the job, however, you find out that
he is really set in his ways. If you want him to do something, you have to explain it
precisely in terms of what he did on his previous jobs. He does every task exactly the
same way he did in all his former positions. He doesn’t have any interest in learning
anything new. If he hadn’t performed exactly the same task before, he is simply unable
to do it. He can’t accept any criticism or feedback on his performance. How useful
would such an assistant be? I don’t know about you, but I certainly wouldn’t be happy
about his job performance.

It’s that way with almost all of today’s software. So-called “applications” software
for end-users comes with an impressive array of capabilities and features. But it is up
to you, the user, to figure out how to use each operation of the software to meet your
actual needs. You have to figure out how to cast what you want to do into the capabilities
that the software provides. You have to translate what you want to do into a sequence of
steps that the software already knows how to perform, if indeed that is at all possible.
Then, you have to perform these steps, one by one.

And what’s worse is, even if you succeed in doing this for a particular problem, it
doesn’t help you very much the next time you have a similar problem. You’ll have to go
through a similar sequence of steps again. Even if the system could combine or modify
capabilities it already has to perform a new task, you can’t do it. The best you can
hope for is that enough other people will have the same problem so that the software
company will include something to solve that problem in the next release. Why can’t
you extend the computer’s repertoire of capabilities yourself?

What is sad about the whole thing is that we could do much better. While end-
users often feel powerless in the face of inflexible and unforgiving software, that small
minority of people who learn software development techniques perceive the capabilities
of computers quite differently. To them, a computer is like the kind of helpful and eager
assistant who is always willing to take on new challenges. If you teach the computer
carefully, you can get it to put together things it already knows to be able to solve new
problems. If you don’t like what it does, you can always change it. If you want it to do
something slightly differently, a few changes to the program—its “job description”—
can get it done. For people who are knowledgeable enough, the process of software
development gives them the empowering feeling that they can do practically anything.
That’s what’s so seductive about computers to programmers. Problem is, the price of

viii PREFACE

entry—knowing the complex and arcane world of programming languages and tools—
is, today, very high. But we can bring that price down. That’s what this book is about.

Even if you don’t believe in the dream of Artificial Intelligence enough to think that
a computer could ever provide as much helpful assistance as a human assistant would,
the argument still stands. No prepackaged commercial software can ever fully meet
everyone’s needs. Even when computers help humans with very simple and boring
tasks, flexibility is still needed to deal with changing contexts. Details change from
one job to the next, managers or customers are always asking for small changes in
specifications, unforeseen situations occur. What we would like to achieve is the ability
for end-users to construct or modify existing software themselves without “waiting for
the next release”.

AI holds out the promise of the ability to do some learning, adaptation and advice-
taking at run time. Those capabilities would certainly be useful in enabling end-users to
develop software, if indeed they are possible. But even if the end-users have to specify
everything themselves without explicit help from the system, we hope to convince you
that even the most simple capability for application programs to modify and extend
their own behaviour from interaction with end-users could have an enormous impact
on the usefulness of computers.

The vanguard target audience for End-User Development consists of two distinct
communities of users. Interestingly, they fall at opposite ends of the spectrum of so-
phistication of computer use.

The first are beginning users. Today, beginning users start by learning how to use
application software such as text editors, spreadsheets, browsers, etc. But if they want
to do something even slightly different than what the software provides, they’re stuck.
Because their needs are casual, and they can’t spend much money, companies are not
motivated to provide specialized application software to do particular things that a
beginning user might want to do. So they would well appreciate easy-to-use systems
that allowed them to make or modify there own software. Some ideas that would
make it possible for beginning users to write software without learning conventional
programming languages, including visual programming languages, scripting languages
and Programming by Example.

Some of these are discussed in this book. Some beginners will also eventually want
to learn how to program as professional programmers do. But it is generally too difficult
to begin to learn a conventional programming language such as C++ or Java, directly.
So, ideas like visual programming languages or Programming by Example can be used
as teaching tools. The beginner can first come to understand the fundamental concepts
of programming, such as variables, functions, loops and conditionals and only later (if
ever) deal with the messy details of programming languages and compilers.

The second group that is a major constituency for End-User development is profes-
sionals in diverse areas outside of computer science, such as engineering, medicine,
graphic design, business and more, who are not professional programmers. These people
need to get specific jobs done in their fields that might benefit by computer automation,
but that are not common enough to warrant commercial development of applications

PREFACE ix

just for that purpose. An accountant needs to specialize a bookkeeping program to the
idiosyncracies of a particular business. A physicist needs to make a specialized data
collection program for a particular experiment. These users are very sophisticated in
the fields of their expertise, but have little time or interest in learning a programming
language or software engineering methodology.

The papers in this book span a wide variety of conceptual issues, technical topics,
applications areas and experience. First, we begin with some introductory papers that
survey the area, provide background and a taste of what is to come. Next, there are
some contributions which draw on inspiration from the field of Software Engineering,
which has long studied issues relating to the software life-cycle. These chapters try to
present novel methods for EUD exploiting and enriching some concepts from Software
Engineering. The following section shows some systems where End-User Development
has been specialized to particular application areas or reports on some industrial case
studies. The diverse application areas give an indication of the broad usefulness of
End-User Development, and show the importance of user context.

To start off the introductory section, Alan Blackwell gives us the cognitive science,
psychological and philosophical perspective in his “Psychological Issues in End-User
Programming”. His paper gives us insight into what is known about how people ap-
proach the cognitive skill of programming. He reviews the psychological impact of
several popular End-User Development systems. And he provides us with a window
onto the rich interdisciplinary literature relevant to this topic.

John Pane and Brad Myers, in “More Natural Programming Languages and En-
vironments”, continue on the theme of using studies of people to inspire End-User
Development systems. Their approach of Natural Programming begins by studying
how non-programming users describe a programming task, and analysing the results
for what kinds of conceptual constructs are used. Only then do they design an End-User
Development environment, HANDS, that embodies some of the principles discovered
in the user studies.

Alexander Repenning and Andri Ioannidou, in “What Makes End-User Develop-
ment Tick”, deliver a set of guidelines for End-User Development environments born
out of their vast experience with the AgentSheets environment. The article balances
conceptual guidelines with concrete illustrations of applications built by users with this
system, illustrating the principles. This report from the trenches of End-User Develop-
ment gives a candid look at the promise and pitfalls of the field.

The next set of articles describes Software Engineering-based approaches and meth-
ods for EUD. Margaret Burnett, Gregg Rothermel and Curtis Cook’s “An Integrated
Software Engineering Approach for End-User Programmers” show us why End-User
Development is about more than just programming. Their work takes place in that most
common of End-User Development environments, the spreadsheet. Spreadsheets’ suc-
cess in giving end-users the ability to do programming with cell formulas shows that
they must be doing something right, and Burnett’s group gives us a full-blown End-
User Programming environment based on the spreadsheet paradigm. They focus on
providing testing and debugging facilities that draw users’ attention to likely problems.

x PREFACE

Their innovative “Help Me Test” feature provides mixed-initiative heuristic help from
the system in an unobtrusive way.

In “Component-based Approaches to Tailorable Systems” by Markus Won, Oliver
Stiemerling and Volker Wulf, they use the idea of plug-and-play “component” soft-
ware modules to achieve End-User Development. The FreEvolve platform allows to
(re-)assemble components at runtime. A graphical component diagram editor lets end-
users visually connect components, allowing users to customize and develop new ap-
plications without going directly to code. The paper gives an account on a long term
research effort presenting experiences with different types of graphical editors as well
as features which support users in connecting components appropriately.

Silvia Berti, Fabio Paterno and Carmen Santoro, in “Using Conceptual Descriptions
to Achieve Natural Development of Nomadic Applications” show an End-User De-
velopment environment oriented to the currently hot topic of “nomadic” applications,
those that are accessible through a variety of devices, including wireless devices, that
are distributed geographically. Often, the problem in developing such applications is
to make it so that they will work under a wide variety of user contexts. Applications
may run on different platforms, with different interfaces, possibly restricted by small
screens and different input methods.

In “End User Development of Web Applications”, Jochen Rode, Mary Beth Rosson
and Manuel A. Pérez Quiñones provide us with a reality check on the activities and
needs of present-day Web developers. Since the Web is such an important platform,
it is instructive to see such a careful survey of what today’s Webmasters actually
do and how End-User Development might fit into today’s Web engineering environ-
ments. Beyond particular Web technologies, there is focus here on the mental models
adopted by both professional developers and non-professional users for Web applica-
tions, and understanding how End-User Development might support and extend those
models.

Costabile, Fogli, Mussio and Piccinno present an environment that allows domain-
experts to modify their applications for their needs in “End-User Development: The
Software Shaping Workshop Approach”, by analogy to the workshops used by artisans
and craftsmen. They illustrate their approach by an analysis of problem solving in a
medical domain, looking at the communication between a radiologist and a pneumol-
ogist (lung specialist) cooperating in a diagnostic task.

While there are a number of projects that aim at general-purpose End-User Devel-
opment, sometimes one way to make a more effective development tool is to specialize
the environment to a particular application area or category of users. In the next section,
we explore some End-User Development environments that have been constructed with
specific application users in mind, and provide facilities that have been thoughtfully
customized to the needs of that class of users. We also report on some interesting
industrial case studies.

Catherine Letondal, in “Participatory Programming: Developing Programmable
Bioinformatics Tools for End-Users”, uses a participatory design philosophy to under-
stand the needs of biologists. She presents a discussion of the issue of when programma-
bility is needed and what kind of programmability is best for professional scientists in

PREFACE xi

fields other than computer science. She then proposes the Biok environment, which pro-
vides some End-User Programming in a gene sequencing application. This application
is basically a pattern-matching task that requires programmability for semi-repetitive
tasks. Her biologist users can be considered typical of a wide range of scientific users
in areas other than computer science. She shows how providing a vocabulary and op-
erations well-suited to the users’ tasks facilitates their problem-solving ability.

The computer revolution is now filtering down from personal computers to consumer
electronics and appliances, and Boris de Ruyter and Richard van de Sluis give us, in
“Challenges for End-User Development in Intelligent Environments”, some prelimi-
nary thoughts on how End-User Development might impact the world of consumer
electronics. It holds the promise of liberating us from an unruly tangle of buttons,
switches, modes, flashing lights and complex remote controls as consumer electronics
increases in sophistication.

Yasunori Harada and Richard Potter offer us a particularly innovative EUD approach
to interactive graphic applications such as games, based on “Fuzzy Rewriting”. Systems
like Alex Repenning’s Agentsheets and Allen Cypher and David C. Smith’s Stagecast
Creator have showed that even young children can effectively use a Programming by
Example system based on rewriting rules. But insisting on exact matching of rule
conditions puts a damper on the generality of such systems. Harada and Potter show
how relaxed matching conditions can get these kinds of systems “out of the box” and
dramatically extend the scope of applications possible with them.

Stevens, Quaisser and Klann apply the component-based approach in an industrial
case study. While realizing a highly tailorable access control module by means of the
FreEvolve platform, the authors had to break the application down into components
which could be understood and manipulated by end-users. The paper demonstrates,
how such a modularization can be obtained by using ethnographic methods and design
metaphors. The ethnographic study helps to capture tailoring needs within the appli-
cation context while the selection of the design metaphor helps to define components
which are meaningful for ordinary users.

Yvonne Dittrich, Lars Lundberg and Olle Lindeberg’s article, “End-User Develop-
ment as Adaptive Maintenance”, reflects the reality that what seems to be small, routine
maintenance changes sometimes escalate to the point that they really become develop-
ment of a new application. Rather than bemoan the lack of clear separation between
maintenance and tailoring of applications, they look for new ways to take advantage of
it, including an innovative use of the meta-object protocol in object-oriented languages.

End-User Development at the workplace has its particular organizational and social
aspects. The activity to “tailor” an application to fit the diverse and changing use situ-
ations has been addressed in its effects on software architecture as well as application
interfaces. Volkmar Pipek and Helge Kahler turn toward the collaborative aspects that
can be encountered in practice, and give an overview on different approaches for “Sup-
porting Collaborative Tailoring”. Two studies with prototypes supporting collaboration
in End-User Development activities at the workplace are described in more detail, and
open-up a perspective on “appropriation support” as a category of functionality that
aims at visualizing and sharing use cultures among end-users.

xii PREFACE

Stefania Bandini and Carla Simone deal with collaborative EUD from the angle of
component-based software development. In an empirical case study the authors ex-
plore the cooperation in a company which develops software by means of component
technology. Different types of artifacts are used as boundary objects to represent or-
ganizational knowledge about software components. These artifacts help actors who
do not have experience in programming to understand the qualities of given sets of
components. Based on the findings of the case study, Bandini and Simone discuss how
similar artifacts could help cooperative EUD which is understood here as a creative
discovery and integration of off-the-shelf components.

The perception of End-User Development in organizations today is also the subject of
Darren Lee, Nikolay Mehandijev and Alistair Sutcliffe’s article, “Organisational View
of End-User Development”. They present a detailed survey of management viewpoints
on the issue. Though as End-User Development systems are evolving, these perceptions
are likely to change rapidly, their paper gives a here-and-now look at what private and
public organizations are thinking. They treat the issues of motivation to adopt it, control,
and risk issues. The article is likely to be useful for managers considering adopting End-
User Development, as well as for innovators seeking to understand the adoption path
for new technology.

The final section takes us to a set of more reflective and speculative articles, pointing
the way to future directions in the field. Sometimes, interdisciplinary progress can
come from synergy with another academic field that, at first, is seemingly unrelated.
Clarisse Sieckenius de Souza and Simone Barbosa, in “A Semiotic Framing of End-
User Development”, take us on a journey to the field of semiotics, the study of the
meaning of symbols.

Gerhard Fischer and Elisa Giaccardi present their manifesto, “Meta-Design: A
Framework for the Future of End User Development”. They see End-User Development
as another species of design, where the artifacts being designed are themselves inter-
faces for designing—hence, meta-design. They urge us to apply many known principles
of good design, both in the human and machine ends of the equation.

Henry Lieberman and Hugo Liu, in “Feasibility Studies for Programming in Natural
Language”, chase the Holy Grail of using natural language itself as a programming
interface, reducing dependence on error-prone formal programming languages as a
medium for human–machine interaction. While they don’t claim to have reached the
point where we can simply talk to a computer, they do present some feasibility studies
based on John Pane and Brad Myers’ Natural Programming experiments, where they
asked non-programming users to describe programming tasks. Lieberman and Liu aim
to show that, perhaps, this dream might not be so crazy, after all.

And to conclude, Markus Klann, Fabio Paterno and Volker Wulf in “Future Perspec-
tives in End-User Development”, outline some of the most promising areas for future
research. They develop a roadmap on how to proceed.

By presenting overviews, specific applications areas, implemented systems, indus-
trial experience, conceptual frameworks and exciting new directions, we hope to con-
vince you, the reader, that End-User Development is an idea whose time has come. We

PREFACE xiii

hope to see the day where a computer isn’t just a set of pre-packaged applications, but
a set of capabilities, to be shaped according to the users’ own needs and desires.

One of the major contributions of this book is bringing together people interested in
End-User Development from Artificial Intelligence, Software Engineering and other
perspectives. The field of Software Engineering has traditionally been hostile to working
on systems that make programming easy to use for beginners and non-programming pro-
fessionals. The focus of traditional software engineering is industrial software projects
involving large teams of programmers and analysts where the primary concerns are
reliability and efficiency. In those systems, you don’t want make it too easy for in-
dividuals to introduce risky changes, so they mandate precise software development
processes involving many reviews and verifications. But this is beginning to change, as
the need for more flexibility in software debugging and software evolution is felt, even
in traditional industrial settings. Conversely, even beginners can benefit by using some
more structured software design, modification and testing approaches that are inspired
by software engineering.

The word “developer” is a strange word to use for someone who writes software.
Dividing people arbitrarily into “users” and “developers” is an artificial distinction that
should be eliminated. We all develop, mentally and spiritually, each in our own way,
every day. Let’s get our computers to help us do it.

Acknowledgments

This book is the result of a discussion process among leading international research
groups over a period of meanwhile more than three years. In 2002 the Commis-
sion of the European Union funded a Network of Excellence on End-User Develop-
ment (EUD-NET). While strengthening the European research community and linking
academia with industries, EUD-NET attracted leading US research groups to share
their results and visions. Results of this discourse were presented at the International
Symposium on End-User Development which took place in October 2003 in Schloss
Birlinghoven.

The book documents results of the international discourse initiated by EUD-NET.
It started from the presentation given at the International Symposium on End-User
Development. Further contributions were solicited from leading research groups who
did not participate in the event. The papers in this book underwent a thorough re-
view process organized by the editors and the publisher. As a result of this process
a considerable amount of submissions were finally rejected. So, the book presents
a high quality collection of papers framing the emergent research field of End-User
Development.

The book is the result of a collective effort. While we organized parts of the re-
viewing among the authors, we are particularly grateful to the external reviewers
Sascha Alda, Gregor Engels, Andreas Lorenz, Anders Morch, Reinhard Oppermann,
Philippe Palanque, Stefan Sauer and Andreas Zimmermann. Moreover, we would
like to thank two anonymous reviewers who were commissioned by the publisher
to review the manuscript additionally. Their input helped us to select and focus the
contributions.

As already mentioned the Commission of the EU took a considerable stake in fund-
ing EUD-NET and stimulating research activities. We are indebted to Franco Ac-
cordino, Michel Lacroix and Jesus Villasante. Further support came from major Eu-
ropean industries. We would like to mention particularly Jörg Beringer, SAP, Waldorf
and Roman Englert, Deutsche Telekom, Berlin. Henry Lieberman acknowledges sup-
port from the more than 70 corporate and government sponsors of the MIT Media
Laboratory.

An editorial process which takes such a long period of time needs support from
the side of the publisher. F. Robbert van Berckelaer provided this support gener-
ously. He immediately grasped the importance of this emergent research field and
encouraged us when doubts were on the rise. Finally, we would like to acknowl-
edge those who worked at times even harder than us to bring this manuscript into

xvi ACKNOWLEDGMENTS

its final shape. Andrea Bernards and Marion Kielmann did a thorough language
check on most of the contributions. Daniel Breitscheidel spent a lot of time and ef-
fort on aligning the format of the different contributions. Thanks to Mary Heckbert
for helping in editing. We would also like to thank Walter Lieberman for the cover
artwork.

Cambridge, Pisa and Siegen
February 2005

Chapter 1

End-User Development: An Emerging Paradigm

HENRY LIEBERMAN1, FABIO PATERNÓ2, MARKUS KLANN3

and VOLKER WULF4

1MIT, 20 Armes Street 305, Cambridge, Massachussets, 02139 USA, lieber@media.mit.edu
2ISTI—CNR, Via G. Moruzzi 1, 56124 Pisa, Italy, fabio.paterno@isti.cnr.it
3Fraunhofer FIT, Schloß Birlinghoven, 53754 Sankt Augustin, Germany,
markus.klann@fit.fraunhofer.de
4University of Siegen, Hölderlinstr. 3, 57068 Siegen and Fraunhofer FIT, Schloß
Birlinghoven, 53754 Sankt Augustin, Germany, volker.wulf@uni-siegen.de

Abstract. We think that over the next few years, the goal of interactive systems and services will
evolve from just making systems easy to use (even though that goal has not yet been completely
achieved) to making systems that are easy to develop by end users. By now, most people have become
familiar with the basic functionality and interfaces of computers, but they are not able to manage
any programming language. Therefore, they cannot develop new applications or modify current ones
according to their needs.

In order to address such challenges it is necessary a new paradigm, based on a multidisciplinary
approach involving several types of expertise, such as software engineering, human-computer inter-
action, CSCW, which are now rather fragmented and with little interaction. The resulting methods and
tools can provide results useful across many application domains, such as ERP, multi-device services
(accessible through both mobile and stationary devices), and professional applications.

Key words. tailorability, end user programming, flexibility, usability

We think that over the next few years, the goal of human–computer interaction (HCI)
will evolve from just making systems easy to use (even though that goal has not yet
been completely achieved) to making systems that are easy to develop. By now, most
people have become familiar with the basic functionality and interfaces of computers.
However, developing new or modified applications that effectively support users’ goals
still requires considerable expertise in programming that cannot be expected from
most people. Thus, one fundamental challenge for the coming years is to develop
environments that allow users who do not have background in programming to develop
or modify their own applications, with the ultimate aim of empowering people to flexibly
employ advanced information and communication technologies.

Current trends in professional life, education, and also in leisure time are char-
acterized by increasing change and diversity: changing work and business practices,
individual qualifications and preferences, or changes in the dynamic environments in
which organizations and individuals act. The diversity concerns people with different
skills, knowledge, cultural background, and cognitive or physiological abilities, as well

Henry Lieberman et al. (eds.), End User Development, 1–8.
C© 2006 Springer.

2 HENRY LIEBERMAN ET AL.

as diversity related to different tasks, contexts, and areas of work. Enhancing user par-
ticipation in the initial design of systems is part of the solution. However, given that user
requirements are diversified, changing, and at times hard to identify precisely, going
through conventional development cycles with software professionals to keep up with
evolving contexts would be too slow, time consuming, and expensive. Thus, flexibility
really means that the users themselves should be able to continuously adapt the systems
to their needs. End-users are generally neither skilled nor interested in adapting their
systems at the same level as software professionals. However, it is very desirable to
empower users to adapt systems at a level of complexity that is appropriate to their
individual skills and situations. This is the main goal of EUD: empowering end-users
to develop and adapt systems themselves. Some existing research partially addresses
this issue, advocating casting users as the initiators of a fast, inexpensive, and tight co-
evolution with the systems they are using (Arondi et al., 2002; Mørch, 2002; Wulf, 1999;
see also the “Agile Programming” techniques of Beck, 1999 and Cockburn, 2002).

This insight, which developed in various fields of software engineering (SE) and HCI,
has now become focused in the new research topic of end-user development (EUD). To
enable systems for EUD, they must be made considerably more flexible and they must
support the demanding task of EUD: they must be easy to understand, to learn, to use,
and to teach. Also, users should find it easy to test and assess their EUD activities.

Though there are diverse views on what constitutes EUD, we attempt below to give
a working definition of it:

EUD can be defined as a set of methods, techniques, and tools that allow users
of software systems, who are acting as non-professional software developers, at some
point to create, modify, or extend a software artifact.

Today, some forms of EUD have found widespread use in commercial software
with some success: recording macros in word processors, setting up spreadsheets for
calculations, and defining e-mail filters. While these applications only realize a fraction
of EUD’s potential and still suffer from many flaws, they illustrate why empowering
end-users to develop the systems they are using is an important contribution to letting
them become active citizens of the Information Society.

Boehm et al. (2000) predicted exponential growth of the number of end-user devel-
opers compared to the number of software professionals, underscoring the importance
of research in EUD. The potential to provide EUD services over the Internet may create
a shift from the conventional few-to-many distribution model of software to a many-
to-many distribution model. EUD could lead to a considerable competitive advantage
in adapting to dynamically changing (economic) environments by empowering end-
users—in particular domain experts (Costabile et al., 2003)—to perform EUD. The
increasing amount of software embedded within consumer and professional products
also points to a need to promote EUD to enable effective use of these products.

On the political level EUD is important for full participation of citizens in the
emerging Information Society. The Information Society is characterized by computer
networks, which will becoming the leading media, integrating other traditional media
within digital networks and enabling access through a variety of interaction devices
ranging from small mobile phones to large flat screens. However, the creation of content

END-USER DEVELOPMENT 3

and the modification of the functionality of this network infrastructure are difficult for
non-professional programmers, resulting for many sectors of society in a division of
labor between those who produce and those who consume. EUD has the potential to
counterbalance these effects.

The emerging research field of EUD integrates different threads of discussion from
HCI, SE, computer supported cooperative work (CSCW), and artificial intelligence
(AI). Concepts such as tailorability, configurability, end-user programming, usability,
visual programming, natural programming, and programming by example already form
a fruitful base, but they need to be better integrated, and the synergy between them more
fully exploited.

We can identify two types of end-user activities from a user-centered design per-
spective:

1. Parameterization or customization. Activities that allow users to choose among
alternative behaviors (or presentations or interaction mechanisms) already available
in the application. Adaptive systems are those where the customization happens
automatically by the system in reaction to observation the user’s behavior.

2. Program creation and modification. Activities that imply some modification, aim-
ing at creating from scratch or modifying an existing software artifact. Examples
of these approaches are: programming by example (also called programming by
demonstration), visual programming, macros, and scripting languages.

EUD more properly involves the second set of activities since with the first set the
modification of software is restricted to strictly predefined options or formats. However,
we often want to design for a “gentle slope” of increasing complexity to allow users
to easily move up from the first to the second set of activities. Examples of activities
belonging to the first type are:

Parameterization. In this commonly occurring case, the user wishes to guide a com-
puter program by indicating how to handle several parts of the data in a different
way; the difference may simply lie in associating specific computation parameters
to specific parts of the data, or in applying different program functionalities to the
data.

Annotation. The users write comments next to data and results in order to remember
what they did, how they obtained their results, and how they could reproduce them.

Examples of activities belonging to the second type are:

Programming by example. Users provide example interactions and the system infers
a routine from them (Lieberman, 2001).

Incremental programming. This is close to traditional programming, but limited to
changing a small part of a program, such as a method in a class. It is easier than
programming from scratch.

Model-based development. The user just provides a conceptual description of the
intended activity to be supported and the system generates the corresponding
interactive application (Paternò, 2001).

4 HENRY LIEBERMAN ET AL.

Extended annotation or parameterization. A new functionality is associated with the
annotated data or in a cooperative environment users identify a new functionality
by selecting from a set of modifications other people have carried out and stored
in shared repositories.

To start looking at EUD research, let us distinguish between research on end-user
participation during the initial design phase and research on end-user modification
during usage. As EUD implies that design can extend beyond an initial, dedicated
design phase, this is not really a sharp distinction.

Providing support during a dedicated design phase aims at better capturing and sat-
isfying user requirements. Research in this area seeks to develop domain-specific, pos-
sibly graphical modeling languages that enable users to easily express the desired func-
tionality (cf. Mehandjiev and Bottaci, 1996; Paternò et al., 1994; Repenning et al., 2000).
Such modeling languages are considered an important means of bridging the “com-
munication gap” between the technical view of software professionals and the domain
expert view of end-users (Majhew, 1992; Paternò, 2001). In particular, work is being
done on using the extension mechanisms of the unified modeling language (UML), a set
of graphical representations for modeling all aspects of software systems, to create a rep-
resentational format for end-users. Another complementary approach to bringing these
two views closer together is the use of scenarios in development as a communicative aid.

As noted above, an initial design tends to become outdated or insufficient fairly
quickly because of changing requirements. Challenging the conventional view of
“design-before-use,” new approaches try to establish “design-during-use” (Dittrich
et al., 2002; Mehandjiev and Bottaci, 1996), leading to a process that can be termed
“evolutionary application development.” System changes during use might be brought
about by either explicit end-user requests or automatically initiated state transitions of
the system. In the first case, the system is called adaptable, whereas in the second,
adaptive (Oppermann and Simm, 1994).

Such a scenario raises the need for system flexibility that allows for modifications
that go well beyond simple parameterizations, while being substantially easier than
(re)programming. More precisely, a system should offer a range of different modifica-
tion levels with increasing complexity and power of expression. This is to ensure that
users can make small changes simply, while more complicated ones will only involve a
proportional increase in complexity. This property of avoiding big jumps in complexity
to attain a reasonable trade-off is what is called the “gentle slope” (Dertouzos, 1997;
MacLean et al., 1990; Wulf and Golombek, 2001). As an example, a system might
offer three levels of complexity: First, the user can set parameters and make selections.
Second, the user might compose existing components. Third, the user can extend the
system by programming new components (Henderson and Kyng, 1991; Mørch, 1997;
Stiemerling, 2000). Modular approaches can generally provide a gentle slope for a
range of complexity by allowing successive decomposition and reconfiguration of soft-
ware entities that are themselves build up from smaller components (e.g., Won et al., in
this volume). The precondition for this is that a system’s component structure has been

END-USER DEVELOPMENT 5

designed to be meaningful for its users, and that these users are able to easily translate
changes in the application domain into corresponding changes in the component
structure.

While adaptivity alone does not constitute EUD because the initiative of modifica-
tions is with the system, it is interesting to combine it with end-user driven activities.
Users may want to stay in control of how systems adapt themselves and might have to
supply additional information or take certain decisions to support system adaptivity.
Conversely, the system might try to preselect the pertinent EUD options for a given
context or choose an appropriate level of EUD for the current user and task at hand,
thus enhancing EUD through adaptivity. Mixed forms of interactions where adaptive
systems can support interaction but users can still take the initiative in the development
process may provide interesting results, as well.

How do we make functionality for adaptation available at the user interface? First,
adaptation should be unobtrusive, so as not to distract user attention from the primary
task. At the same time, the cognitive load of switching from using to adapting should
be as low as possible. There seems to be a consensus that adaptation should be made
available as an extension to the existing user interface. A related issue is how to make
users aware of existing EUD functions and how to make these functions easily accessible
(e.g., Wulf and Golombek, 2001).

Another key research area deals with cooperative EUD activities, having its roots in
research on CSCW. It investigates topics such as collaborative development by groups
of end-users (Letondal, 2001; Mørch and Mehandjiev, 2000), privacy issues, and repos-
itories for sharing artifacts among end-users (Kahler 2001; Wulf 1999). This research
also includes recommending and awareness mechanisms for finding suitable EUD ex-
pertise as well as reusable artifacts. We should foster the building of communities where
end-users can effectively share their EUD-related knowledge and artifacts with their
peers (Costabile et al., 2002; Pipek and Kahler, in this volume).

Flexible software architectures are a prerequisite for enabling adaptivity. Approaches
range from simple parameters, rules, and constraints to changeable descriptions of
system behavior (meta-data) and component-based architectures (Won et al., in this
volume). A key property of an EUD-friendly architecture is to allow for substantive
changes during run-time, without having to stop and restart or rebuild the system.

Enabling end-users to substantially alter systems creates a number of obvious is-
sues concerning correctness and consistency, security, and privacy. One approach to
handling these issues is to let the system monitor and maintain a set of desired system
properties during EUD activities. For example, properties like integrity and consistency
can be maintained by only allowing safe operations. Nonetheless, user errors and in-
completeness of information cannot be ruled out altogether (Lieberman, 2001). Users
may often be able to supply missing information or correct errors if properly notified.
For this reason, it may be best to adopt a mixed-initiative approach to dealing with
errors (Horvitz, 1999).

Finally, another approach to improving EUD is to create languages that are more
suited to non-programmers and to specifying requirements than are conventional

6 HENRY LIEBERMAN ET AL.

programming languages. In particular, domain-specific and graphical languages are
being investigated (e.g., Paternò et al., 1994).

At the center of EUD are the users and their requirements (Stiemerling et al., 1997).
The increasing change and diversity engendered by networked mobile and embedded
devices will enable access to interactive services anywhere and anytime in diverse con-
texts of use. Therefore, EUD environments should support easy generation of interfaces
able to adapt the device’s features (e.g., Berti et al., in this volume). Also, systems are
used by diverse groups of people, with varying levels of expertise, current tasks, and
other factors. Systems should be able to adapt to the changing contexts and requirements
under the user’s control and understanding.

EUD is a socio-cultural activity, depending on place, time, and people involved.
Differences in EUD practice are likely to develop for different cultures and languages.
Obviously, this is of particular importance for cross-cultural collaboration. Another area
where such differences are likely to show up is EUD of groupware systems, whether
this EUD is done cooperatively or not. These differences may relate to who is in control
of EUD activities, to the relation between individual and collaborative EUD, and to
how communities of end-user developers are organized.

Embedding systems into heterogeneous environments cannot be completely
achieved before use, by determining the requirements once and deriving an appro-
priate design. Rather, adaptation must continue as an iterative process by the hands
of the users, blurring the border between use and design. A given system design em-
bodies a certain semiotic model (Lehman, 1980) of the context of use, and that EUD
allows users to adapt this model to reflect their natural evolution. Furthermore, using
a system changes the users themselves, and as they change they will use the system
in new ways (Carroll and Rosson, 1992; Pipek and Wulf, 1999). Systems must be
designed so that they can accommodate user needs that cannot be anticipated in the re-
quirement phase, especially those that arise because of user evolution (Costabile et al.,
2003).

Being a relatively young field, EUD is yet rather diversified in terms of terminology,
approaches, and subject areas. Networking within the EUD-community has started
only relatively recently (Sutcliffe and Mehandjiev, 2004). One such effort was the EU-
funded Network of Excellence EUD-Net,1 bringing together leading EUD researchers
and industry players from Europe. Later on, the US National Science Foundation funded
end-user software engineering systems (EUSES), investigating whether it is possible
to bring the benefits of rigorous SE methodologies to end-users. It is generally felt that
there is a strong need for thorough empirical investigations of new EUD-approaches in
real-world projects, both to solidify the theoretical groundings of EUD, and to develop
more appropriate methods and tools for deploying and using EUD-systems. Further
research initiatives are on the way in the 7th Framework Program of the EU as well as
by single European states such as Germany.

The present book is an effort to make many important aspects of the international
EUD discussion available to a broader audience. A first set of papers resulted from

1 For more information on EUD-Net see http://giove.isti.cnr.it/eud-net.htm.

END-USER DEVELOPMENT 7

two EUD-Net events: a research workshop held in September 2002 at ISTI-CNR in
Pisa, Italy, and the International Symposium on EUD held in October 2003 in Schloss
Birlinghoven, Germany. Beyond these contributions, we invited some papers from other
leading researchers in the field. We hope that this broad look at the emerging paradigm
of EUD leads you to appreciate its diversity and potential for the future. And we look
forward to having you, the reader, the “end-user” of this book, contribute what you can
to the field, whether it is working on a system for EUD, or simply achieving a better
understanding of how EUD might fit into your work and your life.

References

Arondi, S., Baroni, P., Fogli, D. and Mussio, P. (2002). Supporting Co-evolution of Users and Systems
by the Recognition of Interaction Patterns. Trento, Italy: AVI.

Beck, B. (1999). Extreme Programming Explained: Embrace Change. Reading, MA: Addison-Wesley.
Berti, S., Paternó, F. and Santoro, C. Natural Development of Nomadic Interfaces Based on Conceptual

Descriptions, in this volume.
Boehm, B.W., Abts, C., Brown, A., Chulani, S., Clark, B., Horowitz, E., Modochy, R., Reifer, D. and

Steece, B. (2000). Software Cost Estimation with COCOMO II. Upper Saddle River, NJ: Prentice
Hall PTR.

Carroll, J.M. and Rosson M.B. (1992). Getting around the task-artifact cycle: How to make claims
and design by Scenario. ACM Transactions on Information Systems 10(2), 181–212.

Cockburn, A. (2002). Agile Software Development. Reading, MA: Addison Wesley.
Costabile, M.F., Fogli, D., Fresta, G., Mussio, P. and Piccinno, A. (2002). Computer Environments for

Improving End-User Accessibility. ERCIM Workshop “User Interfaces For All”, Paris.
Costabile, M.F., Fogli, D., Fresta, G., Mussio, P. and Piccinno, A. (2003). Building environments for

end-user development and tailoring. In: IEEE Symposia on Human Centric Computing Languages
and Environments, Aukland.

Dertouzos, M. (1997). What Will Be: How the New World of Information Will Change Our Lives. New
York: Harper-Collins.

Dittrich, Y., Eriksén, S. and Hansson, C. (2002). PD in the Wild: Evolving Practices of Design in Use.
Malmö, Sweden: PDC.

Henderson, A. and Kyng M. (1991). There’s No Place Like Home. Continuing Design in Use. Design
at Work, Hillsdale, NJ: Lawrence Erlbaum Assoc. pp. 219–240.

Horvitz, E. (1999). Principles of mixed-initiative user interfaces. In Proceedings ACM CHI 1999,
ACM Press, pp.159–166.

Kahler, H. (2001). Supporting Collaborative Tailoring. Ph.D.-Thesis. Roskilde University, Denmark,
Roskilde.

Lehman, M. (1980). Programs, life cycles, and laws of software evolution. IEEE 68.
Letondal, C. (2001). Programmation et interaction. Orsay: Université de Paris XI.
Lieberman, H. (2001). Your Wish is My Command: Programming by Example. San Francisco: Morgan

Kaufmann.
MacLean, A., Carter, K., Lövstrand, L. and Moran, T. (1990). User-tailorable systems: Pressing the

issue with buttons. In: Proceedings of the Conference on Computer Human Interaction (CHI ’90),
April 1–5, 1990. Seattle, Washington. New York: ACM-Press, pp. 175–182.

Majhew, D.J. (1992). Principles and Guideline in Software User Interface Design. New York: Prentice
Hall.

Mehandjiev, N. and Bottaci, L. (1996). User-enhanceability for organizational information systems
through visual programming. In: Advanced Information Systems Engineering: 8th International
Conference, CAiSE’96, Springer-Verlag.

8 HENRY LIEBERMAN ET AL.

Mørch, A.I. (1997). Three levels of end-user tailoring: Customization, integration, and extension. In:
M. Kyng and L. Mathiassen (eds.), Computers and Design in Context. Cambridge, MA: The MIT
Press, pp. 51–76.

Mørch, A.I. (2002). Evolutionary growth and control in user tailorable systems. In: N. Patel (ed.),
Adaptive Evolutionary Information Systems. Hershey, PA: Idea Group Publishing, pp. 30–58.

Mørch, A.I. and Mehandjiev, N.D. (2000). Tailoring as collaboration: The mediating role of multiple
representations and application units. Computer Supported Cooperative Work 9(1), 75–100.

Oppermann, R. and Simm, H. (1994). Adaptability: User-initiated individualization. In: R. Oppermann
(ed.), Adaptive User Support—Ergonomic Design of Manually and Automatically Adaptable
Software. Hillsdale, New Jersey: Lawrence Erlbaum Ass.

Paternò, F. (2001). Model-based Design and Evaluation of Interactive Applications. London, UK:
Springer Verlag.

Paternò, F., Campari, I. and Scopigno, R. (1994). The design and specification of a visual language:
An example for customising geographic information systems functionalities. Computer Graphics
Forum 13(4), 199–210.

Pipek, V. and Kahler, H. Supporting Collaborative Tailoring, in this volume.
Pipek, V. and Wulf, V. (1999). A groupware’s life. In: Proceedings of the Sixth European Conference

on Computer Supported Cooperative Work (ECSCW ’99), Dordrecht, Kluwer, pp. 199–219.
Repenning, A., Ioannidou, A. and Zola, J. (2000). AgentSheets: End-user programmable simulations.

Journal of Artificial Societies and Social Simulation 3(3).
Stiemerling, O. (2000). Component-Based Tailorability. Ph.D. Thesis. Department of Computer Sci-

ence, University of Bonn, Bonn.
Stiemerling, O., Kahler, H. and Wulf, V. (1997). How to make software softer—designing tailorable

applications. In: Proceedings of the ACM Symposium on Designing Interactive Systems (DIS 97),
18.–20.8.1997, Amsterdam (NL). New York: ACM-Press, pp. 365–376.

Sutcliffe, A. and Mehandjiev N. (2004). End User Development. Special Issue of the Communications
of the ACM 47(9), 31–66.

Won, M., Stiemerling, O. and Wulf, V. Component-based Approaches to Tailorable Systems, in this
volume.

Wulf, V. (1999). “Let’s see your Search-Tool!”—Collaborative use of tailored artifacts in groupware.
In: Proceedings of GROUP ’99, New York: ACM-Press, pp. 50–60.

Wulf, V. and Golombek, B. (2001). Direct activation: A concept to encourage tailoring activities.
Behaviour and Information Technology 20(4), 249–263.

Chapter 2

Psychological Issues in End-User Programming

ALAN F. BLACKWELL
University of Cambridge, alan.blackwell@cl.cam.ac.uk

Abstract. Psychological research into the usability of programming languages and environments, and
the cognitive processes that must be supported to improve their usability, has been conducted for over
30 years [dating at least to Weinberg’s (1971) book “The Psychology of Computer Programming”].
For the past 15 years, there have been two permanent research communities devoted to this topic: the
Psychology of Programming Interest Group in Europe (www.ppig.org) and the Empirical Studies of
Programmers Foundation in America. This chapter presents a survey of the research that has been
conducted in those communities, the relationship between that research and end-user development,
case studies of shared research themes, and design approaches that have arisen from these themes.
In this chapter, I will refer to the work of both communities under the generic term “psychology of
programming,” although as will become clear later, this term is not completely adequate.

Key words. psychology, programming, end-users, education, spreadsheets, scripting, design models

1. Introduction

Psychology of programming research has two major objectives. The first, of slightly
less relevance to end-user development (EUD), is a theoretical goal—to increase our
understanding of human cognition by studying a rather extreme domain of reasoning.
Programming is a highly complex problem solving task in which the problems are so
large that they extend not only beyond the capacity of short term memory, but of any
individual, so that they include complex issues of distributed representation use and
shared understanding. The second objective of psychology of programming research
is to apply this understanding: improving the usability of programming languages and
environments by better anticipating human needs, and evaluating the effectiveness of
design solutions for programmers. In this respect, psychology of programming can be
considered a specialized field within human–computer interaction (HCI). HCI research
considers the general problems of usability evaluation and design for purpose in soft-
ware systems. Psychology of programming becomes relevant whenever those systems
are programmable, whether by professional programmers or end-user developers.

The distinctive theoretical and applied challenges in psychology of programming
have driven its research methods beyond the borders of experimental cognitive psy-
chology, even though it finds its origins in that field. Empirical Studies of Programmers
(ESP) workshops have reported a wide range of approaches to evaluating program-
ming tools and studying the context of their use. The research presented at Psychol-
ogy of Programming Interest Group (PPIG) meetings extends to educational theories,

Henry Lieberman et al. (eds.), End User Development, 9–30.
C© 2006 Springer.

10 ALAN F. BLACKWELL

philosophical perspectives, anecdotal speculation, and relatively uncritical description
of novel programming tools, in addition to traditional psychological experiments. In
contrast, the mainstream of contemporary experimental psychology has become more
focused on cognitive neuroscience, with greatly increased attention to brain anatomy
and functional imaging studies that can localize functionality in the brain. It seems un-
likely at present that neuroscience methods will be applied to the study of programming
activity. Programming employs extremely diverse cognitive resources, and psychology
of programming researchers do not expect any neurological findings to be very relevant
in the near future.

Readers should note that cognitive psychology is by no means the only approach
to studying how people use computers. Other research traditions derived from the
social sciences, including ethnomethodology and activity theory, are not within the
scope either of cognitive psychology or of this chapter. For researchers from those
traditions, purely cognitive accounts of context (for example, analyses of “distributed
cognition”) may be seen as completely inadequate. It would be impossible to attempt a
defense of cognitive psychology against these other approaches, so no further apol-
ogy is made in this chapter for the fact that findings and design outcomes from
psychology of programming research are somewhat constrained by this disciplinary
perspective.

2. End-User Developers as Natural Programmers

End-user programming has always been a topic of great interest in psychology of
programming. There are two reasons for this, motivated by both the theoretical and ap-
plied concerns of psychology of programming research. From a theoretical perspective,
end-user developers offer the prospect to study programming behavior in its “natural”
state. Many debates in computer science appeal to the notion that some programming
paradigm is more “natural” than another, and hence more appropriate for inexperienced
programmers (Blackwell, 1996). The intention is that, if people naturally describe com-
putational concepts in a certain way, even before they have ever seen a programming
language, then that form of description will be the most appropriate for an end-user
programming language.

This idea has been most fully carried through in the impressive “natural program-
ming” project of Pane and Myers (Pane et al., 2001). In a less sophisticated manner,
such ideas have influenced computer science education, when educators claim on the
grounds of their own intuition that the first language taught to students ought to be
structured, or object oriented, or functional, or a declarative logic language, rather than
spoil students’ natural abilities by learning the bad habits of another paradigm, as in
Dijkstra’s famous claim:

“It is practically impossible to teach good programming to students that have had a prior
exposure to BASIC: as potential programmers they are mentally mutilated beyond hope
of regeneration.”

Edsger Dijkstra 1975, republished as (Dijkstra, 1982).

PSYCHOLOGICAL ISSUES IN EUD 11

These claims are seldom based on any research evidence, but they do come close to
the research agendas of some psychology of programming research. One methodologi-
cal problem in psychological studies of expert performance is that experts perform best
with the tools they are know well, however, bad the mental habits that might have been
acquired from those tools. This makes it very hard to assess proposed improvements
to tools for expert programmers, because the “improvement” seldom results in any ob-
servable increase in performance over the “bad,” but familiar tool. A common research
strategy is therefore to test new tools on novice programmers—typically first year com-
puter science students or school children who have not been mentally “mutilated” (in
Dijkstra’s terminology) by exposure to existing tools.

This pragmatic research strategy is often indistinguishable in practice from the theo-
retical research agenda that aims to discover natural thought processes of programming.
Some research on end-user tools has similar motivation, as can be seen in occasional
references to end-users as “naı̈ve” or “novice” programmers. This creates problems
in generalizing from research results obtained by studying children or university stu-
dents (chosen precisely because of their lack of knowledge), to end-user developers,
who are generally adults, skilled at their own work (which may not necessarily be
programming), and who have completed their formal education. Typical experimental
participants are especially unlikely to have any other professional skills, because pro-
fessional people are least likely to spare the time to volunteer as participants. When
we look at research into end-user programming, we find that much of the evaluation
work has been conducted with children, students, or non-professionals, even though
the original project aims may have been to achieve a useful product for use by end-user
developers.

Whether or not end-user developers are useful objects of study as “natural” program-
mers, it is certainly likely that they will benefit more than professional programmers do
from research into the usability of programming languages. This is because program-
ming languages are universally designed by people who are themselves professional
programmers. When making design decisions, the vast majority appeal to their own
aesthetic or theoretical judgments as the best criteria for usability (e.g., Blackwell and
Hague, 2001a). As a result, they eventually create new programming languages that
they themselves would like to use. The design of a language for use by end-user de-
velopers cannot rely on such intuitions, because no language designers are themselves
end-users. The design of languages and tools for end-users must instead be guided either
by empirical studies and the participation of the users themselves, or by psychology of
programming research.

This second aspect of psychology of programming research, rather than aiming to
develop comprehensive theories of programming, can be better regarded as a special-
ized branch of HCI, addressing the specific set of challenges in cognitive ergonomics
that are characteristic of programming activities. Over the last 10 years, a major re-
search goal has therefore been the creation of design methods and guidelines that will
help the designers of programming environments apply research results, especially
where their own design work extends beyond the boundaries of their intuitions or

12 ALAN F. BLACKWELL

personal experience. These design methods are the most relevant outcome of psychol-
ogy of programming research for EUD, and are the main emphasis in the rest of this
chapter.

3. User Perspectives on EUD Technologies

Previously published reviews of psychology of programming research have been orga-
nized either as an introduction to the methodological and theoretical foundations of the
field (Hoc et al., 1990), or in order to collect and summarize design recommendations
for language designers (Pane and Myers, 1996). Rather than duplicate those previous
reviews, this section is organized to emphasize the concerns of EUD, by considering
the major technical approaches to EUD, and reviewing the application of psychology
of programming research to each of these. The main technical approaches considered
are scripting languages, visual programming languages, graphical re-write systems,
spreadsheets and programming by demonstration or example. Each of these techniques
has turned out to be most successful with a particular class of users, and this class of user
is referred to as a “case” in the section title. However, it should be recognized that the
broader needs of these classes of user extend far beyond the specific technical approach,
and the chapter should not be considered a complete analysis of their requirements (or
even of previous research progress toward satisfying those requirements).

3.1. SCRIPTING (AND THE CASE OF APPLICATION USERS)

Many end-users already have access to programming facilities that are built-in to com-
plex applications. These range from relatively specialized single-purpose scripting lan-
guages such as e-mail filters and keyboard macros to the full inclusion of a conventional
programming language, such as LISP in AutoCAD and EMACS. More recently, there
have been attempts to create general purpose scripting languages that are designed
specifically for inclusion within applications, as in the case of Visual Basic for Ap-
plications. The contrast between these alternative approaches has been the subject of
debate, with a well-known online dispute (Stallman, 1994) arguing that all users should
have the benefits of an established language, rather than developing new languages
for this purpose. Ironically the target of that critique, TCL, has itself become popular
as a language for general purpose application development rather than simply a Tool
Control Language as originally named.

The usual purpose of scripting languages is to automate some sequence of user ac-
tions that could otherwise have been carried out manually. This is more true of keyboard
macros than of full programming languages such as either TCL or LISP. The real benefit
of full-featured languages may not be so much for end-users, as for professional pro-
grammers, who use them for purposes such as integrating applications with corporate
systems, or as a means of imposing corporate policy programmatically on applica-
tion users. (The latter has been done in the preparation of this book, where editorial
policy is imposed on authors through the use of Word macros—the contributing

PSYCHOLOGICAL ISSUES IN EUD 13

authors are very definitely not encouraged to behave like end-user developers by trying
to modifying those macros).

Scripting languages are also familiar in the context of command shell scripts, and the
text processing tools (sed, awk, perl) used to transform text automatically. In their most
basic form, these languages are also used to automate operations that can be performed
by users directly from the command line or with simple text editors. More highly de-
veloped alternatives (awk, and especially perl) include sufficient generic programming
functions that, like TCL, they can also be used as full programming languages in their
own right. In this case, it is arguable whether they should still be described as scripting
languages, where they are being used to implement sophisticated program behavior that
would never be attempted as a manual sequence of user actions. There is some resulting
confusion over the status of languages that might have many technical characteristics
that are common in scripting languages (interpreted, simple syntax, maintained, and
distributed freely), yet also have the technical capacity for serious application devel-
opment. Python, for example, although not having any origin in scripting, has been
proposed both as a more usable alternative to perl and TCL for end-users, and also as
a good general purpose language for novices (Stajano, 2000).

A further distinct class of programmable application is that of multimedia application
software whose main purpose is sophisticated visual displays for other human viewers,
rather than data processing or any other system action. Some multimedia applications
require substantial programming effort, and authoring tools are often innovative in the
way that programming facilities are integrated with the presentation capabilities of the
product. These include Hypercard on the Apple Macintosh, JavaScript for the creation
of interactive web pages, and the Lingo language used to script Macromedia Director
and Flash. Two multimedia systems developed specifically for novice programmers are
Alice (www.alice.org), claimed to be targeted at 11-year-old girls creating virtual reality
narratives, and Lego MindStorms for robot programming (mindstorms.lego.com).

Scripting facilities in the commercial and technical domains have been very little
influenced by psychology of programming research, and surprisingly few studies have
been made of their usability. Many companies segment their market by defining some
facilities that are only intended for “power users.” This is often shorthand for features
that are not considered usable by most users in the target market, but have been included
out of technical enthusiasm of the product developers rather than market demand. Unix
scripting tools such as awk and perl are clearly designed by programmers for program-
mers, to an extent that has motivated more usable alternatives such as Python. However,
even the innovations in improved languages have tended to be driven by good practice
in programming language design and by intuition, rather than any empirical studies or
psychological evidence. Critical discussion of usability has often been characterized by
flame wars between their programmer advocates (e.g., Stallman, 1994) rather than ap-
plying research evidence regarding user needs. Some widely used scripting languages
gain features by accretion in ways that do not even meet the standards of good program-
ming language design (e.g., the class definition mechanism in object oriented versions
of Lingo), to an extent that it is unlikely end-users would ever be able to apply them.

14 ALAN F. BLACKWELL

Despite such usability obstacles, some end-users do manage to employ scripting
functions to customize their applications and operating systems. However, Mackay’s
seminal study of the context in which this activity takes place (Mackay, 1990) observed
the way in which the actual programming is done by technically skilled users, whose
work is then disseminated across organizations by others who want to customize their
applications but are not able to do the work themselves. Any shortcoming in design
for usability is therefore mitigated by social adaptation. As noted earlier, these social
processes, although clearly essential features of EUD, are not widely studied with
psychology of programming.

Of all the systems described above, the only ones for which explicit usability studies
have been conducted are those that were designed with specific attention to the needs
of end-users. Apple Hypercard, Lego MindStorms, and the Alice system have all been
designed and validated with empirical studies of users, although few of these have ex-
tended to general theoretical contributions. One advantage of providing a well designed
and usable base platform is that it enables further research into the effect of the support
environment, for example, the documentation and tutorial facilities in MindStorms and
other languages (DiGiano et al., 2001).

3.2. VISUAL LANGUAGES (AND THE CASE OF TECHNICAL USERS)

Many technical experts find diagrammatic representations compelling and intuitive, and
propose that end-users would also benefit from the use of visual languages rather than
textual ones. This intuition far predates the development of computers, for example:

“These circles, or rather these spaces, for it is of no importance what figure they are of, are
extremely commodious for facilitating our reflections on this subject, and for unfolding
all the boasted mysteries of logic, which that art finds it so difficult to explain; whereas by
means of these signs, the whole is rendered sensible to the eye.”

Letters of Euler to a German Princess, tr. H. Hunter 1795, p. 454.

Diagrams such as flowcharts, CASE tools, and UML have always been a feature of
professional software design, and it is natural to ask, where these diagrams are suffi-
ciently detailed to specify execution, why they should not be compiled directly rather
than requiring the programmer to manually create some intermediary textual source
code. There have been many proposals for such systems, including whole research
venues completely dedicated to the topic such as the series of IEEE symposia on Visual
Languages, and the Journal of Visual Languages and Computing.

Visual language researchers often claim that diagrammatic representations will be
beneficial not only to technical specialists, but also to end-user developers, on the basis
that they are more natural (Blackwell, 1996). This intuition has inspired a variety of
commercial products, including National Instruments LabVIEW, Pictorius ProGraph,
Sun JavaStudio, and HP VEE. Of these products, only LabVIEW has achieved long-
term success, and it is notable that LabVIEW is intended for use by scientists and
engineers (it is marketed as a laboratory automation product) rather than end-users

PSYCHOLOGICAL ISSUES IN EUD 15

from a non-technical background. Baroth and Hartsough have demonstrated in a large-
scale experiment that languages such as LabVIEW and HP VEE (also a laboratory
automation language) do provide quantifiable advantages to technical development
teams (Baroth and Hartsough, 1995). Whitley and Blackwell (2001) have confirmed
this experimental result with a survey of professional LabVIEW users, finding that
many of them attribute productivity gains to their use of LabVIEW.

Despite the success of some products for a specific technical market, the claim that
visual languages may provide some kind of panacea, greatly increasing the range of
people who are able to undertake EUD, has been criticized both from an engineering and
psychological perspective. Brooks’ famous software engineering polemic “No Silver
Bullet” argues that software development is always difficult, for reasons that are not
addressed by visual languages (Brooks, 1987). The psychological experiments of Green
and his many collaborators, first studying flowcharts (Fitter and Green, 1979) and textual
programming languages (Green et al., 1987), then visual languages such as ProGraph
and LabVIEW (Green and Petre, 1992) demonstrate that there is no cognitive evidence
to justify “superlativism.” Experiments show that some representations are better for
some tasks, but none are universally superior (Green et al., 1991). Whitley (1997) has
compiled an extensive review of the empirical evidence for and against the benefits of
visual languages. Her review generally confirms Green’s findings—visual languages
are beneficial for some purposes (such as tracing data flow through a programme), but
it would seem unlikely that they will be a panacea for EUD.

3.3. GRAPHICAL REWRITE SYSTEMS (AND THE CASE OF EDUCATIONAL USERS)

An influential family of development environments for end-users has been graphical
rewrite systems, in which users specify a set of pattern-action rules for direct transfor-
mations of the display. Each rule consists of a left hand side showing a pattern of pixels
(often superimposition of a moving sprite over a static background), and a right-hand
side (often motion of that sprite to the left, right, up, or down). The first such system
was Furnas’ BitPict (Furnas, 1991), which although theoretically more interesting in
its exploration of the computational potential of pixel-level transformations, has never
been especially associated with studies of usability or any particular emphasis on EUD.

Two other systems that have been deployed with end-users are “Agentsheets” devel-
oped by Repenning at the University of Colorado in Boulder (Repenning, 1993), and a
system originally developed under the name “KidSim” by Cypher and Smith at Apple
Research (Smith et al., 1994), then renamed “Cocoa,” and finally marketed by a spin-off
company under the name “Stagecast.” Both of these systems are made easier than the
BitPict approach by providing users with a default organization of the screen into a
grid, so that standard size elements in the rules assist users to specify the motions of
characters around that grid without deriving more abstract transformations. A variety
of other usability features have been added to one or both of these systems, including
variables (BitPict can only store state data in local arrangements of pixels), super-rules
that make it easier to define generalized motions rather than creating separate rules for

16 ALAN F. BLACKWELL

up/down/left/right langevery time a moving character is introduced, more sophisticated
approaches to ordering the rule set, and so on.

The great majority of end-user applications for rewrite systems are in the educational
domain, especially creation of graphical simulations in which students build a model of
some ecological or social science phenomenon that they can then watch being played
out by moving characters on the screen. A typical simulation is an ocean scene in which
a variety of fish swim around, eating each other or reproducing according to predefined
rules, and implementing a population model. Children are also engaged by the potential
for creating grid-based computer games.

The obvious advantage of these systems for end-users is that, if the required behavior
of the application is purely graphical, it can be specified graphically. Repenning and
Cypher have talked about the two systems at PPIG, but mainly in a comparison of
the technical features added to support users as they struggle with more sophisticated
applications. Empirical evaluations of these systems have been reported at general
HCI conferences (Gilmore et al., 1995; Rader et al., 1997). These systems have also
been used as the basis for a range of interesting studies around the social environment
of simulation building, both in community design (Perrone et al., 1996) and in more
local school scenarios (Seals et al., 2002). Rosson’s work has also used StageCast as
a platform to investigate software engineering issues such as code reuse and design
patterns in the end-user context (Lewis et al., 2002).

Although graphical rewrite systems are a distinctive technical approach to supporting
end-users that has turned out to be applied most often in schools, there is of course
a very long tradition of languages designed specifically for educational use, and with
specific pedagogical objectives. A full discussion of this field would require another
chapter, but it is important to note some of the major streams of work. Papert’s Logo has
been widespread in schools, supported both by his own clear pedagogical motivations
(Papert, 1980) and also a large body of ongoing educational research (Hoyles and Noss,
1992). There have been many highly innovative languages proposed for educational
use, some with extensive bases of psychological theory [for example diSessa’s (1986)
Boxer], or empirical evaluation [Kahn’s (1996) ToonTalk], but to treat these as end-user
languages would be to repeat the fallacy critiqued earlier in this chapter, by assuming
that end-users should be considered as being like novice programmers.

Nevertheless Pane’s HANDS system (Pane et al., 2002), although designed for use
by children, is interesting as an unusual example of a programming system that was
developed by conducting both empirical and theoretical research to construct psycho-
logical models of user requirements before the language design even started. Empirical
studies were made of relevant thought habits among prospective users (in this case
school children), a thorough survey of prior research in psychology of programming
was conducted, and these phases were followed by an innovative implementation and
evaluation. Unfortunately, HANDS has not been widely deployed.

The only widely deployed system with a comparable design origin in empirical re-
search is Hank, developed for use by psychology students learning about computational
models of cognition (Mulholland and Watt, 1999). Students at the Open University had

PSYCHOLOGICAL ISSUES IN EUD 17

previously used Prolog (and prior to that a system named SOLO) for this purpose. Hank
is interesting with respect to EUD because, in contrast to the problematic assumption
that end users are like student or novice programmers, these students really are end-
users. Their objective is not to learn about programming, but about cognitive models.
As psychology students, they learn about models of cognition by writing exploratory
programs in a language that is constructed to express a cognitive model.

Psychology of programming research has of course made regular contributions to
more conventional computer science education, both in exploration of educational
languages such as McIver’s (2000) minimal-syntax “GRAIL” system and more general
contributions to debates in computer science education (Soloway and Spohrer, 1988).
As discussed in the opening to this chapter, novice professional programmers are often
seen as interesting targets for research, but they share few of the real design imperatives
of end-user developers, and are therefore not discussed further here.

3.4. SPREADSHEETS (AND THE CASE OF BUSINESS USERS)

The tool most widely used for end-user development is the spreadsheet. Although
originally invented as a domain-specific tool, it has become a popular paradigm for
creating a wide range of data processing, analysis and even interactive applications. A
great deal of effort has been invested in usability engineering of leading spreadsheets,
probably more than has ever been invested in a conventional programming environment,
and this is no doubt responsible for their great popularity. Nardi (1993) has made an
extensive study of the role that spreadsheets play in an organization, the way that
spreadsheets are developed and shared both formally and informally, and the essential
properties of the spreadsheet that have led to its success.

A few experimental studies have investigated the possibility that spreadsheets might
draw on different cognitive faculties than other programmable systems, exploiting
the user’s ability to form mental images as a representation complementary to the
more common linguistic representations of programs (Navarro-Prieto and Cañas, 1999;
Saariluoma and Sajaniemi, 1994). However, the widespread commercial impact of
spreadsheets means that more empirical studies have focused on applications than on
users (e.g., Panko, 1998). Specialist spreadsheet user communities, such as spread-
sheet risks meetings, are aware of user issues that lead to spreadsheet errors, but tend
to concentrate on engineering work-arounds rather than potential design changes to the
spreadsheet paradigm itself. A notable exception is the work on Forms/3 by Burnett
and her colleagues over many years (Burnett and Gottfried, 1998). Forms/3 is an ex-
perimental (grid-less) spreadsheet system that is used as a testbed for a wide variety
of innovative approaches to EUD. These innovations are typically integrated into the
Forms/3 system, then evaluated in controlled experiments to determine the degree of
benefit they bring to users. Burnett’s work on end-user software engineering (discussed
later in this chapter) has been a particularly significant outcome of this work.

There are signs that this research is starting to have some impact on EUD features
in leading spreadsheets. Burnett, working with the author of this chapter and a leading

18 ALAN F. BLACKWELL

researcher in functional programming languages, has developed a series of novel fea-
tures based on psychology of programming research, that bring user-definable functions
to the Excel spreadsheet in a natural way (Peyton Jones et al., 2003). This research takes
EUD seriously, providing users with the means of scaling up their development projects
without requiring the involvement of professional C programmers.

3.5. PROGRAMMING BY DEMONSTRATION OR EXAMPLE

The intention of programming by demonstration is the same as that of direct ma-
nipulation (Shneiderman, 1983)—the user is not required to interact in the interface
domain of computational abstraction, but works directly with the data that interests
him or her. In fact, the very earliest direct manipulation systems, predating the desk-
top metaphor, were also end-user programming systems. Ivan Sutherland’s Sketch-
pad, in addition to being the first computer drawing software, established the princi-
ples of object oriented programming (Sutherland, 2003), while David Canfield Smith’s
Pygmalion, in addition to being a direct predecessor of the first desktop in the Xerox Star
(Johnson et al., 1989), is also considered to be the first visual programming language
(Smith, 1975).

Unfortunately, the idea of programming by direct manipulation introduces a sig-
nificant cognitive challenge that is not present in systems such as word processors,
drawing tools, and desktops. In those domains, direct manipulation means that the
user demonstrates the required operation that is to be carried out on a specific object
(or set of objects), and the system immediately makes that change, providing visual
feedback that it has occurred. In a programming by demonstration system, the user
demonstrates the required operation on some set of objects, but it will later be applied
to other objects, possibly in other contexts, when the program runs. The user cannot
see direct feedback of the execution results at the time of writing the program, because
these things will happen in the future. This deferral of user feedback to the future is
in fact the very essence of programming, when considered from the user’s perspective
(Blackwell, 2002).

There are two system design strategies to deal with this concern, one of which tends
to be described as programming by demonstration, and the other as programming by
example. In programming by demonstration, some abstract notational conventions are
displayed alongside the data of interest, and the user directly manipulates that notation
in addition to manipulating the data. A popular example is ToonTalk (Kahn, 1996),
where data operations are specified by showing a robot what to do with the data, but
functional abstraction includes notational conventions such as manipulating parame-
ter lists. Many of the notations introduced in such systems are highly unconventional.
ToonTalk resembles a videogame world containing animated characters who execute
the program, Kurlander (1993) has created a comic strip notation to illustrate transfor-
mations to a drawing, and Blackwell created a system for demonstrating the behavior of
domestic appliances using small wooden blocks located by induction loops (Blackwell
and Hague, 2001b). In the extreme case of programming by demonstration, we can

PSYCHOLOGICAL ISSUES IN EUD 19

imagine that the abstract notation could become so complex and powerful as to be
a fairly conventional programming language—even in a Java program, the user can
“directly manipulate” letters and words on the screen to “demonstrate” the program
structure.

In programming by example, the user provides several examples of the required
program behavior, and the system applies an inference algorithm in order to infer a
generalized program that will operate in accordance with the user’s intentions in other
situations not yet seen. One of the earliest examples, applied to the domain of robot
programming, was Andreae’s (1977) instructible machine. This approach potentially
escapes the problem that the user must learn to use an abstract notation, but introduces
challenges resulting from the limitations of machine learning algorithms. Many tech-
niques for machine learning require a large number of training examples, and users
would quickly lose patience with repeatedly demonstrating them. It can therefore be
more effective to find a domain in which the system simply observes the user all the
time, intervening when a possible generalization has been found (Cypher, 1993). If
users did have to generate teaching examples, they might prefer just to write the pro-
gram rather than demonstrating many cases of required behavior. Furthermore, most
inference algorithms can only avoid over-generalization if they have negative examples
as well as positive ones. In the programming by example domain, this might require the
user to demonstrate examples of things that the program should not do. Where valuable
data is being directly manipulated, users may be reluctant to, for example, demonstrate
that the deletion of valuable files should not be done. The selection of the best negative
examples also requires some skill, depending on the kind of inference algorithm ap-
plied (Blackwell, 2001b). A better solution may be for the system to generate plausible
generalizations, and ask the user whether these should be treated as positive or negative
examples.

The domains in which programming by example can be applied are constrained by
these limitations, to such an extent that very few EUD tools employ this technique. Sys-
tematic transformations to text are a relatively easy target for inference (Nix, 1985; Mo
and Witten, 1992), and several plausible approaches for user interaction have been pro-
posed (Blackwell, 2001a; Masui and Nakayama, 1994). Few of these approaches have
been validated empirically in user studies, although one study has used the “Wizard of
Oz” technique with an experimenter manually creating the inferred behavior that users
must apply (Maulsby, 1993), and both Blackwell (2001a) and Lieberman (Lieberman
et al., 1999) have evaluated the ways that inference results might be presented visually
to the user.

4. Theoretical Perspectives

This section describes some of the main theoretical approaches that are relevant to
psychological issues in EUD. These are compared to relevant approaches in mainstream
HCI, in order to clarify the way in which, for an end-user, programming activity develops
out of more general computer usage.

20 ALAN F. BLACKWELL

4.1. COGNITIVE MODELS

Cognitive theories of programming behavior are substantially more complex than those
used in other areas of HCI. One of the major traditions in HCI has been the creation of
computational models of human performance that can be used to simulate and predict
problems in human usage of a new interface. The GOMS (Goals, Operators, Methods,
Selection) model is developed from a model human processor with quantitative descrip-
tions of human perception and action when using an interface (John, 2003). GOMS
provides a performance estimate of simple reasoning and memory retrieval as users for-
mulate appropriate sub-goals and select action strategies to achieve some desired state
of the interface. Programming activity is extremely challenging from this perspective,
because the actions of the programmer are directed only at creating an intermediate
representation (the source code), and very different programs may have source code
with quite similar surface characteristics. GOMS models rely on a relatively close cou-
pling between problem-solving and action, whereas it is quite feasible that an end-user
developer might spend 24 hours in thought before making a single keystroke to fix
a bug. GOMS cannot account for long-term details of cognition, where that has no
corresponding observable actions.

Some attempts have been made to describe the abstract problem solving that is
involved in larger programming tasks, but these have not been applied to EUD. As
described in the opening to this chapter, a great deal of psychology of programming
research has contrasted professional programming performance with “novice” pro-
gramming as exemplified by students, children, or (by extension) end-users. There are
a variety of theoretical models of the reasoning processes and mental models that might
be involved in programming, but these describe expert programmers who are knowl-
edgeable about underlying computational concepts (Gray and Anderson, 1987; Rist,
1989). When novice programmers are described, the deficiencies in their knowledge can
be characterized as incomplete or incorrect components of an expert’s mental model.
Theoretical frameworks derived from this research tradition are likely to view end-
user developers as immature or deficient programmers, rather than as having perfectly
appropriate expertise that should be accommodated rather than “fixed.”

4.2. MODELS OF SIMPLE DEVICES AND ACTIVITIES

A strand of research that may have more relevance to end-user developers is the study of
less complex (single-purpose) microprocessor controlled devices. Where these devices
have some internal state, the way that the user understands the device state involves
a degree of complexity that extends beyond simple reactive interfaces, and can be
described as programming-like activity (Blackwell et al., 2002). If the device state is
relatively simple, then the user’s model of the device state can in principle be completely
describable. It therefore provides some basis for a theoretical account of cognitive
processes in EUD, avoiding the inherent complexity of full programming environments
and the system design context for problem solving.

PSYCHOLOGICAL ISSUES IN EUD 21

Young’s (1981) research into mental models of pocket calculators was an early study
of user modeling of devices. More recently, sophisticated cognitive modeling archi-
tectures such as ACT-R and SOAR have allowed researchers to construct relatively
complete descriptions of these cognitive models. Young and colleagues have continued
to investigate other small programmable devices, including central heating controls
(Cox and Young, 2000). Related work has considered user models of wristwatches
(Beynon et al., 2001), and models of user errors when using VCRs (Gray, 2000). A
variety of general-purpose approaches have been proposed for describing the relation-
ship between user models of devices and the devices themselves, including Payne’s
Yoked State Spaces (Payne et al., 1990) and Blandford and Green’s Ontological Sketch
Models (Connell et al., 2003).

Although these various user models may be sufficient to describe the less complex
kinds of programming that end-user developers engage in, they do not make any spe-
cial attempt to describe the ways in which end-users might face different challenges
to professional programmers. Blackwell’s Attention Investment model of abstraction
creation (Blackwell, 2002) is based on the observation that end-users are not obliged
to write programs, and instead have the option (unlike professional programmers) of
simply completing their task manually rather than writing a program to do it. This
model quantifies the attentional costs of programming activity, along with the risks that
are involved in departing from direct manipulation. The investment cost is some num-
ber of “attention units” (an integral of concentration over time) to get the work done,
whether by direct manipulation or by programming. There is some pay-off, in the form
of reduced future manipulation cost, and a risk that no pay-off will result (specification
failure), or that additional costs will be incurred (bugs). The process of strategic deci-
sion making, using these variables, can be simulated as an alternative control structure
for cognitive models.

These ideas have often been described in the past, although in ways that are less
amenable to quantification. The intuitive idea that end-user developers need a “gentle
slope” of cognitive challenge (Dertouzos, 1997), and that this may be interrupted by
an “annoying” programming interface is one of these. The “paradox of the active user”
(Carroll and Rosson, 1987) and the “irony of abstraction” (Green and Blackwell, 1996)
describe the ways in which users fail to achieve their goals efficiently, or act inefficiently
in pursuit of efficiency. Potter expressed the action of programmers responding to these
decision criteria of cost and risk as “just-in-time programming” (Potter, 1993). The aim
of the attention investment model is to express these conflicting user strategies suffi-
ciently precisely that they can be applied as a design technique for EUD technologies
(Blackwell and Burnett, 2002).

4.3. NOTATIONAL ANALYSIS

Green’s research, as described earlier in this chapter, demonstrated that the bene-
fits of visual programming languages cannot be justified simply by arguments from
superlativism—claims that some kind of notation will be universally superior because

22 ALAN F. BLACKWELL

more intuitive or natural. On the contrary, some representations are better for some
tasks, and some for others (Green et al., 1991). This empirical observation has led to
the development of the Cognitive Dimensions of Notations (CDs) framework, which
provides a structured approach to assessing which properties of a programming lan-
guage will be beneficial for what user activities. The CDs framework is discussed in
more detail later in this chapter.

Other approaches to describing the notational properties of user interface have in-
cluded Green and Benyon’s (1996) Entity-Relationship Models of Information Arti-
facts, which describe the structural characteristics of the notation itself, and Blandford
and Green’s Ontological Sketch Models (2003), which describe the relationship be-
tween the visible structure and the structure of the user’s mental model. Much of this
research will become relevant to EUD research, as novel representations are proposed
to assist end-users with a variety of development activities. Research into the cognitive
implications of various notational systems also continues in the series of international
conferences on theory and application of diagrams (Anderson et al., 2000; Hegarty
et al., 2002), which is unique in combining cognitive modeling accounts with formal
mathematical descriptions suitable for automated analysis of notations, empirical stud-
ies of users, and professional users themselves. However, these approaches are still
under development, and have not yet been proven as practically applicable to the design
of EUD systems.

5. Practical Usability Approaches to EUD

In commercial HCI work, it is often not feasible either to develop detailed user models
or to conduct controlled experimental observations of user behavior during the product
design cycle. This has led to the popularity of “discount” usability methods that provide
rapid input into the product design cycle. Similar constraints exist in the design of end-
user or professional programming tools. Just as few product designers have the resources
to construct detailed GOMS models of a new interface design, very few programming
language designers would refer directly to psychology of programming research results,
let alone attempt to build comprehensive cognitive models of the developer.

Some usability methods, although motivated by cognitive models, can still be
tractable for manual usability analysis of typical user interfaces. The Cognitive Walk-
through method (Wharton et al., 1994) is one such example. The disadvantage of using
this method for programming products is that it relies on a description, at design time,
of some optimum sequence of user actions that will provide a design target. In the case
of EUD tools, it would be very hard to define an optimum sequence of actions—there
are many alternative strategies that end-users might choose to take, and anticipating or
enumerating them would make the application of Cognitive Walkthrough far more labo-
rious. An early version of the technique was applied to programming (Bell et al., 1991),
but the developers found that it failed to account for the “metacognitive strategies”
that are central to programming (and which are the central concern of the Attention
Investment model). In fact, even for non-programmable products, the possible range

PSYCHOLOGICAL ISSUES IN EUD 23

of user strategies renders Cognitive Walkthrough quite expensive for typical product
development budgets, and “discount” versions of this method too have been proposed
(Spencer, 2000).

This kind of concern for providing practical design tools rather than complete the-
oretical descriptions was the main motivation for the development of Green’s Cogni-
tive Dimensions of Notations (CDs) framework (Green, 1989, Green and Petre, 1996,
Blackwell and Green, 2003). CDs were explicitly developed to avoid “death by detail,”
instead providing a discussion tool—a vocabulary that can be employed by designers to
anticipate common usability problems without detailed cognitive analysis. Examples of
the CDs vocabulary include the dimensions of viscosity (the amount of work required
to make small changes to the program), hidden dependencies (the extent to which the
relationships between separate parts of the design are obscured by the programming
language), and about a dozen others.

It often happens that quite familiar phenomena are not recognized if we have no
names for them. The CDs framework is a sophisticated strategy to improving design
practice by improving the vocabulary that designers use. The result is a “broad brush”
description of the cognitively relevant usability characteristics of programming lan-
guages, allowing designers to be informed by appropriate perspectives from relevant
research, without demanding that they engage in that research themselves. However,
the framework has also been highly influential in usability research, as the only well-
established approach that deals directly with the usability of programmable systems.
It is most familiar to researchers in EUD, visual programming, and psychology of
programming, and more than 50 publications on the framework are listed on a CD
archive site, including application to the design of commercially leading tools such as
the Microsoft Visual Studio range (Clarke, 2001, Clarke and Becker, 2003). Most EUD
researchers should be aware of this framework, and apply it as an everyday design tool.

A recent development in mainstream HCI has been the introduction of theoretically
founded descriptions that are applicable both as a basis for empirical research, and
as a source of simple design heuristics based on outcomes from that research. The
information foraging theory of Pirolli and Card (1999) is an example of one of these
theories (it describes web-browsing behavior based on an analogy to ecological models
of animal behavior). Information foraging theory provides a sound mathematical basis
for studies of browsing behavior, but it also provides a new way for web designers to
think about the usability characteristics of their work in terms of model parameters such
as “information scent” (feedback that informs users when they are in the neighborhood
of the information they are looking for). Designers can incorporate such considerations
into their work without necessarily understanding the mathematical models that underlie
them.

In the EUD domain, attention investment theory fills a similar role to that of infor-
mation foraging theory in the web design domain. It provides a mathematical model for
research into the cognitive prerequisites of end-user programming, but the descriptive
elements of the theory also provide a means for designers to analyze the perceived
risks and payoffs that are central to end-user activities. These design guides have been

24 ALAN F. BLACKWELL

applied both to the development of research prototypes for EUD (Beckwith et al., 2002)
and also for EUD enhancements to Microsoft Excel (Peyton Jones et al., 2003).

6. End-User Software Engineering

A great deal of psychological research into EUD has to date concentrated on the us-
ability of novel programming languages, rather than other software development tools
(editors, change control systems, documentation repositories, etc.). That research em-
phasis is motivated partly by convenience for psychology researchers: programming
languages offer a relatively constrained human problem-solving task, well suited to
experiments, and illuminating with respect to expert-novice differences. However, far
more research into novel languages is simply motivated by the fact that computer scien-
tists like to develop new languages. The intellectual appeal of undergraduate compiler
design courses far outweighs the number of new languages that computer users will
ever need, and the Edinburgh AI department “Researcher’s Bible” notes:

A terminal case of ‘computer bum’ is to get involved in writing yet another programming
language. [. . .] No one will use the language you write—not even you! You will have
spent all your time on the language and none on the project you started with.

(Bundy et al., 1985)

Whatever the cause of this bias—whether the research agenda of psychologists,
the constraints of experimental studies, or the systems that computer scientists prefer
to create, it is clear that psychology of programming research has paid far too much
attention to single users engaged in short-term programming tasks, and very little
indeed to the problems of maintenance, documentation, system integration and team
coordination. Empirical studies in software engineering demonstrate that programming
is a relatively small part of the cost of system development. The continued design and
study of new programming languages, when programming is not the main problem,
can be compared to the proverbial drunk who looks for his keys under the street light
because that is the place where he can see best.

A paradoxical additional factor is that, even though EUD may not involve a con-
ventional programming language at all (keyboard macros, for example), it does require
most of the other skills of software engineering. Professional end-users, unlike the
student-novices that are often assumed to represent their cognitive needs in experi-
mental studies, do need to maintain their work, perform revision control, achieve cor-
rect specifications, debug, and test—concerns that are described as “end-user software
engineering.”

End-user software engineering is a critical priority for future research in EUD. For
systems implementers and computer scientists, it will mean turning attention away from
novel programming languages, toward facilities that support these other development
activities. For psychology of programming researchers, it will require new research
methods that allow the observation of long-term behavior, understanding of work done
away from the computer screen, and interaction within informal social networks (rather

PSYCHOLOGICAL ISSUES IN EUD 25

than the structured teams that are more typical of professional developers). Of course,
as noted in the introduction to this chapter, cognitive psychology may not be the best
discipline in which to find such research methods.

However, end-user software engineering research will also require cognitive charac-
terization of aspects of the software task that are related to debugging and maintenance,
not just those involved in writing new pieces of code. The international leader in this
area is Margaret Burnett, whose work with the facilities of the Forms/3 environment has
extended to maintenance features such as assertion systems that are usable by end-users.
Her theoretical framework for characterizing the software engineering activities of end-
users includes the attention investment model described earlier (Beckwith et al., 2002),
but also novel descriptions of user attitudes such as curiosity and surprise that are ex-
pected to influence the behavior of end-user developers more than they do professional
software developers (Wilson et al., 2003).

7. Conclusion

Psychological research in EUD draws on a wide range of research skills and literature.
It results both in novel programming systems and new theoretical characterizations of
human problem solving. Unfortunately, only a few of these results—whether technical
or theoretical—have achieved widespread influence. Nevertheless, they provide a better
basis for future research than those who proceed in ignorance of past work, which is
unfortunately still a common situation in this field. One successful approach has been
the development of analytic frameworks that are specifically oriented toward helping
system designers apply research results. Another that is urgently required is to broaden
the field of enquiry further, investigating the facilities that will make EUD a practical
long term activity, rather than simply a toy for technical enthusiasts to create relatively
trivial programs that are used a few times and discarded.

Ultimately, it is the commercial availability of programming environments suitable
for end-users that will empower EUD. Most users carry out complex activities within
specific applications, rather than at the operating system level, and their first encounter
with programming is likely to be a scripting facility built-in to such a product. Until now,
these facilities have been targeted toward technical or power users, and are less likely
to be subjected to extensive usability evaluation or informed by relevant empirical
research. It is perhaps as a result of this commercial emphasis that psychology of
programming has been something of a research ghetto within mainstream HCI. An
increased emphasis on EUD as a research priority will hopefully lead to new concern
for usability considerations both in that research, and in the programmable commercial
applications available to end-users.

References

Anderson, M., Cheng, P. and Haarslev, V. (eds.) (2000). Theory and Applications of Diagrams. Lecture
Notes in Artificial Intelligence 1889. Berlin: Springer Verlag.

26 ALAN F. BLACKWELL

Andreae, J.H. (1977). Thinking with the Teachable Machine. London: Academic Press.
Baroth, E. and Hartsough, C. (1995). Visual programming in the real world. In: M. Burnett, A.

Goldberg and T. Lewis (eds.), Visual Object-Oriented Programming Concepts and Environments.
Greenwich, CT: Manning, pp. 21–42.

Beckwith, L., Burnett, M. and Cook, C. (2002). Reasoning about many-to-many requirement re-
lationships in spreadsheets. In: Proceedings of IEEE Symposia on Human-Centric Computing
Languages and Environments, Arlington, VA, Sept. 2002.

Bell, B., Rieman, J. and Lewis, C.H. (1991). Usability testing of a graphical programming system:
Things we missed in a programming walkthrough. In: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI’91), New Orleans, pp. 7–12.

Beynon, M., Roe, C., Ward, A. and Wong, A. (2001). Interactive situation models for cognitive aspects
of user–artefact interaction. In: Proceedings of Cognitive Technology 2001 (Lecture Notes in
Artificial Intelligence 2117), pp. 356–372.

Blackwell, A.F. (1996). Metacognitive theories of visual programming: What do we think we are do-
ing? In: Proceedings IEEE Symposium on Visual Languages. Los Alamitos, CA: IEEE Computer
Society Press, pp. 240–246.

Blackwell, A.F. (2001a). See what you need: Helping end-users to build abstractions. Journal of Visual
Languages and Computing 12(5), 475–499.

Blackwell, A.F. (2001b). SWYN: A visual representation for regular expressions. In: H. Lieberman
(ed.), Your Wish is My Command: Giving Users the Power to Instruct Their Software. Morgan
Kauffman, pp. 245–270.

Blackwell, A.F. (2002). First steps in programming: A rationale for attention investment models. In:
Proceedings of the IEEE Symposia on Human-Centric Computing Languages and Environments,
pp. 2–10.

Blackwell, A.F. and Burnett, M. (2002). Applying attention investment to end-user programming. In:
Proceedings of the IEEE Symposia on Human-Centric Computing Languages and Environments,
pp. 28–30.

Blackwell, A.F. and Green, T.R.G. (2003). Notational systems—the cognitive dimensions of notations
framework. In: J.M. Carroll (ed.), HCI Models, Theories and Frameworks: Toward a Multidisci-
plinary Science. San Francisco: Morgan Kaufmann, pp. 103–134.

Blackwell, A.F. and Hague, R. (2001a). Designing a programming language for home automation. In:
G. Kadoda (ed.), Proceedings of the 13th Annual Workshop of the Psychology of Programming
Interest Group (PPIG 2001). pp. 85–103.

Blackwell, A.F. and Hague, R. (2001b). AutoHAN: An architecture for programming the home. In:
Proceedings of the IEEE Symposia on Human-Centric Computing Languages and Environments,
pp. 150–157.

Blackwell, A.F., Robinson, P., Roast, C. and Green, T.R.G. (2002). Cognitive models of programming-
like activity. In: Proceedings of CHI’02, pp. 910–911.

Brooks, F.P. (1987). No silver bullet—essence and accidents of software engineering. Computer 20(4),
10–19. Reprinted from Proc. IFIP Congress, Dublin, Ireland, 1986.

Bundy, A., du Boulay, B., Howe, J. and Plotkin, G. (1985). The Researcher’s Bible. Department of
AI Teaching Paper no. 4, Edinburgh University (available online at http://www.dai.ed.ac.uk/dai/
teaching/modules/airm/old/lectures/resbible.html).

Burnett, M. and Gottfried, H. (1998). Graphical definitions: Expanding spreadsheet languages
through direct manipulation and gestures. ACM Transactions on Computer–Human Interaction
5, 1–33.

Carroll, J.M. and Rosson, M.B. (1987). Paradox of the active user. In: J.M. Carroll (ed.), Interfacing
Thought: Cognitive Aspects of Human–Computer Interaction. MIT Press, pp. 80–111.

Clarke, S. (2001). Evaluating a new programming language. In: G. Kadoda (ed.), Proceedings of the
13th Annual Meeting of the Psychology of Programming Interest Group. pp. 275–289.

PSYCHOLOGICAL ISSUES IN EUD 27

Clarke, S. and Becker, C. (2003). Using the cognitive dimensions framework to measure the usability
of a class library. In: Proceedings Joint Conference of EASE and PPIG, pp. 359–366.

Collins, T. and Fung, P. (1999). Evaluating Hank, a cognitive modelling language for psychologists.
Collected papers of PPIG-11 Annual Workshop.

Connell, I., Green, T.R.G. and Blandford, A. (2003). Ontological sketch models: Highlighting user–
system misfits. In: Proceedings of HCI’03, pp. 163–178.

Cox, A.L. and Young, R.M. (2000). Device-oriented and task-oriented exploratory learning of in-
teractive devices. In: N. Taatgen and J. Aasman (eds.), Proceedings of the 3rd International
Conference on Cognitive Modeling. Veenendaal, The Netherlands: Universal Press, pp. 70–77.

Cypher, A. (1993). Eager: Programming repetitive tasks by demonstration. In: A. Cypher (ed.), Watch
What I Do: Programming by Demonstration. Cambridge, MA: MIT Press, pp. 205–217.

Dertouzos, M. (1997). Creating the people’s computer. MIT Technology Review, pp. 20–28, Apr.
1997.

DiGiano, C., Kahn, K., Cypher, A. and Smith, D.C. (2001). Integrating learning supports into the
design of visual programming systems. Journal of Visual Languages and Computing 12, 501–524.

Dijkstra, E.W. (1982). How do we tell truths that might hurt? Republished in E.W. Dijkstra (ed.),
Selected Writings on Computing: A Personal Perspective. Springer-Verlag, pp. 129–131.

diSessa, A.A. (1986). Notes on the future of programming: Breaking the utility barrier. In: D.A.
Norman and S.W. Draper (eds.), User Centered System Design: New Perspectives on Human–
Computer Interaction. Hillsdale, NJ: Lawrence Erlbaum.

Fitter, M. and Green, T.R.G. (1979). When do diagrams make good computer languages? International
Journal of Man-Machine Studies, 11(2), 235–261.

Furnas, G.W. (1991). New graphical reasoning models for understanding graphical interfaces under-
standing graphical interfaces. In: Proceedings of ACM CHI’91 Conference on Human Factors in
Computing Systems, pp. 71–78.

Gilmore, D.J., Pheasey, K., Underwood, J. and Underwood, G. (1995). Learning graphical program-
ming: An evaluation of KidSimTM. In: Proceedings of IFIP INTERACT’95: Human–Computer
Interaction, pp. 145–150.

Gray, W.D. (2000). The nature and processing of errors in interactive behavior. Cognitive Science
24(2), 205–248.

Gray, W.D. and Anderson, J.R. (1987). Change-episodes in coding: When and how do programmers
change their code? Empirical Studies of Programmers: Second Workshop (Ablex).

Green, T.R.G. (1989). Cognitive dimensions of notations. In: A. Sutcliffe and L. Macaulay (eds.),
People and Computers V. Cambridge University Press.

Green, T.R.G., Bellamy, R.K.E. and Parker, J.M. (1987). Parsing and Gnisrap: A model of device use.
In: G.M. Olson, S. Sheppard and E. Soloway (eds.), Empirical Studies of Programmers: Second
Workshop, Ablex.

Green, T.R.G. and Benyon, D. (1996). The skull beneath the skin: Entity-relationship models of
information artifacts. International Journal of Human Computer Studies 44(6), 801–828.

Green, T.R.G. and Blackwell, A.F. (1996). Ironies of abstraction. Paper presented at the Third Inter-
national Conference on Thinking. British Psychological Society, London.

Green, T.R.G. and Petre, M. (1992). When visual programs are harder to read than textual programs.
In: G.C. van der Veer and S. Bagnarola (eds.), Proceedings of ECCE-6 (European Conference
on Cognitive Ergonomics).

Green, T.R.G. and Petre, M. (1996). Usability analysis of visual programming environments: A
‘cognitive dimensions’ approach. Journal of Visual Languages and Computing 7, 131–174.

Green, T.R.G., Petre, M. and Bellamy, R.K.E. (1991). Comprehensibility of visual and textual pro-
grams: A test of superlativism against the ‘match–mismatch’ conjecture. In: J. Koenemann-
Belliveau, T.G. Moher and S.P. Robertson (eds.), Empirical Studies of Programmers, Fourth
Workshop Norwood, NJ: Ablex, pp. 121–146.

28 ALAN F. BLACKWELL

Hegarty, M., Meyer B. and Narayanan, N.H. (eds.) (2002). Diagrammatic Representation and Infer-
ence, Lecture Notes in Artificial Intelligence vol. 2317. Springer-Verlag.

Hoc, J.-M., Green, T.R.G., Samurçay, R. and Gilmore, D.J. (eds.) (1990). Psychology of Programming.
London: Academic Press.

Hoyles C. and Noss R. (eds.) (1992). Learning Mathematics and Logo. Cambridge, MA: MIT Press.
John, B.E. (2003). Information processing and skilled behavior. In: J.M. Carroll (ed.), HCI Mod-

els, Theories and Frameworks: Toward a Multidisciplinary Science. San Francisco: Morgan
Kaufmann, pp. 55–101.

Johnson, J., Roberts, T.L., Verplank, W., Smith, D.C., Irby, C.H., Beard, M. and Mackey, K. (1989).
The Xerox Star: A retrospective. IEEE Computer 22(9), 11–26.

Kahn, K.M. (1996). ToonTalk—an animated programming environment for children. Journal of Visual
Languages and Computing 7(2): 197–217.

Kurlander, D. (1993). Chimera: Example-based graphical editing. In: A. Cypher (ed.), Watch What I
Do: Programming by Demonstration. Cambridge, MA: MIT Press, pp. 271–290.

Lewis, T., Rosson, M.B., Carroll, J.M. and Seals, C. (2002). A community learns design: Towards
a pattern language for novice visual programmers. In: IEEE Symposium on Human-Centric
Computing.

Lieberman, H., Nardi, B.A. and Wright, D. (1999). Training agents to recognize text by example. In:
Proc. Third ACM Conference on Autonomous Agents, Seattle, May 1999, pp. 116–122.

Masui, T. and Nakayama, K. (1994). Repeat and predict—Two keys to efficient text editing. In: Proc.
Human Factors in Computing Systems, CHI ’94, pp. 118–123.

McIver, L. (2000). The effect of programming language on error rates of novice programmers. In:
Proceedings of the 12th Annual Workshop of the Psychology of Programming Interest Group,
pp. 181–192.

Mackay, W.E. (1990). Users and Customizable Software: A Co-Adaptive Phenomenon. Unpublished
PhD Thesis at Sloan School of Management, Massachusetts Institute of Technology.

Maulsby, D. (1993). The Turvy experience: Simulating an instructible interface. In: A. Cypher (ed.),
Watch What I Do: Programming by Demonstration. Cambridge, MA: MIT Press, pp. 238–269.

Mo, D.H. and Witten, I.H. (1992). Learning text editing tasks from examples: A procedural approach.
Behaviour and Information Technology 11(1), 32–45.

Mulholland, P. and Watt, S. (1999). Programming with a purpose: Hank, gardening and schema theory.
In: Proceedings 11th Annual Workshop of the Psychology of Programming Interest Group.

Nardi, B.A. (1993). A Small Matter of Programming: Perspectives on End User Computing.
Cambridge, MA: MIT Press.

Navarro-Prieto, R. and Cañas, J.J. (1999). Mental representation and imagery in program compre-
hension. In: Proceedings 11th Annual Workshop of the Psychology of Programming Interest
Group.

Nix, R.P. (1985). Editing by example. ACM Transactions on Programming Languages and Systems
7(4), 600–621.

Pane, J.F., Chotirat, A.R. and Myers, B.A. (2001). Studying the language and structure in non-
programmers’ solutions to programming problems. International Journal of Human Computer
Studies 54(2), 237–264.

Pane, J.F. and Myers, B.A. (1996). Usability Issues in the Design of Novice Programming Systems.
(School of Computer Science Technical Report CMU-CS-96-132). Pittsburgh, PA: Carnegie
Mellon University.

Pane, J.F., Myers, B.A. and Miller, L.B. (2002). Using HCI techniques to design a more usable pro-
gramming system. In: Proceedings of IEEE Symposia on Human Centric Computing Languages
and Environments, pp. 198–206.

Panko, R.R. (1998). What we know about spreadsheet errors. Journal of End User Computing 10,
15–21.

PSYCHOLOGICAL ISSUES IN EUD 29

Papert, S. (1980). Mindstorms: Children, Computers, and Powerful Ideas. New York: Basic Books.
Payne, S.J., Squibb, H.R. and Howes, A. (1990). The nature of device models: The yoked state

space hypothesis and some experiments with text editors. Human–Computer Interaction 5(4),
415–444.

Perrone, C., Repenning, A., Spencer S. and Ambach, J. (1996). Computers in the classroom: Moving
from tool to medium. Journal of Computer-Mediated Communication 2(3).

Peyton Jones, S., Blackwell, A. and Burnett, M. (2003). A user-centred approach to functions in Excel.
In: Proceedings International Conference on Functional Programming, pp. 165–176.

Pirolli, P. and Card, S.K. (1999). Information foraging. Psychological Review 106, 643–675.
Potter, R. (1993). Just-in-time programming. In: A. Cypher (ed.), Watch What I Do: Programming by

Demonstration. MIT Press, pp. 513–526.
Rader, C., Brand, C. and Lewis, C. (1997). Degrees of comprehension: Children’s understanding

of a visual programming environment. In: Proceedings of ACM CHI 97 Conference on Human
Factors in Computing Systems vo. 1, pp. 351–358.

Repenning, A. (1993). Agentsheets, A tool for building domain-oriented visual programming envi-
ronments. In: INTERCHI ’93, Conference on Human Factors in Computing Systems. Amsterdam:
ACM Press, pp. 142–143.

Rist, R.S. (1989). Schema creation in programming. Cognitive Science 13, 389–414.
Saariluoma, P. and Sajaniemi, J. (1994). Transforming verbal descriptions into mathematical for-

mulas in spreadsheet calculation. International Journal of Human Computer Studies 41(6),
915–948.

Seals, C., Rosson, M.B., Carroll, J.M. and Lewis, T. 2002. Fun learning stagecast creator: An exercise
in minimalism and collaboration. In: IEEE 2002 Symposium on Human-Centric Computing:
Empirical Studies of Programmers.

Shneiderman, B. (1983). Direct manipulation: A step beyond programming languages. IEEE Com-
puter, 57–69.

Smith, D.C. (1975). Pygmalion: A creative programming environment. Technical Report STAN-CS-
75-499, Stanford University.

Smith, D.C., Cypher, A. and Spohrer, J. (1994). KidSim: Programming agents without a programming
language.” Communications of the ACM 37(7), 54–67.

Soloway, E. and Spohrer, J.C. (1988). Studying the Novice Programmer. Mahwah, NJ: Lawrence
Erlbaum Associates.

Spencer, R. (2000). The streamlined cognitive walkthrough method, working around social constraints
encountered in a software development company. In: Proceedings ACM Conference on Human
Factors in Computing Systems, CHI 2000, pp. 353–359.

Stajano, F. (2000). Python in education: Raising a generation of native speakers. In: Proceedings of
the 8th International Python Conference, Washington, DC, 24–27 Jan. 2000.

Stallman, R.M. (1994). Why you should not use TCL. Widely distributed online. In: Glenn Vanderburg
(ed.), The TCL War. http://www.vanderburg.org/Tcl/war/

Sutherland, I.E. (1963/2003). Sketchpad, A Man-Machine Graphical Communication System. PhD
Thesis at Massachusetts Institute of Technology, online version and editors’ introduction by A.F.
Blackwell and K. Rodden. Technical Report 574. Cambridge University Computer Laboratory:
http://www.cl.cam.ac.uk/TechReports/.

Weinberg, G.M. (1971). The Psychology of Computer Programming. New York: Van Nostrand Rein-
hold.

Wharton, C., Rieman, J., Lewis, C. and Polson, P. (1994). The cognitive walkthrough method: A
practitioner’s guide. In: J. Nielsen and R. Mack (eds.), Usability Inspection Methods. New York,
NY: John Wiley & Sons, Inc.

Whitley, K.N. (1997). Visual programming languages and the empirical evidence for and against.
Journal of Visual Languages and Computing 8(1), 9–142.

30 ALAN F. BLACKWELL

Whitley, K.N. and Blackwell, A.F. (2001). Visual programming in the wild: A survey of LabVIEW
programmers. Journal of Visual Languages and Computing 12(4), 435–472.

Wilson, A., Burnett, M., Beckwith, L., Granatir, O., Casburn, L., Cook, C., Durham, M. and Rothermel,
G. (2003). Harnessing curiosity to increase correctness in end-user programming. In: Proc.
CHI ’03, Ft. Lauderdale, FL, 5–10 Apr. 2003.

Young, R.M. (1981). The machine inside the machine: Users’ models of pocket calculators. Interna-
tional Journal of Man-Machine Studies 15(1), 51–85.

Chapter 3

More Natural Programming Languages
and Environments

JOHN F. PANE1 and BRAD A. MYERS2

1RAND Corporation, jpane@rand.org
2Carnegie Mellon University, bam+@cs.cmu.edu

Abstract. Over the last six years, we have been working to create programming languages and
environments that are more natural, by which we mean closer to the way people think about their
tasks. The goal is to make it possible for people to express their ideas in the same way they think
about them. To achieve this, we performed various studies about how people think about programming
tasks, and then used this knowledge to develop a new programming language and environment called
HANDS. This chapter provides an overview of the goals and background for the Natural Programming
research, the results of some of our user studies, and the highlights of the language design.

1. Introduction

The Natural Programming Project is studying ways to make learning to program sig-
nificantly easier, so that more people will be able to create useful, interesting, and
sophisticated programs. The goals of this project are to define and use a new program-
ming language design process; where we study how non-programmers reason about
programming concepts, create new programming languages and environments that
take advantage of these findings, and evaluate them. It is somewhat surprising that in
spite of over 30 years of research in the areas of empirical studies of programmers (ESP)
and human–computer interaction (HCI), the designs of new programming languages
have generally not taken advantage of what has been discovered. For example, the new
C#, Java, and JavaScript languages use the same mechanisms for looping, conditionals,
and assignments that have been shown to cause many errors for both beginning and
expert programmers in the C language. Our thorough investigation of the ESP and
HCI literature has revealed many results which can be used to guide the design of a
new programming system, many of which have not been utilized in previous designs.
However, there are many significant “holes” in the knowledge about how people reason
about programs and programming. For example, research about which fundamental
paradigms of computing are the most natural has not been conclusive. We are perform-
ing user studies to investigate this question. Another issue is that most of the prior
research has studied people using existing languages, and so there is little information
about how people might express various concepts if not restricted by these language
designs.

Henry Lieberman et al. (eds.), End User Development, 31–50.
C© 2006 Springer.

32 JOHN F. PANE AND BRAD A. MYERS

In the context of this prior work, as well as best practices in user-centered design, we
adopted a Natural Programming design process, which treats usability as a first-class
objective in programming system design by following these steps:

� Identify the target audience and the domain, that is, the group of people who will
be using the system and the kinds of problems they will be working on.

� Understand the target audience, both the problems they encounter and the existing
recommendations on how to support their work. This includes an awareness of
general HCI principles as well as prior work in the psychology of programming
and empirical studies. When issues or questions arise that are not answered by the
prior work, conduct new studies to examine them.

� Design the new system based on this information.
� Evaluate the system to measure its success, and understand any new problems that

the users have. If necessary, redesign the system based on this evaluation, and then
re-evaluate it.

In this design process, the prior knowledge about the human aspects of programming
is considered, and the strategy for addressing any unanswered questions is to conduct
user studies to obtain design guidance and to assess prototypes.

This chapter summarizes the results to date for the Natural Programming project.
More details were reported by Pane (2002), as well as in many other papers that are
available from our web site: (http://www.cs.cmu.edu/∼NatProg). First, we discuss why
naturalness might be better for developers, and then discuss a survey of prior work
as it relates to the design of more natural programming languages and environments.
Then we discuss three studies we performed to evaluate what might be more natural in
programs for graphics and data processing. The results were used in the design of a new
language and environment called HANDS (Human-centered Advances for the Novice
Development of Software). A user study showed that the novel aspects of HANDS
were helpful to novice fifth graders writing their first programs. Finally, we discuss the
current work of the Natural Programming project on making the debugging process
more natural.

2. Why Natural Might be Better for End-User Developers

In Natural Programming we aim for the programming system to work in the way that
people expect, especially end-user developers who may have little or no formal training
or experience in programming. The premise of this approach is that the developers will
have an easier job if their programming tasks are made more natural. We define natural
as “faithfully representing nature or life.”

Why would this make end-user programming easier? One way to define program-
ming is the process of transforming a mental plan in familiar terms into one that is
compatible with the computer (Hoc and Nguyen-Xuan, 1990). The closer the language
is to the programmer’s original plan, the easier this refinement process will be. This is
closely related to the concept of directness that, as part of “direct manipulation,” is a

NATURAL PROGRAMMING LANGUAGES AND ENVIRONMENTS 33

key principle in making user interfaces easier to use. Hutchins et al. (1986) describe
directness as the distance between one’s goals and the actions required by the system to
achieve those goals. Reducing this distance makes systems more direct, and therefore
easier to learn. User interface designers and researchers have been promoting direct-
ness at least since Shneiderman (1983) identified the concept, but it has not even been a
consideration in most programming language designs. Green and Petre (1996, p. 146)
also argue in favor of directness, which they call closeness of mapping: “The closer the
programming world is to the problem world, the easier the problem-solving ought to
be . . . Conventional textual languages are a long way from that goal.”

User interfaces in general are also recommended to be natural so they are easier
to learn and use, and will result in fewer errors. For example, Nielsen (1993, p. 126)
recommends that user interfaces should “speak the user’s language,” which includes
having good mappings between the user’s conceptual model of the information and the
computer’s interface for it. One of Hix and Hartson’s usability guidelines is to “use
cognitive directness,” which means to “minimize the mental transformations that a user
must make. Even small cognitive transformations by a user take effort away from the
intended task.” Conventional programming languages do not provide the high-level
operators that would provide this directness, instead requiring the programmer to make
transformations from the intended task to a code design that assembles lower-level
primitives.

Norman also discusses the conceptual gap between the representations that people
use in their minds and the representations that are required to enter these into a computer.
He calls these the “gulfs of execution and evaluation.” He says; “there are only two ways
to . . . bridge the gap between goals and system: move the system closer to the user;
[or] move the user closer to the system” (Norman, 1986, p. 43). We argue that if the
computer language expressed algorithms and data in a way that was closer to people’s
natural expressions, the gaps would be smaller. As Smith et al. (1996, p. 60) have said,
“regardless of the approach, with respect to programming, trying to move most people
closer to the system has not worked.”

The proposed research is closely aligned with the concept of “Gentle Slope Systems”
(MacLean et al., 1990; Myers et al., 1992), which are systems where for each incremen-
tal increase in the level of customizability, the user only needs to learn an incremental
amount. This is contrasted with most systems, which have “walls” where the user must
stop and learn many new concepts and techniques to make further progress (see Figure
3.1). We believe that systems can use direct manipulation and demonstrational tech-
niques, where users give examples of the desired outcome (Myers, 1992), to lower the
initial starting point and enable users to get useful work done immediately. Systems
and languages can also be self-disclosing and easy to learn, so the number and height
of the walls is minimized, if they cannot be eliminated entirely.

We note that a programming system that is designed to be natural for a particular
target audience may not be universally optimal. People of different ages, from different
backgrounds and cultures, or from different points in history, are likely to bring different
expectations and methods to the programming task. This is why identifying the target

34 JOHN F. PANE AND BRAD A. MYERS

Goal

Hy r C a r d

Hy perTa lk

xCm ds

Basic

C P

Lin go

Difficulty
of

Use

Sophistication of what can be created

Goal

HyperCard

Visual Basic

Director (v6)

HyperTalk

xCmds

Basic

C Programming

Lingo

C Programming

Programming in Java

Swing

Click and

Create

Figure 3.1. The ideal of a gentle slope system. The intent of this graph is to portray how difficult it is to use various
tools to create customizations of different levels of sophistication. For example, with Java, it is quite hard to get
started, so the Y intercept is high up. The vertical walls are where the designer needs to stop and learn something
entirely new. For Java, the wall is where the user needs to learn Swing to do graphics. With Visual Basic, it is
easier to get started, so the Y intercept is lower, but Visual Basic has two walls—one when you have to learn the
Basic programming language, and another when you have to learn C programming because Visual Basic is no
longer adequate. Click and Create was a menu based tool from Corel, and its line stops because it does not have
an extension language, and you can only do what is available from the menus and dialog boxes.

audience is an intrinsic part of the design process, and why the process itself is important.
It will have to be applied over and over again, in order to best support the particular
characteristics of the people who will use each new programming system.

3. Survey of Earlier Work

Programmers are often required to think about algorithms and data in ways that are very
different than the ways they already think about them in other contexts. For example,
a typical C program to compute the sum of a list of numbers includes three kinds of
parentheses and three kinds of assignment operators in five lines of code:

sum = 0;
for (i=0; i<numItems; i++) {

sum += items[i];
}
return sum;

In contrast, this can be done in a spreadsheet with a single line of code using the
sum operator (Green and Petre, 1996). The mismatch between the way a programmer
thinks about a solution and the way it must be expressed in the programming lan-
guage makes it more difficult not only for beginners to learn how to program, but also
for people to carry out their programming tasks even after they become more experi-
enced. One of the most common bugs among professional programmers using C and
C++ is the accidental use of “=” (assignment) instead of “==” (equality test). This

NATURAL PROGRAMMING LANGUAGES AND ENVIRONMENTS 35

mistake is easy to make and difficult to find, not only because of typographic similarity,
but also because the “=” operator does indeed mean equality in other contexts such as
mathematics.

Soloway et al. (1989) found that the looping control structures provided by modern
languages do not match the natural strategies that most people bring to the programming
task. Furthermore, when novices are stumped they try to transfer their knowledge of
natural language to the programming task. This often results in errors because the
programming language defines these constructs in an incompatible way (Bonar and
Soloway, 1989). For example, “then” is interpreted as meaning “afterwards” instead of
“in these conditions.”

One of the biggest challenges for new programmers is to gain an accurate under-
standing of how computation takes place. Traditionally, programming is described to
beginners in completely unfamiliar terms, often based on the von Neumann model,
which has no real-world counterpart (du Boulay, 1989; du Boulay et al., 1989). Begin-
ners must learn, for example, that the program follows special rules of control flow for
procedure calls and returns. There are complex rules that govern the lifetimes of vari-
ables and their scopes. Variables may not exist at all when the program is not running,
and during execution they are usually invisible, forcing the programmer to use print
statements or debuggers to inspect them. This violates the principle of visibility, and
contributes to a general problem of memory overload (Anderson and Jeffries, 1985;
Davies, 1993).

Usability could be enhanced by providing a different model of computation that uses
concrete and familiar terms (Mayer, 1989; Smith et al., 1994). Using a different model
of computation can have broad implications beyond beginners, because the model
influences, and perhaps limits, how experienced programmers think about and describe
computation (Stein, 1999).

In the 1970s, Miller (1974; 1981) examined natural language procedural instruc-
tions generated by non-programmers and made a rich set of observations about how
the participants naturally expressed their solutions. This work resulted in a set of rec-
ommended features for computer languages. For example, Miller suggested that con-
textual referencing would be a useful alternative to the usual methods of locating
data objects by using variables and traversing data structures. In contextual refer-
encing, the programmer identifies data objects by using pronouns, ordinal position,
salient or unique features, relative referencing, or collective referencing (Miller, 1981,
p 213).

Although Miller’s approach provided many insights into the natural tendencies of
non-programmers, there have only been a few studies that have replicated or extended
that work. Biermann et al. (1983) confirmed that there are many regularities in the
way people express step-by-step natural language procedures, suggesting that these
regularities could be exploited in programming languages. Galotti and Ganong (1985)
found that they were able to improve the precision in users’ natural language specifi-
cations by ensuring that the users understood the limited intelligence of the recipient
of the instructions. Bonar and Cunningham (1988) found that when users translated

36 JOHN F. PANE AND BRAD A. MYERS

their natural-language specifications into a programming language, they tended to use
the natural-language semantics even when they were incorrect for the programming
language. It is surprising that the findings from these studies have apparently had little
impact on the designs of new programming languages that have been invented since
then.

4. Initial User Studies

We conducted two studies that were loosely based on Miller’s work, to examine the
language and structure that children and adults naturally use before they have been
exposed to programming. A risk in designing these studies is that the experimenter
could bias the participants with the language used in asking the questions. For example,
the experimenter cannot just ask: “How would you tell the monsters to turn blue when
the PacMan eats a power pill?” because this may lead the participants to simply parrot
parts of the question back in their answers. This would defeat the prime objective of
these studies, which is to examine users’ unbiased responses. Therefore our materials
were constructed with great care to minimize this kind of bias, with terse descriptions
and graphical depictions of the problem scenarios.

In our studies, participants were presented with programming tasks and asked to
solve them on paper using whatever diagrams and text they wanted to use. Before
designing the tasks, a list of essential programming techniques and concepts was enu-
merated, covering various kinds of applications. These include: use of variables, assign-
ment of values, initialization, comparison of values, Boolean logic, incrementing and
decrementing of counters, arithmetic, iteration and looping, conditionals and other flow
control, searching and sorting, animation, multiple things happening simultaneously
(parallelism), collisions and interactions among objects, and response to user input.

Because children often express interest in creating games and animated stories, the
first study focused on the skills that are necessary to build such programs. In this study,
the PacMan video game was chosen as a fertile source of interesting problems that
require these skills. Instead of asking the participants to implement an entire PacMan
game, various situations were selected from the game because they touch upon one or
more of the above concepts. This allowed a relatively small set of exercises to broadly
cover as many of the concepts as possible in the limited amount of time available. Many
of the skills that were not covered in the first study were covered in a second study,
which used a set of spreadsheet-like tasks involving database manipulation and numeric
computation.

A set of nine scenarios from the PacMan game were chosen, and graphical depic-
tions of these scenarios were developed, containing still images or animations and a
minimal amount of text. The topics of the scenarios were: an overall summary of the
game, how the user controls PacMan’s actions, PacMan’s behavior in the presence and
absence of other objects such as walls, what should happen when PacMan encounters
a monster under various conditions, what happens when PacMan eats a power pill,

NATURAL PROGRAMMING LANGUAGES AND ENVIRONMENTS 37

Figure 3.2. Depiction of a problem scenario in study one.

scorekeeping, the appearance and disappearance of fruit in the game, the completion
of one level and the start of the next, and maintenance of the high score list. Figure 3.2
shows one of the scenario depictions. Figure 3.3 shows excerpts from participants’
solutions.

We developed a rating form to be used by independent analysts to classify each
participant’s responses (Figure 3.4). Each question on the form addressed some facet
of the participant’s problem solution, such as the way a particular word or phrase was
used, or some other characteristic of the language or strategy that was employed.

Each question was followed by several categories into which the participant’s re-
sponses could be classified. The analyst was instructed to look for relevant sentences in
the participant’s solution, and classify each one by placing a tick mark in the appropriate
category, also noting which problem the participant was answering when the sentence
was generated. Each question also had an “other” category, which the rater marked
when the participant’s utterance did not fall into any of the supplied categories. When
they did this, they added a brief comment.

To see whether the observations from the first study would generalize to other do-
mains and other age groups, a second study was conducted. This study used database
access scenarios that are more typical of business programming tasks, and was admin-
istered to a group of adults as well as a group of children.

38 JOHN F. PANE AND BRAD A. MYERS

Figure 3.3. Excerpts from participants’ solutions to problems from Study 1.

Some observations from these studies were:

� An event-based or rule-based structure was often used, where actions were taken
in response to events. For example, “when pacman loses all his lives, its game
over.”

NATURAL PROGRAMMING LANGUAGES AND ENVIRONMENTS 39

3. Please count the number of times the student uses these various
methods to express concepts about multiple objects. (The situation
where an operation affects some or all of the objects, or when
different objects are affected differently.)

a) 1___ 2___ 3___ 4___ 5___ 6___ 7___ 8___ 9___
Thinks of them as a set or subsets of entities and operates on those,
or specifies them with plurals.
Example: Buy all of the books that are red.

b) 1___ 2___ 3___ 4___ 5___ 6___ 7___ 8___ 9___
Uses iteration (i.e. loop) to operate on them explicitly.
Example: For each book, if it is red, buy it.

c) 1___ 2___ 3___ 4___ 5___ 6___ 7___ 8___ 9___
Other (please specify) ____________________________

Figure 3.4. A question from the rating form for study one. The nine blanks on each line correspond to the nine
tasks that the participants solved.

� Aggregate operations, where a set of objects is acted upon all at once, were used
much more often than iteration through the set to act on the objects individually.
For example, “Move everyone below the 5th place down by one.”

� Participants did not construct complex data structures and traverse them, but
instead performed content-based queries to obtain the necessary data when needed.
For example, instead of maintaining a list of monsters and iterating through the
list checking the color of each item, they would say “all of the blue monsters.”

� A natural language style was used for arithmetic expressions. For example, “add
100 to score.”

� Objects were expected to automatically remember their state (such as motion), and
the participants only mentioned changes in this state. For example, “if pacman
hits a wall, he stops.”

� Operations were more consistent with list data structures than arrays. For example,
the participants did not create space before inserting a new object into the middle
of a list.

� Participants rarely used Boolean expressions, but when they did they were likely
to make errors. That is, their expressions were not correct if interpreted according
to the rules of Boolean logic used in most programming languages.

� Participants often drew pictures to sketch out the layout of the program, but re-
sorted to text to describe actions and behaviors.

Additional details about these studies were reported by Pane et al. (2001).

5. Studying the Construction of Sets

Because operations on groups of objects and content-based queries were prevalent in
non-programmers’ problem solutions, we began to explore how this might be supported

40 JOHN F. PANE AND BRAD A. MYERS

Figure 3.5. Match forms expressing the query:(blue and not square) or (circle and not green).

in a programming language. Queries are usually specified with Boolean expressions,
and the accurate formulation of Boolean expressions has been a notorious problem in
programming languages, as well as other areas such as database query tools (Hildreth,
1988; Hoc, 1989). In reviewing prior research we found that there are few prescriptions
for how to solve this problem effectively. For example, prior work suggests avoiding
the use of the Boolean keywords AND, OR, and NOT (Greene et al., 1990; McQuire
and Eastman, 1995; Michard, 1982), but does not recommend a suitable replacement
query language.

Therefore we conducted a new study to examine the ways untrained children and
adults naturally express and interpret queries, and to test a new tabular query form that
we designed.

Although some graphical query methods had been shown to be more effective than
Boolean expressions, many of them were limited to expressing very simple queries. We
wanted a solution that is fully expressive. Also, many of the graphical systems would not
integrate well into a programming language, where the entire computer screen cannot
be devoted to this one subtask of the programming process. We required a format that is
compact and readable in the context of a larger program. With these points in mind, we
designed a tabular form that is fully expressive and compatible with the programming
language we were developing.

Since we were planning to represent data on cards containing attribute-value pairs
in the HANDS programming language, we designed the query form to also use a card
metaphor. For the purposes of this study, we simplified the forms by leaving out the
attribute names, and limiting the number of terms to three. We called these match
forms (see Figure 3.5). Each match form contains a vertical list of slots. Conjunction
is specified by placing terms into these slots, one term per slot. Negation is performed
by prefacing a term with the NOT operator, and disjunction is specified by placing
additional match forms adjacent to the first one. This design avoids the need to name
the AND and OR operators, provides a clear distinction between conjunction and dis-
junction, and makes grouping explicit. Match forms are compact enough to be suitable
for incorporation into programming systems.

The study used a grid of nine colored shapes, where a subset of the shapes could be
marked (see Figure 3.6). Children and adults who participated in this study were given
two kinds of problems: code generation problems, where some shapes were already

NATURAL PROGRAMMING LANGUAGES AND ENVIRONMENTS 41

Figure 3.6. Sample problem from the study. In this problem, the participant is asked to write a textual query to
select the objects that are marked. The color of each object is red, green, or blue on the computer screen.

marked and they had to formulate a query to select them; and code interpretation
problems, where they were shown a query and had to mark the shapes selected by the
query. They solved all of these problems twice, once using purely textual queries, and
once using match forms.

The results suggest that a tabular language for specifying Boolean expressions can
improve the usability of a programming or query language. On code generation tasks,
the participants performed significantly better using the tabular form, while on code
interpretation tasks they performed about equally in the textual and tabular condi-
tions. The study also uncovered systematic patterns in the ways participants interpreted
Boolean expressions, which contradict the typical rules of evaluation used by program-
ming languages. These observations help to explain some of the underlying reasons
why Boolean expressions are so difficult for people to use accurately, and suggest that
refining the vocabulary and rules of evaluation might improve the learnability and us-
ability of textual query languages. A general awareness of these contradictions can
help designers of future query systems adhere to the HCI principle to speak the user’s
language (Nielsen, 1994). Additional details about this study were reported by Pane
and Myers (2000).

6. Hands Environment and Language

The next step was to design and implement HANDS, our new programming language
and environment. The various components of this system were designed in response to
the observations in our studies as well as prior work:

42 JOHN F. PANE AND BRAD A. MYERS

� Beginners have difficulty learning and understanding the highly-detailed, abstract,
and unfamiliar concepts that are introduced to explain how most programming
languages work. HANDS provides a simple concrete model based on the familiar
idea of a character sitting at a table, manipulating cards.

� Beginners have trouble remembering the names and types of variables, understand-
ing their lifetimes and scope, and correctly managing their creation, initialization,
destruction, and size, all of which are governed by abstract rules in most pro-
gramming languages. In HANDS, all data are stored on cards, which are familiar,
concrete, persistent, and visible. Cards can expand to accommodate any size of
data, storage is always initialized, and types are enforced only when necessary,
such as when performing arithmetic.

� Most programming languages require the programmer to plan ahead to create,
maintain, and traverse data structures that will give them access to the program’s
data. Beginners do not anticipate the need for these structures, and instead prefer
to access their data through content-based retrieval as needed. HANDS directly
supports queries for content-based data retrieval.

� Most programming languages require the programmer to use iteration when per-
forming operations on a group of objects. However, the details of iteration are
difficult for beginners to implement correctly, and furthermore, beginners prefer
to operate on groups of objects in aggregate instead of using iteration. HANDS
uniformly permits all operations that can be performed on single objects to also
be performed on lists of objects, including the lists returned by queries.

� Despite a widespread expectation that visual languages should be easier to use than
textual languages, the prior work finds many situations where the opposite is true
(Blackwell, 1996; Green and Petre, 1992; Whitley, 1997). In our studies, pictures
were often used to describe setup information, but then text was used to describe
dynamic behaviors. HANDS supports this hybrid approach, by permitting objects
to be created and set up by direct manipulation but requiring most behaviors to
be specified with a textual language. This design assumes that the environment
will provide syntax coloring and other assistance with syntax. These features are
commonly available in programming environments, but re-implementing them in
HANDS was beyond the scope of our work.

� Programming language syntax is often unnatural, laden with unusual punctuation,
and in conflict with expectations people bring from their knowledge in other
domains such as mathematics. The HANDS language minimizes punctuation
and has a more natural syntax that is modeled after the language used by non-
programmers in our studies.

� The prior research offers few recommendations about which programming
paradigm might be most effective for beginners (imperative, declarative, func-
tional, event-based, object-oriented, etc.). In our studies of the natural ways be-
ginners expressed problem solutions, an event-based paradigm was observed most
often, and program entities were often treated with some object oriented features.
HANDS therefore uses an event-based paradigm. Cards are the primary data

NATURAL PROGRAMMING LANGUAGES AND ENVIRONMENTS 43

structure, and they have some object-like properties: they are global, named, en-
capsulated, persistent, and have some autonomous behaviors.

� The prior work recommends that programming systems should provide high-level
support for the kinds of programs people will build, so they do not have to assemble
more primitive features to accomplish their goals. In our interviews with children,
they said they wanted to create interactive graphical programs like the games and
simulations they use every day. HANDS provides domain-specific support for this
kind of program.

All of these observations have influenced the design of HANDS. HANDS uses an
event-based language that features a new concrete model for computation, provides
queries and aggregate operators that match the way non-programmers express problem
solutions, has high-visibility of program data, and includes domain-specific features
for the creation of interactive animations and simulations.

6.1. COMPUTATIONAL MODEL

In HANDS, the computation is represented as an agent named Handy, sitting at a table
manipulating a set of cards (see Figure 3.7). All of the data in the system is stored on

Figure 3.7. The HANDS system portrays the components of a program on a round table. All data are stored on
cards, and the programmer inserts code into Handy’s thought bubble at the upper left corner. When the play button
is pressed, Handy begins responding to events by manipulating cards according to the instructions in the thought
bubble.

44 JOHN F. PANE AND BRAD A. MYERS

these cards, which are global, persistent and visible on the table. Each card has a unique
name, and an unlimited set of name-value pairs, called properties. The program itself is
stored in Handy’s thought bubble. To emphasize the limited intelligence of the system,
Handy is portrayed as an animal—like a dog that knows a few commands—instead of
a person or a robot that could be interpreted as being very intelligent.1

6.2. PROGRAMMING STYLE AND MODEL OF EXECUTION

HANDS is event-based, the programming style that most closely matches the problem
solutions in our studies. A program is a collection of event handlers that are automati-
cally called by the system when a matching event occurs. Inside an event handler, the
programmer inserts the code that Handy should execute in response to the event. For
example, this event handler would be run if the system detects a collision between a
bee and flower, changing the speed value on the bee’s card:

when any bee collides into any flower
set the bee's speed to 0

end when

6.3. AGGREGATE OPERATIONS

In our studies, we observed that the participants used aggregate operators, manipulating
whole sets of objects in one statement rather than iterating and acting on them individ-
ually. Many languages force users to perform iteration in situations where aggregate
operations could accomplish the task more easily (Miller, 1981). Requiring users to
translate a high-level aggregate operation into a lower-level iterative process violates
the principle of closeness of mapping.

HANDS has full support for aggregate operations. All operators can accept lists as
well as singletons as operands. For example, all of the following are legal operations in
HANDS:

1 + 1 evaluates to 2
1 + (1,2,3) evaluates to 2,3,4
(1,2,3) + 1 evaluates to 2,3,4
(1,2,3) + (2,3,4) evaluates to 3,5,7

6.4. QUERIES

In our studies, we observed that users do not maintain and traverse data structures.
Instead, they perform queries to assemble lists of objects on demand. For example, they
say “all of the blue monsters.” HANDS provides a query mechanism to support this.

1 HANK (Mulholland & Watt, 2000) is another end-user programming system where the program is represented
as a set of cards and an agent was represented by a cartoon dog in early prototypes. The resemblance of HANDS
to HANK is coincidental.

NATURAL PROGRAMMING LANGUAGES AND ENVIRONMENTS 45

Figure 3.8. When the system evaluates the query allflowers it returns orchid, rose, tulip.

The query mechanism searches all of the cards for the ones matching the programmer’s
criteria.

Queries begin with the word “all.” If a query contains a single value, it returns all
of the cards that have that value in any property. Figure 3.8 contains cards representing
three flowers and a bee to help illustrate the following queries.

all flowers evaluates to orchid, rose, tulip
all bees evaluates to bumble
all snakes evaluates to the empty list

HANDS permits more complex queries to be specified with traditional Boolean
expressions, however the intention is to eventually incorporate match forms into the
system as an option for specifying and displaying queries.

Queries and aggregate operations work in tandem to permit the programmer to
concisely express actions that would require iteration in most languages. For example,

set the nectar of all flowers to 0

6.5. DOMAIN-SPECIFIC SUPPORT

HANDS has domain-specific features that enable programmers to easily create highly-
interactive graphical programs. For example, the system’s suite of events directly sup-
ports this class of programs. The system automatically detects collisions among objects
and generates events to report them to the programmer. It also generates events in re-
sponse to input from the user via the keyboard and mouse. It is easy to create graphical
objects and text on the screen, and animation can be accomplished without any pro-
gramming.

7. Evaluation of the Hands Environment and Language

7.1. USER STUDY

To examine the effectiveness of three key features of HANDS—queries, aggregate
operations, and data visibility—we conducted a study comparing the system with a
limited version that lacks these features. In the limited version, programmers could
achieve the same results but had to use more traditional programming techniques. For

46 JOHN F. PANE AND BRAD A. MYERS

example, in this limited version aggregate operations were not available, so iteration
was required to act upon a list of objects.

Volunteers were recruited from a fifth-grade class at a public school to participate in
the study. The 23 volunteers ranged in age from 9 to 11 years old. There were 12 girls
and 11 boys. All were native speakers of English, and none had computer programming
experience. They came to a university campus on a Saturday morning for a three-hour
session. 12 of the children used HANDS and 11 used the limited version of the system.

The HANDS users learned the system by working through a 13-page tutorial. A
tutorial for the limited-feature version was identical except where it described a feature
that was missing in the limited system. In those places, the tutorial taught the easiest way
to accomplish the same effect using features that remained. These changes increased
the length of the tutorial slightly, to 14 pages. After working through the tutorial, the
children attempted to solve five programming tasks.

In this three-hour session, the children using HANDS were able to learn the sys-
tem, and then use it to solve programming problems. Children using the full-featured
HANDS system performed significantly better than their peers who used the reduced-
feature version. The HANDS users solved an average of 2.1 programming problems,
while the children using the limited version were able to solve an average of 0.1 prob-
lems (p<.05). This provides evidence that the three key features improve usability over
the typical set of features in programming systems. Additional details about this study
were reported by Pane and Myers (2002).

7.2. DISCUSSION

The ease with which these children were able to learn the system and use it to solve
tasks suggests that HANDS is a gentle slope system; or, at least its curve has a gentle
slope near the origin of the sophistication-difficulty chart (Figure 3.1). The system
has a broad range of capabilities. Adults have used it to create interactive games and
scientific simulations, as well as solutions to classical computer science problems such
as Towers of Hanoi and the computation of prime numbers. However, additional testing
is necessary to see how far the gentle slope persists, and, if there are any walls, where
and how high they are.

Although HANDS was designed for children, we expect that many of its features
are generally useful for end-user developers of all ages. This is because most of the
factors that drove the design of HANDS (see section 6) were general to beginners and
not specific to children. Anecdotally, several of the features of HANDS are attractive
to highly experienced programmers; however we have not gathered any empirical
evidence on whether this design is generally suitable for programmers across all levels
of experience.

HANDS was designed to support the domain of highly interactive graphical pro-
grams. HANDS is not well suited to problems outside this domain, such as word
processing, technical drawing, or web browsing. It is lacking domain-specific features
such as text layout support; and features of HANDS such as collision detection may

NATURAL PROGRAMMING LANGUAGES AND ENVIRONMENTS 47

have little use in these other domains. However, the natural programming design pro-
cess could be used to design other systems to support any of these domains. Since most
of the underlying computational features, such as queries and aggregate operations, are
not domain-specific, they are likely to be important features of these other systems as
well.

8. Current Work

Understanding of code and debugging are significant areas of difficulty for novices
(du Boulay, 1989), but somewhat surprisingly, there has been little advancement in
the tools to help with these problems. Even environments aimed at novices have few
facilities to help with debugging. For example, systems such as MacroMedia’s Director
and Flash, Microsoft’s Visual Basic, and general-purpose programming environments
like MetroWerks’ CodeWarrior and Microsoft’s Visual C++, all provide basically the
same debugging techniques that have been available for 60 years: breakpoints, print
statements and showing the values of variables. In contrast, the questions that pro-
grammers need to answer are at a much higher level. Our current work is investigating
what questions are the most natural for users to ask when they are trying to under-
stand and debug their code. Our initial user studies (Ko and Myers, 2003) have shown
that often, users are trying to find the answers to “why” and “why not” questions
such as:

� Why did the object become invisible?
� Why does nothing happen when I click on this button?
� What happened to my graphical object?
� Where did this value get set?

We are now developing new tools that will allow users to ask such questions directly
in the programming environment while debugging. We are conducting user studies to
evaluate to what extent the tools enable users to ask questions in a natural way, and
to determine what kinds of code and data visualizations will provide the most helpful
answers (Ko and Myers, 2004).

9. Conclusions

While making programming languages and environments more natural may be con-
troversial when aimed at professional programmers, it has significant importance for
end-user development. In addition to supplying new knowledge and tools directly, the
human-centered approach followed by the Natural Programming project provides a
methodology that can be followed by other developers and researchers when designing
their own languages and environments. We believe this will result in more usable and
effective tools that allow both end-users and professionals to write more useful and
correct programs.

48 JOHN F. PANE AND BRAD A. MYERS

Acknowledgments

This research has been funded in part by the National Science Foundation under grants
IRI-9900452 and IIS-0329090, and as part of the EUSES Consortium under grant ITR-
0325273. Any opinions, findings and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect those of the National
Science Foundation.

References

Anderson, J.R. and Jeffries, R. (1985). Novice LISP errors: Undetected losses of information from
working memory. Human–Computer Interaction, 1, 107–131.

Biermann, A.W., Ballard, B.W. and Sigmon, A.H. (1983). An experimental study of natural language
programming. International Journal of Man–Machine Studies, 18(1), 71–87.

Blackwell, A.F. (1996). Metacognitive theories of visual programming: What do we think we are
doing? In: Proceedings of the VL’96 IEEE Symposium on Visual Languages. Boulder, CO: IEEE
Computer Society Press, pp. 240–246.

Bonar, J. and Cunningham, R. (1988). Bridge: Tutoring the programming process. In: J. Psotka, L.D.
Massey and S.A. Mutter (eds.), Intelligent Tutoring Systems: Lessons Learned. Hillsdale, NJ:
Lawrence Erlbaum Associates, pp. 409–434.

Bonar, J. and Soloway, E. (1989). Preprogramming knowledge: A major source of misconceptions in
novice programmers. In E. Soloway and J.C. Spohrer (eds.), Studying the Novice Programmer.
Hillsdale, NJ: Lawrence Erlbaum Associates, pp. 325–353.

Davies, S.P. (1993). Externalising information during coding activities: Effects of expertise, envi-
ronment and task. In: C.R. Cook, J.C. Scholtz and J.C. Spohrer (eds.), Empirical Studies of
Programmers: Fifth Workshop. Palo Alto, CA: Ablex Publishing Corporation, pp. 42–61.

du Boulay, B. (1989). Some difficulties of learning to program. In E. Soloway and J.C. Spohrer (eds.),
Studying the Novice Programmer. Hillsdale, NJ: Lawrence Erlbaum Associates, pp. 283–299.

du Boulay, B., O’Shea, T. and Monk, J. (1989). The black box inside the glass box: Presenting
computing concepts to novices. In E. Soloway and J.C. Spohrer (eds.), Studying the Novice
Programmer. Hillsdale, NJ: Lawrence Erlbaum Associates, pp. 431–446.

Galotti, K.M. and Ganong, W.F. III. (1985). What non-programmers know about programming:
Natural language procedure specification. International Journal of Man-Machine Studies, 22,
1–10.

Green, T.R.G. and Petre, M. (1992). When visual programs are harder to read than textual programs.
In: G.C. van der Veer, M.J. Tauber, S. Bagnarola and M. Antavolits (eds.), Human–Computer
Interaction: Tasks and Organisation, Proceedings of ECCE-6 (6th European Conference on
Cognitive Ergonomics). Rome: CUD.

Green, T.R.G. and Petre, M. (1996). Usability analysis of visual programming environments: A
‘Cognitive Dimensions’ framework. Journal of Visual Languages and Computing, 7(2), 131–174.

Greene, S.L., Devlin, S.J., Cannata, P.E. and Gomez, L.M. (1990). No IFs, ANDs, or ORs: A study
of database querying. International Journal of Man–Machine Studies, 32(3), 303–326.

Hildreth, C. (1988). Intelligent interfaces and retrieval methods for subject search in bibliographic
retrieval systems. In Research, Education, Analysis and Design. Springfield, IL.

Hix, D. and Hartson, H.R. (1993). Developing User Interfaces: Ensuring Usability Through Product
and Process. New York, New York: John Wiley & Sons, Inc.

Hoc, J.-M. (1989). Do we really have conditional statements in our brains? In: E. Soloway and J.C.
Spohrer (eds.), Studying the Novice Programmer. Hillsdale, NJ: Lawrence Erlbaum Associates,
pp. 179–190.

NATURAL PROGRAMMING LANGUAGES AND ENVIRONMENTS 49

Hoc, J.-M. and Nguyen-Xuan, A. (1990). Language semantics, mental models and analogy. In J.-M.
Hoc, T.R.G. Green, R. Samurçay and D.J. Gilmore (eds.), Psychology of Programming. London:
Academic Press, pp. 139–156.

Hutchins, E.L., Hollan, J.D. and Norman, D.A. (1986). Direct manipulation interfaces. In D.A. Norman
and S.W. Draper (eds.), User Centered System Design: New Perspectives on Human–Computer
Interaction. Hillsdale, NJ: Lawrence Erlbaum Associates.

Ko, A.J. and Myers, B.A. (2003). Development and evaluation of a model of programming errors.
In: Proceedings of IEEE Symposia on Human-Centric Computing Languages and Environments.
Auckland, New Zealand. pp. 7–14.

Ko, A.J. and Myers, B.A. (2004). Designing the Whyline: A debugging interface for asking questions
about program behavior. In Proceedings of CHI 2004 Conference on Human Factors in Computing
Systems. Vienna, Austria: ACM Press, pp. 151–158.

MacLean, A., Carter, K., Lövstrand, L. and Moran, T.P. (1990). User-tailorable systems: Pressing the
issues with buttons. In J.C. Chew and J. Whiteside (eds.), Proceedings of CHI’90 Conference on
Human Factors in Computing Systems. Seattle, WA: ACM Press, pp. 175–182.

Mayer, R.E. (1989). The psychology of how novices learn computer programming. In E. Soloway
and J.C. Spohrer (eds.), Studying the Novice Programmer. Hillsdale, NJ: Lawrence Erlbaum
Associates, pp. 129–159.

McQuire, A. and Eastman, C.M. (1995). Ambiguity of negation in natural language queries. In Pro-
ceedings of the 18th Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval. Seattle, WA: ACM Press, p. 373.

Michard, A. (1982). Graphical presentation of Boolean expressions in a database query language:
Design notes and an ergonomic evaluation. Behaviour and Information Technology 1(3), 279–288.

Miller, L.A. (1974). Programming by non-programmers. International Journal of Man—Machine
Studies 6(2), 237–260.

Miller, L.A. (1981). Natural language programming: styles, strategies, and contrasts. IBM Systems
Journal 20(2), 184–215.

Mulholland, P. and Watt, S.N.K. (2000). Learning by building: A visual modelling language for
psychology students. Journal of Visual Languages and Computing 11(5), 481–504.

Myers, B.A. (1992). Demonstrational interfaces: A step beyond direct manipulation. IEEE Computer
25(8), 61–73.

Myers, B.A., Smith, D.C. and Horn, B. (1992). Report of the ‘End User Programming’ working group.
In Languages for Developing User Interfaces. Boston, MA: Jones and Bartlett.

Nielsen, J. (1993). Usability Engineering. Chestnut Hill, MA: AP Professional.
Nielsen, J. (1994). Heuristic evaluation. In J. Nielsen and R.L. Mack (eds.), Usability Inspection

Methods. New York: John Wiley & Sons, pp. 25–62.
Norman, D.A. (1986). Cognitive engineering. In D.A. Norman and S.W. Draper (eds.), User Centered

System Design: New Perspectives on Human–Computer Interaction. Hillsdale, NJ: Lawrence
Erlbaum Associates.

Pane, J.F. (2002). A Programming System for Children that is Designed for Usability. Ph.D. Thesis,
Carnegie Mellon University, Pittsburgh, PA.

Pane, J.F. and Myers, B.A. (2000). Tabular and textual methods for selecting objects from a group.
In Proceedings of VL 2000: IEEE International Symposium on Visual Languages. Seattle, WA:
IEEE Computer Society, pp. 157–164.

Pane, J.F. and Myers, B.A. (2002). The impact of human-centered features on the usability of a
programming system for children. In CHI 2002 Extended Abstracts: Conference on Human
Factors in Computing Systems. Minneapolis, MN: ACM Press, pp. 684–685.

Pane, J.F., Ratanamahatana, C.A. and Myers, B.A. (2001). Studying the language and structure in non-
programmers’ solutions to programming problems. International Journal of Human–Computer
Studies 54(2), 237–264.

50 JOHN F. PANE AND BRAD A. MYERS

Shneiderman, B. (1983). Direct manipulation: A step beyond programming languages. IEEE Com-
puter, 16(8), 57–69.

Smith, D.C., Cypher, A. and Schmucker, K. (1996). Making programming easier for children. Inter-
actions 3(5), 59–67.

Smith, D.C., Cypher, A. and Spohrer, J. (1994). KidSim: Programming agents without a programming
language. Communications of the ACM 37(7), 54–67.

Soloway, E., Bonar, J. and Ehrlich, K. (1989). Cognitive strategies and looping constructs: An empirical
study. In: E. Soloway and J.C. Spohrer (eds.), Studying the Novice Programmer. Hillsdale, NJ:
Lawrence Erlbaum Associates, pp. 191–207.

Stein, L.A. (1999). Challenging the computational metaphor: Implications for how we think. Cyber-
netics and Systems 30(6), 473–507.

Whitley, K.N. (1997). Visual programming languages and the empirical evidence for and against.
Journal of Visual Languages and Computing, 8(1), 109–142.

Chapter 4

What Makes End-User Development Tick?
13 Design Guidelines

ALEXANDER REPENNING1 AND ANDRI IOANNIDOU2

1University of Colorado at Boulder and AgentSheets Inc., alexander@agentsheets.com
2AgentSheets Inc., andri@agentsheets.com

Abstract. End-user development (EUD) has enormous potential to make computers more useful in
a large variety of contexts by providing people without any formal programming training increased
control over information processing tasks. This variety of contexts poses a challenge to EUD system
designers. No individual system can hope to address all of these challenges. The field of EUD is likely
to produce a plethora of systems fitting specific needs of computer end-users. The goal of this chapter
is not to advocate a kind of universal EUD system, but to cut across a variety of application domains
based on our experience with the AgentSheets end-user simulation-authoring tool. We have pioneered
a number of programming paradigms, experienced a slew of challenges originating in different user
communities, and evolved EUD mechanisms over several years. In this chapter we present design
guidelines that cut across this vast design space by conceptualizing the process of EUD as a learning
experience. Fundamentally, we claim that every EUD system should attempt to keep the learning
challenges in proportion to the skills end-users have. By adopting this perspective, EUD can actively
scaffold a process during which end-users pick up new EUD tools and gradually learn about new
functionality. We structure these design guidelines in accordance to their syntactic, semantic, and
pragmatic nature of support offered to end-users.

Key words. agents, end-user programming, graphical rewrite rules, programming by example, visual
programming.

1. Introduction

The fundamental aim of end-user development (EUD) (Klann, 2003; Paternò, 2003) is to
empower users to gain more control over their computers by engaging in a development
process. The users we have in mind, called end-users, are typically not professional
software developers. End-users employ pre-existing computer applications to achieve a
variety of goals. They may be using email and browser applications to communicate with
other users, word processors to write books, graphics applications to create computer
art. Often, to make these applications truly useful, end-users may have to adapt these
applications to their specific needs. Adaptation may assume many forms ranging from
simple forms such as changing preference settings of applications, to more complex
forms such as writing filtering rules for email applications or defining formulas for
spreadsheets. The need to enable these more complex forms of adaptation is quickly
increasing for various reasons. For instance, browsers are used to access quickly growing
information spaces. Only the end-users of an application, not the developers of that

Henry Lieberman et al. (eds.), End User Development, 51–85.
C© 2006 Springer.

52 ALEXANDER REPENNING AND ANDRI IOANNIDOU

application, can decide on how to deal with all this information. Application developers
can no longer anticipate all the needs of end-users. This discrepancy between what
application developers can build and what individual end-users really need can be
addressed with EUD.

The term EUD is relatively new, but it stems from the field of End-User Program-
ming: (EUP) (Bell and Lewis, 1993; Cypher, 1993; Eisenberg and Fischer, 1994; Fischer
and Girgenson, 1990; Ioannidou and Repenning, 1999; Jones, 1995; Lieberman, 2001;
Nardi, 1993; Pane and Myers, 1996; Rader et al., 1998; Repenning and Sumner, 1995).
The shift from “programming” to “development” reflects the emerging awareness that,
while the process of adapting a computer to the needs of a user may include some form
of programming, it certainly is not limited to it. In that sense, most of the research
questions from EUP carry over to EUD but because of the widened scope of EUD
new issues need to be explored. EUD is of relevance to potentially large segments
of the population including most end-users of traditional computer applications but
also of information technology associated with ubiquitous computing. How, then, can
the emerging field of EUD provide answers to adaptation challenges including this
wide range of applications, devices, contexts, and user needs? How can we concep-
tualize this end-user and how can we help to make the process of EUD as simple as
possible?

Focusing initially on the programming aspect of EUD we can benefit from research
areas exploring strategies to make programming simpler. Visual Programming, for
instance, has explored the consequences of replacing traditional, text-based, represen-
tations of programs with more visually oriented forms of representations. An early
period of superlativism ascribing near magical powers to visual programming tried to
polarize visual and textual programming approaches into good and bad. Many instances
were found when textual programming worked just as well as, if not better than, visual
programming (Blackwell, 1996). Gradually, it was recognized that the question of vi-
sual versus textual programming approaches cannot be decided on an class level but
needs to be explored at the level of instances and closely investigated in the context
of actual users and real problems. A number of frameworks have been postulated to
evaluate programming approaches at a much finer level of granularity. The Cognitive
Dimensions framework by Green (Green, 1989; Green and Petre, 1996) introduced 14
cognitive dimensions to compare programming environments. Over time this useful
framework has been extended with additional dimensions and a number of case studies
evaluating and comparing exiting programming environments.

A framework in support of evaluation does not necessarily support the design and
implementation of systems. For this article we like to assume a more prescriptive
position by providing a collection of design guidelines that we collected over a period
of 12 years of developing, using and improving the AgentSheets simulation authoring
tool. The majority of these guidelines emerged from user feedback initially from the
AgentSheets research prototype and later the commercial product. Design intuition may
initially be the only clue on building a system, but it will have to be replaced with real
user experiences to be useful.

END-USER DEVELOPMENT GUIDELINES 53

The process of EUD is about learning. Many different users ranging from elemen-
tary school kids to NASA scientists have used AgentSheets over the years. Trying
to reflect and generalizing over user populations and problem domains we found one
perspective of experience that all of these users had in common. EUP and EUD can be
conceptualized as a learning experience. The process of EUD is not a trivial one. EUD
environments cannot turn the intrinsically complex process of design into a simple one
by employing clever interfaces no matter how intuitive they claim to be. Design cannot
be addressed with walk-up-and-use interfaces (Lewis et al., 1990; Lewis and Rieman,
1993). We found the learning perspective useful because it allowed us to characterize
the end-user as a learner and to create EUD tools in support of learning.

The essence of EUD is, we claim, to scaffold a programming or development tasks as
a learning experience. We can neither make any assumptions on what the problem that
a user tries to solve is nor the usage context. However, we can make some assumptions
about the motivation and background of an end-user. Similar to the person trying to
program a VCR, an end-user developer is not intrinsically motivated to learn about
programming or development processes. Programming is simply a means to an end.
The goal is to record a TV show, not to create a program. The VCR programming
task is not likely to be enjoyed. At the same time an end-user programmer is not likely
to have a computer science background and also not typically be paid to do end-user
programming.

The appearance of an EUD system is largely irrelevant: this is not a question of
visual versus textual programming. What is extremely important is that the EUD system
carefully

1. balances the user’s skill and the challenges posed by a development process; and
2. enables an end-user developer to gradually acquire necessary skills for tackling

development challenges.

In short, it is necessary is to conceptualize the process of EUD as a learning experi-
ence.

1.1. FLOW

A framework that has allowed us to explore design options comes from psychology.
The notion of flow has been introduced by Csikszentmihalyi to analyze motivational
factors in learning (Csikszentmihalyi, 1990). In a nutshell, the idea of flow is that
optimal learning can take place when there is a proportional relationship between the
challenges a task poses and the skills the learner has. Anxiety results if the challenges
outweigh the skills, while boredom results if skills outweigh the challenges (see
flow diagram in Figure 4.1). Assume a really experienced tennis player is matched
up against a beginner. The experienced player exhibits a large amount of skills.
Playing against the beginner will pose little challenge. The beginner, in contrast,
has almost no skills but will certainly perceive playing against the experienced
player to be a high challenge. Putting these values into the diagram we see that the

54 ALEXANDER REPENNING AND ANDRI IOANNIDOU

Figure 4.1. Flow: The zone of optimal flow provides good learning conditions by balancing challenges posed
to users with their skills. End-user programming requires low thresholds but may not necessarily scale well.
Professional programming is less concerned with initial learning.

experienced player is likely to get bored whereas the beginner is likely to enter a state of
anxiety.

We have used the notion of flow during several workshops on end-user programming
to discuss how users gradually learn different end-user programming tools. In the
computer context we look at the programming/development skills a user is likely to
have and compare that to the perceived challenge of using an EUD system. According
to Csikszentmihalyi’s theory the ideal learning situation is established by keeping the
ratio of challenge to skill in the diagonal band of the diagram called optimal flow.

In the Syntactic, Semantic, and Pragmatic Guidelines sections of this article, we will
discuss design guidelines with respect to flow. A specific EUD activity can be concep-
tualized as a single point reflecting development experience and problem complexity
in the flow diagram. More importantly, repeated or long-term use of an EUD system is
captured as arrows indicating a transition in skills and challenge. This transition may
be due to using the same EUD system over time or could also be the result of transfer
from using other systems.

The shape of the skill/challenge transition chains reveals the usability profile of a sys-
tem. A programming environment for professional programmers is significantly differ-
ent from an EUD system. The complexity of a professional programming environment
such as Visual Studio is overwhelming even to new professional programmers. Because
they are paid, however, they are likely to be willing to make a transition through a non-
optimal territory including anxiety. EUD systems typically cannot afford this without
frustrating users. A simple development task for end-users needs to be sufficiently
supported that even low skills will be sufficient to solve simple challenges without the
overhead of a complete computer science education first. In most cases anxiety translates

END-USER DEVELOPMENT GUIDELINES 55

into giving up. Ideally, EUD tools would strive for the goal of a “low-threshold, no ceil-
ing” tool (Papert, 1980). Realistically, a low threshold will probably need to be traded
for scalability. This may be acceptable, since nobody expects end-user programming
environments such as a VCR programming interface to be scalable to the point where
an operating system could be implemented with it.

The majority of our discussion relating design guidelines to flow will be focused on
AgentSheets, since it is the system we have the most experience with. The following
section will provide a brief introduction to AgentSheets sufficient to understand the
design guidelines.

2. Agentsheets

AgentSheets (Ioannidou and Repenning, 1999; Repenning and Ioannidou, 1997;
Repenning and Sumner, 1995; Repenning et al., 1998) initially grew out of the idea
of building a new kind of computational media that allows casual computer users to
build highly parallel and interactive simulations, replacing simple numbers and strings
of spreadsheets with autonomous agents. Adding a spreadsheet paradigm to agents
enabled the manipulation of large numbers of agents and, at the same time, organize
them spatially through a grid. The simulations are used to communicate complex ideas
or to simply serve as games. An early prototype of AgentSheets was built in 1988 to
run on the Connection Machine (a highly parallel computer with 64000 CPUs).

Partially influenced by the spreadsheet paradigm, the AgentSheets agents were de-
signed to feature a rich repertoire of multimodal communication capabilities. Users
should be able to see agents and to interact with them. As more communication chan-
nels became available in mainstream computers, they got added to the repertoire of agent
perceptions and actions. For instance, text-to-speech allowed agents to talk and speech
recognition allowed users to talk to their agents. When the Web started to gain momen-
tum agents got extended to be able to read and interpret data in Web pages (Figure 4.2).

An agentsheet (also called a worksheet) is a grid-structured container of agents.
In contrast to a spreadsheet each cell in an agentsheet may contain any number of
interacting agents stacked on top of each other. The grid allows agents to employ
implicit spatial relations, e.g., adjacency, to communicate with other agents. Table 4.1
shows examples of AgentSheets used for a variety of applications.

Figure 4.2. AgentSheets’ includes multimodal Agents that can perceive and act.

Table 4.1. AgentSheets examples

K-12 Education: Elementary School K-12 Education: High School

Collaborative Learning: Students learn about life science
topics such as food webs and ecosystems by designing their
own animals. The AgentSheets Behavior Exchange is used to
facilitate collaborative animal design. Groups of students put
their animals into shared worlds to study the fragility of their
ecosystems.

Interactive Story Telling: History students create interactive
stories of historical events such as the Montgomery bus boycott.

Training Scientific Modeling

Distance Learning: With SimProzac patients can explore the
relationships among Prozac, the neurotransmitter serotonin,
and neurons. By playing with this simulation in their browsers,
patients get a better sense of what Prozac does than by reading
the cryptic description included with the drug.

Learning by visualization and modeling: The effects of
microgravity onto E.coli bacteria are modeled by NASA. This is
a simulation of an experiment that was aboard the Space Shuttle
with John Glenn. This simulation requires several thousand
agents.

Educational Games Non-Educational Games

Learning through simulation use: This simple voting simulation
explains concepts such as clustering, migration, and stability
of two party systems. Can it predict the outcome of the next
election?

Learning through design: Even if the finished simulation/game
is not directly related to educational goals, the process of
building the simulation may be very educational. The Ultimate
Pacman is a complete game based on complex Artificial
Intelligence algorithms and the non-trivial math of diffusion
processes.

Interactive Illustrations Deconstruction Kits

How does a TV work? This simulation illustrates how a picture
is scanned in by a camera (left), transmitted to a TV set and
converted back in to a picture (right). Users can paint their own
pictures and play with TV signal processing parameters. Learning by taking apart: What makes a bridge stable? The goal

presented to the users of this simulation is to remove as many
elements of the bridge as possible without making the bridge
collapse. A number of connected issues are revealed including
forces, architecture, and geometric perspective. This simulation
was featured on the PBS Mathline.

END-USER DEVELOPMENT GUIDELINES 57

Figure 4.3. A Visual AgenTalk Behavior Editor: Rules can have any number of conditions and actions. Rules are
grouped into methods including triggers defining when and how methods will be invoked.

EUD in AgentSheets consists of creating these applications by defining agent classes
including the definitions of the agent looks, i.e., iconic representations, as well as the
behavior of agents.

The programming part of EUD lies in the specification of agent behavior. Agent
behaviors are rule-based using a language called Visual AgenTalk (VAT) (Repenning
and Ambach, 1996a, 1996b; Repenning and Ioannidou, 1997). VAT is an end-user
programming language that has emerged from several iterations of design, imple-
mentation, and evaluation of previous AgentSheets programming paradigms including
Programming by Example using Graphical Rewrite Rules (GRR), and programming
by analogous examples.

VAT rules are organized as methods including a trigger defining when and how a
method will be executed. Figure 4.3 shows a traffic light agent cycling between green,

58 ALEXANDER REPENNING AND ANDRI IOANNIDOU

yellow, and red. The first method called “While Running” will be triggered once every
simulation cycle. A rule can have any number of conditions and actions. The only rule
of the “While Running” method checks time and calls another method called “Switch”
every 3 seconds. The “Switch” method will advance the traffic light to the next state.
The next color is selected based on the current state of the traffic light. Details on how
end-users program in VAT are discussed in the design guidelines.

This minimalist introduction to AgentSheets is only provided to give the reader on
a quick sense on what AgentSheets is and what type of applications it has been used
for. The focus of this chapter is to provide design guidelines that may help designers
building EUD systems. These design guidelines are intended to provide prescriptive
descriptions of EUD suggestions. These guidelines have emerged from observing peo-
ple using the AgentSheets system. The guidelines are generalized as much as possible
to help designers of systems that have nothing to do with simulation authoring and
programming environments for kids. Nonetheless, AgentSheets examples are included
to provide sufficient substance illustrating concrete problems. Our hope is that while
concrete manifestations of problems may change over time (e.g., new versions of op-
erating systems, GUIs) the guidelines will still hold. In contrast to design patterns
(Alexander et al., 1977; Gamma et al., 1995), the design guidelines not only observe
existing patterns, but also provide descriptive instructions in form of implementation
examples. For simpler reference, we have categorized the design guidelines into syntac-
tic, semantic, and pragmatic. Finally, all guidelines are presented with optimal flowin
mind. The notion of flow can help us—to a certain degree—to design systems that can
be learned.

This list of design guidelines is not by no means exhaustive. No set of design guide-
lines can guarantee the design of a successful EUD system. However, we want to share
these design principles gathered over years of experience from reactions to breakdowns
where actual users showed either anxiety or boredom.

3. Syntactic Guidelines

Syntactic problems of traditional languages, e.g., the frequently mentioned missing
semicolon in programming language such as Pascal or C, pose a challenge to most
beginning programmers for no good reason. This quickly leads to anxiety without
contributing much towards the conceptual understanding of a programming language.
A number of end-user but also professional programming environments have started
to address this problem.

Visual programming (Burnett, 1999; Burnett and Baker, 1994; Glinert, 1987; Smith,
1975) is one such paradigm that attempts to pictorially represent language components
that can be manipulated to create new programs or to modify existing ones. Visual pro-
gramming languages are “a concerted attempt to facilitate the mental processes involved
in programming by exploiting advanced user interface technology” (Blackwell, 1996).
For instance, the visual representation of the language components and constructs often
eliminates the need to remember syntax. Professional programming, not geared towards

END-USER DEVELOPMENT GUIDELINES 59

Figure 4.4. Syntax Coloring in Apple’s Xcode programming tools.

end-users, is following by using approaches that range from making syntactic errors
hard to impossible.

3.1. MAKE SYNTACTIC ERRORS HARD

Syntax coloring of reserved words and symbols in traditional programming language
environments helps the programmer’s perception, which in turn helps in creating syn-
tactically correct programs. Symbol completion in languages such as Lisp, and more
recently C, helps programmers to produce complete and correct symbols already defined
in the programming language, minimizing the possibility of making a typographical
error and therefore a syntax error. Finally, wizards utilizing templates for defining pro-
gram attributes and then generate syntactically correct code, such as the wizard in the
CodeWarrior programming environment, syntactically support programmers.

3.1.1. Example: Apple Xcode Development Environment

Apple’s Xcode developer tool set includes highly customizable syntax coloring
(Figure 4.4) combined with code completion that can be manually or automatically
invoked by a user. Project templates will generate boilerplate code for the user when
creating certain types of projects.

Even with this type of support these tools are only marginally useful to end-users
since they still pose a high challenge and require sophisticated skills such as the ability
to create programs in C.

3.2. MAKE SYNTACTIC ERRORS IMPOSSIBLE

Other programming approaches employ mechanisms that help with the syntactic aspects
of programming in such a way that syntactic errors are essentially impossible.

60 ALEXANDER REPENNING AND ANDRI IOANNIDOU

Figure 4.5. Programming by Example through Graphical Rewrite Rules.

3.2.1. Example: Programming by Example

In Programming by Example (PBE) (Cypher, 1993; Lieberman, 2001) syntactic prob-
lems are avoided by having the computer, not the user, generate programs. A computer
observes what the user is doing and, for repetitive tasks, learns them and ultimately
does them automatically.

An instantiation of the PBE approach is found in AgentSheets’ GRR (Bell and Lewis,
1993). In GRR the program is the result of manipulating the world. As the user interacts
with the computer world, the PBE system observes users and writes the program for
them. The only skill users need to have is the skill to modify a scene. For instance, to
program a train, the user creates examples of how trains interact with their environment
(Figure 4.5). The fact that trains follow train tracks is demonstrated by putting a train
onto a train track, telling the computer to record a rule, and moving the train along
the train track to a new position. The computer records this user action as a pair of
Before/After scenes. To generalize the rule, users will narrow the scope of the rule to
the required minimum and, if necessary, remove irrelevant objects. A tree next to the
train track is likely to be irrelevant and consequently should be removed from the rule,
whereas, a traffic light could be essential to avoid accidents.

PBE works well for EUD from a flow perspective, especially at the beginning. Skills
and challenges are well balanced because programming is achieved by merely manip-
ulate scenes (moving, deleting, and creating objects). However, many PBE systems do
not scale well with problem complexity. Two scenarios are possible.

1. Getting bored: Assume the user wants to create Conway’s “Game of Life.” A first
concrete rule is built quickly but then, in order to implement the entire condition of
n out of m cells alive the user is forced to create all f(n, m) rules since the system
cannot generalize. Using only a medium amount of skill for basically no challenge
(as all rules are simple variants of the first existing one), the user becomes bored.

2. Getting anxious: Assume the user wants to create a situation where numerical dif-
fusion is necessary—for example to illustrate how heat diffuses in a room. The
pure iconic nature of GRR makes them ill suited for implementing such numerical

END-USER DEVELOPMENT GUIDELINES 61

problems. The mismatch of the language and the problem makes the task of imple-
menting diffusion complex. If the complexity of the task increases in a way that the
main programming paradigm gets exhausted, the user is expected to learn some-
thing new that cannot easily be connected or does not fit to the current paradigm.
As a consequence, the challenges soar up disproportionally. The learning curve is
no longer a gentle slope and the end-user programmer leaves the optimal flow area
of the graph and ends up in a state of anxiety (Figure 4.1).

In either of these two cases, the programming paradigm worked well for a short
learning distance, keeping challenges in proportion to skills. But the paradigm reaches
a critical threshold at which either the challenges go way up or the existing skills are
no longer well used. We called this effect “trapped by affordances” (Schneider and
Repenning, 1995).

3.3. USE OBJECTS AS LANGUAGE ELEMENTS

Instead of just representing programming language elements as character strings—the
way it is done in most professional programming language such as C or Java—they
can be represented as complete objects with user interfaces. Visual representations
of these objects (shapes, colors, and animation) may be selected in ways to strongly
suggest how they should be combined into a complete working program. Drag and
drop composition mechanisms including feedback functions can be employed to guide
users. Additionally, language elements may embody user interfaces helping users to
define and comprehend parameters of language elements.

3.3.1. Example: Puzzle Shape Interfaces

One approach to achieve easy program composition was languages that use a com-
positional interfaces for assembling programs from language components with visual
representations. BLOX Pascal uses flat jigsaw-like pieces that can be snapped together
(Glinert, 1987). The BLOX method was one of the first proposals on using the third
dimension for visual programming. While this approach alleviates some syntactic issues
such as correct sequencing of language statements and parameter setting, the BLOX
Pascal language is still, in essence, a professional programming language. End-user
programming languages have been developed with the same philosophy. LEGO Mind-
storms includes an end-user programming environment for kids to program the LEGO
RCX Brick, which can be used to control robotic LEGO creations. The language used
to program the Brick is LEGO RCX Code, which uses a jigsaw puzzle user interface
similar to BLOX Pascal.

3.3.2. Example: AgentSheets VAT

The AgentSheets simulation environment features the Visual AgenTalk (VAT) language
(Repenning and Ambach, 1996a, 1996b; Repenning and Ioannidou, 1997). All language

62 ALEXANDER REPENNING AND ANDRI IOANNIDOU

Figure 4.6. The Visual AgenTalk action palette.

elements (conditions, actions, and triggers) in VAT are predefined and reside in palettes
(Figure 4.6). Using drag and drop, users essentially copy these language elements and
assemble them into complete programs, in if–then forms in an agent’s behavior editor,
such as the one shown in Figure 4.3.

Command parameters, called “type interactors” in AgentSheets, are set by the user
via direct manipulation. For instance, the SEE condition tests for the presence of
an agent with a certain depiction in a specific direction (Figure 4.7). Direction and
depiction are parameters to the command and are both set via direct manipulation.
This is important because, as pointed out by Nardi (1993), the way parameters are
specified can affect the extent to which the programmer must learn language syn-
tax. The integration of parameters that are directly manipulatable, such as the 2D
pop-up dialogs for direction and depiction, elevate the program onto the level of a
user interface combining ideas of form-based interfaces (Nardi, 1993) with end-user
programming.

In terms of flow, an initial price needs to be paid because the end-user is forced to
explicitly deal with programming language constructs. However, direct manipulation
interfaces help to avoid syntactic problems. Aform-based interface includes iconic
representations of object created by the end-user (e.g., drawings of agents). Depending
on the repertoire of the end-user programming language this approach is likely to be
more expressive compared to PBE approaches by allowing the end-user to combine
language constructs in way that could not have been anticipated by a PBE approach.

END-USER DEVELOPMENT GUIDELINES 63

Figure 4.7. SEE condition and its parameters.

4. Semantic Guidelines

The reduction of syntactic problems is a necessary but not sufficient goal of EUD.
The frustration over missing or misplaced semicolons in professional programming
has probably put an early end to many programming careers. However, a program that
is syntactically correct not necessarily an working, meaningful, or efficient program.
Support at the semantic level helps end-users with bridging the conceptual gap between
problems and solutions.

4.1. MAKE DOMAIN-ORIENTED LANGUAGES FOR SPECIFIC EUD

The elements of a programming language are often close to the elements of a natural
language. Using some form of syntax, programming language elements representing
words such as nouns, verbs, and adjectives are aggregated into complete statements. In
early, low level, programming languages these words were typically heavily inspired by
the domain of computers. In assembly programming nouns refers to elements found on

64 ALEXANDER REPENNING AND ANDRI IOANNIDOU

the CPU such as registers and verbs refer to instructions at the CPU level such as “load.”
Modern high-level languages have replaced references to low-level technological details
with more general concepts such as data structures (e.g., integer, floats, structures,
objects). But even this level is difficult for end-user developers. Correlating concepts
relevant to a certain application with elements of a generic language can be a large
challenge. Nardi suggest the use of task-specific programming languages (Nardi, 1993)
as means to reduce this correlation effort. Along a similar vein Eisenberg and Fischer
postulate the use of domain-oriented programming languages (Eisenberg and Fischer,
1994). A good example of such a domain-oriented programming environment was the
pinball construction kit that allowed people not only to play a simulated pinball game
but also to build their own. The pinball construction kit language consisted of a palette
of pinball components such as flippers and bouncers.

With an extensible architecture, AgentSheets was used to build a number of domain-
oriented languages such as the Voice Dialog Design Environment (Repenning and
Sumner, 1992), the AgentSheets Genetic Evolutionary Simulations (Craig, 1997) and
the EcoWorlds environment by the Science Theater team (Brand et al., 1998; Cherry
et al., 1999; Ioannidou et al., 2003). Domain-orientation can dramatically reduce the
challenge of using a tool but at the same time reduces the generality of a tool. In terms
of flow, this translates into highly specific environments that require little training, but
have a limited range of applications.

4.1.1. Example: EcoWorlds

The EcoWorlds system, a domain-oriented version of AgentSheets for ecosystems,
was used as a life sciences learning tool in elementary schools. A learning activity
consisted of students working in teams to create artificial creatures participating in an
ecosystem. Large predators can eat small animals that may eat even smaller animals
or plants. The goal of this activity was for students to understand the fragile nature of
ecosystems. They had to tweak their designs very carefully to create stable environ-
ments. A first attempt of the project tried to use AgentSheets and KidSim (Smith et
al., 1994) (later called Creator). The challenge of mapping domain concepts relevant
to the curriculum such as reproduction rates and food dependencies was simply too
much of a challenge for kids to achieve. The research team working on this created
a domain-oriented version of AgentSheets (called EcoWorlds) to capture the domain
of ecosystems. A trivial example of this process was the replacement of the Erase
action with the Eat action. More complex language elements included complete tem-
plates referring to reproduction rates, food categories and other ecosystem-specific
concepts.

With EcoWorlds, kids were able to create complex, and most importantly, work-
ing ecosystem simulations. There are trade offs, of course. The design of a well-
working domain-oriented language is by no means trivial. Many domains tend to
change over time requiring maintenance of the domain-oriented programming language.
The conceptualization of a domain by the language designers may not match the

END-USER DEVELOPMENT GUIDELINES 65

conceptualizations of the same domain by the users. User-centered design (Lewis and
Rieman, 1993; Norman, 1986) can help to some degree. Finally, the specificity of a
language to one domain may render it useless to other, non-related domains.

4.2. INTRODUCE META-DOMAIN ORIENTATION TO DEAL WITH GENERAL EUD

A more general-purpose EUD language can make few, if any, assumptions about the
application domain. Consequently, the usefulness of a domain-oriented language is
severely limited. Meta-domain oriented languages are languages that are somewhat in
between the application domain and the computer domain. Spreadsheets are examples
of meta-domain orientation. The spreadsheet metaphor, while inspired originally by
bookkeeping forms, is a neutral form of representation that is neither directly rep-
resenting the application domain nor is a low-level computer domain representation.
People have used spreadsheets for all kinds of applications never anticipated by the
designers of spreadsheet tools. More specific applications that initially were solved
with spreadsheets, such as tax forms, have meanwhile been replaced with complete,
domain-oriented tools such as tax-form tools. Where domain-orientation is possible
and effective (from the economic point of view, e.g., if there are enough people with
the exact same problem) domain-oriented tools are likely to supersede more generic
tools in the long run.

AgentSheets uses its grid-based spatial structure as a meta-domain allowing people
to map general problems onto a spatial representation. A grid is an extremely general
spatial structure that can be employed to represent all kinds of relationships. In some

Table 4.2. Visual AgenTalk actions, conditions, and type interactors

Actions: Some VAT actions are
intrinsically spatial. For instance, the
Move action is used to make an agent
move in space from one grid location
to another adjacent position. Others
actions are spatial in conjunction with
their parameters. The parameter of the
Erase action defines where to erase an
agent.

Conditions: A large number of VAT
conditions are used to evaluate spatial
relationships. The See condition
allows an agent to check if an adjacent
cell in a certain direction contains an
agent with a certain depiction.

Type Interactors: Type Interactors are
parameters of VAT condition/action
commands that include a user inter-
face. Some type interactors such as
Direction-Type allow users to select a
direction to an adjacent grid location.

66 ALEXANDER REPENNING AND ANDRI IOANNIDOU

cases, the grid is employed to spatially represent objects that also have a natural spatial
representation. In other cases, the grid is used to capture conceptual relationships that
have no equivalence in the physical world.

Meta-domain orientation manifests itself in the EUD language. In AgentSheets the
VAT language includes a variety of spatial references embedded at the level of com-
mands and type interactors (as shown in Table 4.2).

4.3. USE SEMANTIC ANNOTATIONS TO SIMPLIFY THE DEFINITION OF BEHAVIOR

EUD is not limited to programming. It includes the creation and management of re-
sources such as icons, images, and models. The program defining the behavior of an
application needs to be connected with resources defining the look of an application.
EUD tools should support the creation as well as the maintenance of these connec-
tions. At a simple, syntactic level, this connection should become visible to a user.
VAT, for instance, includes the Depiction-Type interactor, which essentially is a palette
of all the user-defined icons. Things get more complex at the semantic level because
development systems cannot automatically derive semantic information from artwork.
However, with a little bit of semantic annotation or meta-data provided by users an
EUD system can greatly simplify the development process.

4.3.1. Example: Semantic Rewrite Rules

GRR, as a form of end-user programming, suffer from their implicit underlying model.
Interpretation of rewrite rules limited to syntactic properties makes it laborious for
end-users to define non-trivial behavior. Semantically-enriched GRR can increase ex-
pressiveness, resulting in a significantly reduced number of rewrite rules. This reduc-
tion is essential in order to keep rewrite rule-based programming approaches feasible
for end-user programming. The extension of the rewrite rule model with semantics
not only benefits the definition of behavior, but additionally supports the entire vi-
sual programming process. Specifically the benefits include support for defining object
look, laying out scenes consisting of dependent objects, defining behavior with a re-
duced number of rewrite rules, and reusing existing behaviors via rewrite rule analo-
gies. These benefits are described in the context of the AgentSheets programming
substrate.

Semantic Rewrite Rules (Repenning, 1995) allow users to annotate their icons with
semantic information such as connectivity. For instance, an icon representing a hori-
zontal strip of road can be annotated with connectivity arrows indicating that this road
connects the right with the left and the left with the right. AgentSheets can then trans-
form these icons syntactically as well as semantically. The syntactic transformation will
bend, rotate, split, and intersect icons by applying bitmap operations to the original road
icon (Figure 4.8). The semantic information will be transformed by automatically de-
riving the connectivity information of the transformed icons. Finally, the single rewrite
rule describing how a train follows a train track (Figure 4.5) is now interpreted on a

END-USER DEVELOPMENT GUIDELINES 67

Figure 4.8. Connectivity Editor. Users add semantic annotations to define the meaning of an icon. A horizontal
road connects the right side with left side and the right side with the left side.

semantic level. This one rule is powerful enough that the train can follow any variant
of train tracks without the need to create the large set of all the permutations of trains
driving in different directions and train tracks. In terms of flow, the user can now, with
the same degree of skill, tackle substantially larger challenges.

4.3.2. Example: Programming by Analogous Examples

Analogies are powerful cognitive mechanisms for constructing new knowledge from
knowledge already acquired and understood. When analogies are combined with PBE,
the result is a new end-user programming paradigm, called Programming by Analo-
gous Examples (Repenning and Perrone, 2000; Repenning and Perrone-Smith, 2001),
combining the elegance of PBE to create programs with the power of analogies to reuse
programs.

This combination of programming approaches substantially increases the reusability
of programs created by example. This merger preserves the advantages of PBE and at
the same time enables reuse without the need to formulate difficult generalizations.
For instance, if PBE is used to define the behavior of a car following roads in a traffic
simulation, then by analogy this behavior can be reused for such related objects as trains
and tracks by expressing that “trains follow tracks like cars follow roads” (Figure 4.10).

Figure 4.9. Icons and their semantic annotations are geometrically transformed. Semantic information is used to
establish isomorphic structures for generalized rules and analogies.

68 ALEXANDER REPENNING AND ANDRI IOANNIDOU

Figure 4.10. An analogous example defines the interactions between cars and roads by establishing an analogous
connection to trains and train tracks.

The analogy between cars and trains can be established because of the semantic
information. At the syntactic level the system could not have recognized the relation-
ships between cars and trains but the semantic information is sufficient to allow the
system to find the corresponding match based on the connectivity of icons. In terms
of flow, Programming by Analogous Examples simultaneously reduces the challenge
of programming and requires few skills to establish an analogy. However, sometimes
analogies can be hard to see and even when they can be applied analogies may break
down requiring some kind of exception handling.

5. Pragmatic Guidelines

In addition to the syntactic and semantic support described above, a programming
language has to provide pragmatic support to be effective as an end-user development
tool kit. That is, an EUD language should make programs personally relevant to the
end-user and the programming process more practical.

5.1. SUPPORT INCREMENTAL DEVELOPMENT

When a programming language allows and supports incremental development of pro-
grams, end-user programmers do not feel that what they are asked to do with the
computer is too difficult, but instead that they are building up the necessary skills in
an incremental fashion, thus staying in the optimal flow of the learning experience.
Incremental development provides instant gratification, avoids leaps in challenge and
allows skills to grow gradually.

1. Getting instant gratification: end-user programmers have the opportunity to exe-
cute and test partially complete programs or even individual language components,
getting feedback and gratification early on in the programming process without
requiring a complete program first.

2. Avoiding leaps in challenge: the step-by-step creation of a program enables end-user
programmers to incrementally add complexity to their program, avoiding huge leaps

END-USER DEVELOPMENT GUIDELINES 69

in challenge and tasks that would otherwise be infeasible and would undoubtedly
lead to anxiety (Figure 4.1). Traditional languages that force the programmer to have
a complete program-compile-run cycle before each test of the program are typically
more time-consuming and drive programmers into a style of programming where
they write big chunks of code before trying it out. This often makes debugging
challenging.

3. Allowing skills to grow gradually: when end-users incrementally develop, test, and
debug programs, their skills grow in proportion to the challenge they face. Incre-
mental development provides the end-user programmers with mechanisms to first
tackle small parts of the challenge before incorporating them to the bigger picture.

The form of exploratory and experimental programming that is afforded by small
increments of code is well suited to end-user programmers that are not experienced
programmers and have not received formal education in software design methods and
processes.

5.1.1. Example: Tactile Programming

AgentSheets’ VAT is an end-user programming language that elevates the program
representation from a textual or visual representation to the status of a user interface.
In its elevated form, the program is the user interface. By providing language objects
(conditions and actions) packaged up with user interfaces, VAT is rendered into a tactile
programming language.

Tactility is used here not in the sense of complex force feedback devices that are
hooked up to computers, but more in the sense used by Papert to explain the closeness
of bricoleur programmers to their computational objects (Papert, 1993). One departure
from Papert’s framework is that the notion of computational objects in VAT is not
limited to the objects that are programmed, such as the Logo turtle, but also applies
to the programming components themselves, which are elevated to the level of highly
manipulatable objects (Repenning and Ioannidou, 1997).

Visual Programming employs visual perception to simplify programming by
increasing the readability of programs. Tactile Programming does not question this
goal, but hopes to make programming more accessible to end-users by adding the per-
ception of manipulation to visual perception. In Tactile Programming, programs are
no longer static representations nor is the notion of manipulation reserved only for
editing programs. Instead, tactile programs and their representations are dynamic and
include manipulation, such as setting parameters by manipulating parameter spaces
(Figure 4.11) or composing programs by dragging and dropping languages pieces in
behavior editors.

Tactile Programming primitives and programs not only have enhanced visual repre-
sentations to help program readability, but also have interactive interfaces to assist with
program writability. With Tactile Programming programs can be composed incremen-
tally along clearly defined boundaries, making program composition easy.

70 ALEXANDER REPENNING AND ANDRI IOANNIDOU

Figure 4.11. The function of a tactile programming object can be perceived through interaction.

5.2. FACILITATE DECOMPOSABLE TEST UNITS

Traditional programming languages do not allow out-of-context testing of individual
statements, because for instance there may be undefined variables in that small fragment
of code to be tested. In contrast, the kind of interface tactile programming provides,
supports an exploratory style of programming, where users are allowed to “play” with
the language and explore its functionality. Perception by manipulation afforded by
tactile programming allows end-users to efficiently examine functionality in a direct
exploration fashion. Any VAT language component at any time can be dragged and
dropped onto any agent. The component will execute with visual feedback revealing
conditions that are true or false and showing the consequences of executed actions.

Program fragments can be tested at all levels: conditions/actions, rules, and methods.
For instance, dragging the move command from the action palette onto the Ball agent
in the worksheet will make the ball move to the right (Figure 4.12).

Condition commands, when dragged and dropped onto agents, will reveal whether
the condition holds for the agent in its current context. If the See condition is dragged
onto the soccer player in the worksheet, visual and acoustic feedback will immediately
indicate that this condition would not hold. In the case of Figure 4.13, it will indicate
that the condition is “true.”

Dragging and dropping an entire rule onto an agent will test the entire rule. Step-
by-step with visual feedback, all the conditions are checked. In our example rule
(Figure 4.14), only one condition exists. If the soccer player agent sees to his right
a ball agent, the condition is successfully matched and, as consequence, all the actions
are executed—in this case, changing the depiction of the player (Change action), col-
orizing him red to show who is in control of the ball (Set color to action) and keep that
for a while (wait action); then tell the ball (which happens to be to his right) to run its

Figure 4.12. What does move right do? Drag program fragment onto agent to see consequences. Dragging move-
right action onto the ball will make it move to the right one position.

END-USER DEVELOPMENT GUIDELINES 71

Figure 4.13. Testing conditions: dragging See-right-ball condition onto soccer player agent will test if there
currently is a ball immediately to the right. The condition is true.

“kick-right” method and reset the colorization back to its original colors. The results of
the executed rule are graphically shown on the right (Figure 4.14). Had the condition
of that rule failed, acoustic feedback would have been provided and the condition that
failed would have blinked to indicate the problem.

Tactile programming with decomposable test units at different levels of granularity
of the programming language (individual commands, rules, methods) enables easy
debugging even for end-user programmers that do not possess the skills of professional
programmers in debugging.

On the down side, drag and drop may not necessarily be the best mechanism for
testing these language components. While drag and drop is an excellent mechanism for
program composition, for this type of testing it may not be as intuitive or obvious as
one may think. User testing has shown that when using the Macintosh version of the
AgentSheets simulation-authoring tool, users have to be told this drag and drop testing
feature exists. This was remedied in the Windows version of the software by adding a
Test button in the behavior editor window. Instead of dragging and dropping commands

or rules onto agents in the worksheet, a user simply selects the language
component to be tested and the agent on which to test it on and presses

Figure 4.14. Testing Rules. If all the conditions of the rule are true then the actions will be excuted. One action
after anoter get highlighted, and the consequence of running it visualized in the simulation.The agent changes to
look like the kicking player, it turns red, after some time it sends the kick-right message to the ball, and turn its
color back to normal.

72 ALEXANDER REPENNING AND ANDRI IOANNIDOU

the Test button. Not only this makes this debugging feature more apparent, but it also
affords multiple tests of the same language component without the mundane effort of
dragging and dropping the same piece over and over again.

Whatever the mechanism, the point remains that end-user programming languages
need to allow their users to test any piece of the program at multiple granularities
(command, rule, method) in the context of an agent in the worksheet at any time during
the development process. This supports understandability of the language and therefore
enhances program writability.

5.3. PROVIDE MULTIPLE VIEWS WITH INCREMENTAL DISCLOSURE

One of the criticisms of visual programming languages is that they use a lot of screen
real estate (Green and Petre, 1996). To improve program readability and consequently
program comprehension, multiple views of the same program should be available to
end-user programmers. Using disclosure triangles is one technique to collapse and
expand program components.

5.3.1. Example: Disclosure Buttons and Disclosure Triangles

In AgentSheets, disclosure triangles are used to show or hide methods in an agent’s
behavior editor. Figure 4.15 shows the collapsed “Advance” method of the Car agent
with only its name, documentation, and number of rules contained visible in the editor.

Figure 4.16 shows the expanded version of the same method with all the rules
exposed.

In terms of flow, the ability to switch between views helps to manage information
clutter and consequently simplifies the location of relevant information.

5.4. INTEGRATE DEVELOPMENT TOOL WITH WEB SERVICES

The Web is a rich resource of information that can help the design process. Development
tools in general and EUD tools specifically should make use of these resources by
providing seamless connection mechanisms helping to find relevant resources based on
the current design state.

5.4.1. Example: Design-Based Google Image Search

AgentSheets can locate relevant artwork based on the design state of an agent using
the Google image search. Say a user creates an agent called “red car” and designs an
icon quickly using a bitmap editor. Instead of creating their own artwork users may use
AgentSheet’s “Search Depictions on Web” function. This function will
use information from the design environment, the name of the agent
class “red car,” compute a Google query and open a Web browser. There
is no guarantee that a suitable image is found but if users do find a good
match they can import images into AgentSheets (see Figure 4.17).

END-USER DEVELOPMENT GUIDELINES 73

Figure 4.15. A collapsed method shows only the documentation information and, as indicator for method
complexity, the number of rules contained.

Integration with Web services are relevant to flow, in the sense that integration not
only extends design spaces with external resources but also reduces rough transitions
between otherwise non-connected tools.

5.5. ENCOURAGE SYNTONICITY

Papert used the term syntonicity to describe how children’s physical identification with
the Logo turtles helped them more easily learn turtle geometry (Papert, 1980, 1993;
Papert and Harel, 1993). Syntonicity helps people by allowing them to put themselves
into the “shoes” of the objects they create and program. As a mindset syntonicity en-
courages the development of mini scenarios helping to disentangle potentially complex
interaction between multiple objects: “If I where the car driving on the bridge doing . . . ”
As an extension to Papert’s stance toward syntonicity, we found that syntonicity can be
actively cultivated by a system through a number of mechanisms. Moreover, we find

Figure 4.16. The expanded view provides access to all the rules.

74 ALEXANDER REPENNING AND ANDRI IOANNIDOU

Figure 4.17. A Google Image search triggered by the Design of a “red car” agent. Suitable images can be imported
into AgentSheets.

syntonicity relevant to EUD in general because it helps to overcome some essential
misconceptions of programming often found in non-programmers.

5.5.1. Example: First-Person Domain-Oriented Language Components

Students often find it difficult to map their ideas about science phenomena onto the
operations provided by a visual language (Brand and Rader, 1996). Commands that
match the problem domain can simplify this process and also focus the students’ atten-
tion on important aspects of the content. The VAT language has been customized by
researchers at the University of Colorado conducting research on modeling ecosystems
in elementary school settings to support the programming of concepts in that domain.
A number of domain-oriented commands was introduced to support the definition of
predator–prey interactions. For example, rules that enable a predator to eat are stated
as, “If I can select food <description of prey, based on features> then try to eat it,
because I am <description of self, specifying why I can eat this prey>.” This set of
commands replaces more basic actions, such as “see” and “erase,” with the specific
actions of selecting food and trying to eat it. The design of the commands also requires
students to enter features of the predator and prey, thereby reinforcing science ideas
about structure and function (Brand et al., 1998; Cherry et al., 1999; Rader et al., 1997;
Rader et al., 1998).

Not only were these customized commands domain-oriented, but they were also
presented in the first person, e.g., “I eat.” The result was for students to identify with
the agents they were building (namely, the animals), which was apparent in their lively
discussions about their ecosystem simulation. The students typically referred to their

END-USER DEVELOPMENT GUIDELINES 75

Figure 4.18. An Animated Speech/Tooltip will explain command through a complete English sentence.
Speech/Animation is synchronized with the selection of command parameters to establish the correspondence.

animals in the first person, saying for example “I can eat you” rather than “my Ozzie
can eat your Purple Whippy Frog” or “I am dead” rather than “My animal is dead,”
Perhaps because of this identification, students were very motivated to ensure that their
animals survived. Although students initially had a tendency to want their animals to
survive at the expense of other populations, this tendency was often mitigated once they
realized that the other species were necessary for their animal’s long-term well-being
(Ioannidou et al., 2003).

Whereas the benefits from domain-oriented language pieces are evident from the
example above, such a method is not always the most appropriate. The language can
quickly get verbose and more importantly its customized components become incom-
patible with the language of the standard system.

5.5.2. Example: Explanations via Animated Speech and Animated Tool Tips

Syntonicity can manifest itself not only as customized language pieces, but also in the
form of explanations of the language components. In AgentSheets for example, indi-
vidual commands and entire rules are syntonically explained via a unique combination
of animation and speech (in the Mac version) or animation and textual tool tips (in
the Windows version). When the “Explain” button is pressed and single command is
selected, the system steps through each component of the command annotating with
blinking animation and verbally explains (either with speech synthesis or animated text
in tool tips) what the command does. For instance, for the WWW read condition, the
system explains that the condition is true in the context of an agent, if that agent finds
the string specified when reading a specified Web page (Figure 4.18). First person is
used to stress the fact that language pieces only make sense in the context of an agent,
as pieces of that agent’s behavior.

Explanations are not static; they will interpret the current values of parameters. In
some cases this will result in simple variations of sentences whereas in other cases
the explanatory sentence will be considerably more restructured in order to clarity the
meaning to the user (Figure 4.19).

Explanations reduce challenges based on the comprehension of programs. At the
same time they eliminate the need for languages to be more verbose which is often
considered a good property for beginning programmers but gets in the way for more
experienced programmers.

76 ALEXANDER REPENNING AND ANDRI IOANNIDOU

Explanation: Remove me from the worksheet

Explanation: Erase the agent to my right.

Figure 4.19. Explanation variations depending on parameters.

5.6. ALLOW IMMERSION

Immersing end-user programmers into the task and helping them experience the results
of their programming activity by directly manipulating and interacting with their arti-
facts is an important factor for keeping them in the optimal flow part of the learning
experience.

5.6.1. Example: LEGOsheets and Direct Control of Motors

LEGOsheets (Gindling et al., 1995) is a programming, simulation, and manipulation
environment created in AgentSheets for controlling the MIT Programmable Brick (see
Figure 4.20). The brick, developed at the MIT Media Lab as the research prototype
of what is now known as LEGO Mindstorms, receives input from sensors, such as
light and touch sensors and controls effectors, such as motors, lights, and beepers. The
combination of LEGOsheets and the Brick gives children the ability to create physical
artifacts (vehicles and robots) and program them with interesting behaviors (Resnick,
1994; Resnick, Martin, Sargent and Silverman, 1996).

A lot of the children’s excitement and engagement with LEGOsheets arose from
the physical aspect that the Brick provided. It is interesting to create a simulation of a
car running around on a computer screen, but it is richer and more interesting when
the car is programmed to do so in the real world. The richness of the resulting artifact

Figure 4.20. LEGOsheets a programming environment to program and directly control the MIT programmable
brick. LEGOsheets programs are highly parallel putting rule-based behaviors into sensor effector agents.

END-USER DEVELOPMENT GUIDELINES 77

Figure 4.21. “Programming” the Vehicle in the real world.

behavior does not have to stem from the complexity of the program itself, but from its
interactions with the real world (Simon, 1981) (Figure 4.21).

Giving the opportunity to children to engage in interesting explorations in the world
as part of social activities not only provided an engaging but also a highly motivating
atmosphere that enabled even 3rd grade elementary school kids to take the step towards
programming.

5.6.2. Example: Mr. Vetro, the Simulated Human Being

Mr. Vetro is an application we have developed using a unique architecture for compact,
connected, continuous, customizable, and collective simulations (C5). This architecture
can be generally geared towards helping students to experience and understand all
kinds of complex distributed systems such as the human body, economies, ecologies,
or political systems.

Mr. Vetro1 (Figure 4.22a) is a simulated human being with a collection of simulated
organs (such as heart and lungs) each of which are distributed as client simulations
running on handhelds (Figure 4.22b, top).

Using these client simulations users can control Mr. Vetro’s organs. For instance, a
group of students can control his lungs by varying parameters such as the breathing
rate and tidal volume as a response to changing conditions such as exercise or smok-
ing. Another group can control Mr. Vetro’s heart by varying heart parameters such
as heart rate and stroke volume. A third group can act as the decision-making part of
Mr. Vetro’s brain to control decisions such as engaging in exercise and the intensity of the
exercise.

With a wireless network, the client simulations send data to the server running
the central simulation (the complete Mr. Vetro) each time the parameters get the up-
dated. A life signs monitor keeps track of Mr. Vetro’s vital signs and displays them
in the form of graphs or numerical values. O2 saturation in the blood, partial pressure
of CO2, and O2 delivered to tissue are some of the values calculated and displayed
(Figure 4.22b).

Activities with Mr. Vetro are compelling and engaging as they promote interesting
inter-group as well as intra-group discussions and collaborations to solve the tasks

1 Translated from Italian, “vetro” means “glass.” The name is derived from Mr. Vetro’s glass skeleton.

78 ALEXANDER REPENNING AND ANDRI IOANNIDOU

(a) (b)

Figure 4.22. (a) Mr. Vetro is a distributed simulation of a human being. (b) Handheld controllers (top) and life
signs monitor (bottom).

presented to students. Moreover they provide new ways to learn, not previously available
by simply reading about human organs and systems in books.

Direct manipulation interfaces of changing the organ parameters allow users to
change the simulation without having to engage in anything that can be perceived
as traditional programming. As skills increase—mainly domain skills, but also skills
related to interacting with the system—students can be exposed to more complex EUD
activities.

EUD related to Mr. Vetro can take place at two levels. At the highest level the handheld
devices representing Mr. Vetro’s organs become the building blocks of a collaborative
design activity. At the lower level users employ end-user programming to script organs
or to analyze physiological variables. Teachers, for instance, may want students to
express rules to determine different states of Mr. Vetro that need to be identified and
addressed. Students could use an end-user language such as VAT to express a rule
relating the level of partial pressure of CO2 to hyperventilation and hypoventilation
(Figure 4.23).

END-USER DEVELOPMENT GUIDELINES 79

Figure 4.23. The physiological rules can be directly turned into Visual AgenTalk. Rules are used to recognize
physiological conditions and link them to existing Web information such as WebMD explaining condition and
treatment.

5.7. SCAFFOLD TYPICAL DESIGNS

Whereas modeling is a desired computational literacy (diSessa, 2000) for a wide
spectrum of computer end-users, programming is typically not. Therefore engaging
in modeling activities should not necessarily have as a prerequisite the need to learn
programming, especially in classroom settings. On the one hand, given the pragmatic
concerns of heavy time limitations, using existing simulations is much easier and much
more attainable in current educational settings than building simulations from scratch,
even with EUD approaches. On the other hand, building simulations is an educationally
effective activity (Ioannidou et al., 2003; Ioannidou et al., 1998; President’s Committee
of Advisors on Science and Technology 1997; Wenglinsky, 1998; Zola and Ioannidou,
2000). Therefore, finding a middle ground would be essential for making simulations
viable educational tools for mainstream classrooms. One such way would be to provide
scaffolding mechanisms for the model-creation process. Scaffolding is the degree
of structure provided by a system (Guzdial, 1994). High-level behavior specification
paradigms provide a lower threshold to programming and therefore can be considered
scaffolding mechanisms.

5.7.1. Example: Programmorphosis—Multi-Layered Programming
with the Behavior Wizard

The Programmorphosis approach (Ioannidou, 2002, 2003) was developed as a multi-
layered approach to end-user programming, which, at the highest level, enables novice
end-user programmers to define behaviors of interacting agents in an abstract language.
In Programmorphosis, behavior genres are used to group and structure domain concepts
in a template. Therefore, the task of programming is elevated from a task of synthesis
to one of modification and customization of existing behavior templates.

The Behavior Wizard was added to AgentSheets to instantiate Programmorphosis.
Specifying behaviors is achieved by altering behavioral parameters in templates in
a wizard environment that subsequently generates lower-level executable code. For
instance, the behavior of an Octopus animal agent for an ecosystem simulation would

80 ALEXANDER REPENNING AND ANDRI IOANNIDOU

Figure 4.24. Behavior of an Octopus animal agent expressed in AgentSheets Visual AgenTalk (left). The same
behavior expressed in the Behavior Wizard using the animal template (right).

be represented in VAT as shown in Figure 4.24 (left), with if–then rules defining eating,
mating, and moving behaviors. In the Behavior Wizard, the user would specify the same
behavior by manipulating parameters such as prey, hunting effectiveness, reproduction
rate, as shown in Figure 4.24 (right).

The high-level behavior specification language featured in the Behavior Wizard
essentially adds a layer in the programming process. As a result, this multi-layered
programming approach enables a wide range of end-users to do the programming.
Multiple levels of abstraction address the different needs or levels of ability. At the
highest level, a novice end-user may be “programming” declaratively through wizards,
revealing meaningful customizations of existing behaviors. At the lower level, a user
may be programming procedurally in a programming language such as a rule-based
language.

A general trade-off exists between the expressiveness of a programming language and
its ease of use. Instead of selecting a fixed point in this space, Programmorphosis adds a
high-level behavior specification layer and introduces a multi-layered approach to pro-
gramming. Ideally, these programming layers should be connected to allow end-users
to gradually advance, if they want to, from very casual end-user programming, which
may be as simple as changing a preference, to sophisticated end-user programming.

5.8. BUILD COMMUNITY TOOLS

For end-users to harness the power of the Web and be encouraged for more active
and productive participation, the image of the Web as a broadcast medium should be

END-USER DEVELOPMENT GUIDELINES 81

Figure 4.25. The AgentSheets Behavior Exchange. Uses can give and take agent including descriptions what these
agents do and who they look like.

expanded to include end-user mechanisms that support collaborative design, construc-
tion and learning. This can be done by supporting:

1. Bi-directional use of the Web: Enable and motivate consumers of information to
become producers of resources on the Web.

2. Richness of content: Make rich and expressive computational artifacts, such as sim-
ulation components and behaving agents, utilizing the Web as a forum of exchange.

The Behavior Exchange is one such forum that achieves that.

5.8.1. Example: The Behavior Exchange

The Behavior Exchange (Repenning and Ambach, 1997; Repenning et al., 1999;
Repenning et al., 1998), a Web-based repository that enables the sharing of simula-
tion components, namely agents. The Behavior Exchange enables white-box reuse of
agents by allowing inspection of agents acquired from the exchange as well as modifi-
cation of their behavior because the full specification of agents’ behaviors comes along
with them when they are downloaded (Figure 4.25).

The Behavior Exchange contains two kinds of information: informal and formal.
Informal information is not interpreted by the computer. The look of an agent, textual
descriptions concerning what the agent does, who created it, why and how it is used
belong into the informal information category. Formal information is interpreted by
the computer. All the rules that determine the behavior of an agent are considered
formal information. The combination of informal and formal information turns these
agents into a social currency of exchange. Users produce agents and share them. Other

82 ALEXANDER REPENNING AND ANDRI IOANNIDOU

users pick them up and modify them to better fit into their own environment. This reuse
mechanism allows a community of users to build and incrementally improve simulation
content. The ability to build simulations by combining and modifying agents makes
the agent level ideal for supporting collaboration among users, whether they reside in
the same physical location or not, and for supporting the scaffolding (Guzdial, 1994)
of the simulation creation process.

6. Conclusions

There cannot be one universal EUD tool useful for all possible application contexts.
Whether an EUD is useful and gets accepted by an end-user community for a certain
type of application depends on a number of factors. The presentation formats used
are of secondary relevance. A useful and usable (Fischer, 1987, 1993) EUD tool does
not need to be iconic, visual, or textural for that matter. However, one perspective that
we do think is universal is the viewpoint of EUD as a learning experience balancing
challenges and skills. A variety of scaffolding mechanisms presented in this article
can help in making this learning experience more manageable. We have outlined a
number of scaffolding mechanisms and extrapolated thirteen design guidelines from
our experience with the AgentSheets simulation-authoring environment:

1. Make syntactic errors hard
2. Make syntactic errors impossible
3. Use objects as language elements
4. Make domain-oriented languages for specific EUD
5. Introduce Meta-Domain orientation to deal with general EUD
6. Support incremental development
7. Facilitate decomposable test units
8. Provide multiple views with incremental disclosure
9. Integrate development tool with web services

10. Encourage syntonicity
11. Allow Immersion
12. Scaffold typical designs
13. Build community tools

Acknowledgment

This work has been supported by the National Science Foundation (ITR 0205625, DMI
0233028).

References

Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I. and Angel, S. (1977).
A Pattern Language: Towns, Buildings, Construction. New York, NY: Oxford University Press.

END-USER DEVELOPMENT GUIDELINES 83

Bell, B. and Lewis, C. (1993). ChemTrains: A Language for Creating Behaving Pictures. 1993 IEEE
Workshop on Visual Languages, Bergen, Norway, pp. 188–195.

Berne, R.M. and Levy, M.N. (2000). Principles of Physiology (3rd ed.). St. Louis: Mosby.
Blackwell, A. (1996). Metacognitive theories of visual programming: what do we think we are doing?

In: Proceedings of the 1996 IEEE Symposium on Visual Languages, Boulder, CO, pp. 240–
245.

Brand, C. and Rader, C. (1996). How does a visual simulation program support students creating
science models? In: Proceedings of the 1996 IEEE Symposium of Visual Languages, Boulder,
CO, pp. 102–109.

Brand, C., Rader, C., Carlone, H. and Lewis, C. (1998). Prospects and Challenges for Children
Creating Science Models. Paper presented at the annual meeting of the National Association for
Research in Science Teaching, San Diego, CA.

Burnett, M. (1999). Visual Programming. In: J.G. Webster (ed.), Encyclopedia of Electrical and
Electronics Engineering. New York: John Wiley and Sons Inc.

Burnett, M. and Baker, M. (1994). A classification system for visual programming languages. Journal
of Visual Languages and Computing, 5(3), 287–300.

Cherry, G., Ioannidou, A., Rader, C., Brand, C. and Repenning, A. (1999). Simulations for Lifelong
Learning. Atlantic City, NJ: NECC.

Craig, B. (1997). AGES: Agentsheets Genetic Evolutionary Simulations. Unpublished Masters Thesis,
University of Colorado, Boulder, CO.

Csikszentmihalyi, M. (1990). Flow: The Psychology of Optimal Experience. New York: Harper Collins
Publishers.

Cypher, A. (1993). Watch What I Do: Programming by Demonstration. Cambridge, MA: The MIT
Press.

diSessa, A. (2000). Changing Minds: Computers, Learning, and Literacy. Cambridge, MA: The MIT
Press.

Eisenberg, M. and Fischer, G. (1994). Programmable design environments: Integrating end-user pro-
gramming with domain-oriented assistance. In: Proceedings of the 1994 ACM CHI Conference,
Boston, MA, pp. 431–437.

Fischer, G. (1987). Making Computers more Useful and more Usable. 2nd International Conference
on Human–Computer Interaction, Honolulu, Hawaii.

Fischer, G. (1993). Beyond Human Computer Interaction: Designing Useful and Usable Computa-
tional Environments. People and Computers VIII: Proceedings of the HCI’93 Conference, 17–31.

Fischer, G. and Girgenson, A. (1990). End-User Modifiability in Design Environments. CHI ’90,
Conference on Human Factors in Computing Systems, Seattle, WA, 183–191.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1995). Design Patterns: Elements of Reusable
Object-Oriented Software. Reading, MA: Addison-Wesley.

Gindling, J., Ioannidou, A., Loh, J., Lokkebo, O. and Repenning, A. (1995). LEGOsheets: A rule-based
programming, simulation and manipulation environment for the LEGO programmable brick. In:
Proceeding of Visual Languages, Darmstadt, Germany, 172–179.

Glinert, E.P. (1987). Out of flatland: Towards 3-d visual programming. IEEE 2nd Fall Joint Computer
Conference, 292–299.

Green, T.R.G. (1989). Cognitive Dimensions of Notations. In: Proceedings of the 5th Conference of
the British Computer Society, Nottingham, pp. 443–460.

Green, T.R.G. and Petre, M. (1996). Usability analysis of visual programming environments: a ‘cog-
nitive dimensions’ framework. Journal of Visual Languages and Computing, 7(2), 131–174.

Guzdial, M. (1994). Software-realized scaffolding to facilitate programming for science learning.
Interactive Learning Environments, 4(1), 1–44.

Ioannidou, A. (2002). Programmorphosis: Sustained Wizard Support for End-User Programming.
Unpublished Ph.D. Thesis, University of Colorado, Boulder.

84 ALEXANDER REPENNING AND ANDRI IOANNIDOU

Ioannidou, A. (2003). Programmorphosis: a Knowledge-Based Approach to End-User Programming.
Interact 2003: Bringing the Bits together, Ninth IFIP TC13 International Conference on Human-
Computer Interaction, Zürich, Switzerland.

Ioannidou, A., Rader, C., Repenning, A., Lewis, C. and Cherry, G. (2003). Making Constructionism
Work in the Classroom. International Journal of Computers for Mathematical Learning, 8, 63–
108.

Ioannidou, A. and Repenning, A. (1999). End-User Programmable Simulations. Dr. Dobb’s (302
August), 40–48.

Ioannidou, A., Repenning, A. and Zola, J. (1998). Posterboards or Java Applets? International Con-
ference of the Learning Sciences 1998, Atlanta, GA, 152–159.

Jones, C. (1995). End-user programming. IEEE Computer, 28(9), 68–70.
Klann, M. (2003). D1.1 Roadmap: End-User Development: Empowering people to flexibly employ ad-

vanced information and communication technology: EUD-Net: End-User Development Network
of Excellence.

Lewis, C., Polson, P.G., Wharton, C. and Rieman, J. (1990). Testing a walkthrough methodology for
theory-based design of walk-up-and-use interfaces. SIGCHI conference on Human Factors in
Computing Systems: Empowering people, Seattle, Washington, USA, 235–242.

Lewis, C. and Rieman, J. (1993). Task-centered User Interface Design—A Practi-
cal Introduction. Boulder, CO: A shareware book that can be downloaded from
ftp.cs.colorado.edu/pub/cs/distribs/clewis/HCI-Design-Book/.

Lieberman, H. (2001). Your Wish Is My Command: Programming by Example. San Francisco, CA:
Morgan Kaufmann Publishers.

Nardi, B. (1993). A Small Matter of Programming. Cambridge, MA: MIT Press.
Norman, D.A. (1986). Cognitive Engineering. In User Centered System Design. Hillsdale, NJ:

Lawrence Erlbaum Associates, Publishers, pp. 31–61.
Pane, J.F. and Myers, B.A. (1996). Usability Issues in the Design of Novice Programming Systems

(Technical Report No. CMU-CS-96–132). Pittsburg, Pennsylvania: School of Computer Science,
Carnegie Mellon University.

Papert, S. (1980). Mindstorms: Children, Computers and Powerful Ideas. New York: Basic Books.
Papert, S. (1993). The Children’s Machine. New York: Basic Books.
Papert, S. and Harel, I. (Eds.). (1993). Constructionism. Norwood, NJ: Ablex Publishing Corporation.
Paternò, F. (2003). D1.2 Research Agenda: End-User Development: Empowering people to flexibly

employ advanced information and communication technology: EUD-Net: End-User Development
Network of Excellence.

“President’s Committee of Advisors on Science and Technology” (1997). Report to the President on
the Use of Technology to Strengthen K-12 Education in the United States.

Rader, C., Brand, C. and Lewis, C. (1997). Degrees of comprehension: children’s understanding of a
visual programming environment. In: Proceedings of the 1997 Conference of Human Factors in
Computing Systems, Atlanta, GA, New York, NY: ACM Press, pp. 351–358.

Rader, C., Cherry, G., Brand, C., Repenning, A. and Lewis, C. (1998). Principles to scaffold mixed
textual and iconic end-user programming languages. In: Proceedings of the 1998 IEEE Symposium
of Visual Languages, Nova Scotia, Canada, Washington, DC: IEEE Computer Society, pp. 187–
194.

Repenning, A. (1995). Bending the rules: steps toward semantically enriched graphical rewrite rules.
In: Proceedings of Visual Languages, Darmstadt, Germany, Washington, DC: IEEE Computer
Society, pp. 226–233.

Repenning, A. and Ambach, J. (1996a). Tactile programming: a unified manipulation paradigm
supporting program comprehension, composition and sharing. In: Proceedings of the 1996
IEEE Symposium of Visual Languages, Boulder, CO, Washington, DC: IEEE Computer Society,
pp. 102–109.

END-USER DEVELOPMENT GUIDELINES 85

Repenning, A. and Ambach, J. (1996b). Visual AgenTalk: Anatomy of a Low Threshold, High Ceiling
End User Programming Environment. submitted to Proceedings of UIST.

Repenning, A. and Ambach, J. (1997). The Agentsheets Behavior Exchange: Supporting Social Be-
havior Processing. CHI 97, Conference on Human Factors in Computing Systems, Extended
Abstracts, Atlanta, Georgia, 26–27.

Repenning, A. and Ioannidou, A. (1997). Behavior processors: layers between end-uers and Java
Virtual Machines. In: Proceedings of the 1997 IEEE Symposium of Visual Languages, Capri,
Italy, New York, NY: ACM Press, pp. 402–409.

Repenning, A., Ioannidou, A. and Ambach, J. (1998). Learn to Communicate and Communicate to
Learn. Journal of Interactive Media in Education (JIME), 98(7).

Repenning, A., Ioannidou, A. and Phillips, J. (1999). Collaborative use and design of interactive sim-
ulations. In: Proceedings of Computer Supported Collaborative Learning Conference at Stanford
(CSCL’99), Mahwah, NJ: Lawrence Erlbaum Associates, pp. 475–487.

Repenning, A., Ioannidou, A., Rausch, M. and Phillips, J. (1998). Using agents as a currency of
exchange between end-users. In: Proceedings of the WebNET 98 World Conference of the WW,
Internet, and Intranet, Orlando, FL, Chesapeake, VA: The WebNET paper was published by the
Association of COmputing in Education (AACE), 762–767.

Repenning, A. and Perrone, C. (2000). Programming by Analogous Examples. Communications of
the ACM, 43(3), 90–97.

Repenning, A. and Perrone-Smith, C. (2001). Programming by analogous examples. In H. Lieber-
man (ed.), Your Wish Is My Command: Programming by Example, San Francisco, CA: Morgan
Kaufmann Publishers, Vol. 43, pp. 90–97.

Repenning, A. and Sumner, T. (1992). Using agentsheets to create a voice dialog design environment.
In: Proceedings of the 1992 ACM/SIGAPP Symposium on Applied Computing, Kansas City, MO,
New York, NY: ACM Press, pp. 1199–1207.

Repenning, A. and Sumner, T. (1995). Agentsheets: A Medium for Creating Domain-Oriented Visual
Languages. IEEE Computer, 28(3), 17–25.

Schneider, K. and Repenning, A. (1995). Deceived by ease of use: using paradigmatic applications to
build visual design. In: Proceedings of the 1995 Symposium on Designing Interactive Systems,
Ann Arbor, MI, New York, NY: ACM Press, pp. 177–188.

Simon, H.A. (1981). The Sciences of the Artificial (2nd ed.). Cambridge, MA: MIT Press.
Smith, D.C. (1975). PYGMALION: A Creative Programming Environment (Technical Report No.

STAN-CS-75–499): Computer Science Department, Stanford University.
Smith, D.C., Cypher, A. and Spohrer, J. (1994). KidSim: Programming Agents Without a Programming

Language. Communications of the ACM, 37(7), 54–68.
Wenglinsky, H. (1998). Does it Compute? The Relationship Between Educational Technology and

Student Achievement in Mathematics. Princeton, NJ: Educational Testing Service.
Zola, J. and Ioannidou, A. (2000). Learning and Teaching with Interactive Simulations. Social Edu-

cation: the Official Journal of National Council for the Social Studies, 64(3), 142–145.

Chapter 5

An Integrated Software Engineering Approach
for End-User Programmers

MARGARET BURNETT1, GREGG ROTHERMEL2 and CURTIS COOK1

1School of Electrical Engineering and Computer Science, Oregon State University, Corvallis,
Oregon, USA, burnett@cs.orst.edu, cook@cs.orst.edu
2Department of Computer Science and Engineering, University of Nebraska, Lincoln,
Nebraska, USA, grother@cse.unl.edu

Abstract. End-user programming has become the most common form of programming in use today.
Despite this growth, there has been little investigation into the correctness of the programs end-users
create. We have been investigating ways to address this problem via a holistic approach we call end-
user software engineering. The concept is to bring support for aspects of software development that
happen beyond the “coding” stage—such as testing and debugging—together into the support that
already exists for incremental, interactive programming by end-users. In this chapter, we present our
progress on three aspects of end-user software engineering: systematic “white box” testing assisted
by automatic test generation, assertions in a form of postconditions that also serve as preconditions,
and fault localization. We also present our strategy for motivating end-user programmers to make use
of the end-user software engineering devices.

1. Introduction

There has been considerable work in empowering end-users to be able to write their own
programs, and as a result, end-users are indeed doing so. In fact, the number of end-
user programmers—creating programs using such devices as special-purpose scripting
languages, multimedia and web authoring languages, and spreadsheets—is expected to
reach 55 million by 2005 in the U.S. alone (Boehm et al., 2000). Unfortunately, evidence
from the spreadsheet paradigm, the most widely used of the end-user programming
languages, abounds that end-user programmers are extremely prone to introducing
faults1 into their programs (Panko, 1998). This problem is serious, because although
some end-users’ programs are simply explorations and scratch pad calculations, others
can be quite important to their personal or business livelihood, such as programs for
calculating income taxes, e-commerce web pages, and financial forecasting.

We would like to reduce the fault rate in the end-user programs that are important
to the user. Although classical software engineering methodologies are not a panacea,
there are several that are known to help reduce programming faults, and it would
be useful to incorporate some of those successes in end-user programming. Toward

1 Following standard terminology, in this chapter we use the term “failure” to mean an incorrect output value given
the inputs, and the term “fault” to mean the incorrect part of the program (formula) that caused the failure.

Henry Lieberman et al. (eds.), End User Development, 87–113.
C© 2006 Springer.

88 MARGARET BURNETT ET AL.

this end, we have been working on a vision we call end-user software engineering,
a holistic approach to end-user software development tasks beyond program entry. Its
goal is to bring some of the gains from the software engineering community to end-user
programming environments, without requiring training or even interest in traditional
software engineering techniques.

Our approach to end-user software engineering draws from the traditional software
engineering methodologies and programming language literature to devise ways for the
system to take on much of the software engineering reasoning, and draws from HCI to
find ways to effectively collaborate with the user about the results of this reasoning. End-
user software engineering is a highly integrated and incremental concept of software
engineering support for end-users. Hence, its components are not individual tools, each
with a button that can be separately invoked, but rather a blend of knowledge sources
that come together seamlessly. At present there are three components that have been
blended in, but the overall vision is not restricted to any particular set of components.
A continually evolving prototype of the end-user software engineering concept exists
for Forms/3 (Burnett et al., 2001a), a research language that follows the spreadsheet
paradigm. The components we have so far blended into Forms/3 involve (1) systematic
testing, (2) assertions, and (3) fault localization. Portions of the concept have also
been extended to the dataflow paradigm (Karam and Smedley, 2001) and to the screen
transition paradigm (Brown et al., 2003).

2. Related Work

The software engineering research community’s work regarding testing, assertions,
and fault localization lies at the heart of our approach, but the prerequisite knowledge
required to use traditional software engineering approaches is not a good match for end-
users’ skills. Further, the algorithms behind traditional approaches do not usually allow
the immediate semantic feedback end-user environments generally provide. These two
factors are the reasons it would not be viable to simply import traditional software
engineering techniques into an end-user programming environment.

Programming is a collection of problem-solving activities, and our goal is to help
end-users in these activities. Hence, we draw heavily on HCI research about human
problem-solving needs. The HCI research with the greatest influence on our work so
far has been Blackwell’s theory of Attention Investment (Blackwell, 2002), Green et
al.’s work on Cognitive Dimensions (Green and Petre, 1996), Pane et al.’s empirical
work (Pane et al., 2002), and psychologists’ findings about how curiosity relates to
problem-solving behavior (Lowenstein, 1994). Other strong influences have come from
the extensive work on end-user and visual programming languages (e.g., Heger et al.,
1998; Igarashi et al., 1998; Lieberman, 2001; McDaniel and Myers, 1999; Nardi, 1993;
Repenning and Ioannidou, 1997).

Since end-user software engineering is tightly intertwined with the programming
process, it feeds into and draws from the design of languages themselves. For example,
immediate visual feedback about semantics is expected in end-user programming, and
any software engineering methods that we introduce must be able to reason about the

INTEGRATED SOFTWARE ENGINEERING APPROACH 89

source code efficiently enough to maintain this characteristic. Classic programming
language research has contributed to our design of algorithms that provide feedback
efficiently, so as to satisfy this constraint. For example, in the language in which we
prototype our work, we rely extensively on lazy evaluation (Henderson and Morris,
1976) and lazy memorization (Hughes, 1985) to keep the incremental costs of each
user action small.

In the arena of research into end-user software development, most work to date
has concentrated primarily on the “programming” phase (i.e., assisting the user in the
process of creating a program). However, work has begun to emerge with the goal
of assisting end-users in assessing or improving the correctness of their programs.
For example, there are several interactive visual approaches related to program com-
prehension for debugging purposes for both professional and end-user programmers
that have made important contributions in this direction. ZStep (Lieberman and Fry,
1998) provides visualizations of the correspondences between static program code and
dynamic program execution. ZStep also offers a navigable visualization execution his-
tory that is similar to features found in some visual programming languages such as
KidSim/Cocoa/Stagecast (Heger et al., 1998) and Forms/3 (Burnett et al., 2001a). S2
(Sajanieme, 2000) provides a visual auditing feature in Excel 7.0: similar groups of
cells are recognized and shaded based upon formula similarity, and are then connected
with arrows to show dataflow. This technique builds upon the Arrow Tool, a dataflow
visualization device proposed earlier (Davis, 1996).

More recently, work aimed particularly at aiding end-user programmers in some
software engineering tasks is beginning to emerge. Myers and Ko (2003) recently pro-
posed research in assisting users in the debugging of code for event-based languages.
Woodstein, an early prototype of an e-commerce debugging tool, is an emerging ap-
proach aimed at end-user debugging of actions that go awry in e-commerce transactions
(Wagner and Lieberman, 2003). Outlier finding (Miller and Myers, 2001) is a method
of using statistical analysis and interactive techniques to direct end-user programmers’
attention to potentially problematic areas during automation tasks. In this work, outlier
finding is combined with visual cues to indicate abnormal situations while performing
search and replace or simultaneous editing tasks. Raz et al. (2002) also use outlier find-
ing, but in the setting of a particular type of end-user programs, namely web programs
that incorporate on-line data feeds. Tools have also been devised to aid spreadsheet users
in dataflow visualization and editing tasks (e.g., Igarashi et al., 1998). reMIND+ (Carr,
2003) is a visual end-user programming language with support for reusable code and
type checking. reMIND+ also provides a hierarchical flow diagram for increased pro-
gram understanding. There is also some investigation into requirements specification
by end-users; early work in this direction is described in (Nardi, 1993), and there is more
recent work on deriving models from informal scenarios (Paterno and Mancini, 1999).

3. Wysiwyt Testing

One of the components of end-user software engineering is the What You See Is What
You Test (WYSIWYT) methodology for testing (Burnett et al., 2002; Rothermel et al.,

90 MARGARET BURNETT ET AL.

Figure 5.1. An example of WYSIWYT in the Forms/3 spreadsheet language.

1998, 2001). WYSIWYT incrementally tracks test adequacy as users incrementally edit,
test, and debug their formulas as their programs evolve. All testing-related information
is kept up-to-date at all times, and is communicated via the spreadsheet itself through
integrated visualization devices.

For example, Figure 5.1 presents an example of WYSIWYT in Forms/3.2 In WYSI-
WYT, untested spreadsheet output (i.e., non-constant) cells are given a red border (light
gray in this chapter), indicating that the cell is untested. For example, the EC Award
cell has never been tested; hence, its border is red (light gray). The borders of such cells
remain red until they become more “tested.”

Whenever a user notices that her real or experimental input values are resulting in
correct outputs, she can place a checkmark (

√
) in the decision box at the corner of the

cells she observes to be correct: this constitutes a successful test. These checkmarks
increase the “testedness” of a cell, which is reflected by adding more blue to the cell’s
border (more black in this chapter). For example, the user has checked off the Weighte-
davgquiz cell in Figure 5.1, which is enough to fully test this cell, thereby changing its
border from red to blue (light gray to black). Further, because a correct value in a cell
C depends on the correctness of the cells contributing to C , these contributing cells
participate in C’s test. Consequently, in this example the border of cell avgquiz has also
turned blue (black).

Although users may not realize it, the testedness colors that result from placing
checkmarks reflect the use of a dataflow test adequacy criterion that measures the
interrelationships in the source code that have been covered by the users’ tests. Testing
a program “perfectly” (i.e., well enough to detect all possible faults) is not possible
without an infinite number of test cases for most programs, so a way is needed to
decide when to stop testing. Serving this need, a test adequacy criterion is a quantitative
measure used to define when a program has been tested “enough.” In the spreadsheet

2 In the figures, cells are not locked into a grid. One difference between Forms/3 and commercial spreadsheet
systems is that Forms/3 allows “free-floating” cells rather than requiring all cells to reside in grids. (This difference
also exists in some other research spreadsheet systems, including Forms/2 (Ambler and Burnett, 1990) and
NoPumpG (Lewis, 1990).)

INTEGRATED SOFTWARE ENGINEERING APPROACH 91

paradigm, we say that a cell is fully tested if all its interrelationships (as defined below)
have been covered by tests, and those cells are the ones whose borders are painted blue
(black). If only some have been covered, the cell is partially tested, and these partially
tested cells would have borders in varying shades of purple (shades of gray). Also, to
provide some guidance about how to make additional testing progress, if checking off
a particular value will increase coverage, that cell’s decision box contains a “?”.

3.1. BEHIND THE SCENES: THE BASIS FOR WYSIWYT’S REASONING

In order to precisely define a test adequacy criterion for use in spreadsheets, we defined
an abstract model for spreadsheets, called a cell relation graph (CRG). We use CRGs
to model those spreadsheets and to define and support testing. A CRG is a pair (V , E),
where V is a set of formula graphs, and E is a set of directed edges called cell depen-
dence edges connecting pairs of elements in V . Each formula graph in V represents the
formula for a cell, and each edge in E models the data dependencies between a pair of
cells. In the basic form of WYSIWYT, there is one formula graph for each cell in the
spreadsheet.3 Each formula graph models flow of control within a cell’s formula, and is
comparable to a control flow graph representing a procedure in an imperative program
(Aho et al., 1986; Rapps and Weyuker, 1985). Thus, a formula graph is a set of nodes
and edges. The nodes in a formula graph consist of an entry node modeling initiation of
the associated formula’s execution, an exit node modeling termination of that formula’s
execution, and one or more predicate nodes or computation nodes, modeling execution
of if-expressions’ predicate tests and all other computational expressions, respectively.
The edges in a formula graph model control flow between pairs of formula graph nodes.
The two out-edges from each predicate node are labeled with the values (one true, one
false) to which the conditional expression in the associated predicate must evaluate for
that particular edge to be taken.

Using the CRG model, we defined a test adequacy criterion for spreadsheets, which
we refer to as the du-adequacy criterion.We summarize it briefly here; a full formal
treatment has been provided elsewhere (Rothermel et al., 2001). The du-adequacy
criterion is a type of dataflow adequacy criterion (Duesterwald et al., 1992; Frankl
and Weyuker, 1988; Laski and Korel, 1993; Rapps and Weyuker, 1985). Such criteria
relate test adequacy to interrelationships between definitions and uses of variables in
source code. In spreadsheets, cells play the role of variables; a definition of cell C is
a node in the formula graph for C representing an expression that defines C , and a
use of cell C is either a computational use (a non-predicate node that refers to C) or a
predicate use (an out-edge from a predicate node that refers to C). The interrelationships
between these definitions and uses are termed definition-use associations, abbreviated
du-associations. Under the du-adequacy criterion, cell C is said to have been adequately
tested (covered) when all of the du-associations whose uses occur in C have been
exercised by at least one test: that is, where inputs have been found that cause the

3 WYSIWYT has also been extended to reason about multiple cells sharing a single formula (Burnett et al., 2001b,
2002), but we will not discuss these extensions in this chapter.

92 MARGARET BURNETT ET AL.

expressions associated with both the definitions and uses to be executed, and where
this execution produces a value in some cell that is pronounced “correct” by a user
validation. [The closest analogue to this criterion in the literature on testing imperative
programs is the output-influencing-All-du dataflow adequacy criterion (Duesterwald
et al., 1992), a variant of the all-uses criterion (Rapps and Weyuker, 1985).] In this
model, a test is a user decision as to whether a particular cell contains the correct value,
given the input cells’ values upon which it depends.

To facilitate understanding the structure of a spreadsheet, Forms/3 allows the user
to pop up dataflow arrows between cells—in Figure 5.1 the user has triggered the
dataflow arrows for the WeightedFinal cell—and even between subexpressions within
cell formulas (not shown). The system refers to these as interrelationships in its pop-up
tool tips, but the tie to the CRG model is that dataflow arrows between two cells depict the
presence of du-associations between those cells. Further, if formulas have been opened
on the display (not shown in this figure), the dataflow arrows operate at the granularity of
relationships among subexpressions, thus making the du-associations explicit. Dataflow
arrows use the same testedness colorization as the cell borders do, so that the users can
see exactly which relationships (du-associations) have been tested and which have not.
Dataflow arrows for any cell can be displayed and hidden at will by the user.

3.2. “HELP ME TEST”

Empirical work has shown that the WYSIWYT methodology is helpful to end-users4

(Krishna et al., 2001) but, as presented so far, the WYSIWYT methodology relies on
the intuitions of spreadsheet users to devise test cases for their spreadsheets. Even
with additional visual devices such as colored arrows between formula subexpressions
to indicate the relationships remaining to be covered, after doing a certain amount of
testing, users sometimes find it difficult to think of suitable test values that will cover
the as-yet-untested relationships. At this point, they can invoke the Help Me Test (HMT)
feature (Fisher et al., 2002a), to automate the task of input selection.

To see how the approach works, suppose a user creating the spreadsheet in Figure 1
desires help conjuring up test cases that can increase the testedness of that spreadsheet.
With HMT, the user selects any combination of cells or dataflow arrows on the visible
display (or, selecting none, signals interest in the entire spreadsheet), and then pushes
the “Help Me Test” button on the environment’s toolbar.

At this point, the underlying system responds, attempting to generate a test case that
will help increase coverage in the user’s area of interest. To do this, the system first
calculates the set of du-associations that have not yet been tested, that have endpoints
within the user’s specified area of interest. These du-associations are potential targets for

4 The particular study referenced involved business students experienced with spreadsheets. Their task was
to add new features to a given spreadsheet. We have conducted more than a dozen empirical studies re-
lated to the end-user software engineering devices described in this chapter. The participants were usually
business students, and the tasks were usually testing, debugging, or maintenance. Details can be found at
http://www.engr.oregonstate.edu/∼burnett/ITR2000/empirical.html.

INTEGRATED SOFTWARE ENGINEERING APPROACH 93

test generation. Next, the system calculates the set of input cells (cells whose formulas
are simply constant values, thus serving as the sources of values) that can potentially
cause one or more of the target du-associations to be exercised, that is, cause the defining
and using subexpressions associated with those du-associations to both be evaluated.
Given these two sets of entities (relevant du-associations and relevant input cells) the
system can attempt to generate a test case, by manipulating input cells until one or
more relevant du-associations can be covered. To perform the manipulations that find
the actual test values, our system uses an algorithm adapted from Ferguson and Korel’s
“Chaining Technique” (Ferguson and Korel, 1996).

At any point during these manipulations, if the target du-association is exercised, the
system leaves the newly generated values in the cells, and the user can now validate cell
values in their area of interest. Alternatively, if they do not like these values (perhaps
because the correctness of the particular values is difficult to judge), they can run HMT
again to generate different ones. If the process exhausts all possibilities, or reaches an
internal time limit, the system informs the user that it has not succeeded. (There is also
a “Stop” button available, if the user decides HMT is taking too long.)

Our empirical studies of HMT show that it succeeds in generating test values a high
percentage of the time; in one study its success rate always exceeded 94%, and in most
cases exceeded 99%. Surprisingly, providing estimates of the ranges in which input
values are expected to fall does not improve HMT’s success rate. Also, comparison of
HMT to an alternative technique that randomly generates values shows that in all cases
HMT was significantly more effective. Response times for HMT were also typically
reasonable: in 81% of the trials considered, HMT succeeded in less than 4 seconds, and
in 88% of the trials it succeeded in less than 10 seconds. Here, providing range values
for input cells can help: with such values available, 91% of responses occurred within
4 seconds, and 96% within 10 seconds.

HMT’s efforts to find suitable test values are somewhat transparent to the user—that
is, they can see the values it is considering spinning by. The transparency of its behavior
turns out to contribute to the understandability of both HMT and assertions. We will
return to the tie between HMT and assertions after the next section, which introduces
assertions.

4. Assertions

When creating a spreadsheet, the user has a mental model of how it should operate. One
approximation of this model is the formulas they enter. These formulas, however, are
only one representation of the user’s model of the problem and its solution: they contain
information on how to generate the desired result, but do not provide ways for the user
to cross-check the computations or to communicate other properties. Traditionally,
assertions (preconditions, postconditions, and invariants) have fulfilled this need for
professional programmers: they provide a method for making explicit the properties
the programmers expect of their program logic, to reason about the integrity of their
logic, and to catch exceptions. We have devised an approach to assertions (Burnett et al.,

94 MARGARET BURNETT ET AL.

2003; Wilson et al., 2003) that attempts to provide these same advantages to end-user
programmers.

Our assertions are composed of Boolean expressions, and reason about program
variables’ values (spreadsheet cell values, in the spreadsheet paradigm). Assertions are
“owned” by a spreadsheet cell. Cell X’s assertion is the postcondition of X’s formula.
X’s postconditions are also preconditions to the formulas of all other cells that reference
X in their formulas, either directly or transitively through a network of references.

To illustrate the amount of power we have chosen to support with our assertions, we
present them first via an abstract syntax. An assertion on cell N is of the form:

(N, {and-assertions}), where:
each and-assertion is a set of or-assertions,
each or-assertion is a set of (unary-relation, value-expression) and (binary-relation,

value-expression-pair) tuples,
each unary-relation ∈ {=, <, ≤, >, ≥},
each binary-relation ∈ {to-closed, to-open, to-openleft, to-openright},
each value-expression is a valid formula expression in the spreadsheet language,
each value-expression-pair is two value-expressions.

For example, an assertion denoted using this syntax as (N , {{(to-closed, 10, 20),
(=3)}, {= X2}}) means that N must either be between 10 and 20 or equal to 3; and
must also equal the value of cell X2.

This abstract syntax is powerful enough to support a large subset of traditional
assertions that reason about values of program variables. This abstract syntax follows
Conjunctive Normal Form (CNF): each cell’s collection of and-assertions, which in turn
is composed of or-assertions, is intended to evaluate to true, and hence a spreadsheet’s
assertion is simply an “and” composition of all cells’ assertions.

The abstract syntax just presented is not likely to be useful to end-users. Thus, we
have developed two concrete syntaxes corresponding to it: one primarily graphical and
one textual. The user can work in either or both as desired.

The graphical concrete syntax, depicted in Figure 5.2, supports all of the abstract
syntax (but in the current prototype implementation, value-expressions have been

Figure 5.2. Two (conflicting) assertions “and” ed on the same cell.

INTEGRATED SOFTWARE ENGINEERING APPROACH 95

Figure 5.3. Two assertions in the textual syntax.

implemented for only constants). The example is a representation of (output temp,
{{(to-closed, 0, 100)}, {(to-closed, 3.5556, 23.5556)}}). A thick dot is a data point
in an ordinal domain; it implements “=”. The thick horizontal lines are ranges in the
domain, implementing “to-closed” when connected to dots. A range with no lower
(upper) bound implements “≤” (“≥”). It is also possible to halve a dot, which changes
from closed ranges to open ranges, “≤” to “<”, and so on. Disconnected points and
ranges represent the or-assertions. Multiple assertions vertically in the same window
represent the and-assertions. (We will expand upon how assertions get in and what it
means to be “conflicting” shortly.)

The textual concrete syntax, depicted in Figure 5.3, is more compact, and supports
the same operators as the graphical syntax. Or-assertions are represented with comma
separators on the same line (not shown), while and-assertions are represented as asser-
tions stacked up on the same cell, as in Figure 5.3. There is also an “except” modifier
that supports the “open” versions of “to” (e.g., “0 to 10 except 10”).

Our system does not use the term “assertion” in communicating with users. Instead,
assertions are termed guards, so named because they guard the correctness of the
cells. The user opens a “guard tab” above a cell to display the assertion using the
textual syntax, or double-clicks the tab t open the graphical window. Although both
syntaxes represent assertions as points and ranges, note that points and ranges, with
the composition mechanisms just described, are enough to express the entire abstract
syntax.

Note that although “and” and “or” are represented, they are not explicit operators
in the syntaxes. This is a deliberate choice, and is due to Pane et al.’s research, which
showed that end-users are not successful at using “and” and “or” explicitly as logical
operators (Pane et al., 2002).

Assertions protect cells from “bad” values, i.e., from values that disagree with the
assertion(s). Whenever a user enters an assertion (a user-entered assertion) it is prop-
agated as far as possible through formulas, creating system-generated assertions on
downstream cells. The user can use tabs (not shown) to pop up the assertions, as
has been done on all cells in Figure 5.4. The stick figure icons on cells Monday,
Tuesday, . . . identify the user-entered assertions. The computer icon on cell WDay Hrs
identifies a system-generated assertion, which the system generated by propagating the
assertions from Monday, Tuesday, . . . , through WDay Hrs’s formula. A cell with both
a system-generated and user-entered assertion is in a conflict state (has an assertion
conflict) if the two assertions do not match exactly. The system communicates an asser-
tion conflict by circling the conflicting assertions in red. In Figure 5.4 the conflict on
WDay Hrs is due to a fault in the formula (there is an extra Tuesday). Since the cell’s

96 MARGARET BURNETT ET AL.

Figure 5.4. In the Forms/3 environment, cell formulas can be displayed via the tab at the lower right hand side of
the cell, as has been done in WDay Hrs. The assertions on each cell have been popped up at the top of the cells.

value in WDay Hrs is inconsistent with the assertions on that cell (termed a value vio-
lation), the value is also circled. When conflicts or violations occur, there may be either
a fault in the program (spreadsheet formulas) or an error in the assertions. In Burnett et
al. (2003), we report the results of an empirical study that measured whether assertions
contributed to end-user programmers’ debugging effectiveness; the results were that
the participants using assertions were significantly more effective at debugging than
were participants without access to assertions.

4.1. ASSERTIONS: DETAILED EXAMPLE

We close this section by presenting a detailed example of our prototype assertion
mechanism. Figure 5.5 (top left) shows a portion of a Forms/3 spreadsheet that con-
verts temperatures in degrees Fahrenheit to degrees Celsius. The input temp cell has
a constant value of 200 in its formula and is displaying the same value. There is a
user assertion on this cell that limits the value of the cell to between 32 and 212. The
formulas of the a, b, and output temp cells each perform one step in the conversion,
first subtracting 32 from the original value, then multiplying by five and finally dividing
by nine. The a and b cells have assertions generated by the system (as indicated by the
computer icon) which reflect the propagation of the user assertion on the input temp
cell through their formulas. The spreadsheet’s creator has told the system that the out-
put temp cell should range from 0 to 100, and the system has agreed with this range.
This agreement was determined by propagating the user assertion on the input temp
cell through the formulas and comparing it with the user assertion on the output temp
cell.

Suppose a user has decided to change the direction of the conversion and make the
spreadsheet convert from degrees Celsius to degrees Fahrenheit. A summary follows of
the behavior shown by an end-user in this situation in a think-aloud study we conducted
early in our design of the approach (Wallace et al., 2002). The quotes are from a
recording of that user’s commentary.

First, the user changed the assertion on input temp to range from 0 to 100. This
caused several red violation ovals to appear, as in Figure 5.5 (top right), because the

INTEGRATED SOFTWARE ENGINEERING APPROACH 97

Figure 5.5. Example at three points in the modification task.

values in input temp, a, b, and output temp were now out of range and the assertion
on output temp was now in conflict with the previously specified assertion for that
cell. The user decided “that’s OK for now,” and changed the value in input temp from
200 to 75 (“something between zero and 100”), and then set the formula in cell a to
“input temp∗ 9/5” and the formula in cell b to “a + 32”.

98 MARGARET BURNETT ET AL.

At this point, the assertion on cell b had a range from 32 to 212. Because the user
combined two computation steps in cell a’s formula (multiplication and division), the
correct value appeared in cell b, but not in output temp (which still had the formula
“b/9”). The user now chose to deal with the assertion conflict on output temp, and
clicked on the guard icon to view the details in the graphical syntax (refer back to
Figure 5.2).

Seeing that the Forms/3 assertion specified 3.5556 to 23.556, the user stated “There’s
got to be something wrong with the formula” and edited output temp’s formula, making
it a reference to cell b. This resulted in the value of output temp being correct, although
a conflict still existed because the previous user assertion remained at 0 to 100. Turning
to the graphical syntax window, upon seeing that Forms/3’s assertion was the expected
32 to 212, the user changed the user assertion to agree, which removed the final conflict.
Finally, the user tested by trying 93.3333, the original output value, to see if it resulted
in approximately 200, the original input value. The results were as desired, and the user
checked off the cell to notify the system of the decision that the value was correct, as
in Figure 5.5 (bottom).

5. If we Build it, will they Come?

Of course, the benefits of assertions can be realized only if users can be enticed into
entering their own assertions and acting on them. In the studies on assertions alluded
to above, we introduced assertions to our experiment participants via short tutorial
sessions. But, without such introductions, will users choose to enter assertions?

Blackwell’s model of attention investment (Blackwell, 2002) is one model of user
problem-solving behavior that suggests users will not want to enter assertions. The
model considers the costs, benefits, and risks users weigh in deciding how to complete
a task. For example, if the ultimate goal is to forecast a budget using a spreadsheet,
then exploring an unknown feature such as assertions has cost, benefit, and risk. The
cost is figuring out what assertions do and how to succeed at them. The benefit of
finding faults may not be clear until long after the user proceeds in this direction.
The risk is that going down this path will be a waste of time or, worse, will leave the
spreadsheet in a state from which it is hard to recover. What the model of attention
investment implies is that it is necessary not only for our strategy to make the users
curious about assertions, but also to make the benefits of using assertions clear from the
outset.

In this section, we describe a strategy for doing so. We describe the strategy in
the context of assertions, but we intend to eventually generalize it as a way to motivate
users toward any appropriate software engineering devices in the environment. We term
our strategy the Surprise-Explain-Reward strategy (Wilson et al., 2003). The strategy
draws on the model of attention investment and on findings about the psychology of
curiosity. As the name suggests, the strategy consists of three components: a collection
of surprises, a collection of rewards, and an explanation component pointing out the
links from the surprises to the rewards.

INTEGRATED SOFTWARE ENGINEERING APPROACH 99

Research about curiosity [surveyed in (Lowenstein, 1994)], points out that if an
information gap is illustrated to the user, the user’s curiosity about the subject of the
illustrated gap may increase, potentially causing them to search for an explanation.
Without challenging their assumptions and arousing their curiosity, as the information-
gap perspective explains and much empirical programming literature bears out (e.g.,
Krishna et al., 2001; Panko, 1998; Wilcox et al., 1997), users are likely to assume
that their programs are more correct than is warranted. This is the motivation for
the first component of our Surprise-Explain-Reward strategy: to arouse users’ cu-
riosity, through surprise, enough that they search for explanations. Thus, the first
component of our strategy might be characterized as following a “principle of most
astonishment.”

The strategy is used in two situations: first to entice users to use the features, and
later to help them benefit from the features. In the first situation, the strategy attempts
to surprise the user into entering assertions. If the user becomes curious about the
assertions, she can find out more via an explanation system. If the strategy causes
the user to act by entering an assertion, the second situation becomes possible. This
time, the surprise comes when an assertion identifies a potentially faulty cell formula.
(Actually, the assertion identifies a failure rather than a fault, but since even intermediate
cells in the dataflow chain can be monitored by assertions, the probability of the fault
and failure being in the same cell is greater than would be the case if only final outputs
were monitored.) The users can again look to explanations to explain the surprise and
suggest possible actions. If the user successfully fixes the fault called to their attention
by the assertion, they see that the program’s behavior is more correct, a clear reward
for using assertions. In the remainder of this section we expand upon the approach we
have just summarized.

5.1. SURPRISES

The first step of our strategy is to generate a meaningful surprise for the user. That is, the
system needs to violate the user’s assumptions about their program. We have devised a
pseudo-assertion for this purpose, termed an HMT assertion because it is produced by
the “Help Me Test” (HMT) device described earlier. An HMT assertion is a guess at a
possible assertion for a particular cell.

The guesses are actually reflections of HMT’s behavior. That is, they report the range
of HMT’s attempts to find suitable test cases. For example, in Figure 5.6 (which is part
of the weekly payroll program of Figure 5.4), the HMT assertion for cell Monday is
“−1 to 0.” This indicates that HMT has considered values for Monday between −1
and 0 before it settled upon its current value of −1. If HMT is invoked again it might
consider a different selection of values for Monday such as 1 and 2, which would widen
the HMT assertion to “−1 to 2.” (Note that this tie between HMT’s test case generation
behavior and the assertions it guesses creates a reward opportunity for manipulating the
assertions.) The primary job of the HMT assertions is to surprise the user, and thereby
to generate user interest in “real” assertions (i.e., user-entered and system-generated

100 MARGARET BURNETT ET AL.

Figure 5.6. HMT has guessed assertions for the input cells (top row). (Since HMT changed the values of the input
cells, they are highlighted with a thicker border.) The guesses then propagated through WDay Hrs’s formula to
create an HMT assertion for that cell as well.

assertions). Thus, HMT assertions are—by design—usually bad guesses. The worse
the guess, the bigger the surprise.

HMT assertions exist to surprise and thereby to create curiosity. For example, in
Figure 5.4, the user may expect values for Monday to range from 0 to 8, and rightly so,
because employees cannot be credited with fewer than 0 or more than 8 hours per day.
Since HMT was not aware of this, it attempted inputs less than zero. Thus, the HMT
assertion for Monday probably violates the user’s assumptions about the correct values
for Monday. This is precisely what triggers curiosity according to the information-gap
perspective.

Once an HMT assertion has been generated, it behaves as any assertion does. Not
only does it propagate, but if a value arrives that violates it, the value is circled in red.
This happens even as HMT is working to generate values. Thus, red circles sometimes
appear as HMT is doing its transparent search for suitable test cases. These red circles
are another use of surprise.

It is important to note that, although our strategy rests on surprise, it does not
attempt to rearrange the user’s work priorities by requiring users to do anything about
the surprises. No dialog boxes are presented and there are no modes. HMT assertions
are a passive feedback system; they try to win user attention but do not require it. If
users choose to follow up, they can mouse over the assertions to receive an explanation,
which explicitly mentions the rewards for pursuing assertions. In a behavior study we
performed (Wilson et al., 2003), users did not always attend to HMT assertions for the
first several minutes of their task; thus it appears that the amount of visual activity is
reasonable for requesting but not demanding attention. However, almost all of them
did eventually turn their attention to assertions, and when they did, they used assertions
effectively.

5.2. EXPLANATIONS

As the above paragraph implies, our strategy’s explanation component rests upon self-
directed exploration, following in the direction advocated by several researchers who
have empirically studied this direction and have found it to result in superior learning

INTEGRATED SOFTWARE ENGINEERING APPROACH 101

Figure 5.7. Five explanation examples.

and performance of computer tasks (e.g., Carroll and Mack, 1984; Wulf and Golombek,
2001). To support self-directed exploration, in our strategy a feature that surprises a user
must inform the user. As the second component of our Surprise-Explain-Reward strat-
egy, we devised an on-demand explanation system structured around each object that
might arouse curiosity. Users can begin exploring the object by viewing its explanation,
on demand, in a low-cost way via tool tips.

For example, when a user mouses over an HMT assertion they receive explanation 3
in Figure 5.7. The explanation describes the semantics: the computer was responsible
for creating this assertion, and the assertion was a product of the computer’s testing.
The end of the explanation suggests a possible action for the user to try (fixing the
assertion) and specifies a potential reward (protecting against bad values).

Note that the computer “wonders” about this assertion. This makes explicit that the
HMT assertion may not be correct and that the computer would like the user’s advice.
Previous empirical work has revealed that some users think the computer is always
correct (e.g., Beckwith et al., 2002). Thus it is important to emphasize the tentative
nature of the HMT assertions.

The explanation system spans all the objects in the environment. In general, the
three main components of explanations include: the semantics of the object, suggested
action(s) if any, and the reward. Including the semantics, action, and reward as part

102 MARGARET BURNETT ET AL.

of the explanation are not arbitrary choices. Regarding semantics, although many help
systems for end-users focus mostly on syntax, a study assessing how end-users learn to
use spreadsheets found that the successful users focused more on the semantics of the
spreadsheet than on syntax (Reimann and Neubert, 2000). Regarding actions, Reimann
and Neubert are among those who have examined learning by exploration. They point
out that users (novices or experts) often form sub-goals using clues in the environment.
The actions in the explanations suggest such sub-goals. Getting the user to take action
in order to learn is, in fact, a principle of the minimalist model of instruction (Carroll
and Mack, 1984; Rosson and Seals, 2001; Seals et al., 2002). Regarding reward, the
attention investment model emphasizes the fact that the suggested action will cost the
user effort and that, unless the potential rewards are made clear, users may not be able
to make an informed decision about whether or not to expend the effort.

5.3. REWARDS

When the user edits an HMT assertion to create a user-entered assertion, there are three
types of short-term rewards that can follow. There is also a fourth, longer term reward,
namely the bridge to “real” assertions and their long-term rewards.

The first reward, which visibly occurs in some situations, is input value validation.
This reward can occur immediately when the user edits an HMT assertion. Consider
again cell Monday in Figure 5.5. Suppose the user notices the HMT assertion, reads
explanation 3 from Figure 5.7 and, deciding to take the explanation’s advice to fix the
assertion, changes it to “0 to 8.” (The HMT assertion helps show how to succeed by
acting as a template, exemplifying assertion syntax.) Despite the assertion entry, the
cell’s value is still −1, and the system circles the value, since it is now in violation with
its assertion. Thus, by taking the advice of the system the user has been immediately
rewarded: the system is indeed “protect(ing) against bad values.”

The second reward always occurs. Once a user places an assertion on an input cell, the
behavior of HMT changes to honor the assertion. Continuing the previous example, once
cell Monday has the assertion “0 to 8” and the user runs HMT again, HMT will always
choose values satisfying the assertion. Since HMT’s “thought process” is displayed as
it mulls over values to choose, this behavior change is noticeable to some users. Since
HMT’s selected values can seem odd from the user’s perspective, given their knowledge
of the program’s purpose, getting HMT to choose sensible input values is rewarding if
noticed. In our empirical work, a few of the participants’ comments showed that they
not only noticed this tie but that the tie was what motivated them to use assertions.

The third reward also pertains to changes in HMT’s behavior. HMT becomes an
aggressive seeker of test values that will expose faults. As other test generators in the
software engineering community have done (e.g., Korel and Al-Yami, 1996), HMT at-
tempts to violate user-entered or system-generated assertions. This behavior is focused
on non-input cells (i.e., cells that have formulas instead of constant values), and poten-
tially creates a value violation. A value violation on a non-constant cell indicates one of
three things: an erroneous assertion, a situation in which the program could fail given

INTEGRATED SOFTWARE ENGINEERING APPROACH 103

inappropriate values in upstream input cells not protected by assertions, or the presence
of a faulty formula. For example, for cell WDay Hrs, HMT will attempt to violate the
assertion “0 to 40” by looking for values in the inputs contributing to WDay Hrs that
produce a value violation. When HMT’s pursuit of faults succeeds, the user is not only
rewarded, but also is probably surprised at the presence of the heretofore unnoticed
fault, leading to a longer term use of the Surprise-Explain-Reward strategy.

HMT assertions are intended to help users learn and appreciate assertions, but after
that goal has been accomplished, some users will not need HMT’s guessed assertions.
They will have learned how to enter assertions, regardless of whether HMT guesses
assertions on the cells they wish to protect. The Surprise-Explain-Reward strategy
carries over to a longer term, to help maintain correctness.

Assertions can lead to three kinds of surprises, and these surprises are themselves
rewards, since they mean a fault has been semi-automatically identified. First, the value
violations are surprises. As already discussed, they identify faults or assertion errors,
and are circled in red. Second, assertion conflicts are surprises. As explained ear-
lier, assertion conflicts arise when the system’s propagating the user-entered assertions
through formulas produce system-generated assertions that disagree with user-entered
assertions. Like value violations, they are circled in red (as in WDay Hrs in Figure
5.4 and Figure 5.7) and indicate faults or assertion errors. Third, the system-generated
assertions might “look wrong” to the user.

Our behavior study, which is detailed in Wilson et al. (2003), provided two types of
evidence that the rewards were indeed sufficient to convince the participants of the value
of assertions. The strongest and most general is the fact that, when participants used
assertions once, they used them again. (The mean was 18 assertions per participant.)
Additional evidence is that, although participants did not enter assertions until almost
14 minutes (mean) into the first task, by the second task they began entering assertions
much earlier.5 In fact, 9 of the 16 users (56%) entered assertions within the first minute
after beginning the second task. From this it seems clear that after users became familiar
with assertions during the first task, they had learned to recognize their value by the
second task. Further, all introduction to the assertions took place through the Surprise-
Explain-Reward strategy itself: our experiment’s tutorial never mentioned assertions or
gave any insights into what they were or how to use them.

6. Fault Localization

Given the explicit, visualization-based support for WYSIWYT testing, an obvious
opportunity is to leverage the users’ testing information to help with fault localization
once one of their tests reveals a failure. Our end-user software engineering work takes
advantage of this opportunity through the use of slicing.

5 There were two different spreadsheets, but the order they were given to the participants was varied. When we refer
to the “first” or “second” task, we mean the first or second (respectively) spreadsheet in that particular participant’s
sequence.

104 MARGARET BURNETT ET AL.

Figure 5.8. A Paycheck spreadsheet. The user is hovering the mouse over the Overtime Pay cell to see the
explanation of its dark red shading.

While incrementally developing a spreadsheet, a user can indicate his or her obser-
vation of a failure by marking a cell incorrect with an “X” instead of a checkmark.
At this point, our fault localization techniques highlight in varying shades of red the
cells that might have contributed to the failure, with the goal that the most likely-to-be
faulty cells will be colored dark red. More specifically, each cell’s interior is colored
with one of six discrete fault likelihood colors so as to highlight the cells most likely to
contain faults: “None” (no color), “Very Low,” “Low,” “Medium,” “High,” and “Very
High” (very dark red). For example, in Figure 5.8, the fault likelihood of the Regu-
lar Pay cell has been estimated as Very Low, the fault likelihoods of Withholdings and
Net Amount have been estimated as Medium, and the fault likelihoods of Overtime Pay
and Gross Amount have been estimated as High.

6.1. THREE TECHNIQUES FOR ESTIMATING FAULT LIKELIHOOD

How should these colors be computed? Computing exact fault likelihood values for a
cell, of course, is not possible. Instead, we must combine heuristics with deductions that
can be drawn from analyzing the source code (formulas) and/or from the user’s tests.
We are currently experimenting with three different approaches to assisting end-user
programmers with fault localization. All three techniques maintain the following three
properties:

(1) Every cell that might have contributed to the computation of an incorrect value will
be assigned some positive fault likelihood.

(2) The more incorrect calculations a cell contributes to, the greater the fault likelihood
assigned to it.

(3) The more correct calculations a cell contributes to, the lower the fault likelihood
assigned to it.

The first approach, like many other fault localization techniques, builds on previous
research on slicing and dicing. [Tip (1995) provides a survey of that research.] In

INTEGRATED SOFTWARE ENGINEERING APPROACH 105

general, a program’s backward slice is every portion of the program that affects a
particular variable at a particular point. (Similarly, a forward slice is every portion
of the program that the particular variable at that point affects.) In the spreadsheet
paradigm, the concept of a backward (forward) slice simplifies to every cell whose
value contributes to (is affected by) the cell in question. For example, in Figure 5.8 the
backward slice of Gross Amount is Regular Pay and Overtime Pay, plus the three cells
used in the computation of those two. Since Gross Amount is exhibiting a failure, its
backward slice contains all the cells that could possibly contain the fault. A dice (Chen
and Cheung, 1997) can reduce the number of cells being considered as having the fault
by “subtracting out” of the slice the cells that contributed also to correct values.

In a manner reminiscent of program dicing, our first technique (Reichwein et al.,
1999; Ruthruff et al., 2003), which we term the Blocking Technique, considers the
dataflow relationships involving the X-marked cells that reach C . (An X-mark reaches
C if there is a dataflow path from C to the X-marked cell that does not have any check-
marks on the cells in the path. If any such checkmarks are present, they are said to
block the X-mark from C along that path.) In this technique, the more X-marks that
reach C, the greater the fault likelihood, supporting property (2) above. For example,
in Figure 5.8, the checkmark in Regular Pay blocks most of the effects of the X-marks
downstream from affecting Regular Pay’s fault likelihood—but it does not completely
block out the X-marks’ effects because of property (1) above. Unlike previous algo-
rithms, our algorithms are incremental, updating and reflecting fault likelihood after
each user action (each formula edit, each placement of a checkmark or X-mark, etc.).
The Blocking Technique is also different from previous algorithms in its use of reason-
ing about which marks are blocked from C by marks of the opposite type in C’s forward
slice.

Another way to reason about slices is via counts of successful/failed tests. Jones
et al. (2002) developed Tarantula, which follows that type of strategy. Tarantula utilizes
information from all passing and failing tests when highlighting possible locations for
faults. It colors each statement to indicate the likelihood that it is faulty, determining
colors via the ratio of failing to passing tests for tests that execute that statement. Like
xSlice, Tarantula reports its results after running the entirety of a test suite and collecting
information from all of the tests in the test suite. Our second technique, which we term
the Test Count Technique (Fisher et al., 2002b; Ruthruff et al., 2003), follows the same
general strategy but, as already mentioned above, our techniques incrementally update
information about likely locations for faults as soon as the user applies tests to their
spreadsheet.

Both the Blocking and Test Count techniques can be a bit too expensive to be
practical for the highly responsive, incremental conventions of end-user programming
environments. Under some circumstances, their time complexities approach O(n4) and
O(n3), respectively, where n is the number of cells in the spreadsheet. [A complete
discussion of complexities is given in (Ruthruff et al., 2003).] To address this issue,
we devised a third technique that approximates the reasoning from both techniques at
a lower cost, namely O(n).

106 MARGARET BURNETT ET AL.

6.2. WHICH OF THE TECHNIQUES IS BEST?

We are currently conducting a variety of empirical studies to see which of the fault
localization techniques just described is the most effective, given the testing end-user
programmers actually do. Our empirical work on this question is still in early stages,
so we are not ready to identify which is the “best” of the three techniques. But we can
provide the following insights:

� Recall that these techniques are meant for interactive, incremental programming.
Thus, feedback is needed before there is very much information available, such
as after the very first X-mark the user places.

� Early experimental work suggests that the Blocking Technique outperforms the
other two in ability to visually discriminate the faulty cells from the non-faulty
ones at early stages (Ruthruff et al., 2003).

� In interactively judging the correctness of values, end-user programmers, being
human, make mistakes. In a study we conducted (Prabhakararao et al., 2003),
approximately 5% of the checkmarks end-users placed were incorrect.

� If a fault localization mechanism is not robust enough to tolerate mistakes, it can
greatly interfere with the user’s debugging success. In the study just mentioned,
the 5% mistake rate seriously interfered with over half the participants’ debugging
sessions (using the Blocking Technique).

� In our empirical work, the Test Count Technique has been more robust than
the other two techniques in tolerating a reasonably small mistake rate (Ruthruff
et al., 2003). This is probably because the Test Count Technique is historical in
nature. That is, it considers the entire history of test values, allowing the correct
information to build up, essentially “outweighing” a small mistake rate. In contrast
to this, the Blocking Technique emphasizes how the most recent test cases’ set of
judgments (checks and X-marks) interact.

In an experiment in which users were first familiarized with the presence of a fault
localization mechanism, they tended to make use of it, but only after their own debug-
ging sleuthing failed. When they did eventually turn to a fault localization mechanism,
it was often quite helpful at leading them to the fault (Prabhakararao et al., 2003).

However, a puzzling problem we have observed in our empirical work is that, if users
have not been made familiar with the presence of the fault localization mechanism,
when they eventually encounter it they do not seem to trust it enough to make use of
its assistance. This is entirely different from their response to assertions, which they
seem to embrace wholeheartedly. We are currently working to learn the reasons for this
marked difference in user attitude toward the two mechanisms.

7. Concluding Remarks

Our view is that giving end-user programmers ways to easily create their own programs
is important, but is not enough. We believe that, like their counterparts in the world of
professional programming, end-user programmers need support for other aspects of the

INTEGRATED SOFTWARE ENGINEERING APPROACH 107

software lifecycle. In this chapter, we have presented our approach to end-user software
engineering, which integrates, in a fine-grained way, support for testing, assertions, and
fault localization into the user’s programming environment. As part of this work, we
have also been working on how to motivate end-users to make use of the software
engineering devices, and have gotten encouraging results via our Surprise-Explain-
Reward strategy. Supporting software development activities beyond the programming
stage—in a way that helps users make productive use of the devices but does not require
them to invest in software engineering training—is the essence of our end-user software
engineering vision.

Acknowledgments

This work was supported in part by NSF under ITR-0082265 and in part by the EU-
SES Consortium via NSF’s ITR-0325273. We would like to acknowledge the many
students and collaborators who have contributed to the end-user software engineering
methodologies and empirical studies described in this chapter: Miguel Arredondo-
Castro, Laura Beckwith, Darren Brown, Joshua Cantrell, Mingming Cao, Nanyu Cao,
Ledah Casburn, Frank Cort, Eugene Rogan Creswick, Christopher DuPuis, Mike
Durham, Marc Fisher, Orion Granatir, Thomas Green, Dalai Jin, Daniel Keller, Andrew
Ko, Vijay Krishna, John LeHoullier, Lixin Li, Martin Main, Omkar Pendse, Amit
Phalgune, Shrinu Prabhakararao, James Reichwein, Bing Ren, T. J. Robertson, Karen
Rothermel, Joseph Ruthruff, Justin Schonfeld, Prashant Shah, Andrei Sheretov, Jay
Summet, Christine Wallace, and Aaron Wilson.

Appendix A: WYSIWYT Scenarios in Excel

The WYSIWYT methodology has been integrated into the research language Forms/3.
Here are three scenarios illustrating how it might look if integrated into Excel.

A.1 SCENARIO 1: AN END-USER FIGURES OUT AND TESTS HER INCOME TAXES

An end-user has a printout of an income tax form from the U.S. Internal Revenue
Service, such as in Figure 5.9, in front of her, and she wants to use Excel to figure out
the answers. To do this, she has created the spreadsheet in Figure 5.10.

Although this spreadsheet is simple, there are several ways the user could end up
reporting the wrong answer. Like many taxpayers, she may be struggling to gather all
the required data, and may change her mind about the right data values to enter. If she
has been taking shortcuts with the formulas, basing them on the conditions present in
her first version of the data (such as not bothering to use a max operator in line 5 to
prevent negatives), the formulas are probably not very general, and may cause problems
if her data changes. For example, if she entered “line 4–line 3” as the formula for line
5, but later changes line 4–5500 because her parents tell her they did not claim her
this year after all, then the formula for line 5 will not give the correct answer. Similar

108 MARGARET BURNETT ET AL.

Form

1040EZ

Name &
Address

Report
your
income

Attach
Copy B of
Form(s)
W-2 here.
Attach tax
payment on
top of
Form(s) W-2.

Note: You
must check
Yes or No.

Department of the Treasury - Internal Revenue Service

Income Tax Return for
Single Filers With No Dependents 1991
Use the IRS label (see page 10). If you don't have one, please print.

Print your name (first, initial, last)

Home address (number and street). (If you have aP.O. box, see page11).) Apt. no.

City, town or post office, state, and ZIP code. (If you have a foreign address, see page11.)

Please see instructions on the back. Also, see the
Form 1040EZ booklet.

Presidential Election Campaign (see page 11)
Do you want $1 to go to this fund?

L
A
B
E
L

H
E
R
E

Your social security number

1 Total wages, salaries, and tips. This should be shown in Box
10 of your W-2 form(s). (Attach your W-2 form(s).)

2 Taxable interest income of $400 or less. If the total is more
than $400, you cannot use Form 1040EZ.

3 Add line 1 and line 2. This is youradjusted gross income.

4 Can your parents (or someone else) claim you on their return?
Yes. Enter amount from line E here.
 No. Enter 5,550.00. This is the total of your standard
 deduction and personal exemption.

5 Subtract line 4 from line 3. If line 4 is larger than line 3, enter
0. This is your taxable income.

Yes No

Figure 5.9. A portion of a U.S. income tax form.

problems could arise if she discovers that she entered data from the wrong box of her
W–2 form into line 1, and so on.

Even in this simple case, the WYSIWYT methodology can help. Figure 5.10 shows
a mock-up of how it might be incorporated into Excel. All cells containing formulas (as
opposed to data values) are initially red-bordered with checkboxes, as in Figure 5.11
(top). The first time the user sees a red border, she moves her mouse over it and the

1040EZ calculations:

Presidential election? yes
1. Total wages 5132
2. Taxable interest 297
3. Adjusted gross 5429
4. Parents? 1500 Line E 1500
5. Taxable income 3929

Figure 5.10. The user’s Excel spreadsheet to figure out the taxes. The first few cells are simply data values. Line
3’s formula is “line 1 + line 2,” line 4’s formula is a reference to line E, and line 5’s formula is “line 3–line 4.”

INTEGRATED SOFTWARE ENGINEERING APPROACH 109

1040EZ calculations:

Presidential election? yes
1. Total wages 5132
2. Taxable interest 297
3. Adjusted gross 5429
4. Parents? 1500 Line E 1500
5. Taxable income 3929

?

?

?

1040EZ calculations:

Presidential election? yes
1. Total wages 5132
2. Taxable interest 297
3. Adjusted gross 5429
4. Parents? 1500 Line E 1500
5. Taxable income 3929 √

1040EZ calculations:

Presidential election? yes
1. Total wages 5132
2. Taxable interest 297
3. Adjusted gross 5429
4. Parents? 5500 Line E 1500
5. Taxable income -71 ?

Figure 5.11. A mock-up of Excel if enhanced by the WYSIWYT technology. (Top): All cells containing formulas
are initially red, meaning untested. (Middle): Whenever the user makes a decision that some data value is correct,
she checks it off. The checkmark appears in the cell she explicitly validated, and all the borders of cells contributing
to that correct value become more tested (closer to pure blue, shown as black in this picture). This example has
such simple formulas, only the two colors red (light gray) and blue (black) are needed. (Bottom): The user changes
the formula in line 4 to a constant. This change causes affected cells to be considered untested again.

tool tips inform her that “red borders mean untested and blue borders mean tested. You
can check cells off when you approve of their values.” The user checks off a value
that she is sure is correct, and a checkmark (

√
) appears as in Figure 5.11 (middle).

Further, the border of this explicitly approved cell, as well as of cells contributing to
it, becomes blue. If she then changed some data, any affected checkmarks would be
replaced with blanks or question marks (“?”) as described earlier in this paper, because
the current value has not been checked off. But suppose that instead of replacing a
data value, the user makes the formula change in line 4 alluded to above, changing the
previous formula to the constant 5500 instead of the former reference to line E. Since
the change she made involved a formula (the one she just changed to a data value), the
affected cells’ borders revert to red and downstream

√
s disappear, indicating that these

cells are now completely untested again. [See Figure 5.11 (bottom).] The maintenance
of the “testedness” status of each cell throughout the editing process, as illustrated in
Figure 5.11 (bottom), is an important benefit of the approach. Without this feature, the
user may not remember that her previous testing became irrelevant with her formula
change, and now needs to be redone.

110 MARGARET BURNETT ET AL.

1040EZ calculations:

Presidential election? yes
1. Total wages 5132
2. Taxable interest 297
3. Adjusted gross =C4+C5
4. Parents? yes =IF(B7="yes",F7,5500) Line E 1500
5. Taxable income =C6-C7 √

Figure 5.12. Some cells require more than one test value to become completely tested, as this formula view with
purple (medium gray) cell borders and red (light gray) and blue (black) arrows between subexpressions shows.

A.2 SCENARIO 2: THE USER TESTS HER INCOME TAX SPREADSHEET

AS SHE MAKES IT MORE REUSABLE

The next year, the user may want to improve the spreadsheet so that she can use it year
after year without having to redesign each formula in the context of the current year’s
data values. For example, she adds the yes/no box from the IRS form’s line 4 to her
spreadsheet’s line 4 and uses the if operator in the formula for line 4. Because of this if,
she will need to try at least two test cases for line 4’s cell to be considered tested: one
that exercises the “yes” case and one that exercises the “no” case.

Because of this, when the user checks off one data value as in Figure 5.12, the borders
for lines 4 and 5 turn purple (50% blue and 50% red). To figure out how to make the
purple cells turn blue, the user selects one of them and hits a “show details” key. The
system then draws arrows pertaining to the subexpression relationships, with colors
depicting which cases still need to be tested. The arrow from the last subexpression is
red, telling the user that the “no” case still needs to be tried.

A.3 SCENARIO 3: A TEMPLATE DEVELOPER TESTS AN INCOME TAX

SPREADSHEET FOR SALE

It is well documented that many production spreadsheets contain bugs. To help address
this problem, a developer with a full suite of income tax spreadsheet templates for
sale could use the methodology to achieve organized test coverage of these income tax
spreadsheets. This would not only be valuable when first developing the spreadsheets,
but also in making sure that each formula change in subsequent years’ revisions had
been entered and tested.

References

Aho, A., Sethi, R. and Ullman, J. (1986). Compilers, Principles, Techniques, and Tools. Reading,
MA: Addison-Wesley.

Ambler, A. and Burnett, M. (1990). Visual forms of iteration that preserve single assignment. Journal
of Visual Languages and Computing 1(2), 159–181.

Beckwith, L., Burnett, M. and Cook, C. (2002). Reasoning about many-to-many requirement relation-
ships in spreadsheets. In: Proceedings of IEEE Symposium Human-Centric Computing, Arlington
VA, September, pp. 149–157.

INTEGRATED SOFTWARE ENGINEERING APPROACH 111

Blackwell, A. (2002). First steps in programming: A rationale for attention investment models. In:
Proceedings of IEEE Human-Centric Computing Languages and Environments, Arlington, VA,
September 3–6, pp. 2–10.

Boehm, B., Abts, C., Brown, A., Chulani, S., Clark, B., Horowitz, E., Madachy, R., Reifer, J. and
Steece, B. (2000). Software Cost Estimation with COCOMO II. Upper Saddle River, NJ: Prentice
Hall PTR.

Brown, D., Burnett, M., Rothermel, G., Fujita, H. and Negoro, F. (2003). Generalizing WYSIWYT
visual testing to screen transition languages. In: Proceedings of IEEE Symposium Human-Centric
Computing Languages and Environments, Auckland, NZ, October 28–31, pp. 203–210.

Burnett, M., Atwood, J., Djang, R., Gottfried, H., Reichwein, J. and Yang, S. (2001a). Forms/3: A
first-order visual language to explore the boundaries of the spreadsheet paradigm. Journal of
Functional Programming 11(2), 155–206.

Burnett, M., Cook, C., Pendse, O., Rothermel, G., Summet, J. and Wallace, C. (2003). End-user
software engineering with assertions in the spreadsheet paradigm. In: Proceedings of International
Conference Software Engineering, Portland, OR, May 3–10, pp. 93–103.

Burnett, M., Ren, B., Ko, A., Cook, C. and Rothermel, G. (2001b). Visually testing recursive programs
in spreadsheet languages. In: Proceedings of IEEE Human-Centric Computing Languages and
Environments, Stresa, Italy, September 5–7, pp. 288–295.

Burnett, M., Sheretov, A., Ren, B. and Rothermel, G. (2002). Testing homogeneous spreadsheet grids
with the ‘what you see is what you test’ methodology. IEEE Transactions Software Engineering,
576–594.

Carr, D. (2003). End-user programmers need improved development support. In: Proceedings of CHI
2003 Workshop on Perspectives in End User Development, April 16–18.

Carroll, J. and Mack, R. (1984). Learning to use a word processor by doing, by thinking, by knowing.
In: J.C. Thomas and M.L. Schneider (eds.), Human Factors in Computer Systems. Norwood, NJ:
Ablex, pp. 13–51.

Chen, T. and Cheung, Y. (1997). On program dicing. Software Maintenance: Research and Practice
9(1), 33–46.

Davis, J. (1996). Tools for spreadsheet auditing. International Journal of Human–Computer Studies
45, 429–442.

Duesterwald, E., Gupta, R. and Soffa, M.L., (1992). Rigorous data flow testing through output influ-
ences. In: Proceedings of Second Irvine Software Symposium, March, pp. 131–145.

Ferguson, R. and Korel, B. (1996). The chaining approach for software test generation. ACM Trans-
actions of Software Engineering and Methodology 5(1), 63–86.

Fisher, M., Cao, M., Rothermel, G., Cook, C. and Burnett, M. (2002a). Automated test generation
for spreadsheets. In: Proceedings of International Conference of Software Engineering, Orlando,
FL, May, pp. 141–151.

Fisher, M., Jin, D., Rothermel, G. and Burnett, M. (2002b). Test reuse in the spreadsheet paradigm.
In: Proceedings of International Symposium Software Reliability Engineering.

Frankl, P. and Weyuker, E. (1988). An applicable family of data flow criteria. IEEE Transactions
Software Engineering 14(10), 1483–1498.

Green, T.R.G. and Petre, M. (1996). Usability analysis of visual programming environments: A
‘cognitive dimensions’ framework. Journal of Visual Languages and Computing 7(2), 131–174.

Heger, N., Cypher, A. and Smith, D. (1998). Cocoa at the visual programming challenge 1997. Journal
of Visual Languages and Computing 9(2), 151–168.

Henderson, P. and Morris, J. (1976). A lazy evaluator. In: Proceedings of ACM Symposium on Prin-
ciples of Programming Languages, Atlanta, GA, January 19–21, pp. 95–103.

Hughes, J. (1985). Lazy memo-functions, LNCS #201. In: J.-P. Jouannaud (ed.), Functional Program-
ming Languages and Computer Architecture, Nancy, France, September 16–19, pp. 129–146.

Igarashi, T., Mackinlay, J., Chang, B.-W. and Zellweger, P. (1998). Fluid visualization of spreadsheet
structures. In: Proceedings of IEEE Symposium Visual Languages, pp. 118–125.

112 MARGARET BURNETT ET AL.

Jones, J., Harrold, M. and Stasko, J. (2002). Visualization of test information to assist fault localization.
In: Proceedings of International Conference Software Engineering, Orlando FL, May, pp. 467–
477.

Karam, M. and Smedley, T. (2001). A testing methodology for a dataflow based visual program-
ming language. In: Proceedings of IEEE Symposium Human-Centric Computing Languages and
Environments, Stresa, Italy, September 5–7, pp. 280–287.

Korel, B. and Al-Yami, A. (1996). Assertion-oriented automated test data generation. In: Pro-
ceedings International Conference Software Engineering, Berlin Germany, March, pp. 71–
80.

Krishna, V., Cook, C., Keller, D., Cantrell, J., Wallace, C., Burnett, M. and Rothermel, G. (2001).
Incorporating incremental validation and impact analysis into spreadsheet maintenance: an em-
pirical study. Proceedings of International Conference Software Maintenance, Florence, Italy,
November, pp. 72–81.

Laski, J. and Korel, B. (1993). A data flow oriented program testing strategy. IEEE Transactions
Software Engineering 9(3), 347–354.

Lewis, C. (1990). NoPumpG: Creating interactive graphics with spreadsheet machinery. In: E.P.
Glinert (ed.), Visual Programming Environments: Paradigms and Systems. Los Alamitos, CA:
IEEE Computer Society Press, pp. 526–546.

Lieberman, H. (2001). Your Wish Is My Command: Programming by Examp. San Francisco, CA:
Morgan Kaufmann.

Lieberman, H. and Fry, C. (1998), ZStep 95: A reversible, animated source code stepper. In:
J. Stasko, J. Domingue, M. Brown and B. Price (eds.), Software Visualization: Programming
As a Multimedia Experience. Cambridge, MA: MIT Press, pp. 277–292.

Lowenstein, G. (1994). The psychology of curiosity. Psychological Bulletin 116(1), 75–98.
McDaniel, R. and Myers, B. (1999). Getting more out of programming-by-demonstration. In: Pro-

ceedings of ACM Conference on Human Factors in Computing Systems, Pittsburgh, PA, May
15–20, pp. 442–449.

Miller, R. and Myers, B. (2001). Outlier finding: Focusing user attention on possible errors. In:
Proceedings of User Interface Software and Technology, Orlando, FL, November, pp. 81–
90.

Myers, B. and Ko, A. (2003). Studying development and debugging to help create a better programming
environment. In: Proceedings of CHI 2003 Workshop on Perspectives in End User Development,
April, pp. 65–68.

Nardi, B. (1993). A Small Matter of Programming: Perspectives on End-User Computing. Cambridge,
MA: MIT Press.

Pane, J., Myers, B. and Miller, L. (2002). Using HCI techniques to design a more usable program-
ming system. In: Proceedings. IEEE Human-Centric Computing Languages and Environments,
Arlington VA, September, pp. 198–206.

Panko, R. (1998). What we know about spreadsheet errors. Journal of End User Computing, Spring.
Paterno, F. and Mancini, C. (1999). Developing task models from informal scenarios. In: Proceedings

of ACM CHI’99 Late Breaking Results, Pittsburgh, PA, May, pp. 228–220.
Prabhakararao, S., Cook, C., Ruthruff, J., Creswick, E., Main, M., Durham, M. and Burnett, M.

(2003). Strategies and behaviors of end-user programmers with interactive fault localization.
In: Proceedings of IEEE Symposium Human-Centric Computing Languages and Environments,
Auckland, New Zealand, October 28–31, pp. 15–22.

Rapps, S. and Weyuker, E. (1985). Selected software test data using data flow information. IEEE
Transactions of Software Engineering 11(4), 367–375.

Raz, O., Koopman, P. and Shaw, M. (2002). Semantic anomaly detection in online data sources.
In: Proceedings of 24th International Conference on Software Engineering, Orlando, FL, May
19–25, pp. 302–312.

INTEGRATED SOFTWARE ENGINEERING APPROACH 113

Reichwein, J., Rothermel, G. and Burnett, M. (1999). Slicing spreadsheets: An integrated methodology
for spreadsheet testing and debugging. In: Proceedings of 2nd Conference Domain Specific
Languages, October, pp. 25–38.

Reimann, P. and Neubert, C. (2000). The role of self-explanation in learning to use a spreadsheet
through examples. Journal of Computer Assisted Learning 16, 316–325.

Repenning, A. and Ioannidou, A. (1997). Behavior processors: Layers between end-users and Java vir-
tual machines. In: 1997 IEEE Symposium Visual Languages, Capri, Italy, September, pp. 402–409.

Rosson, M. and Seals, C. (2001). Teachers as simulation programmers: Minimalist learning and reuse.
In: Proceedings of ACM Conference Human Factors in Computing Systems, Seattle, WA, April,
pp. 237–244.

Rothermel, G., Burnett, M., Li, L., DuPuis, C. and Sheretov, A. (2001). A methodology for testing
spreadsheets. ACM Transactions Software Engineering and Methodology 10(1), 110–147.

Rothermel, G., Li, L., DuPuis, C. and Burnett, M. (1998). What you see is what you test: A methodology
for testing form-based visual programs. In: Proceedings of International Conference Software
Engineering, Kyoto Japan, April, pp. 198–207.

Ruthruff, J., Creswick, E., Burnett, M., Cook, C., Prabhakararao, S., Fisher, M., II, and Main, M.
(2003). End-user software visualizations for fault localization. In: Proceedings of ACM Sympo-
sium Software Visualization, San Diego, CA, June 11–13, pp. 123–132.

Sajanieme, J. (2000). Modeling spreadsheet audit: a rigorous approach to automatic visualization.
Journal of Visual Languages and Computing 11(1), 49–82.

Seals, C., Rosson, M., Carroll, J., Lewis, T. and Colson, L. (2002). Fun learning Stagecast Creator: An
exercise in minimalism and collaboration. In: Proceedings of IEEE Symposium Human-Centric
Computing Languages and Environments, Arlington VA, September, pp. 177–186.

Tip, F. (1995). A survey of program slicing techniques. Journal of Programming Languages 3(3),
121–189.

Wagner, E. and Lieberman, H. (2003). An end-user tool for e-commerce debugging. In: Proceedings
of Intelligent User Interfaces, Miami, Florida, January 12–15.

Wallace, C., Cook, C., Summet, J. and Burnett, M. (2002). Assertions in end-user software engineering:
A think-aloud study (Tech Note). In: Proceedings of IEEE Symposium Human-Centric Computing
Languages and Environments, Arlington, VA, September, pp. 63–65.

Wilcox, E., Atwood, J., Burnett, M., Cadiz, J. and Cook, C. (1997). Does continuous visual feedback aid
debugging in direct-manipulation programming languages? In: Proceedings of ACM Conference
Human Factors in Computing Systems, Atlanta, GA, March, pp. 258–265.

Wilson, A., Burnett, M., Beckwith, L., Granatir, O., Casburn, L., Cook, C., Durham, M. and Rothermel,
G. (2003). Harnessing curiosity to increase correctness in end-user programming. In: Proceedings
of ACM Conference Human Factors in Computing Systems, Ft. Lauderdale, FL, April 3–10,
pp. 305–312.

Wulf, V. and Golombek, B. (2001). Exploration environments—concept and empirical evaluation.
Proceedings of GROUP, 107–116.

Chapter 6

Component-Based Approaches to Tailorable Systems

MARKUS WON1, OLIVER STIEMERLING2, and VOLKER WULF3

1International Institute for Socio-Informatics (IISI), Heerstr. 148, 53111 Bonn, won@iisi.de
2Ecambria Systems, Hospeltstr. 35a, 50825 Cologne, os@ecambria-systems.com
3University of Siegen, Hölderlinstr. 3, 57068 Siegen and Fraunhofer FIT, Scholoß
Birlinghoven, 53754 Sankt Augustin, Germany, volker.wulf@uni-siegen.de

Abstract. Flexibility is one of the most striking features of modern software. As the idea of integrating
components is easily understood by programmers as well as end users, component architectures seem
to be very promising to serve as a technological basis. In this chapter we give an overview of our
work in the last years. A component model called FLEXIBEANS has been designed with the special
notion to develop highly flexible and tailorable applications. The FREEVOLVE platform then serves
as an environment in which compositions can be run and tailored. The second part of the chapter
deals with the development and evaluation of different tailoring environments in which end users can
compose their own applications or tailor existing ones. Users tests showed that besides a coherent
technical basis and a manageable visual tailoring environment, there is a need for additional support
techniques. We discuss how techniques to support users’ individual and collective tailoring activities
can be integrated into the user interface.

Key words. tailorability, platform, component architecture, user interface, collaborative tailoring,
evalution.

1. Introduction

Software applied in organizations needs to be flexible; it has to cope with diversified
and dynamic requirements. Software engineering approaches this challenge from the
perspective of the software development process. Techniques and methods have been
developed to make an evolutionary software engineering processes more efficient. Re-
cently component-technology has gained considerable attention in this context (see e.g.
Szyperski, 2002). However, software engineering tools and techniques focus on pro-
fessional software developers. Beyond contributing to the appropriate requirements,
users of software artifacts are traditionally not being considered as relevant actors in
contributing to the flexibility of a software artifact.

Flexibility of software artifacts therefore was a major research issue in Human Com-
puter Interaction from its very beginning. Since the individual abilities of specific users
are diverse and develop constantly, suitability for individualization is an important
principle for the design of the dialogue interface. In general, users were supposed to
adapt the software artifact according to their abilities and requirements (Ackermann
and Ulich, 1987; ISO, 9241). However, the scope of flexibility realized in early im-
plementations was limited to simple parameterization of the dialogue interface. While

Henry Lieberman et al. (eds.), End User Development, 115–141.
C© 2006 Springer.

116 MARKUS WON ET AL.

this line of thoughts gave the users of software artifacts an active role, high levels of
flexibility concerning the functionality of a system were originally not addressed.

Starting in the late 1980s, industrial demands, resulting from the wide spread of
personal computers, lead to research efforts on flexible systems whose functionality
or behavior can be modified by their users. Henderson and Kyng (1991) have worked
out the concept of tailorability to name these activities. Tailoring is defined as the
activity to modify a computer application within its context of use (Henderson and
Kyng, 1991). Tailoring takes place after the original design and implementation phase
of an application; it can start during or right after the installation of the application.
Tailoring is usually carried out by individual users, local developers, helpdesk staff, or
groups of users.

In the following, tailorable software artifacts, commercial products as well as re-
search prototypes, have been developed. Regarding commercial products, spreadsheets
and CAD systems were among the front riders. Buttons was one of the first highly
tailorable research prototypes where users could change the dialogue interface and
functionality on different levels of complexity (MacLean et al., 1990). Another system
of tailoring functionality presents Mørch (1997).

With the emergence of networked application to support collective activities such as
communication, cooperation, or knowledge exchange the need for tailorable software
artifacts still increased (Bentley and Dourish, 1995; Schmidt, 1991; Wulf and Rohde,
1995). However, the distributed nature of these systems and the potential interrelation
of individual activities posed new challenges to the design of tailorable applications
(see Oberquelle, 1994; Stiemerling, 2000).

Empirical as well as design-oriented research has indicated different challenges
in building tailorable systems (Mackay, 1990; MacLean et al., 1990; Nardi, 1993;
Oppermann and Simm, 1994; Page et al., 1996; Wulf and Golombek, 2001a). As
the following two issues had the highest priority from the user’s point of view, we
concentrated our research accordingly:

1. Support for tailoring on different levels of complexity: MacLean et al. (1990) have
already pointed out to problems, which will arise if a considerable increase of the
users’ skills is required when trying to tailor a software artifact beyond simple
parameterization (customization gulf). If users try to modify an application beyond
parameterization, normally profound system knowledge and programming skills
will be required. Therefore, tailorable applications should offer a gentle slope of
increased complexity to stimulate learning. Different levels of tailoring complexity
also tackles the problem of different skill levels among the users.

2. Support for cooperative tailoring: Empirical research indicates, that tailoring activ-
ities are typically carried out collectively (Mackay, 1990; Nardi, 1993; Wulf and
Golombek, 2001a). System administrators, power users,1 or gardeners are individu-
als who possess higher levels of technical skill or motivation, while users with less

1 Very experienced users that are no it professionals (i.e. computer scientists) and do not have any programming
experience are here referred to as power users.

COMPONENT-BASED APPROACHES TO TAILORABLE SYSTEMS 117

technical skills or motivation may benefit by receiving direct support or just reusing
tailored artifacts.

To some extent the discussion on component technologies in software engineering
and the discussion on tailorable software artifacts have a similar motivation: the differ-
entiation and dynamics of the context in which software artifacts are applied. However,
software engineering directs its attention towards professional software developers dur-
ing design time. The concept of tailorability directs its attention towards users during
the actual use of the system (not necessarily during run-time, but certainly after the
initial design of the system). Our work tries to apply component technology for the
design of tailorable systems.

The term “component” is not used very consistently within the software engineering
community. We refer conceptually to Szyperski’s (2002) notion of components. He
gives the following definition:

A software component is a unit of composition with contractually specified interfaces and
explicit context dependencies only. A software component can be deployed independently
and is subject to composition by third parties (Szyperski, 2002, p. 41).

This idea of reducing (re-)design time by reusing strictly modularized code orig-
inates in the very beginning in the software engineering discourse (McIllroy, 1968).
Szyperski (2002) also stresses the economic potentials of collective and distributed
software engineering processes. Component technology allows to apply the same soft-
ware module by many software developers in different artifacts. The developers who
apply a component created by somebody else do not necessarily need to understand the
implementation details. They may just access the services provided by the component
via the interfaces. The visibility of the component’s implementation can reach from
black boxing (no visibility of the source code) to white boxing (full accessibility of the
code) with different levels of gray (accessibility of parts of the code) in between.

Such an understanding of component technology has the potential to serve as foun-
dation for the design of highly tailorable systems. Beyond parameterization and re-
programming, the composition of components provides a middle layer of tailoring
complexity. This layer can be further differentiated by employing nested component
structures, which provide partial insight into the implementation of the more complex
components (similar in motivation to “gray-box” components). With regard to the sup-
port of cooperative tailoring activities, components and their composition can easily
be extracted and shared with other users. Component technology, both in software
engineering and in tailorable systems, needs to deal with the problem displaying the
behavior of a component.

Applying components as the basis for tailorable software systems draws on the
metaphor of constructing larger blocks of functionality from independent smaller pieces
of software. Components can be sticked together according to their specific interfaces.
We assume that users without programming experience can draw on their understanding
of other forms of construction activities such as playing with Lego bricks or assembling
physical artifacts such as cars (motor, wheels, car body, etc.).

118 MARKUS WON ET AL.

While there are obvious similarities between software development and tailoring,
there are also clear differences which need to be dealt with when applying component
technology to the design of tailorable systems.2 By definition tailoring is carried out
after the initial design by users who are non-professional programmers. To allow for
re-composition after design time, new concepts regarding the component model and
tailoring platform have to be developed. Since users are the key actors, appropriate tai-
loring interfaces and an application-oriented decomposition of the software is required.
Moreover, technical mechanisms to support the sharing of tailored artifacts among the
users need to be developed.

In dealing with these issues, we will present results from research conducted at the
University of Bonn and lately also at the University of Siegen. The design of tailorable
groupware has been an important aspect of our work for almost a decade (e.g. Kahler,
2001a; Mørch et al., 2004; Stiemerling, 2000; Wulf, 1994, 2001).

In the next section, we will describe a component model which is specifically de-
signed to support tailoring. Moreover, we describe the architecture of FREEVOLVE, a
platform to tailor distributed applications. The third section deals with the design of
graphical user interfaces which enable users to compose applications or change existing
compositions. The second part of the chapter discusses additional features of the inter-
face to support tailoring. Section 4 presents technical features to support the exchange
of tailored artifacts among users. Finally, we discuss our work with regard to that of
others and draw some conclusions from it.

2. Component Model and Tailoring Platform

As the technical foundation of our work, the FLEXIBEANS component model and the
FREEVOLVE tailoring platform embody concepts and software developed by Stiemerling
(1997, 2000), Won (1998) and Hinken (1999).3 The current version of the FREEVOLVE

platform is available under GPL as open-source (available at www.freevolve.de). Figure
6.1 gives a schematic overview of the platform:

Every application adhering to the FLEXIBEANS component model can be deployed
on top of the FREEVOLVE platform. The basic application model supported by the
FREEVOLVE-platform is the client-server model. Consequently the platform runs on one
server and possibly several clients. The component definitions and their composition
(CAT and DCAT, explained later on in this chapter) are initially stored on the FREEVOLVE

server. They are instantiated and connected during start up on their respective target
machines (client or server).

The platform provides an application programming interface (API) with a complete
set of component-based tailoring operations that can be applied to the deployed and

2 A very important issue here is which components are needed for one special application. Starting from one
monolithic application tailorable parts have to be detected. This process of decomposition is described in Stevens
and Quaisser in this volume.
3 Before its release under GPL, the FREEVOLVE platform was called Evolve (e.g. Stiemerling et al., 1999 and
Stiemerling, 2000, who provides a more profound discussion of the platform and the component model).

COMPONENT-BASED APPROACHES TO TAILORABLE SYSTEMS 119

Figure 6.1. FREEVOLVE platform schematic overview.

already running application. The fact that via this API different types of user inter-
faces can be docked onto the same platform, thus offering the opportunity to critically
compare and evaluate different concepts for representing component-based tailorabil-
ity to end users (e.g. the 3D and 2D interfaces shown in Figure 6.1), is of particular
importance for the work on end-user tailoring presented in this chapter.

While the FREEVOLVE platform through its API supports component-based tailoring
operations on a generic, technical level, we will describe the component model and
platform with end-user tailoring in mind, in order to pave the way for the work presented
in the next chapters.

2.1. THE FLEXIBEANS COMPONENT MODEL

In the beginning, the JAVABEANS component model had been chosen as the basis for an
exploratory investigation of the challenges and pitfalls of component-based tailorability
(Stiemerling and Cremers, 1998). One result of these early experiments with a group-
ware search tool (see Won, 1998) was the insufficiency of the JAVABEANS model for
full-fledged component-based tailorability. In the following, we will briefly describe
the FLEXIBEANS model that was developed to solve the problems encountered (for
a more formal investigation of appropriate component models for component-based
tailorability the reader is referred to Stiemerling, 2000).

The atomic FLEXIBEANS components are implemented in Java, stored on the
FREEVOLVE Server in binary format as Java class files, and packaged, if necessary,
with other resources as JAR-files. At this end, one has to distinguish between the com-
ponent and its instance. Every component can be instantiated in different compositions
at the same time and each instance has its own state. Like in JAVABEANS the inter-
action between components is event-based in the way that messages are interchanged
between components. So the state of an instance of a component can only change in
case the instance possesses the control flow, or through interaction with a component
which is in possession of the control flow. The composition of the components de-
termines, which instances of components can interact with each other. Tailoring on

120 MARKUS WON ET AL.

the level of component composition happens through the connection of ports. To al-
low for tailorability at run-time, the atomic and abstract components and their ports
have to be visualized at the user interface (see Section 3.1). A usable visualization
for non-professional programmers though needs a more differentiated port model than
JAVABEANS provides. Consequently, the JAVABEANS component model was extended
in the following ways (also motivated by more technical reasons that are not relevant
in the context of this chapter).

From the perspective of end user development, the most important extension is
the concept of named ports. The JAVABEANS component model is solely based on
typed event ports. Consequently, events of the same type (e.g. button click event) are
always received on the same port. Incoming events have to be analyzed in the receiving
component either by parsing the event’s source or evaluating additional information,
which is sent with the event. Such an approach makes it difficult for users to understand
the different state transitions resulting from events of different sources (e.g. click events
from two different buttons). Another strategy is to use dynamically generated adapter
objects in order to distinguish between different event sources. Such an adapter will
forward different events of the same type (e.g. different button click events) to different
handling methods according to the event source. Both strategies hide a part of the
real components’ interaction, which is essential to be able to compose components
appropriately. Therefore, the FLEXIBEANS component model allows for named ports in
order to distinguish ports according to their types and their names. Named ports support
an appropriate understanding of a component’s use and semantics. Connections between
components are only valid if the port’s type and name match.4

The rather technical nature of these changes to the original JAVABEANS model demon-
strates the importance of taking into account the cognitive properties of purely technical
concepts when building systems whose working principles are supposed to be under-
stood and eventually manipulated by end users.

2.2. THE DISTRIBUTED TAILORING PLATFORM FREEVOLVE

While the FLEXIBEANS model provides a way to implement components in a stan-
dardized fashion, the FREEVOLVE platform permits the deployment and run-time
re-composition of distributed FLEXIBEANS-based applications. In regard to the re-
composition of components during run time, a first challenge is the design of a language
to describe the composition of the atomic components, which are black boxes for the end
user. In traditional software engineering approaches, components are only visible during
design time. After compilation, the explicit representation of the component structure
is lost. Therefore, the CAT language has been developed to describe the composition of
atomic components into complex structures. The syntax of the CAT file (Component

4 Another extension is the introduction of a new interaction mechanism, the shared object interaction. Whereas
the event-based communication is directed and unidirectional, shared objects allow for symmetric information
exchange between two or more components (cf. Stiemerling, 2000).

COMPONENT-BASED APPROACHES TO TAILORABLE SYSTEMS 121

Architecture for Tailoring) is described in Stiemerling (2000)5. A CAT file, or in the
distributed setting a set of CAT files, describes the composition of an application out
of atomic FLEXIBEANS components.

In order to support tailoring operations on different levels of complexity, the CAT
language is designed to describe hierarchically nested component structures. In this
fashion, a higher number of basic components can be composed into complex structures
and stored as abstract components, which can be composed by the same mechanisms
as atomic components. From the end-user’s programming point of view this offers
two advantages: (a) the necessary number of abstract components to build the final
application is lower, and (b) their design can be more application-oriented. So, the
necessary composition activities have a lower level of tailoring complexity than the
composition activities on the atomic components level. The CAT language allows for
arbitrary depth of nesting. Obviously, abstract components are white-box components.
They can be explored and their content—that is a set of connected and parameterized
components—can be changed.

For describing the composition of distributed component structures, CAT files rep-
resenting structures on different machines can be connected via a remote bind file.
The remote bind file (DCAT) describes the way fitting ports of two components being
instantiated on different computers in the network are connected. To implement the in-
teraction of distributed components via the Internet, the FREEVOLVE platform is based
on Java RMI (Remote Method Invocation).

During start-up, the CAT files are evaluated on the server and relevant components
(not their instances) are represented in the servers working memory. As soon as a
user logs in and starts the client of the tailorable application, the client connects with
the FREEVOLVE server, which then authenticates the users and sends the necessary
components to the client. The client locally instantiates the atomic components and
connects them according to the CAT file describing their composition. These instances
are the base for the graphical representation of the components and their structure at
the user interface (see below). When tailoring the application on the client side, the
corresponding CAT file is updated and the system behavior is changed accordingly.

The CAT files for the client sides are stored centrally on the server, which allows
different users to run the same client by applying the same CAT file. Therefore, changes
on the client side are transmitted to the server, stored persistently, and propagated to
those other active client machines, which use the same client. Since the propagation of
tailoring activities to other users may lead to inconsistent system states, specific attention
has to be paid to this problem when developing an application on the FREEVOLVE

platform. A specific protocol has therefore been developed, which guarantees that in
case of a breakdown, a completely consistent version of the application may be recovered
(see Stiemerling, 2000). More details on the platform’s object-oriented architecture and
implementation are given by Hinken (1999) and Stiemerling et al. (1999).

5 CAT draws on concepts already developed in port-based configuration languages such as DARWIN (see Magee
et al., 1995) and OLAN (see Bellissard, 1996)

122 MARKUS WON ET AL.

3. User Interface

Having presented the component model and the tailoring platform, the question arises
how to design an appropriate user interface that enables users without programming
skills to tailor applications by re-composing components.

The main challenges when designing an interface for tailorable software artifacts
are according to our experience the following ones:

a) the options to tailor a software artifact need to be indicated consistently,
b) the actual state of a tailorable software artifact (composition of components) has to

be represented intelligibly,
c) tailoring activities have to be carried out in a simple and efficient manner,
d) the effects of tailoring activities have to be easily perceivable for the user,
e) the tailoring environment should be fault tolerant in the sense that it indicates in-

correct activities to the users and proposes advice.

We will first present three different approaches to visualize and manipulate the
component structure of a tailorable software artifact (dealing with the challenges (b)
and (c)). All these different tailoring environments dealt with the problem how to allow
for “natural” tailoring as Pane and Myers (this volume) postulate. So our goal was
to create a visual tailoring environment, where users are able to match between the
application in run time and design time and to identify the aspects, which they want
to tailor, easily. After that we will present additional features, which support users in
finding options for tailoring, in checking the correctness of tailoring activities, and in
evaluating the tailored artifact (dealing with the challenges (a), (d), and (e)).

The work on visualization of the tailoring interface was carried out by Won (1998,
2003), Hallenberger (2000), and Krüger (2003).6 Additional features to support tailor-
ing activities were developed by Engelskirchen (2000), Golombek (2000), Wulf (2001),
Krings (2003), and Won (2003).7

3.1. VISUAL TAILORING ENVIRONMENTS

The characteristics of components made a graphical tailoring interface appear appro-
priate to changing the component structure. Within the graphical tailoring environment,
the component structure of the software artifact was displayed as follows: instances of
components were visualized as boxes, ports were indicated as connectors at the surface
of these boxes, and the connection between two ports was represented by a line between
these surface elements. Tailoring activities consisted of adding or deleting (instances
of) components and rewiring their interaction. During the course of our work we have

6 Stiemerling and Cremers (1998), Won (1998) and Wulf (2000) describe one of the 2D interface in detail.
Stiemerling, Hallenberger and Cremers (2001) present details on a 3D interface.
7 Wulf and Golombek (2001) describe the interface concept of direct activation which enables users to find
tailoring options within a software artefact. Wulf (2000) and Wulf and Golombek (2001b) present research results
concerning exploration environments which allow to test tailorable groupware. Won (2000) develops the concept
of integrity control to indicate faulty or problematic compositions of components to the users.

COMPONENT-BASED APPROACHES TO TAILORABLE SYSTEMS 123

Figure 6.2. Two-dimensional graphical tailoring environment.

developed 2D and 3D versions of the visual tailoring environment. Note, that in the
following we do not focus on the parameterization of single components, which we
have realized in all three of the tailoring environments by selecting the component and
choosing the parameter’s value.

The first tailorable application we developed was a search tool for a groupware ap-
plication. Later on we added different distributed groupware applications such as a chat
tool and shared-to-do-lists. With regard to the search tool, the tailorable aspects were
restricted to the client side, while the groupware application itself had a client server
architecture. Figure 6.2 shows the 2D graphical environment to tailor the search tool.

A first workshop was held with employees of a German federal ministry. None
of them had any experience in programming or system administration. Nevertheless,
the users were able to compose different variations of the search tool window, which
basically consisted in different graphical elements to specify search queries and different
graphical elements to display the search results. To allow for these tailoring activities,
the search tool consisted of six types of atomic components. Four of these component
types were visible during use (inquiry elements, start button, display elements) while
two just were while tailoring (the search engine and switches to direct search results
towards specific graphical output elements). We made use of the categorizations of ports
to represent them at the tailoring interface. The polarity of ports helps to distinguish
between a component’s input and output port: empty circles indicate input ports, filled
circles indicate output ports. To support users in wiring the components appropriately,
ports of the same type and name are given the same color, so users are hinted to fitting
input and output ports by means of identical colors. Wired components are displayed
by a connecting line in between their corresponding ports.

Abstract components are represented by a white frame around the atomic (or abstract)
components they contain. If a power user has already designed several different abstract
input and output components, other users can make first steps in constructing their
personal search tool by combining two abstract components with each other.

The 2D approach presented so far has the advantage of enabling users to match
directly between the runtime environment and the tailoring environment. When a user

124 MARKUS WON ET AL.

Figure 6.3. 3D graphical tailoring interface displaying a client’s tailorable component
structure.

changed into tailoring mode, the visible components of the interface stayed at the same
place on the screen, while the invisible components, the ports and the connecting lines
between them were added to the display. So the components which were invisible during
runtime (search engine, switches for the results) had to be displayed additionally on
the 2D screen. They were displayed at the same locations where they had been placed
during the prior tailoring activities. Such a design of the tailoring environment had
the consequences that locations, where non-visible components were placed during
tailoring, could not be used by visible components during use.

Such a solution turned out to be viable if the tailoring problem deals with a high
degree of components visible during use. In this case, it provides an intuitive transition
from the use mode into the tailoring model. However, this approach does not make
efficient use of the screen space as soon as bigger parts of the functionality “behind” the
user interface can be tailored. Within the 2D approach it is also difficult to differentiate
the scope of tailoring activities referring either to the client or to the server side. To
overcome these problems, a 3D graphical tailoring interface, like presented in Figure 6.3
has been developed. The third display dimension is used (a) to decouple the presentation
of the visible and the invisible components (b) to represent the location of the tailorable
components (either on the client or the server).

The components are represented as three-dimensional boxes with the component’s
name on top of them that are disposed on a virtual plain. The ports are represented as
rings around the components in order to facilitate connections from all directions. Like
in the 2D case, the color indicates the type and name of a port. The polarity is expressed
by the intensity of the color–an input port is represented by darker shading, an output
port is indicated by lighter shading. Connections between components are represented
by tube-like objects linking the corresponding rings.

COMPONENT-BASED APPROACHES TO TAILORABLE SYSTEMS 125

Abstract components are represented like all other components by 3D boxes. How-
ever, the box’s surface that encapsulates the containing components of lower hierarchical
level gets increasingly more transparent as the user navigates closer to it until the vi-
sual barrier finally disappears completely while the rings representing the ports of the
abstract component remain visible. The user can now navigate or manipulate the inner
component structure. In our current implementation atomic components remain black
boxes even if the user navigates into their neighborhood. A gray box strategy could
allow navigating into an atomic component and inspecting those aspects of the code
which can be modified.

The allocation of the components in the 3D space is presented to the user with the
notion of a floor on which the different component boxes are standing (Figure 6.3). The
distinction between client and server side is represented by a special arrangement that
places the server (represented by its tailorable component structure) in the center while
the different clients (represented by their tailorable component structure) are allocated
in a semi-circle around the server.

In order to ease the transition from use into tailoring mode, we offered a reference
between the visible components at the user interface and the invisible components
“behind” the screen. If a user changes into the tailoring mode, the actual client’s GUI
window is projected into the 3D world on a semi-transparent plane. Beams of light
connect specific elements of the GUI interface with those aspects of the client’s com-
ponent structure to which they refer. When the user starts tailoring and enters the 3D
world, she is being positioned in front of the GUI projection. So she sees the GUI of her
regular interface. However, the semi-transparent plane allows observing the component
structure on the highest level of abstraction as well. Following the beams of light she
can navigate through the plane into the 3D space and explore or change the component
structure.

The results of an early “thinking-aloud” evaluation seem to indicate that the users
are fascinated by the 3D world and to some extent able to navigate. We believe that
the tool can be suitable to represent the distributed structure of a software architecture.
However, we estimate that tailoring becomes more difficult as there is an abstraction
barrier between the application seen in tailoring mode and the application during use.
This barrier is caused by the changes of perspective the users have to cope with when
switching between run time and design mode. Already with regard to the 2D tailoring
environment, our investigations indicated that users had more problems to understand
the functionality and the use of invisible components (more abstract to them) than of
the visible ones.

Due to the experiences described above, our current approach has shifted back
towards a 2D environment where the design mode can be seen as an enhanced view on the
application during runtime. To overcome the problems of the original 2D environment,
we try to represent the composition of components “behind the screen” by means of
additional views. Two additional windows represent the composition of components and
their interaction. We have divided this information into two windows since we assume
that not all of the information that is needed to tailor a distributed application, needs

126 MARKUS WON ET AL.

Figure 6.4. Visual components view.

to be permanently at hand. A synchronization feature supports the tailoring process by
displaying information about the same aspects of the component structure at the same
time in the three windows. For example, if in one window a component is highlighted
it will be marked in the other windows, as well, or the user changes the composition in
one view, the changes will immediately be displayed in all other views. In the following,
we will describe the different views in more detail.

The first view is very similar to the original 2D tailoring environment shown above.
As discussed above, if all components—especially the invisible ones and the ones on
the server side—are shown in one single view, it may be confusing for less experienced
users. Thus, in this view all invisible and server-sided components are hidden. For
those users who tailor only the visible aspects of their own application, this view is
sufficient. Like in the former 2D environment, size and position of all components
are displayed exactly in the same way they appear during run time8 (see Figure 6.4).
Users are allowed to resize the visual components or relocate them interactively. Other
tailoring operations (i.e. changing a parameter, adding or removing a component) are
available via context menus. So, if a user marks a component and uses the right mouse
button, he may directly change the parameters as well as add or remove components.
Since all views are synchronized, tailoring activities can be continued by switching into
one of the other views.

A second view (Figure 6.5) on the component structure that shows all the bind-
ings between the components is given by the editor. Bindings can be added by draw-
ing lines between the ports of the components or removed by selecting a connection
and choosing the command “remove binding” in the context menu. Due to the fact,
that most users will only be allowed to tailor the client-part of the application, this
second view normally hides the composition on the server side, and thus, reduces
complexity.

8 The actual implementation shows just green rectangles instead of the actual screen display. This will be changed
in a future version.

COMPONENT-BASED APPROACHES TO TAILORABLE SYSTEMS 127

Figure 6.5. Component editor.

All components that reside on the client side are shown (visible and the invisible
ones), which results in a more complex view than the first one. However, since both
windows are synchronized, the components that are visible at the interface can be found
easily and their relation to hidden components can be tracked.

If changes are executed on the server-side of the application, all users will be directly
affected. The right to tailor on the server side therefore will typically be reserved to
very experienced users or system administrators who are able to cope with the tailoring
complexity of the complete application. For this group of users the components on the
server side and their bindings may be displayed additionally.

The third view shows the whole hierarchical nested application in a very abstract
view. All components are structured in a tree view which is a well-known representation
pattern in file managers. As soon as a component is selected, its parameters and their
actual values will be displayed. This third view (Figure 6.6) on the application shows
the component structure of the whole application at once.

Figure 6.6. Component explorer.

128 MARKUS WON ET AL.

So far we have carried out only a very preliminary evaluation study (see Krüger,
2003) revealing, that at least experienced users, such as system administrators, are able
to benefit from this tailoring environment.

3.2. ADDITIONAL FEATURES

Beyond graphical tailoring interfaces, we have developed additional features that sup-
port users during tailoring. The first concept concentrates on the problem of finding a
tailoring function. Mainly tailoring is done when users have a certain task to fulfill and
the tool does not support this kind of work in the optimal way. The goal now is, not only
to offer hooks to enter the tailoring mode but to take into account the current working
context.

The second concept deals with the problem that tailoring often is avoided against the
background of changing the current application in an unwanted way or even destroy
it. So, we worked out the idea of checking the composition according to rules that
are attached to atomic components. Those rules or constraints then describe how a
component has to be used, how the parameters work together, and how this component
has to be linked to others.

3.2.1. Direct Activation

An empirical study of users of a word processor indicated that finding the appropriate
tailoring functions is a substantial barrier that either prevents tailoring at all or adds
significantly to its costs (Wulf and Golombek, 2001a). Discussing our findings in the
context of earlier work (see Mackay, 1990; Page et al., 1996), we identified two rather
different occasions when users want to tailor an application (a) if a new version of the
application is introduced (b) if the users’ current task requires a modified functionality.
The users need different patterns of support to find tailoring functions in both of these
occasions. When tailoring a newly introduced version of an application, a survey of
the given tailoring functions is an appropriate means to tackle the finding problem.
The users get informed about the scope of the new version’s tailorability. When the
users’ current task requires a modified functionality, a context specific representation
of the tailoring functions’ access points seems to be appropriate. In such a situation the
user typically knows which aspects of the application she wants to modify, because the
actual version of the function hinders her work.

In order to tackle the second case, we developed the concept direct activation that
supports finding a tailoring function when it is required. Tailoring is needed when users
perceive the state transition following a function’s execution that does not lead to the
intended effects. In this case, users are typically still aware of the function’s access point
at the interface. Therefore, the access point of the tailoring function should be designed
related to the one of the function to be tailored. For instance in case of a toolbar, the
access point towards its tailoring mode should be designed related to the toolbar, for
example realize access via a specific button within the toolbar or via the context menu.

COMPONENT-BASED APPROACHES TO TAILORABLE SYSTEMS 129

We defined the term “related” in two alternative ways. First, the visual representation
of the access point of the tailoring function is placed in close proximity to the one of
the tailorable function. Visual proximity of the access point can be realized as follows:
In case certain parameters of the tailorable function have to be specified during the
activation, visual proximity can be reached by displaying the access point of the tailoring
functions next to the one for specifying the parameters (e.g. in the same window). If
the tailorable function is executed without further specification from the menu or via
an icon, the access point for the tailoring function could be placed next to the one of
the tailorable function.

Second, the visual representation of the tailoring function’s access point can be
omitted under certain conditions, which seems to be acceptable if there is a consistent
mode to activate the tailoring function. Mørch (1997) gives an example for a consistent
mode to activate a tailoring function. In his system, a user can access different levels of
tailoring functions by activating the tailorable function and pressing additionally either
the “option,” “shift,” or “control” button. Restricted to specific functions, the Microsoft
context menu gives another example of how to design a consistent mode to activate
tailoring functions. Whenever the display of a screen object may be tailored, a specific
mouse operation on this object allows accessing the tailoring function.

To evaluate the effectiveness of the concept direct activation in finding tailoring func-
tions, we have implemented prototypes and carried out an evaluation study. The results
of this study support our assumption that direct activation eases tailoring activities (see
Wulf and Golombek, 2001a).

3.2.2. Checking the Integrity of Compositions

Beyond help for finding tailoring functions, we also developed concepts for supporting
tailoring activities themselves. Empirical studies indicate that the fear to break an appli-
cation is one of the major obstacles for tailoring activities (Mackay, 1990). We assumed
that users would make errors when (re-)composing component structures. While these
errors may threaten the functioning of the application, they are also opportunities for
learning (see Frese et al., 1991). Although the differentiation of the ports helped already
preventing certain misconnections among components, we additionally developed tech-
nical mechanisms that actively detect errors in the composition of components.

Such mechanisms for integrity check should control the validity of the composition,
indicate the source of an error, give hints, or even correct the composition (see Won and
Cremers, 2002). The rule-based integrity check presented here, consists of two different
concepts: (a) constraints and actions and (b) analyzing the event flow. This sort of rule-
based integrity checks are well known in data base management systems (Silberschatz
et al., 2001). Rules are terms in first order logic that can be evaluated automatically.
This technique may be used to add external conditions to the use of components. By
restricting the use of a component, those constraints describe the “right use” of them.
For example, if we have a set of GUI components, we can formulate a constraint like
“all interface components have to have the same look and feel.” If a user then tailors

130 MARKUS WON ET AL.

an application (i.e. adding a new component) this condition can be checked. Thus, by
adding a constraint-based integrity check, that is stored externally in a XML-based
format, we support tailoring. They may be changed over time according to the users’
or organization’s requirements.

Constraints are being enhanced by actions that either provide information to the
user or correct certain errors. If a constraint is fulfilled (integrity error) an action
that may indicate the error, give hints how to solve the problem, or even correct the
error automatically, will be performed. Our goal here is not to compose applications
automatically but to ease the learning and understanding of tailoring activities. All the
system’s interaction mentioned so far has been integrated into the user interface of the
tailoring environment. As soon as an error is detected, the corresponding component
will be marked and the user may get detailed information by clicking it.

A second technical mechanism is the check of event flow integrity. As we have seen
before, the basic FLEXIBEANS component model allows for event-based component
interaction. So, events are passed between independent components. In many cases,
events that are created and passed to another component should be regarded as im-
portant information and therefore be “consumed.” In order to implement the concept
of event flow integrity, we classified the ports into essential and optional ones: es-
sential ports have to be connected to other components whereas optional ports may
not be used. For instance, the output component of the search tool that displays the
found objects’ names (see above) has two ports: one input port that is used to receive
search result from the search engine and one output port that sends additional infor-
mation (type, attributes) of selected search results to other components. To support
users in building functional applications, the input part has been classified “essential,”
because it would be senseless to compose a search tool whose output window is not
connected to any search engine. The output port can be classified as “optional,” as one
could use an output window without applying the additional information of the search
results.

Such an integrity concept could also be described as constraints (“port x has to be
bound”). However, in many cases this is not sufficient because events can be passed
through a chain of components. In order to deal with such a flow of events, we have
identified regular consumers. Checking an event flow, all essential event ports have to
be connected to regular providers or consumers. For instance, we may compose a search
tool by connecting a search engine to a filter component (that filters some of the search
result) that then is connected to the output component. Here, the search engine has an
essential output port. The filter component only passes events but is not a consumer,
whereas the output component is a consumer of the search result and has an essential
port that is finally connected.

Thus, we have to differentiate ports according to their function within a composition
(producer, consumer, pass-though) and the need to be connected (essential, optional).

This information is described in external XML files and can be changed by system
administrators. The integrity check is carried out by translating the composition into a
Petri-net and then analyzing it (van der Aalst and Verbeek, 1997). In case the event flow

COMPONENT-BASED APPROACHES TO TAILORABLE SYSTEMS 131

analysis detects an error, the user is provided with corresponding information within
his tailoring environment. Components and their ports are marked if they are essential
and not connected correctly.

3.2.3. Exploration Environments

Beyond a technical support during composition, we also developed exploration environ-
ments to allow users to test their tailored artifacts. As a result of empirical investigations,
Mackay (1990) and Oppermann and Simm (1994) hinted already to the importance of
explorative activities. While research in HCI has already lead to different exploration
mechanisms (e.g. undo function, freezing point, or experimental data), the distributed
character of groupware poses new challenges. Users are often unable to understand the
way groupware functions work because they cannot perceive the effects of the func-
tions’ execution at the other users’ interface (e.g. the access rights granted to somebody
else cannot be perceived by the owner). Only in case an application follows the WYSI-
WIS principle (What You See Is What I See) in a very strict manner (see Johansen,
1988), users can perceive the effects of a function’s execution on the interface of the
other users.

Therefore, we have developed the concept of exploration environments as an addi-
tional feature to support users in experimenting with tailorable groupware. An explo-
ration environment allows simulating the execution of a tailorable groupware function
by means of a specific system mode where the learner’s own user interface, as well as
the behavior of other users’ interfaces, are simulated on the output device. If a function
is executed in the exploration environment, the effects of its execution on the simu-
lated user interfaces will be similar to the effects the “real” function’s execution has on
the “real” user interfaces. By executing a function in the exploration environment and
switching between the simulation of his own and the other users’ interfaces, a user can
perceive how a newly tailored function works.

We have built specific exploration environments for three different tailorable group-
ware tools: an awareness service, a search tool for groupware, and a highly flexible
access control for a shared workspace. To evaluate the effectiveness of exploration
environments in tailorable groupware, we have carried out a field study and an experi-
ment in a lab setting. The results of these studies indicate that exploration environments
support tailoring activities in groupware (see Wulf, 2000; Wulf and Golombek, 2001b).

4. Cooperative Tailoring

Component-based software engineering is based on the assumption that software de-
velopment can be organized best in a collective and distributed manner (Wulf, 1999).
Component repositories together with monetary compensations for those who offer
their source code for reuse are supposed to render software development more effi-
cient (see Szyperski, 2002). Empirical studies on tailoring activities have revealed their
collective nature (Pipek and Kahler, this volume). While monetary compensation did

132 MARKUS WON ET AL.

not play an important role, different patterns of cooperative activities have been found
among users who differed in their commitment to and qualification for tailoring.

In our work, we deal with distinct types of social relationships: (a) on the level of the
atomic components, the code is provided by professional developers to users and (b) on
the level of the abstract components where users cooperate by providing each other with
pre-integrated abstract components. Especially with regard to the second relationship,
we focused on the design of shared workspaces to exchange tailored artifacts among
users. Moreover, additional features had to be developed to document tailored artifacts
for reuse by others.

Engelskirchen (2000) and Wulf (2001) have developed a shared workspace to ex-
change abstract components within a groupware application; Golombek (2000) and
Kahler (2001b) have developed a shared repository to exchange tailored artifacts, such
as document templates or button bars, among users of a word processor. Stevens (2002)
has worked on metaphors which make visible and invisible component better under-
standable to users.9

Repositories in software engineering are expected to contain components to con-
struct a wide variety of different applications. The proponents of component based
software engineering assume that software developers direct themselves to the appro-
priate repository, browse it, and choose fitting components. Our experiences revealed
the need for a more application- and user-oriented approach in designing repositories
for the exchange of tailored artifacts. To allow for a seamless transition between use and
tailoring activities, the shared repository needs to be integrated into the tailoring envi-
ronment and should be activated directly with only those components that are relevant
for a certain tailoring context being displayed.

Repositories to exchange tailored artifacts may be understood as shared workspaces,
where compositions of components are exchanged. So, their basic functionality consists
of functions to upload and download compositions of components. Additional features
allow specifying the visibility of compositions and defining access rights for different
subgroups of users. Moreover, a notification service informs users as soon as tailored
artifacts are newly produced, modified or applied. Such a service contributes to the
mutual awareness of distributed tailoring activities and may encourage the emergence
of a tailoring culture (see Carter and Henderson, 1990). Since direct cooperation among
the users should be supported as well, such a tailoring environment may provide a
function to mail tailored artifacts directly to specific users or groups of users.

When applying the shared workspace in organizations, we found that users had
problems in understanding abstract and atomic components created by others. To deal
with this issue, we developed the following approaches to make atomic and abstract
components more understandable to other (end) users. The solutions presented are the
result of an evolutionary design process.

9 Wulf (1999) gives an account of important results of the design and evaluation of the search tool repository.
Kahler (2001b) presents results concerning the shared repository integrated into the word processor. Stevens and
Wulf (2002) present work on the choice of metaphors to present components to users.

COMPONENT-BASED APPROACHES TO TAILORABLE SYSTEMS 133

4.1. NAMING AND CLASSIFYING OF COMPONENTS

When offering atomic or abstract components we had to find meaningful names. Since
users are typically confronted with a variety of different atomic and abstract components
we list them at the interface. Due to limitations of screen space, the users first choice is
based on a sparse visual presentation of the listed items where naming the components
in a meaningful way has turned out to be of central importance. With regard to the
atomic components, we have decomposed and named them according to a consistent
metaphor (see Stevens and Quaisser, in this volume). This is a specific challenge for
those components that are not represented at the user interface. Moreover, we added
icons to the list presentation of the components that resemble the visual presentation
of the components at the interface. Finding appropriate icons is again more difficult
for those components that are not represented at the interface. With regard to abstract
components, we can rely on naming only, since the selection of icons is too much of an
extra work for the tailors.

In order to structure the list of components, a classification scheme is essential. For the
classification of atomic components, we grouped them according to their ports, because
we believe that this is indicative for the role they can play within the composition. The
existence of ports can be a strong indicator of how the component interacts with other
components and which task the component is able to fulfill. When classifying abstract
components, the community of tailors needs to find appropriate conventions on how to
compose and group these artifacts.

4.2. DESCRIBING COMPONENTS

Based on an earlier version of the 2D tailoring interface, a search tool for a groupware
was introduced into a state government’s representative body. As a result of collective
tailoring activities over a period of several weeks, it turned out that users need addi-
tional support in distinguishing components beyond naming and classifying. Hence,
we generated possibilities to textually describe atomic and abstract components. To
describe atomic components, we created a hypertext-based help menu where help texts
briefly explain the components’ functionality and screen shots are added if necessary.

Descriptions for abstract components have to be created by the users themselves.
Furthermore, we implemented an annotation window that consists of the following
text fields: “name,” “creator,” “origin,” “description,” and “remarks.” Since textual
documentation of design rationales imposes extra burden, it is often omitted (see Grudin,
1996) . So we tried to reduce the workload by providing automatic support in creating the
descriptions where possible. For instance, the “creator” field is generated automatically
by data taken from the user administration. The “origin” field contains a reference if an
abstract component is created by modifying an existing one. This reference is created
automatically, as well. The “description” field clarifies the functioning of an abstract
component, whereas, the explanation of the original one is copied and put into italics
to be modified in case the abstract component is created by modifying an existing one.

134 MARKUS WON ET AL.

4.3. EXEMPLIFYING AND EXPERIMENTING WITH COMPONENT

Beyond textual descriptions, we allow users to experiment with components created by
somebody else. In case of tailorable groupware, exploration environments have been
applied (see Section 3.2) for this purpose. While exploration environments support ex-
perimenting with completely assembled functionality, we had to find new approaches
to support experimenting with atomic or abstract components. Since they do not cover
a whole functionality, these artifacts cannot be executed in the exploration environ-
ment by themselves which made us implement an option that allows the users to store
the “missing parts” together with the corresponding atomic or compound components.
Together with the components themselves, the “missing parts” should provide a charac-
teristic example for the component’s use when building functionality. Those examples
than can be executed in the exploration environment.

5. Related Work

Our work on component-based tailorability has been drawn on previous results from
the CSCW, software-engineering, and HCI community. However, up to our knowledge,
it is rather unique in working out a component framework.

In the CSCW, tailorability is an important field of research and the changing software
during use is a main aspect. In the following we will give a short overview on the works
that influenced our approach. The Oval system (Malone et al., 1992) is one of the earliest
approaches to design for tailorability. The main idea of Oval is that there are only four
types of software modules (Objects, Views, Agents, and Links) that can be used to
build groupware applications. While the composition of these modules provides a lot
of the functionality, they are not sufficiently fine-grained to permit application building
without system-level programming.

PROSPERO (Dourish, 1996) is a object-oriented framework that can be used to com-
pose CSCW applications. It offers a number of technical abstractions of CSCW-
functionality (e.g. converging and diverging streams of cooperative work) that devel-
opers can use as a basis to rapidly develop specific applications. PROSPERO addresses
the concerns of developers of CSCW systems, it does not aim at tailoring by end users.

DCWPL (Describing Collaborative Work Programming Language; Cortes, 1999)
is a framework that allows to separate computational and coordination issues when
implementing groupware. Groupware applications consist of modules for computation
and those for coordination. The computational modules are connected via coordinating
modules implementing the multi-user aspects and are described in a DCWPL file. So,
several language constructs may be used to describe session management, awareness
support etc. As DCWPL files are interpreted at run time, tailoring is possible by chang-
ing the code. Like PROSPERO, DCWPL does not offer a tailoring environment directed
to users without programming experience.

Repenning et al. (2000) built a simulation system in which cooperative agents can be
programmed by end-users offering a visual programming language that allows changing

COMPONENT-BASED APPROACHES TO TAILORABLE SYSTEMS 135

the behavior of single agents. In a similar way we allow changing the behavior of a
component by setting parameters. In Repenning et al. (2000) work, the interaction
between the agents remains hidden and cannot be tailored, which differs from our
approach, since we allow recomposing components via connecting ports. Another dif-
ference comes from the design of the tailoring language, as we implemented a tailoring
language that can be applied to the recomposition of components in different fields
of application. Just the set of components and the techniques for setting parameters
are different for each field of application, whereas the programming language Visual
AgenTalk needs to be redesigned for each field of application to ease understand.

In the TACTS framework, Teege (2000) has worked out the idea of feature-based com-
position to tailor groupware. Contrary to our approach, in his approach the interaction
between components is not port-based, but the underlying architecture only provides for
two basic communication styles: a broadcast to all components and a directed connec-
tion between two partners. In both cases the structure of the messages is not limited by
the architecture. So all semantics have to be defined within the communicating partners.
By adding a feature to a given software module, the functionality of an application can
be changed during runtime.

The CoCoWare platform (Slagter et al., 2001) allows users to compose their own
component-based groupware application. Each component itself is a small application,
such as a session control or a conference manager. While their work is influenced
by our approach and from a software-technical perspective closely related to it, the
main difference bases on the granularity of the components: While their components
represent whole applications, FLEXIBEANS are conceptualized to be more fine-grained.
On the one hand this allows for more flexibility, on the other hand the tailoring becomes
more complex.

In software engineering, there are many environments that allow modifying or com-
posing components at design time. They generate applications that are monolithic after
being compiled. For instance, this is the case with Visual Age for Java (IBM, 1998) or
Visual Basic (Microsoft, 1996) that cannot be used to change an application during run
time as may be the FREEVOLVE system.

The DARWIN system (Magee et al., 1995) is similar to the FREEVOLVE system on a
conceptual level. It is based on a component model that provides for typed event-based
interaction and hierarchical compositions. A difference can be seen in the granularity
of the components. As in DARWIN each component has its own process and can be
seen as a small independent application, DARWIN does not support the fine-grained
tailorability demonstrated by the FREEVOLVE-Platform. DARWIN is a system that is
intended to be used by administrators.

The Regis system (Magee et al., 1995) allows for distributed configuration man-
agement. Its 2D environment is similar to the first tailoring client of the FREEVOLVE

system. In this way, it has the same problems concerning displaying all the information
on one screen and dealing with the problem of invisible components, but as the under-
lying component model is based on the idea that a composition consists only of few
components, these problems are less grave than in our works.

136 MARKUS WON ET AL.

Many systems support the development process by graphical or visual programming
environments for an overview see for example (Myers, 1990). Most of those environ-
ments try to visualize the whole program and all its facets, which is not our intention.
We visualize only those parts of an applications that can be changed, such as the com-
ponent structure. The functionality of a component can not be changed, therefore code
is not be displayed.10

Some of those tools use multiple views to concentrate on distinct aspects of the
application. For instance, in most programming environments, there is a code view and
a GUI view. In the field of end-user tailorability, Morch and Mehandjiev (1999) use
this technique: Their system ECHOES allows for tailoring applications that can be seen
and changed in different representation views.

The HCI discussion has developed concepts that support learning the functionality
of single user applications. These concepts are based on either structuring, describ-
ing, experimenting with or exemplifying the use of certain functions (e.g. Carroll,
1987; Carroll and Carrithers, 1984; Howes and Paynes, 1990; Paul, 1994; Yang, 1990).
However, the concepts are developed under the assumption that programmers provide
them to users. In our case, the learning situation is different as users have to learn about
the tailored artifact provided by other users. Therefore, we had to rethink some of the
concepts. With regard to exploration, we also had to extend the concepts to deal with
the distributed character of these applications.

The functionality for sharing tailored artifacts among users is rather similar to shared
workspaces in the CSCW discussion (Bentley et al., 1997). However, shared workspace
functionality needed to be integrated both, with the groupware application and with the
additional features for making the components intelligible.

6. Conclusion

We presented our work on how concepts of component-based tailorability can be made
intelligible and manageable for end users. Due to the specific requirements of users,
whose main interests are not focused on software development, in particular the user
interfaces deviate from typical developer-oriented IDE in software engineering. In
order to enable users to recompose applications, we had to develop specific tailoring
environments. At this, we built and evaluated different types of 2D and 3D graphical
interfaces. To provide additional support during tailoring activities, two types of rule-
based integrity checks were developed. Exploration environments allow users to test
their final compositions of groupware functionality. We worked out the concept of
direct activation, to make users aware of tailoring functionality by means of a better
dialogue structure of the interface. Finally, we developed shared repositories to allow
users to exchange tailored artifacts. This feature is of special importance since the

10 Users only can influence the functionality of a component by changing its parameters. So parameters and their
current values can be displayed.

COMPONENT-BASED APPROACHES TO TAILORABLE SYSTEMS 137

levels of qualification, interest, and dedication will be different among users involved
in tailoring an application. So we need to support the emergence of a tailoring culture
within the field of application (see Carter and Henderson, 1990).

While these results stem from long-term research activities that include the de-
sign and implementation of technological innovations as well as their evaluation in
laboratory-settings and field studies, there are still many open issues. We do not yet
know which applications are best suited for component-based approaches compared
to other paradigms for decomposition, such as rule-based or agent-based ones. Our
experiences so far seem to indicate, that applications or parts of them, whose control
flow can be presented in a rather linear order, are well suited for component-based
tailorability. Methods for finding appropriate decompositions of an application into
atomic components are another issue for further investigation (see Stevens and Wulf,
2002; Stiemerling, 2000). Decomposition must be meaningful to users (see Stevens
and Quaisser, in this issue). For different classes of applications, we need to find mean-
ingful metaphors and approaches for decomposition. Another challenging issue is the
development of appropriate tailoring platforms for peer2peer architectures and mobile
systems (see Alda and Cremers, 2004).

Extending our approach, one can imagine to introduce additional levels of tailoring
complexity by gray or even glass-boxing of atomic components. Thus, selected aspects
of the code or even the whole code of an atomic component could become modifiable
by certain users. With regard to the user interface for tailoring, one has to investigate
whether a single interaction paradigm is sufficient for component-based tailorability
or whether the interaction paradigm of the tailorable application needs to be taken
into account for the design of the interface of the tailoring environment (see Nardi,
1993).

Supporting cooperative tailoring activities, we need to think of additional features
that support users in selecting appropriate atomic or abstract components out of a larger
set. Ye (2001) has developed a recommender system that supports software developers
to share and reuse source code via a repository. We believe that similar functionalities
will valuable for collaborative tailoring activities. Moreover, we will be able to learn
from the open source movement and the discussion on social capital to design shared
repositories in an appropriate manner (see Fischer et al., 2004; Huysman and Wulf,
2004).

Finally, we need to gain experiences on how to connect tailoring activities with pro-
cesses of organizational development and change (see Wulf and Jarke, 2004). In order to
improve flexibility and efficiency of business processes, the exploitation of tailorability
needs to be integrated into the ongoing processes of organizational change. There-
fore, we have developed the framework of Integrated Organization and Technology
Development that connects tailorability with planned processes of organizational and
technological development (see Wulf and Rohde, 1995). However, we need to inves-
tigate more on emergent change processes and the role of tailorability in technology
appropriation (see Orlikowski and Hofman, 1997; Andriessen et al., 2003).

138 MARKUS WON ET AL.

References

Ackermann, D. and Ulich, E. (1987). The chances of individualization in human-computer interaction
and its consequences. In: M. Frese, E. Ulich and W. Dzida (eds.), Psychological Issues of Human
Computer Interaction in the Work Place. Amsterdam: North Holland, pp. 131–146.

Alda, S. and Cremers, A.B. (2004). Strategies for component-based self-adaptability model in peer-
to-peer architectures. In: Proceedings of the 4th International Symposium on Component-based
Software Engineering (CBSE7). LNCS. Edinburgh, Scotland (May), pp. 42–58.

Andriessen, J.H.E., Hettinga, M. and Wulf, V. (eds.) (2003). Special issue on evolving use of group-
ware. In: Computer Supported Cooperative Work: The Journal of Collaborative Computing (JC-
SCW), Vol. 12, No. 4.

Bellissard, L., Atallah, S.B., Boyer, F., Reveill, M. (1996). Distributed application configuration.
In: Proceedings of 16th International Conference on Distributed Computing Systems (ICDCS),
Hong Kong, IEEE Computer Society, 579–585.

Bentley, R., Appelt, W., Busbach, U., Hinrichs, E., Kerr, D., Sikkel, K., Trevor, J. and Woetzel, G.
(1997). Basic support for cooperative work on the world wide web. In: International Journal of
Human Computer Studies 46, pp. 827–846.

Bentley, R. and Dourish, P. (1995). Medium versus mechanism. supporting collaboration through
customisation. In: H. Marmolin, Y. Sundblad and K. Schmidt (eds.), Proceedings of the
Fourth European Conference on Computer Supported Cooperative Work—ECSCW ’95, Kluwer,
pp. 133–148.

Carroll, J.M. (1987). Five gambits for the advisory interfaces dilemma. In: M. Frese, E. Ulich and W.
Dzida (eds.), Psychological Issues of Human Computer Interaction in the Work Place, Amsterdam,
pp. 257–274.

Carroll, J.M. and Carrithers, C. (1984). Training wheels in a user interface. In: Communications of
the ACM, Vol. 27, S. 800–806.

Carter, K. and Henderson, A. (1990). Tailoring culture. In: R. Hellman, M. Ruohonen and P. Sorgard
(eds.), Proceedings of the 13th IRIS, Reports on Computer Science and Mathematics, No. 107,
Abo Akademi University, pp. 103–116.

Cortes, M. (2000). A coordination language for building collaborative applications. Journal of Com-
puter Supported Cooperative Work (JCSCW), 9(1), 5–31.

Dourish, P. (1996). Open Implementation and Flexibility in CSCW Toolkits, Ph.D. Thesis. London:
University College.

Engelskirchen, T. (2000). Exploration Anpassbarer Groupware, Master Thesis, Bonn: University of
Bonn.

Fischer, G., Scharff, E. and Ye, Y. (2004). Fostering social creativity by increasing social capital.
In: M. Huysman and V. Wulf (eds.), Social Capital and Information Technology, Cambridge,
MA: MIT-Press.

Frese, M., Irmer, C. and Prümper, J. (1991). Das Konzept Fehlermanagement: Eine Strategie des
Umgangs mit Handlungsfehlern in der Mensch-Computer Interaktion. In: C. Scarpelis (ed.),
Software für die Arbeit von morgen, Berlin: Springer Verlag, pp. 241–252.

Golombek, B. (2000). Implementierung und Evaluation der Konzepte “Explorative Ausführbarkeit”
und “Direkte Aktivierbarkeit” für anpassbare Groupware, Master Thesis, University of
Bonn.

Grudin, J. (1996). Evaluating opportunities for design capture. In: T. Moran and J. Carroll (eds.),
Design Rationale: Concepts, Techniques, and use, Lawrence Erlbaum Associates, Hillsdale, NJ,
pp. 453–470.

Hallenberger, M. (2000). Programmierung einer interaktiven 3D-Schnittstelle am Beispiel einer An-
passungss chnittstelle für komponentenbasierte Anpassbarkeit, Diploma Thesis, Department of
computer Science, University of Bonn, Germany.

COMPONENT-BASED APPROACHES TO TAILORABLE SYSTEMS 139

Henderson, A. and Kyng, M. (1991). There’s no place like home: Continuing design in use. In:
J. Greenbaum and M. Kyng (eds.), Design At Work—Cooperative Design of Computer Artefacts,
Hillsdale, New Jersey: Lawrence Erlbaum Associates, Publishers, pp. 219–240.

Hinken, R. (1999). Verteilte Anpassbarkeit für Groupware—Eine Laufzeit und Anpassungsplattform,
Master Thesis, University of Bonn.

Howes, A. and Payne, S.J. (1990). Supporting exploratory learning. In: Proceedings of INTERACT’90,
North-Holland, Amsterdam, pp. 881–885.

Huysman, M. and Wulf, V. (eds.) (2004). Social Capital and Information Technology. Cambridge
MA: MIT Press.

IBM (1998). Visual Age for Java, Version 1.0.
ISO 9241. Ergonomic requirements for office work with visual display terminals (VDTs) Part 10:

Dialogue Principles.
Johansen, R. (ed.) (1988). Current User Approaches to Groupware. In: Groupware, New York:

Freepress, pp. 12–44.
Kahler, H. (2001a). Supporting Collaborative Tailoring, Ph.D. Thesis, Roskilde University, Denmark,

Roskilde.
Kahler, H. (2001b). More than WORDSs: Collaborative tailoring of a word processor. Journal on

Universal Computer Science (j.ucs) 7(9), 826–847.
Krings, M. (2003). Erkennung semantischer Fehler in komponentenbasierten Architekturen, Master

Thesis, University of Bonn.
Krüger, M. (2003). Semantische Integritätsprüfung für die Anpassung von Komponenten-

Kompositionen, Master Thesis, University of Bonn.
Mackay, W.E. (1990). Users and Customizable Software: A Co-Adaptive Phenomenon, Ph.D. Thesis,

MIT, Boston (MA).
MacLean, A., Carter, K., Lövstrand, L. and Moran, T. (1990). User-tailorable systems: Pressing the

issue with buttons. In: Proceedings of the Conference on Computer Human Interaction (CHI
’90), April 1–5, Seattle (Washington), ACM-Press, New York, pp. 175–182.

Magee, J., Dulay, N., Eisenbach, S. and Kramer, J. (1995). Specifying distributed software architec-
tures. In: Proceedings of 5th European Software Engineering Conference, Barcelona.

Malone, T.W., Lai, K.-Y. and Fry, C. (1992). Experiments with oval: A radically tailorable tool for
cooperative work. In: Proceedings of CSCW. Toronto, Canada, ACM Press, pp. 289–297.

McIlroy, D. (7th to 11th Oct. 1968). Mass-produced software components. In: P. Naur and B. Randell
(eds.), Software Engineering, Brussels, 1969, Report of a Conference sponsored by the NATO
Science Committee, Garmisch, Germany, pp. 138–155

Microsoft (1996). Visual Basic, Version 4.0.
Mørch, A. (1997). Method and Tools for Tailoring of Object-oriented Applications: An Evolving

Artifacts Approach, PhD-Thesis, University of Oslo, Department of Computer Science, Research
Report 241, Oslo.

Mørch, A.I. and Mehandjiev, N.D. (2003). Tailoring as collaboration: The mediating role of
multiple representations and application units. Journal on Computer Supported Cooperative
Work (JCSCW) 9(1), 75–100.

Mørch, A.I., Stevens, G., Won, M., Klann, M., Dittrich, Y. and Wulf, V. (2004). Component-based
technologies for end user development. Communications of the ACM 47(9), 59–62.

Myers, B.A. (1990). Taxonomies of visual programming and program visualization. Journal of Visual
Languages and Computing 1, 97–123.

Nardi, B.A. (1993). A Small Matter of Programming—Perspectives on end-user computing.
Cambridge: MIT-Press.

Oberquelle, H. (1994). Situationsbedingte und benutzerorientierte Anpassbarkeit von Groupware. In:
A. Hartmann, Th. Herrmann, M. Rohde, V. Wulf (eds.), Menschengerechte Groupware, Stuttgart,
pp. 31–50.

140 MARKUS WON ET AL.

Oppermann, R. and Simm, H. (1994). Adaptability: User-initiated individualization. In: R. Oppermann
(ed.), Adaptive User Support—Ergonomic Design of Manually and Automatically Adaptable
Software, LEA, Hillsdale, NJ.

Orlikowski, W.J. and Hofman, J. D. (1997). An improvisational model for change management: The
case of groupware technologies. In: Sloan Management Review (Winter 1997), 11–21.

Page, S., Johnsgard, T., Albert, U. and Allen, C. (1996). User Customization of a Word Processor. In:
Proceedings of CHI ’96, (April 13–18), 340–346.

Paul, H. (1994). Exploratives Agieren. Frankfurt/M: Peter Lang, 1994.
Repenning, A., Ioannidou, A. and Zola, J. (2000), AgentSheets: End-user programmable simulations.

Journal of Artificial Societies and Social Simulation 3(3).
Schmidt, K. (1991). Riding a tiger or computer supported cooperative work. In: L. Bannon,

M. Robinson and K. Schmidt (eds.), Proceedings ECSCW ’91, Kluwer, Dordrecht, pp. 1–16.
Silberschatz, A., Korth, H. and Sudarshan, S. (2001). Database System Concepts, Osborne: McGraw-

Hill.
Stiemerling, O. (2000). Component-based Tailorability, Ph.D. Thesis, Department of Computer

Science, University of Bonn, Bonn.
Stiemerling, O. and Cremers, A.B. (1998). Tailorable component architectures for CSCW-systems.

In: A.M. Tyrell (ed.), Proceedings of the 6th Euromicro Workshop on Parallel and Distributed
Processing, IEEE-Press 1998, pp. 302–308.

Stiemerling, O., Hinken, R. and Cremers, A.B. (1999). The evolve tailoring platform: Supporting the
evolution of component-based groupware. In: Proceedings of EDOC’99, IEEE Press, Mannheim,
September 27–30, pp. 106–115.

Stevens, G. (2002). Komponentenbasierte Anpassbarkeit—FlexiBeans zur Realisierung einer erweit-
erten Zugriffskontrolle, Master Thesis, University of Bonn.

Stevens, G. and Wulf, V. (2002). A new dimension in access control: Studying maintenance engineering
across organizational boundaries. In: Proceedings of ACM Conference on Computer Supported
Cooperative Work (CSCW 2002), ACM-Press, New York, pp. 196–205.

Szyperski, C. (2002). Component Software: Beyond Object Oriented Programming, 2nd Edition,
London: Addison Wesley.

Slagter, R., Biemans, M. and Ter Hofte, G.H. (2001). Evolution in use of groupware: Facilitating
tailoring to the extreme. In: M. Borges, J. Haake and U. Hoppe (eds.), Proceedings of the 7th In-
ternational Workshop on Groupware (CRIWG 2001), 6–8 September 2001, Darmstadt, Germany.

Teege, G. (2000). Users as Composers: Parts and Features as a Basis for Tailorability in CSCW
Systems, CSCW, Kluwer Academic Publishers, pp. 101–122.

van der Aalst, W.D.H. and Verbeek, H.M.W. (1997). A Petri-Net-based tool to analyze workflows. In:
Proceedings of Petri Nets in System Engineering (PNSE’97), Hamburg, Universität Hamburg,
pp. 78–90.

Won, M. (1998). Komponentenbasierte Anpassbarkeit—Anwendung auf ein Suchtool für Groupware,
Master Thesis, University of Bonn.

Won, M. (2002). Cremers, Armin B.: Supporting End-User Tailoring of Component-Based Software—
Checking Integrity of Composition. In: Proceedings of Colognet 2002 (Conjuction with LOPSTR
2002), Madrid, Spain, 19–20 September 2002, pp. 47–58.

Won, M. (2003). Supporting end-user development of component-based software by checking se-
mantic integrity. In: ASERC Workshop on Software Testing, Febrauary 19, 2003, Banff, Canada.

Wulf, V. (1994). Volker Wulf: Anpaßbarkeit im Prozeß evolutionärer Systementwicklung. GMD-
Spiegel 24(3/94), 41–46.

Wulf, V. (1999). “Let’s see your Search-Tool!”—collaborative use of tailored artifacts in groupware.
In: Proceedings of GROUP ’99, ACM-Press, New York, 1999, pp. 50–60.

Wulf, V. (2000). Exploration environments: Supporting users to learn groupware functions. Interacting
with Computers 13(2), 265–299.

COMPONENT-BASED APPROACHES TO TAILORABLE SYSTEMS 141

Wulf, V. (2001). Zur anpassbaren Gestaltung von Groupware: Anforderungen, Konzepte, Implemen-
tierungen und Evaluationen, GMD Research Series, Nr. 10/2001, St. Augustin.

Wulf, V. and Golombek, B. (2001a). Direct activation: A concept to encourage tailoring activities.
Behavior and Information Technology 20(4), 249–263.

Wulf, V. and Golombek, B. (2001b). Exploration environments—concept and empirical evaluation.
In: Proceedings of GROUP 2001, ACM-Press, New York, pp. 107–116.

Wulf, V. and Jarke, M. (2004). The economics of end user development. Communications of the ACM
47(9), 41–42.

Wulf, V. and Rohde, M. (1995). Towards an integrated organization and technology development.
In: Proceedings of the Symposium on Designing Interactive Systems, 23–25 August 1995, Ann
Arbor (Michigan), ACM-Press, New York, pp. 55–64.

Yang, Y. (1990). Current approaches and new guidelines for undo-support design. In: Proceedings of
INTERACT’90, North-Holland, Amsterdam, pp. 543–548.

Ye, Y. (2001). Supporting Component-Based Software Development with Active Component Reposi-
tory Systems. Ph.D. Thesis, Department of Computer Science, University of Colorado at Boulder,
Boulder 2001.

Chapter 7

Natural Development of Nomadic Interfaces Based on
Conceptual Descriptions

SILVIA BERTI1, FABIO PATERNÒ2 and CARMEN SANTORO3

1Dipartemento di Storia Moderna e Contemporanea, Università degli Studi di Roma La

2

3

Abstract. Natural development aims to ease the development process of interactive software

environments able to map them onto corresponding implementations of interactive systems. The main
motivation for model-based approaches to user interface design has been to support development
through the use of meaningful abstractions in order to avoid dealing with low-level details. Despite
this potential benefit, their adoption has mainly been limited to professional designers. This paper
shows how they should be extended in order to achieve natural development through environments
that enable end-users to create or modify interactive applications still using conceptual models, but
with continuous support that facilitates their development, analysis, and use. In particular, we discuss
the application of the proposed criteria to the CTTE and TERESA environments, which support the
design and development of multi-device interfaces.

1. Introduction

Two fundamental challenges for development environments in the coming years are
end-user development (EUD) and interaction device heterogeneity. The former aims
to allow people without any particular background in programming to develop their
own applications. The increasing interactive capabilities of new devices have created
the potential to overcome the traditional separation between end-users and software
developers. Over the next few years, we will be moving from easy-to-use (which has
still to be completely achieved) to easy-to-develop interactive software systems. EUD
in general means the active participation of end-users in the software development
process. From this perspective, tasks that have traditionally carried out by professional
software developers are transferred to users, who need to be specifically supported
in performing such activities. New environments able to seamlessly move between
using and programming (or customising) software should be designed. The other chal-
lenge is raised by the ever-increasing introduction of new types of interactive devices,
whose range varies from small devices such as interactive watches to very large flat
displays. The availability of such platforms has forced designers to strive to make ap-
plications run on a wide spectrum of computing devices in order to enable users to
seamlessly access information and services regardless of the device they are using and

Henry Lieberman et al. (eds.), End User Development, 143–159.
C© 2006 Springer.

ISTI–CNR Institute, Pisa, Italy, fabio.paterno@isti.cnr.it

systems. This can be obtained through the use of familiar representations together with intelligent

CNUCE–CNR Institute, Pisa, Italy, carmen.santoro@isti.cnr.it

Sapienza, Rome, Italy, silvia.berti@isti.cnr.it

144 SILVIA BERTI ET AL.

even when the system or the environment changes dynamically. Thus, there is a need for
new development environments able to provide integrated solutions to these two main
challenges.

One of the goals of EUD is to reach closeness of mapping: as Green and Petre
put it (Green and Petre, 1996): “The closer the programming world is to the problem
world, the easier the problem-solving ought to be. . . . Conventional textual languages
have a long way to go before achieving that goal.” Even graphical languages often
fail to furnish immediately understandable representations for developers. The work in
Myers’ group aims to obtain natural programming (Pane and Myers, 1996), meaning
programming through languages that work in the way people without any experience
in this field would expect. We intend to take a more comprehensive view of the devel-
opment cycle, thus not limited only to programming, but also including requirements,
designing, modifying, tailoring, etc. Natural development implies that people should
be able to work through familiar and immediately understandable representations that
allow them to easily express and manipulate relevant concepts, and thereby create or
modify interactive software artifacts. In contrast, since a software artifact needs to be
precisely specified in order to be implemented, there will still be the need for envi-
ronments supporting transformations from intuitive and familiar representations into
more precise, but more difficult to develop, descriptions. In this paper, we discuss how
to apply this paradigm to the CTTE and TERESA environments, which support the
design and development of multiple interfaces adapted to the interaction resources of
the various target platforms, starting with descriptions of the logical tasks to support.

In the next sections we first discuss related work, then we discuss some criteria for
delivering natural development environments to informal programmers. In Section 4,
we provide a general introduction to the different viewpoints that can be considered
when dealing with interactive systems, while in Section 5 we focus on an authoring
environment, TERESA, we developed for design of multi-device interfaces. An ex-
ample of application using the TERESA approach is shown in Section 6, while some
conclusions have been drawn in Section 7.

2. Related Work

Several years ago many people argued that programming is difficult because it requires
the precise use of a textual language; the hope was that visual environments would
have been inherently easier to use, based on the consideration that many people think
and remember things in terms of pictures. In other words, they relate to the world
in an inherently graphical way and use imagery as a primary component of creative
thought. Visual programming methods like conventional flow charts and graphical pro-
gramming languages have been widely studied in the last 20 years. On the one hand,
reducing or removing entirely the necessity of translating visual ideas into textual rep-
resentations can help to speed up and make easier the learning phase. On the other
hand, end-users still have problems even when using visual environments. It seems that
visual languages might be better for small tasks, but often breakdown for large tasks
(Green and Petre, 1992). An example of adoption of the visual approach is the Unified

NATURAL DEVELOPMENT OF NOMADIC INTERFACES 145

Modeling Language (UML) (OMG, 2001), which has become the de facto standard
notation for software models. UML is a family of diagrammatic languages tailored to
modeling all relevant aspects of a software system; and methods and pragmatics can
define how these aspects can be consistently integrated. Visual modeling languages
have been identified as promising candidates for defining models of the software sys-
tems to be produced. They inherently require abstractions and should deploy concepts,
metaphors, and intuitive notations that allow professional software developers, domain
experts, and users to communicate ideas and concepts. This requirement is of prominent
importance if models are not only to be understood, but also used and even produced by
end-users.

Generic languages are designed for general-purpose problems, whereas domain-
specific programming languages are designed for a specific class of problems. In order
to remain generic, the first type must accept a trade-off between the expressiveness of
the constructs, their intuitiveness, and the need to suit a variety of needs. Languages of
the second class focus on a specific type of problem. This facilitates narrowing the range
of objectives and more properly defining the goals of the language. The consequence
is that the language constructs are easier to learn because they are tailored to the
task, while the user’s background knowledge allows using high-level constructs and
abstractions because some details are automatically dealt with. Such languages are able
to quickly augment user productivity and some applications can be obtained through
the use of a set of application-specific libraries that are able to enhance existing tools
for EUD.

Natural programming has been defined as a “faithful method to represent nature
or life, which works in the way the people expect” (Myers, 1998). In general, it is
advisable that user interfaces are “natural” so that they are easier to learn and use,
and will result in fewer errors. For example, (Nielsen, 1993) recommends that user
interfaces should “speak the user’s language”; this means that user interfaces should
include a good mapping between the user’s conceptual model of the information and
the computer’s interface for it. For this reason, it is important to enable users to speak
their language for expressing their conceptual view in a natural way. A production-
oriented programming style should be more natural; a possible approach is to use a
well-known real-world system as a metaphor for the computational machine in order
to make the programming procedure more concrete. Many previous research systems
used metaphors, such as the “turtle” in Logo. However, the use of metaphors can
lead to other intrinsic problems, for example the difficulty in finding an appropriate
metaphoric model for a given programming environment. In addition, metaphors do
not scale well; in fact, a metaphor that works well for a simple process in a simple
program might fail as soon the process grows in size or complexity. Then, the use of
appropriate metaphors, with their capabilities and limitations, differs widely depending
on the users and their purposes. A useful method for natural programming is mixed-
initiative dialogue, where both the user and the system can activate the interaction,
which can result in a conversation about the program.

Another interesting direction in which end-user programming can be pursued is
through the use of model-based approaches, which on the one hand are sometimes

146 SILVIA BERTI ET AL.

criticized due to problems in understanding/using them, but, on the other hand, are
indisputably helpful in managing complexity, as they allow designers to focus on the
most relevant concepts. In particular, since one of the basic usability principles is
“focus on the users and their tasks,” it becomes important to consider task models.
Task models can be useful to provide an integrated description of system functional-
ity and user interaction. Then, the development of the corresponding artifact able to
support the identified features should be obtainable through environments that are able
to suggest the most effective interaction and presentation techniques on the basis of
a set of guidelines or design criteria. Various solutions have been proposed for this
purpose. They vary according to a number of dimensions. For example, the automa-
tion level can be different: a completely automatic solution can provide meaningful
results only when the application domain is rather narrow and consequently the space
of the possible solutions regarding the mapping of tasks to interaction techniques is
limited.

More general environments are based on the mixed initiative principle: the tool sup-
porting the mapping provides suggestions that the designer can accept or modify. An
example is the TERESA environment (Mori et al., 2004) that provides support for the
design and development of multi-device interfaces, which can be accessed through
different types of interaction devices. Other works have addressed similar issues but
following different approaches, without considering EUD or model-based develop-
ment. One example is a completely automatic solution, which is called transcoding,
in which an application written in a language for a platform is automatically trans-
lated into an application coded in a language for another platform (see IBM WebSphere
Transcoding for an example of HTML-to-WML transcoding). The main problem of
such approaches is that they assume that the same tasks are provided on each plat-
form, and tend to support them in the same manner without taking into account the
specific features of the platform at hand, so providing poor results in terms of us-
ability. Aura (De Sousa and Garlan, 2002) is a project whose goal is to provide an
infrastructure that configures itself automatically for the mobile user. When a user
moves to a different platform, Aura attempts to reconfigure the computing infrastruc-
ture so that the user can continue working on tasks started elsewhere. In this approach,
tasks are considered as a cohesive collection of applications. Suppliers provide the
abstract services, which are implemented by just wrapping existing applications and
services to conform to Aura APIs. For instance, Emacs, Word, and NotePad can each
be wrapped to become a supplier of text editing services. So, the different context is
supported through a different application for the same goal (for example, text editing
can be supported through MS Word or Emacs depending on the resources of the de-
vice at hand). TERESA provides a more flexible solution where the same application
can have different interfaces depending on the interactive device available. This is ob-
tained by exploiting the semantic information contained in the declarative descriptions
of the tasks and the interface and using transformations that incorporate design crite-
ria platform-dependent for generating multiple interfaces (one for each potential type
of platform).

NATURAL DEVELOPMENT OF NOMADIC INTERFACES 147

3. Criteria for Obtaining Natural Development Environments

In this section we discuss two important criteria that can be identified to obtain natu-
ral development environments based on the use of conceptual descriptions, providing
concrete examples of their application.

3.1. INTEGRATING INFORMAL AND STRUCTURED REPRESENTATIONS

The use of informal techniques is typically associated with non-professional users, since
it does not require any specific a priori knowledge. However, most end-user developers
would benefit from a combined use of multiple representations and various levels of
formality. Indeed, at the beginning of the design process many things are obscure and
unclear, so it is hard to develop precise specifications from scratch. In addition, there is
the problem of clearly understanding what user requirements are. Thus, it can be helpful
to use the results of initial discussions to feed the more structured parts of the design
process. In general, the main issue of EUD is how to use personal intuition, familiar
metaphors and concepts to obtain or modify a software artifact, whose features need to
be precisely defined in order to obtain consistent support for the desired functionality
and behavior.

In this process we should address all the available multimedia possibilities. For
example, support for vocal interaction is mature for the mass market. Its support for the
Web is being standardized by W3C (Abbott, in press). The rationale for vocal interaction
is that it makes practical operations quicker and more natural, and it also makes multi-
modal (graphic and vocal) interactions possible. Vocal interaction can be considered
both for the resulting interactive application and for the supporting the development
environment.

In CTTE (Mori et al., 2002), to support the initial modeling work we provide the
possibility of loading an informal textual description of a scenario or a use case and
interactively selecting the information of interest for the modeling work. To develop
a task model from an informal textual description, designers first have to identify the
different roles. Then, they can start to analyze the textual description of the scenario,
trying to identify the main tasks that occur in the scenario and associate each task with a
particular role. It is possible to specify the category of the task, in terms of performance
allocation. In addition, a description of the task can be specified along with the logical
objects used and handled. By reviewing the scenario description, the designer can
identify the different tasks and then add them to the task list. Once designers have
their list of activities to consider, they can start to create the hierarchical structure
that describes the various levels of abstraction among tasks. The hierarchical structure
obtained can then be further refined through the specification of the temporal relations
among tasks and the tasks’ attributes and objects. The use of these features is optional:
designers can start to create the model directly using the graphical editor, but such
features can facilitate the modeling work. U-Tel (Tam et al., 1998) provides a different
type of support: through automatic analysis of scenario content, nouns are automatically

148 SILVIA BERTI ET AL.

associated with objects, and verbs with tasks. This approach provides some useful
results, but it is too simple to be generalized and sometimes may fail (e.g., because a
task might be defined by a verb followed by an object).

Another useful support can be derived from the consideration that people often
spontaneously use sketches and rough designs even just to improve human-to-human
communication. As a matter of fact, the result of brainstorming by either one single
person or a group are often ‘quick and dirty’ pen/paper or whiteboard—based dia-
grams whose main objective is to effectively and rapidly fix/communicate ideas. Such
techniques are effective because they allow people to concentrate on ideas instead of
being distracted by low level details or getting stuck by some rigid symbolism. In
addition, the possibility of developing through sketching can be highly appreciated
especially if it is possible to capture the results of such process for further analysis.
Such considerations foster application areas for intelligent whiteboard systems (Landay
and Myers, 2001) or augmented reality techniques, as they are capable of exploiting
such natural modes of interaction/communication. In fact, such informal techniques
minimize the need for abstractions (which are mostly used with formal techniques)
while specifying systems. Moreover, especially non-professional users feel particu-
larly comfortable with them. Such systems are able to interpret sketches by recog-
nizing graphical elements and converting them into a format that can be edited and
analyzed by desktop tools. In addition, they should be able to recognize not only sin-
gle elements, but also composite or complex groups/patterns regarding structure and
navigation through an analysis of spatial relations between objects. Also, the possi-
bility of specifying reusable custom graphical elements and extending the grammar
through such composites should be envisaged and, in order to get a real “flavor” of
the interactive system involved, the users should also be empowered with the ability
to associate dynamic properties to such drawings. In this way, they can be enabled to
intuitively outline not only the static layout of the user interface but also its dynamic
behavior.

The use of such techniques paves the way for an iterative and progressive refinement
process in which multiple levels of detail are progressively included by users (design-
ers), who gradually adjust the design moving from inherently informal, imprecise, and
ambiguous specifications to more rigorous and detailed designs. In this way, users are
allowed to overcome the formal barriers that are traditionally associated with this pro-
cess and smoothly bridge the cognitive gap from informal techniques to more structured
methods and representations. We have designed a tool supporting the development task
models using sketches. We have used technologies able to enrich a whiteboard in order
to capture the sketches made by the user (such as the high-resolution ultrasonic position
capture system provided by Mimio interactive technologies). The tool is able to capture
the sketch from the whiteboards and convert it into vector SVG format. Then, we have
developed a tool able to take such vectorial descriptions, analyze them and recognize
the corresponding expressions in the CTT notation, which are then saved in an XML
file (see Figure 7.1), and can be imported by the CTTE and TERESA tools for further
editing.

NATURAL DEVELOPMENT OF NOMADIC INTERFACES 149

Figure 7.1. Example of use of sketches with CTTE.

Furthermore, in order to make some user commands and actions more natural, it
is important that user interfaces support multiple modes of interaction, for example,
enabling users to interact vocally or by means of an input device (such as a keypad,
keyboard, mouse, stylus, etc.).

For many users it is easier and more natural to produce spoken commands than
to remember the location of a function within menus and dialog boxes. Moreover, by
using increasingly complex commands based on natural language enable rapid access
to features that have traditionally been buried in sub-menus and dialogues. For exam-
ples, the command “Apply italic, 10 point, Arial” replaces multiple menu selections
and mouse clicks. Programming in natural language might seem impossible but several
studies found that when non-programmers are asked to write step-by-step informal
natural language procedures, many different people use the same phrases to indicate
standard programming tasks (Pane and Myers, 1996). Due to this fact, the vocal com-
mands recognition is less complicated and focuses on a set of significant keywords and
phrases. This technique has been adopted in a new version of the CTTE tool, where the
users can define the task model by keyboard, mouse, and vocal commands. When they
decide to use vocal interaction, the system produces a welcome message that helps to
understand the information to provide; then an icon (e.g., a picture of a microphone)
is visualized, allowing the user to turn off the input device. This feature is useful if the
users need to have a different conversation with another person or machine, have to
think about their next step, or gather material or information for the next step in order
to reduce errors in speech recognition. Then, while the user vocally specifies the main
tasks and associated properties, the system draws the related task model, using the sym-
bols of the ConcurTaskTrees notation (Paternò, 1999). For example, if the user says:
“At the beginning the user inserts name and password in order to access the system;
then the system visualizes the personal page with information on areas of interest,”
the recognition system, by means of a specific grammar and vocabulary, analyses and
interprets the vocal message. In this example the system identifies four tasks: three
interaction tasks (“Access the system”, “Insert name”, and “Insert password”) and one
application task (“Visualise personal data”) and also defines the main properties.

Additionally, the system defines the relations between the identified tasks by means
of some keywords like temporal adverbs, prepositions, conjunctions, and so on. In

150 SILVIA BERTI ET AL.

Figure 7.2. Example of task model generated through vocal commands.

our example three types of relations are automatically recognized (see Figure 7.2):
the first one defines the hierarchy between the task “Access the system”, (which is the
parent), and “Insert name” and “Insert password ”,” (which are the children), since in
the vocal command the user says the keyword “in order to”. The second relation is
between “Insert name” and “Insert password,” and it is an interleaving relation be-
cause the task can be performed in any order without any specific constraints (indeed
the user says the keyword “and ”). The last one is between “Access the system” and
“Visualize personal data”,” which is an enabling relation because the first task en-
ables the second one as the user adopts the expression “At the beginning task1, then
task2.”

During the conversation, if the recognition system does not understand some infor-
mation or has some uncertainties, it asks the user to verify the properties settings or to
explain it with further details. At any time, the user can close the vocal guided creation
procedure and operate a fully customizable development process.

3.2. PROVIDING EFFECTIVE REPRESENTATIONS

Recent years have seen the widespread adoption of visual modeling techniques in the
software design process. However, we are still far from visual representations that are
easy to develop, analyze, and modify, especially when large case studies are considered.
As soon as the visual model increases in complexity, designers have to interact with
many graphical symbols connected in various ways and have difficulties in analyzing
the specification and understanding the relations among the various parts. In addition,
the ever-spreading introduction and adoption of disparate handheld interaction devices
has further spurred designers to focus on the recurring problem of the lack of screen
space for effectively visualizing large information structures on small screens while
still maintaining awareness of the context.

NATURAL DEVELOPMENT OF NOMADIC INTERFACES 151

Figure 7.3. How CTTE provides focus+context representation.

In this regard, CTTE provides support through some representations that ease the
analysis of a model. As shown in Figure 7.3, it provides a focus+context representation
of the model (focus on details of immediate interest, plus context of the overall model),
allowing the user to have a detailed view of a part of the model within the main
window (because only a portion can be displayed when large models are considered),
yet still providing a small overview pane (in the right-top part) that allows designers
to orient themselves with regard to the location of the focus part in the overall model.
The representation in the overview pane is limited to the overall hierarchical structure
disregarding details like task names and icons (which represent how the tasks are
allocated). The correspondence between the focus window and the context window is
facilitated by the hierarchical structure of the model.

In addition, the application and extension of innovative interaction techniques, in-
cluding those developed in the field of information visualization (Spence, 2001) (such
as semantic zooming, fisheye, two-hand interactions, magic lens . . .), can noticeably
improve the effectiveness of the environments aiming at providing different interac-
tive representations depending on the abstraction level of interest, or the aspects that
designers want to analyze or the type of issues that they want to address.

One of the most well-known approaches in this area is the fisheye view (Furnas, 1981).
According to this work, it is possible to calculate the Degree Of Interest (DOI) of the
various elements, which is a mathematical distance function used to magnify certain
areas with a high level of interest while leaving out elements with a low DOI by means
of using some de-emphasize techniques like filtering, zooming out, etc. An example of

152 SILVIA BERTI ET AL.

Figure 7.4. The fisheye-oriented representation of a task model in the new extension of CTTE.

a fish-eye oriented representation of a task model is given in Figure 7.4 which refers
to a new extension of the CTTE tool (Paternò and Zini, 2004). The advantage of this
approach is that it is able to dynamically highlight the areas of interest in the model by
enlarging the elements that they contain. If we compare the representations in Figure 7.3
with that in Figure 7.4 (they refer to the same task model) we can notice that in Figure
7.4 there is a better management of the screen space since the most interesting elements
(the focus in the representation in this figure is in the Switch on task) are more effectively
highlighted. On the contrary, in Figure 7.3 all the tasks are equally represented, even
the peripheral ones (the less interesting ones). The representation in Figure 7.4 applies
both fisheye and semantic zoom representations. Fisheye is used to change the size of
the representation for each task depending on its distance from the current focus (for
example Select Number is smaller than Switch on). Semantic zoom is used to change
representation for the most distant elements. In this case the task names and icons are
not presented at all and only a representation of the corresponding tree structure is
provided (an example is given by the subtasks of Select Number in Figure 7.4).

4. The Many Views on an Interactive System

It is important to consider the various viewpoints that are possible on an interactive
system. Such viewpoints differ for the abstraction levels (to what extent the details
are considered) and the focus (whether the task or the user interface is considered).

NATURAL DEVELOPMENT OF NOMADIC INTERFACES 153

The model-based community has long discussed such possible viewpoints and in the
CAMELEON project (http://giove.isti.cnr.it/cameleon.html) a study was conducted to
better structure them and understand their relations through a reference framework.
Such abstraction levels are:

� Task and object model, at this level, the logical activities that need to be performed
in order to reach the users’ goals are considered. Often they are represented hier-
archically along with indications of the temporal relations among them and their
associated attributes. The objects that have to be manipulated in order to perform
tasks can be identified as well.

� Abstract user interface, in this case the focus shifts to the interaction objects
supporting task performance. Only the main, modality-independent aspects are
considered, thereby avoiding low-level details. An abstract user interface is defined
in terms of presentations, identifying the set of user interface elements perceivable
at the same time, and each presentation is composed of a number of interactors
(Paternò and Leonardi, 1994), which are abstract interaction objects identified in
terms of their semantics effects.

� Concrete user interface, at this point each abstract interactor is replaced with
a concrete interaction object that depends on the type of platform and media
available and has a number of attributes that define more concretely its appearance
and behavior.

� Final User interface, at this level the concrete interface is translated into an inter-
face defined by a specific software environment (e.g., XHTML, Java, . . .).

To better understand such abstraction levels we can consider an example of a task:
making a hotel room reservation. It can be decomposed into selecting departure and
arrival dates and other subtasks concerning required services/facilities. At the abstract
user interface level we need to identify the interaction objects needed to support such
tasks. For example, for specifying departure and arrival dates we need selection inter-
action objects. When we move on to the concrete user interface, we need to consider
the specific interaction objects supported. So, in a desktop interface, selection can be
supported by an object showing a calendar or by pull down menus allowing a controlled
selection of month, day and year. The final user interface is the result of rendering such
choices also considering the specific target environment of the device: it could involve
attributes like the type and size of the font, the colors available, and decoration images.

Many transformations are possible among these four levels for each interaction
platform considered: from higher level descriptions to more concrete ones or vice versa
or between the same level of abstraction but for different types of platforms or even any
combination of them. Consequently, a wide variety of situations can be addressed. More
generally, the possibility of linking aspects related to user interface elements to more
semantic aspects opens up the possibility of intelligent tools that can help in the design,
evaluation, and run-time execution. In particular, they allow a development process
starting with user oriented descriptions, which gradually transforms it into descriptions
that adapt to various context of use.

154 SILVIA BERTI ET AL.

5. Teresa: An Authoring Environment for Ubiquitous Interfaces

TERESA is a model-based environment supporting the design and development of
nomadic applications (those that can be accessed through heterogeneous platforms
and from different locations). The method underlying the TERESA tool is composed
of a number of steps that allow designers to start with an envisioned overall task
model of a nomadic application and then derive concrete and effective user interfaces
for multiple devices through multiple levels of abstractions and related in-between
transformations. The round trip engineering process supported by TERESA also allows
maintaining links among elements at different abstraction levels, also helping users in
understanding links between the various models. Further options are available within
the tool, which implements the whole task/platform taxonomy (Paternò and Santoro,
2003) but provides at the same time different entry points to improve flexibility: for
instance, when different devices referring to the same type of platform are considered,
there is no need for a nomadic task model, since only one type of platform is involved.
The tool is particularly geared towards generating Web interfaces but can be easily
extended to other environments and, in order to improve interoperability with other
tools, XML-based languages have been used within the tool to store user interface
descriptions at various abstraction levels.

A feature particularly relevant with regard to EUD is the mixed initiative dialogue
implemented within the tool, which supports different levels of automation (ranging
from completely automatic solutions to highly interactive solutions where designers
can tailor or even radically change the solutions proposed by the tool) suiting the
various expertise levels of the target end-users. In fact, when designers are experts (or
the application domain is either broad or has specific aspects) then more interactive
environments are useful because they allow designers to directly make detailed design
decisions. In other cases, e.g., when designers are not very skilled, the mixed-initiative
interaction might provide more intelligent automatic support in order to take decisions
on behalf of the user.

5.1. MAIN FUNCTIONALITIES

Figure 7.5 shows how our approach supports natural development. Thanks to the support
of input captured through various modalities (sketches, vocal input, textual scenarios)
that ease the specification of the tasks to carry out, the tool first identifies the logical
activities to support. Such information is then processed through a number of steps that
allow designers to derive user interfaces for multiple devices:

� High-level task modeling of a multi-context application. In this phase designers
refine a single model that addresses the possible contexts of use and the roles
involved and also all the objects that have to be manipulated to perform tasks
and the relations among them. Such models are specified using ConcurTaskTrees.
This specification allows designers to indicate the platforms suitable for each task.

NATURAL DEVELOPMENT OF NOMADIC INTERFACES 155

Figure 7.5. The approach underlying TERESA.

� Developing the system task model for the different platforms considered. Here
designers have just to filter the task model according to the target platform and, if
necessary, further refine the task model, depending on the specific device consid-
ered, thus, obtaining the system task model for the platform considered.

� From system task model to abstract user interface. Here the tool supports a trans-
formation to obtain an abstract description of the user interface composed of a set
of abstract presentations that are identified through an analysis of the task rela-
tionships and structured by means of interactors composed of various operators.
Both the task and the abstract user interface descriptions are obtained through a
XML-based, platform-independent language.

� User interface generation. In this phase we have the generation of the user inter-
face. This phase is completely platform-dependent and has to consider the specific
properties of the target device. In order to support generation in new user interface
languages only this transformation has to be modified.

6. An Example of Application

In this section we apply the approach pursued in TERESA to a digital agenda applica-
tion, which presents the main features of creating and managing new appointments. As
an example, we analyze the scenario of a user who wants to create a new appointment
in his agenda.

First, the nomadic task model is created by the designer; the next step is to apply
the filtering in order to obtain the appropriate task model for the specific platform
(cellphone, desktop, PDA, vocal platform). The task model obtained can then be trans-
formed into an abstract user interface. The TERESA tool supports various modalities

156 SILVIA BERTI ET AL.

for performing such a transformation, ranging from a completely automatic solution
to a semiautomatic one, with various support levels. Once the abstract user interface
has been obtained, the development process can evolve in different manners depending
on the platform and the modality considered. Nevertheless, in every case the tool pro-
vides designers with the possibility of changing some parameters to customise concrete
interfaces.

In order to illustrate this approach, the table below shows the presentations gener-
ated to support the same task (create a new appointment) on different devices. Some
differences between the various application interfaces can be highlighted: for example,
on the desktop system, due to the amount of screen space available, it is possible to set
all the parameters concerning a new appointment within the same presentation, while,
in the mobile system, the user has to navigate through two different presentations.
In the case of a VoiceXML-enabled phone, the navigation is implemented by vocal
dialogs.

Moreover, further differences can be identified as far as the various supported tasks
are concerned. For instance, in the desktop system it is possible to insert a description
of the appointment, while this task is not available in either the mobile or voice system,
due to the specific interaction characteristics of those media which both discourage the
users from providing verbose descriptions that are likely to increase the total interaction
time requested.

Another interesting point is represented by the different ways in which objects are
arranged within the different presentations on the various platforms. At the level of
abstract user interface such compositions are expressed by abstract operators which
mainly refer to well known layout arrangement techniques (like grouping, ordering,
etc.) that can be rendered, at the concrete level, in different manners depending on the
platform. For example, Table 7.1 shows the different implementations of the grouping
operator on the cellphone and on the vocal platform. In the cellphone the grouped
elements are graphically delimited within a certain region (see the fieldsets), whereas
in the vocal interface sounds or brief pauses are used to identify the elements’ group.
In addition, also the navigation between the different pages can vary depending on the
number of presentations that are provided; such number might be also dependent on
the amount of elements that can be rendered in a single presentation. It is not by chance
that, for instance, on handheld devices the pagination process splits up into different
presentations a certain amount of information that, on device with larger screen can
be rendered in a single presentation, so generating a bigger number of links on every
presentation.

7. Conclusions

This paper provides a discussion of how model-based design should be extended in order
to obtain natural development environments. After a brief discussion of the motivations

NATURAL DEVELOPMENT OF NOMADIC INTERFACES 157

Table 7.1. Examples of different interfaces generated to support the same main task

Cellphone

Voice XML-Enabled Phone

System: “ . . . (grouping sound) Now you are ready to create a new appointment. Say a subject.”

user: “meeting”

System: “Your subject is: MEETING. Say a place of appointment.”

user: “CNR in Pisa”

System: “The place of appointment is: CNR IN PISA. Say the day of appointment”

user “12 December 2003”

System: “Your appointment is: 12 December 2003. (grouping sound) Say the start time of
appointment”

user “9 a.m.”

System: “say the end time of appointment”

user “12 a.m.”

System: “ok, the a ppointment will start at 9 and will finish at 12. (Five seconds pause) Say how
many minutes before the appointment a reminder should be sounded.”

user: “5”

System: “ok, the reminder will be sounded 5 minutes before the appointment.”
If you would like to insert a new appointment say OK , or if would like to remove the appointment say

REMOVE

for EUD based on conceptual representations, we set forth the criteria that should be
pursued in order to obtain effective natural development environments. This can be
achieved by extending model-based approaches to interface development. In order
to make the discussion more concrete, specific environments for model-based design
(CTTE and TERESA) have been considered and we have discussed their extension for
supporting natural development of multi-device interfaces. The resulting interfaces im-
plement usability criteria taking into account the limitations of the interaction resources
in the various types of devices considered.

158 SILVIA BERTI ET AL.

Acknowledgments

We gratefully acknowledge support from the European Commission through the EUD-
Net Network of Excellence (http://giove.isti.cnr.it/eud.html).

References

Abbott, K.R. (in press). Voice Enabling Web Application: VoiceXML and Beyond.
Abrams, M., Phanouriou, C., Batongbacal, A., Williams, S. and Shuster, J. (1999). UIML: An

Appliance-Independent XML User Interface Language. In Proceedings of the 8th WWW confer-
ence.

Cypher, A. (ed., 1993). Watch What I Do: Programming bydemonstration, co-edited by Halbert,
D.C., Kurlander, D., Lieberman, H., Maulsby, D., Myers, B. and Alan, Turransky, The MIT Press
Cambridge, Massachusetts.

Cooper, A. (1995). The Myth of Metaphor.
de Sousa, J. and Garlan, D. (2002). Aura: An Architectural Framework for User Mobility in Ubiquitous

Computing Environments. IEEE-IFIP Conf. on Software Architecture, Montreal.
Eisenstein, J. and Puerta, A. (2000). Adaptation in Automated User-Interface Design. In: Proceedings

of Intelligent User Interfaces 9–12 January 2000, New Orleans, LA: ACM Press, pp. 74–81.
Furnas, G. (1981). The FISHEYE view: A new look at structured files, technical Memorandum

#81-11221-9, Bell Laboratories, Murray Hill, New Jersey 07974, USA, 12 October 1981.
Green, T.R.G., Petre, M., et al. (1991). Comprehensibility of Visual and Textual Programs: A Test

of Superlativism Against the ‘Match-Mismatch’ Conjecture. Empirical Studies of Programming:
Fourth Workshop. J. Koenemann-Belliveau, T. G. Moher and S. P. Robertson. New Brunswick,
NJ, Ablex Publishing Corporation, 121–146.

Green, T.R.G. and Petre M. (1992). When Visual Programs are Harder to Read than Textual Programs.
Human-Computer Interaction: Tasks and Organisation. In: G.C. van der Veer, M.J. Tauber, S. Bag-
narola and M. Antavolits (eds.), Proceedings of ECCE-6 (6th European Conference on Cognitive
Ergonomics), Rome, CUD.

Green, T.R.G. and Petre, M. (1996). Usability analysis of visual programming environments: a ‘cog-
nitive dimensions’ framework. Journal of Visual Lang and Computing 7(2), 131–174.

IBM WebSphere Transcoding Publisher, http://www.ibm.com/software/webservers/ transcoding/
Landay, J. and Myers, B. (2001). Sketching interfaces: Toward more human interface design. IEEE

Computer 34(3), 56–64.
Lieberman, H. (2001). Your Wish is My Command: Programming by Example, Morgan Kaufmann.
Lieberman, H. and Liu, H. (2003). Feasibility Studies for Programming in Natural Language. In this

book.
Mori, G., Paternò, F. and Santoro, C. (2002). CTTE: Support for Developing and Analysing Task

Models for Interactive System Design, IEEE Transactions in Software Engineering 28(8), 797–
813.

Mori, G., Paternò F. and Santoro C. (2004). Design and Development of Multi-Device User Interfaces
through Multiple Logical Descriptions, IEEE Transactions on Software Engineering 30(8), 507–
520.

Myers, B. (1998). Natural Programming: Project Overview and Proposal. Available at http://www-
2.cs.cmu.edu/ ∼NatProg/projectoverview.html

Myers, B., Hudson, S. and Pausch, R. (2000). Past, Present, Future of User Interface Tools. Transac-
tions on Computer–Human Interaction, 7(1), 3–28.

Nielsen, J. (1993). Usability Engineering. Boston, Academic Press.
OMG. (2001). Unified Modeling Language Specification, Version 1.4, September 2001; available at

http://www.omg.org/technology/documents/formal/uml.htm

NATURAL DEVELOPMENT OF NOMADIC INTERFACES 159

Oppermann, R. (1995). Adaptive user support: Ergonomic design of manually and automatically
adaptable software. Hillsdale, NJ: Erlbaum.

Pane, J. and Myers, B. (1996). Usability Issues in the Design of Novice Programming Systems TR#
CMU-CS-96-132. Aug, 1996. http://www.cs.cmu.edu/∼pane/cmu-cs-96-132.html

Paternò, F. (1999). Model-based Design and Evaluation of Interactive Applications, Springer Verlag,
ISBN 1-85233-155-0.

Paternò, F. (2003). From Model-based to Natural Development. In: Proceedings HCI International
2003, Universal Access in HCI, Lawrence Erlbaum Associates, Publishers, pp. 592–596.

Paternò, F. and Leonardi, A. (1994). A Semantics-based Approach to the Design and Implementation
of Interaction Objects. Computer Graphics Forum 13(3), 195–204.

Paternò, F. and Santoro, C. (2003). A Unified Method for Designing Interactive Systems Adaptable
to Mobile and Stationary Platforms. Interacting with Computers 15(3), 347–364.

Paternò, F. and Zini, E. (2004). Applying Information Visualization Techniques to Visual Represen-
tations of Task Models, Proceedings TAMODIA 2004, Prague.

Puerta, A. and Eisenstein, J. (2002). XIML: A Common Representation for Interaction Data. In
Proceedings IUI2002: Sixth International Conference on Intelligent User Interfaces, ACM.

Smith, D.C. and Cypher, A., et al. (1994). KidSim: Programming agents without a programming
language. Communications of the ACM 37(7), 54–67.

Spence, R. (2001). Information Visualization. Addison Wesley.
Tam, R.C.-M., Maulsby, D. and Puerta, A., (1998). U-TEL: A Tool for Eliciting User Task Models

from Domain Experts. In Proceedings IUI’98, ACM Press, 1998.

Chapter 8

End User Development of Web Applications

JOCHEN RODE1, MARY BETH ROSSON2

and MANUEL A. PÉREZ QUIÑONES3

1Virginia Polytechnic Institute and State University, jochenrode@gmail.com
2Pennsylvania State University, mrosson@ist.psu.edu
3Virginia Polytechnic Institute and State University, perez@cs.vt.edu

Abstract. This chapter investigates entry barriers and approaches for facilitating end-user web
application development with the particular focus on shaping web programming technology and
tools according to end-users’ expectations and natural mental models. Our underlying assumption
and motivation is that given the right tools and techniques even nonprogrammers may become suc-
cessful web application developers. The main target audience for this research are “casual” webmasters
without programming experience—a group likely to be interested in building web applications. As an
important subset of web applications we focus on supporting the development of basic data collection,
storage and retrieval applications such as online registrations forms, staff databases, or report tools.

First we analyze the factors contributing to the complexity of web application development through
surveys and interviews of experienced programmers; then we explore the “natural mental models”
of potential end-user web developers, and finally discuss our particular design solutions for lowering
entry barriers, as embodied by a proof-of-concept development tool, called Click. Furthermore, we
introduce and evaluate the concept of “Design-at-Runtime”—a new technique for facilitating and
accelerating the development-test cycle when building web-based applications.

Key words. end user development, web applications

1. Introduction

Why would end users want to develop web applications? Why are they unable to do
this with today’s tools? Who are these end users? What are they like? To gain insight
into these questions—and the topic of this chapter—contrast these scenarios:

Anna uses today’s web tools Anna uses tomorrow’s web tools

As webmaster Anna manages a database for registering
clients in her company’s courses. Recently, she used
a survey authoring tool to build a web-based system:
clients now submit a registration form, which Anna
receives by e-mail. She reads and re-enters the infor-
mation she receives into a spreadsheet. If a course has
seats she registers the person and emails a confirma-
tion; if not, she contacts and coordinates with the client
to re-schedule. Often Anna’s boss asks for summary
reports, which she creates by hand, a tedious process.
Anna knows that these repetitive and time-consuming

A few weeks after her initial effort, Anna learns from a
friend about a web development tool that has been tar-
geted at nonprogrammers like her. She decides to give it
a try, clicking on the “create new web application” link.

The development environment guides her through
the process of creating the screens for her registra-
tion application as well as the database behind the
scenes. Designing the application becomes even en-
joyable when Anna notices that the tool asks her the
right questions at the right time and uses familiar lan-
guage instead of the typical “techno-babble.” At times it

(continued)

Henry Lieberman et al. (eds.), End User Development, 161–182.
C© 2006 Springer.

162 JOCHEN RODE ET AL.

(Continued)

Anna uses today’s web tools Anna uses tomorrow’s web tools

activities should be handled by the computer. But while
she knows how to create websites using WYSIWIG
editors she has no programming experience. She has
heard of Javascript, so she enters “javascript registration
database” into a web search engine. She is overwhelmed
with results and quickly becomes discouraged because
few of the pointers relate to her particular needs, and
the information is highly technical.

even seems that the tool reads her mind. It allows her
toquickly try out different options, entering her own test
data and seeing what happens. Anna loses track of time,
totally engaged by her design activity. Before the day
is over she has fully automated the registration process.
Anna has even managed to create a basic web-based
report generator for her boss. She feels empowered and
is proud of her achievement.

The contrast shown in these two scenarios sketches out the challenges and motivation
underlying the work we report here. Our goal is to understand what end-user developers
need, how they think, and what can be done, so that

a sophisticated user like Anna will not only be able to imagine that she should
automate the tedious computing procedures in her life, but also have at her fingertips
the support she needs to do it.

2. Related Work

The ubiquity of the World Wide Web and the resultant ease of publishing content to a
huge audience has been an important element in the expanding skills and expectations
of computer users. However, today, most web pages built by end users simply present
information; creation of interactive web sites or web applications such online forms,
surveys, and databases still requires considerable skill in programming and web technol-
ogy. Our preliminary studies indicate that these limitations in users’ web development
activities are not due to lack of interest but rather to the difficulties inherent in interac-
tive web development (Rode and Rosson 2003). Many end users can envision simple
interactive applications that they might try to build if the right tools and techniques
were available. If web development becomes possible for a wider audience, we may see
a greater variety of useful applications, including applications not yet envisioned or as
Deshpande and Hansen (2001) put it: “release the creative power of people.” For orga-
nizations that cannot afford a professional programmer, end-user development (EUD)
may help to streamline workflows, increase productivity and client satisfaction.

Tim Berners-Lee designed the web as a collaborative tool (Berners-Lee 1996). How-
ever, his early vision was one of document sharing, and recognition of the web’s potential
as a platform for dynamic collaboration has been an emergent phenomenon, with the
result that much of the web’s infrastructure is ill-suited for application development.
Currently, development of a typical web application requires knowledge not only of tra-
ditional programming languages like Java, but also technologies and problems specific
to the web, for example HTML, JavaScript, CSS, HTTP, and cross-platform, cross-
browser compatibility issues. When compared to “traditional” end-user programming

END USER DEVELOPMENT OF WEB APPLICATIONS 163

of single-user desktop applications, the sum of all these technological issues, the dis-
tributed nature of the web, and the highly volatile nature of requirements add the unique
flavor to end-user development for the web (EUDWeb).

Our research mission is making web application development accessible to a broader
audience. We are particularly interested in “informal web developers”, people who have
created a variety of web content, but who have not been trained in web programming
languages or tools. We believe that these individuals are good candidates for end-user
web programming—they have already shown themselves to be interested in web devel-
opment but have not (yet) learned the languages and tools needed to add interactivity
to their development efforts.

Two complementary domains of research and practice—web engineering and end-
user development—have focused on methods and tools that could better support the web
development needs of both programmers and nonprogrammers. Research in the domain
of web engineering concentrates on making web professionals more productive and the
websites that they produce more usable, reusable, modularized, scalable, and secure. In
contrast, web-related research in end-user development centers on the idea of empow-
ering nonprogrammer end users to autonomously create websites and web applications.

2.1. RESEARCH IN WEB ENGINEERING

The state-of-the-art in web engineering is the automatic generation of web applica-
tions based on high-level descriptions of data and application logic. Research ranges
from a few full-scale processes like WebML (Ceri, Fraternali, Bongio 2000) to many
light-weight code generators (e.g., Turau 2002). Typically, the developer can customize
the layout of HTML pages after they have been generated using an external web editor,
but these customizations are lost as soon as the code needs to be regenerated because
of a needed change in the data or behavior. The lack of support for evolutionary devel-
opment from start to finish is a major outstanding research problem.

Research on tailorability (e.g., MacLean et al. 1990; Stiemerling, Kahler, Wulf 1997)
has focused on techniques that allow software to be customized by end users. The under-
lying assumption in this work is that customizable systems may address a large fraction
of end users’ needs. In a previous survey of webmasters (Rode and Rosson 2003), we
found that approximately 40% of the web applications envisioned by respondents could
in fact be satisfied by five customizable generic web applications: resource reservation,
shopping cart and payment, message board, content management, and calendar.

The analysis of web developers’ needs has received only little attention in the web
engineering literature. A survey conducted by Vora (1998) is an exception. Vora queried
web developers about the methods and tools that they use and the problems that they
typically encounter. Some of the key problems that developers reported include ensur-
ing web browser interoperability and usability, and standards compliance of WYSIWIG
editors. In a similar vein, Fraternali (1999) proposes a taxonomy for web development
tools that suggests some of the major dimensions of web development tasks. For exam-
ple, he categorizes available web tools into Visual HTML Editors and Site Managers,

164 JOCHEN RODE ET AL.

HTML-SQL integrators, Web-enabled form editors and database publishing wizards,
and finally, Web application generators.

Newman et al. (2003) investigated the process of website development by interview-
ing 11 web development professionals. They found that these experts’ design activities
involve many informal stages and artifacts. Expert designers employ multiple site rep-
resentations to highlight different aspects of their designs and use many different tools
to accomplish their work. They concluded that there is a need for informal tools that
help in the early stages of design and integrate well with the tools designers already use.

2.2. RESEARCH IN END-USER WEB DEVELOPMENT

Well before the development of the World Wide Web, end-user programming (EUP)
of basic data management applications was a topic for academia and industry. Apple’s
HyperCard is an early example of a successful EUP tool. More recently, web devel-
opment research projects such as WebFormulate (Ambler and Leopold 1998), FAR
(Burnett, Chekka, Pandey 2001), DENIM (Newman et al. 2003), and WebSheets
(Wolber, Su, Chiang 2002) have explored specific approaches to end-user programming
of web applications. WebFormulate is an early tool for building web applications that is
itself web-based and thus platform independent. FAR combines ideas from spreadsheets
and rule-based programming with drag-and-drop web page layout to help end users de-
velop online services. DENIM is a tool that can assist professional and nonprofessional
web developers in the early stages of design with digital sketching of interactive proto-
types. The WebSheets tool, although currently limited in power, is close to our holistic
vision of end-user web development. It uses a mix of programming-by-example, query-
by-example, and spreadsheet concepts to help nonprogrammers develop fully functional
web applications.

2.3. COMMERCIAL WEB DEVELOPMENT TOOLS

The research community has devoted little effort to studying approaches and features
found in commercially available web application development tools. There are a few
notable exceptions including the aforementioned survey of web developers (Vora 1998)
and the taxonomy of tools offered in (Fraternali 1999). Brief reviews of CodeCharge
Studio, CodeJay, Microsoft Visual Studio, and Webmatrix from the perspective of
productivity tools for programmers can be found in (Helman and Fertalj 2003).

3. A User-Centered Approach to Web Development Tools

Our review of existing tools and research literature indicates that there is great interest
in supporting general web development needs, and that there is an emerging recog-
nition that the tools used by professionals are not appropriate for less sophisticated
users. However, very little work has been directed at understanding the requirements
for web development from an end users’ perspective. Thus we have adopted an ap-
proach that combines analytic investigations of features and solutions currently in use

END USER DEVELOPMENT OF WEB APPLICATIONS 165

Figure 8.1. User-centered methods for building web development tools.

or under research with detailed empirical studies of end users’ needs, preferences, and
understanding of web development (Figure 8.1).

Although many tools for web development are already available, we do not yet know
whether and how these tools meet the requirements of end users. For example, it is quite
likely that professional development tools provide more functionality than is needed
by nonprogrammers; we must understand what end users envision as web development
projects, so that we can scope the supporting tools appropriately. At the same time, we
must investigate how nonprogrammers think about the activities of web development,
what concepts are more or less natural to them, what components or features they are
able to comprehend.

Once we better understand the requirements for end-user web development tools, we
can begin to explore techniques for meeting these requirements. This work takes place
in two parallel streams, one aimed at developing and refining prototype tools, and the
other at gathering detailed empirical evidence concerning the efficacy of the prototypes
we build, along with comparative studies of other tools.

In the balance of the chapter we summarize our work on end-user web develop-
ment. First we report a survey of sophisticated nonprogrammers (webmasters) that
assessed their needs and preferences for web development; a complementary survey
of programmer developers is also reported. We next describe our analysis of features
present in existing web applications, as well as a usability analysis of commercial web
development tools. We report two empirical studies of nonprogrammers that investigate
how our target audience naturally thinks about typical web programming problems. We
conclude with a brief description of our prototyping efforts in EUDWeb.

4. Needs Analysis for EUDWeb

Our first step toward defining a scope for our work in EUDWeb was to investigate the
kinds of web applications our target population would like to build. Thus we conducted

166 JOCHEN RODE ET AL.

an online survey of webmasters at our university (Virginia Tech). We reasoned that
while some webmasters may have been professionally trained in web development, in
a university environment most are more casual developers, people who have not been
trained as programmers but nonetheless have learned enough about web development
to take responsibility for site development and maintenance. Typical examples are the
webmasters for academic departments, research labs, or student organizations. Such
individuals represent the population we wish to target: end users who are sophisticated
enough to know what they might accomplish via web programming but unlikely to
attempt it on their own.

Our analysis of the survey responses (67 replies) indicated that approximately one
third of end users’ needs could be addressed by a high-level development tool that
offered basic data collection, storage and retrieval functionality. Another 40% of the
requests could be satisfied through customization of five generic web applications (re-
source reservation, shopping cart and payment, message board, content management,
calendar). Research on tailorability (e.g., MacLean et al. 1990) has shown that soft-
ware can be designed for easy customization by end users. Diverse requests for more
advanced applications comprised the remaining 25%. We were especially interested
in the requests for applications involving basic data collection and management; such
functionality seems quite reasonable to provide via an EUDWeb tool. Although this sur-
vey was a useful start, it was modest in size and restricted to one university computing
population. Thus we are currently conducting a larger survey with the results expected
for the first quarter of 2005 (excerpts of the results and a reference to the full results will
be available at http://purl.vt.edu/people/jrode/publish/2005-05-webdevelopersurvey/).

5. Challenges Faced by Web Developers

As a second source of input to requirements development, we surveyed sophisticated
developers regarding the challenges, tools, and processes within the domain of web
application development. Our rationale was simple: issues that are troublesome for
experienced developers may be insurmountable hurdles for novices.

We surveyed 31 experienced web developers and subsequently conducted in-depth
interviews with 10 additional developers (still focusing on a university computing con-
text). On average, the 31 respondents rated themselves just above the mid-point on a
scale from “no knowledge in web application development” to “expert knowledge”.
Their self-reported years of experience in web application development were approx-
imately equally distributed between “less than a year” and “more than 5 years.” The
10 interview participants rated themselves in an average of 5.1 (SD = 1.3) on a scale
from 1 (no knowledge) to 7 (expert knowledge). The average self-reported experience
of the interview participants is somewhat higher than the mean experience of the survey
participants which was only 4.3.

In both the survey and interviews we asked the developers to rate a list of potential
web development problems and issues. Their responses are summarized in Figure 8.2.
As the figure suggests, none of the concerns were considered to be particularly “severe”;

END USER DEVELOPMENT OF WEB APPLICATIONS 167

Figure 8.2. Ratings of problems in web application development (1 = not a problem at all; 7 = severe problem).
The square markers are the mean ratings from the survey (value to right marker in italics; N = 31). The round
markers are ratings from a pre-interview questionnaire (value to left of marker; N = 10). To facilitate comparison,
the survey responses have been scaled from a 1–5 scale to a 1–7 scale.

most mean ratings were in the middle or lower half of the scale. This underscores the
expected expertise of these respondents, who seem to be generally confident in their
abilities to design and implement a range of web applications.

The top-rated issue in both the survey and interviews was ensuring security. Web
applications are vulnerable against exploits on many different levels (e.g. operating
system, web server software, database, dynamic scripting language, interactions of
the aforementioned). Today it is very difficult to build even a “reasonably” secure
application or to assess whether and when an application is secure. Web developers are
not confident about these procedures and therefore are concerned.

The inconsistencies between different browsers, versions and platforms are another
source of complaints of web developers. According to our respondents, compatibility
problems are also a major reason for avoiding the development of advanced user in-
teraction designs using Javascript, CSS2, or Flash. Such techniques are seen as ways
to improve the user experience but very risky for applications that must run on a vari-
ety of different platforms. A similar concern was the complexity of web engineering
technologies: while classical desktop applications typically use only one programming
language (perhaps two when considering database interactions), most web applications
combine five or more (HTML, Javascript, CSS, server-side language, SQL, and perhaps
Flash, Java applets, Active X).

168 JOCHEN RODE ET AL.

The resulting complexity leads to code that is hard to develop and maintain. Given
these complexity and compatibility issues, it is not surprising that debugging was also
acknowledged as an important concern.

The developers we surveyed were generally confident in their ability to solve web
engineering problems, but even so acknowledged moderate concerns for the issues we
probed. Several implications we drew from the survey were that EUDWeb tools should
provide extensive support for security management; that cross-platform compatibility
should be as transparent as possible; that the tools should automate integration of
different web technologies; and that a debugger should be a basic service.

6. Cataloguing Key Components of Web Applications

In response to the needs analysis described earlier, we have chosen one particular genre
of web applications as the focus of our research in EUDWeb: software that enables basic
data collection and management. Once we had decided to concentrate on this specific
class of applications, we needed a clear understanding of what components, concepts,
and functionality would be needed to implement such software. We wanted to obtain a
naturalistic sample of web components associated with this type of web application, so
we gathered and analyzed the structure of database-centric websites that already existed
at our university.

We used Google and its filtering capabilities (e.g., “filetype:asp site:vt.edu”) to find
applications in use at our institution. Using file extensions that indicate dynamic con-
tent (.asp, .aspx, .php, .php3, .cfm, .jsp, .pl, .cgi) we were able to find a large number
of cases. We disregarded simple dynamic websites (scripting only used for navigation,
header and footers, no database) and focused on those applications that were close to
the needs expressed by the end-user survey respondents, ending up with a set of 61 ex-
ample applications. These included databases for people, news items, publications, job
offers, policies, conference sessions, plants, service providers and so on. We reviewed
the applications that were publicly accessible and constructed a list of concepts and
components found within these basic web applications. The essence of this analysis is
shown in Table 8.1.

The components, concepts and functions that we derived can be viewed as high-
level equivalents to low-level language constructs, predefined functions, objects and
methods in classical text-based programming languages (e.g., for-loop, while-loop,
if, print). Of course, commercial Web development tools already offer much of the
high-level functionality listed in Table 8.1, but most of these tools are not aimed at
nonprogrammers. We expect the list of elements to change and grow along with our
knowledge about web applications and the progress of technology. We see this list as
simply a start towards a functional requirements list for EUDWeb tools.

7. Analysis of State-of-the-Art Tools

Some of the most active work on EUDWeb is in commercial web development tools.
Thus as yet another source of requirements, and to better ground our research in related

END USER DEVELOPMENT OF WEB APPLICATIONS 169

Table 8.1. Components, concepts and functionality of basic web applications.

Concept or function Description

Session management Maintaining state information when going from page to page, “fixing”
HTTP’s connectionless nature

Input validation Validating user inputs for increased usability but also for increased security to
preventing hacker attacks

Conditional output e.g. only show “Hi John!” when John is logged in
Authentication and

authorization
Restricting who can use the web application and which features can be used

by whom
Database schema The structure of the tables holding the data
Database lookup e.g. resolving a user-ID to a full name
Overview-detail relationships e.g. showing a list of employees on one web page and when clicking on the

name, the details on another
Normalization & use of

foreign keys
Addressing data redundancy issues

Uniqueness of data records Being able to identify each record even though the data be the same
Calculating database statistics e.g. showing the number of registrations in online registration database
Search e.g. finding a person’s e-mail in a staff database

work, we reviewed nine commercial web development tools. We analyzed each tool
from the perspective of suitability for end-user development; looking across the nine
tools we were able to compare and contrast alternative and best-of-breed approaches
for many aspects of web application development (Rode et al. 2005).

7.1. OVERVIEW OF TOOLS ANALYSIS PROCESS

For our review we selected tools based on both their apparent market dominance and
their potential sophistication. Although most web development tools have a particular
focus regarding target development project and user group, we found that the majority of
tools can be grouped into one of three categories: database-centric tools (we reviewed:
FileMaker Pro 7), form-centric tools (we reviewed: Quask Form Artist), and website-
centric tools (we reviewed: Microsoft Visual Web Developer 2005 Beta, YesSoft-
ware CodeCharge Studio, H.E.I. Informations-systeme RADpage, Instantis SiteWand,
Macromedia Dreamweaver 2004 MX, Macromedia Drumbeat 2000, Microsoft Front-
Page 2003). To structure and constrain our review, we analyzed the commercial tools
with a focus on how they approach the implementation of particular features that are
common in web application development (Table 8.1). To make these features more
concrete and to convey our assumptions about a likely end-users’ goals and activities,
we had constructed a reference scenario and persona. In the scenario, a nonprogrammer
was attempting to build what we feel is a typical example of a data-driven website—an
online employee database. We reviewed each tool for the approach and features needed
to implement this scenario.

7.2. USABILITY FINDINGS

What does the ideal web application development tool look like? We believe that there
cannot be only one such tool. Because developers have different needs and different

170 JOCHEN RODE ET AL.

skill sets, different developers will be best served by different tools. In general, our
review suggests that while productivity tools for programmers like Microsoft Visual
Web Developer have matured to provide significant support for web development, tools
for nonprogrammer developers are still in their infancy.

Most of the end-user tools that we reviewed do not lack functionality but rather
ease of use. For instance, even apparently simple problems such as implementing the
intended look and feel become difficult when a novice has to use HTML-flow-based
positioning instead of the more intuitive pixel-based positioning.

Although most tools offer wizards and other features to simplify particular aspects of
development, none of the tools that we reviewed addresses the process of development
as a whole, supporting end user developers at the same level of complexity from start to
finish. Indeed, Fraternali’s and Paolini’s (2000) comment about web tools of five years
ago seems to be still true today: “. . . a careful review of their features reveals that most
solutions concentrate on implementation, paying little attention to the overall process
of designing a Web application.”

The otherwise comparatively novice-friendly Frontpage, for example, begins the cre-
ation of a new application by asking the developer to make a premature commitment
to one of the following technologies: ASP, ASP.NET, FrontPage Server Extensions, or
SharePoint Server. An excerpt from an online tutorial for FP illustrates the problem:
“. . . You can also use the Form page Wizard and Database Interface Wizard with ASP or
ASP.NET to edit, view, or search records from a Web page. The Form page Wizard works
on a Web site running Windows SharePoint Services 2.0, yet the Database Interface Wiz-
ard does not.” Such a selection is likely to confuse anyone but a seasoned web developer.

Currently, none of the tools that we reviewed would work without major problems
for the informal web developer who wants to create more than a basic website. The
tool that a user like Anna (from our introduction scenario) is looking for needs to
provide multiple reference examples, well-guided but short wizards, an integrated zero-
configuration web server for testing purposes, and good support during the deployment
phase of the application. Also, as Anna becomes more familiar with the capabilities of
the tool and her applications become more ambitious, the tool should help her learn by
stepwise exposing the inner workings of the wizards and forms. Ideally, following the
concept of the “gentle slope” (MacLean et al. 1990), the skills required to implement
advanced features should only grow in proportion to the complexity of the desired
functionality—“Make simple things easy, and hard things possible”.

8. End Users’ Understanding of Web Development

We can build better EUD tools if we know how end-user developers think. If a tool works
in the way that a tool user expects and it feels “natural” from the beginning it is likely to
be easy to learn and use. Alternatively, a tool can be designed to reshape the way that end-
user developers think about a problem. In either way, it is beneficial to know the “mental
model” of the end-user developer. In this context, “mental model” is meant to character-
ize the way that people visualize the inner workings of a web application, the cognitive

END USER DEVELOPMENT OF WEB APPLICATIONS 171

representations they hold of the entities and workflows comprising a system. A person’s
mental model is shaped by his or her education and experience and will evolve as he or
she continues to learn. The concept of “natural” or “naturalness” refers to the mental
model that users hold before they start learning to use a tool or programming language.

What are the mental models of our target audience and how detailed are they? We
report two studies in an attempt to this question. The studies adapt the methods of Pane,
Ratanamahatana, and Myers (2001), who designed a “natural” programming language
for children by first studying how children and adults use natural language to solve
programming problems. In our variation of their method, we investigate how nonpro-
grammers naturally think about the behavior of web applications. The findings from this
work have guided the design of our prototype EUDWeb tool, as will be discussed later.

8.1. EXPLORING END USERS’ CONCEPTS AND LANGUAGE USE

Our first efforts at exploring end users’ mental models [MMODELS-1] (Rode and
Rosson 2003) were aimed at investigating the language, concepts, and the general level
of problem-solving that end users employed when solving web programming problems.

8.1.1. Participants and Study Procedures

We recruited participants for a two-part paper and pencil study. Participants were asked
to label screen elements and to specify the application behavior. We created a simple
web application (member registration and management) for the study. Ten participants
were sampled randomly from organizational webmasters who had reported in a pre-
vious survey that they had significant experience in web authoring but none or little
in programming. Five were female, and five male. Pre- and post-study interviews re-
vealed that one person had more programming experience than initially reported (use
of Macromedia ColdFusion for a simple web application).

Participants were given a general introduction to the goals of the study, then asked
to view and label all elements of three screenshots from the application (login, member
list, add member). The labelling instructions included a sample labelled image (a room
with objects), including nested items. This first phase of the study was intended to
inform us about the language our audience uses to reference visible screen elements
(left side of Figure 8.3).

Next, they were allowed to explore the application until they were comfortable
with how it worked. After the familiarization phase, participants were given seven
user tasks (login, paging, user-specific listing, add member, sort, search, delete) and
asked to “teach” these behaviors to a “magical machine”; the machine was said to
understand screenshots but not know which elements are static and which respond
to users’ actions. A paragraph of text within the written instructions explained this
scenario to the participants. The seven tasks were illustrated by concise instructions
that were designed to guide the user without biasing their response—for example,

172 JOCHEN RODE ET AL.

Figure 8.3. Annotated screenshot and a participant’s description of the behavior of the “Add Member” dialog
(MMODELS-1).

task 4 had the following description:

Add a new member (just make up some data). Assume you do not have an e-mail address.
Continue with “OK”. Now enter an e-mail address. Continue with “OK”. Describe how
the web application behaves.

The application was available for reference. Participants wrote responses using
screenshots and blank paper (right side of Figure 8.3). We emphasized that they were
free to choose how to communicate with the magical machine (using written words or
sketches), but also that they should fully specify the application’s behavior. We wanted
to see what end users consider sufficient as a behavior specification.

8.1.2. Study Findings

Participants spent an average of about 90 minutes total on both parts of the study.
The participants’ annotated screenshots and written notes showed a general familiarity
with “visible” elements of web applications (e.g., page, link, data table); however, they
made little attempt to describe how “hidden” operations are accomplished. Given these
users’ background in web authoring, we were not surprised to find that they used terms
common in WYSIWIG web editors to label screen elements. When describing the
application’s behavior, participants tended to combine procedural steps and declarative
statements. They used declarative statements to specify constraints on behavior (e.g.,
“certain fields are required”). Procedural statements often conveyed a test and result
(e.g., “If the password is incorrect, that field is cleared”) or a page transaction (e.g., “Type
the correct password into the field and Enter; this action opens the Members page”).
With the exception of one participant, no one mentioned constructs such as variables
and loops in the behavior specifications. Where looping constructs are required (e.g.,
authenticating a user), the participants specified one iteration, seeming to expect that it
would apply (i.e., be repeated) as necessary.

We were particularly interested in how these users described web-specific data
processing—e.g., client-server interaction, HTML generation, the web’s stateless na-
ture, and so on. Only three users included any description of what happens “behind the
scenes” in a web application (e.g., mentioning interactions with a server). Even these

END USER DEVELOPMENT OF WEB APPLICATIONS 173

participants made no effort to describe page transactions in detail (e.g., no one discussed
how information is forwarded between pages). Most participants (7 of 10) referred to
application data as a database; another talked about a file. This is consistent with their
general use of a “technical” vocabulary. However, only one included communication
between the application and database (“sends command to the database on the server
telling it to query”). Though comfortable with the concept of a database, the others
seem to see it as a placeholder for a background resource.

In a similar fashion, users often referred to a “member list” or a “member” as if
these abstractions are simply available for use as needed; no one worried about how an
application obtains or manages data. We thought that the search and sort tasks might
evoke informal descriptions of algorithms, but most participants focused on a result
(e.g., what the user sees next in a table) rather than on how a data listing was obtained.
Six users seemed to assume that the “magical machine” manages user authentication;
four offered as a detail that user data must be checked against a list or table of valid IDs.

8.2. MENTAL MODELS OF SPECIFIC WEB DEVELOPMENT TASKS

One problem with our study of concepts and language for web programming
(MMODELS-1) was the generality of the problem-solving it required: we asked partic-
ipants how web programming tasks would take place but did not direct their attention
to specific constructs (e.g., iteration, input validation). Thus the results pointed to a few
general (and rather predictable) tendencies in end users’ mental models. We wanted
to find out how end users would think about the specific components and features we
had catalogued in our analysis of existing database-centric web applications (e.g., input
validation, database lookups, overview-detail relationships). We carried out a second
study [MMODELS-2] to explore these issues (Rode, Rosson, Pérez-Quiñones 2004).
Our goal was to determine how end users naturally think about typical concerns in web
application development.

We are concerned with naturalness in this sense: by studying the “stories” that
nonprogrammer webmasters can generate about how a specific programming feature
works, we hope to develop approaches for supporting this feature that will be intuitive
to this user population.

We wanted to begin our investigation with programming concerns that are com-
monly addressed by web developers when creating a web application. Thus we selected
a set of concerns that appeared frequently in an earlier analysis of 61 existing web
applications (as discussed before). As experienced web developers, we also relied on
our personal experiences to judge what programming concerns are most important in
web development. Because many, if not most web applications work with databases,
many of the programming issues are database-related.

8.2.1. Participants and Study Procedures

We recruited 13 participants (7 female, 4 male, and 2 who were later eliminated because
they did not match our target audience) who, in a screening survey, identified themselves

174 JOCHEN RODE ET AL.

as having at least some knowledge of HTML and/or of a WYSIWIG web editor (≥2
out of 5) but very little or no programming background.

The screening survey did not question participants for their experience with
databases. However, during the interview all but one participant indicated that they had
at least some experience with databases (9 with Microsoft Access, 1 with FileMaker
Pro). Although our sample size is too small to draw strong conclusions, this seems to in-
dicate that casual web developers (our target audience) are very likely to have database
experience. Assuming that this finding can be replicated in a more diverse sample,
EUDWeb tools may be able to expose database concepts without overwhelming their
users. Note though that our interviews suggest that the level of database understanding
is novice to intermediate rather than expert.

The goal of this study was to better understand how webmasters who do not know
how to program are able to imagine how a range of computational processes might
take place “inside” an interactive web application. Probing naive expectations of this
sort is a challenge, because the facilitator must provide enough information that a
nonprogrammer can understand what aspect of the application is being called out for
attention, but not so much that the inner workings of the application are revealed. So
as to describe the application feature of interest in as concrete a fashion as possible, we
presented and asked questions about nine scenarios (for full list of scenarios see Rode,
Rosson, Pérez-Quiñones 2003), each describing one or more programming concerns
related to a fictional web application—an online video library system.

Each scenario consisted of a mock-up of a screen shot, a short paragraph explaining
what the mocked-up screen depicts, and a series of questions. As an example, Figure 8.4
shows the first of the nine scenarios. This particular scenario was designed to probe end
users’ mental models regarding session management (1a), database lookup (1b), and
conditional output (1c). Some of the questions in the nine scenarios are targeted at the
same concerns, but approach them from a different perspective. Most of the questions
begin with the words: “What do you think the web site must do to . . . ”; we hoped that

Figure 8.4. Scenario 1 of 9 as shown to each participant.

END USER DEVELOPMENT OF WEB APPLICATIONS 175

this probe would prompt the webmasters to direct their attention “inside” to the inner
workings of the hypothetical application. Participants were asked to provide as many
details as they could when answering the questions; the facilitator often prompted them
for details if it seemed that the scenario had not been completely analyzed. Participants
were also encouraged to use sketches to clarify their thoughts. The interviews took
place in a one-on-one setting in a private atmosphere. Verbal responses were voice
recorded for later analysis.

Not all users answered all questions. Sometimes a participant responded simply that
“I have no idea” rather than attempting an explanation. In such cases we encouraged
participants to give a “best guess”, but occasionally we were forced to continue without
an explanation. In general we were sensitive to participants’ comfort level, and if an
interviewee conveyed or said that they were feeling “stupid” we quickly moved on to
another question.

We analysed the study in the following manner. First, we transcribed the recorded
interview for each participant (focusing on analysis questions, and excluding unrelated
remarks). If participants had made sketches we used those to understand and annotate
their remarks. Second, in a separate document we listed the eleven web development
concerns of interest, and inserted pieces of the transcribed interview under the aspects
they referred to. Each remark was coded with a reference to the participant to enable
later quantitative analysis. Often, we combined across answers from different scenarios
or questions to give us a better understanding about a particular aspect of a webmaster’s
mental model. Finally, we summarized the results for each development concern by
referring back to this document, and when necessary the transcribed interviews or even
the original recordings.

8.2.2. Study Findings

In the balance of this section, we discuss what we have learned from our participants re-
garding their understanding of specific aspects of web application development and how
these findings have influenced our thoughts about the design of future EUDWeb tools.

Session management. The majority of our participants assumed that session man-
agement is implicitly performed, and thus is not something that a developer would
have to consciously consider. This suggests that an EUDWeb tool should automatically
maintain the state of an application, perhaps even without exposing this fact to the de-
veloper. For novice web application developers this concept may introduce unnecessary
complexity.

Input validation. The typical approach of defining an input mask using patterns or
placeholders (as used by many existing tool, e.g. Microsoft Access) seems to be an
appropriate abstraction for end users. Certainly, this result is unsurprising in light of
the fact that ten participants had previous database experience and were familiar with
this notion.

Conditional output. Although, the concept of “if-then” branching was frequently
mentioned informally, the exact implementation (in particular when and where if-then

176 JOCHEN RODE ET AL.

rules would be applied) did not appear trivial to most participants. This suggests that
while an EUD tool may use the notion of “if-then” at a high level of abstraction, it may
need to automatically develop an implementation or guide the developer as to where to
place these rules.

Authentication and authorization. Overall, the problems involved in permission man-
agement did not appear too taxing for our participants. However, the proposed imple-
mentations were rather variable and almost always incomplete, and were not powerful
enough for a real-world application. We believe that our participants would not have
many difficulties in understanding a good permission scheme, however may not be able
to create a sufficiently powerful and secure one on their own. Therefore, an easy-to-use
EUDWeb tool should offer permission management as a built-in feature and make it
customizable by the developer.

Database schema. Overall, the table paradigm seems to be the prevalent mental
model among our participants. This suggests that an EUDWeb tool may safely use
the table metaphor for managing data. However, the management of more than one
related data table may not be a trivial problem, as discussed further under the aspect of
“Normalization and use of foreign keys.”

Database lookup. Although the concept of database lookup (or select) did not seem
difficult to the participants, the majority did not provide a detailed algorithm. This
suggests that an EUDWeb tool should offer database lookup as predefined functionality
that is customizable by the developer.

Overview-detail relationships. Overall, imagining how the linkage between overview
page (list of all movies) and detail page (movie details) is implemented was quite a
challenge for our participants. Almost all of the participants immediately stated that
the information was “linked”, “associated”, “connected,” or “referenced;” but the details
of this linkage were quite unclear. This suggests that although an EUDWeb tool may
be able to use words like “linking” to describe a relationship between two views, it will
likely need to guide the developer as to what kind of information the link will carry (or
abstract this detail completely).

Normalization and use of foreign keys. The results suggested that most of our partici-
pants would not design a normalized database representation but rather some redundant
form of data storage such as that familiar from spreadsheet applications (which lack the
concept of foreign key relationships). Therefore, if non-redundant data storage is re-
quired (of course, this may not be the case for small or ad hoc applications), an EUDWeb
tool may have to make the developer aware of data redundancy problems and propose
potential solutions and perhaps (semi-) automatically implement these solutions.

Uniqueness of data records. Our participants had no difficulties imagining the util-
ity of a unique record identifier. However, as the results from the “Overview-detail
relationships” aspect show, the correct use of this unique identifier often was unclear.
Therefore, an EUDWeb tool may either automatically introduce a unique identifier as
a data field or guide the developer towards defining one.

Calculating database statistics. Participants were asked to describe how the web ap-
plication calculates the total number of checked-out movies. Most participants naturally

END USER DEVELOPMENT OF WEB APPLICATIONS 177

selected the most likely implementation (application counts records on request). For
the others, their prior knowledge of the workings of spreadsheet programs seemed to
influence their mental models (self-updating counter). Overall, this question was not
perceived as a stumbling block. We suggest that an EUDWeb tool should offer familiar
predefined statistics such as column sums, averages etc. to aid the developer.

Search. The concept of searching appears to be well understood at a high-level
of abstraction, including the possibility of multiple search parameters. However, the
implementation of a search function was beyond the mental models of most of our
participants. Therefore, EUD tools should offer a built-in query mechanism that lets
developers specify parameters and connecting operators but does not expose the details
of the implementation.

8.3. IMPLICATIONS FOR EUDWeb RESEARCH

From a methodological point of view we learned a number of lessons about studying
webmasters’ (or other end users’) mental models. Extracting the participants’ mental
models was difficult and required a very involved interview. Participants frequently
expressed that they simply did not know or had never thought about the implementation
of a particular aspect. We are considering a refinement of the approach that has a more
“graduated” set of scenarios and questions. For example, we might start out with a very
straightforward question about database structure and follow that up with more explicit
probes about how retrieval or filtering might be done. We are also considering the use of
examples as a prop in the discussions: for example, when a nonprogrammer states that
they have no idea how a process takes place, we might present them with two plausible
alternatives (where one is “correct”) and ask them to evaluate the differences.

We noted that in many cases participants had very sparse models of the programming
functions we presented. Although a sort of “non-result”, this observation is interesting
in itself because it underscores the need for tools that provide transparent support
of certain frequently-used functionality (e.g., session management, search). Note that
participants often used appropriate language to refer to technical concepts even when
they did not understand how they worked (e.g. key fields). Therefore, it seems plausible
that casual web developers will be able to understand a toolkit that employs constructs
like key fields or foreign-key relationships.

Based on our results so far, we would characterize a “prototypical” end-user web
developer in the following way. He or she:

� Often uses technical terminology (e.g. fields, database) but without being specific
and precise,

� Is capable of describing an application’s visible and tangible behavior to a nearly
complete level (if under-specification is pointed out to them),

� Naturally uses a mix of declarative language (e.g. constraints) and procedural
language (e.g. if-then rules) to describe behavior, while being unclear about where
and when these rules should be applied (lack of control flow),

178 JOCHEN RODE ET AL.

� Does not care about, and often is unable to describe exactly how functionality is
implemented “behind the scenes” (e.g. search, overview-detail relationships)

� Disregards intangible aspects of implementation technologies (e.g. session man-
agement, parameter passing, security checking),

� Understands the utility of advanced concepts (e.g. unique key fields, normaliza-
tion) but is unlikely to implement them correctly without guidance,

� Thinks in terms of sets rather than in terms of iteration (e.g. show all records that
contain “abc”),

� Imagines a spreadsheet table when reflecting on data storage and retrieval.

The type of mental models study we conducted can only determine what end users
“naturally” think. In order to determine whether or not certain design solutions are easy
to understand and easy to use we need to create and evaluate prototype tools—the focus
of our current work.

9. Prototyping and Evaluating EUDWeb Tools

Prototyping is an integral part of our research on EUDWeb. First, it has helped to assess
the feasibility of design ideas; second, prototypes serve as research instruments to sup-
port observational studies (e.g., end-user debugging behavior); and third, we are hoping
to soon discover new requirements for EUDWeb through participatory design with the
users of our prototype system in an ecologically valid manner. We have explored many
different paths, including extensions to a popular web development tool (Macromedia
Dreamweaver) to offer web application features more suitable to end users and imple-
menting an online tool using Macromedia Flash (Rode and Rosson 2003). Although
tools like Dreamweaver and FrontPage have substantial extension APIs, we found the
inflexibility in controlling the users’ workflow as the main hindrance to adopting this ap-
proach. Using Flash itself as a platform solves many layout and WYSIWYG issues but
presents the problem that most users still want to produce HTML-based web sites. From
many informal user studies we have learned that the web development tool that users
envision is typically “Word for Web Apps”, expressing a preference for a desktop-based
tool that embraces the WIMP, drag-and-drop, and copy-and-paste metaphors, offers wiz-
ards, examples and template solutions, but yet lets the developer see and modify the code
“behind the scenes.” Our current approach uses an HTML/JavaScript/PHP-based online
tool that is integrated with a database management system (MySQL). Figure 8.5 shows
a screenshot from Click (Component-based Lightweight Internet-application Construc-
tion Kit), our most recent prototype (Rode et al. 2005). In the depicted scenario, the
developer defines the behavior of a button component in a declarative way, that is, upon
pressing the “Register” button the application would redirect the user to the web page
“confirmationpage” if and only if the e-mail field is not left blank. Click distinguishes
itself from other state-of-the-art EUDWeb tools in that it fully integrates the process of
modelling the look and feel, component behavior, database connections, publishing and
hosting, while working on a high level of abstraction appropriate for nonprogrammers.

END USER DEVELOPMENT OF WEB APPLICATIONS 179

Figure 8.5. Screenshot of Click showing definition of a button’s behavior.

Click implements what we call “design-at-runtime”, applying Tanimoto’s concept
of liveness (Tanimoto 1990). This concept builds from the ideas of direct manipulation
(Shneiderman 1983) and the “debugging into existence” behavior (Rosson and Carroll
1996) studied in professional programmers. At its core it is similar to the automatic
recalculation aspect in spreadsheet programs. A critical piece of the concept is that the
user is able to both develop and use the application without switching back and forth
between programming and runtime modes. That is, the application is always usable to
the fullest extent that it has been programmed, and when its boundaries are tested, the
environment provides useful feedback suggesting next steps for the developer to take.

An important design goal for Click is to support evolutionary prototyping, to allow
the developer to easily change virtually every aspect of the web application at any point
in time For example, in the figure the user is updating the behavior of a submit button
while in the midst of testing her application. This can be contrasted to most state-of-
the-art tools that require significant “premature commitment”, as Green (1989) might
call it. For example, in many tools the database schema has to be fully defined before
the application is implemented and is difficult to change after the fact.

Finally, Click provides several layers of programming support. While novices can
customize existing applications or work with a predefined set of components and ac-
tions, more advanced developers can manually edit the underlying code which is based
on HTML, PHP, and the event-driven PRADO framework (Xue 2005). Click strives to
expose a “Gentle slope of complexity” as advocated by MacLean et al. (1990).

180 JOCHEN RODE ET AL.

9.1. EVALUATION AND LESSONS LEARNED

Click has been released as an open source tool (http://phpclick.sourceforge.net) and
may soon be formally released to the Virginia Tech computing community in an effort
to elicit important requirements for EUDWeb through large-scale participatory design
and as an instrument for field studies (see Figure 8.1). In the course of developing Click,
we have also begun to carry out a series of usability evaluations, gathering feedback
from representatives of our target audience. Although many usability issues are left to
be resolved, Click already addresses many problems. For example, Click completely
hides session management (all inputs entered on one web page are available at any later
point in time), integrates the database management within the tool (as the developer
creates a new input field on screen a matching database field is created), and allows the
developer to design the layout in a true WYSIWYG fashion without having to revert
to “tricks” like using HTML tables for alignment.

10. Summary and Conclusions

We have described the initial phases of a user-centered approach to understanding and
supporting EUDWeb. From investigating end users’ needs we have found that basic
data collection, storage and retrieval applications such as surveys, registration sys-
tems, service forms, or database-driven websites are an important target for end-user
development. These types of applications are also a feasible target considering that
most web applications are simple—at least conceptually speaking. While currently the
implementation of any non-trivial, secure, and cross-platform compatible web applica-
tion requires expert knowledge, it does not have to be this way. Most of what makes web
development difficult is not inherent complexity but rather an accumulation of many
technical challenges. Concerning the main challenges in web application development,
experienced web developers mentioned the issues of ensuring security, cross-platform
compatibility, the problems related to integrating different web technologies such as
Java, HTML, PHP, Javascript, CSS, SQL, and, the difficulties of debugging distributed
applications.

Many web applications are quite similar on a conceptual level. By analysing ex-
isting applications we have compiled a list of frequently used components, functions,
and concepts such as session management, search, and overview-detail relationships
(Table 8.1). The web development process will become much easier and more acces-
sible to nonprogrammers when tools integrate these concepts as building blocks on a
high level of abstraction rather than requiring low level coding.

Much progress has been made by commercial web development tools. Most of
the end-user tools that we reviewed do not lack functionality but rather ease-of-use.
We also found that while many tools offer wizards and other features designed to
facilitate specific aspects of end-user development, few (if any) take a holistic approach
to web application development and integrate layout, styling, behavioral description,
data modelling, publishing, and maintenance tasks. The “ideal” tool for end-user web

END USER DEVELOPMENT OF WEB APPLICATIONS 181

developers would provide ease-of-use with the appropriate abstractions, absence of
jargon, a library of examples and templates, wizards for complicated tasks and take
a holistic approach by integrating all aspects of web development. Finally, such a
tool would also support developers’ growing needs and knowledge, offer power and
flexibility by allowing the integration of user-defined and automatically-created code.

Understanding how end users naturally think may help us design tools that better
match their expectations. In two studies we found, that end users frequently only have
vague ideas of how web applications works behind the scenes, and that end users expect
many aspects such as session management or search to work “out-of-the-box.” However,
the nonprogrammers we have observed, generally did not have problems to think on an
abstract level about the concepts behind web application development and for example
easily understood concepts like “if-then” branching although being unable to say where
and how it would be implemented.

We have begun constructing and evaluating an EUDWeb tool prototype called Click
that supports end user web application development from start (requirements elicitation
through application prototyping) to finish (deployment and maintenance). We are con-
fident that a tool like Click will soon make the “tomorrow” of the introduction scenario
and end-user development for the web a reality.

Acknowledgements

We thank Julie Ballin and Brooke Toward for their roles in development and admin-
istration of a large-scale survey of web developers; Yogita Bhardwaj, and Jonathan
Howarth for helping develop Click, our EUD prototype, and conducting a review of
existing web tools; Betsy and Erv Blythe for supporting the idea of EUDWeb within
Virginia Tech’s IT department, and last but most definitely not least, B. Collier Jones,
Jan Gibb, Kaye Kriz and Dr. Andrea Contreras for their valuable feedback and support
throughout our research.

References

Ambler, A. and Leopold, J. (1998). Public Programming in a Web World. IEEE Symposium on Visual
Languages, Nova Scotia, Canada: 100–107.

Berners-Lee, T. (1996). “WWW: past, present, and future.” IEEE Computer 29(10): 69–77.
Burnett, M., Chekka, S.K. and Pandey, R. (2001). FAR: An End user Language to Support Cottage

E-Services. HCC—2001 IEEE Symposia on Human-Centric Computing Languages and Envi-
ronments, Stresa, Italy: 195–202.

Ceri, S., Fraternali, P. and Bongio, A. (2000). “Web Modeling Language (WebML): A Modeling
Language for Designing Web Sites.” Computer Networks 33(1–6): 137–157.

Deshpande, Y. and Hansen, S. (2001). “Web Engineering: Creating a Discipline among Disciplines.”
IEEE MultiMedia 8(2): 82–87.

Fraternali, P. (1999). “Tools and Approaches for Developing Data-Intensive Web Applications: A
Survey.” ACM Computing Surveys 31(3): 227–263.

Fraternali, P. and Paolini, P. (2000). “Model-Driven Development of WebApplications: The Autoweb
System.” ACM Transactions on Information Systems 28(4): 323–382.

182 JOCHEN RODE ET AL.

Green, T.R.G. (1989). Cognitive dimensions of notations. In A. Sutcliffe & I. Macauley (eds.), People
and Computers IV. Cambridge: Cambridge University Press.

Helman, T. and Fertalj, K. (2003). A Critique of Web Application Generators. Information Technology
Interfaces (ITI), June 16–19, 2003, Cavtat, Croatia.

MacLean, A., Carter, K., Lövstrand, L. and Moran, T. (1990). User-Tailorable Systems: Pressing
Issues with Buttons. ACM CHI 1990: 175–182.

Newman, M., Lin, J., Hong, J.I. and Landay, J.A. (2003). “DENIM: An Informal Web Site
Design Tool Inspired by Observations of Practice.” Human-Computer Interaction 18: 259–
324.

Pane, J.F., Ratanamahatana, C.A. and Myers, B.A. (2001). “Studying the language and structure in non-
programmers’ solutions to programming problems.” International Journal of Human-Computer
Studies 54(2): 237–264.

Rode, J. and Rosson, M.B. (2003). Programming at Runtime: Requirements & Paradigms for Non-
programmer Web Application Development. IEEE HCC 2003. Auckland, New Zealand. Oct. 28–
31.

Rode, J., Rosson, M.B. and Pérez-Quiñones, M.A. (2003). Participant Instructions. http://
purl.vt.edu/people/jrode/publish/2003-09-interviews/instructions.pdf

Rode, J. Rosson, M.B. and Pérez-Quiñones, M.A. (2004). End users’ Mental Models of Concepts
Critical to Web Application Development. IEEE HCC 2004. Rome, Italy. Oct. 26–29.

Rode, J., Bhardwaj, Y., Rosson, M.B., Pérez Quiñones, M.A. and Howarth, J. (2005).
Click: Component-based Lightweight Internet-application Construction Kit. http://phpclick.
sourceforge.net

Rode. J., Howarth, J., Pérez Quiñones, M.A. and Rosson, M.B. (2005). An End-user Development
Perspective on State-of-the-Art Web Development Tools. Virginia Tech Computer Science Tech
Report #TR-05-03.

Rode, J., Bhardwaj, Y., Pérez-Quiñones, M.A., Rosson, M.B. and Howarth, J. (2005). As Easy as
“Click”: End-User Web Engineering. International Conference on Web Engineering. Sydney,
Australia. July 27–29.

Rosson, M.B. and Carroll, J.M. (1996). “The reuse of uses in Smalltalk programming.” ACM TOCHI
3(3): 219–253.

Rosson, M. B., Ballin, J., Rode, J. and Toward, B. (2005). Designing for the Web revisited: A Survey of
Casual and Experienced Web Developers. International Conference on Web Engineering. Sydney,
Australia. July 27–29.

Shneiderman, B. (1983). “Direct Manipulation: A Step Beyond Programming Languages.” IEEE
Computer 16: 57–60.

Stiemerling, O., Kahler, H. and Wulf, V. (1997). How to Make Software Softer—Designing Tailorable
Applications. Symposium on Designing Interactive Systems 1997, 365–376.

Tanimoto, S. (1990). “VIVA: A Visual Language for Image Processing.” Journal of Visual Languages
and Computing 1(2): 127–139.

Turau, V. (2002). A Framework for Automatic Generation of Web-based Data Entry Applications
Based on XML. 17th Symposium on Applied Computing, Madrid, Spain, ACM: 1121–1126.

Vora, P.R. (1998). Designing for the Web: A Survey. ACM interactions (May/June): 13–30.
Wolber, D., Su, Y. and Chiang, Y.T. (2002). Designing Dynamic Web Pages and Persistence in the

WYSIWYG Interface. IUI 2002. Jan 13–16. San Francisco, CA, USA.
Xue, Q. (2005). PRADO: Component-based and event-driven Web programming framework for PHP

5. http://www.xisc.com/

Chapter 9

End-User Development: The Software Shaping
Workshop Approach

MARIA FRANCESCA COSTABILE1, DANIELA FOGLI2, PIERO MUSSIO3

and ANTONIO PICCINNO4

1Dipartimento di Informatica, Università di Bari, Bari, Italy, costabile@di.uniba.it
2Dipartimento di Elettronica per l’Automazione, Università di Brescia, Brescia, Italy,
fogli@ing.unibs.it
3Dipartimento di Informatica e Comunicazione, Università di Milano, Milano, Italy,
mussio@dico.unimi.it
4Dipartimento di Informatica, Università di Bari, Bari, Italy, piccinno@di.uniba.it

Abstract. In the Information Society, end-users keep increasing very fast in number, as well as in
their demand with respect to the activities they would like to perform with computer environments,
without being obliged to become computer specialists. There is a great request to provide end-users
with powerful and flexible environments, tailorable to the culture, skills, and needs of a very diverse
end-user population. In this chapter, we discuss a framework for End-User Development and present
our methodology for designing software environments that support the activities of a particular class
of end-users, called domain-expert users, with the objective of making their work with the computer
easier. Such environments are called Software Shaping Workshops, in analogy to artisan workshops:
they provide users only with the necessary tools that allow them to accomplish their specific activities
by properly shaping software artifacts without being lost in virtual space.

Key words. end-user development, domain expert, user diversity, gain, co-evolution, implicit
information, tacit knowledge, user notation, HCI model.

1. Introduction

In the Information Society, new computer technologies have created the potential to
overcome the traditional division between users and the individuals responsible for de-
veloping, operating, and maintaining systems. Organizational, business, and commer-
cial technologies increasingly require information technologies to be placed directly in
the hands of technicians, clerks, analysts, and managers (Brancheau and Brown, 1993).
Cypher (1993) defines end-users as people who use a computer application as part of
their daily life or daily work, but are not interested in computers per se. It is evident
that several categories of end-users can be defined, for instance depending on whether
the computer system is used for work, for personal use, for pleasure, for overcoming
possible disabilities, etc. The end-user population is not uniform, but divided in non-
mutually exclusive communities characterized by different goals, tasks, and activities.
Even these communities cannot be considered uniform, because they include people
with different cultural, educational, training, and employment background, who are

Henry Lieberman et al. (eds.), End User Development, 183–205.
C© 2006 Springer.

184 MARIA FRANCESCA COSTABILE ET AL.

novices or experts in the use of the computer, the very young and the elderly and those
with different types of (dis)abilities. End-users operate in various interactive contexts
and scenarios of use, they want to exploit computer systems to improve their work, but
they often complain about the difficulties in the use of such systems.

Brancheau and Brown (1993) describe end-user computing as “. . . the adoption and
use of information technology by people outside the information system department, to
develop software applications in support of organizational tasks”. The organization in
which such people work requires them to perform end-user computing and to assume
the responsibility of the results of this activity. In (Brancheau and Brown, 1993), the
authors primarily analyze the needs of users who are experts in a specific discipline, but
not in computer science. Our experience is focused on this kind of user, such as medical
doctors, mechanical engineers, geologists, etc. This has motivated our definition of a
particular class of end-users, that we call domain-expert users (or d-experts for short):
they are experts in a specific domain, not necessarily experts in computer science, who
use computer environments to perform their daily tasks. In the literature, other authors
address the needs of domain experts (Borchers, 2001; Fischer et al., 2001). Such end-
users have the responsibility for possible errors and mistakes, even those generated by
wrong or inappropriate use of the software.

Indeed, one fundamental challenge for the next few years is to develop environments
that allow people without a particular background in programming to develop and tailor
their own applications, still maintaining the congruence within the different evolved
instances of the system. Over the next few years, we will be moving from easy-to-
use to easy-to-develop-and-tailor interactive software systems. We foresee the active
participation of end-users in the software development process. In this perspective, tasks
that are traditionally performed by professional software developers are transferred to
the users, who need to be specifically supported in performing these tasks. Active user
participation in the software development process can range from providing information
about requirements, use cases and tasks, including participatory design (Schuler and
Namioka, 1993), to end-user computing (Nardi, 1993). Companies producing software
for the mass market are slowly moving in this direction; examples are the adaptive
menus in MS WordTM or some programming-by-example techniques in MS ExcelTM.
However, we are still a long way from their systematic adoption.

In this chapter, we first analyze the activities domain-expert users usually perform or
are willing to perform with computers. These people reason and communicate with each
other through documents, expressed by notations, which represent abstract or concrete
concepts, prescriptions, and results of activities. Often, dialects arise in a community,
because the notation is used in different practical situations and environments. For
example, mechanical drawings are organized according to rules, which are different in
Europe and in the USA. D-experts often complain about the systems they use, they feel
frustrated because of the difficulties they encounter interacting with them. Moreover,
d-experts feel the need to perform various activities that may even lead to the creation
or modification of software artifacts, in order to obtain a better support for their specific
tasks, which are therefore considered End-User Development (EUD) activities. Indeed
the definition provided by EUD-Net says that “EUD is a set of methods, techniques, and

EUD IN THE SSW APPROACH 185

tools that allow users of software systems, who are acting as non-professional software
developers, at some point to create or modify a software artifact” (EUD-net Thematic
Network).

In this chapter we discuss a framework for EUD based on Software Shaping Work-
shops (SSWs), which are software environments that aim at supporting the activities of
domain-expert users, with the objective of easing the way these users work with com-
puters. In this framework, d-experts play two main roles: (1) performing their working
tasks, and (2) participating in the development of the workshops, as representatives
of the workshop users. As we explain in Section 5, in both roles d-experts perform
EUD activities but are required neither to write codes, nor to know any programming
language. D-experts interact with the system through visual languages, computerized
versions of their traditional languages and tools. Thus, they can program with the feeling
of manipulating the objects of interest in a way similar to what they do in the real world.

The chapter is organized as follows. Section 2 discusses the major reasons behind the
difficulties in Human–Computer Interaction (HCI). Section 3 proposes a classification
of EUD activities that domain-expert users need to perform. SSWs are then presented
in Section 4: they aim at supporting users in their interaction with computers and in
performing EUD activities. To provide an example of how d-experts work with SSWs, a
case study in a medical domain is presented in Section 5. Section 6 reports a comparison
with related works. Finally, Section 7 concludes the chapter.

2. Phenomena Affecting the Human–Computer Interaction Process

Several phenomena affecting the HCI process have emerged in the use of interac-
tive systems. They have been observed, studied, and reported in the current literature,
often separately and from different points of view, typically from the points of view of
Usability Engineering, Software Engineering, and Information System Development.
We present them from a unified, systemic point of view, framing them in the model of
HCI which we have developed within the Pictorial Computing Laboratory (PCL)
(Bottoni et al., 1999). Our aim is to understand their influence on the HCI process
and to derive an approach for system design and development, which tries to overcome
the hurdles these phenomena create and to exploit the possibilities they offer.

2.1. A MODEL OF THE HCI PROCESS

In this chapter, we capitalize on the model of the HCI process and on the theory of
visual sentences developed by the PCL (Bottoni et al., 1999). In the PCL approach,
HCI is modeled as a syndetic process (Barnard et al., 2000), i.e., a process in which
systems of different nature (the cognitive human—the “mechanical” machine) cooper-
ate to achieve a task. From this point of view, HCI is a process in which the user and
the computer communicate by materializing and interpreting a sequence of messages
at successive instants in time. If we only consider WIMP (Windows, Icons, Menus,
Pointers) interaction (Dix et al., 1998), the messages exchanged are the whole images
which appear on the screen display of a computer and include text, icons, graphs, and

186 MARIA FRANCESCA COSTABILE ET AL.

pictures. Two interpretations of each image on the screen and of each action arise in the
interaction: one performed by the user performing the task, depending on his/her role
in the task, as well as on his/her culture, experience and skills and the second internal
to the system, associating the image with a computational meaning, as determined by
the programs implemented in the system (Bottoni et al., 1999). From this point of view,
the PCL model reflects a “computer semiotics” approach (Andersen, 2001), in that
it “analyzes computer systems and their context of use under a specific perspective,
namely as signs that users interpret to mean something” (Andersen, 1992). The HCI
process is viewed as a sequence of cycles: the human detects the image on the screen,
derives the message meaning, decides what to do next and manifests his/her intention
by an activity performed by operating on the input devices of the system; the system
perceives these operations as a stream of input events, interprets them with reference
to the image on the screen, computes the response to human activity and materializes
the results on the screen, so that they can be perceived and interpreted by the human. In
theory, this cycle is repeated until the human decides that the process has to be stopped,
either because the task has been achieved or has failed.

2.2. THE PHENOMENA

In our opinion, the major phenomena that affect the HCI process are: the communica-
tional gap between designers and users (Majhew, 1992); the grain induced by tools (Dix
et al., 1998); the co-evolution of system and users (Arondi et al., 2002; Bourguin et al.,
2001; Carroll and Rosson, 1992; Nielsen, 1993); the availability of implicit information
(Mussio, 2004) and tacit knowledge (Polanyi, 1967).

– Communicational gap between designers and users. The PCL model highlights
the existence of two interpretations of each image on the screen and of each
action performed to modify it. The first interpretation is performed by the user,
the second by the system. The interpretation performed by the system reflects the
designer understanding of the task considered, implemented in the programs that
control the machine. Between designers and users there is a communicational gap
due to their different cultural backgrounds. They adopt different approaches to ab-
straction, since, for instance, they may have different notions about the details that
can be abridged. Moreover, users reason heuristically rather than algorithmically,
using examples and analogies rather than deductive abstract tools, documenting
activities, prescriptions, and results through their own developed notations, artic-
ulating their activities according to their traditional tools rather than computerized
ones. On the whole, users and designers possess distinct types of knowledge and
follow different approaches and reasoning strategies to modeling, performing,
and documenting the tasks to be carried out in a given application domain. In-
teractive systems usually reflect the culture, skill, and articulatory abilities of the
designers. Users often find hurdles in mapping features of the interactive system
into their specific culture, skill, and articulatory abilities.

– Grain. Every tool is suited to specific strategies in performing a given task. Users
are induced by the tool to follow strategies that are apparently easily executable,

EUD IN THE SSW APPROACH 187

but that may be non-optimal. This is called “grain” in (Dix et al., 1998), i.e., the
tendency to push the users towards certain behaviors. Interactive systems tend to
impose their grain on users’ resolution strategies, a grain often not amenable to
the users’ reasoning and possibly even misleading for them.

– User diversity. As highlighted in the introduction, users do not belong to a uni-
form population, but constitute communities, characterized by different cultures,
goals, and tasks. As a consequence, specialized user dialects grow in each user
community, which develop particular abilities, knowledge, and notations. User
diversity arises even within the same community, depending not only on user skill,
culture, and knowledge, but also on specific abilities (physical and/or cognitive),
tasks, and the context of the activity. If, during system design, this phenomenon
is not taken into account, some users may be forced to adopt specific dialects
related with the domain, but different from their own and possibly not fully
understandable, thus making the interaction process difficult.

– Co-evolution of systems and users. It is well known that “using the system changes
the users, and as they change they will use the system in new ways” (Nielsen,
1993). These new uses of the system make the working environment and or-
ganization evolve and force the designers to adapt the system to the evolved
user, organization, and environment (Bourguin et al., 2001). This phenomenon
is called co-evolution of system, environment, and users. Designers are tradi-
tionally in charge of managing the evolution of the system. This activity is made
more difficult by the communicational gap.

– Implicit information. When adopting user defined notations, a relevant part of the
information carried by the system is embedded in its visual organization and shape
materialization. We call this part of the information carried by the system ‘implicit
information’. For example, in the documents of scientific communities, the use of
bold characters and specific styles indicates the parts of the documents—paper
title, abstract, section titles—which synthesize its meaning (Borchers, 2001).
Strips of images, for example illustrating procedures or sequences of actions
to be performed, are organized according to the reading habits of the expected
reader: from left to right for Western readers, from right to left for Eastern ones.
Furthermore, some icons, textual words, or images may be meaningful only to
the experts in some discipline: for example, icons representing cells in a liver
simulation may have a specific meaning only for hepatologists (Mussio et al.,
1991), while a X-ray may be meaningful to physicians but not to other experts.

– Tacit knowledge. Implicit information is significant only to users who possess the
knowledge to interpret it. Most of this knowledge is not explicit and codified but
is tacit, namely it is knowledge that users possess and currently use to carry out
tasks and to solve problems, but that they are unable to express in verbal terms
and that they may even be unaware of. It is a common experience that in many
application fields users exploit mainly their tacit knowledge, since they are often
more able to do than to explain what they do. Tacit knowledge is related to the
specific work domain and it is also exploited by users to interpret the messages
from the software system. User notations let users exploit their tacit knowledge

188 MARIA FRANCESCA COSTABILE ET AL.

and allow the system constructed in these notations to incorporate it as a part of
the implicit information.

2.3. SOME OBSERVATIONS CONCERNING THE USER

When the system imposes task execution strategies, which are alien to users, it becomes
a fence that forces users to follow unfamiliar reasoning strategies and to adopt inefficient
procedures. In order to design a system that meets users’ needs and expectations, we
must take into account the following observations:

1. The notations developed by the user communities from their working practice are
not defined according to computer science formalisms, but they are concrete and
situated in the specific context, in that they are based on icons, symbols, and words
that resemble and schematize the tools and the entities which are to be used in the
working environment. Such notations emerge from users’ practical experience in
their specific activity domain. They highlight the kind of information users consider
important for achieving their tasks, even at the expense of obscuring other kinds and
facilitate the problem solving strategies, adopted in the specific user community.

2. Software systems are in general designed without taking explicitly into account the
problem of implicit information, user articulatory skills, and tacit knowledge. The
systems produced can therefore be interpreted with high cognitive costs.

3. Implicit information and tacit knowledge need an externalizing process, which trans-
lates them into a form intelligible to a computer system. Implicit information must
be conveyed by the layout and appearance of the systems, in order to be exploited by
users in performing their work. The final aim is the creation of interactive software
systems that the users may correctly perceive and work with.

4. A system acceptable to its users should have a gentle slope of complexity: this means
it should avoid big steps in complexity and keep a reasonable trade-off between ease-
of-use and functional complexity. Systems might offer users, for example, different
levels of complexity in performing EUD activities, ranging from simply setting pa-
rameters to integrating existing components and extending the system by developing
new components (EUD-Net Thematic Network; Myers et al., 2003; 1992). The sys-
tem should then evolve with the users (co-evolution) (Arondi et al., 2002), thus
offering them new functionalities only when needed.

Starting with these observations, we base our methodology for designing interactive
software systems on three principles: (i) the language in which the interaction with
systems is expressed must be based on notations traditionally adopted in the domain
(this also supports the system designers in identifying the grain problems and in defining
their solutions); (ii) systems must present only the tools necessary to perform the task at
hand without overwhelming users with unnecessary tools and information; (iii) systems
must provide a layout which simulates the traditional layout of the tools employed in
the domain, such as mechanical machines or paper-based tools.

EUD IN THE SSW APPROACH 189

3. Domain-Expert Users’ EUD Activities

In our work, we primarily address the needs of communities of experts in scientific
and technological disciplines. These communities are characterized by different tech-
nical methods, languages, goals, tasks, ways of thinking, and documentation styles.
The members of a community communicate with each other through documents, ex-
pressed in some notations, which represent (materialize) abstract or concrete concepts,
prescriptions, and results of activities. Often dialects arise in a community, because
the notation is applied in different practical situations and environments. For example,
technical mechanical drawings are organized according to rules which are different
in Europe and in the USA (ISO standard). Explicative annotations are written in dif-
ferent national languages. Often the whole document (drawing and text) is organized
according to guidelines developed in each single company. The correct and complete
understanding of a technical drawing depends on the recognition of the original stan-
dard, as well as on the understanding of the national (and also company developed)
dialects.

Recognizing users as domain experts means recognizing the importance of their
notations and dialects as reasoning and communication tools. This also suggests the
development of tools customized to a single community. Supporting co-evolution re-
quires in turn that the tools developed for a community should be tailored by its members
to the newly emerging requirements (Mørch and Mehandjiev, 2000). Tailoring can be
performed only after the system has been released and therefore when it is used in the
working context. In fact, the contrast often emerging between the user working activ-
ity, which is situated, collaborative and changing, and the formal theories and models
that underlie and constitute the software system can be overcome by allowing users
themselves to adapt the system they are using.

The diversity of the users calls for the ability to represent the meaning of a concept
with different materializations, e.g., text or image or sound and to associate to the same
materialization a different meaning according, for example, to the context of interaction.
For example, in the medical domain the same X-ray is interpreted in different ways by
a radiologist and a pneumologist. These two d-experts are however collaborating to
reach a common goal. Therefore, they use the same set of data (of a patient), which,
however, is represented differently according to their specific skills. Often experts work
in a team to perform a common task and the team might be composed of members of
different sub-communities, each sub-community with different expertise. Members of
a sub-community need an appropriate computer environment, suited to them to manage
their own view of the activity to be performed.

In (Costabile et al., 2003b), some situations that show the real need for environments
that allow d-experts to perform various types of EUD activities were described. They
emerged from the work of the authors primarily with biologists and earth scientists. In
the field of biology software for academic research, there are two types of software de-
velopment: (1) large scale projects, developed in important bioinformatics centres; (2)
local development by biologists who know some programming languages, for managing

190 MARIA FRANCESCA COSTABILE ET AL.

data, analyzing results, or testing scientific ideas. The second type of development can
be considered EUD. Moreover, many biologists feel the need to modify the application
they use to fit their needs better. Here is a list of real programming situations that oc-
curred when working with molecular sequences, i.e., either DNA or protein sequences:
scripting, i.e., search for a sequence pattern, then retrieve all the corresponding sec-
ondary structures in a database; parsing, i.e., search for the best match in a database
similarity search report relative to each subsection; formatting, i.e., renumber one’s
sequence positions from –3000 to +500 instead of 0–3500; variation, i.e., search for
patterns in a sequence, except repeated ones; finer control on the computation, i.e., con-
trol in what order multiple sequences are compared and aligned (sequences are called
aligned when, after being compared, putative corresponding bases or amino-acid letters
are put together); simple operations, i.e., search in a DNA sequence for some characters.

In the domain of earth science, some scientists and technicians analyze satellite
images and produce documents such as thematic maps and reports, which include
photographs, graphs, etc. and textual or numeric data related to the environmental
phenomena of interest. Two sub-communities of d-experts are: (1) photo-interpreters
who classify, interpret and annotate remote sensed data of glaciers; (2) service oriented
clerks, who organize the interpreted images into documents to be delivered to different
communities of clients. Photo-interpreters and clerks share environmental data archives,
some models for their interpretation, some notations for their presentation, but they have
to achieve different tasks, documented by different sub-notations and tools. Therefore,
their notations can be considered two dialects of the Earth Scientist & Technologist
general notation.

From these experiences, two classes of d-expert activities have been proposed
(Costabile et al., 2003b):

– Class 1 includes activities that allow users, by setting some parameters, to choose
among alternative behaviors (or presentations or interaction mechanisms) already
available in the application; in the literature such activities are usually called
parameterization, customization or personalization.

– Class 2 includes all activities that imply some programming in any program-
ming paradigm, thus creating or modifying a software artifact. Since we want
to be as close as possible to the user, we will usually consider novel program-
ming paradigms, such as programming by demonstration, programming with
examples, visual programming, and macro generation.

In Table 9.1 examples of activities of both classes are provided.

4. SOFTWARE SHAPING WORKSHOPS

In scientific and technological communities, such as mechanical engineers, geologists,
and physicians, experts often work in a team to perform a common task. The team might
be composed of members of different sub-communities, each sub-community with a
different expertise. Such domain experts, when working with a software application, feel

EUD IN THE SSW APPROACH 191

Table 9.1. Examples of activities of classes and descriptions

Class Activity name Activity description

Class 1 Parameterization This is intended as a specification of unanticipated constraints in data
analysis. In this situation d-experts are required to associate specific
computation parameters to specific parts of the data, or to use different
models of computations available in the program.

Annotation This is the activity in which d-experts write comments next to the data
and the result files in order to highlight their meaning.

Class 2 Modeling from data The system supporting the d-expert derives some (formal) models by
observing data, e.g. a kind of regular expression is inferred from
selected parts of aligned sequences (Blackwell, 2000), or patterns of
interactions are derived (Arondi et al., 2002).

Programming by
demonstration

D-experts show examples of property occurrences in the data and the
system infers a (visual) function from them.

Use of formula languages This is available in spreadsheets and could be extended to other
environments, such as Biok (Biology Interactive Object Kit) that is a
programmable application for biologists (Letondal, 2001).

Indirect interaction with
application objects

As opposed to direct manipulation, traditional interaction style tools,
e.g., command languages, can be provided to support user activities.

Incremental
programming

This is close to traditional programming, but limited to changing a small
part of a program, such as a method in a class. It is easier than
programming from scratch.

Extended annotation A new functionality is associated with the annotated data. This
functionality can be defined by any technique previously described.

the need to perform various activities that may even lead to the creation or modification
of software artifacts, in order to obtain better support for their specific tasks. These are
considered EUD activities. The need for EUD is a consequence of the user diversity
and evolution discussed in Section 2.

Our approach to the design of a software system devoted to a specific community of
domain-expert users is to organize the system into various environments, each one for
a specific sub-community. Such environments are organized in analogy with the artisan
workshops, where the artisans find only the tools necessary to carry out their activities.
In a similar way, d-experts using a virtual workshop find available only the tools required
to develop their activities by properly shaping the software they use. These tools must
be designed and must behave in such a way that they can be used by the d-expert
in the current situation. For this reason, the software environments are called SSWs
(Costabile et al., 2002). SSWs allow users to develop software artifacts without the
burden of using a traditional programming language, using high level visual languages,
tailored to their needs. Moreover, users have the feeling of simply manipulating the
objects of interest in a way similar to what they do in the real world. Indeed, they are
creating an electronic document through which they can perform some computation,
without writing any textual program code.

An important activity in the professionals’ work is the annotation of documents.
In the SSW methodology, electronic annotation is a primitive operator, on which the

192 MARIA FRANCESCA COSTABILE ET AL.

communication among different d-experts and the production of new knowledge are
based. A d-expert has the possibility of performing annotations of a piece of text,
of a portion of an image or of the workshop in use to extend, make his/her current
insights explicit regarding the considered problem, or even the features of the workshop.
D-experts use annotation as a peer-to-peer communication tool when they exchange
annotated documents to achieve a common task. By annotating the workshop they use,
d-experts also use annotation as a tool to communicate with the design team in charge
of the maintenance of the system.

D-experts play two main roles: (1) performing their working tasks, possibly inform-
ing the maintenance team of their usability problems; (2) participating in the devel-
opment of the workshops. In the first role, at the time of use, d-experts can tailor the
workshop to their current needs and context. For example, the annotation tools permit
the definition of new widgets: as a reaction to the annotation activity performed by
the d-expert, the workshop may transform the annotated document area into a new
widget, to which a computational meaning is associated. This widget is added to the
common knowledge base and is made accessible to other d-experts, each one accessing
the data through his/her own workshop, enriched by the new widget that is adapted
to the specific context. In the second role, at the design time, d-expert representatives
participate directly in the development of the workshops for their daily work (appli-
cation workshops). D-experts, even if they are non-professional software developers,
are required to create or modify application workshops, i.e., software artifacts. To this
end, different workshops (system workshops) are made available to them, which permit
the customization of each application workshop to the d-expert community needs and
requirements.

This approach leads to a workshop network that tries to bridge the communicational
gap between designers and domain-expert users, since all cooperate in developing com-
puter systems customized to the needs of the user communities without requiring them
to become skilled programmers. Thus the workshop network permits domain-expert
users to work cooperatively in different places and at different time to reach a common
goal; in this sense it becomes a collaboratory, as defined by Wulf: “a center without
walls, in which researchers [in our case professionals] can perform their research [work]
without regard to physical location, interacting with colleagues, accessing instrumen-
tation, sharing data and computational resources, and accessing information in digital
libraries” (Wulf, 1989).

Two levels can be distinguished in the workshop network:

1. the top level, that we call the design level, involves a sub-network of system work-
shops, including the one used by the software engineers to lead the team in developing
the other workshops and the system workshops which are used by the team of HCI
and domain experts to generate and/or adapt other system workshops or application
workshops;

2. the bottom level, that we call the use level, includes a network of application work-
shops, which are used by end-users to perform their tasks.

EUD IN THE SSW APPROACH 193

Each system workshop in the design level is exploited to incrementally translate
concepts and tools expressed in computer-oriented languages into tools expressed in
notations that resemble the traditional user notations and are therefore understand-
able and manageable by users. The network organization of the SSWs depends on the
working organization of the user community to which the SSWs are dedicated.

To develop an SSW network, software engineers and d-experts have first to specify
the pictorial and semantic aspects of the Interaction Visual Languages (IVLs) through
which users interact with workshops. In our approach, we capitalize on the theory
of visual sentences developed by the Pictorial Computing Laboratory (PCL) and on
the model of WIMP interaction it entails (Bottoni et al., 1999). From this theory, we
derive the formal tools to obtain the definition of IVLs. In the WIMP interaction, the
messages exchanged between the user and the system are the entire images represented
on the screen display, which include texts, pictures, icons, etc. and the user can manifest
his/her intention by operating on the input devices of the system such as a keyboard or
a mouse. Users understand the meaning of such messages because they recognize some
subsets of pixels on the screen as functional or perceptual units, called characteristic
structures (css) (Bottoni et al., 1999).

From the machine point of view, a cs is the manifestation of a computational process,
that is the result of the computer interpretation of a portion of the program P specifying
the interactive system. The computer interpretation creates an entity, that we call virtual
entity (ve) and keeps it active. A ve is defined by specifying its behavior, for example
through statecharts, from which P can be implemented. It is important, however, to
specify the set CS of css, which can appear on the screen, as well as their relations to
the states of P from which they are generated. A ve is therefore specified as ve=<P, CS,
<INT, MAT>>, where INT (interpretation) is a function, mapping the current cs ∈ CS
of the ve to the state u of the program P, generating it and MAT (materialization), a
function mapping u to cs. A simple example of ve is the “floppy disk” icon to save
a file in the iconic toolbar of MS WordTM. This ve has different materializations to
indicate different states of the computational process: for example, once it is clicked
by the user the disk shape is highlighted and the associated computational process
saves the current version of the document in a disk file. Once the document is saved,
the disk shape goes back to its usual materialization (not highlighted). However, ves
extend the concept of widgets (as in the case of the previously mentioned disk icon)
and virtual devices (Preece, 1994), which are more independent from the interface style
and include interface components possibly defined by users at run time. The creation
of virtual entities by users is an EUD activity and distinguishes our approach from
traditional ones, such as Visual Basic scripted buttons in MS WordTM. In Section 5, we
will discuss the creation of a ve by a user in a medical domain.

The SSW approach is aimed at overcoming the communicational gap between de-
signers and users by a “gentle slope” approach to the design complexity (Myers 2003;
1992). In fact, the team of designers performs their activity by: (a) developing several
specialized system workshops tailored to the needs of each type of designer in the team
(HCI specialists, software engineers, d-experts); and (b) using system workshops to

194 MARIA FRANCESCA COSTABILE ET AL.

develop application workshops through incremental prototypes (Carrara et al., 2002;
Costabile et al., 2002). In summary, the design and implementation of application work-
shops is incremental and based on the contextual, progressive gain of insight into the
user problems, which emerge from the activity of checking, revising, and updating the
application workshops performed by each member of the design team.

The diversity of the users calls for the ability to represent the meaning of a concept
with different materializations, in accordance with local cultures and the layouts used,
sounds, colors, times and to associate a different meaning to the same materialization
according, for example, to the context of interaction. The SSW methodology aims at
developing application workshops which are tailored to the culture, skill, and articula-
tory abilities of specific user communities. To reach this goal, it becomes important to
decouple the pictorial representation of data from their computational representation
(Bottoni et al., 1999). In this way, the system is able to represent data according to the
user needs, by taking into account user diversity. Several prototypes have been devel-
oped in this line, in medical and mechanical engineering (Mussio et al., 1992). XML
technologies, which are based on the same concept of separating the materialization of
a document from its content, are being extensively exploited.

To clarify the concepts on the SSW network, we refer to a prototype under study,
designed to support different communities of physicians, namely radiologists and pneu-
mologists, in the analysis of chest X-rays and in the generation of the diagnosis. Radiol-
ogists and pneumologists represent two sub-communities of the physicians community:
they share patient-related data archives, some models for their interpretation, some no-
tations for their presentation, but they have to perform different tasks, documented
through different sub-notations and tools. Therefore, their notations can be considered
two (visual) dialects of the physicians’ general notation.

The SSW network for this prototype is presented in Figure 9.1. As we said, we
distinguish two levels. At the top level, the design level includes the workshops used

Figure 9.1. The network of Software Shaping Workshops involved in the co-evolutive use of B-Pneumologist and
B-Radiologist.

EUD IN THE SSW APPROACH 195

by the members of the design team to develop the application workshops. The design
level includes system workshops devoted to software engineers (B-SE), HCI experts (B-
HCI), and d-experts (B-UserPn, B-UserRa), in our case, specialists in pneumology and
radiology. The designers in the team collaborate in designing and updating, as required
by co-evolution, the application workshops B-Radiologist and B-Pneumologist. In the
design and updating phases, each member of the design team operates on the application
workshop under development using his/her own system workshop tailored to his/her
own culture, skills, and articulatory abilities. The application workshops are developed
through a participatory design project which is carried out in an asynchronous and
distributed way. At the use level, the pneumologist and radiologist, who are working
in different wards or different hospitals and are involved in the study of the pulmonary
diseases, can reach an agreed diagnosis using application workshops tailored to their
culture, skills, and articulatory abilities, again in an asynchronous and distributed way.

In Section 5, we illustrate how EUD activities can be performed by working with B-
Radiologist and B-Pneumologist. However, EUD activities can also be performed at de-
sign level: using B-UserPn and B-UserRa (see Figure 9.1), representatives of end-users
may generate or adapt the application workshops B-Radiologist and B-Pneumologist.
The development of B-UserPn and B-UserRa is in progress, so we focus here only
on the EUD activity performed at the use level by interacting with two prototypes of
B-Radiologist and B-Pneumologist. Such prototypes have been developed to speak with
our domain experts, receive feedback from them about the functionalities the software
system offers and understand their needs. In (Costabile et al., 2003a; Fogli et al., 2003),
prototypes in the field of mechanical engineering illustrate how d-experts may perform
EUD activity at the design time by interacting with software environments developed
by following the SSW methodology.

5. SSWs for a Medical Domain

To concretize our view on SSWs, we introduce a scenario, drawn from an initial anal-
ysis of physicians collaborating to achieve a diagnosis (Costabile et al., 2002). In the
scenario, a pneumologist and a radiologist incrementally gain insight into the case by
successive interpretations and annotations of chest X-rays, performed in (possibly) dif-
ferent places and at (possibly) different times. They are supported by two interactive
prototypes, B-Radiologist and B-Pneumologist, which share a knowledge repository.
They achieve the diagnosis by updating the knowledge repository after each session
of interpretation of the results reached so far and of annotation of their new findings.
In particular, through the annotation activity, new software artifacts are created (e.g.,
a widget with a certain functionality): each new software artifact created in this way
implements a virtual entity whose cs corresponds to the shape traced by the user on
the X-ray and whose program P depends on the content of the annotation.

B-Radiologist and B-Pneumologist are application workshops that support the two
physicians in recording and making the observational data available for reasoning and
communication, as well as the paths of the activities physicians are performing and
the progressively obtained results. To this end, they share the knowledge repository

196 MARIA FRANCESCA COSTABILE ET AL.

Figure 9.2. Web page with B-Radiologist workshop. The radiologist is analyzing a chest X-ray.

and also some tools for data annotation, archiving, and retrieving. However, they have
to support physicians with different experience and cultural background, performing
different tasks in the achievement of the diagnosis. Hence, each one is also equipped with
tools specialized to the specific tasks to be performed by its own users and makes data
and tools available by materializing them according to the specific culture, experience
and situation of its current user.

Figure 9.2 displays a web page, as it appears to a radiologist—Dr. Bianchi, interacting
with B-Radiologist. Due to space limitations, it is the only figure showing the complete
web page, the remaining figures show only panes of our interest.

The screen is divided into two parts: the top presents the tools which interact with
Internet ExplorerTM, the browser managing the process. The underlying part has a
header at the top, presenting general information about the creators of the system.
Below it, there is an equipment area on the right with a title identifying B-Radiologist
as the workshop currently active and a working area on the left. In the equipment
area, the radiologist has repositories of entities available to be worked (images and
annotations) and equipment to work on the entities. Data and tools can be extracted and
used or deployed in the working area and stored in the repositories. Tools are represented
in the working area as icons and data as raster or vector images, materializing the css of
interest. Each image represents an entity to be worked on and is associated to a handle,
a toolbox and other identifiers. These four entities form a bench. The handle is a ve
whose cs is a rectangle which identifies the bench. It is positioned on top of the toolbox
and permits the bench selection and dislocation. The toolbox contains the tools required
for the execution of the current task. The identifiers identify the physician performing
the task, the patient to which the data refers and the image (set of data) referring to that
patient.

EUD IN THE SSW APPROACH 197

Figure 9.3. Using B-Radiologist, the radiologist circles a zone of pleural effusion.

In Figure 9.2, the radiologist is working on two benches, one associated to raster
X-ray which underlies a bench associated to a transparent vector image, which is a
support for annotation. Hence, two handles appear on top of the toolbox, while system
generated identifiers identify Dr. Bianchi as the radiologist annotating the X-ray, Mr.
Rossi as the patient and img1 as the considered image. Figure 9.2 resumes the state of
the activity of interpretation of an X-ray after the radiologist (a) has obtained the data of
his interest (an X-ray of the patient, whose surname is Rossi) and (b) has superimposed
the annotation bench on the bench containing the X-ray.

In Figure 9.3, the radiologist (a) has recognized an area of interest denoting a pleural
effusion; (b) has selected from the toolbox the tool for free-hand drawing of close
curves, the tenth button from the left (whose cs is a close curve); and (c) B-Radiologist
has reacted, presenting him with a cursor, whose cs is the cross. The radiologist is
now circling the area of interest using a mouse to steer the cross, so identifying a cs.
After closing the curve, the radiologist selects the eighth button (‘a’) in the top menu,
firing the annotation activity; then he can type his classification of the cs ‘Pleural
effusion’. Figure 9.4 shows the radiologist storing these results by the selection of the
‘add Note’ button. As a reaction to this last user action, B-Radiologist (a) closes the
annotation window; (b) adds to the framed area an icon of a pencil as an anchor to
the annotation, and (c) transforms the framed area into a widget, by associating it to
a pop-up menu. The menu title and items depend on the radiologist’s classification
of the css in the framed area. In other words, B-Radiologist creates an active widget
whose characteristics depend on the contextual activity and which is added to the set
of tools known to the system and then becomes available to the users. In particular,
the pop-up menu associated with the widget allows the radiologist to choose between
two activities related with pleural effusion areas: the density evaluation and the NMR
analyses retrieval. After having obtained the results of the selected computations, the
radiologist writes a new annotation suggesting a possible diagnosis to be shared with
the pneumologist (potential pneumonia).

198 MARIA FRANCESCA COSTABILE ET AL.

Figure 9.4. Using B-Radiologist, the radiologist annotates a zone of pleural effusion.

At the end of the annotation activity, B-Radiologist stores the annotation and
other possible results from its activity in the knowledge repository shared with B-
Pneumologist, permanently updating to the patient file, thus evolving B-Radiologist,
B-Pneumologist, and the knowledge repository. In the current version, the radiologist
sends an email message to the pneumologist whenever s/he wants to inform the other
physician that the knowledge repository has been updated.

The workshops make two different types of tools available to their users: system
predefined tools, which are always available and the tools created and associated to the
data by the users, such as the annotation button. Their meaning depends on the medical
context in which annotation is used. For example, in B-Pneumologist, a cs classified
as ‘pleural effusion’ is not associated to the same menu as in B-Radiologist, but is
associated to a multi-link to the records of available data on the patient, i.e., radiological
interpretation, associated TACs, and hematic parameters. In B-Pneumologist the pencil
associated to the area of interest outlined by the radiologist is associated to the tools for
visualizing the data related to the patient and supporting their exploration in order to
reach a final diagnosis. The linking to the new tools—the new computational meaning of
the annotation—occurs at start-up time, i.e., when a physician accesses B-Pneumologist
to initiate the interactive session. Therefore, when the pneumologist Dr. Neri selects the
pencil, B-Pneumologist displays the text of the annotation performed by the radiologist
and the multi-link (Figure 9.5). In Figure 9.5 the pneumologist selects ‘Radiological
interpretation’ to query details on Dr. Bianchi’s observations. He obtains the media and
estimated error of the density of the pleural effusion. He can also add his diagnosis to the
document recording the opinions increasingly annotated by Dr. Bianchi (Figure 9.6).

The SSW life cycle follows a star approach (Hix and Hartson, 1993), starting with
the analysis of the users of the application workshops. The design process proceeds by
developing incremental workshop prototypes at various levels in the hierarchy, going
bottom-up as well as top-down. In the case study, user analysis started by examining how
the radiologists classify, interpret, and annotate chest X-rays and how the pneumologists

EUD IN THE SSW APPROACH 199

Figure 9.5. Working in B-Pneumologist the pneumologist accesses the radiological interpretation.

use the interpreted images, provide their diagnoses and record them using an annotation
tool. On the basis of this analysis, the team of experts involved in the design felt the need
to develop the two separate but consistent application workshops, each one dedicated to a
specific sub-community. Moreover, the team of experts observed that not all situations
can be foreseen in advance and that sometimes B-Radiologist and B-Pneumologist
must both be consistently adapted to different new tasks and situations. This adaptation
requires the knowledge of both dialects and activities, of the tasks to be executed and of
the working organization and the awareness of the use of diagnostic documents outside
the organization. Only senior physicians have such a global skill and knowledge and
can assume this responsibility. Therefore, the team decided that a senior pneumologist
and a senior radiologist should act as managers of the whole activity and be responsible
for recognizing the tasks to be performed, identifying the dialect notations of interest,
and consequently defining the system of consistent application workshops. The senior
physicians achieve these goals using two system workshops, B-UserRa and B-UserPn,

Figure 9.6. The pneumologist obtains the radiological interpretation and gives his diagnosis.

200 MARIA FRANCESCA COSTABILE ET AL.

where they find usable tools for implementing and adapting both B-Radiologist and B-
Pneumologist (see Figure 9.1). They can also collaborate with HCI experts and software
engineers as required by the progressive results of the experiences.

6. Related Work

As designers, our challenge is to develop interactive software systems which (a) sup-
port their users in exploiting their “practical competence and professional artistry in
achieving a task” (Schön, 1983) and (b) enable the practitioner to develop and extend
the knowledge available to the profession (Schön, 1983). To achieve this goal, we adopt
a ‘semiotic computer’ point of view (Andersen, 2001; 1992), recognizing the existence
of two interpretations of each cs and the importance of notations developed by d-expert
communities such as reasoning, communication, and documentation tools.

Another important issue in our design approach is the co-evolution of users and
systems. Carroll and Rosson (1992) speak about co-evolution of users and tasks, while
co-evolution of artifacts supporting HCI design in the different steps of the product
lifecycle is discussed by (Brown et al., 1998). Co-evolution of users and systems, as
proposed in this paper, stresses the importance of co-evolving the systems, as soon
as users evolve the performance of their tasks. Co-evolution of users and systems is
rooted in the usability engineering, in that it supports designers in collecting feedback
on systems from the field of use, to improve the system usability (Nielsen, 1993).
Tools designed to support co-evolution are suitable for observational evaluation in user-
centered design approaches (Preece, 1994). Moreover, these evaluation tools integrated
within the SSW networks allow system adaptation (Arondi et al., 2002), in the more
general frame of co-evolution of users, organization, systems, and environment, as
observed by Bourguin et al. (2001). This extends the view of Mackay, who postulates
that the use of information technology is a co-adaptive phenomenon (Mackay, 1990).
Co-evolution implies tailoring. SSWs are designed to permit tailoring, i.e. “further
development of an application during use to adapt it to complex work situations”
(Kahler et al., 2000) by end-users.

In our approach, d-experts play a role similar to the handymen in (MacLean et al.,
1990). The handyman bridges between workers (people using a computer application)
and computer professionals; s/he is able to work alongside users and communicate their
needs to programmers. Similarly, d-experts bridge between workers and computer pro-
fessionals, but are end-users themselves and not necessarily computer professionals.
They must be provided with environments to be able to participate in SSWs devel-
opment that are adapted to their culture, skills and articulatory abilities. In (Costabile
et al., 2003a; Fogli et al., 2003) we describe an environment devoted to mechanical engi-
neers who were the d-experts involved in the development of the application workshop
devoted to assembly-line operators.

In (Mackay, 1991) and (Nardi, 1993) empirical studies are reported on activities
performed by end-users and generally defined as tailoring activities. Mackay analyses
how users of a UNIX software environment try to customize the system, intending as

EUD IN THE SSW APPROACH 201

customization the possibility of modifying software to make persistent changes. She
finds that many users do not customize their applications as much as they could. This
also depends on the fact that it takes too much time and deviates from other activi-
ties. Nardi conducted empirical studies on users of spreadsheets and CAD software.
She found out that these users actually perform activities of end user programming,
thus generating new software artifacts; these users are even able to master the formal
languages embedded in these applications when they have a real motivation for doing
so.

SSWs are also in the area of research on Gentle Slope Systems, “which are systems
where for each incremental increase in the level of customizability, the user only needs
to learn an incremental amount” (Myers, 2003). In fact, the SSW methodology favors
the construction of systems which are more acceptable to the users, since they are based
on a knowledge (often tacit), languages, and notations belonging to the interested user
community. Moreover, SSWs allow users to perform EUD activities, overcoming the
problems currently affecting other types of EUD, such as the development of macros
in spreadsheets or of scripts in active web pages, which usually require the learning of
conventional programming (Myers, 2003).

Domain knowledge plays a key role in the approach to software system construction
described by Fischer (1998), Fischer and Ostwald (2002), and Fischer et al. (2001). In
these works, the authors propose designing systems as seeds, with a subsequent evo-
lutionary growth, followed by a reseeding phase. SER (Seeding, Evolutionary growth,
Reseeding) is thus a process model for the development and evolution of the so-called
DODEs (Domain-Oriented Design Environments), which are “software systems that
support design activities within particular domains and that are built specifically to
evolve” (Fischer, 1998). Three intertwined levels of design activities and system devel-
opment are envisaged: at the lower level, there is a multifaceted domain-independent
architecture constituting the framework for building evolvable systems; at the middle
level, the multifaceted architecture is instantiated for a particular domain in order to
create a DODE; at the top level, there are individual artifacts in the domain, developed
by exploiting the information contained in the DODE. The SER model describes the
evolution of such environments at the three levels.

We have a domain-independent architecture as well, which can be instantiated ac-
cording to the considered domain (Fogli et al., 2003). This architecture is implemented
by exploiting open source code, such as XML-suite tools and ECMAscript language,
so that a system SSW and the application SSWs generated from it have the same
web-based structure. However, the construction of SSWs is always based on a formal
specification of the Interaction Visual Languages through which the user interacts in
order to guarantee a variety of properties [such as usability, determinism, viability,
non-ambiguity (Preece, 1994)]. The architecture reflects the formal model proposed to
specify the static and dynamics component of the systems. In the SSW framework there
is a clear distinction between the design and the use level: the system workshops at the
design level can be used by d-experts to create and/or update application workshops.
Both system and application workshops can first represent seeds, which, according to

202 MARIA FRANCESCA COSTABILE ET AL.

the user interaction, can be evolved into new system and application workshops respec-
tively, still remaining separate. This separation, which helps not to disorient the users
during their task activities, is not so well established in the works with which we are
comparing ours.

There is a separation between the design and use level in many commercial tools
for authoring systems, such as, for example, Micromedia Flash or Toolbook. In these
systems, the author mode and the user mode are present, but the author mode usually
requires the use of a programming language (typically a scripting one). Therefore, these
systems turn out to be less accessible and usable by experts in domains different from
computer science. Moreover, both system and application workshops present the users
with a familiar environment in which only the tools necessary to carry out the working
task are available. On the other hand, also commercial tools allow the definition of
libraries of personalized tools, but they may only be added to the tools already available
in the developmental system.

7. Conclusions

Nowadays, new computer technologies force many users, who are not experts in com-
puter science but are experts in their own domain of activity, to ask for software envi-
ronments in which they can do some programming activity related to their tasks and
adapt the environments to their emerging new needs. Therefore, in such a scenario,
EUD becomes a challenging issue for future software systems. To study novel solu-
tions to cope with this issue, we propose a unified view of the variety of phenomena
affecting the HCI process, such as the communicational gap which often exists between
designers and systems, the user diversity, the co-evolution of systems and users, the
grain imposed by software tools, the implicit information, and tacit knowledge that
influence users’ behavior while interacting with software systems.

In the chapter we have analyzed these phenomena, by showing the hurdles they
impose in user activities and the new interaction and communication possibilities they
offer and have framed them in a systemic HCI model. Such a model underlies our
approach to system design and development—the SSW methodology. Within the SSW
methodology, EUD means that (1) d-experts may create other SSWs suitable to the
considered domain by using simple facilities, such as a drag-and-drop; and (2) d-
experts may create new tools within the workshop they are using, for example as a
result of an annotation activity. The latter case has been analyzed in a medical domain:
physicians use tailored environments (application workshops), which they can enrich
by themselves with new tools through annotation activity. The results of the annotation
are shared by the application workshops, so allowing physicians to create tools to
be used also by their colleagues, possibly according to their own needs, background,
expertise, and preferences. In both cases, users are required neither to write codes,
nor to know any programming languages or paradigms. Users simply create programs
by interacting with the system through visual languages resembling the activities they
usually perform in their daily work. For the sake of brevity, the case study discussed in

EUD IN THE SSW APPROACH 203

this paper shows only an example of the second type of EUD activity. More details about
the first one are by Costabile et al., (2003a) and Fogli et al. (2003). The architecture
we have implemented to develop SSWs is based on the W3C framework and the XML
technology, thus permitting the construction of very “light” applications (Fogli et al.,
2003).

Acknowledgments

The authors wish to thank the reviewers for their useful comments and Giuseppe Fresta
for the stimulating discussions during the development of this work and for his contri-
bution to the implementation of the prototypes presented in the paper. They also wish
to thank Dr. Lynn Rudd for her help in correcting the English manuscript.

The support of EUD-Net Thematic Network (IST-2001-37470) is acknowledged.

References

Andersen, P.B. (1992). Computer semiotics. Scandinavian Journal of Information Systems 4, 3–30.
Andersen, P.B. (2001). What semiotics can and cannot do for HCI. Knowledge Based Systems 14,

419–424.
Arondi, S., Baroni, P., Fogli, D. and Mussio, P. (2002). Supporting co-evolution of users and systems by

the recognition of Interaction Patterns. Proceedings of the International Conference on Advanced
Visual Interfaces (AVI 2002), Trento, Italy, New York: ACM Press, pp. 177–189.

Barnard, P., May, J., Duke, D. and Duce, D. (2000). Systems, Interactions, and Macrotheory. ACM
Trans. on Human-Computer Interaction 7(2), 222–262.

Blackwell, A. (2001). See what you need: Helping end users to build abstractions. Journal of Visual
Languages and Computing 12(5), 475–499.

Borchers, J. (2001). A Pattern Approach to Interaction Design, Chichester: John Wiley & Sons.
Bottoni, P., Costabile, M.F. and Mussio, P. (1999). Specification and dialogue control of visual inter-

action through visual rewriting systems. ACM Trans. on Programming Languages and Systems
(TOPLAS) 21(6), 1077–1136.

Bourguin, G., Derycke, A. and Tarby, J.C. (2001). Beyond the interface: Co-evolution inside interactive
systems—A proposal founded on activity theory. Proceedings of IHM-HCI 2001, Lille, France,
Berlin Heidelberg: Springer-Verlag, pp. 297–310.

Brancheau, J.C. and Brown, C.V. (1993). The Management of End-User Computing: Status and
Directions. ACM Computing Surveys 25(4), 437–482.

Brown, J., Graham, T.C.N. and Wright, T. (1998). The Vista environment for the coevolutionary design
of user interfaces. Proceedings of CHI 98, Los Angeles, New York: ACM Press, 376–383.

Carrara, P., Fogli, D., Fresta, G. and Mussio, P. (2002). Toward overcoming culture, skill and sit-
uation hurdles in human-computer interaction. International Journal Universal Access in the
Information Society 1(4), 288–304.

Carroll, J.M. and Rosson, M.B. (1992). Deliberated evolution: Stalking the view matcher in design
space. Human-Computer Interaction 6 (3 and 4), 281–318.

Costabile, M.F., Fogli, D., Fresta, G., Mussio, P. and Piccinno, A. (2002). Computer environments
for improving end-user accessibility. Proceedings of 7th ERCIM Workshop “User Interfaces For
All”, Paris, France, LNCS 2615, Berlin Heidelberg: Springer-Verlag, pp. 187–198.

Costabile, M. F., Fogli, D., Fresta, G, Mussio, P. and Piccinno, A. (2003a). Building environments
for end-user development and tailoring. Proceedings 2003 IEEE Symposia on Human Centric

204 MARIA FRANCESCA COSTABILE ET AL.

Computing Languages and Environments (HCC’ 03), Aukland, New Zeland, Danvers: IEEE
Computer Society, pp. 31–38.

Costabile, M.F., Fogli, D., Letondal, C., Mussio, P. and Piccinno, A. (2003b). Domain-expert users
and their needs of software development, Proceedings of UAHCI Conference, Crete, London:
Lawrence Erlbaum Associates, pp. 232–236.

Cypher, A. (1993). Watch What I Do: Programming by Demonstration. Cambridge: The MIT
Press.

Dix, A., Finlay, J., Abowd, G. and Beale, R. (1998). Human-Computer Interaction, London: Prentice
Hall.

EUD-Net Thematic Network, Network of Excellence on End-User Development, http://giove.cnuce.
cnr.it/eud-net.htm.

Fischer, G., Grudin, J., McCall, R., Ostwald, J., Redmiles, D., Reeves, B. and Shipman, F. (2001). Seed-
ing, evolutionary growth and reseeding: The incremental development of collaborative design
environments. In: Coordination Theory and Collaboration Technology, Mahwah, NJ: Lawrence
Erlbaum Associates, 447–472.

Fischer, G. and Ostwald, J. (2002). Seeding, evolutionary growth, and reseeding: Enriching partici-
patory design with informed participation. Proceedings of PDC’02, Malmö, Sweden, New York:
ACM Press, pp. 135–143.

Fischer, G. (1998). Seeding, evolutionary growth, and reseeding: Constructing, capturing, and evolv-
ing knowledge in domain-oriented design environments. Automated Software Engineering 5(4),
447–468.

Fogli, D., Piccinno A. and Salvi, D. (2003). What users see is what users need. Proceedings of DMS
03, Miami, USA, Skokie, USA: Knowledge Systems Institute, pp. 335–340.

Hix, D. and Hartson, H. R. (1993). Developing User Interfaces: Ensuring Usability through Product &
Process. Chichester: John Wiley & Sons.

Kahler, H., Mørch, A., Stiemerling, O. and Wulf, V. (2000). Introduction to the special issue on
tailorable systems and cooperative work. Computer Supported Cooperative Work 9, 1–4, Kluwer
Academic Publishers.

ISO Standard: ISO 5456 Technical Drawing Projection Methods.
Letondal, C. (2001). Programmation et interaction, PhD thesis, Université de Paris XI, Orsay.
Mackay, W.E. (1990). Users and Customizable Software: A Co-Adaptive Phenomenon, Ph. D. Thesis,

MIT.
Mackay, W.E. (1991). Triggers and barriers to customizing software. Proceedings of ACM CHI’90,

New Orleans, USA. New York: ACM Press, pp. 153–160.
MacLean, A., Kathleen, C., Lövstrand, L. and Moran, T. (1990). User-tailorable systems: pressing the

issues with buttons, Proceedings of ACM CHI’90, New Orleans, USA. New York: ACM Press,
pp. 175–182.

Majhew, D.J. (1992). Principles and Guideline in Software User Interface Design, London: Prentice
Hall.

Mørch, A. I. and Mehandjiev, N. D. (2000). Tailoring as collaboration: The mediating role of mul-
tiple representations and application units. Computer Supported Cooperative Work 9, 2000,
75–100.

Mussio, P. (2004). E-Documents as tools for the humanized management of community knowledge.
In: H. Linger et al. (eds.), Constructing the Infrastructure for the Knowledge Economy: Methods
and Tools; Theory and Practice. Dordrecht: Kluwer Academic, pp. 27–43.

Mussio P, Finadri M, Gentini P. and Colombo F. (1992). A bootstrap technique to visual interface
design and development. The Visual Computer 8(2), 75–93.

Mussio, P., Pietrogrande, M. and Protti, M. (1991). Simulation of hepatological models: A study in
visual interactive exploration of scientific problems. Journal of Visual Languages and Computing
2, 75–95.

EUD IN THE SSW APPROACH 205

Myers, B.A., Hudson, S. E. and Randy, P. (2003). Past, present, and future of user interface software
tools. In Carroll (ed.), Human-Computer Interaction in the New Millennium, New York: Addison-
Wesley, pp. 213–233.

Myers, B.A., Smith, D.C. and Horn, B. (1992). Report of the ‘End-User Programming’ Working Group.
In: Languages for Developing User Interfaces. Boston, MA: Jones and Bartlett, pp. 343–366.

Nardi, B. (1993). A small matter of programming: Perspectives on end user computing. Cambridge:
MIT Press.

Nielsen, J. (1993). Usability Engineering. San Diego: Academic Press.
Polanyi, M. (1967). The Tacit Dimension. London: Rouledge & Kegan Paul.
Preece, J. (1994). Human-Computer Interaction. Harlow: Addison-Wesley.
Schön, D. (1983). The Reflective Practinioner—How Professionals Think in Action. Jackson: Basic

Books.
Schuler, D. and Namioka, A. (1993). Preface—Participatory Design, Principles and Practice,

Lawrence Erlbaum Ass. N.J: Inc. Hillsday, vii.
Wulf, W.A. (1989). The National Collaboratory: A White Paper. Appendix A in Toward a National

Collaboratory, National Science Foundation invitational workshop held at Rockfeller University,
Washington D.C., p. 1.

Chapter 10

Participatory Programming: Developing
Programmable Bioinformatics Tools for End-Users

CATHERINE LETONDAL1

1Institute Pasteur, Paris, France, letondal@pasteur.fr

Abstract. We describe participatory programming as a process that spans design, programming, use
and tailoring of software. This process, that includes end-users at each stage, integrates participatory
design and programmability. Programmability, as a property that relies on a reflective architecture,
aims to let the end-users evolve the tools themselves according to their current, specific needs, and
to let them control better the way results are computed. We present an environment that results from
this approach, called biok, developed for researchers in biology, which is both domain-oriented and
open to full programming.

1. Introduction

This chapter describes what we call “Participatory Programming,” or how to integrate
participatory design and programmability. We consider programming, not as a goal in
itself, but rather as a potential feature, available if things go wrong in the context of use.
We discuss how to better integrate the context of the user in the programming activity by
both: (a) letting the user participate to the design of the tools and (b) providing access
to programming via the user interface and from visible objects of interest, within a
scaffolded software architecture. This approach applies to fields where users are both
experts in their domain and able to develop basic programming skills to enhance their
work.

Biology has seen a tremendous increase in the need for computing in recent years.
Although biology labs may employ professional programmers and numerous ready-
made tools are available, these are rarely sufficient to accommodate this fast moving
domain. Individual biologists must cope with increasing quantities of data, new al-
gorithms, and changing hypotheses. They have diverse, specialized computing needs
which are strongly affected by their local work settings. This argues strongly for a better
form of end-user development (EUD).

The problem is how best to provide access to programming for non-professional
programmers. Can we determine, in advance, what kind of EUD is required or how
the software might evolve? Must we limit EUD to specific well-defined features? Do
end-users actually want to develop their own tools?

Our approach involves cooperative software development and co-evolution in
two complementary ways: interviews and workshops with biologists to define their

Henry Lieberman et al. (eds.), End User Development, 207–242.
C© 2006 Springer.

208 CATHERINE LETONDAL

environments for data analysis, and software flexibility or programmability. This term
refers to two main dimensions: (a) to let the end-users evolve these tools themselves
according to their current specific needs; (b) to let the user better control the way results
are computed.

In this chapter, we first describe some important characteristics of software devel-
opment and evolution in biology, as well as situations where biologists who are not
professional programmers may need to change the software they use. Next, we intro-
duce our approach to help biologists better control their tools, the idea of participatory
programming, and we provide a description of the participatory design process. We
describe our prototype biok in Section 4, followed by a section that recounts uses of
this prototype. The final section provides a discussion of our choices, where we address
the general aspects of software flexibility and open systems with respect to EUD.

2. Problem Description

Having installed scientific software for 8 years at the Institut Pasteur and having taught
biologists how to use these scientific tools, I have observed that, in the past decade, the
development of computing tools for biology and genomics has increased at a fast pace to
deal with huge genomic data and the need of algorithms to discover their meaning. Daily
work has also changed for the standard biologist: using computer systems to perform
their biological analyses is hardly possible without some basic programming (Tisdall,
2001). Indeed, although there are already many ready-to-use tools, including Web-based
tools and software packages for the micro-computer this is not really sufficient, even
for usual tasks.

In order to justify our objectives and our approach, we need to describe the context
of this work. In the following sections, we describe the typical problems that have to
be solved, the general idea of programming in scientific research and the more general
issue of dealing with scientists as end-users. We have also performed several kinds of
user studies that we describe below.

2.1. USE OF COMPUTING AT INSTITUT PASTEUR

We conducted a campus-wide survey in 1996, which consisted of 40 questions grouped
in categories, regarding computing education, software and network use, access to tech-
nical documentation and types of technical problems encountered (Letondal, 1999b).
Figure 10.1 shows the main groups that we identified through the analysis of the survey
data (about 600 answers) plotted on two dimensions: level of programming autonomy
and level of use of scientific computing:

� Occasional users were the largest group (36%) and had no direct use of scientific
computer tools.

� Non-Unix users (15%) did not use the IT department training and technical sup-
port, they had their own PC and mostly ran statistical software.

PARTICIPATORY PROGRAMMING 209

Figure 10.1. Campus-wide survey analysis of the use of computing.

� Young scientists (15%) were interested in bioinformatics, and were able to program
or at least build Web sites. They could read software documentation and were able
to teach themselves.

� Learners (15%) were more-established scientists who had recently taken a course
to improve their know-how of scientific software. This training was often con-
ducted by the IT department.

� Gurus (6%) were heavily involved in computing and programming scientific
software. They often acted as local consultants or gardeners (Gantt and Nardi,
1992).

Both the computing skills and the available computer tools have changed greatly
in the intervening years since this survey was taken. The Institut Pasteur has hired a
significant number of bioinformaticians to act as local developers (Gantt and Nardi,
1992). In various laboratories, young scientists (Ph.Ds and post-doctoral fellows) are
now more likely to have had formal training in computing and the number of convenient
software packages for biologists has increased, particularly via the Internet.

2.2. TYPICAL PROBLEMS

In order to illustrate the need for EUD in the context of biology and bioinformatics,
let us show some typical examples [see also (Costabile et al., 2003)]. Below is a list
of real programming situation examples, drawn from interviews with biologists, news
forum, or technical desk. These situations happened when working with molecular
sequences, i.e., either DNA or protein sequences (a sequence is a molecule that is very

210 CATHERINE LETONDAL

often represented by a character string, composed of either DNA letters—A, C, T, and
G—or amino-acid letters—20 letters).

� Scripting. Search for a sequence pattern, then retrieve all the corresponding sec-
ondary structures in a database.

� Parsing. Search for the best match in a database similarity search report but relative
to each sub-section.

� Formatting. Renumber the positions of a sequence from −3000 to +500 instead
of 0–3500.

� Variation. Search for patterns in a sequence, except repeated ones.
� Finer control on the computation. Control of the order in which multiple sequences

are compared and aligned.
� Simple operations. Search in a DNA sequence for the characters other than A, C,

T, and G.

As illustrated by these examples, unexpected problems may arise at any time. How-
ever, these scenarios involve rather simple programmatic manipulations, without any
algorithmic difficulty or complex design. An important reason why programming is
needed here is that the function, although easy to program, or even already imple-
mented somewhere inside the program, has not been explicitly featured in the user
interface of the tool.

2.3. PROGRAMMING IN SCIENTIFIC RESEARCH

Apart from these scenarios showing that everyday work leads to operations that involve
some programming, there are fundamental reasons why scientific users, or at least a
part of them, would need to program.

� Sharing expertise. Biologists, having accumulated a lot of knowledge through
their academic and professional experience, in such a fast evolving area, are more
able to know what kind of information is involved in solving scientific problems
by a computational model. In her course on algorithmics for biologists (Letondal
and Schuerer, 2002; Schuerer, 2003), Schuerer explains that sharing expertise
requires some computing skills on the side of biologists, in order for them to be
aware of the tacit hypotheses that are sometimes hidden in computer abstractions.

� Programs as evolving artifacts. A computer program evolves, not only for main-
tenance reasons, but also as a refutable and empirical theory (Morch, 1997): thus,
being able to modify the underlying algorithm to adapt a method to emerging facts
or ideas could be, if not easily feasible, at least anticipated (Letondal and Zdun,
2003).

� Expression medium. The field of bioinformatics and genomics is mostly composed
of tasks that are defined by computer artifacts. In these fields the expression
medium (DiSessa, 1999) for problem solving is encoded as strings, and problems
are expressed as string operations (comparisons, counting, word search, etc).

PARTICIPATORY PROGRAMMING 211

3. Approach: Participatory Programming

What kind of solutions could help biologists to get their work done?

3.1. MORE TOOLS

One possibility is that biologists simply need more tools, with more parameters and
more graphics. This is maybe true, but:

� Some features or needs, particularly in a fast evolving research field, where the
researcher must be inventive, cannot be anticipated.

� Such software is complex: users must master many different tools, with spe-
cific syntax, behavior, constraints, and underlying assumptions; furthermore, these
tools must be combined, with parsers and format converters to handle heteroge-
neous data.

3.2. A PROGRAMMER AT HAND

A second possibility could be for biologists to have a programmer at hand whenever
they need to build or modify the programs. There are indeed many laboratories where
one or more programmers are hired to perform programming tasks. This is, however,
clearly not feasible for every biologist (for instance, the Institut Pasteur laboratories
have about a dozen such local programmers, for more than 1500 biologists).

3.3. PROGRAMMING

A third possibility involves programming: biologists just have to learn some basic pro-
gramming skills, since programming is the most general solution to deal with unfore-
seen computational needs. In fact, many biologists program, and even release software.
Most of the programs for data analysis are in fact programmed by biologists. We see
two clear types of development:

� large-scale projects such as (Stajich et al., 2002), developments in important bioin-
formatics centers such as the US National Center for Biotechnology Information
(NCBI) or the European Bioinformatics Institute (EBI), or research in algorith-
mics by researchers in computer science;

� local developments by biologists who have learned some programming but who
are not professional developers, either to deal with everyday tasks for managing
data and analysis results, or to model and test scientific ideas.

The two lines often merge, since biologists also contribute to open-source projects
and distribute the software they have programmed for their own research in public
repositories.

212 CATHERINE LETONDAL

However, as programming is also known to be difficult, not every biologist wants to
become a programmer. Most of the time, this change implies a total switch from the
bench to the computer.

3.4. PROGRAMMING WITH THE USER INTERFACE

An intermediate step is EUP (Eisenberg, 1997), which gives biologists access to pro-
gramming with a familiar language, i.e., the language of the user interface. Program-
ming by demonstration (PBD) (Cypher, 1993; Lieberman, 2000) lets the user program
by using known functions of the tool: with some help from the system, the user can
register procedures, automate repetitive tasks, or express specific models (styles and
formats for word processors, patterns for visualization and discovery tools, etc). Visual
programming languages, in contrast, offer a visual syntax for established programming
concepts: programming with the user interface ideally means programming at the task
level, which is more familiar to the end-user (Nardi, 1993).

Customization is related, but has a different goal: EUP provides tools or languages
for building new artifacts, whereas customization enables to change the tool itself,
usually from among a set of predefined choices or a composition of existing elements.
Although these two different goals might be accomplished with similar techniques, this
means that the level of the language is a base level in the case of EUP, whereas it is a
meta-level in the case of customization.

3.5. PROGRAMMING IN THE USER INTERFACE

We introduce Programming In the User Interface as an approach that provides the end-
user with a scaffolded access to general programming at use-time. We thus distinguish
Programming With the User Interface from Programming In the User Interface. These
approaches differ by essentially two aspects: (1) in our approach, programming is
made available to the end-user, but the programming language is not necessarily the
user interface language; and (2) in this approach, programming includes customization,
i.e., modifying some parts of the software being used.

Related work also includes tailoring approaches which enable the user to change the
software at use-time (Fischer and Ostwald, 2002; Henderson and Kyng, 1991; MacLean
et al., 1990). Similar approaches also include programmable tools where the user can
add functionalities to the tool by accessing to an embedded programming language and
environment (Eisenberg, 1995; Morch, 1997; Smith and Ungar, 1995). Research such
as (DiGiano, 1995; Wulf and Golombek, 2001) focusing on methods to encourage the
user to tailor the software by lowering a technical, cognitive, or sociological barrier are
very relevant as well.

Fischer’s concept of Meta-Design (Fischer and Scharff, 2000) attempts to empower
users by enabling them to act as designers at use-time. In this approach, software
provides a domain-oriented language to the users and lets them re-design and adapt
current features to their own need. As explained in (Fischer and Ostwald, 2002), user
software artifacts can then re-seed the original design in a participatory way. Our

PARTICIPATORY PROGRAMMING 213

approach is very similar: we first let users participate to the initial design by con-
ducting workshops and various user studies. Then, we either take their programming
artifacts as input to prototyping workshops or we put their modifications in biok back
into the original tool. The main difference in our approach lies in the programming
language that is provided to the user. We chose a standard programming language,
that the user can re-use in other contexts, like Eisenberg (1995) who offers the con-
cept of programmable applications in which users of a drawing tool can add features
by programming in Scheme. Thus, our tool does not include an EUP language: we
indeed observed that using a standard general-purpose programming language is not
the main obstacle in the actual access to programming, in the context of bioinformatic
analyses.

Some approaches offer the technical possibility for the user to change the application
during use by having access to the underlying programming language. MacLean et al.
(1990) describe how to build a whole application by combining, cloning, and editing
small components (buttons), associated to simple individual actions. This seminal work
has greatly inspired our work, where graphical programmable objects form the basis of
an application, and are a technical extension of buttons to more general programmable
graphical objects. In this regard, our technical environment is closer to Self (Smith et
al., 1995) or Boxer (DiSessa, 1989) except that we needed to use an open environment
and a scripting language featured with extensive graphical and network libraries. As in
Morch (1997), graphical objects provide an architecture where a mapping is provided
between application units and programming units in order for the user to easily locate
programming chunks of interest. As in our approach, the user interface helps the user
with access to programming, only when needed. Most of the time, the focus of the user
is the analysis of his or her data. However, our approach is not only technical, it relies
on a participative approach at design-time, which helps determine how to build such
an environment.

The following sections discuss one of the main aspect of our approach, which is to
provide full access to programming (Section 3.6), and explain how, by using contextual
and participatory design methods, we address potential issues that could be raised by
this access (Section 3.7). Section 4 describes biok, our prototype tool for participatory
programming, which, according to this approach, is both an analysis tool and a program-
ming environment. This leads to an environment that is both highly domain-oriented
and highly generic and open to full programming.

3.6. THE PROBLEM OF PROGRAMMING

We decided to provide an access to a general programming language, as explained in the
previous section, as discussed by Eisenberg (1995), and as opposed to EUP approaches.
Let us discuss the choices we made:

� is programming really too difficult for end-users?
� is programming the main difficulty for end-users?
� is programming the problem at all?

214 CATHERINE LETONDAL

Our thesis is that, focusing on the design of an end-user programming language
and stressing programming difficulties, we do not progress toward a general solution
regarding EUD in biology or similar fields.

3.6.1. Difficulties of Programming

Programming is indeed technically difficult and raises cognitive issues, but this is not
the main reason for biologists not to program when they need it. Nardi (1993) has shown
that having to write textual commands, one of the most “visible” and discriminating
aspect of classical programming, is not really the main explanation for the technical
barrier: for instance, users are able to enter formula in a spreadsheet, for example, or
to copy and modify HTML pages. If the language is centered on the task to perform,
the user will be able to learn and use it.

We have also been running an annual intensive 4-month course for research biolo-
gists to teach them various aspects of computing (Letondal and Schuerer, 2002). During
this course, computer scientists and bioinformaticians from the IT department, as well
as visiting professors, cover programming techniques, theoretical aspects (such as al-
gorithm development, logic, problem modelling, and design methods), and technical
applications (databases and Web technologies) that are relevant for biologists. Accord-
ing to our experience during this course, reducing the difficulty of programming to
difficulties with algorithms is too simple. The first reason is that there is not much algo-
rithmic complexity in their everyday programming. The second reason is that, whereas
biology students had good aptitude for programming (they had to program in Scheme,
Java, perl, or Python), and enough abstract reasoning for the required programming
tasks, a significant part of them did not actually program after the course, even though
they would need it. Why is that? This issue formed a basis for our reflection on both the
technical and organizational contexts of the programming activity of biologists, that is
illustrated by a case study described in Section 5.

Software engineering aspects is a more significant barrier. The occasional user faces
more problems with programming-in-the-large than with syntax or abstraction. The
tools that are actually used for bioinformatics analyses are often complex and large
systems, rather than small software packages. Users cannot build such systems by
themselves. Can they at least participate in those parts that depend on their expertise?
Finally, biologists want to do biology, not computer science. Even if they can program,
and could overcome specific technical problems, they prefer to spend their time on
biology. Therefore, both the technical context (software being used) and the use context
(data analyses) should be taken into account when designing programming tools for
such users.

3.6.2. What is Programming?

We believe that seeking for the perfect programming language for end-users is both too
simplistic and illusory. When I say to a colleague that “I am programming,” he or she

PARTICIPATORY PROGRAMMING 215

knows what I mean. This, however, does not lead to a definition of programming. There
are indeed various and different definitions of programming: design of algorithms, au-
tomation, building of software, abstraction (Blackwell, 2002), delegation (Repenning,
1993) design of the static representation of a dynamic process (Lieberman and Fry,
1995), and problem definition (Nardi, 1993; Repenning, 1993). Thus, programming,
being a polysemic term, that is not precisely defined, seems quite inappropriate for a
specification to develop an end-user programming system (Letondal, 1999a,c). Even
though programming claims to be a general solution and a general tool, it is also rather
difficult to define programming activity without taking the sociological and profes-
sional context of this activity into account. A student learning programming to prepare
for an exam and to enhance his or her reasoning capabilities is not pursuing the same
objective as a software engineer building an application for a customer, and, more gen-
erally, one does not program the same way when programming for oneself than when
programming for other people.

Furthermore, the definition of what programming is might benefit from the definition
of what programming is not.

Figure 10.2 shows various concepts related to programming or non-programming
opposed along three axes:

1. the mode (x axis): from batch, indirect and continuous to interactive, direct, and
discontinuous,

2. the underlying task (y axis): from using to programming,
3. the form of the expression (z axis): from textual to graphical.

This diagram is inspired by the classification given in (Burnett et al., 1994), where
visualization software is classified along three axes: mode, expression, and the compat-
ibility of the system with legacy software. The expression (z axis) and mode (x axis)
axes have been thoroughly studied, and it is not our purpose here to study them further.
For instance, the expression (z) axis describes the difference between programming in

Figure 10.2. Dimensions to contrast programming and non-programming.

216 CATHERINE LETONDAL

the C language and programming in the Labview visual environment (Labview, 1987).
But it also describes the difference between reading a textual program result, such as
searching for similarities in sequences databases, visualizing hits in a 3D graphical
plot. The mode axis (x axis) describes the difference between programming with a
compiler and programming within an interactive interpreter. This axis also describes
the difference between using an interactive tool and running long batch analyses that
read their input at the beginning of the computation and produce their output at the end
(Burnett et al., 1994).

We can observe from this diagram that, even though we build it on dimensions
that, taken separately, contrast programming to non-programming, clearly-identified
programming activities often belong to the non-programming side of each: while pro-
gramming is often opposed to interaction, learning to program with a Lisp interpreter
is on the interactive end of the x axis; building a Petri Net or programming in Labview
belong to the graphical end of the z axis, and writing a script to build a visual model of
a molecule (Ploger and Lay, 1992) is on the use end of the y axis, since the goal is to
understand and analyze a molecule, not to program. In fact, within these combined di-
mensions, programming activities fit within a continuum, which makes it difficult to rely
only on a definition of programming to build an end-user programming environment.

In our diagram, we stress the importance of the context of programming as determined
by the user’s activity and goals: we use a task axis (y axis) instead of the compatibility
axis from (Burnett et al., 1994), to describe the difference between programming,
building a tool, and using it. This axis and the issues of why and when biologists need
to program is the topic of the following section.

3.7. STUDYING THE CONTEXT OF PROGRAMMING

Having explained in the previous section why the context of programming should be
taken into account more deeply than a definition of programming, we describe in this
section the studies and participatory activities that have been organized to understand
this context (Letondal and Mackay, 2004).

3.7.1. Interviews

Among a total of 65 interviews that were conducted in the context of various projects
over the past 7 years, about 30 were dedicated to end-user programming. They were
mainly intended to collect use scenarios, or to observe biologists using scientific soft-
ware. Interviews were generally informal and open: we often just asked the biologists
to act in front of us a scenario of a recent bioinformatic analysis. Some of the interviews
have been videotaped or recorded, and annotated.

Several of these interviews enabled us to observe biologists programming, either by
using standard programming environments and languages such as C or C++, or by, very
often, scripting languages such as awk to parse large text files, perl to write simple Web
applications, or Python to build scripts for analysing structural properties of proteins.

PARTICIPATORY PROGRAMMING 217

We also observed uses of visual programming environments such as HyperCard or
even visual programming languages. Khoros (Rasure et al., 1990) for image analysis
or Labview (Labview, 1987), for instance, are used in some laboratories, mostly due
to their good libraries for driving hardware devices, and image or signal processing
routines. We also observed various people using spreadsheets for performing simple
sequence analyses.

During these interviews, we made several observations:
� Re-use of knowledge. Most of the time, biologists prefer using a technique or a

language that they already know, rather than a language that is more appropriate
for the task at hand, which is referred to as the assimilation bias by Carroll (1987).
A researcher had learnt HyperCard to make games for his children, and used it
in the laboratory for data analysis, even though nobody else knew it and thus was
able to provide help. But the result was efficient and he almost never had to ask
to the IT Center for help to find or install simple tools. Another researcher wrote
small scripts in the only scripting language she knew: awk, although perl that
is now often used and taught in biology would have been much more efficient.
In summary, as long as the result is obtained, it does not matter how you get
it. Similarly, a researcher tends to use a spreadsheet instead of learning to write
simple scripts that would be more suitable to the task.

� Opportunistic behavior. Generally and as described by Mackay (1991b), biologist,
even if they can program, will not do so, unless they feel that the result will be
obtained really much faster by programming. If this is not the case, they prefer to
switch to a non-programming methods, such as doing a repetitive task within a
word processor or performing an experiment at the bench. There is no requirement
nor any scientific reward for writing programs. They are only used as a means to
an end, building hypotheses.

� Simple programming problems. During his or her everyday work, a biologist may
encounter various situations where some programming is needed, such as simple
formatting or scripting (for extracting gene names from the result of an analysis
program and use them for a subsequent database search) and parsing, or simple
operations, not provided in the user interface, such a searching for characters other
than A, C, G, or T in a DNA sequence.

� Need for modifying tools rather than building from scratch. A frequent need for
programming that we observed is to make a variant or add a function to an existing
tool. Designing variants for standard published bench protocols is often needed in
a biology laboratory. For instance, when constructing a primer for hybridisation,1

it is often needed to adapt the number of washings according to the required length
and composition of the primer, or to the product that is used. With software tools,
this is however unfortunately seldom feasible, but it would be highly valuable since
there are already many existing tools that perform helpful tasks, and biologists
rarely want to build a tool from scratch.

1 A primer is a short DNA sequence used to generate the complementary DNA of a given sequence.

218 CATHERINE LETONDAL

� Exploratory use of tools. There is a plethora of tools, including new tools, for the
everyday task of biologists, and these tools are often specialized for a specific type
of data. This leads to a very interactive and exploratory use of computing tools
(O’Day et al., 2001). For instance, an observed scenario started by the search of a
protein pattern published in a recent paper. The user was looking for other proteins
than those referred to in this paper and that also contained this motif. After an
unsuccessful attempt—the results were too numerous for an interactive analysis—
the researcher decided to use another program. This attempt failed again because
his pattern was too short for the setting of this specific program. He then decided
to extend it by adding another one, also belonging to the set of proteins mentioned
in the paper. In the end, this enabled a final iterative analysis of each result. This is
a brief summary that stands for many scenarios we have observed, often resulting
in many failures due to a problem with the program, or with the format of the data.

This typical behavior might be both a barrier to and a reason for programming. It
can be a barrier by preventing a user to think of a more efficient way to get a result
[leading to an “active” user behavior as described by Carroll (1987)). However, at
the same time, it can be a ground for programming since programming could help to
rationalize, a posteriori, such an exploratory behavior. This, however, involves some
kind of anticipation: for instance, it might be a good place for programming instruments
such as history and macro recording.

3.7.2. Workshops

Biok has involved a series of video brainstorming and prototyping workshops over sev-
eral years from 1996 to 2004. We drew prototyping themes from brainstorming sessions
(Figure 10.3) and from use scenarios, which based on interviews and observation. Each
workshop involved from 5 to 30 people, with participants from the Institut Pasteur or
other biological research laboratories, as well as biology researchers who were students
in our programming course.

Finding Potential Dimensions for Evolution

From the very beginning of the design process, it is important to consider the poten-
tial dimensions along which features may evolve. Interviews with users help inform

Figure 10.3. Prototyping a pattern-search and an annotation scenario.

PARTICIPATORY PROGRAMMING 219

concrete use scenarios, whereas brainstorming and future workshops create a design
space within which design options can be explore. As Trigg (1992), Kjaer (1995),
Stiemerling et al. (1997), or Kahler (1996) suggest participatory design helps identify
which areas in a system are stable and which are suitable for variation. Stable parts re-
quire functionality to be available directly, without any programming, whereas variable
parts must be subject to tailoring.

For example, the visual alignment tool in biok vertically displays corresponding
letters in multiple related sequences (Figure 10.6, back window). Initial observations
of biologists using this type of tool (Letondal, 2001b) revealed that they were rarely
flexible enough: biologists preferred spreadsheets or text editors to manually adjust
alignments, add styles and highlight specific parts. It became clear that this functionality
was an area requiring explicit tailoring support.

Design of Meta-Techniques

Scenarios and workshops are important to effectively design meta-level features. Sce-
narios sometimes reveal programming areas as side issues. The goal is not to describe
the programming activity per se, but rather to create an analogy between the task, how
to perform it, and the relevant programming techniques. We identified several types of
end-user programming scenarios:

� Programming with examples. One workshop participant suggested that the system
learn new tags from examples (tags are visualization functions). Another proposed
a system that infers regular expressions from a set of DNA sequences. These led
to a design similar to SWYN (Blackwell, 2000).

� Scripting. One participant explained that text annotations, associated with data,
can act as a “to do” list, which can be managed with small scripts associated with
the data.

� Command history. A brainstorming session focusing on data versioning suggested
the complementary idea of command history.

The biok tag editor design (Figure 10.6, front window) had to consider the following
issues: Must programming be available in a special editor? Must it require a simplified
programming interface? Should the user interface be interactive? Should it be accessible
via graphical user interface menus?

We found prototyping workshops invaluable for addressing such issues: they help
explore which interaction techniques best trigger programming actions and determine
the level of complexity of a programming tool. For example, one group in an alignment
sequence workshop built a pattern-search mock-up including syntax for constraints and
errors (Figure 10.3).

One of the participatory design workshops was organized in the Winter of 2001
with five biologists to work on the biok prototype. Among the participants, four had
followed a programming course, and programmed from time to time, but not in Tcl,
except one who had programmed in Visual Tcl. Before the workshop, interviews had

220 CATHERINE LETONDAL

been conducted with discussions about the prototype, and participants were sent a small
Tcl tutorial by e-mail. The aim of the workshop was to experiment the prototype and get
familiar with it through a scenario (instructions were provided on a Web page). They had
to play with graphical objects, and define a simple tag. The issues that would arise during
this part would then be discussed and re-prototyped during a second part. The scenario
had also spontaneously been “tested” by one of the participants who brought some
feedback about it. Although the workshop was not directly aimed at properly testing
the prototype, the participants behaved as if it was, and this actually brought some
insights on the design of the prototype—briefly and among the most important ones:

� The participants were somewhat disturbed by a too large number of programming
areas: formula box, shell, method editor, etc.

� They had trouble to understand, at a first sight, the various elements of the user
interface and how they interact.

� They had the feeling that understanding the underlying model would help.

One of the tasks of the scenario was to define a tag. The only tool that the partici-
pants had for this was an enhanced text editor, only providing templates and interactive
choosers for the graphical attributes. This tool proved completely unusable and par-
ticipants got lost. The tool was indeed too programmer-centered, and difficult to use,
and there was no unified view of the tag definition. This led to another workshop
shortly after this one, and after a long brainstorming session, one participant built a
paper-and-transparencies prototype. We created an A3-size storyboard mock-up and
walked through the tag creation scenario with the biologists. The tag editor currently
implemented in biok is a direct result of these workshops.

Participatory approaches are also helpful when designing language syntax (da Cunha
and de Souza, 2003; Pane et al., 2001), or deciding on the granularity of code mod-
ification. As observed during the previously described workshop, the object-oriented
architecture and the method definition task apparently did not disturb users that much.
In a previous workshop that we started by displaying a video prototype showing the
main features of biok, participants tended to adopt the words “object” and “method”
that were used in the video. Interestingly, one of them used the term: “frame” all
along the workshop in place of object, probably because objects in biok (and in the
video prototype) are most often represented by graphical windows. In object-oriented
programming terms, we found, however, that biologists are more likely to need new
methods than new classes. Since defining new classes is a skilled modeling activity, we
designed biok so that user modifications at the user level do not require sub-classing.
User-edited methods are performed within the current method’s class and are saved in
directories that are loaded after the system. However, visualizing tags required the user
to create new classes, which lead us to provide this as a mechanism in the user interface.

Setting a Design Context for Tailoring Situations

Our observations of biologists showed that most programming situations correspond
with breakdowns: particular events cause users to reflect on their activities and trigger

PARTICIPATORY PROGRAMMING 221

a switch to programming (Mackay, 1991a). Programming is not the focus of interest,
but rather a means of fixing a problem. It is a distant, reflexive, and detached “mode,”
as described by Winograd (1995), Smith (1992), or Greenbaum (1993). While end-
user programming tools may seek to blur the border between use and programming
(Dittrich, 2003), it is important to take this disruptive aspect into account, by enabling
programming in context. Developing and playing through scenarios are particularly
useful for identifying breakdowns and visualizing how users would like to work around
them.

3.7.3. Participatory Design and Participatory Programming

Participatory programming integrates participatory design and end-user programming.
Participatory design is used for the design of an end-user programmable tool, yet
biologists programming artifacts also participate in the making of tools. These artifacts
are either produced by local developers, observed during interviews, or they can be
produced by end-users using biok.

Henderson and Kyng (1991) and Fischer (2003) also discuss how to extend end-user
participation in design to use-time. Our approach is very similar except that it in-
cludes programming participation and not only domain-level design artifact. Likewise,
Stiemerling et al. (1997) or Kahler (1996) provide a detailed description illustrated
with various examples of a participative development process for designing tailorable
applications. Yet, in both cases, the tools that offer document search and access right
management features, do not include programming.

4. Biok: Biological Interactive Object Kit

biok is a prototype of a programmable graphical application for biologists written
in XOtcl (Neumann and Zdun, 2000) and the Tk graphical toolkit (Ousterhout, 1998).
XOtcl is an object extension of Tcl, inspired by Otcl (Wetherall 1995), a dynamic object-
oriented language. Tcl is not an end-user programming language: on the contrary, it is
a general-purpose language, and moreover, it is not simple. Like (Wilkinson and Links,
2002), our experience teaching programming to biologists, show that languages such
as Python are much easier to learn. However, we chose Tcl XOtcl for:

1. its incremental programming feature, i.e., the possibility to define or redefine meth-
ods for a class at any time, even when instances have been created, which is very
convenient for enabling programming in the user interface,

2. its introspection tools that are generally available in Tcl software components and
that are mandatory to get a reflective system;

3. its dynamic tools such as filters and mixins, that enabled us to build a debugging
environment and some algorithmic flexibility features (Letondal and Zdun, 2003).

The purpose of biok is two-fold: to analyze biological data such as DNA, protein
sequences or multiple alignments, and to support tailorability and extensions by the
end-user through an integrated programming environment.

222 CATHERINE LETONDAL

Figure 10.4. Analyzing biological data: a plot displays the hydrophobicity curve of a protein sequence, that is
simultaneously displayed in a 3D viewer. Structural properties of the protein, namely transmembrane segments,
are simultaneously highlighted in the two protein representations. The user, by selecting parts of the curve, can
check to which hydrophobicity peaks these segments might correspond.

4.1. BIOLOGICAL DATA ANALYSES

The first purpose of biok is to provide an environment for biologists to analyze biolog-
ical data. Currently, it includes a tool to compare and manually align several related
sequences or display alignments that are computed by one of the numerous alignment
programs available (Letondal, 2001a). A molecular 3D viewer is also provided (Tuffery
et al., 2003; Figure 10.4). Thanks to this toolkit, biologists can compare similar objects
in various representations, simultaneously highlighting specific features in the data:
the alignment tool stresses common features among homologous sequences, whereas
the 3D viewer shows their structural location, which provides useful hints regarding the
potential function in the cell.

4.2. GRAPHICAL PROGRAMMABLE OBJECTS

The main unit for both using and programming in biok is what we call a “graphical
object.” Objects are indeed “visible” through a window having a name, or alias, that the
user may use as a global Tcl variable (Figure 10.4 shows three such graphical objects).
Graphical objects are programmable in several senses:

1. their “content” may be defined by a formula,
2. their methods may be edited, modified, and copied to define new methods,
3. their graphical components are accessible as program objects,
4. graphical attributes may be defined to implement visualization functions.

Graphical objects also have a command “shell,” to either directly call the object’s
methods or to configure the Tk widget via a special “%w” command, as illustrated

PARTICIPATORY PROGRAMMING 223

Figure 10.5. Graphical objects, formulas, and shell.

in Figure 10.5 where the plot’s title and curve legend have been directly set up by Tk
commands. Commands are stored in a class-specific editable history file as soon as they
have been issued, so they can be instantaneously reused on another object of the same
class.

4.3. DATAFLOW AND SPREADSHEET MODELS

Given the wide use of spreadsheets and the pervasiveness of its related dataflow com-
puting paradigm, we have designed the content of graphical objects as being optionally
defined by a formula involving one or more source objects. Figure 10.5 shows two
graphical objects: one (front window) is a “Sequence” object, called “seq0,” contain-
ing the letters representing the aminoacids of a protein. The other is a “Plot” object
(“plot0”). Its formula returns two lists of floating point numbers: the first one repre-
sents the ticks of the x axis and the second the values of the curve, that displays the
hydrophobicity peaks of the “seq0” object. Each time the sequence is modified, the
curve is redisplayed, unless the “Dynamic” switch has been turned off. The “Plot”
object is composed of a BLT graph, two sliders to select the displayed portion of the
curve, and two fields showing the x and y values selected by the user.

4.4. PROGRAMMABLE VISUALIZATION FEATURES

One of the central tools of biok is a spreadsheet specialized in displaying and edit-
ing sequences alignments (Figure 10.6, back window). As in many other scientific
research areas, visualization is critical in biology. Several graphical functions, or tags,
are available in biok. A tag is a mechanism that highlights some parts of an object. For
instance, segments of protein sequences showing a specific property, such as a high

224 CATHERINE LETONDAL

Figure 10.6. Tag editor (front) and alignment editor (back). In the tag editor, the top part displays a field to enter
parameters for this tag, if needed. The part below contains a super-class chooser and an editor for the code to
define tag values. The middle part is a tool to associate graphical attributes to tag values. The bottom part displays
a short description of the tag. The positions associated with the various tag values are highlighted in the alignment
editor. In this example, a tag showing transmembrane segments (in blue) is extended by a sub-tag highlighting
small patterns around them (in red).

hydrophobicity, can be highlighted in the spreadsheet. Table 10.1 shows that a tag is
composed of two relations:

1. between graphical attributes (such as colors, relief, or fonts) and predefined tag
values,

2. between these values and positions in the annotated object.

New tags may also be defined with a dedicated editor (Figure 10.6, front window),
where the user has to define a method to associate tag values to data positions in a script.
This method is typically either a small script for simple tags, or an invocation to more
complex methods that run analyses, notably from a Web Server (Letondal, 2001b).

biok comes with several predefined tags, which can be modified, or the user can
create new ones with a set of super-classes of tags, that define e.g. row tags, column
tags, cell tags, or sequence tags. For example, a tag class Toppred, named after a
published algorithm for detecting transmembrane segments in a protein sequence (von
Heijne, 1992), is available in biok. This tag was implemented by a biology student
during her internship. We report a concrete case of a tag extension which highlights
non-conventional patterns.

The spreadsheet tool, the tag editor and the 3D molecular visualization widget
(Tuffery et al., 2003; Figure 10.4), have been the subject of numerous workshops.
Among these workshops, the workshop dedicated to the design of the tag editor has
been described previously.

Table 10.1. Tag relations

Graphical attributes 1.1.1 Tag values 1.1.2 Locations

Blue Certain 36–55
dark green Putative 137–157
Red AXA 13–15

PARTICIPATORY PROGRAMMING 225

4.5. PROGRAMMING ENVIRONMENT

A method editor lets users redefine any method, save it, print it, search its code, and try
it with different parameters (which just makes the editor a form to run the code), to set
breakpoints, and to ask for trace.

User-created or re-defined methods and classes are saved in a user directory, on a
per-class and per-method basis. This enables the user to go back to the system’s version
by removing unwanted methods files, and to manage the code outside of biok, with
the system file commands and the preferred code editor. This double access and the
fact that the result of user’s programming work is not hidden in a mysterious format or
database, where source code is stored as records organized in a way that the users are
not able to understand, is very important to us.

biok features several navigational tools that enable the user to locate source code
directly from the user interface, whenever needed during standard use of the tool:

1. methods browser and inspector available from any graphical objects: source code is
available at the method level, on a per-object basis,

2. search tools for classes and methods that enable to search the name, body, or docu-
mentation,

3. a class browser.

The methods browser can be triggered from any graphical object, by a menu that
only displays methods relevant to this object. In this menu, “Data analysis” methods are
distinguished from methods dealing with “Graphical Display,” the former being often
more of interest to the biologists than the latter.

biok also has various debugging tools, that we were able to develop quite easily
thanks to the dynamic introspection tools provided by the XOtcl language. Users can
print keyed debug messages, put/remove breakpoints on method calls by simply clicking
on a button in the method editor, and put breakpoints inside the code.

Figure 10.7 shows spy and trace tools. A button in the editor enables the user to
trace method calls: this opens a “Methods stack” window displaying method calls
with parameters and return values. In a way similar to direct activation (Wulf and
Golombek, 2001), a concept to encourage tailoring, the user can spy the execution
during a short period, and select specific methods from the list of those called (see “Spy”
window in Figure 10.7). Thus, these tools are useful for both source code navigation and
comprehension: combining browsers, spy or trace tools, and breakpoints is a good mean
to find the location of a specific problem, or to understand the way the program works.

4.6. PROGRAMMING ERRORS

A frequent objection to our approach is that opening the source code to end-users
might make programming errors or break the system. By providing programming and
debugging tools, and by designing the environment for incremental changes, we sought
a way to minimize the impact of errors, not to remove them.

226 CATHERINE LETONDAL

Figure 10.7. Spying and Tracing method calls. Object “c0” uses “c1” in its formula. The “Methods stacks” window
displays methods called when a change occurs in “c1”. The “Spy” window enables to start/stop spying and to
select methods for being traced.

Breaking the system is indeed feasible at the user level, in the same way as with an
open-source software that the user can download, install and modify locally. However,
whenever the system incidentally breaks, there is a simple way to go back to a previous
state: user source is saved as simple text files organized in easy to manage directories. If a
new method breaks the class, for example, the user only has to remove its corresponding
file from its class directory. There is no specific mechanism implemented yet in the
prototype to organize source code management, for this can easily be implemented
with standard versioning tools such as CVS.

We observed, though, that biologists are not really interested in challenging software
robustness! On the contrary, as we observed during student projects, they are very
cautious, and generally only focus on the part of the code they feel they have control
over. According to Wulf and Golombek (2001) or Mackay (1991a), tailoring has even
rather to be encouraged than prevented.

4.7. DESIGN RATIONALE SUMMARY

Our focus in biok is not on programming, but rather on the programming context.
We provide, however, a full access to programming as a key feature of the tool. biok
contextualizes the task of programming with respect to the biologist’s scientific tasks
and motivations. We stress:

1. Focus. The focus of the tool is on biology or bioinformatics tasks; coding software
is possible, but not obligatory.

PARTICIPATORY PROGRAMMING 227

2. Incremental programming. Programming from scratch is difficult: whereas modify-
ing an existing, working program, especially if it includes domain-centered examples,
is motivating and helpful. The PITUI (Programming In The User Interface) approach
enables incremental programming and progressive learning (Carroll, 1990).

3. Integration of the graphical and coding levels. An important aspect of a pro-
grammable application is to integrate code objects of interest and graphical
representation of these objects (Wulf and Golombek, 2001). Integration should work
both from the graphical object to the code object, and from the code to the graph-
ical object. In (Eisenberg, 1995), some variables describe the user interface state,
and some commands for modifying this state are available at the scripting level. The
notion of graphical objects gets close to the extreme integration of graphical and cod-
ing elements that is provided in Boxer (DiSessa, 1989) or Self (Smith et al., 1995).
Following the spreadsheet paradigm, and whenever possible, graphical objects of
interest, such as sub-areas of objects, or tags, are available from the code.

4. A good programming environment. Motivation for the user to program, although
existing, is probably discouraged by common standard environments (Lieberman
and Fry, 1995).

5. Reports on the Uses of the Prototype

This section reports various uses of the prototype over the last years. It has three
purposes: to show how the prototype can be used as a programming environment, either
to tailor or to create simple functions; this also illustrates an aspect of the participatory
programming process, where programming artifacts produced by end-users can be
incorporated back into the tool to be shared with other users; to show that domain
orientation is obviously important to sustain programming activity and to provide
tailoring affordances; this shows, however, that this does not exclude encoding with
a standard programming language; to illustrate the use of the prototype for design or
re-design purposes.

5.1. METHODS OF THE EVALUATION STUDIES

Even though biok is not specifically aimed at students, it has mostly been used by
them. The main reason for this is that it is a prototype and this is why I have preferred
not to distribute it, for the moment. These students, however, were biologists with
bioinformatics training, including a first exposure to programming (from a few hours
to several weeks). An important part of bioinformatics work, and this is not only true
in the Institut Pasteur, is performed by students, this makes them significant users of
the tool. Moreover, none of these students were obliged to use the prototype. As a
matter of fact, some of them did not, but used more standard programming tools such
as a text editor and the Tcl interpreter instead. More established scientists indirectly
used biok’s although not alone, because it is not finished and stable enough, hence

228 CATHERINE LETONDAL

Figure 10.8. Heijne algorithm.

they needed my help. They were interested by its incremental programming features
particularly for visualization. For one of them, the possibility to superimpose several
visualizations of patterns was interesting. Other scientists reported their need to use
the prototype and urged me to finish it. For one of them, an alignment editor was a
pivotal tool in bioinformatics, since it helps produce data that lead to a considerable
quantity of other analysis tools. Added to this, she said that it was essential to be
able to add functions, because it is impossible to have every function provided for in a
single tool. Other scientists stressed the value of Web server tools integration (Letondal,
2000).

Student internships brought various types of information. None of projects that are
described here can be considered as a proper user study with controlled setting. Our
approach seeks to explore a complex problem space by conducting user studies and
workshops, rather than to evaluate specific solutions. However, we did some user testing
and since the prototype—that was still at development stage—has been used on a daily
basis during the internships, the students’ projects were an opportunity to informally
observe how the environment and the task-centered tools could help.

Generally speaking, most of the students used a great deal the environment either for
locating examples of code by using the navigation and search tools, for debugging their
code and understanding interactions between objects, or just for modifying simple
methods, for instance either by adding a parameter to a method that calculates the
hydrophobicity of a protein, or by adding a default value to a parameter, or by adding
a branch in a conditional, in a function that select the appropriate hydrophobicity scale
for a given protein. The following sections provide a more detailed description of some
specific projects using biok.

5.2. LEARNING TO PROGRAM

A first two months project (Spring, 2001) involved a student in biology having learnt
some programming at the university, in a different language (Python). She first had a few
days training in Tcl and biok, either from the documentation provided on a Web page,
from Tcl books or with assistance from me. Then she had to implement a published
algorithm (von Heijne, 1992) to predict transmembrane segments in proteins.

The algorithm consists in the computation of a weighted sum: h∗
i wi on a sliding

window (Figure 10.8), with:
hi = aminoacid hydrophobicity values

PARTICIPATORY PROGRAMMING 229

wi = i/S for 1 ≤ i ≤ n − q + 1; (n − q + 1)/S for (n − q + 1) < i < (n + q +
1); (2n + 2 − i)/S for (n + q + 1) ≤ i ≤ 2n + 1) with a normalization factor: S =
(1 + n)2 − q2 to get:

2n + 1

Sum wi = 1

i = 1

At first, the student encountered a lot of problems in programming, since the course
she had was too short and too difficult. At the beginning, she had no or very few under-
standing of computing or programming concepts such as functions, loops, parameter
passing, etc. She was really discouraged.

The human environment helped a lot: several computer scientists of the team gave
her advice, and she could at any time ask for information. We believe that biok helped
her mainly by bringing a real motivation. We observed her positive reaction the first
time she obtained a display of the curve she had to compute for the algorithm—a
hydrophobicity curve (Figure 10.4). From this moment, she progressed much faster
and explored spontaneously various alternatives, new computations, etc. She was also
able to find out—with little help—how to add a graphical component to the plot object
(field displaying the pointed location on the curve). Besides, she confirmed in interviews
that programming with objects of interest makes a real change.

She also helped a lot to enhance biok. Convenient although very simple features,
such as the “Print” button in the method editor or in the Plot object were added. She
was always doing a cut-and-paste of single methods code into the emacs editor just to
get a printed copy. The formula-level history also originated from seeing her copy-and-
pasting the very same formula for the very same kind of objects.

However, she almost never used the debugging tools, although we did a quick
demo. The reason for her not using the trace tool was probably that she had a dozen
methods to program, where the order of method calls was always the same. The only
tool that could have been helpful is the keyed print statement, to visualize variables’
values, but this mechanism was too complex, compared to a simple print that one can
interactively comment out. Furthermore, the breakpoint mechanism was not ready at
the time of her internship.

We observed that implementing this type of algorithm (about 300 lines of code,
divided in about 10 functions, with some simple embedded loops), is a current practice
among bioinformaticians. Even though the program corresponding to the published
algorithm is generally available from the authors, researchers might need to apply it
to a variant set of data, or to take only a part of it for a similar problem. However,
even though the code she has developed is now included in biok, and is the basis of
the visualization tag, the implementation represented for her only exercise. Why are
we reporting about this project? It is to show that that cognitive problems raised by
programming decrease in a domain-oriented environment, even if the programming
language is a general-purpose language.

230 CATHERINE LETONDAL

5.3. ADDING NEW FEATURES IN AN EXISTING COMPONENT

AND CONNECTING OBJECTS

Another bioinformatics student, who had learnt programming for a few months, spent
6 months (Spring, 2002) on a project where she had to refine a graphical object de-
fined in biok, on top of a Tk widget for visualizing a molecule. She also had to link
this object to the alignment editor, in order for features common to both representa-
tions to be simultaneously displayed by the mean of tags by using a simple protocol
that is provided in biok to enable the user to synchronize selections (see Figure 10.4).
This student was of course able to program, although as a beginner, for she had just
learnt programming. The main benefit of this project for our approach was to pro-
vide a test-bench for our environment, that she used all the time. In particular, she
used the debugging tools that proved quite useful to program interactions between
graphical objects. She also used the method editor all the time, even though it is not
a full featured editor, and although the use of another external editor such as emacs
is possible in the environment. Several technical aspects we focused on in the de-
sign proved to be really useful for her: as a biologist, she especially liked the focus
on the task. The incremental programming idea, and the direct connection between
graphical objects and code enabled her to better control the appropriate parts of the
program.

5.4. TAILORING A VISUALIZATION FUNCTION

We illustrate here a situation where a biologist came to me because he knew about the
programming features of biok and he knew that it was the only mean to get his peptide
features visualized in a reasonable time. This scientist wanted to search in a large set
of protein sequences for a signal peptide recognized by non-conventional secretion
enzymes. For this purpose, he had to check whether a short pattern, composed of three
letters and corresponding to the following regular expression: A.A, also occurred in
his sequences, either before the first predicted transmembrane segment, or after the last
one. Defining a new tag for this purpose, required:

� to define a new tag in the tag editor as a sub-class of the Toppred tag (a menu to
select a base-class is provided),

� to add about 20 lines of code to:

� search for the positions of the first and last segment in a list of segments,
� search for an occurrence of the A.A pattern before the first position or after the

last one,

� associate a color (red) to this new tag (Figure 10.6).

It is worth noting that such a specific problem could not have been anticipated in a
general-purpose bioinformatic tool. This newly created tag, once saved, is then available

PARTICIPATORY PROGRAMMING 231

to the user for the current and next sessions. It can be sent to a colleague as a separate
and easy to locate file to be copied in his or her biok classes directory.

5.5. A PROTOTYPING TOOL FOR DESIGN

One convenient aspect of the sequences alignment editor is its flexibility and, thanks to
its adequation to users domain and work practices, it also proved to be a quite powerful
tool to explore design ideas.

Unexpectedly Using the Alignment Editor to Align Analyses

Figure 10.9 shows the visualization of three independent analyses of the same sequence.
Although the possibility to compare analyses was not really anticipated, it could be
quickly developed during the preparation of a workshop where visualization issues
were addressed.

Exploring Algorithmic Problems

biok has been used in several occasions as an environment to explore new ideas regarding
algorithmic issues. We report an attempt to open unexpected points of interactions
within an algorithm. In this situation, we were again able to quickly prototype the idea,
before re-implementing it in a more efficient programming language.

Demonstrating Ideas for Participatory Workshops

Although we have not directly used biok during workshops, as in Bodker and Gronbaek
(1991), the tool has often been used before participatory workshops to demonstrate
some ideas and open the design space.

6. Between End-User Programming and Open Systems: A Final Reflection

We have analyzed the programming practices among biologists and observed the con-
text of programming, which often consists in adapting software to numerous specific
and diverse situations. We wanted, as far as possible, to better deal with unanticipated

Figure 10.9. Comparing analyses: predator is a secondary structure analysis, showing helices and sheets. Toppred is
a transmembrane segments predictor, another kind of secondary structure specific to membrane proteins, and zappo
is a physico-chemical analysis, showing hydrophobic aminoacids, very often found in helices and transmembrane
segments

232 CATHERINE LETONDAL

software evolution (Letondal and Zdun, 2003) and adaptation, so it appeared important
to consider general software flexibility issues. In (van Rossum, 1999) Rossum advocates
for the access to programming for everybody through computing education, develop-
ment of better programming tools and the building of a community of users. In this
approach, access to programming not only enables end-users to build small programs
or to customize their tools, but also to modify them. The approach also explicitly relies
on the use of a general-purpose programming language, such as Python, that is easy
for beginners to learn and yet is suited for building real-world professional applica-
tions. Thus it goes beyond end-user programming as described by Lieberman (2000).
We agree with Rossum that, following the open-source movement, such a desirable
development of end-user programming will change the nature of the software develop-
ment process. In our approach, however, even though our objectives are very similar,
we believe that more results from the EUD field should be taken into account to en-
hance access to programming. Powerful programming tools, such as enhanced Undo or
program visualization tools are envisioned in (van Rossum, 1999). But these tools are
still quite programmer-oriented and lack data visualization features or lack links to the
domain-oriented concepts; this proved critical in the success of biok as a programming
environment. Moreover, we believe that programmability requires powerful mecha-
nisms such as introspection, that are lacking in Python, as well as powerful concepts
such as meta-level interfaces, hence we will describe which general principles should
be applied, related to software flexibility, as described by the Open Systems approach
(Dourish, 1996; Kiczales et al., 1991). This section, by describing how these principles
could be applied in EUD, is an attempt at bridging the gap between EUP, CP4E,2 and
Open Systems. We first report on the specific software flexibility issues we observed
in our user studies. We then relate these problem to the work on reflective architectures
and open system protocols. Finally, we describe how these principles have been applied
in the biok architecture and how they could be adapted to end-user programming.

6.1. DIMENSIONS OF FLEXIBILITY

Object-oriented and component technology are generally acknowledged as an all pur-
pose solution to achieve software flexibility, and this is why biok is based on object-
oriented constructs. Yet, can we entirely rely on these technologies to address unan-
ticipated software changes by the end-user? (Boyle, 1998; Chapman, 2000; Stajich
et al., 2002) are examples of this approach in the field of bioinformatics, and at least
for the latter ones, are extensively used even by novice programmers. However, we have
observed during our user studies that this approach has some limitations, compared to
the flexibility that biologists need, such as:

1. components should be modifiable (and they are often not),
2. components often do not easily adapt,

2 CP4E: Computer Programming For Everybody

PARTICIPATORY PROGRAMMING 233

Figure 10.10. Dimensions of flexibility shows the important flexibility dimensions that emerged during the user
studies.

3. the vast majority of tools are monolithic applications,
4. flexibility during the computation of a scientific result is often required.

In Figure 10.10 important flexibility . . . are shown.

1. Open systems or system flexibility addresses the possibilities to change the system,
from simple customization to reflective systems.

2. Integrability or interface flexibility refers to the possibility to easily combine compo-
nents. Bioinformatics is a fast evolving field: changes often occur at the component
interface level. Typical solutions include dataflow systems (Bizzarro, 2000), wrap-
pers, API (Stajich et al., 2002), and Web services (Wilkinson and Links, 2002).
Along this dimension, explicit and interactive interface adaptation features by the
end-user could be defined.

3. Interactivity or algorithmic flexibility describes systems that give a significant con-
trol on the computation to the user, from interactive visualization tools to domain-
oriented programming languages such as Darwin (Gonnet et al., 2000). As observed
by Repenning (1993), the whole field of HCI aims at building systems that provide
control to the user at the appropriate moment. In this view, a programmable software
enables the user to control the computation better. Typically, the user can provide
hints to the heuristic of the algorithm. In a multiple alignment of several sequences,
the user could control the order in which the sequences are compared. Interestingly,
opening unforeseen points of control in a tool does not lead to more programming
but to more interaction. At one end of this spectrum there are unconstrained tools,
such as spreadsheets and word processors which according to (Nardi, 1994), lead to a
level of flexibility necessary for visualizing scientific data. The more a system can be
progressively adjusted with parameters in a rich dialog between the user and the tool,
the more flexible and adaptable it (Burnett et al., 1994). One could even say that the
most adjustable systems are these unconstrained tools we have just mentioned, i.e.,
systems whose “result” are entirely decided by the user. In bioinformatics, several
tools already enable the user to interactively steer the computation, or even change

234 CATHERINE LETONDAL

results. Several tools (Letondal, 2001b) allow the manual change of the output of
algorithms that compute multiple alignments. However, changing the results can
provoque mistakes. In (Letondal and Zdun, 2003), we describe an attempt to open
new unexpected points of control in the algorithm: this mixed-initiative approach
enhances the final result and prevents such mistakes.

6.2. REFLECTIVE AND OPEN ARCHITECTURES FOR UNANTICIPATED CHANGES

There are systems that anticipate their own modification: this starts from customizable
systems, up to meta and reflective systems.

Nierstrasz and Tsichritzis (1995) identifies three main levels of software flexibility
(three first levels of Figure 10.10):

1. functional parameterization, where the parameters may be values or functions, and
where the system is composed of functions;

2. software composition, where the parameterized part includes the scripting to glue
software components;

3. programming, where the user input is the program code, and the system is the
programming language.

The third level is thus the most flexible, but too much freedom does not help the end-
user, who needs scaffoldings. This is why a fourth level is needed: reflexive architectures,
that both provides full programming and explicit structures for parameterization.

6.2.1. Flexibility and Reflexivity

Our goal is to achieve a general flexibility, similar to that in programming. In Figure
10.11, the fourth level shows that everything is “open” to the user, everything in the
system becomes a parameter. Yet, as opposed to free programming (third level in
Figure 10.11, here there is a scaffolding. This scaffolding is composed of an existing
program, with components, structures, examples, as well as an environment to help use
these objects. We put this approach in a coherent way related to free software and open
systems, but this freedom does not prevent an inexperienced user to be involved.

Figure 10.11. Software levels of flexibility: the blank part is the “free” part for user input, and the gray part the
system.

PARTICIPATORY PROGRAMMING 235

Figure 10.12. From meta-object protocol to meta-application protocol.

As demonstrated by Repenning (1993), one can consider that the more a system
makes its internal objects—structure, functions, values, data structures—explicit, the
more flexible it is. This principle is indeed made systematic in the reflective systems
approach, which uses internal representation for standard computation and behavior
(Maes, 1987). The principle that we have followed in biok, is both to provide a structured
underlying architecture and framework to help the understanding of the code (see
Section 6), and to provide dynamic navigation tools to help locate source code involved
in a specific feature (Section 4.5 and Figure 10.11).

6.2.2. Meta-Object Protocols

Providing a reflective architecture requires a specific internal design, where inter-
nal components are available as an additional meta-level interface, potentially sub-
ject to modifications. The meta-object protocol (MOP) technology (Kiczales et al.,
1991) gives a model of an explicit modification protocol for systems where changes
of the system are anticipated. MOP was originally intended for object-oriented lan-
guages, to let the user change the way object, classes, inheritance, etc. behave.
Figure 10.12 illustrates that this approach can be transposed to standard applications,
as was done by Rao (1991) for a window system or by Dourish (1996) for a CSCW
toolkit.

6.3. FLEXIBILITY FOR THE USER

A reflective architecture does not only require an additional interface. Giving a non-
specialist that many possibilities to perform complex actions raises a usability issue.
As explained by Morch (1997), or as modeled by da Cunha and de Souza (2003), the
more the user interface offers programmability, the less usable the system is, since the
user interface language departs from the user’s task.

To avoid user confusion, a compromise must be found to deal with these different
representations. How can we help the user understand which part of the source code
corresponds to such and such user interface components? How can we articulate both
languages by using an intermediate representation level? How can we structure the code
in small enough components that correspond to the user’s domain task units? In other
words, internal architecture has to be handled and designed as an explicit, although
additional, user interface. In Section 3.7, we explained that this design was greatly

236 CATHERINE LETONDAL

Figure 10.13. Adding intermediate programming levels and improving the programming environment usability:
two complementary approaches.

influenced by the observations we made during interviews and the ideas that emerged
in participatory workshops.

6.3.1. Explicit Intermediate Meta-Level Interfaces

In the context of EUP, several approaches exist to manage intermediate levels of access
from the user interface to the code. Morch (1994) suggests a design where tailoring can
occur at three levels: customization, integration, or extension. Extension can be per-
formed through three kinds of interfaces: the standard user interface, design rationales,
or source code. The design rationale fills the gap between the source code and the user
interface. It is a pedagogical go-between which explains the behavior of the application
units. For instance, a diagram can explain how the code deals with mouse movements
in a drawing application.

More generally, our approach draws from the MAP model (Figure 10.13). Not only
must this interface be explicit, it must also belong to the user’s working environment so
that the user does not have to switch from his or her work environment to an encoding
environment.

In order to achieve this, we have built two kinds of intermediate interfaces that
are directly accessible from the application: intermediate programming levels and a
programming interface (Figure 10.13). Programming levels and intermediate meta-
level user interfaces include:

1. a formula spreadsheet-like level,
2. a tag programming level to visualize biological functions,
3. a scripting level to facilitate program composition,
4. an object-oriented implementation level with a full-fledged integrated programming

environment.

6.3.2. Internal Framework: Explicit Elements of a Protocol

In addition, we not only structure the software in order to make it “source-navigable”,
but also we borrow from the MOP approach the idea of having the source code follow

PARTICIPATORY PROGRAMMING 237

a documented and explicit framework. In order to do this, we need well-known method
names where the user can learn to go.3 In biok, graphical objects define a set of protocols:

� Graphical display. Graphical objects define draw and redisplay methods for
graphical components to be created, initialized and refreshed. If, for example,
fields were missing in the tool for displaying curves, the user would just have to
edit the draw method. This is what happened with a student who wanted to add
the x and y fields in the initial tool (Figure 10.4).

� Synchronized selections. A simple protocol has been defined with another biology
student as a set of three generic methods. These methods define which selections
in objects should be synchronized (interact); what to do when a synchroniza-
tion should occur (propagate); how to enforce selection in the target object
(highlight).

� Persistence. Two methods deal with object contents (value) and persistence
(save).

6.4. CONCLUDING CEMARKS ON FLEXIBILITY

In this section, we have tried to show that general software flexibility is desirable for
educated end-users, as long as explicit tools are designed for it, and that this scaffolded
flexibility is feasible through reflective mechanisms. We preferred to adopt a reflective
architecture rather than a more explicit meta-descriptive system. The first reason is
that the latter solution is more costly: we have chosen to reuse descriptive constructs
(classes and methods) instead of rewriting a language, and to have them available and
modifiable through introspection. Secondly, true reflective mechanisms ensure a causal
connection between the running system and its source code (Maes, 1987). Finally, an
explicit meta-descriptive system requires an additional abstraction level. Bentley and
Dourish (1995) have demonstrated that computer abstractions, unlike mathematical
ones, are often compromises, leaving potentially important aspects out of its scope.
Hence, instead of being a positive tool to structure application, they become a barrier.

7. Conclusion

We built biok as an environment that enables biologists to conduct data analyses, com-
bine them and visualize the results with graphical tools. In this environment, and accord-
ing to their needs, biologists can locate and modify the code of methods, and create
new ones. Through familiar entities such as programmable graphical objects corre-
sponding to domain concepts, biok makes programming more accessible, but it still
requires a basic knowledge of programming, as in (van Rossum, 1999) or (Eisenberg,
1995). Being embedded within a running application, the programming meta-level has

3 Notice, however, that we are not looking for a framework-based approach. biok is not an abstract set of classes
that first need to be instantiated. Yet, there is a documented framework within the running application. In biok,
programming is possible, not required.

238 CATHERINE LETONDAL

to rely on a well-designed internal architecture (Kiczales et al., 1991), where flexibility
dimensions carefully correspond to the users needs. Participatory programming, a pro-
cess that integrates participatory design and end-user programming, leads to enhanced
flexibility in the right places (Kjaer 1995; Stiemerling et al., 1997; Trigg, 1992). Our
work consists more in the exploration of the problem space: we wanted to investigate
on the context of the programming tasks rather than programming itself, by addressing
the following issues: what do users want or need to program? when do users want or
need to program? The main outcome was that biologists preferred to program in the
context of normal software use, or even that they preferred not to program at all. An
important consequence is that a software with programming facilities should, through
a careful design, both maximize the available programming features, and minimize the
programming needs. This is why a better cooperation should take place in the build-
ing of software. Indeed, we discovered that problems arising when biologists need to
program lie in the way common software is built rather than in the difficulty of the pro-
gramming activity itself. This is why we shifted the problem focus from programming
to flexibility, in order to take into account the fact that programming, in our context, is
neither the goal nor the main difficulty for biology researchers.

Acknowledgments

My thanks to the many biologists, programmers and bioinformaticians who participate
to the interviews and workshops. Special thanks to Volker Wulf, Wendy Mackay, Michel
Beaudouin-Lafon, Katja Schuerer, Alexandre Dehne Garcia, Fabienne Dulin, Albane
Le Roch, Alexis Gambis, Marie-France Sagot, Thierry Rose, Pierre Tuffery, Victoria
Dominguez, Francois Huetz, Lionel Frangeul, Bertrand Neron, Pierre Dehoux and
Stephane Bortzmeyer. Many thanks to Andrew Farr for his helpful assistance on the
English.

References

Bentley, R. and Dourish, P. (1995). Medium versus mechanism: Supporting collaboration through
customization. In: Proceedings of ECSCW’95, pp. 133–148.

Bizzaro, J.W. (2000). Distributing scientific applications with Gnu piper. Technical report, bioinfor-
matics.org, http://bioinformatics.org/piper.

Blackwell, A.F. (2000). Swyn: a visual representation for regular expressions. In: Your Wish is My
Command: Giving Users the Power to Instruct their Software. Morgan Kaufmann, pp. 245–270.

Blackwell, A.F. (2002). What is programming? In: Proceedings of PPIG, pp. 204–218.
Bodker, S. and Gronbaek, K. (1991). Design in action: From prototyping by demonstration to cooper-

ative prototyping. In: Design at Work: Cooperative Design of Computer Systems. Hillsdale, New
Jersey: Lawrence Erlbaum Associates, pp. 197–218.

Boyle, J. (1998). A visual environment for the manipulation and integration of java beans.
Bioinformatics 14(8), 739–748.

Burnett, M.M., Hossli, R., Pulliam, T., VanVoorst, B. and Yang, X. (1994). Toward visual programming
languages for steering in scientific visualization: A taxonomy. IEEE Computational Science and
Engineering, 44–62.

PARTICIPATORY PROGRAMMING 239

Carroll, J.M. and Rosson, M.B. (1987). The paradox of the active user. In: J.M. Carroll (ed.), Interfacing
Thought: Cognitive Aspects of Human-Computer Interaction. Cambridge, Mass: MIT Press, pp.
80–111.

Carroll, J.M., Singer, J.A., Bellamy, R.H.E. and Alpert, S.R. (1990). A view matcher for learning
smalltalk. In: Proceedings of ACM CHI’90 Conference on Human Factors in Computing Systems,
ACM Press, pp. 431–437.

Chapman, B. and Chang, J. (2000). Biopython: Python tools for computation biology. ACM-SIGBIO
Newsletter.

Costabile, M.F., Fogli, D., Letondal, C., Mussio, P. and Piccino, A. (1993). Domain-expert users and
their needs of software development. In: Proceedings of the HCI 2003 End User Development
Session.

Cypher, A. (1993). Watch What I Do. Programming by Demonstration. MIT Press.
da Cunha, C.K.V. and de Souza, C.S. (2003). Toward a culture of end-user programming: understanding

communication about extending applications. In: Proceedings of the CHI’03 Workshop on End-
User Development, Apr. 2003.

DiGiano, C. and Eisenberg, M. (1995). Self-disclosing design tools: a gentle introduction to end-user
programming. In: G. Olson and S. Schuon (eds.), In: Proceedings of DIS ’95 Symposium on
Action Systems, Ann Arbor, Michigan: ACM Press, pp. 189–197.

DiSessa, A. (1999). Changing Minds: Computers, Learning, and Literacy. MIT Press.
DiSessa, A. and Abelson, H., (1989). Boxer: a reconstructible computational medium. In: Studying

the Novice Programmer, Lawrence Elbaum Associates, pp. 467–481.
Dittrich, Y., Lundberg, L. and Lindeberg, O. (2003). End user development by tailoring. Blurring

the border between use and development. In: Proceedings of the CHI’03 Workshop on End-User
Development, Apr. 2003.

Dourish, P. (1996). Open implementation and flexibility in CSCW toolkits. PhD Thesis, Dept of
Computer Science, London: University College.

Eisenberg, M. (1995). Programmable applications: Interpreter meets interface. ACM SIGCHI Bulletin
27(2), 68–93.

Eisenberg. M. (1997). End-user programming. In: Handbook of Human Computer Interaction, Second,
Completely Revised Edition. North-Holland, pp. 1127–1146.

Fischer, G. (2003). Meta-design: Beyond user-centered and participatory design. In: C. Stephanidis
(ed.), Proceedings of HCI International 2003, Crete, Greece, pp. 78–82.

Fischer, G. and Ostwald, J. (2002). Seeding, evolutionary growth, and reseeding: Enriching par-
ticipatory design with informed participation. In: T. Binder, J. Gregory and I. Wagner (eds.),
Proceedings of the Participatory Design Conference (PDC’02). Sweden: Malmš University, pp.
135–143.

Fischer, G. and Scharff, E. (2000). Meta-design—design for designers. In: D. Boyarski and W. Kellogg,
(eds), Proceedings the 3rd International Conference on Designing Interactive Systems (DIS 2000).
New York: ACM, pp. 396–405.

Gantt, M. and Nardi, B.A. (1992). Gardeners and gurus: patterns of cooperation among CAD users.
In: ACM conference on Human Factors in Computing Systems (Proceedings) (CHI ’92), ACM
Press, pp. 107–117.

Gonnet, H.H., Hallett, M.T., Korostensky, C. and Bernardin L. (2000). Darwin v. 2.0: an interpreted
computer language for the biosciences. Bioinformatics 16(2), 101–103.

Greenbaum, J. (1993). PD, a personal statement. CACM 36(6), p. 47.
Henderson, A. and Kyng, M. (1991). There’s no place like home: Continuing design in use. In: J.

Greenbaum and M. Kyng (eds.), Design at Work: Cooperative Design of Computer Systems.
Hillsdale, New Jersey: Lawrence Erlbaum Associates, Publishers, pp. 219–240.

Kahler, H. (1996). Developing groupware with evolution and participation. A case study. In: Pro-
ceedings of the Participatory Design Conference 1996(PDC’96), Cambridge, MA, pp. 173–182.

240 CATHERINE LETONDAL

Kiczales, G., des Rivieres, J. and Bobrow, D.G. (1991). The Art of the Meta-Object Protocol.
Cambridge (MA), USA: MIT Press.

Kjaer, A. and Madsen, K.H. (1995). Participatory analysis of flexibility. CACM 38(5), 53–60.
Labview: a demonstration. unpublished, 1987.
Letondal, C. (1999a). A practical and empirical approach for biologists who almost program. In:

CHI’99 Workshop on End-User Programming and Blended-User Programming, May 1999.
http://www.pasteur.fr/letondal/Papers/chi pp.html.

Letondal, C. (1999b). Résultats de l’enquête sur l’utilisation de l’informatique à l’institut pasteur.
Technical report, Institut Pasteur, Paris, Apr. 1999.

Letondal, C. (1999b). Une approche pragmatique de la programmation pour des biologistes qui
programment presque. In: Actes Onzième Confèrence Francophone sur l’Interaction Homme
Machine, IHM’99, Montpellier (France), tome II, November 1999, pp. 5–8.

Letondal, C. (2000). A web interface generator for molecular biology programs in UNIX. Bioinfor-
matics 17(1), 73–82.

Letondal, C. (2001a). Programmation et interaction. PhD Thesis, Orsay: Université de Paris XI.
Letondal, C. (2001b). Software review: alignment edition, visualization and presentation. Technical

report, Institut Pasteur, Paris, France, May 2001. http://bioweb.pasteur.fr/cgi-bin/seqanal/review-
edital.pl.

Letondal, C. and Mackay W.E. (2004). Participatory programming and the scope of mutual respon-
sibility: Balancing scientific, design and software commitment. In: Proceedings of the Eighth
Biennial Participatory Design Conference (PDC 2004), Toronto, Canada, July 2004.

Letondal, C. and Schuerer, K. (2002). Course in informatics for biology. Technical report, Institut
Pasteur, Paris, 2002. http://www.pasteur.fr/formation/infobio.

Letondal, C. and Zdun, U. (2003). Anticipating scientific software evolution as a combined techno-
logical and design approach. In: USE2003: Proceedings of the Second International Workshop
on Unanticipated Software Evolution.
http://www.pasteur.fr/letondal/Papers/pc ihm99.ps.gz.

Lieberman, H. (ed.). (2000). Your Wish is My Command: Giving Users the Power to Instruct their
Software. Morgan Kaufmann.

Lieberman, H. and Fry, C. (1995). Bridging the gulf between code and behavior in programming. In:
Proceedings of ACM Conference on Human Factors in Computing Systems (Summary, Demon-
strations) (CHI ’95). ACM Press, pp. 480–486.

Mackay, W.E. (1991a). Triggers and barriers to customizing software. In: Proceedings of ACM CHI’91
Conference on Human Factors in Computing Systems. ACM Press, pp. 153–160.

Mackay, W.E. (1991b). Users and Customizable Software: A Co-Adaptive Phenomenon. PhD Thesis,
Massachusetts Institute of Technology.

MacLean, A., Carter, K., Lovstrand, L. and Moran T. (1990). User-tailorable systems: Pressing the
issues with buttons. In: Proceedings of ACM CHI’90 Conference on Human Factors in Computing
Systems. ACM Press, pp. 175–182.

Maes, P. (1987). Concepts and experiments in computational reflection. In: Proceedings of the OOP-
SLA’87: Conference on Object-Oriented Programming Systems, Languages and Applications,
Orlando, FL, pp. 147–155.

Morch, A. (1994). Designing for radical tailorability: Coupling artifact and rationale. Knowledge-
Based Systems, 7(4), 253–264.

Morch, A. (1997). Method and Tools for Tailoring of Object-oriented Applications: An Evolving
Artifacts Approach. PhD Thesis, Department of Informatics, University of Oslo, April 1997.

Nardi, B.A. (1993). A small matter of programming: perspectives on end user computing. MIT Press,
p. 162.

Nardi, B.A. and Johnson J.A. (1994). User preferences for task specific vs. generic application soft-
ware. In: ACM Conference on Human Factors in Computing Systems (Proceedings) (CHI ’94).
ACM Press, pp. 392–398.

PARTICIPATORY PROGRAMMING 241

Neumann, G. and Zdun, U. (2000). Xotcl, an object-oriented scripting language. In: Proceedings of
7th Usenix Tcl/Tk Conference (Tcl2k), Austin, Texas, pp. 14–18.

Nierstrasz, O. and Tsichritzis, D. (eds). (1995). Object-Oriented Software Composition. Prentice Hall,
p. 361.

O’Day, V.L., Adler, A., Kuchinsky, A. and Bouch, A. (2000). When worlds collide: Molecular biology
as interdisciplinary collaboration. In: Proceedings of ECSCW’01, pp. 399–418.

Ousterhout, J.K. (1998). Scripting: Higher level programming for the 21st century. IEEE Computer
31(3), 23–30.

Pane, J.F., Ratanamahatana, C.A. and Myers, B. (2001). Studying the language and structure in non-
programmers’ solutions to programming problems. International Journal of Human-Computer
Studies 54(2), 237–264.

Ploger, D. and Lay, E. (1992). The structure of programs and molecules. Journal of Educational
Computing Research 8(3), 347–364.

Rao, R. (1991). Implementational reflection in silica. In: ECOOP ’91 (LNCS 512), ACM Press,
pp. 251–267.

Rasure, J., Argiro, D., Sauer, T. and Williams, C.S. (1990). A visual language and software development
environment for image processing. International Journal of Imaging Systems and Technology 2,
183–199.

Repenning, A. (1993). Agentsheets: A Tool for Building Domain-Oriented Dynamic, Visual Envi-
ronments. PhD Thesis, University of Colorado at Boulder.

Schuerer, K. (2003). Course in informatics for biology: Introduction to Algorithmics. Technical report,
Institut Pasteur, Paris, France.http://www.pasteur.fr/formation/infobio/algo/Introduction.pdf.

Smith, R.B. and Ungar D. (1995). Programming as an experience: The inspiration for Self. In: Pro-
ceedings of ECOOP ’95, pp. 303–330.

Smith, R.B., Maloney, J. and Ungar, D. (1995). The Self-4.0 user interface: Manifesting a system-wide
vision of concreteness, uniformity, and flexibility. In: Proceedings of OOPSLA ’95, pp. 47–60.

Smith, R.B., Ungar, D. and Chang, B-W. (1992). The use-mention perspective on programming for the
interface. In: Languages for Developing User Interfaces. Boston: Jones and Bartlett, Publishers,
pp. 79–89.

Stajich, J.E., Block, D., Boulez, K., Brenner, S.E., Chervitz, S.A., Dagdigian, C., Fuellen, G.,
Gilbert J.G.R., Korf, I., Lapp, H., Lehvaslaiho H., Matsalla, C., Mungall, C.J., Osborne, B.I.,
Pocock, M.R., Schattner, P., Senger, M., Stein, L.D., Stupka, E., Wilkinson, M.D. and Birney,
E. (2002). The bioperl toolkit: Perl modules for the life sciences. Genome Research 12(10),
1611–1618.

Stiemerling, O., Kahler, H. and Wulf, V. (1997). How to make software softer—designing tailorable
applications. In: Proceedings of DIS’97 (Amsterdam), pp. 365–376.

Tisdall, J. Why biologists want to program computers. Technical report, O’Reilly, October 2001.
http://www.oreilly.com/news/perlbio 1001.html.

Trigg, R.H. (1992). Participatory design meets the MOP: Informing the design of tailorable com-
puter systems. In: G. Bjerknes, T. Bratteteig and K. Kautz (eds.), Proceedings of the 15th IRIS
(Information Systems Research seminar In Scandinavia), Larkollen, Norway, pp. 643–646.

Tuffery, P., Neron, B., Quang, M. and Letondal, C. i3DMol: Molecular visualization. Technical report,
Institut Pasteur, Paris, France, 2003. http://www.pasteur.fr/letondal/biok/i3DMol.html.

van Rossum, G. (1999). Computer programming for everybody. Technical report, CNRI: Corporation
for National Research Initiatives.

von Heijne, G. (1992). Membrane protein structure prediction. hydrophobicity analysis and the
positive-inside rule. Journal of Molecular Biology 225(2), 487–494.

Wang, L. and Pfeiffer, P. (2002). A qualitative analysis of the usability of Perl, Python, and Tcl. In:
Proceedings of The Tenth International Python Conference.

Wetherall, D. and Lindblad, C.J. (1995). Extending Tcl for dynamic object-oriented programming. In:
Proceedings of the Tck/Tk Workshop 95, Toronto, Ontario.

242 CATHERINE LETONDAL

Wilkinson, M.D. and Links, M. (2002). Biomoby: An open-source biological web services proposal.
Briefings in Bioinformatics 3(4), 331–341.

Winograd, T. (1995). From programming environments to environments for designing. CACM 38(6),
65–74.

Wulf, V. and Golombek, B. (2001). Direct activation: A concept to encourage tailoring activities.
Behaviour and Information Technology 20(4), 249–263.

Chapter 11

Challenges for End-User Development in Intelligent
Environments

BORIS DE RUYTER and RICHARD VAN DE SLUIS
Philips Research, The Netherlands
boris.de.ruyter@philips.com, richard.vandesluis@philips.com

Abstract. Intelligent environments will be able to observe and sense the events that are happening
around them. For these environments to become intelligent, however, they need to learn what ap-
propriate and sensible behavior is in a given situation. The main challenge of ambient intelligent
environments is not to physically integrate technology in the environment, but to socially integrate the
system behavior into the fabric of everyday life. This means that an intelligent environment needs to
be taught by its users how it should conduct and what position it should take. This paper will discuss
two examples of end-user development in intelligent environments as a way to indicate the research
challenges in this area.

Key words. (end-user development), ambient intelligence, home experience, content awareness.

1. Introduction

Many of today’s devices already know what time and day it is, and what their location
is. Besides this, in the near future, devices will be able to sense the things that are
happening around them. This means that besides the when and the where, they will
also figure out who’s around, and what they are doing. And when these devices become
networked, they may be able to enrich this awareness of the user’s context by gathering
contextual cues and information from their neighboring peers. Being able to observe
and sense is not enough for becoming an intelligent environment. The key question
is how to behave in any particular situation. A system does not have a clue about the
personality and the cultural background of an end-user. That means that in many cases
it may only guess on what the appropriate system behavior would be in a given situation.
It means that somehow, users need to teach the environment how to conduct and what
position it should take.

Many researchers and futurologists envision a future of ambient intelligence, which
refers to electronic environments that are sensitive and responsive to the presence of
people (Aarts and Marzano, 2003; Dertouzos, 1999; Weiser, 1991). The idea is that
the user is surrounded by a multitude of interconnected, embedded systems, which
are integrated in the everyday environment and that can behave intelligently in order
to improve the user’s quality of life. However, the challenge is not only to physically
integrate these systems in the environment, but also to integrate these intelligent systems
into the social fabric of everyday life. This implies that having an understanding of
everyday life, and of people’s routines and rituals is of crucial importance in the creation

Henry Lieberman et al. (eds.), End User Development, 243–250.
C© 2006 Springer.

244 BORIS DE RUYTER AND RICHARD VAN DE SLUIS

of ambient intelligent systems. Since most of our work is targeted at the home domain, in
earlier work, we have conducted extensive user studies to understand what “everyday
life at home” actually means to people, and to find out how people would like to
live in their “dream home.” (Eggen et al., 2003). In this study, we explored people’s
home experiences and possible application and interaction concepts that can enhance
this experience. This was done using a variety of techniques such as telling, drawing,
writing, taking pictures, interviewing, and free association (Gaver et al., 1999). These
techniques were employed to stimulate the families to express their personal home
experience. An important conclusion from this study is that people, when they talk
about home, they do not talk about appliances, devices, or home networks. People
talk about home in terms of social activities and family rituals, such as having dinner
together, bedtime storytelling or a birthday party.

In this study, people were also asked to think of their “dream home.” They were
asked to imagine that everything would be possible and that they should tell us what
they would like. In general people would like the future home to take the role of an
assistant. In many occasions it could give advise, create the right conditions, and support
the family in their activities and with the things that have to be done. They described
a home that would optimally facilitate them in their everyday routines and that could
enhance the experience of their rituals.

When talking about their everyday life, people often refer to various recurring pat-
terns of activities. In this respect, they clearly distinguish between routines and rituals.
A ritual is something that people value, something that delivers a valuable experience,
for instance, preparing a romantic dinner, having an extensive breakfast or smoking a
delicate cigar. A routine, on the other hand, is related to certain tasks that people have
to do. For instance, before going to bed one needs to lock the door, switch off the lights
etc. Although it may be important that those things get done, people do not attach much
value to the course of a routine. In summary, the experience of a ritual should be main-
tained or even enhanced, whereas the user experience of a routine may be minimized
or even eliminated. It should be noted that the classification of activities into routines
and rituals it a very subjective matter. Activities, like cooking or having dinner, can
for some people have the meaning of cherished rituals, whereas others would consider
them as necessary routines.

Through embedding some form of system intelligence into the environment, the
user can be relieved from performing routine tasks. Moreover, the fact that a system is
capable of taking over the routine tasks of the user brings the experience of freedom.
Like with any form of automation it is very important that users are in control, that
they have the option to define or modify a system’s behavior. Beyond simple parameter
specification we have investigated how end-user development can empower users to
define or modify the behavior on an intelligent system or environment.

2. The Wake-Up Experience

In the user studies on the home experience, as referred to before, many people indicated
that in their future home they expect to wake up in a more gentle way than they do

CHALLENGES FOR END-USER DEVELOPMENT 245

nowadays. There is a broad area of sleep research that covers topics such as the different
phases of sleep, sleep deprivation, dreaming, and the physiological effects of sleep
(Chase and Weitzman, 1983; Ellman and Antrobus 1991; Thorpy and Yager, 1991). A
great deal of work has been done in this area, with a special focus on sleeping and going
to sleep. However, hardly any research has focused on the process of waking up and
the subjective experience of awakening. Wensveen et al. (2000) have been exploring
new ways to interact with an alarm clock. Their main research question was how a user
can communicate his or her emotions to a product, and the alarm clock was used as an
example product in this study.

We learnt from the family studies that people want the wake-up experience to be
pleasant, in contrast to the current annoyance caused by a “beeping” alarm clock. This
made us decide to focus part of our research on enhancing the wake-up experience.
The main question is in what type of ambiences people would like to be awakened, and
what an easy way is for people to “specify” such desired ambiences?

2.1. ANALYSIS

With an online questionnaire, additional data on user needs and requirements was
gathered from 120 subjects spread all over the world. Target subjects were selected by
the age, gender, and location in order to obtain a balanced group of different categories
using a messenger program ICQ (www.icq.com). This program has a search engine,
that provides the possibility to select a certain group of people by specified criteria.

Besides questions about the current wake-up process, people were also asked to
describe their ideal “wake-up experience.” 5776 requests were sent to ICQ users in
25 countries. 120 users replied with a filled-in questionnaire.

The results of the survey confirmed that most people are dissatisfied with their current
wake-up experience. When asked to specify what their ideal wake-up experience should
be like, respondents describe experiences that greatly differ from person to person. For
instance, some people want to be awakened with the smell of coffee and the sound of
singing birds in a forest. Others would prefer a piece of music or sunlight. In general,
most people desire a soft and peaceful wake-up experience in the morning hours.
Some people construct complete scenarios of how different pleasant stimuli should be
generated gradually to wake them up in an ideal way. The following quote gives an
example of such a scenario:

The gradual and eventually rich strong aroma of coffee you get in cafes and the sound of
birds chirping ever so slightly and gradually increasing in level. The lights will be very
dark initially but the ceiling will illuminate to eventually produce a soft but bright light.
The room temperature would regulate in concert with the temperature within the covers
of the bed so that there is little temperature variance when first placing that foot on the
floor . . .

We formulated a set of requirements for a wake-up system based on this user input.
For instance, it should be able to generate several stimuli simultaneously. It should also
be easy to create a personal wake-up experience and to alter it every day. People should

246 BORIS DE RUYTER AND RICHARD VAN DE SLUIS

be able to set the intensity of the stimuli so that it would allow them to wake up in their
own rhythm. Those specific requirements were used, in addition to the general design
principles that were derived from the domain exploration, as basic input for the concept
development phase.

2.2. DEVELOPMENT

The major question was how we could come up with an interaction concept that
enables users to “specify” their desired wake-up experience in an easy way. It is
generally known that people are not very good at programming. Many people have
great difficulties in programming a videocassette recorder. This means that this
“programming task” should be kept simple. It should ideally be a pleasant task, and it
should stimulate people’s creativity.

A workshop was held to generate many different concepts for creating one’s desired
wake-up experience. After weighing the concepts against criteria (such as feasibility,
novelty, usability, and fun), one concept was selected to be developed further.

The selected concept is based on the analogy of making a painting. The idea is to
use a pen-based pressure-sensitive display to let users “paint” their desired wake-up
experience. This display could be positioned on the bedside table where it could act
as any normal alarm clock, just showing the time. However, when the pen approaches
the display, the clock changes into a painting canvas. Here, users can select a certain
time interval, for instance from 7.00 to 7.30 a.m., for which they can start painting their
desired wake-up experience. A timeline for the interval is shown at the bottom of the
canvas. People can choose a color from a palette of predefined wake-up stimuli, such
as sounds of nature, lighting, coffee, or music. The position of a stroke determines the
time of “activation” of the stimulus, whereas the thickness of a stroke, controlled by the
pressure on the pen, represents the intensity of the stimulus. At the moment of “painting”
there is an immediate feedback on the type and intensity of the stimulus that is set (except
for the coffee maker, for practical reasons). For instance, while making a green stroke,
sounds from nature are played with the volume adjusted to the current stroke thickness.

In the morning at the adjusted time interval the system generates the created “wake-up
experience” by controlling the devices in the networked environment (such as lighting,
coffeemaker, music, and fan). Figure 11.1 shows an example of a “painted wake-up
experience” starting at 6 a.m. lasting until 9 a.m. In this example the system would start
to raise the room temperature (red), then activate soft lights (yellow) and soft sounds
of nature (green). These stimuli will gradually increase in intensity. The coffee maker
will be switched on after some time (brown) and somewhat later music will be played
for a few minutes (blue).

3. Evaluation

The wake-up experience prototype was assessed by a small number of experts on
its estimated level of user acceptance. Special attention was paid to usefulness, ef-
fort/benefit rate, and usability criteria. In general, the experts could understand and

CHALLENGES FOR END-USER DEVELOPMENT 247

Figure 11.1. The wake-up experience prototype.

operate the system with little effort. A number of valuable suggestions were also made
with respect to design improvements, extensions to the system (functions, and ap-
pliances), and alternative uses of the system. The most important suggestions for
improvement of the design had to do with the icons, which were not clear enough,
and with the timeline which should have a more detailed scale. Furthermore, it was
stated that the pen should have a bigger contact area, and that there should be different
pens in order to be able to make thin and thick strokes. The experts also suggested a
number of extensions. For instance, it should be easily possible to “pre-experience”
the programmed wake-up experience. Furthermore, it was suggested that the concept
could be broadened for creating experiences for other parts of the day, for instance to
create a party atmosphere, or a go-to-sleep experience.

4. A Context-Aware Remote Control

As discussed in the introduction, one important property of intelligent systems is their
ability to be aware of the context in which they are being used. By adding some sensor
and reasoning technology, a device can be made adaptive and exhibit adequate behavior
for a given context.

As an example of a context-aware device, a universal remote control (based on the
Philips PRONTO) with the ability to control different devices (such as TV, DVD, Audio
set, etc.) is augmented with several context sensors. In addition to device control, the

248 BORIS DE RUYTER AND RICHARD VAN DE SLUIS

device is able to present an Electronic Program Guide (EPG) and give reminders for
upcoming programs that match the preference profile of the user.

By means of an embedded inference engine the device can reason about the informa-
tion obtained by the sensors. With this the device can (a) display an adaptive user inter-
face to access the functionality relevant for the context of use and (b) modify the way of
reminding the user of upcoming programs that match the preference profile of this user.

The behavioral rules of the device that use the sensor information are not fixed in
the software of the device but are represented by means of production rules that can
be processed by an inference engine running on the context-aware remote control. To
provide users with the ability to modify these behavioral rules, adequate programming
tools need to be developed. Today, users of the Philips PRONTO can use the ProntoEdit
tool to modify the look-and-feel of their universal remote control (see Figure 11.2).

(a)

(b)

Figure 11.2. (a) The end-user tool for programming the look-and-feel of the Philips PRONTO. (b) The concept
of a context-aware remote controlimplemented on the PRONTO.

CHALLENGES FOR END-USER DEVELOPMENT 249

To enable end users to modify the behavioral rules of context-aware devices, different
programming metaphors need to be developed.

5. Conclusion

Technology trends can lead to future usage scenarios of consumer electronics that
require users to interact more with system functionality than actually consuming
Audio/Video content. The vision of Ambient Intelligence provides a framework in
which embedded technology has to adapt to the needs of these users by being per-
sonalized, context-aware, adaptive, and anticipatory to the needs of users. However,
by adding intelligence to interactive systems, we emphasize the importance of end-
user development given the need for end-users to be in control. Two applications of
Consumer Electronics that require end-user development are presented. These appli-
cations emphasize the need for suitable models of end-user development in the area of
consumer electronics.

The following challenges for end-user programming can be formulated:

5.1. KEEP IT SIMPLE

Each small increase in complexity significantly reduces the number of potential users
of the programming function. A solution should be found that allows users to adapt the
system to their wishes in a straightforward way.

5.2. PROPER FEEDBACK

It is important that the user knows what he has programmed so far. The user should
be able to easily “run” what is programmed on any moment in time. It would be even
better if there were immediate feedback on what is currently being programmed.

5.3. MAKE IT FUN

The user programming method should invite the user to tailor his system or envi-
ronment to his specific needs and wishes. The user should not have the feeling of
being drowned in complexity. He should rather feel like a creative composer whose
attention can be entirely focused on the desired composition itself rather than on the
process.

References

Aarts, E. and Marzano, S. (2003). The New Everyday—Views on Ambient Intelligence. 010 Publishers,
Rotterdam.

Chase, M.H. and Weitzman, E.D. (1983). Sleep Disorders: Basic and Clinical Research. New York:
Spectrum.

250 BORIS DE RUYTER AND RICHARD VAN DE SLUIS

Dertouzos, M. (1999). The oxygen project: The future of computing. Science American (August)
52–55.

Eggen, B., Hollemansu, G. and Van de Sluis, R. (2003). Exploring and Enhancing the Home Experi-
ence. Cognition, Technology and Work 5(5), 44–54.

Ellman, S.J. and Antrobus, J. (1991). The Mind in Sleep. New York: Wiley.
Gaver, B., Dunne, T. and Pacenti, E. (1999). Cultural probes. Interactions (January to Feburary),

21–29.
Thorpy, J.J. and Yager, J. (1991). The Encyclopaedia of Sleep and Sleep-Disorders. Facts on File, New

York.
Weiser, M. (1991). The computer for the twenty-first century. Science American 265(3), 94–104.
Wensveen, S.A.G., Overbeeke, C.J., Djajadiningrat, J.P. (2000). Touch me, hit me and I know how you

feel: A design approach to emotionally rich interaction. In: Proceedings of DIS’00: Designing
Interactive Systems. New York: ACM, pp. 48–53.

Chapter 12

Fuzzy Rewriting1

Soft Program Semantics for Children
YASUNORI HARADA1 and RICHARD POTTER2

1NTT Communication Science Laboratories, hara@brl.ntt.co.jp
2Japan Science and Technology Agency, potter@osss.cs.tsukuba.ac.jp

Abstract. Rewriting systems are popular in end-user programming because complex behavior can be
described with few or no abstractions or variables. However, rewriting systems have been limited to
manipulating non-rotatable objects on a grid, such as in Agentsheets or Stagecast Creator. Systems that
allow free-form movement of objects must use other techniques, such as the sequential programming
by demonstration in Squeak. Viscuit is a new rewriting system that introduces fuzzy rewriting, which
allows freely positioned and rotated objects to interact using only rewriting rules. The result is a
system that allows users to specify animations in a highly interactive way, without textual language
or menu selections.

Key words. animation, rewriting system, visual programming language

1. Introduction

Animations are a major part of the Internet and are being created by more and more
people. It typically requires programming-like activity, which can be frustrating to non-
programmers who simply want to make their artistic creations move as desired. Simple
techniques, like keyframe animation, can be tedious and produce static results. Rewrit-
ing systems allow one to create dynamic open-ended animations without programming.
However, current systems are limited to animating objects on a fixed grid. Rotation is
sometimes possible, but requires the user (or a professional) write a program. This puts
many simple animations out of the reach of many end-users.

The main problem is that removing grids and allowing rotation gives each object a
large number of possible positions and orientations. It is not practical to have a different
rule for each orientation, so we propose a new rewriting mechanism, fuzzy rewriting,2

that combines two techniques.

1. Fuzzy matching, which handles a range of relative distances and angles and
2. fuzzy generating, which infers a new (possibly unique) state that stays within the

bounds of user intentions.

A similarity function for object relationships is defined. It is used during both match-
ing and generating. The function should be designed according to end-users’ cognition.

1 This paper is a revised version of the paper from HCC 2003.
2 We do not use the word “fuzzy” as a technical term.

Henry Lieberman et al. (eds.), End User Development, 251–267.
C© 2006 Springer.

252 YASUNORI HARADA AND RICHARD POTTER

In this paper, however, we don’t discuss the end-user aspect. Our function of similarity
is defined artificially and has many parameters to widely change behavior. The fuzzy
rewriting mechanism is implemented in a system called Viscuit, which allows freely
positioned and rotated objects to interact using only rewriting rules.

This chapter is organized as follows. In the next section we compare our work with
others. In Section 3, we describe the behavior of fuzzy rewriting. Viscuit is introduced
in Section 4 and examples of its use are shown in Section 5. Section 6 shows precise
computing for fuzzy rewriting.

2. Related Works

AgentsSheet (Repenning and Ambach, 1996) is an if-then rule-based visual language. It
is suitable for simulation. In the condition part, several primitives, visual conditions, or
non-visual conditions, can be used. The user can express object arrangements to express
conditions in a functional programming manner. An object is located on a grid, so visual
expressions are restricted. Kidsim (Cocoa, Stagecast Creator) (Cypher and Smith, 1995)
is a rewriting visual language for objects on a grid. An object has several appearances,
which can be used for expressing an object’s direction, state, and so on. A rule rewrites
arrangements of objects with its appearance. Flash and Director, by Macromedia, enable
animation of objects that can be rotated, positioned, and scaled. Motion is directed by
keyframes and is scripted exactly. An animation is tightly controlled by keyframes or
algorithmically by scripting, so it is too difficult for our target end-users. BITPICT
(Furnas, 1995) and Visulan (Yamamoto, 1996) are rewriting languages for bitmaps.
They find bitmap patterns that are matched by a before-pattern of a rule and replace
them with the after-patterns of the rules. Visulan has built-in patterns that express the
mouse-button status. When the system knows the mouse-button status has changed,
it changes the pattern into the corresponding built-in pattern. To write a program that
interacts with a mouse, the user creates a normal rule that simply looks for the built-
in pattern. BITPICT and Visulan use only bitmaps for data and programs. There is no
hiding of information. Scott Kim defined this property as “visibility.” His demonstration
system, VIEWPOINT (Kim, 1988), combines a font editor, a word processor, and a
keyboard layout manager. When a user types a key, the system copies a font pattern from
the corresponding key on the keyboard layout into the cursor. Using this technique plus
a few special rules, VIEWPOINT can function as a word processor with word wrap.
ChemTrains (Bell and Lewis, 1993) is a graph-rewriting visual language. When the
system finds a graph pattern matching the before-pattern of a rule, it replaces it with
the after-pattern of the rule. It is a powerful language because of the high flexibility and
expressiveness of the graph representation.

All the above systems except VIEWPOINT have two system modes: editing and
running. Typically, using these systems involves writing programs, setting the initial
state, running, and stopping. On the other hand, Vispatch (Harada et al., 1997) does not
distinguish between these modes.

Vispatch is a graph rewriting visual language. Each rule has an event object in a
before-pattern and zero or more event objects in an after-pattern. When a user clicks

FUZZY REWRITING 253

Figure 12.1. Two objects of fuzzy rewriting.

on or drags on an object, rewriting is started. If an event object exists in the after-
pattern of a fired rule, the system generates a new event that starts the next rewriting.
Vispatch successfully achieves interactive rewriting. A rule in Vispatch is constructed
as an object that can be rewritten by another Vispatch rule. This enables interactive
reflection and makes a self-extensible graphics editor possible.

There has been much work on a motion generation. In (Arikan and Forsyth, 2002),
for example, motion is generated from examples.

3. Fuzzy Rewriting

Fuzzy rewriting is a new rewriting mechanism. Let’s look at some examples. Figure
12.1 is a simple rewriting rule. The horizontal arrow is a rule object that separates an
object group into a before-pattern and an after-pattern. The left side of a rule object is
a before-pattern (called the rule head), and the right side is an after-pattern (called the
rule body). An explosion mark in a rule head expresses a mouse click event. The rule
head in Figure 12.1 includes two objects, a boy and a girl, and one event. The rule body
has the same two objects, only slightly rotated. This rule means that, when the boy is
clicked, the boy and girl rotate.

Figure 12.2 shows three examples of rewriting with this rule. When the boy in the
target-column is clicked, objects in the corresponding result-column replace objects
in the corresponding target-column. In A, the arrangement of target-column objects is
almost the same as rule-head objects, so the resulting arrangement is almost the same
as the rule-body. In B, the boy is lower than the girl, so the boy in the result is also
lower. In C, there is a deformation of arrangement, so the result is deformed.

Figure 12.3 shows two objects whose positions are swapped so that they are opposite
from those in the rule in Figure 12.1. There are two possible results (Figure 12.3):3 E
preserves local constraints of the rule that keep rotation directions for each kind of
object, so the boy rotates counter-clockwise and the girl clockwise. F preserves the
global constraints of the rule that decides rotation direction based on a relative position
(not its kind), so a left-hand-side object rotates clockwise and a right-hand-side object
counter-clockwise.

Choosing the behavior raises difficult problems. The preferences of end-users and
the attractiveness of the result are important. The system needs consistency.

3 Of course, there is another possibility: The rules do not fire for different positions of objects like this. We can
control this by changing the threshold for matching. This is discussed later.

254 YASUNORI HARADA AND RICHARD POTTER

Figure 12.2. Executions of Figure 12.1.

Figure 12.3. Possible results of Figure 12.1.

FUZZY REWRITING 255

Figure 12.4. Several Rewritings.

We give priority to local constraints, because our experience is that this produces
more attractive results. They are also the easiest to implement. Our system therefore
works like E (not F).

Let’s compare a traditional rewriting system and a fuzzy rewriting one. Figure 12.4
shows a data space to be rewritten and several rewritings on it, where a is a rewriting by
a rule that has no variables, b is one by a rule that has variables, and c represents fuzzy
rewriting. In a, a certain point (an input) is translated into another point (an output). In
b, a certain area is translated into another certain area, and the correspondence between
the input and the output area is defined by the rule. In c, like a, the rule has no variables.
Points surrounding an input point are translated into other points surrounding an output
point. Unlike b, input and output areas have no clear border.

4. Viscuit

Viscuit is a new visual language that rewrites objects using the fuzzy techniques de-
scribed in the previous section. In this section, we discuss how programs are written
and run with Viscuit.

Viscuit is composed of paper and objects. A user can place several objects with free
position and rotation (but no scaling) on a piece of paper. Three objects have special use:
A rule object has two sets of objects, the head set and body set. A rule head includes
one event mark and a rule body includes zero or more event marks. An event mark
indicates where a click event is expected (in rule heads) or will be generated (in rule
bodies). A pointer object refers to another piece of paper.

When a user clicks on a piece of paper, the system traces pointer objects on the paper
recursively, and collects all rules from the traversed paper. Using the position of a click
and the arrangement of objects on the clicked paper, the system selects the rule and
the most similar arrangement of target objects. After that the system rewrites objects
according to the selected rule.

256 YASUNORI HARADA AND RICHARD POTTER

Figure 12.5. Create a rule.

Figures 12.5–12.8 show user views. There is an object palette in the right of Figure
12.5. To create a new object, a user drags the desired object from a palette and drops it
into the target paper directly. A rule object captures its neighbor objects as rule’s head
or body. After preparing a rule, and setting up an object to rewrite, the user clicks the
object to see the rewriting result. In Figure 12.6, the rule says when a car is clicked it
moves forward, so this car (showing in the right part of the figure) moves forward by a
user click.

When a rule fires, an event mark in a rule body generates a click event and enqueues
it into the event queue, where it behaves like an actual user click. When there is no user
interaction, the system dequeues a posted event and tries to rewrite. In Figure 12.7, the

Figure 12.6. Execute a program.

FUZZY REWRITING 257

Figure 12.7. Continuous rewriting.

rule body has an event object. By clicking the target car, it moves upward continuously
and disappears. A continuous rewriting behaves like a thread. Therefore, if there are
several cars and they are each clicked by the user, then they move simultaneously.

Viscuit lets the user modify rules anytime. In Figure 12.8, the user rotates the car in
the rule body while the target car moves straight. After modifying the rule, the target
car turns. The user can drive the car by modifying rules.

5. Execution Examples

Figures 12.9 and 12.10 are two sets of rules that describe how a car should turn for
a certain steering-wheel position. The difference between them is whether each rule
includes a stand or not. In Figure 12.9, the car wants to move to the same absolute
direction as the steering wheel. When the car heads upward and the steering wheel is
turned toward the right, the car turns right because rule R is fired. Now that both the
car and the steering wheel are pointing in the same direction, rule S will fire and the
car will go straight (Figure 12.11, line A).

Figure 12.8. Rotating a car.

258 YASUNORI HARADA AND RICHARD POTTER

Figure 12.9. Rules for driving (A).

On the other hand, when the rules in Figure 12.10 are applied to the target in Figure
12.11, rule R in Figure 12.10 is always fired. So the car turns always (Figure 12.11, line
B). If the steering wheel turns left, the car always turns left by rule L. If the steering
wheel is straightened out, rule S would always fire and the car would always go straight.

The difference in these actions depends on the importance assigned to each relation-
ship. In Figure 12.9, there is only one relationship, which is the relative angle between

Figure 12.10. Rules for driving with a stand (B).

FUZZY REWRITING 259

Figure 12.11. Execution of driving.

the steering-wheel heading and the car heading. The car direction therefore affects the
rule selection every time. On the other hand, in Figure 12.10, the stand overlaps
the steering wheel. Overlapped objects’ relationships make higher similarity. Their
relationships are assigned a higher importance than the car/steering-wheel relationship.
Therefore, the rule is selected based on the relative angle between steering-wheel and
stand.

Figure 12.12 shows a single rule that animates soccer players kicking a ball. Its
meaning is that when a soccer ball gets near the soccer player’s foot, the ball should be
moved out and in front of the player’s head. In Figure 12.13, for each click by a user or
the system on the ball, the soccer player nearest the ball is selected, and the ball moves
close to the foot of the next soccer player. In the resulting animation, the ball rotates
clockwise like a soccer pass.

Figure 12.14 only has one soccer player, but still produces a continuous animation
because after the rule fires, the ball is still close enough to the soccer players foot to
make the rule fire again. When a user clicks, the ball bounces around the player’s head.
This is good because the system never gets in a state totally unlike any of the body
patterns. Therefore, while the system is unpredictable at the fine-grain level, its overall
behavior can be predicted from the rules.

Figure 12.12. Rule of soccer’s pass.

260 YASUNORI HARADA AND RICHARD POTTER

Figure 12.13. Animation of soccer’s passes.

Figure 12.14. Single play.

Figure 12.15. Rule of soccer play.

FUZZY REWRITING 261

Figure 12.16. Animation of soccer play.

Figure 12.15 is a rule that shows a pass between two players. For each click on some
player A, another player B is selected by object arrangement and the rule fires. This
makes the ball move to B, and the system clicks B. Both A and B also move a small
distance because they are shifted in the rule body pattern. The result is that players
move about and seem to be passing the ball. Figure 12.16 shows a snapshot of the game
in mid-play.

Figure 12.17 shows a swimming fish example. There are three rules: a fish turns
down or up when a shell obstruct it and swims forward otherwise. Viscuit generates an
animation makes the fish swim smoothly like A in the figure.

Figure 12.17. Swimming fish.

262 YASUNORI HARADA AND RICHARD POTTER

6. Matching and Generating Objects

In implementing Viscuit, our strategy is as follows:

1. Define a function rel2 that computes the arrangement similarity between a pair of
objects and another pair of objects.

2. Use rel2 to define a function rel that computes the arrangement similarity between
one group of objects and another group of objects.

3. Select the rule and its mapping between head objects and target objects that maximize
the value of rel.

4. Fire the rule if normalized rel is higher than the threshold.
5. Remove and generate objects whose arrangement maximizes the value of rel.

We define an object as having four attributes: kind, x , y, and direction, where kind
is the kind of object, x and y are real numbers that express a center position of the
object, and direction is a real number between −180 and 180 that expresses the screen
direction of the object.

The distance between the center of an object P and the center of an object Q is
|PQ|, the relative direction from P to Q is rdir (P, Q), and the difference between the
heading of P and the heading of Q is angle (P, Q) (see Figure 12.18).

The function rel2 (A, B, X, Y), which computes the similarity between relationship
A and B and relationship X and Y is defined as

rel2 (A, B, X, Y) = C0δ (|AB|, |XY |, W0) + ξC1δ (rdir (A, B), rdir (X, Y),

W1) + ξC2δ (rdir (A, B), rdir (X, Y), W2)

where difference δ and weight ξ are

δ (X, Y, Z) = e
−(X−Y)2

W

ξ = 1 − e
C4

(|AB|+|XY |+ε)2

Figure 12.18. Similarity between two pairs.

FUZZY REWRITING 263

Figure 12.19. Matching and generating.

The δ (X, Y, W) becomes 1 if X and Y are the same, otherwise it is close to 0. ξ

becomes 0 if A and B have the same position and X and Y have the same position,
otherwise it is close to 1. Parameters C j and Wi are constants for tuning the system
behavior.

The first term of rel2 is a value showing how close distance |AB| is to distance
|XY|. The second term is one showing how close the relative direction rdir(A,B) is to
the relative direction rdir(X ,Y). The third term is one showing how close the relative
direction rdir(B,A) is to the relative direction rdir(Y ,X). rdir(A,B) is unstable if A
and B are very close. Weight ξ is therefore multiplied in the second and third terms to
stabilize rel2 behavior. The fourth term is a value showing how close angle(A,B) is to
angle(X ,Y).

Using rel2(A,B,X ,Y), we define function rel, which computes the similarity between
an object group A and another object group that is defined by mapping function map as

rel (A, map) =
∑

i∈A, j∈A,i 	= j

w (i, j) rel2 (i, j, map (i) , map (j))

where w(i, j) is a weight whose value changes according to whether object i and object
j overlap or not. If they do, w has a higher value. This means overlapped objects get
priority over other relationships.

Figure 12.19 shows an example of a fuzzy rewriting. There is a rule that includes
head objects (a,b,c), body objects (A,B,C), and an event object on object a of the head.
When a user clicks on object 2, the system is activated. The system tries to match head
objects and several objects on the target. Here, let some mapping mat be 2=mat(a),
3=mat(b) and 4=mat(c). The value of rel ({a, b, c}, mat), called the matching value
of the rule, is computed by

rel ({a, b, c} , mat) = w (a, b) rel2 (a, b, 2, 3) + w (b, c) rel2 (b, c, 3, 4)

+ w (c, a) rel2 (c, a, 4, 2)

264 YASUNORI HARADA AND RICHARD POTTER

The system looks for a mapping that maximizes the matching value of this rule.
Let this matching value be the maximum matching value (MMV) of the rule and this
mapping be the maximum mapping of the rule. For each available rule, the system
selects one rule that has the maximum MMV. Whether the selected rule is fired or not
depends on how similar the relationships are. MMV is normalized by percentage. A
normalized MMV of 100% means the rule and the target have the same relationship
exactly. If the normalized MMV of the selected rule is higher than the pre-defined
threshold, the rule is fired.

After the rule is fired, objects corresponding to rule-head objects {2,3,4} are deleted
and other objects corresponding to rule body objects {7,8,9} are generated. Let’s de-
note the mapping gen corresponding to rule body objects and generated objects as
8=gen(B), 9=gen(A) and 7=gen(C).

Arrangements of generated objects are computed by maximizing the following ex-
pression:

G (H, B, mat, gen) =
∑

i∈H, j∈B,i 	= j

[w (i, j) rel2 (i, j, mat (i) , gen (j))]

+ rel (B, gen)

This means the first term computes a value showing how similar the relationships of
head-body objects are to those of deleted/generated objects. In this example, the first
term is

w (a, A) rel2 (a, A, 2, 9)+w (b, B) rel2 (b, B, 3, 8)+w (c, C) rel2 (c, C, 4, 7)

The second term computes a value showing how similar the relationships of body
objects are to those of generated objects. This is the reason for the swinging ball
animation in Figure 12.13, there are opposite effects (a ball go upward or downward)
from the first and second terms.

To simplify computing, if all attributes of a head object and a body are the same.
The system doesn’t touch it (i.e., doesn’t delete and generate). A user interface support
exists for this. When the user modifies a rule, a body object motion is snapped according
to head objects location and angle.

7. Consideration

Viscuit inherits features of rewriting languages, so it has the basic mechanisms of com-
puting. A sequence of click events has thread behavior, as already mentioned. Viscuit
also has rule inheritance because object patterns can express inclusion relationships.
For example, each rule in Figure 12.9 includes a rule in Figure 12.10. If we use these
rule sets simultaneously, the rules of Figure 12.10 are used when the steering-wheel
and stand overlap, and those of Figure 12.9 are used otherwise.

Figure 12.20 shows rewritings with several rules. In traditional rewriting, sometimes
input areas of several rules with variables overlap like in d. In such a case, prioritizing the
rules allows the system to control which rules should be fired. In this way, a complement

FUZZY REWRITING 265

Figure 12.20. Rewriting with several rules.

of input areas can be expressed. On the other hand, in a fuzzy rewriting system, only
fuzzy areas are expressed for each rule, so such a complement is difficult to express.

To express a complicated relationship by fuzzy rewriting, several rules (pairs of
point) are given, like in e. These behave like a rule with variables (in Figure 12.4 b).
This process is called Programming by Example (PBE). In a PBE system, if there are
insufficient examples to generate rules (program), the system cannot proceed. How-
ever, in a fuzzy rewriting system, it is okay to do something, but the result becomes
vague.

In Figure 12.10, although the steering-wheel direction is matched fuzzily, the gen-
erated car animation moves in only one of three discrete ways: straight, curving at a set
radius to the right, or curving at a set radius to the left. On might ask how we could have
the steering-wheel control the car’s turn in fine increments. One area for future research
is to consider how to merge rules when more than one has high similarity. This would
allow linear approximations to be expressed, which would create smooth intermediate
behaviors. This is an example of Figure 12.20 e.

The threshold of the fire ratio can be adjusted by the user. The user repeatedly issues
an event but no rule fires, and the system automatically lowers the threshold until some
rule will fire. On the other hand, if many rewritings occur whose ratio is much higher
than the current threshold, then the threshold is automatically raised to avoid unwanted
rewriting. An event generated by the system doesn’t affect the threshold adjustment.

Viscuit can express a discrete computing like Stagecast. Figure 12.21 shows a logic
circuit, an RS-flipflop, in the left-hand side and some of the rules in the right-hand side.
For a two-input AND circuit, eight rules are needed. For example, if the inputs are 1–1
and the output is 0 then the output becomes 1 (rule A), and if the inputs are 1–1 and
the output is 1 then do noting (rule B). Rule C and D are for pulse switches. When a
user clicks a switch, a neighboring value changes from 1 to 0, waits a moment, and
changes back to 1. To activate this simulation, a user must click each circuit. After that,

266 YASUNORI HARADA AND RICHARD POTTER

Figure 12.21. Logic circuit simulation.

the click mark in the body of each rule makes each circuit continue to update its state
automatically.

An informal study of 40 children between age 6 and 10 was performed. The children
were happy playing with the system for 30 minutes. In a post study interview, over 90%
of the children said the system was interesting. They had no trouble creating rules, and
experimented with them until they got the desired effect. However 25% of the children
felt that Viscuit has user interface problems. We are improving the usability of the
system based on this feedback. For example, Viscuit’s technique for dragging objects
allows both position and rotation to be changed with one mouse drag. Some children
had trouble moving the objects without causing unintended rotation. This should be
easy to fix by fine-tuning parameters that control such user interface behaviors.

8. Conclusion

We develop a new visual language, Viscuit, and its execution mechanism, fuzzy rewrit-
ing. Viscuit can treat an object as free-positioning and free-rotating. A rewriting rule
is interpreted fuzzily, so a similar arrangement of objects can be rewritten as an appro-
priate arrangement. By continuous rewriting, Viscuit can express an animation whose
local behavior is controlled by rules.

Demonstrations and the beta release of Viscuit can be found in http://www.
viscuit.com.

Acknowledgment

We would like to thank Dr. Fusako Kusunoki and Miss Miyuki Kato of Tama Art
University for their contribution to the visual design of Viscuit.

FUZZY REWRITING 267

References

Arikan, O. and Forsyth, D.A. (2002). Interactive motion generation from examples. In: Proceedings
of the 29th Annual Conference on Computer Graphics and Interactive Techniques, pp. 483–490.

Bell, B. and Lewis, C., ChemTrains: A Languages for Creating Behaving Pictures, VL’ 93.
Cypher, A. and Smith D.C., KidSim: End User Programming of Simulations, CHI’ 95.
Furnas, G.W., New Graphical Reasoning Models for Understanding Graphics Interfaces, CHI’95.
Harada, Y., Miyamoto, K., Onai V., VISPATCH: Graphical rule-based language controlled by user

event, VL’97.
Kim, S. (1988). Viewpoint: Toward a Computer for Visual Thinkers. PhD thesis, Stanford University,

1988.
Repenning, A. and Ambach, J., Tactile Programming: A Unified Manipulation Paradigm Supporting

Comprehension, Composition and Sharing, VL’96.
Yamamoto, K. (1996). 3D-Visulan: A 3D programming language for 3D applications. Pacific Work-

shop on Distributed Multimedia Systems (DMS96), pp. 199–206.

Chapter 13

Breaking It Up: An Industrial Case Study of
Component-Based Tailorable Software Design

GUNNAR STEVENS1, GUNTER QUAISSER2 and MARKUS KLANN3

1Information Systems and New Media, University of Siegen, gunnar.stevens@uni-siegen.de
2Information Systems and New Media, University of Siegen, gunter.quaisser@uni-siegen.de
3Fraunhofer Institute for Applied Information Technology (FhG-FIT),
markus.klann@fit.fraunhofer.de

Abstract. Tailorability should enable users to fit computer systems to the application context. So
tailoring options should be meaningful for end-users in their respective domains. This paper dis-
cusses how these design criteria can be realized within the technical framework of component-based
tailorability. Component-based tailorability assumes that technical flexibility can be realized by allow-
ing end-users to recompose components at runtime. To enable end-users to recompose components
at runtime, the system has already appropriately broken down into modules at design time. Such a
modularization of the software needs to meet two requirements: on the one hand it must provide
sufficient flexibility with respect to the application context and on the other hand it must be under-
standable by the end-users. In an industrial case study we demonstrate how such a modularization can
be established by applying ethnographic methods and choosing an appropriate design metaphor. The
ethnographic study helps to capture tailoring needs of the application context. The design metaphor
helps to break down software into components which are understandable by end-users. Subsequently,
systematic interventions following an action research approach help to validate the design decisions.

Key words. component based software engineering, anticipation of change, tailorability, case study,
ethnography

1. Introduction

There are different terms to describe systems that are changeable in the context of use.
Such systems have been called “tailorable,” “malleable,” “adaptable,” and “customiz-
able.” From various angles explanations have been proposed to define what it means
for a system to be tailorable.

From a technical perspective, a system can be called tailorable if during runtime
end-users can modify specific aspects of its functionality in a persistent way. As stated
by Stiemerling (2000) the tailorability of a system is then characterized by the design
choices made for the following three elements:

� Representation of the tailorable system properties.
� Functionality to change this representation.
� Connection between the changes to this representation and the changes of the

affected system properties.

Henry Lieberman et al. (eds.), End User Development, 269–294.
C© 2006 Springer.

270 GUNNAR STEVENS ET AL.

Going beyond this technical description of the meaning of tailorability, one has to
consider the special characteristics of tailoring as being set in an application context:
using Heideggerian1 terminology, tailoring is carried out when a breakdown situation
occurs while using a tool.2 In such breakdown situations current system designs gen-
erally fall short in not supporting the transition from using a system to tailoring it. For
example, Andersen (1999) criticized that “(t)here is often too large a gap between the
understanding developed during usage and the concepts needed for tailoring purposes,
and users are often reluctant to accept this additional burden.”3

Bentley and Dourish (1995) speak about the customisation gulf and observe that
“in traditional systems however, there is a gulf between the ability to customise aspects
of process and functionality as opposed to interface and presentation.”

In the literature one can find different requirements which tailorable systems need
to fulfill. Here, we will only briefly describe two principles which are specifically
relevant for the work presented here: (1) providing a gradual range of different levels
of tailorability and (2) taking the application domain into account for system design.4

1.1. DIFFERENT LEVELS OF TAILORABILITY

Various authors have postulated, with slightly different motivations, a gradual range
of tailoring techniques. For Gantt and Nardi (1992) the different tailoring levels are
a way to support different kinds of users. The challenge of the system design is to
provide tailoring levels that suit the competence of the users. Bentley and Dourish
(1995) as well as Myers et al. (2001) demand a gentle slope of the required skills on
one hand and the tailoring power of the tools on the other hand. Oberquelle (1994)
provides a whole collection of tailoring techniques of different levels of complexity.
Mørch (1997) presents a graduation of different tailoring levels. The purpose of these
different levels is to overcome the distance between the presentation objects which
are accessible for the user, and the underlying implementation. In his analysis Mørch
(1997) distinguishes three different levels: customisation, integration, and extension.
Mørch and Mehandjiev (2000) argue that a gradual range is a way to go easily from a
user-, domain-, or task-oriented description to a system-oriented presentation.

1 Cf. Winograd and Flores (1986) for a discussion of Heidegger in the context of designing computer artifacts.
2 Breakdowns are specific to the situation of use. As Suchman (1987) demonstrated for help systems the situations
cannot already be anticipated in the design phase. This situatedness of breakdowns is one of the reasons why it is
so difficult to design the right tailoring options that should be provided by a system.
3 Derived from this fact, Andersen (2002) postulates the visible computer as opposed to Donald Norman’s vision
of the invisible computer. In Andersen (1999), he has worked out the following principles for tailorable systems: (a)
Experiences gained from using the system should be applicable for modifying and changing it. (b) The geometry
of tailorable artifacts should be self-similar. (c) The Principle of Transparency: what goes on between two internal
objects of the system is analogous to what goes on between the user and the interface objects. (d) The Principle of
Tailorability: changing internal objects of the system is like changing the interface objects of the system.
4 Regarding the customisation gulf, these principles are characterized by two interrelated problems.

“The first one is the level of customisation possible, and with most systems this lies above the functionality of
the application, rather than within it. The second problem is the language of customisation, and traditional
systems provide limited facilities to express customisation requirements using the skills users already have,
requiring the learning of new languages to describe new system behaviours.” (Bentley and Dourish, 1995).

COMPONENT-BASED TAILORABLE SOFTWARE DESIGN 271

1.2. THE ROLE OF THE APPLICATION DOMAIN IN DESIGNING TAILORING OPTIONS

Muller et al. (1997) classify tailoring in the context of participatory design. Tailorability
is a way to integrate the user into the system design at a very late phase of the software
lifecycle. The work of Mørch and Mehandjiev (2000) also is in line with this position.
They regard the tailorability as a co-operation between developers and users which is
obtained by the software system. Tailorable systems represent a special form of CSCW
systems which are to be arranged in the “different time, different place”-corner of the
Johansen matrix.5 Especially Mørch deals with the idea of supporting this cooperation
process through integration of design rationales into the artifacts.

Nardi (1993) postulates that end-user programming languages should include
domain-specific elements.6 Henderson and Kyng (1991) postulate systems where the
users should have to use new mechanisms as little as possible to accomplish tailoring.
Instead, they should accomplish modifications with familiar means.

In the following chapter, we will present the technical framework of component-
based tailorability and our way to combine these general design concepts for building
tailorable systems. Obviously, these concepts could be implemented in different ways.
In particular, they leave open what aspects of the system should be tailorable. So we also
discuss the issue of capturing the tailoring needs and their validation. As this is seldom
examined in the literature,7 we are going into these topics more deeply. In particular, we
discuss these for building systems in dynamic environments. In the case study we will
demonstrate how the general ideas can be applied. Section 2 ends with an introduction
to the Tools & Materials (T&M) design approach. We need such an approach because
our method of capturing the tailoring needs only gives hints as to what aspects should
be tailorable but not how to design these aspects.

In Section 3, we describe a case study on building tailorable systems. The case
study goes from the analysis of the application domain to finding a system architec-
ture that is tailorable at the relevant point. We also explain how we evaluated our
solution.

2. Concepts for Component-Based Tailorability

In the following we will introduce the framework of component-based tailorability on
which the work presented in this paper is based (cf. Won et al., 2005). The core idea of
component-based systems is to build systems by means of basic components that can
be plugged together to form more complex components. Under a software-technical
perspective the concept of component-based tailorability is a combination of this idea
with the concept of dynamic software evolution. So users have the possibility to modify

5 See Johansen (1988).
6 The dual semiotic character of program text is also discussed by Dittrich (1997). On the one hand it is instructions
for the computer; on the other it has a meaning for the programmer.
7 Expections to this are the articles from Trigg (1992) and Kjaer and Madsen (1995). They illustrate how flexibility
requirements were addressed in a development process by using participatory design techniques. But they do not
show what this means for the system design and they do not present empirical data that allows the reader to check
their statement.

272 GUNNAR STEVENS ET AL.

the system by changing the component structures at run-time. Looking at component-
based tailorability under this perspective one can distinguish three different levels of
complexity:

Configuring a component. The configuration of an individual component is the eas-
iest way to tailor a system, since this tailoring level offers the smallest complexity
being limited to the so-called component slots only. Due to this restriction the
tailoring action can be supported by providing special tailoring environments.8

With the help of such special environments, it is much easier for the user to tailor
these slots.

Changing the component composition. The changing of the composition allows for
a more substantial adaptation. This level includes operations like inserting and
deleting components, rewiring the components or building complex components.
This level requires the user to understand not only the individual components but
also their interactions.

Designing new components. This level increases the opportunities for tailoring since
the user is not dependent on already existing components. However, when tailoring
on this level the user has to understand the underlying programming language,
the component model, and the implementation details.

The goal of component-based tailorability is to allow users to tailor a system to the
domain context without designing new components. From a theoretical point of view
this goal could be reached if the system was built up from basic components that simulate
a programming language.9 This way it is possible to simulate visual programming—as
is exemplified by LabView—and tailoring activities could be performed by rewiring
existing components. However, in this case the recomposition becomes an act of pro-
gramming and it is not clear how writing a new component differs from restructuring
the composition. To reduce the complexity in tailoring activities, the components have
to be designed less generic and more application-specific. In this case the range of
tailoring options is grounded in an adequately designed set of components. So the
challenge in designing a system for component-based tailorability is to simultaneously
fulfill the following requirements:

1. Find a decomposition that provides the needed flexibility.
2. Find a decomposition that is understandable to the end-user.

Since we want components to be meaningful in the application domain beyond
pure (visual) programming, we have to restrict the flexibility of the software. In the
best case we get a good fit between the restricted flexibility provided by the set
of components and the one which is required by the domain context. Therefore, in

8 For example, the JavaBean model allows the designer of a component to write also a bean customizer class for
the component (cf. Hamilton, 1997).
9 For example, one component represents a variable, another represents an IF-THEN ELSE structure or a loop
structure.

COMPONENT-BASED TAILORABLE SOFTWARE DESIGN 273

designing a tailorable system one has to anticipate the tailoring needs of the application
context.10

2.1. ANTICIPATING TAILORING NEEDS

Tailorability is no end in itself. In the traditional approach the primary goal of system
design is to achieve a good fit between the systems functionality and requirements of the
users without any need for tailoring. In order to achieve such a fit, one tries to capture
the system requirements through a deep analysis of the application context. However,
the dynamics of the environment and the situatedness of usage make it very difficult to
exactly define the application context at design time. That is one of the reasons why
tailorable systems are recurrently requested in the literature.

However, when designing tailorable systems one has to anticipate the tailoring needs.
So actually there exists a design dilemma: The situatedness of the use and the dynamics
of the environment make it necessary to build tailorable systems. However, at the same
time these facts make it so difficult to provide the right dimensions of tailorability.

Although this dilemma cannot be fully solved, a requirements analysis can elicit
those adjustments which seem to be most plausible in the future. Here we want to give
some insights on capturing the tailoring needs. We follow the classification developed
by Henderson and Kyng (1991). They find three different reasons of why systems do
not fit to actual use situations: (a) diversity, (b) complexity, and (c) dynamics of the
application domains.

As Henderson and Kyng make a retrospective analysis they give no hints on how
these aspects can be analyzed prospectively. But this is necessary if the design should
take such aspects into account.

In this section, we will mainly focus on the aspect of how to capture the dynamics
of the application domain. We focus on this because this aspect is salient in our case
study whereas the other aspects are of smaller importance. We had to anticipate those
dynamics that were to be expected because of the transformation of work practices
through the introduction of a collaboration support system and the resulting dynamics
in the way the system was used. Whereas when designing tailorability for a well-
established software product in a big yet stable market, probably the heterogeneity of
customer wishes would be the more important factor. But in this aspect our case study
did not yield sufficient results.

To capture and describe the dynamic processes during introduction and usage of
IT systems one of the common points of reference is Gidden’s theory of structuriza-
tion. A prominent example is Orlikowski’s investigation of appropriation and tailoring
processes during the introduction of Lotus Notes (Orlikowski, 1992; Orlikowski and
Hofman, 1997). Orlikowski distinguished three types of changes: anticipated, emergent,
and opportunity-based changes. For Orlikowski anticipated changes are planned ahead

10 It is always possible that in using the system tailoring wishes appear that cannot be granted by the existing
composition. So a good decomposition should be easily extendable by new components. But this topic is outside
the scope of this article.

274 GUNNAR STEVENS ET AL.

of time and occur as intended. Emergent changes arise spontaneously out of local inno-
vation. They are not originally anticipated or intended. The opportunity-based changes
are not anticipated ahead of time but are introduced purposefully and intentionally
during and in response of the change process (Orlikowski and Hofman, 1997).

The question, however, of how these dynamics can be dealt with in the design
process and to what extent they can be anticipated at all is not solved by Orlikowski
either. However, for design it is of crucial importance to what extent the dynamics can
be discovered beforehand and used in a beneficial way. For this reason we propose here
a slightly different typology for understanding transformation dynamics. It consists of
the following three types:

1. deterministic transformation processes,
2. contingent transformation processes, and
3. inherently emergent transformation processes.

The transformation dynamics can then be understood as a superposition of these three
types. The deterministic changes are those who can be fully anticipated. We call changes
contingent when they stay in the confines of a predetermined frame of possibilities and
thus at least these possibilities can be anticipated. In contrast, we will call dynamics
inherently emergent if they arise through the appearance of new unforeseeable qualities
and thus even the possibility of these dynamics cannot be anticipated.

Since the emergent dynamics are inaccessible to design, the design of tailorable sys-
tems has to identify the largest possible extent of those dynamics that are deterministic
or contingent. The former can in principle be fully anticipated whereas at least the
possibilities can be anticipated.

In the following we will expose the methodology that we have employed for iden-
tifying these dynamics. Our methodology is based on the assumption that empirical
studies cannot only reveal the current practice but also the factors that contribute to
the transformation of the practice. These factors can be intentional and actors can be
consciously aware of them but partly they will also be latent in the sense that the actors
are either not explicitly aware of them or that the actors hide them consciously for
various reasons. Thus, these factors will have to be partly identified through analysis
in the sense of an interpretative use of empirical findings.

These factors have to be identified first. Then, the deterministic and contingent parts
of the transformational dynamics have to be evaluted. That way we can determine the
resulting requirements for tailorability. For the precise identification of these dynamics
ethnographical methods have to be used, in particular where actors are aware of them
only latently (cf. Section 3.1).

The analysis of dynamics does not directly yield information on how to design the
tailorability of the system. But it yields a reference that can be used to evaluate any design
of tailorability. This reference identifies critical points in the design for which early
feedback should be obtained from the different actors (cf. Section 3.2). Subsequently,
a validation of the system should evaluate whether the identified dynamics can indeed
be observed (cf. Section 3.3).

COMPONENT-BASED TAILORABLE SOFTWARE DESIGN 275

Whereas the analysis addresses the current practice with ethnographic methods, the
use of the future system has to be evaluated as realistically as possible with the relevant
users through participatory design techniques such as prototyping following an action
research approach. The design and introduction of a system is always an intervention in
the current work practice. Therefore, the designed artifact not only reflects the reality
but also becomes a part of this reality. It has an independent meaning within the field
of application from which emergent effects can potentially develop.

The simulation of future system’s use has two purposes: One is to verify whether the
forces identified in the preceding analysis are also relevant for the future system use,
the other is to learn about emergent effects that only arise when using the system.

When simulating future use, the previously identified requirements for tailorabil-
ity should again be evaluated explicitly. Here, the critical points have to be checked
whether there are indeed contingencies that have to be taken into account for the tai-
lorability of the system. Only if the practical test is explicitly in favor of flexibility or
if the contingencies cannot be resolved in a consensual way or if it is clear that the
result will not be stable, we can assume with certainty that at this point tailorability is
required.

These dynamics can only be determined on a case-by-base basis. In our case study
there were predominantly two factors that influenced the system design:

1. There was a discrepancy between the formally prescribed and the actual work prac-
tice. The introduction of the system will have an impact on this in a way that cannot
be anticipated in advance (cf. Section 3.1.2).

2. There were irresolvable conflicts of interest among the different actors and organi-
zations involved. These conflicts lead to fragile and only temporarily stable patterns
of work practise. Due to this fragility the system should stay permanently tailorable
at these points (cf. Section 3.1.3).

Before investigating these two factors in the context of our case study we will discuss
them more generally.

The distinction between formally prescribed and actual work practice can be based
on the work of Argyris and Schön’s (1974) theory of action and their distinction between
theory in use (what one actually does) and espoused theory (what one says). But we
argue that beyond the cognitive level this concept must be extended to include the
organizational level. On the organizational level one then has to differentiate between
the image the organization holds of itself, e.g., by prescribing specific work processes,
and its actual work practice. If there exists a discrepancy between these perspectives
and this discrepancy is effected by the system to be designed, a certain degree of
contingency results. This is due the fact that the new work practice will be established
in a hardly predictable manner. If one takes just the formally prescribed perspective into
account for the system design, it is rather likely that the actors will find pattern to work
around the system. By contrary, if the system design takes only the actual work practice
into account the system may become unacceptable for the organization’s hierarchy.
It also hinders the transformation of the working practice and some potentials of the

276 GUNNAR STEVENS ET AL.

technology get just poorly exploited. Consequently, system design should address both
perspectives and offer possibilities for smooth transitions.

In order to be able to determine precisely the relation between formally prescribed and
actual practice, the formal processes as well as the work practices must be investigated
by means of ethnographic methods. On the basis of this data the domain logic of both the
formally prescribed and actual practice needs to be reconstructed. An analysis can reveal
why there is a discrepancy between “espoused theory” and “theory in use” and how
their relationship may develop in the future. The analysis of these discrepancies defines
a space of contingencies from which hints for the design of tailorability can be deduced.

The second factor relates to conflicting interests that have to be taken into account
when designing a system. At first sight this aspect may appear as an instance of het-
erogeneous requirements as discussed by Henderson and Kyng (1991). However, these
authors argue that within a heterogeneous group of users there will be different but yet
stable use patterns of a given system. In our case, we deal with the question of how
conflicting interests may lead to dynamic environments. In particular, the appropriation
of collaboration systems will show dynamics that stem from users whose actions are
influenced by tensions which result from different roles and interests. The permanent
dynamics of system appropriation result in our case from human actors who have to
find compromises in their work practise in order to satisfy conflicting interests. The
resulting work practise may be stable for a certain period of time but can break up
whenever any aspect of the environment changes.

On the perspective of design methodology, on needs to deal with both of the factors
in a similar way. In particular, part of the discrepancy between formally prescribed and
actual practice can be deduced from different interests that can be found in practice.
Nonetheless, in the second case the empirical data will be analyzed from a somewhat
different perspective. The goal is to determine the different interests within the field
of application. On this basis one has to reason to what extent the actions of people
can be deduced from the superposition of their interests. The actions are understood
as establishing a temporarily stable equilibrium within the net of forces defined by the
different interests. The definition of this net of forces allows assessing to what extent a
stable compromise has evolved in the work practice. The analysis of the net allows in
particular determining to what extent the future system challenges the existing practise
and requires its renegotiation.

2.2. TOOLS & MATERIALS APPROACH

The last chapter discussed how to find requirements for a tailorable design. However,
it does not give a constructive advice in the sense that it could guide the design of a
set of components which is understandable for end users. We think that the concepts
developed in the Tools & Materials (T&M) approach are a good starting point for this
consideration.

The T&M approach was worked out in the nineties in the area of software engineer-
ing at the University of Hamburg (Budde and Züllighoven, 1990; Züllighoven, 1992;
Züllighoven, 1998). The central concept of the Tools & Materials approach is to make

COMPONENT-BASED TAILORABLE SOFTWARE DESIGN 277

use of the language of the application domain when designing computer systems.11

The approach is strongly influenced by the idea of mutual learning between user and
developer.12 Züllighoven outlines the approach as follows:

The central idea of the Tools & Materials approach is to take the objects and concepts
of the application domain as the basis for the software model. This leads to a close
correspondence between the application’s specific structure of the concepts and the
software architecture. The structural similarity has two decisive advantages: Users find
the objects of their work and the concepts of their professional language represented in the
computer system. Correspondingly, they can organize their work as they would normally
do. Developers can relate software components and application concepts during changes
on both the subject and the software level and thereby recognize mutual dependencies.

(Züllighoven, 1998).13

The intended structural correspondence of the domain language and the software
architecture makes the T&M approach interesting for component-based tailorability.14

Finding meaningful concepts from the users’ viewpoints is a challenge when designing
tailorable systems.15 By modeling the software, one has to rely on existing work tasks.

In the T&M approach a set of metaphors was developed which serves as an auxiliary
means to analyze and categorize the work context. The most important metaphors are
those of tools, materials, automats, and work environment. The metaphors guide the
design process from a domain perspective “at the critical interface between analysis
and design” (Züllighoven, 1998).16

3. Case Study

In Section 2 we formulated two requirements that tailorable systems should meet: they
should provide the required level of flexibility and the provided flexibility should be
understandable for the system’s users. In the following we will discuss a case study
in which we tried to satisfy these requirements. The discussion is divided into the
following three parts: Section 3.1 establishes the context which defines the need for
flexibility. Independent from this context the question of an appropriate tailorability
can simply not be answered in any reasonable way. Against the background of this
application context Section 3.2 then presents the research prototype. Section 3.3 finally
explains how we validated the component-based system design.

11 In German the approach is called “Werkzeug & Material” or abbreviated “WAM.”
12 See Floyd (1994) for the mutual learning and its importance for the field of software engineering. To this point,
one also finds a relationship between the T&M approach and the view of the tailorability as a kind of cooperation
between users and developers (Mørch and Mehandjiev, 2000).
13 Originally quoted in German; translated by the authors.
14 Regarding the value of using everyday expressions in program code compare (Dittrich, 1997).
15 For the radical tailorability in the sense of Malone et al. (1995) the structural correspondence is so interesting
because we think that this is a way of giving the user an intuitive entrance to the software architecture so that he
or she can tailor the system to his or her needs more easily[0].
16 Originally quoted in German; translated by the authors.

278 GUNNAR STEVENS ET AL.

3.1. GATHERING THE TAILORING NEEDS

The field study deals with the cooperation between two engineering offices and a steel
mill (Wulf et al., 1999). We have investigated the maintenance engineering processes
of a major German steel mill in the Ruhr area over a period of three years. A goal
was to improve the interorganizational cooperation between two engineering offices
and the steel mill. The engineering offices are located 15 and 25 km from the steel
mill. They do subcontractual work for the steel mill in the field of maintenance en-
gineering, e.g., the construction and documentation of steel furnace components. A
construction department inside the steel mill coordinates the planning, construction,
and documentation processes and manages the contacts with external offices at the steel
mill.

In order to meet the requirement for an appropriate design, the case study had in
particular to analyze the relevant dynamics in this field of application. Such an analysis
yields a system of reference against which to assess the flexibility that has to be provided
for this application context. However, in order to avoid an unnecessary reduction of the
design space, the analysis should not include concrete design implications. Instead, the
internal logic of the work practice should be made understandable which determines
the dynamics and thereby the requirements for adaptations.

One purpose of presenting our analysis is to allow for reflection and validation.
However, there are yet two other reasons for presenting the results of the analysis. First,
we want to illustrate the concepts developed in Section 2.1 by analyzing a concrete
example. Second, we wanted to enable the reader to critically assess the conclusions
we draw for our system architecture by providing a suitable description.

In the case study, we followed an action research framework called “Integrated Or-
ganization and Technology Development (OTD) (cf. Wulf and Rohde, 1995). The OTD
process is characterized by a simultaneous development of the workplace, organiza-
tional, and technical systems, the management of (existing) conflicts by discursive
means, and the participation of the organization members affected. The results pre-
sented in this paper come from a variety of different sources:

� Project workshops: During various workshops with members of the three organi-
zations, organizational and technological interventions were discussed to improve
the maintenance engineering process.

� Analysis of the work situation (semistructured interviews, workplace observations,
and further questioning about special problem areas).

� Analysis of the available documents (the given documents and especially the
drawings and system descriptions).

� System evaluation: The given archive systems were examined by means of a
usability evaluation, especially with regard to task adequacy.

Especially in the early project phase discussions during the workshops with active
participation of the involved people aimed at determining where problems occurred in
their work practice. Subsequently, all participants of the workshop jointly thought about

COMPONENT-BASED TAILORABLE SOFTWARE DESIGN 279

how the new possibilities of ICT could help with these problems. During the course
of the project it turned out that external access to the steel mill’s electronic archives
became a crucial bottleneck. For this reason it was decided that external access to the
drawings archive had to be facilitated. This can be seen as the conscious and planned
part of transformation dynamics that was triggered by the project.

Further reflection about this decision revealed that it did not imply a specific re-
quirement on how to design the system. At this moment a typical stage in such a
transformation processes was reached since the involved actors seemed to assume that
ICT should improve everything but actually should not change anything. In order to
determine which solution was more applicable for this application context and to as-
sess the contingencies connected to this transformation, a more thorough analysis of
the cooperation practice between the steel mill and the external actors was conducted.
In particular, the goal was to reconstruct the cooperative work practise for the access
to the digital archive by collecting empirical data and interpreting it with respect to the
planned transformation.

The analysis of the cooperation practice was conducted by the researchers using
ethnographical methods. We did not feedback our empirical findings and interpretations
into the organizations in a direct way. However, we used them to build mock ups and
early prototypes. For this approach there were mainly three pragmatic reasons. Firstly,
we cut short the interpretation of what was technically feasible based on our background
knowledge as designers. Secondly, the actors simply did not have enough time to actively
engage in browsing and interpreting the different types of material. Thirdly, at that time
we did not want to explicitly engage the actors in openly discussing the underlying
conflicts.

The interpretation by the researchers has to face a number of difficulties. For one,
the (cooperative) practice is typically too engrained within the actors for them to be
consciously aware of it. Furthermore, we decided that certain problems of the cooper-
ative practice could not, being easily be talked about due to the micropolitics involved.
Therefore, the work practice as described in interviews could not be used in an unre-
flected manner. The interviews needed to be triangulated with data from other sources,
e.g., an analysis of documents in which the cooperative practice manifests itself (to the
extent that these documents are available to the researchers).

Despite of all of these problems, external actors such as researchers, consultants or
designers can play an important role in this requirements elicitation process. Since they
are typically not involved in the cooperative practice and do not have to legitimize it,
it is probably easier for them to identify the relevant social forces in the application
context and to interpret them with respect to the contingencies of the subsequent use.

As stated in Section 2.1, one has to discover the discrepancies between the for-
mally prescribed and actual work practice to identify the relevant forces influencing
the dynamic transformation process. The other task was to discover the underlying
(conflicting) interests of the different actors that may be affected by the system design.
In the following we base our analysis on the material that we obtained following the
methods described above.

280 GUNNAR STEVENS ET AL.

3.1.1. Process of Plant Maintenance: An Overview

The Maintenance Engineering Department of the steel mill deals with repairing and
improving the plant. Maintenance engineering is a distributed process in which different
organizational units of the steel mill and of the external engineering offices are involved.

In general, the starting point for a maintenance order is the plant operator. When
maintenance is necessary, the maintenance department of the plant operator asks the
internal construction department for further processing. Depending on the type of
order and the measures required, the transaction is handled internally or passed on to
an external engineering office. An external order will be prepared and surveyed by the
responsible contact person in the internal construction department. For this reason, the
necessary drawings and documents are compiled from the archives and passed on to
the engineering office for further processing.

After an external office finishes its engineering task, the internal construction de-
partment has to check it, include the modified and new drawings into the archives and
initiate the production process of the required spare parts. While this is the general
process scheme of maintenance engineering, various sorts of informal communication
and self-organized variations of the process can be found.

In the early phases of the project the external engineering offices complained about
insufficient task specification on the side of the steel mill and lacking electronic ex-
change of drawings between them and the steel mill. They suggested the opening of
the electronic drawing archives at the steel mill to ease cooperation, whereas the atti-
tude of the steel mill employees towards an external access to the archives was quite
ambivalent. The attitude of the internal engineers could be described with the words:
The external service provider should be able to work independently but the steel mill
has to keep the control.

So we had to more closely investigate options for an external access to the archives.

3.1.2. Work practice: Pattern of External Access

With regard to the external engineers’ access to the archives, we have to distinguish
between the process prescribed by the steel mill’s formal organization and the actual
work practice. The division of labor prescribed by the formal organization of the
steel mill may roughly be characterized as follows: The internal engineer in charge of
handling a certain project finds all necessary drawings for the external service provider
and passes them on to him. The external engineer works with the drawings, revises
them when necessary, and later returns them to the steel mill. When the documentation
of a project arrives in the mill, it undergoes a quality control carried out by the internal
engineer.

In such an ideal case there is no need for an external access to the archives. In practice
it often happens that additional drawings are requested continuously during the whole
engineering process. The requests for the drawings are typically directed to the internal
engineer responsible for the project. He normally checks the request, comments it, and

COMPONENT-BASED TAILORABLE SOFTWARE DESIGN 281

passes it to the archives group. From the archives the drawings are picked up and later
driven to the engineering offices.

However, it is often not easy to exactly specify the required drawings without having
access to the archives. So the external engineers often drive to the mill and search the
drawing archives together with an employee of the archives group or by themselves.

The internal engineers often try to limit their efforts to the absolutely necessary when
passing over the documents. However, formally it is part of their task to decide whether
a drawing should be handed over to an external engineering office. The dilemma for
the internal construction department may be depicted as follows: If an external service
provider contacts the archives directly, the internal construction department has less
work. However, if problems arise, the internal department is responsible without being
sufficiently involved. In certain cases they even lose control at the end of a project.
Occasionally, the external office delivers the drawing directly to the archives without
involving the construction department. In this case, they may not even become aware
of the fact that something has been changed.

3.1.3. Interorganizational Relationship: Between Competition and Cooperation

More than 10 years ago, the steel mill had started to outsource an increasing amount
of work in maintenance engineering. The outsourcing process has led to an increased
uncertainty among the steel mill’s maintenance engineers and has also changed the
function of the internal construction department. Toward the external offices, it takes
different roles which are partly conflicting. Especially the roles of the administrator
of the orders, of the competing participant in the market, and of the security guard
have to be mentioned here. In this sense, the internal construction department sees the
external engineering offices not only as contractors but also as a competing actor. As
the engineering offices work also for regional and global competing steel mills, in some
cases they may even be seen as potential spies.

As competition is very fierce on the world market of steel, small technological
innovations may lead to important competitive advantages. There is an unwritten
rule that external service providers would not pass technological innovations from
one client to another. However, the remaining risk increases if the external service
providers could access the database in an unrestricted way. So there always exist iden-
tical as well as diverging interests between the internal and the external engineering
organizations.

Based on these findings, the key requirement in this case study was to design flexible
control mechanisms to access the drawings archive. We derived an extended model
of access control resulting from these findings. These mechanisms allow restricting
operations on shared data while they take place or even after they took place.17 Based
on this model we built a system which allows the external engineering offices to access
the electronic drawings archives of the steel mill.

17 For a further discussion of these models see Stevens (2002) and (Stevens and Wulf, 2002).

282 GUNNAR STEVENS ET AL.

3.2. DESIGNING AN APPROPRIATE SET OF COMPONENTS

The analysis of the work context provides requirements for a tailorable design. However,
it does not provide a design solution. We think that the T&M approach supplements
our approach in capturing tailoring needs. The T&M approach guided the process of
breaking a software up into components. Using the T&M approach the design of the
software architecture is based on the concepts and the language of the domain. This
can promote the understanding of the end-users. In our case, we applied the P.O.-
box metaphor (see Section 3.2.2) which was developed in the context of the T&M
approach. The resulting set of components was created by the designers. Afterwards,
it was discussed with the end-users.18

3.2.1. FREEVOLVE Platform

The FREEVOLVE approach19 defines a framework for the design of component-based
tailorable systems.

Within the framework there are two types of components called FlexiBeans: atomic
(also basic or implemented) and abstract components. Atomic components are written
in Java and they are similar to JavaBeans. An implementation of a FlexiBean has
to follow a number of coding conventions. These conventions are described by the
FlexiBean model.

For its environment an atomic component consists of a set of parameters and a set
of ports. The parameters are used to configure the component. By using the ports one
can connect a component with other components. In the FlexiBean model there are two
types of ports for the exchange of data between components: events (push-mechanism)
and shared objects (pull-mechanism). Events allow components to notify state changes
to other components. The idea behind the shared objects was to introduce something
like shared variables into the FlexiBean Model (Stiemerling, 2000, p. 117)). The ports
of the components are named and typed. They also have a polarity. The polarity of the
port depending on either the service (events or shared object) is provided or requested
by the component. When visualizing components in this paper (see Figure 13.1), we
mark the event sources with a filled circle and the event-receiver with an empty circle.
The provider of a shared object is marked with a filled square, the recipient of a shared
object with an empty square. Only ports of the same type but with opposite polarity
can be connected during runtime.

The atomic components form the basic modules for assembly. Once a component
is defined, abstract components can be used to build compositions of higher levels of
complexity. Hereby, an abstract component consists of a set of inner components and

18 In the case study the decomposition was created by the designer and afterward, it was discussed with the end-
users. We agree with the comments of Catherine Letondal that it could be interesting to ask the users to build lo-fi
prototypes based on their own metaphors or transitive objects. A study of such prototypes can help to get a deeper
understanding of the concept of domain-oriented system architectures.
19 This section is a very brief introduction into FREEVOLVE. A more detailed introduction is given by the Ph.D.
thesis of Stiemerling (2000) and Won et al. (2005).

COMPONENT-BASED TAILORABLE SOFTWARE DESIGN 283

Figure 13.1. Graphical representation of a FlexiBean.

their connections. Ports as parameters of inner components can be exported. For the
environment an abstract component exists through its set of parameters and ports, so
it looks just like an atomic component. This feature allows the building of hierarchical
component structures.

The FREEVOLVE platform allows instantiation of new components, the
(re)configuration of components and the (re)wiring of connections between the com-
ponents at runtime.

3.2.2. P.O.-box Metaphor

In this section we will introduce the concept of the P.O.-box metaphor. Applying this
metaphor we were able to model a system that allows an external access to the electronic
drawings archive. The system design reflects the actual work practice in the relationship
between the internal department and the external engineers.

Martina Wulf (1995) examined the meaning of P.O.-boxes in the area of cooperative
work. She found out that P.O.-boxes are used in practice as a coordination medium.
However, the meaning of the P.O.-box depends on its location and its use. She distin-
guishes public and private P.O.-boxes. An example of public P.O.-boxes are the generally
accessible open mailboxes in a main hall of a newspaper editorial office described by
(Stiemerling and Wulf, 2000). Their functionality is strongly related to the fact that
the access to the box is visible to other people. Examples of private P.O.-boxes are
boxes which are typically located on desktops. They are used to organize work. The
designation of the P.O.-box transports the intended usage into the working context.20

Finally, M. Wulf also differentiates between the input and the output type of a box.21

For our case, we enhanced the concept of the P.O.-box by the idea of sorters. Sorters
have some similarities with e-mail filters. In the context of tailorability e-mail filters
have been analyzed by Mackay (1990). Investigating the InfoLens system, she shows
how users tailored the system in a not anticipated way by means of electronic P.O.-boxes
and IF-THEN rules.22 However, the system context is different from our case study.

20 For example, if a sorter is called “Allow access?”, it has a different meaning as if it is called “Deny access?”,
although the underlying composition is the same. See also De Souza and Barbosa (in this volume) and their concept
of changes to lexical items.
21 The distinction of an input and output type has the advantage that one can compose a system where only the
input type of a P.O.-box is accessible. In this case P.O.-box works like a mailbox in which anyone can throw
something in, but has no way to know its contents.
22 By using the example of mail filters she shows that it is difficult to indicate general conditions when the filters
should be applied but in the concrete situation there is no problem for the users to decide whether a filter should
be used or not.

284 GUNNAR STEVENS ET AL.

InfoLens deals with semistructured e-mail messages while we had to control the access
to shared resources.

3.2.3. Applying the P.O.-box Metaphor

The envisaged systems should on the one hand allow the external engineers to access
the internal drawings archive. But on the other hand, the internal department should
have control over this access. By using the FREEVOLVE framework the flexibility can
mainly be provided by the customization of individual components (level one) and by
rewiring the established component structure (level two).

The main challenge for the design process was to reify the abstract concept of access-
ing the drawings archive. This reification should be reflected in the system architecture
in a way that facilitates the end user to tailor the system. Based on the work of M.
Wulf the P.O.-box metaphor was taken as a starting point for the system design. The
P.O.-box metaphor helps us to tie in with the existing work practice where drawings are
requested and sent via e-mail.

In some sense the P.O.-box metaphor constitutes the identity of system design (c.f De
Souza and Barbosa, 2005). So, in the next step we must find components that provide
the flexibility for controlling the access on the one hand, but also follow the identity23

given by the P.O.-box metaphor on the other hand.
The system should work as follows: The external engineer initiates a search in

the electronic archives by writing an inquiry with the help of a special mail client.
Then, he sends it to a worker of the steel mill’s internal construction department. The
workers of the internal department are equipped with a special mail client called ADOS-
X.24 Depending upon the configuration of this program the inquiry will be answered
automatically or it will be put in a special P.O.-box. From this P.O.-box the answer to
the inquiry has to be triggered manually by the internal department.

Figure 13.2 shows a snapshot of the mail client for the internal department. The
inquiry looks basically like an e-mail. However, the users do not enter free text but fill
in a special search form. The appearance of the search form simulates the look and feel
of the input masks of the ADOS database’s search tool which is used typically by the
engineers.

3.2.4. System Architecture

The design of the different components is guided mostly by the interaction of the
P.O-.boxes where inquiries are stored and by the sorters, which pass on the inquiries
automatically (see Table 13.1).

23 Cf. De Souza and Barbosa (in this volume).
24 The name of the electronic design archive is ADOS. X stands here for eXternal and/or eXtension. The mail
clients for the internal and external workers are mostly based on the same atomic components, but here we
concentrate on the internal department only.

Figure 13.2. Interface of the realized prototype mail client for the internal engineer.

Table 13.1. Basic components of ADOS-X

Component Description

Mail box

TriggerOut

In Mailbox: The mailbox is the residence for documents. Documents may be put in via
the in-port or taken out via the out-port. If the state of the mailbox changes, an
event is sent via the trigger-port. The see-port allows introspection via a visualizer
component.

Sorter

Trigger

Yes

In

No

?

Sorter: The sorter component has one entrance and two exits which can be linked to
a mailbox. According to the setting of the sorter, a document is transported from
the in-port to the yes-port or to the no-port. It is activated via the trigger-port.

Copy machine

Trigger

Orignal

In

Copy

Copy machine: The copy machine has one entrance and two exits which can be
linked to mailboxes. The incoming message is transported from the in-port to the
original-port. A copy is made and transported to the copy-port. The copy machine
is activated via the trigger-entrance.

In Trigger

Visualizer
Visualizer: The visualizer allows viewing the content of a mailbox. It is activated

via the trigger-port. The mailbox is connected via the in-port.25

ADOS

Out

TriggerIn ADOS: The ADOS component provides the connection to the database. The
mailbox containing the query is connected to the in-port. The component
transmits the query to the database, receives the search results, and transfers them
to the out-port. The component is activated via the trigger-port.

Receive
automat

Out

Send
automat

TriggerIn

Receive- and Send automat: These components are used to connect the mailbox
with a mail server. The receive automat realizes a POP3 connection. One can
configurate the frequency at which the automat looks for new mail on the server.
The send automat uses the SMTP protocol for communicating with the mail
server. It is activated via the trigger-port.

Out

In

R Back

Trigger Back: The back (or retour) component is technically motivated. It is responsible for
the swapping of the reverse receiver address and the sender address, so that
inquiries can automatically be sent back to the sender. The transport of inquiries
from the in- to the out-port by swapping the addresses at the same time will be
trigged by an event through the trigger port.

25 For the sake of simplicity, we left out some of the components which implement aspects of the visualization.

286 GUNNAR STEVENS ET AL.

Figure 13.3. Interface for the configuration of a sorter component.

The P.O.-boxes are the places where inquiry mails reside. The flow through the
P.O.-boxes can be realized by the sorters. By configuring the sorter one can decide
which inquiries are to be answered automatically and which are not. The inquiries at
the in-port are, depending on the configuration, passed on to the yes- and/or the no-Port.
In a certain way this represents something like a traditional access control system. The
access control strategy is expressed by the configuration of the sorter. In the current
system version the configuration possibilities are limited to the most important criteria
of the application field. The sorter is tailored by a special interface that is represented
in Figure 13.3.

If a user wants to adjust a sorter, he or she first selects the persons to be granted access.
The access is generally denied until it is explicitly permitted. Figure 13.3 shows how the
access to read drawing descriptions can be granted (operation “view descriptions”). By
clicking the “<”-button, a user can be moved to the list of those who have permission
to view the describing attributes. Such a permission can be revoked by selecting a user
and pushing the “>”-button.

The copy machine component was used to model access logging. The whole interac-
tion with the inquiries and the user was realized by the (big) visualizer component. The
link to the legacy system, ADOS, was hidden in the ADOS-component. The receive-
and the send-automat provide a communication with a mail server. The back component
was introduced primary for technical reasons.

Based on these atomic components we can now build a system that provides different
access mechanisms. Figure 13.4 shows a default composition. We will describe the
functionality of the default composition by showing different use scenarios that are
provided by the composition.

First case: “access is manually authorized.” ADOS-X can be configured in a way that
any query of the external engineers needs to be authorized manually. For this purpose
the “Is this inquiry allowed to access ADOS?”-sorter has to be tailored in a way that
it moves the incoming documents to the “no”-exit. This means that all queries end
up in the P.O.-box “Inquiries not allowed.” The internal engineer can now view these
queries via the “Not allowed ”-visualizer. The visualizer offers options for a manual

COMPONENT-BASED TAILORABLE SOFTWARE DESIGN 287

Figure 13.4. Default composition of an ADOS-X system.

treatment of the query such as forwarding it to ADOS, editing it, or sending it back to
the external engineers. These options are not represented in Figure 13.4 but require a
manual authorization of any attempt to access ADOS. As it corresponds to the actual
practice, we have chosen ADOS-X as a standard configuration.

Second case: “access is allowed but electronically logged.” The internal engineers
can also configure the system to carry out all queries automatically but log them. In
this case the “Should the inquiry be logged?”-Sorter must be configured in a way that
it moves the queries to the yes-exit. Queries will take the way via the “Copy-machine”-
component (“Make a copy for logging! ”). This component copies the query and moves
the copies via the copy-exit to the mailbox “Logged inquiry.” A visualizer allows the
internal engineers to check the queries later on. The original query is moved via the
original-exit to the mailbox “To ADOS.” Then the ADOS-component (“Query ADOS!”)
processes the query and forwards the search results to the P.O.-box component “Reverse
receiver and sender!,” prepares the inquiry for sending it back to the sender, and puts
it in the “Out”-box. From this P.O.-box the research results could be sent back via

288 GUNNAR STEVENS ET AL.

e-mail to the external engineering office which posted the query.26 As the queries of the
external engineers are logged they are available for a subsequent check by the internal
engineers.

Third case: “access is allowed.” The deviation via the “Copy-machine”-component
(“Make a copy! ”) may be cut short by adjusting the “Should the inquiry be logged?”-
sorter for documents accordingly. Via the no-exit, queries of certain engineers are now
sent directly to the “Query-ADOS!”-component.

3.3. EVALUATING THE DESIGN FOR TAILORABILITY

The evaluation of the system has a twofold goal. First, we want to validate whether the
system provides sufficient flexibility regarding the application context.27 The second
goal was to evaluate whether its tailorability is understandable by the end-users.

3.3.1. Validation of the Tailoring Needs

As mentioned in Section 2.1 the first goal is to validate the designed system against
the identified dynamics. So one has to study the reactions of the different parties to the
concrete system implementation and has to analyze what this means for the dynamics
in the future. In particular, one has to check whether the system’s use will generate more
emergent needs for flexibility. We wanted to evaluate how the tailoring options were used
in negotiation processes between the different actors. We were particularly interested in
how the ambivalence between competition and cooperation would be reflected during
system use.

Equipped with a paper mock-up that looks like the set of components presented
in Figure 104, we evaluated our decomposition of the system with the construction
department and external service provider. We explained the functionality of the different
components and demonstrated various access modes by means of an example inquiry.
While doing so, we ask the different actors to judge the technical options.

We specially asked the construction department to classify which documents are
critical, not so critical or uncritical. We wanted to find out which access control strategy
is suitable for the internal department. The internal engineers mentioned some criteria
to characterize whether access to a document should be granted. They also stated that
access to the meta-data is not problematic. Moreover, the external engineers should
not be allowed to change the drawing archive without an explicit permission. That way
they provided us with information to come up with a classification which can be used
to define an access control strategy. The internal engineers emphasized that it will be

26 In the composition you can see no receive automat or send automat, because the inbox and outbox of the
composition should not directly be connected to a mail server. This is because the composition can be part of an
enterprise solution, as mentioned in Stevens (2002).
27 As Lindeberg and Dittrich (2003) rightly observe, there is not only one application context but design has to
deal with different contexts. This is also true for the evaluation of the design. Correspondingly, one has to consider
to what context an evaluation refers.

COMPONENT-BASED TAILORABLE SOFTWARE DESIGN 289

most important that the final control over the access remained with them. However, it
did not become clear which access strategy they will exactly use in the future.

We also discussed the functionality of the paper mock-up with an engineer from
an external service provider. During the discussion he stated that he is interested in
getting drawings but additionally in the meta-data of the drawings. A direct reading
access to the archive would be most important to simplify his work. However, he did
not ask for write access rights because he feared to corrupt the database of the steel
mill accidentally.

To evaluate the case of group-effective tailorability we presented the prototype in a
live demonstration on a workshop in which different departments of the steel mill and the
external engineering companies participated. The workshop was a kind of controlled
intervention. We wanted to see how the different parties reacted towards the access
strategies which were offered by the prototype. We demonstrated the functionality by
writing fictitious inquiries and indicated how they would be handled by the prototype.
We used the different scenarios mentioned in Section 3.2.4 to explain how to tailor
the prototype by adjusting different sorters. In the following discussion the different
interests became manifest with regard to the configuration of the access mechanisms.
A representative of the external office criticized the options to manually authorize each
access to a document. Such a policy would not correspond to the initially constituted
agreements. An actor from the internal department defended this access mode by stating
that control should remain with the internal department. The logged access history
which is a mediating instance in some sense was not rejected by any of the parties.
However, it was not taken up as a possible compromise solution either.

Following the assumption of a stable environment, the evaluation was a failure as it
could not solve the contingencies. As a result of this, one can only make vague prog-
noses about the kind of access control strategy that will be used in practice. However,
under the assumption of dynamic and heterogeneous environments one can find im-
portant hints within the evaluation. These hints relate to inherent issues of uncertainty
inside the application domain. Following this interpretation, the evaluation validates the
hypothesis that access control policies are critical issues within the field of application.
Moreover, they seem to be negotiated in a concrete situation and cannot be predefined
by the designers.

Since the research prototype was not introduced into practice, the question remains
whether the system offered already sufficient flexibility or whether further access mech-
anisms would have to be implemented. The decision to stop the development of the
prototype was due to the replacement of the existing electronic drawing archive by a
solution from SAP. This change in the steel mill’s IT strategy happened at the end of
the project. The decision was taken at top management which was not involved in the
project. For our design process it was an emergent change that could not be anticipated
beforehand.

So, the critical reader might agree with our arguments in favor of flexible tools for
access control. However, it is not proven that our solution is the best one. So we will
discuss some other solutions theoretically.

290 GUNNAR STEVENS ET AL.

As the case study is about access control, one may think that a traditional access
control strategy would be a good solution. However, the analysis and the evaluation
show that the internal department does not just want to grant or deny an access to an
object. An important aspect of the given access control policy was the information of
internal engineers about what was going on. Such an awareness is not supported by the
traditional implementations of access control.

From the perspective of the internal engineering department one can argue that a so-
lution which just allows for manual access control is sufficient (as long as the additional
work resulting from the manual control is accepted by their organization). Although
such a system makes the control work of the internal department more efficient, it would
be suboptimal from the perspective of the external engineer. Indeed at this point one
does not know whether any other control mechanisms would be accepted by the internal
department. This question can only be answered in practice. However, if the system
had just implemented a manual control mechanism, it doesn’t support the practice to
transform their control strategy.

While taking all factors of uncertainty into account, one can conclude that the given
solution may be not optimal but a better solution than existing approaches to access
control.

3.3.2. Evaluation of the Usability of the Set of Components

The second goal was to evaluate whether the set of components was understandable.
Under a methodical perspective this evaluation is much easier since one does not need to
anticipate future developments. Once it is clear what should become tailorable particular
tailoring options can be evaluated by means of usability tests.

We carried out several tests within a small group of actors (n = 5) who represented
different levels of qualification.28 The goal of these tests was to check whether the mean-
ing of the individual components was understandable to the users. Applying thinking
aloud technique, we asked the participants to carry out some tasks. The duration of
the test was an hour per subject. Although our test did not provide any statistical sig-
nificance,29 the analysis provided, as (Nielsen, 1993) shows, a good evaluation of the
component’s usability.

Although some of the test persons did not understand the technical details between
shared objects and events, but nevertheless these test persons solved the tailoring tasks.
The insights resulting from these tests indicate that the users are guided by every
day’s meanings of the component names and they interpret the components from the
perspective of the tailoring task. For example, one of the test persons compared the
mechanism of the copy machine component with the functions of an ordinary copy
machine.

28 The test persons were one computer science student, three students from other disciplines, and one person who
called himself/herself a computer novice.
29 Besides the missing of a big n that prevents representative results (n was only five test persons), the more
principal problem was to prepare “representative” test exercises.

COMPONENT-BASED TAILORABLE SOFTWARE DESIGN 291

The summing up of the evaluation indicates that the users understand the components
and the composition in general. For more details of the evaluation see (Stevens, 2002).

4. Conclusion

Tailoring activities are embedded in the use of a system. A central problem discussed
in the literature is how to support a switch between use and tailoring. The state of the
art identified a gap between domain-oriented user interface and a technically oriented
system architecture. This gap is one of the obstacles that hinder a smooth transition.
The state of the art suggests two approaches to design this switch: providing a range
of tailoring options with a gentle slope of complexity and designing these tailoring
options based on the application context.

When implementing these approaches, our experience indicates that a specific
preparatory activity is required. This activity yields an analysis of the kind and scope of
tailorability that has to be realized within the subsequent system. A domain-specific re-
quirement analysis of tailoring needs is necessary to solve the trade-off tailorability and
complexity which means that systems cannot be developed to be arbitrarily tailorable
and of manageable complexity at the same time.

Since an analysis of tailoring needs is rarely discussed in the literature, we explicitly
addressed the issues why tailorability is requested and how it can be taken into account
in requirement analysis. Due to the set-up in our case study, we focussed on capturing the
dynamic aspects of our application domain and on conclusions for system design. The
resulting dynamic transformation processes can be analyzed as to their deterministic,
contingent, and emergent facets. For the design of tailorable systems, understanding
the contingent facets is particularly helpful (cf. Section 2.1).

In the case study the contingent dynamics were mostly due to contradictory social
forces within the application domains. In the analysis we identified the discrepancy
between formally prescribed and actual work practice and the different interests and
roles of the actors. These forces produced a field of contingent usage. Ideally, there
should be a close fit between the system flexibility and the dynamically changing
requirements of use.

Even though these forces are likely to be different for other application domains,
the case study yields as a general result that the design of tailorable systems requires
a change of perspective in requirement analysis. Normally, the analysis examines the
actual practice under the condition of completeness and consistency. However, such an
approach is blind towards contradictions within the given practice. In order to assess the
dynamics of an application domain, one must focus on the issues of conflict, diverging
perspectives, and open questions. This is why the interests of the different actors and
parties involved have to be investigated using ethnographical methods. The different
interests form a field of forces from which the dynamics of the application area can be
at least partially deduced.

Even though the research prototype was finally not put into practice and long-term
studies could therefore not be conducted, the evaluation of the prototype suggests

292 GUNNAR STEVENS ET AL.

nonetheless that the dynamics identified during the analysis indeed lead to contingent
usage requirements. The general goal of capturing and analyzing transformation dy-
namics in application domains and deducing consequences for the design and use of
tailorable systems remains an open research challenge. It requires further empirical
studies and a methodology that allows capturing such processes adequately. This case
study only represents a first step in this direction.

Ethnographic studies are important since they help to find out what should be flexible
and contextualize the process of designing for tailorability. To grasp the provided
tailorability users need to understand the system architecture at a sufficient level. So,
the tailorable parts of the system should be meaningful to end-users in their application
domain. Knowing the world of the end-users helps designers to integrate the domain
context into the system architecture.

A constructive method for building such meaningful components is the T&M ap-
proach developed in the context of the discourse on participatory design. The aim of
the approach is to achieve a structural correspondence between the application domain
and the system architecture.

We have shown how the T&M approach can be used to design component based
tailorability in a case of access control. The validation of the system has demonstrated
that the system was flexible at a point which was critical for the domain context. We
also have shown that the flexibility goes beyond the standard access control mechanism.
Further evaluations indicated that this modularization of the software can be understood
by end-users.

However, it remains an open question if there is always a correspondence between
the tailoring needs—coming up from the dynamics of the application domain—and
a modularization that provides such flexibility in the terms of the user. In particular,
this will be a problem if the abstract transformation dynamics cannot be reified by a
metaphor that is known in the application context.

References

Andersen, P.B. (1999). Elastic interfaces. Maritime instrumentation as an example. In: Proceedings
of the CSAPC’99, Valenciennes, France.

Andersen, P.B. (2002). The visible computer. http://www.cs.auc.dk/∼pba/Preprints/NordiCHI.pdf
(1.9.2003).

Argyris, M. and Schön, D. (1974). Theory in Practice. Increasing Professional Effectiveness. San
Francisco: Jossey-Bass.

Bentley, R. and Dourish, P. (1995). Medium versus mechanism: Supporting collaboration
through customisation. In: Proceedings of ECSCW’95, Stockholm, Sweden: Kluwer Academic
Publishers.

Budde, R. and Züllighoven, H. (1990). Software-Werkzeuge in einer Programmierwerkstatt. In:
Berichte der GMD 182.

De Souza, C.S. and Barbosa, S. (2005). A semiotic framing for end user development. In:
H. Lieberman, F. Paternò and V. Wulf (eds.), End User Development, Dordrecht, Netherlands:
Springer, pp. 395–420.

COMPONENT-BASED TAILORABLE SOFTWARE DESIGN 293

Dittrich, Y. (1997). Computer Anwendungen und sprachlicher Kontext. Zu den Wechselwirkungen
zwischen normaler und formaler Sprache bei Einsatz und Entwicklung von Software. Frankfurt:
Peter Lang.

Floyd, C. (1994). Software Engineering—und dann? Informatik Spektrum 17, 29–37.
Gantt, M. and Nardi, B.A.C. (1992). Gardeners and gurus: Patterns of cooperation among CAD users.

In: Proceedings of CHI ’92 Human factors in Computing Systems, Monterey, CA: ACM Press.
Hamilton, G. (1997). Java BeansTM version 1.01. Technical Specification Sun, Microsystems, Palo

Alto, Kalifornien, 24.
Henderson, A. and Kyng, M. (1991). There’s no place like home. Continuing design in use. Design

at Work. Hillsdale: Lawrence Erlbaum Associates, pp. 219–240.
Johansen, R. (1988). Current user approaches to groupware. In: R. Johansen (ed.), Groupware. New

York: Freepress, pp. 12–44.
Kjaer, A. and Madsen, K.H. (1995). Participatory analysis pf flexibility. Communication of the ACM

38(5), 53–60.
Lindeberg, O. and Dittrich, Y. (2003). System design as artful integration of different contexts. In: 3rd

Conference for the Promotion of Research in IT at New Universities and University of Colleges,
Sweden: Visby.

Mackay, W. (1990). Users and Customizable Software: A Co-Adaptive Phenomenon. Ph.D.-Thesis.
Boston, MA: MIT.

Malone, T.W., Lai, K.Y. and Fry, C. (1995), Experiment with oval: A radically tailorable tool for
cooperative work. ACM Transactions on Information Systems 13(2), pp. 177–205.

Mørch, A. (1997). Three levels of end-user tailoring: Customization, integration and extension. Com-
puters and Design in Context. Cambridge, MA: MIT Press, pp. 51–76.

Mørch, A. and Mehandjiev, N. (2000). Tailoring as collaboration: The mediating role of multiple
representations and application units. Journal of Computer Supported Cooperative Work (JCSCW)
9(1), 75–100.

Muller, M., J. Haslwanter, et al. (1997). Participatory practices in the software lifecycle. Handbook
of Human–Computer Interaction. Amsterdam, Netherlands: Elsevier, pp. 255–313.

Myers, B., S. Hudson, et al. (2001). Past, present and future of user interface software tools. HCI In
the New Millennium. ACM Press, Addison-Wesley, pp. 213–233.

Nardi, B.A. (1993). A Small Matter of Programming—Perspectives on End User Computing. Cam-
bridge: MIT-Press.

Nielsen, J. (1993). Usability Engineering. New York: Academic Press.
Oberquelle, H. (1994). Situationsbedingte und benutzerorientierte Anpassbarkeit von Groupware.

In: A. Hartmann, T. Herrmann, M. Rohde and V. Wulf (eds.), Menschengerechte Groupware—
Software-ergonomische Gestaltung und partizipative Umsetzung. Stuttgart: Teubner, pp. 31–50.

Orlikowski, W.J. (1992). Learning from notes: Organizational issues in groupware implementa-
tion. In: Proceedings of the 1992 ACM Conference on Computer-Supported Cooperative Work,
pp. 362–369.

Orlikowski, W.J. and Hofman, J.D. (1997). An improvisational model for change management: The
case of groupware technologies. Sloan Management Review, 38(2), 11–22.

Stevens, G. (2002). Komponentenbasierte Anpassbarkeit—FlexiBean zur Realisierung einer erweit-
erten Zugriffskontrolle. Diploma-Thesis. Institut für Informatik III. Bonn, Universität Bonn.

Stevens, G. and Wulf, V. (2002). A new dimension in access control: Studying maintenance engineering
across organizational boundaries. In: Proceedings of the 2002 ACM Conference on Computer
Supported Cooperative Work, New Orleans: ACM Press, pp. 196–205.

Stiemerling, O. (2000). Component-based tailorability. Ph.D.-Thesis, Mathematisch-
Naturwissenschaftlichen Fakultät. Bonn: Universität Bonn.

Stiemerling, O. and Wulf, V. (2000). Beyond ‘yes or no’—extending access control groupware with
awareness and negotiation. Group Decision and Negotiation 9, 221–235.

294 GUNNAR STEVENS ET AL.

Suchman, L. (1987). Plans and Situated Action. Cambridge: Cambridge University Press.
Trigg, R. (1992). Participatory design meets the MOP: Accountability in the design of tailorable

computer systems. In: Proceedings of the 15th IRIS, Larkollen, Norway.
Winograd, T. and Flores, F. (1986). Understanding Computers and Cognition: A New Foundation for

Design. Norwood, NJ: Ablex.
Won, M., Stiemerling, O. and Wulf, V. (in this volume). Ccomponent-based approaches to tailorable

systems. In: H. Lieberman, F. Paternò and V. Wulf (eds.), End User Development, Dordrecht,
Netherlands: Springer, pp. 115–142.

Wulf, M. (1995). Konzeption und Realisierung einer Umgebung rechnergestüzter Tätigkeiten in ko-
operativen Aarbeitsprozessen. Diploma-Thesis. Fachbereich Informatik, Arbeitsbereich Soft-
waretechnik. Hamburg: Universität Hamburg.

Wulf, V., Krings, M., Stiemerling, O., Iacucci, G., Fuchs P.F., Hinrichs, J., Maidhof, M., Nett, B.
and Peters, R. (1999). Improving inter-organizational processes with integrated organization and
technology development. JUCS 5(6), 339–365.

Wulf, V. and Rohde, M. (1995). Towards an integrated organization and technology development.
In: Proceedings of the Symposium on Designing Interactive Systems, Ann Arbor, Michigan,
pp. 55–64.

Züllighoven, H. (1992). Umgang mit Software oder: Software als Werkzeug und Material. In:
Sichtweisen der Informatik, Braunschweig, Vieweg, pp. 141–156.

Züllighoven, H. (ed.) (1998). Das objektorientierte Konstruktionshandbuch nach dem Werkzeug—&
Material-Ansatz. Heidelberg: dpunkt.

Chapter 14

End-User Development as Adaptive Maintenance
Two Industrial Cases
YVONNE DITTRICH1, OLLE LINDEBERG2 and LARS LUNDBERG3

1IT–University Copenhagen, Copenhagen, Denmark, ydi@itu.dk
2Department of Software Engineering and Computer Science, University of
Karlskrona/Ronneby, Ronneby, Sweden, Olle.Lindeberg@ipd.hk-r.se
3Blekinge Institute of Technology, Department of Software Engineering and
Computer Science, Ronneby, Sweden, Lars.Lundberg@bth.se

Abstract. The change of change applications to suit the needs of users in different places and facilitate
development over time has long been a major challenge for software maintenance experts. In this
chapter we take up tailoring as a means of making software flexible. Starting with two case studies—
one taking up tailoring for different users and the other addressing changes over time—the article
discusses problems related to both the use and development of a tailorable application. Developing
tailorable software presents new challenges: how do you create a user-friendly tailoring interface? How
do you decide what should be tailorable, and how do you create a software architecture that permits
this? How do you ensure that the tailorable system gives acceptable performance? Our experience
shows that the borders between maintenance and use become blurred since tailorability can replace
maintenance by professional software engineers by tailoring by advanced users. Using our experience
of the two selected cases, we identify and discuss five important issues to consider when designing
and implementing tailorable systems in industrial settings.

1. Introduction

Tailorability—the “light” version of End User Development allowing users to adjust
and further develop a program during runtime—can be observed in many applications
in use today. We all adjust the settings of our mail client, program the rules to sort
mails into different folders or develop formats for our text processor. Though these
applications have been around for quite a while there has been little research which
addresses the software engineering of tailorable systems or the design in domains that
require non-functional qualities for the software other than flexibility and tailorability.
This chapter reports results from two industrial cases concerned with the development
and maintenance of tailorable software:

1. The contract handler is an in-house-developed back-office system of a telecom-
munication provider administrating contracts and computing payments based on
specific events. The types of contract as well as the events that are the subject of
these contracts change over time as the business develops. The contract handler
case addresses “design for change” rather than providing the possibility to adjust
software to individual preferences.

2. The Billing Gateway (BGw) sorts and distributes call data records produced
by phone calls to billing, statistics and fraud detection systems. It provides an

Henry Lieberman et al. (eds.), End User Development, 295–313.
C© 2006 Springer.

296 YVONNE DITTRICH ET AL.

interface for the tailoring of sorting algorithms to the network of which the specific
implementation of the BGw is part, and for changing business requirements such
as new fraud indicators.

Two features distinguish these two case studies from other research on tailorable
systems. Research on tailorable systems to-date has focused mainly on the use and
tailoring of commercial systems: it derives requirements and design implications from
this or provides understanding of the social organization of and around tailoring activi-
ties. (see, e.g., Nardi, 1993; Trigg and Bødkers, 1994). Our research provides additional
insights into the software development implications of designing for tailorability. We
also consider the interaction between use, tailoring, maintenance and further develop-
ment. Research addressing design issues almost exclusively uses laboratory prototypes.
(e.g. Mørch, 2000, 2003). When real use contexts are addressed, researchers often act
as developers. (e.g. Stevens, 2002; Stiemerling, 1997, 1998; Wulf, 1999; Wulf, 2000).
Our findings partly confirm that the results of the existing research are also valid for
commercially developed systems, but the cases add to the design issues the interac-
tion between flexibility which facilitates tailoring and other software qualities such as
performance and reliability.

The research on which the chapter is based relates to two different scientific dis-
courses. The research around the contract and payment system focused not only on
technical solutions but also on the software development practice and interaction be-
tween users and developers necessary to achieve a suitable solution. With respect to the
research design, a specific version of action research was applied (Dittrich, 2002). In the
Billing Gateway case, the research focused on performance issues and the deployment
of parallel computing to improve performance. Mathematical abstraction, algorithms,
technical solutions, and the evaluation of changes in the real-time behavior of the sys-
tem are the means of argumentation in relation to this research discourse. The research
methods and the involvement of researchers will be discussed in detail in the respective
sections.

In this chapter we provide some answers to the question: “What are the most impor-
tant issues when designing and implementing tailorable software in industrial settings?”
In Section 3 we identify and discuss five such issues. These are then summarized in
Section 4. Section 2 describes the two industrial cases that serve as the basis for our
conclusion.

2. Experiences

This section reports on our experience of two different projects. Each of these is related
to a sharp industrial application. In each of the projects we experimented with different
solutions. Requirements from work and business contexts as well as from the technical
context of the applications guided the evaluation of the respective prototypical solutions.
In each case, a specific solution optimizes the deployment of available technology
according to the situated requirements and constraints. These solutions raise a set of
issues that will be discussed in the following section.

END-USER DEVELOPMENT AS ADAPTIVE MAINTENANCE 297

2.1. DESIGN FOR CHANGE

Our first case is related to a research project conducted in co-operation with a telecom-
munication provider—Vodafone Sweden—and a small software development company;
the object was to re-develop a back office system. The program is not a standard appli-
cation that has to be tailored to the needs of different customers. It is a special purpose
business application developed by the in-house IT unit. Flexibility is introduced in
order to accommodate changes in the business area.

The application under investigation is a system administrating specific payments.
The system computes the payments based on contracts. They are triggered by events.1

With the earlier application, only payments based on a certain event could be handled
automatically. Business practice requires that payments are based on other events as
well as new contract types.

The old system used for computing the payments had been in use for several years.
It automated the then existing contract types and computed the respective payments.
However, it was difficult to maintain, and after a while the users had to administrate
some new contract types by hand and compute the respective payments manually as
well. When even more radical changes in the business were discussed, it was decided
to redevelop the system.

Even a new system accommodating the most recent developments would soon be-
come outdated as the business continued to develop still further. Implementing a tai-
lorable solution seemed a promising idea. With the help of prototypes we explored the
possibility of programming a flexible solution based on a meta-modeling database sys-
tem developed by the other project partner. The program that is currently in use in the
company combines tailoring features with high maintainability so that even changes
in the business area that go beyond the tailoring possibilities can be accommodated
within an acceptable time frame. Based on this solution, we developed a new proto-
type using meta-object protocol to implement the tailoring features. Sections 2.2.2 and
2.2.3 present and discuss the latter two solutions. Section 2.2.1 presents our research
approach. To be able to understand the designs, a conceptual model of the contract
handler is presented first.

The system can be regarded as two loosely connected parts (Figure 14.1): the trans-
action handler and the contract handler. The transaction-handler-application handles
the actual payments and also produces reports while its database stores data about
the triggering events, payments and historical data about past payments. (1)2 The data
describing the triggering events is periodically imported from another system. (2) To
compute the payments, the transaction handler calls a stored procedure in the contract
handler’s database. (3) The event is matched with the contracts; several hits may occur.
Some of the contracts cancel others; some are paid out in parallel. We call the process
of deciding which contracts to pay “prioritization.” (4) The result is returned to the
transaction handler. (5) Payment is made by sending a file to the economic system.

1 To protect the business interest of our industrial partner, we cannot provide specific details about contracts.
2 The numbers refer to Figure 14.1.

298 YVONNE DITTRICH ET AL.

Figure 14.1. Overview over the contract handler.

To make the system adaptable to future changes a conceptual model that facilitates
a meta-model-description of the system is needed. We first noted that a condition is
meaningful in a contract only if the transaction handler can evaluate it when payment is
due. This leads to the concept of event types; a payment is triggered by an event and all
contract types belong to a particular event type. Each event type has a set of attributes
associated with it that limits what a contract for such events can be based on. Contract
types that are handled similarly are put together in one group. Secondly, we split up the
computation of payments into two consecutive parts: first, find all matching contracts
and thereafter select which to pay (prioritization).

2.1.1. Research Methods

To understand the kind of changes that might be required of the new contract handler,
we reconstructed the history of the development and change of the software to be
replaced by the application under development. At the same time, we started with
participatory observation of the development project. We took part and taped meetings
during the pre-study. During the implementation of the software one of us carried out
a minor programming task in order to be closer to the now more intensive technical
design and implementation. We contributed to the project by exploring possibilities for a
flexible design together with project members: participatory design workshops with the
users took place to understand, how a tailoring interface for the new application could
look like. We organized two workshops with the software developers involved with
the purpose of introducing meta-modeling techniques that in one way or another are
necessary when designing for flexibility. Together, we implemented a set of prototypes
thereby proving that an extremely flexible implementation of the application is possible
when using a flexible database (Linderberg, 2002). Based on our experience of the
design process, a meta-object protocol version of the contract handler was developed
at the University. As the development project at the telecommunication provider was
about to be concluded, no systematic or joint evaluation of the version was carried
out.

END-USER DEVELOPMENT AS ADAPTIVE MAINTENANCE 299

Our involvement in the project can be seen as a specific interpretation of action re-
search, one we call “co-operative method development” (Dittrich, 2002). Empirical
observation of practice, workshops and implementation of methodological innova-
tion build a learning cycle that allows for changes in software development prac-
tice and gives researchers feedback on the usefulness and applicability of the various
methods.

2.1.2. Flexibility Light

The design of the finally implemented contract handler incorporates some meta-
modeling features while at the same time using a normal relational database. The result
was a flexible system which does not require any complex or non-standard software.
Flexibility here means both tailorability and maintainability. Flexibility is primarily the
result of five features of the design.

The most important design decision was to modularize the contract types internally
as aggregations of objects handle single parameters and group these according to the
kinds of parameters that defined them. In most cases, the program could handle all
contracts belonging to the same contract type group in a uniform way and thereby
simplify the program.

The second feature was to use the object-oriented capabilities of PowerBuilder,
which was used to build the graphical user interface and the client part of the appli-
cation. Powerbuilder is a 4th generation rapid development tool based on C++. The
user interface is constructed with one window for each contract-group type. Different
contract-group types have different sets of parameters but each parameter type oc-
curs in several contract-group types. Some of the parameters are in themselves rather
complicated objects, and the interfaces for them are also complicated. To simplify the
system, each interface for a parameter was constructed as an object—an interface ob-
ject. The interface for each contract-type group was built as a set of interface objects.
Since the parameters are treated the same way in all contracts, this reduces the effort
required to construct the interfaces and facilitates the addition of new ones. The inter-
face objects also guarantee that the user interface handles parameters in a consistent
way.

The third design decision was to use a non-normalized database. The contract types
all have different parameters but they were nevertheless stored in the same database
table which had fields for all parameters in all contracts. This produced a sparsely
populated table which wasted disc space but allowed for unified access. It would have
been unduly complicated to construct the interface objects otherwise.

As a fourth design feature, it was decided that part of the computation should be
steered by a table indicating which contract type belongs to which contract type group.
A new contract type that could be described as belonging to a contract type group would
only require an additional line in the table. But even where a new contract type does
not fit into one of the groups, it would only require a minimum of programming effort
as the interface object and the database are already in place.

300 YVONNE DITTRICH ET AL.

Last but not least, prioritization between different contracts triggered by the same
event is controlled by a list describing which contract takes priority. In this way, the
earlier hard-coded prioritization can be controlled in a more flexible way.

The design combines different implementation techniques which allow for flexibility.
When regarding the specific situation with respect to use, operation and maintenance of
the system, it was generally agreed that the design fitted well with the specific contexts of
use and development required by the telecommunication provider. Above all, the design
was found to be better suited to the situation at hand than a fictive fully-flexible system
utilizing the above-mentioned flexible data base system. To our surprize, the “flexibility
light” solution turned out to provide equal flexibility for anticipated changes though
in some cases software engineers would have to do the adaptation. In cases where the
system supported by the prototypes would have been preferable, the necessary changes
would have entailed changes in other systems as well. In terms of usability, maintainabil-
ity and reliability the “flexibility light” solution is clearly superior (Linderberg, 2001).

2.1.3. Using Meta Object Protocol to Separate Tailoring Use
in Software Architecture

One of the reasons for the low maintainability and reliability of the more flexible solution
was the interweaving of the meta-level that described the structure of the contracts
and the base level to access the concrete data throughout the code, e.g. the metadata
determining the structure of the contract type steered the layout on the screen. To explore
whether it is possible to develop a better designed system from the point of view of
maintenance, testing and debugging as well as flexibility, we implemented a prototype
inspired by Kiczales’ meta-object protocol (Kiczales, 1992). We also deployed the idea
of designing the contracts as aggregations of building blocks, each modeling a specific
parameter from the “flexibility light” solution.

The meta-object protocol is based on the idea of opening up the implementation
of programming languages so that the developer is able to adjust the implementation
to fit his or her needs. This idea has subsequently been generalized to systems other
than compilers and programming languages (Kiczales, 1992). Any system that is con-
structed as a service to be used by client applications, e.g. operation systems or database
servers can provide two interfaces: a base-level interface and a meta-level interface.
The base-level interface gives access to the functionality of the underlying system and
through the meta-level interface it is possible to alter special aspects of the underlying
implementation of the system so that it suits the needs of the client application. The
meta-level interface is called the “metaobject protocol” (MOP). The prototype uses this
idea to separate tailoring and use in the software architecture. So it allows for a better
structured design both in terms of tailoring features and base functionality.

For each value in the event data that can be used as a constraint in a contract, a
class is defined that takes care of the functionality of the constraint as it displays it for
viewing and editing, checks the consistency of the input data and stores and retrieves
the specific values from the database. A contract is implemented as an aggregation of a

END-USER DEVELOPMENT AS ADAPTIVE MAINTENANCE 301

number of such objects plus a set of objects handling mandatory contract specific data
such as contract ID, creation date, validity dates, versioning information and so on.
Each contract type is defined by a class that specifies what constraints an event must
satisfy to trigger contracts belonging to this type.

New classes defining new contract types can be created in the meta-level interface.
They are put together by selecting possible constraints from a menu. The meta-level also
allows one to change existing contract type classes and define additional classes for im-
plementing constraints. It is thus possible to adapt the new contract types to requirements
which have not yet been anticipated. The meta level is implemented using a metaobject
protocol: Through menu-driven selection the user assembles a new contract type. The
class describing this contract type is written as Java code to a file. After translation, the
class becomes part of the base level without even needing to restart the system.

The new contract type is available in the menu of the base level program. The base
level program consists of a frame providing access to the contracts and to the existing
contract types while designing a new contract. Although some of the Java reflection
features are used, the base-level program is basically an ordinary Java program. Where
errors or other problems occur, it is easy to test and debug. A system constructed in
this way can be implemented with a traditional, sparsely populated database, or with a
database system that allows one to change the data model during runtime.

The meta-object protocol design makes it possible to separate concerns. Business
logic regarding the contracts and constraints is implemented in the building blocks
and in the base level of the program. In some cases we may be dissatisfied with the
resulting contract types, e.g. we may want a user interface that is specially constructed
for this particular contract type. With the metaobject protocol design, this can easily
be solved by using a hand-coded class instead of the automatically generated one—we
are free to mix automatically generated classes and hand-coded classes. Also, special
business logic can be incorporated in the program this way. The business logic guiding
and constraining the assembly of contract types can be implemented in the meta level
part of the program.

The main advantage of the metaobject protocol design is that it allows one to separate
concerns. The base level of the program is a normal program in which some parts are
automatically generated code. In the same way, the meta-level of the program is only
concerned with the tailoring functionality. The functionality of the meta-level part can
be tested independently. As the base program works as a normal program, it can be
tested and debugged as usual. One could even develop specific test cases while creating
a new contract type class. We used Java for implementing the prototype. The meta-
object protocol solution is a viable option in conjunction with standard software and a
standard database system.

As the flexibility light solution was already in operation when we finished the new
prototype, we did not evaluate the meta-object prototype solution together with the tele-
com provider. However, we consider this solution does address some of the drawbacks
identified during the evaluation of the early prototypes, and it is certainly more flexible
than the “flexibility light” option implemented by the telecommunication provider.

302 YVONNE DITTRICH ET AL.

2.1.4. Tailoring, Software Evolution and Infrastructures

The contract handler example shows that even relatively simple business applications
must be flexible when supporting a developing business domain. It also shows that
whatever kinds of changes can be anticipated, it is necessary to accommodate unantic-
ipated developments. Use and tailoring might have to be interleaved with maintenance
and further development by software engineers.

The decision as to what to implement as tailoring functionality and what to leave
to maintenance by software engineers was in our case based on a well-established
co-operation between the telecom provider’s IT unit and the business units. A similar
design would not have been acceptable if its development had been outsourced; this
was confirmed during the evaluation of the project by the group manager of the IT unit
responsible for the development.

A third factor that became obvious when evaluating the effort required to produce
changes in the flexibility light version contra a fully-flexible system is that business
systems in such data-intensive business domains are often part of an infrastructure
of networked applications. Changes in business practice often entail changes in more
than one program or in the interplay between different applications. Here “design for
change” entails the sustainable development of heterogeneous infrastructures.

2.2. FLEXIBILITY IN LARGE TELECOMMUNICATIONS SYSTEMS

In telecommunications networks different kinds of devices producing and processing
data of different formats must be integrated. For example, information about calls in a
network is handled in call-data records (CDRs). The CDRs are generated by Network
Elements such as telecom switches and can contain information about call duration,
the origin of the telephone number, terminating telephone number, etc. The CDRs are
sent to post processing systems (PPSs) to perform billing and fraud detection etc. Both
the kind and format of data and the way it is distributed to the different post-processing
systems can vary and it changes as the network develops. An additional difficulty in
telecommunications networks is that the necessary computation must fulfill demanding
real-time constraints and that massive amount of data must be handled.

The Ericsson Billing Gateway (BGw) is an example of such a performance demand-
ing real-time telecommunications system, but it must also be customizable even after
delivery. It functions as a mediation device connecting network elements with post
processing systems such as billing systems, statistical analysis, and fraud detection.

Figure 14.2 shows the execution structure of the BGw. The structure consists of
three major components: data collection, data processing, and data distribution. Each
component is implemented as one (multithreaded) Unix process. All data processing
including filtering and formatting is done by the processing process. The BGw can han-
dle several different protocols and data formats and it can perform filtering, formatting
and other forms of call data processing.

The data flow in the BGw is tailored using a graphical user interface. Icons are
used to represent external systems. In Figure 14.3 files are retrieved from four Mobile

END-USER DEVELOPMENT AS ADAPTIVE MAINTENANCE 303

Figure 14.2. The execution structure of the BGw.

Switching Centers (MSCs) in two different versions. CDRs from the Paging System
are formatted to conform to the older version (“ver 7 −> ver 6” n Figure 14.3), and
all CDRs are checked to see if the calls are billable. Billable CDRs are sent to the
billing system; others are saved for statistical purposes. CDRs from roaming calls are
also separated from other CDRs. For more information about the BGw architecture see
(Mejstad, 2002).

Complementing the flexible definition of the dataflow, the BGw contains an interface
that allows the tailoring of the filters and formatters that sort and re-format the incoming
call data records to the interfaces of the post processing systems.

2.2.1. Methodology

The main methodology used is experimentation and performance evaluations of dif-
ferent versions of the software. These performance evaluations were carried out by

Figure 14.3. The Billing Gateway configuration view.

304 YVONNE DITTRICH ET AL.

Ericsson using real-world configurations. We have also conducted interviews with the
designers and end users of the software. The software is used in about 100 places all
over the world; our contact has been primarily with users in Sweden, UK, and Italy.
The software developers are located in Ronneby in the south of Sweden.

2.2.2. Tailoring Filters and Formatters

All data processed by the BGw must be defined in ASN.1, a standard for defining data
types in telecommunication applications. The BGw builds up internal object structures
of the data called Data Units. One of the Billing Gateway’s strengths lies in the fact that
the user can use a tailoring language—the “Data Unit Processing” (DUP) language—to
operate on these internal structures.

Sorting and reformatting are tailored through the definition of filter, formatter, match-
ing, and rating nodes in the user interface. This kind of node or component is represented
in the user interface by an icon. Each node contains a script in the DUP language that
is executed for every CDR passing through the BGw.

A filter node is used to filter out CDRs (e.g. IsBillable? in Figure 14.3). A filter
node can, for example, filter out all roaming calls (a call made in a net other than the
home net, e.g. when traveling in another country). The typical filter is rather simple
and contains no more than around 10 lines of DUP code.

Sometimes it is necessary to convert a CDR from one format to another before
sending it on to post processing systems (e.g. ver 7 −> ver 6 in Figure 14.3). The size
in lines of code differs a great deal from one formatter to another. In its simplest form,
it might only change a couple of fields whereas large formatters can contain several
thousand lines of code.

CDR matching makes it possible to combine a number of CDRs in one CDR.
It is possible to collect data produced in different network elements or at differ-
ent points in time and combine these into one CDR. Matching nodes usually con-
tain a lot of code, from a couple of hundred lines up to several thousand lines of
code.

Rating makes it possible to put price tags or tariffs on CDRs. It can be divided into
charging analysis and price setting. The main purpose of charging analysis is to define
which tariff class should be used for a CDR. The tariff class may be determined by
subscriber type, traffic activity, and so on. The price is then calculated based on the
given tariff class, call duration, and time for start of charge.

The DUP language is a mixture of C and ASN.1. It is a functional language that
borrows its structure from C while the way in which variables are used is based on
ASN.1. An example of DUP code can be seen below:

CONST INTEGER add(a CONST INTEGER)
{declare result INTEGER;
result ::= 10;
result += a;
return result;}

END-USER DEVELOPMENT AS ADAPTIVE MAINTENANCE 305

Local variables can be declared at the beginning of a scope. A scope is enclosed by
a “{‘ and a ’}”. A variable is declared with the keyword declare.

declare <variable name> <variable type>

The drag-and-drop interface for defining the dataflow and the DUP language to
define the processing of data in the different nodes gives the BGw flexibility to suit a
wide range of applications without the need for re-compilation since the functionality
can be changed on-site by the customer.

Shortly after, development performance became an issue for the BGw. Slow pro-
cessing of CDRs was one problem in the BGw. Our research on the performance of
the BGw has identified severe multiprocessor scaling problems (Mejstad 2002). As a
multi-threaded application, it is to be expected that performance will improve when a
CPU is added. This was not, however, the case.

2.2.3. Performance Problems With the BGw

The implementation of the DUP language was identified as the major performance
bottleneck and the main reason for poor scaling (Mejstad, 2002). The DUP language was
implemented as an interpreted language suggesting that each interpretation results in a
serious of function calls making heavy demands on the dynamic memory and thus the
shared heap. This again results in threads being locked on mutexes as multiple threads
try to allocate/de-allocate dynamic memory simultaneously. By replacing interpretation
with compilation (see next sub-section), we were able to improve performance by
a factor of two on a single-processor. The compiled version also scales better; this
version was also four times faster than the interpreted version when a multiprocessor
with eight processors was used.

The entire DUP implementation is accessed through three classes: DUPBuilder,
DUPRouter, and DUPFormatter. A fourth class called DUProcessing is used by these
classes.

The DUPBuilder uses an autmatically generated parser to build a syntax tree of the
DUP-script. This means that a tree structure of C++ objects is created that represents
the DUP source code. The DUPBuilder returns a DUProcessing object; this is the root
node in the syntax tree.

2.2.4. Using Compilation Instead of Interpretation

The interpretation of the DUP-scripts introduced a great deal of overhead that reduced
the performance of the BGw. The attempts to solve this problem by using parallel
execution were only partly successful. In order to get to the root of the problem we
wanted to remove the interpretation.

The obvious alternative to interpretation is compilation. Building a complete com-
piler is a major task so we decided to build a compiler that translates DUP scripts
into C++ code and then use an ordinary C++ compiler to produce the binary

306 YVONNE DITTRICH ET AL.

code. The binary code is then included in the program with the aid of dynamic
linking.

It turned out that the compiled version improved the average performance of the
BGw by a factor of two when using a uni-processor. The compiled version also scaled
much better than the version using the DUP interpreter; and the performance of the
compiled version was eight times better than the version which used the interpreter
on a multiprocessor with eight processors. In fact, the compiled version scales almost
linearly with the number of processors.

2.2.5. What is Development, What is Maintenance, What is Use?

The BGw itself consists of 100,000–200,000 lines of C++ code. A typical BGw
configuration contains 5000–50,000 lines of DUP code and there are more than 100
BGw configurations in the world today. This means that the total amount of DUP code is
much larger than the size of the BGw itself. The DUP scripts are sometimes written by
members of the use organization and sometimes by software engineers from the local
Ericsson offices. The BGW is an example of an application where tailoring clearly
becomes a matter of End-User Development as users not only write significant parts of
the code but programming also changes the functionality of the system.

A great deal of effort has been put into making the architecture of the BGw itself
as maintainable as possible, i.e. the cost of future changes should be kept at a mini-
mum. However, since most of the BGw-related code is compiled close to the users and
outside of the development organization in Sweden, the main cost of future changes
will probably be related to changing and maintaining DUP scripts and not C++ code.
This means that the most important aspect of minimizing the cost of maintenance is to
make it easy to change DUP scripts. Since DUP scripts are one of the main ways in
which the user interacts with a BGW, one can say that making it easier to change DUP
scripts is almost the same as making the BGw more usable. This means that the borders
between maintainability and usability are rather blurred as a large part of development
work is carried out close to or by the users. This also puts forward new demands on
tailoring and use interfaces. Testing, debugging, documentation, and version handling
must be provided for. And it changes the role of the users. Some users might become
local designers or even domain-specific software engineers.

3. Challenges, Problems, and Solutions

The two cases above show that tailorable software is an issue not only as a means of
tailoring the user interface of a standard system but also in industrial development and
deployment of software. It allows design decisions to be delayed until after the program
is taken into use and to adapt software to changing business and user requirements.
The two very different cases provide quite a spectrum of experiences. In this section
we summarize the lessons learned so far as well as the challenges for software design
and development.

END-USER DEVELOPMENT AS ADAPTIVE MAINTENANCE 307

3.1. USABILITY OF THE TAILORING INTERFACE

As normal interfaces, tailoring interfaces must be understandable from a user’s perspec-
tive. They must represent the computational possibilities of the interface not only in a
way that makes them accessible for the user but also helps him/her to understand how
to combine them. As a result, the tailorable aspects of the software must be designed—
even on the architecture level—to match a use perspective on the domain. The tailoring
interface must also present the building blocks and the possible connections between
them in a comprehensible way. Mørch’s application units (Mørch, 2000, 2003) and
Stiemerling et al.’s component-based approach (Stiemerling, 1997) are examples of
such architecture concepts. Stevens and Wulf discuss this issue in connection with the
designing of a component decomposition of a tailorable access control system (Stevens,
2002). This issue relates to a discussion of the relationship of the software architecture
and the structure of the user interface, e.g. Züllighoven et al. (Züllighoven, 1998) de-
veloped an approach to the design of interactive systems that relates to the architectural
design and the user interface using tools and materials to a common design metaphor.
However, designing the contract handler in accordance with this approach would not
automatically lead to an architectural design that facilitates tailorability.

Also, the contract handler presented the limited tailoring capabilities to the users in
a form which was close to their own concepts. However, the users declared at an early
stage that they did not want to make changes in the system themselves; they felt more
comfortable letting the software engineers responsible for system maintenance do the
tailoring. In the Billing Gateway, the data flow interface provides from the user’s point
of view a very intuitive interface. Also, the language for tailoring filters and formatters
complies well with the technical education of its users. Nonetheless, end-users have
shown some reluctance to tailor the application; in many cases tailoring was carried
out by software engineers. The users felt insecure about the correctness of the results
of the adaptation. This is discussed in greater detail in Section 3.4.

The above two cases show that the real challenge is to find ways to structure tailoring
capabilities so that the program is easy to use and understand for the user at the same
time as it provides tailoring capabilities that are powerful enough to provide the desired
flexibility. In the two cases considered here, the end users felt (at least initially) that tai-
loring activities should be left to software engineers. However, we believe that the users’
need for software engineering support will decrease as they become more used to the
systems. More widespread and less powerful tailoring, e.g. adjusting the settings in mail
programs and providing formulas in spreadsheet applications, shows that the support
of software engineers is clearly not needed in such cases. For applications that are used
by a large number of people with very different backgrounds, e.g. mail and spreadsheet
programs, the trade-off between ease of use and powerful tailoring capabilities will be
assessed differently from what we see in the two more specialized applications studied
here. The systems considered here will be used by a relatively small number of people
and it is thus reasonable to give higher priority to powerful tailoring, even if users
initially require specialized training and/or support from software engineers.

308 YVONNE DITTRICH ET AL.

One result of introducing powerful tailoring interfaces for certain specialized appli-
cations is that the users or a sub group of the users will become more of a domain-specific
developer. It also means that new versions of the applications will not always be the
result of re-engineering the software itself; they will, to an increasing extent, be done
by advanced tailoring. What was previously software development and maintenance
will thus become tailoring and use.

3.2. DECIDING WHAT SHOULD BE ADAPTABLE AND HOW TO DESIGN FOR IT

The requirements a software program should fulfill are difficult to determine in advance,
particularly in the case of adaptable software. In both our cases, the development orga-
nization had built similar software before. The contract handler was a re-development.
Experience with changing requirements was the main reason for looking into the design
of adaptable software. Ericsson has a long history in telecommunication; the decision to
make the Billing Gateway tailorable was made as the result of an increasing production
of different versions of the system for different customers.

Part of the design problem is the difficulty to anticipate changes for which to provide.
(Henderson, 1991; Stiemerling, 1997; Trigg, 1992) Understanding domain knowledge
and feedback from the user is important where flexibility is required.

However, in deciding what is fixed and how the adaptable parts should look, one also
implicitly determines the architecture of the whole system. In the case of the contract
handler design, the identification of fixed building blocks made it possible to implement
the contracts as assemblies of these blocks. In the case of the Billing Gateway, designing
filters and formatters as programmable manipulation of the dataflow also defined the
basic structure of the system and vice versa. Conversly, it is not until we have a basic
conceptual model of how the system is developed that we can understand what can be
made tailorable. An example of this is in the contract handler: only when contracts are
understood as sets of constraints to be matched by events, constraints can be defined as
building blocks for the drawing up of a contract. In both cases studied here, the design of
the stable and the adaptable aspects was dependent on each other. As with architectural
design, the design of the parts is only understandable in relation to the whole.

The evaluation of the flexibility light solution shows that the organization of the
software development also influences the design decision (Dittrich, 2002). In-house
development makes it possible for part of the regular adaptation to be left to soft-
ware engineers. Outsourced development would have led to different design decisions.
Neither can users of off-the-shelf software rely on such co-operation with software de-
velopers. Here, users need to be supported with more comprehensive tailoring interfaces
for the necessary adaptations.

The challenge here is thus to find a good balance between which future adaptations of
a certain software should be made tailorable for the end user and which should be left to
software engineers who redesign and maintain the software itself. Leaving everything
(or at least a great deal) to the end user will cause problems since this will require
very advanced tailoring (which in turn may require help from software engineers); this

END-USER DEVELOPMENT AS ADAPTIVE MAINTENANCE 309

may in turn make testing and documentation difficult and thus generate problems with
system reliability. On the other hand, leaving a great deal to the software engineer will
significantly increase the time required for and cost of introducing new functionality.
We believe that the trend goes toward functionality being made more tailorable; the
two systems studied here are good examples. However, it is important to find a good
balance between traditional software maintenance carried out by software engineers
and tailoring done by the users.

There is yet no systematization of design for tailoring and EUD available. Here,
perhaps a collection of high-level design patterns might slowly lead to a more systematic
overview of different possibilities and their strengths and weaknesses. Our two cases
indicate that the evaluation of solutions which have a good balance between tailoring
and traditional software maintenance must take into account the way in which use
and development are related. Moreover, the interplay between tailorability and non-
functional requirements must be considered.

3.3. PERFORMANCE

Many design techniques to provide flexibility and tailorability of software reduce the
performance of the program. In the Billing Gateway case in particular this has been a
problem. However, this problem can often be taken care of by adopting a sound techni-
cal solution. In the BGW we first tried to improve performance by using multiprocessor
technology. This approach only resulted in limited performance improvements. It turned
out that the best way to handle the problem was to replace interpretation with compila-
tion combined with dynamic linking, thus maintaining flexibility and tailorability and
improving performance.

Experience with a very flexible and tailorable database system showed that initially
performance was lower than in a traditional system by a factor of 10–20. The reason for
this was that the system used one level of indirection, i.e. the system first had to look
in a data base table for meta data before it could interpret any actual data values. This
performance problem was removed by introducing some controlled redundancy, thereby
reducing the slow down from a factor 10–20 to a factor of 2 (Diestelkamp, 2000).

These experiments show that the performance problems related to flexibility and
tailorability can often be handled without too much trouble. Flexible and tailorable
software can thus also be used in performance demanding real-time applications such
as the Billing Gateway system.

3.4. SOFTWARE ENGINEERING EDUCATION AND TOOLS FOR END-USERS?

The Billing Gateway was designed to be adapted by the telecommunication providers
themselves. Being technically trained people well-acquainted with the standards used
for the description of the call data records, they should not have a problem with DUP
language. However, the adaptations studied were mainly carried out by Ericsson person-
nel. The reason for this was that the end-users were afraid of implementing erroneous

310 YVONNE DITTRICH ET AL.

tailoring constructs with large financial losses for their organization as a result. The
users of the contract handler had similar reasons for refusing to tailor the program.
They did not want to be responsible for causing loss of money and reputation for the
telecommunication provider by making mistakes when doing tailoring. The developers
had access to test environments and tools used for ordinary software development and
were able to check whether the change had the intended effect. Also, in the case of the
contract handler, the users were reluctant to take responsibility for the tailoring. An
interesting question is if better tools and training in testing and documenting would be
of help to users. Other researchers have reported on similar needs for documenting and
testing of tailoring constructs (Kahler, 2001; Stiemerling). Wulf (Wulf, 1999, 2000)
proposes exploration environments that allow for safe trial and error. Burnett (Burnett)
explores constraints-based testing and verification support for end-users. In the Meta-
object version of the contract handler, the definition of contract types that do not make
sense from a business point of view can be prohibited.

In our cases, analysis and design were also discussed in terms of tailoring. “If the
system can handle any kind of contract, how do we decide on which kind of contracts
we want to offer?” asked a manager from the business unit during a workshop when
confronted with a mock-up showing a possible interface of a tailorable system. Involving
and paying the IT unit that is run as an internal profit center provided enough effort to
deliberate new contract types from a business point of view. Trigg and Bødker (1994)
observed the development of an organizational infrastructure around the deployment of
the tailoring features of a text editor in a government agency. The design of form letters
used instead of individual ones prompted the establishment of a committee that included
legal experts to help to review and decide on the form letters to be taken into use.

Other authors have observed the need to document tailoring constructs, keep dif-
ferent versions and share them (Henderson, 1991; Stiemerling, 1997). Such features
are necessary even when tailoring the common artifact—as in the contract handler
case—or the infrastructure of a business—as in the Billing Gateway. It seems that the
user, when provided with the means to tailor the software must also be provided with
the means and tools to deliberate, document, test, and re-use the tailoring constructs.
Testing and documentation in particular must be provided for so that tailorability and
EUD may be deployed more systematically in commercial contexts. Only experience
will show the extent and kind of such “end-user software engineering” needed. We do,
however, believe that users of tailorable systems will increasingly need better “soft-
ware engineering” training and tools since they may become a kind of domain-specific
software developer.

3.5. HOW DOES SOFTWARE DEVELOPMENT CHANGE IN CONNECTION

WITH TAILORING?

Developing software that is adaptable to different ways of using or for a developing
business area stimulates changes in software engineering. Designing a solution for a

END-USER DEVELOPMENT AS ADAPTIVE MAINTENANCE 311

problem is no longer sufficient. One has to design spaces for adaptation to a set of
diverse uses and anticipatable changes. In addition, one has to consciously defer part
of the design to the user.

Tailorability allows the users to implement adaptations that would otherwise be
subject to maintenance. For the Billing Gateway, the tailoring constructs can become
a major part of the overall code developed. On one hand, maintenance effort is traded
against tailoring effort for the users. (Henderson, 1991) and (Wulf, 1999) have already
noted that tailorability rationalizes development as it prolongs the maintenance cycle.
On the other hand, designing a tailorable system may be more complex, especially when
performance is an important factor. Making a program tailorable will thus also shift the
software engineering effort from the maintenance phase into the design phase and not
solely from maintenance by professional software engineers into tailoring by advanced
users.

Even if we can hope for less maintenance when designing, system tailorable main-
tenance will still be necessary when change requirements occur that cannot be accom-
modated by the adaptability the design provides. Tailorability will then produce a new
set of problems. A new version of the system must allow users to keep the adaptations
they have made to the old system. With the installation of a new version, not only the
old data has to be translated, but also the tailoring constructs. More research is needed
in this area.

The life cycle of software must accommodate the interleaving of development, use,
tailoring, small maintenance tasks, and major re-development. This may entail more
flexible ways of organizing software development and a less rigid division between the
use and development of software. This will require increased communication between
the software engineers and the advanced users. As early as in 1991 Trigg anticipated
such a development (Trigg, 1992). Our research indicates that this is highly relevant
when developing software that is part of an infrastructure for developing work and
business practices (Dittrich, 2004).

4. Conclusion

Henderson and Kyng (Henderson, 1991) in their article “There’s no place like home:
Continuing design in use” take up three reasons for carrying out tailoring: “the situation
of use changes,” “it [is] difficult to anticipate [the use]” and when one is “creating a
product which will be purchased by many people.” In this chapter we have exemplified
the first and last of these and we believe that tailoring has an essential role to play in
industrial software development when it comes to solving these problems. As far as the
problem of anticipating how the system will be used is concerned, tailoring is certainly
a means of alleviating the problem.

Based on our experience of the two cases discussed here we have identified a number
of important issues when designing and implementing tailorable systems in industrial
settings:

312 YVONNE DITTRICH ET AL.

The balance between providing a tailoring interface which is easy to use while still
providing powerful tailoring possibilities. Our conclusion is that it makes sense
to give higher priority to powerful tailoring in specialized applications such as the
ones studied here as compared to more general applications, e.g. mail programs.

The balance between traditional software (re-)development and maintenance on the
one hand and tailoring and use on the other. Our conclusion here is that the
trend goes toward handling more and more of the need for future adaptability by
tailoring.

The “conflict” between tailorability and flexibility on the one hand and performance
on the other. Our conclusion here is that this problem can, in most cases, be
solved by innovative technical solutions, and tailoring can thus also be used in
performance demanding real-time applications.

There is a need for giving the end users better tools for testing, documentation and
reuse/sharing of tailoring constructs as well as the necessary training to use them.
This is particularly true for users of specialized tailorable applications such as the
ones studied here. Some users may, in fact, become some kind of domain-specific
software developers.

Software maintenance and (re-) development will to a growing extent be mixed
and interlaced with tailoring. This will require increased communication between
software engineers and advanced users.

Acknowledgments

We wish to thank the reviewers of previous versions of this chapter for their constructive
criticism. And thanks to our research partners for their co-operation. For any errors, we
accept full responsibility.

References

Burnett, M., Rothermel, G. and Cook, C. An Integrated Software Engineering Approach for End-User
Programmers.This volume.

Diestelkamp, W. and Lundberg, L. (2000). Performance evaluation of a generic database system.
International Journal of Computers and Their Applications 7(3), September, 122–129.

Dittrich, Y. (2002). Doing empirical research in software engineering—Finding a path between un-
derstanding, intervention and method development, In Y. Dittrich, C. Floyd, and R. Klischewski
(eds.), Social Thinking Software Practice, Cambridge, USA: The MIT Press 2002.

Dittrich, Y. and Lindeberg, O. (2002). Designing for changing work and business practices. In: N.
Patel (ed.), Evolutionary and Adaptive Information Systems. IDEA group publishing.

Dittrich, Y. and Lindeberg, O. (2004). How use-oriented development can take place. Information and
Software Technology 46(9), July, pp. 603–617.

Henderson, A. and Kyng, M. (1991). There is no place like home: Continuing design in use. In
J. Greenbaum and M. Kyng (eds.), Design at Work. Lawrence Erlbaum Associates, pp. 219–
240.

Kahler, H. (2001). Supporting Collaborative Tailoring. Ph.D. thesis. Roskilde University. Datalogiske
Skrifter, ISSN 0109–9779 No. 91, p. 232.

END-USER DEVELOPMENT AS ADAPTIVE MAINTENANCE 313

Kiczales, G. (1992). Towards a New Model of Abstraction in the Engineering of Software. In: Pro-
ceedings of International Workshop on New Models for Software Architecture (IMSA): Reflection
and Meta-Level Architecture. Tama City, Tokyo, November.

Lindeberg, O. and Diestelkamp, W. (2001). How much Adaptability do you need? Evaluating Meta-
modeling Techniques for Adaptable Special Purpose Systems. In: Proceedings of the Fifth
IASTED International Conference on Software Engineering and Applications, SEA.

Lindeberg, O., Eriksson, J. and Dittrich, Y. (2002). Using metaobject protocol to implement tailoring;
possibilities and problems. In: The 6th World Conference on Integrated Design and Process
Technology (IDPT ‘02), Pasadena, USA, 2002.

Mejstad, V., Tångby, K.-J. and Lundberg, L. (2002). Improving multiprocessor performance of a large
telecommunication system by replacing interpretation with compilation. In Proceedings of the 9th
IEEE International Conference and Workshop on the Engineering of Computer-Based Systems,
April 2002, Lund Sweden, pp. 77–85.

Mørch, A.I. (2003). Tailoring as Collaboration: The Mediating Role of Multiple Representations and
Application Units”, In: N. Patel (ed.), Adaptive Evolutionary Information Systems. Idea group
Inc.

Mørch, A.I. and Mehandjiev, N.D. (2000). Tailoring as collaboration: The mediating role of mul-
tiple representations and application units. In: Computer Supported Work 9(75–100), Kluwer
Academic Publishers.

Nardi, B.A. (1993). A Small Matter of Programming. MIT Press, 1993.
Stevens, G. and Wulf, V. (2002). A new dimension in access control: studying maintenance engineering

across organisational boundaries. Proceedings of the CSCW 02, November 16–20, New Orleans,
Louisiana, USA.

Stiemerling, O. and Cremers, A.B. (1998). Tailorable component architectures for CSCW-systems.
In: Parallel and Distributed Processing, 1998. PDP ’98. Proceedings of the Sixth Euromicro
Workshop, pp. 302–308, IEEE Computer Society.

Stiemerling, O., Kahler, H. and Wulf, V. (1997). How to make software softer– Designing tailorable
applications. Proceedings of the Designing Interactive Systems (DIS) 1997.

Trigg, R. (1992). Participatory design meets the MOP: Accountability in the design of tailorable
computer Systems. In: G. Bjerkness, G. Bratteteig, and K. Kauts (eds.), Proceedings of the 15th
IRIS, Department of Informatics, University of Oslo, August.

Trigg, R. and Bødker, S. (1994). From implementation to design: Tailoring and the emergence of
systematization in CSCW. Proceedings of the CSCW ’94, ACM-Press, New York, 1994, pp.
45–55.

Truex, D.P., Baskerville, R. and Klein, H. (1999). Growing Systems in Emergent Organisations.
Communications of the ACM 42, pp. 117–123.

Wulf, V. and Rohde, M. (1995). Towards an integrated organization and technology development.
In: Proceedings of the Symposium on Designing Interactive Systems, 23–25 August, Ann Arbor
(Michigan), ACM Press, New York, S. 55–64.

Wulf, V. “Let’s see your Search Tool!” On the collaborative use of tailored artifacts. Proceedings of
the GROUP ’99 conference, ACM Press, New York, pp. 50–60.

Wulf, V. (2000). Exploration environments: Supporting users to learn groupware functions. Interacting
with Computers 13(2), pp. 265–299.

Zuellighoven H. (1998). Das objektorientierte Konstruktionshandbuch nach dem Werkzeug &
Material-Ansatz; dpunkt-Verlag Heidelberg.

Chapter 15

Supporting Collaborative Tailoring
Issues and Approaches
VOLKMAR PIPEK1 and HELGE KAHLER1

1IISI–International Institute for Socio-Informatics, Bonn, Germany,
volkmar.pipek@iisi.de, helge.kahler@iisi.de

Abstract. In this chapter we depict collaborative aspects of tailoring software. We provide a cate-
gorization distinguishing between (at first) three levels of intensity of user ties regarding tools usage
(“shared use,” “shared context,” and “shared tool”) and discuss approaches to support collaborative
tailoring in these scenarios. For the two levels with the most intense ties (“Shared Context” and
“Shared Tool”) we provide the relevant theoretical background as well as empirical evidence from our
own fieldwork. Our taxonomy helps us to describe and address two important shortcomings of current
tailoring environments. First, current considerations regarding tailorability usually address tailoring
within one tool, while current work infrastructures (which we introduce as a forth scenario—“Shared
Infrastructure”—in our taxonomy) require a thinking beyond one tool. Second, although studies on
tailoring-in-practice and evolving use of organizational software show the importance of user-user-
interaction in processes of technology configuration, this interaction was only treated as a side issue
in the design of tailoring environments. Respecting the importance of that interaction, we suggest to
stronger focus on opportunities to support those appropriation activities of users.

1. Introduction

More often than ever software is involved in the collaboration of computer users in
offices. Thus, the way a software product is implemented, configured, and used influ-
ences the collaborative work of these users. In this chapter we describe approaches
to support end-users in collaboratively finding and implementing tool configurations
that are adequate for their form and intensity of collaboration. “Tailoring” has been
defined by Henderson and Kyng (1991) as “changing stable aspects of an artefact” and
distinguished from use as persistent manipulations that are not “being made to the sub-
ject matter of a tool” (e.g. a text), but “to the tool itself.”1 Traditionally, approaches to
improve the “Tailorability” (Trigg et al., 1987; Henderson and Kyng, 1991) of software
artefacts address the improvement of the necessary artefact flexibility (e.g. Malone
et al., 1992; Stiemerling and Cremers, 2000; Wulf, 1999). But offering the necessary
flexibility to make tools fit diverse and changing work contexts is only the first step of
offering support. A deeper understanding of the role tailoring plays in the appropriation
processes of individuals, groups and organizations has lead to new ideas to also support

1 We use the terms “configuration” and “tailoring” synonymously, but with the former having a more technology-
related notion, in contrast to the latter having a more socio-technical notion.

Henry Lieberman et al. (eds.), End User Development, 315–345.
C© 2006 Springer.

316 VOLKMAR PIPEK AND HELGE KAHLER

tailoring as an activity within the tailored artefacts. Being aware of the organizational
aspects of tailoring activities we explore opportunities to support these activities with
additional functions.

Especially long-term studies of groupware systems (Karsten and Jones, 1998; Pipek
and Wulf, 1999; Törpel et al., 2003) show that tailoring an application is only the
technological condensation of an individual or social activity of designing a work
setting for performing a certain task. In line with earlier experiences (Stallmann,
1981; Malone et al., 1988; Mackay, 1990) they show that tailoring activities often
involve user-user interaction and collaboration. So, the “individual” decision how to
tailor an artefact is to a certain extent always also social, since large parts of the
knowledge used in the decision processes usually have been acquired through so-
cial interaction (e.g. knowledge on the capabilities of computers and tools, knowl-
edge on the task the tool should serve in, etc.). So there is always a notion of co-
operation in a tailoring activity, as it is in every activity of technology appropriation
processes.

This general consideration of the sociality of tailoring processes has to be concretized
to discuss possible opportunities for offering technical support for collaborative tailor-
ing. To discuss existing approaches as well as new challenges, it is necessary to give
some structure to support scenarios. In the next section, we develop four scenarios of
collaborative tailoring that guide us through our discussions in this chapter. Focusing
on technical support for particularly collaborative tailoring we will concentrate our
discussion on those scenarios that show the biggest need for collaboration support. We
close this chapter by describing new challenges for collaborative tailoring at modern
workplaces and discuss extensions of tailoring interfaces to support the appropriation
of groupware technologies in a broader sense.

2. The Collaborative Dimension of Tailoring Activities

What are the important aspects that motivate or even enforce cooperation in tailoring
activities? Abstract perspectives on tailoring functionality have usually been domi-
nated by distinguishing different tasks and complexity levels of tailoring interfaces
(Henderson and Kyng, 1991; Mørch, 1997).

In the literature on tailorability collaborative aspects have been mentioned at sev-
eral occasions since the early 1980ies. Already Stallman (1981) reports that users not
only think of small changes and try them, but also pass them over to other users.
Mackay (1990) researched how people actively shared their tailoring files with each
other. Oberquelle (1994) proposes a classification of groupware tailoring distinguishing
tailoring actors, who can be individuals or a group, from persons affected by a tailoring
activity, who can again be individuals or a group (see Figure 15.1). This can also be
used to classify collaborative tailoring. Different aspects and intensities of collaborative
tailoring of a single-user software product and of groupware fit in the resulting four
categories:

SUPPORTING COLLABORATIVE TAILORING 317

Figure 15.1. Classification of collaborative tailoring (Kahler, 2001b; following Oberquelle, 1994).

Individualization: individuals tailor for themselves and are the only ones affected by
the tailoring activity—e.g. individual keyboard shortcuts or the window layout of
an individual email client;

Tailoring effective for group: individuals can tailor for a whole group who then agree
or are obliged to use the tailoring files—e.g. a system administrator or expert user
provides a letterhead to be used by the group;

Individualization supported by group: a group can tailor synchronously or asyn-
chronously for its members to use and change the tailoring file—e.g. several
persons work on collection of macros that individuals can use;

Group tailoring: a group can tailor synchronously or asynchronously and its mem-
bers agree or are obliged to use the tailoring files—e.g. several persons work
on the introduction of semi-structured email templates valid for the whole
group.

The strict borders between the four different categories mentioned blur when we try
to apply them to practical examples (cf. Kahler, 2001b, p. 28). It is not easy to locate
the different accountabilities in the process that lead to a tailoring activity and in the
process of the tailoring activity itself. While it is usually clear who actually worked
with the tailoring interface of an application, it is not clear whose assumptions, ideas
and decisions influenced a new tool configuration.

The Oberquelle model focuses on the distinction of one or more actively designing
user on the one hand (the tailoring activity), and the passive “target users” on the other.
This distinction focuses too much on the tailoring activity itself, and it does not represent
additional activities of counseling, discussing, evaluating, validating, idea creation, etc.
that are also very relevant for collaboration success in tailoring activities.

We believe that, to understand and support collaboration in tailoring activities, it is
necessary to distinguish ideas and approaches according to what actually motivates users
to collaborate regarding the configuration of software tools. The classification we pro-
pose here aims at differentiating the field along the interests and technological ties that
bind users together in the process of collaborative tailoring. These are, in our eyes, moti-
vated by the organizational context of the users as well as by the architectural properties
of the application to tailor. We believe that it is useful to distinguish four levels of ties that
bind users together and motivate cooperation regarding the (re-)configuration of tools.

318 VOLKMAR PIPEK AND HELGE KAHLER

Figure 15.2. Collaboration in “Shared Use” scenarios.

2.1. TAILORING IN “SHARED USE” SCENARIOS

On the first level it is the tool usage itself that serves as a common denominator for
cooperation. Users can be perceived as a “Community of Interest” regarding the usage
of a tool. Tasks and activities may be related to acquiring knowledge about aspects
of tailoring covering possible tool configurations as well as alternatives for tool re-
placement (cf. Stallman, 1981; Robertson, 1998; Kahler, 2001b). The common task of
individualization of the tool is performed individually, but the existence and liveliness
of user forums on single-user-applications (e.g. text processors) on the web indicate
the social dimension of the task (see Figure 15.2).

Almost any office application can be considered as an example in this category. If
we look a common modern text processor, we usually find support for several tasks
in the document types and functions it offers (Text, Thesis, web page, circular letter,
etc.) and for several use situations (e.g. language contexts). Configurations affect how
these functions modify the document (e.g. the automated spell checking function) or
how it is being presented to the user. Though software producers usually offer manuals
and training support, existence and use of several newsgroups and web discussion fora
for some text processors show that users are aware of other users and their expertise.
The problems encountered when trying a new task are solved by discussing possible
changes with other users (Mackay, 1990).

2.2. TAILORING IN “SHARED CONTEXT” SCENARIOS

The interdependencies between different users and their usage of tools increase dra-
matically if the users collaborate. Both, a shared task as well as a shared organizational
context, add new dimensions even to configuring single-user tools. A standardization
of tool configurations may lower costs of computer administration and ease tool-related

SUPPORTING COLLABORATIVE TAILORING 319

Figure 15.3. Collaboration in “Shared Context” scenarios.

communication among users in an organization. Collaborating on a common task may
require an agreement on tool versions and technological standards (e.g. file formats to
use) among the users involved (even beyond organizational borders). In general, tool
configurations of one user may have effects on the work of other users as well. Social in-
teraction regarding tool configurations in these settings is more focused and the shared
context may support these interactions. Robertson (1998) described the occurrence of
“tailoring cultures” in small design companies. So, these settings do both, they pose
new requirements as well as offering new options for the technical support of tailoring.
We call these settings “Shared Context” scenarios when we address technical support
for collaborative tailoring (see also Figure 15.3).

If we again consider the use of a text processor in an organization, we find use patterns
where configuration settings are being passed around because users are sufficiently
familiar with each other’s tasks and their similarities (Kahler, 2000). Tailoring can
be delegated to other users that have similar tasks, and the results are used without
necessarily having to understand how tailoring has been done. A shared task forces
users to agree on some aspects, e.g. document formats and naming conventions for
the documents produced. However, users are basically still free in deciding on the
configuration of their own text processor instance. They have to perform the tailoring
individually at their own workstation, even if it is only following tailoring instructions
of other users.

2.3. TAILORING IN “SHARED TOOL” SCENARIOS

In settings where a groupware tool is used for collaboration, it results in even stronger
interdependencies (e.g. Pipek and Wulf, 1999) of configuration decisions, and there are
cases where for technical reasons there can be only one valid configuration (see below)

320 VOLKMAR PIPEK AND HELGE KAHLER

Figure 15.4. Collaboration in “Shared Tool” scenarios.

for a group of users. In these cases, after an agreement on the desired tool configuration
is achieved, it is impossible or disadvantageous to deviate from the common ground
found, and the decision of individuals to disagree may deny them tool usage at all.
The ties between the users are even stronger, and call for a collaborative solution
for the tailoring process itself. We will address this context of technical support for
collaborative tailoring as a “Shared Tool” scenario (see Figure 15.4).

An example of a “Collaborative Tool” scenario is the configuration of access rights
for the shared workspaces of a groupware. There can only be one set of access rights
of a workspace, so the structure of the workspace and the visibility of documents it
contains will be configured for all groupware users. In this case, users have to agree
on the configurations appropriate for the necessities of collaboration as well as for the
protection of privacy. We will later refer to another example with similar dynamics.

2.4. TAILORING IN “SHARED INFRASTRUCTURE” SCENARIOS

To catch the dynamics of modern workplaces it is necessary to extend the notion
of the interdependencies described above also to tool “infrastructures” (Robertson,
1998; Dourish, 1999; Dourish and Edwards, 2000; Dittrich et al., 2002; Hansson et al.,
2003), where similar situations occur when separate but tightly interwoven tools and
technologies are being used (see Figure 15.5).

We can illustrate that with an example from our project practice: In an IT consultancy
the decision to share contact information using the “LDAP” standard required an update
of a Personal Information Management software. In this update, the designers of the tool
have decided to change the default standard for address information exchange from the
Electronic Business Card Standard “VCF 2.1” to version 3.0. Parts of the consultancy
were involved in a research network where members shared contact information by

SUPPORTING COLLABORATIVE TAILORING 321

Figure 15.5. Collaboration in “Shared Infrastructure” scenarios.

storing “.vcf ”-files in a shared directory, and suddenly the newest addresses from a
central repository for Electronic Business Cards were not readable for some of the
users. With the practices of sharing contact information via the LDAP protocol and
of depositing VCF-files in a shared directory of a local network the users involved in
both contexts introduced a hidden dependency into their work environment. In these
“Shared Infrastructure” scenarios, dynamics similar to “Collaborative tool” settings can
be encountered, but the dependencies are less obvious to users. These problems often
occur because purchase of applications is a relatively uninformed decision where the
applications’ capabilities are more important than its dependencies, important future
requirements are not anticipated and there is a lack of knowledge on the applications
accountabilities (cf. Dourish, 1997).

We now want to discuss different options to support the settings of tailoring that we
sketched here.

3. Support for Collaborative Tailoring in “Shared Use” Scenarios

“Shared Use” scenarios are those in which the users have the weakest ties; they may
only share a common interest into a software artefact and its tailoring options. In
contrast to “Shared Context” scenarios there may be no shared culture of usage or task
congruency among the potential collaborators. There may be large variations of user
interests regarding certain features of an application over space and time. A specific
shared technological infrastructure can usually not be assumed beyond the basic Internet
services (E-Mail, WWW, etc.). Consequently, there are only limited opportunities for
a systematic support of collaboration in tailoring.

322 VOLKMAR PIPEK AND HELGE KAHLER

However, the emergence of tool-related discussion fora (partly initiated by the man-
ufacturers themselves, e.g. Apple2 and Microsoft3) on the web shows us that there is a
solid baseline for support concepts in the idea of providing communication facilities for
all kinds of tool-related problems. Similar positive experiences with newsgroups have
also been reported in several studies (Mackay, 1990; Okamura et al., 1994). Addition-
ally, a number of cases have been published that showed a combination of usual user
support measures (providing opportunities for finding help and giving feedback) for
software products with measures to connect clients to each other. But these approaches
usually reflected more organizational or philosophical concepts. The technology sup-
port did not go beyond the alternatives described above (Hansson et al., 2003; Dittrich
et al., 2002).

Taking the need of communication about tools seriously, two aspects of the tailoring
discussion should be highlighted. The first aspect is the need for tailoring objectifi-
cations (Henderson and Kyng, 1991) as the entities that provide a meaningful closed
subset of the possible manipulations of the software. It is also important to provide
some kind of “tool ontology,” names for these objectifications that may represent
their meaning. Aside from using language, appropriate graphical representations of
the applications and the tailoring interfaces are also helpful. As a second aspect, the
provision of easy access to these virtual meeting places is also important. Today, this
requirement is often covered by providing links to these web pages in the applications
themselves.

4. Support for Collaborative Tailoring in “Shared Context” Scenarios

In this section we describe several aspects and approaches and one in-depth example for
tailoring support in “Shared Context” scenarios. This is meant to clarify the qualitative
difference of “Shared Context” scenarios as compared to “Shared Use” scenarios and
how this new quality can be met by technical and organizational means.

4.1. ASPECTS AND APPROACHES FOR “SHARED CONTEXT” SCENARIOS

In “Shared Context” scenarios, of course all aspects described for “Shared Use” sce-
narios also apply. But with the shared user context, be it an organization or a shared
project, additional dynamics evolve. A culture of collaboration is established between
separate users, a fact that brings new dependencies as well as new options (e.g. the
delegation of tailoring activities to colleagues).

4.1.1. Requesting and Sharing Ideas for Tailoring

Mackay (1990) did one of the first larger studies on the role of collaboration in tailoring
activities. The study was conducted at two research sites. At the first site, 18 people

2 http://discussions.info.apple.com/
3 http://www.microsoft.com/communities/default.mspx

SUPPORTING COLLABORATIVE TAILORING 323

using Information Lens (Malone et al., 1988) to tailor the management of their emails
were observed over a period of three or more months. Depending on the job category
(e.g. Manager, Secretary or Application Programmer) the different groups borrow and
lend files with different intensity and have a different percentage (0–38%) of translators.
Mackay concludes both cases by criticizing that staff members are often not rewarded
for sharing tailoring files and requests that tailorable software should provide the ability
to browse through others’ useful ideas and that it should include better mechanisms
for sharing customizations which then may serve to establish technical or procedural
standard patterns.

Mackay (1991) studied the tailoring behavior of 51 users of a Unix software environ-
ment over a period of four months. Four main reasons that lead to tailoring have been
identified: external events like job changes or office moves, social pressure like contact
to colleagues who suggest changes, software changes like breakdowns or upgrades
(the latter often retrofitting new software to behave like the old version), and internal
factors like spare time or running across a previously unknown feature. The topmost
barriers for the persons she asked were the individual factor lack of time (cited by 63%
of the users) and the technological factor that the software was too hard to modify
(33%).

4.1.2. The Importance of Expert Users

The role of a local expert was also highlighted by Gantt and Nardi (1992) who describe
what they call patterns of cooperation among 24 CAD users. They distinguish between
local developers who write macros, programs and scripts and help end users in tailoring
on one hand, and on the other hand gardeners as a sub-group of local developers.
Gantt and Nardi support the contention that the activities of local experts should be
recognized and promoted since a local expert, and particularly a gardener, can save
the organization’s time and money by offering valuable resources, like macros and
programs to the entire group. They admit, however, that it may be difficult to find a
person with the right combination of technical and social skills.

Nardi and Miller (1991) present results from an in-depth-study where they con-
clude that spreadsheet co-development is the rule rather than the exception and that
spreadsheets support the sharing of both programming and domain expertise. Con-
sidering the fact that more and more off-the-shelf software needs tailoring and offers
mechanisms for it, the presented results encourage the tighter integration of using and
tailoring.

4.1.3. Tailoring Between Differentiation and Standardization of Tools

Contrary to a criticism voiced often, tailoring must not necessarily lead to an abundance
of confusing individual configurations but may also help good solutions to become
standards. Trigg and Bødker (1994) found an emerging systematization of collaborative
tailoring efforts in a government agency. In their study, tailoring showed aspects of what
Fischer and Giaccardi (in this volume) called unself-conscious design, where situated

324 VOLKMAR PIPEK AND HELGE KAHLER

knowledge is more important than an explicit description and where people solve their
own problems rather than those of others as in a self-conscious culture of design. While
it is often argued that tailoring leads to an unmanageable abundance of individualized
solutions, several aspects imply that tailoring in this organization does rather have a
standardizing effect. Standards of particular text blocks and of macros and button panels
that reflect the work practice can be developed and widely used because the organization
explicitly supports individual and collaborative tailoring and the distribution of tailored
files. Wulf (1999) provides an example how the complexity of a tailorable search tool
can be managed by organizational and technical means.

4.1.4. Technical Support of Collaborative Tailoring

Wasserschaff and Bentley (1997) describe how they supported collaboration through
tailoring by enhancing the BSCW Shared Workspace system. They designed multi-user
interfaces for the BSCW system, which allow users to take a certain view on the data in
the shared workspace. These Tviews can be added to the shared workspace as objects
in their own right, so others may take them individually, use them, and modify them in
the same way as documents and folders.

In their Buttons system MacLean et al. (1990) explicitly supported the sending of
tailored files via email. They propose that the two possibilities to make systems more
tailorable for workers are to make the tailoring mechanisms accessible and to make
tailoring a community effort. The notion of the importance of a community of people
who tailor is supported by Carter and Henderson (1990). Based on their experiences
with the Buttons system they claim that a Tailoring Culture is essential to the effective
use of a tailorable technology.

The aforementioned examples stress that collaborative tailoring does not only occur
among groupware users, but also in groups of users using the same software and thus
being able to profit from the fact that this software is tailorable and that tailoring files may
be exchangeable. Particularly the fact that more and more computers are connected to a
local or wide area network creates the infrastructure to exchange tailoring files even of
single user applications easily through the network. Therefore, the boundaries between
collaborative tailoring of a single-user software product and a groupware become fuzzy
(see also “Shared Infrastructure” scenario). We now look closer at one of our prototypes,
which captures these dynamics.

4.2. COLLABORATIVE TAILORING OF A WORD PROCESSOR

Generic single user applications usually do not provide support to share tailoring files
among its users. However, they are often tailored collaboratively. To support such
collaborative aspects of tailoring single user applications, an extension to a common
off-the-shelf software product that should allow the exchange of tailoring files was
developed and resulted in a tool, which provided collaborative tailoring functionality
as “Microsoft Word” extension (Kahler, 2001a).

SUPPORTING COLLABORATIVE TAILORING 325

4.2.1. Setting

To learn about users’ habits and to inspire the design, we carried out a qualitative field
study with users of Microsoft Word. 11 semi-structured interviews with users from
four different fields were conducted (public administration, private company, research
institute, and home users).

Depending on their field of application the interviewees reported about differences
in the extent and the way tailoring is seen as a collaborative activity. We identified four
typical use situations leading to design suggestions.

4.2.2. From Use Situations to Design Suggestions

While use situation IV (“Experience transfer among insulated home users”) just deals
with experience transfer, use situations I to III are based on an exchange of adap-
tations. In these use situations, this common use of adaptations is either technically
non-supported (exchange of floppy disks) or supported by tools, which are realized
apart from the word processor (intranet, LAN directory, groupware application). Both
of these solutions seem to be problematic because they require the users to leave the
application to acquire the adaptations. Therefore, it seems worthwhile considering to
integrate the support for collaborative tailoring into the word processor’s functionality.

To design such an integrated support, the following considerations seem to be of spe-
cial importance. Depending on the state of a tailoring activity there are different groups
of users involved in carrying them out (e.g., use situation II—Collaborative Tailoring
and Organization-Wide Distribution). The extent to which adaptations are reasonably
shared obviously corresponds to the tasks that are supported by them. Such a task can be
specific to an individual (e.g., use situation IV—Experience Transfer Among Insulated
Home Users), a group or a department (e.g., use situations II—Collaborative Tailoring
and Organization-Wide Distribution -and III—Shared Document Templates and Noti-
fication of Users) or even a whole organization (use situation I—Central Repository
for Standardized Forms).

Thus, support for collaborative tailoring should allow differentiating among various
groups of users when sharing adaptations. There are obviously situations where mail
support seems to be appropriate to exchange adaptations. E.g., in cases an experienced
user builds an adaptation especially required by a user for the task at hand, a mail tool
seems to be the appropriate technical support for distribution. On the other hand, in
case adaptations by a specific user are not required instantly, a publicly accessible store
allows selecting among these adaptations at the moment required by the task at hand
(e.g., use situations I to III).

Finally there is a need to make users aware of the fact that somebody else has
produced an adaptation with relevance to them. An integrated tool to support sharing
of adaptations could provide additional awareness within the system.

Evaluating the use situations and summing up the results of the final discussion with
the interviewees, the following main suggestions for the tool emerged. It turned out

326 VOLKMAR PIPEK AND HELGE KAHLER

that this empirical evidence is in line with theoretical and empirical work described in
the literature about tailorability:

Tight integration in the word processor application;
Mechanisms for sharing, sending and receiving tailoring files
A public store to provide a location to exchange tailoring files;
Mailing mechanisms for users to be able to send tailoring files directly to other single

users and groups of users;
A private workspace for tailoring files, that may be copies of files from the public

store or files received from others via the mailing mechanism;
An awareness service that notifies users about modifications of tailoring files.

Consequently, the respective features were provided in a prototype as an extension
(“add-in”) to Microsoft Word implemented in Microsoft Visual Basic for Applications.

Finally, a usability test of this add-in has been conducted by using the method
constructive interaction for testing collaborative systems—CITeCS (Kahler, 2000).

4.2.3. Discussion and Future Extensions

The word processor case showed that even for single user applications collaborative
aspects of tailoring are an issue. It also showed that, with relatively little effort, sev-
eral important features for collaborative tailoring can be supported: the word processor
was already tailorable on several levels (choosing from alternative behaviors, creating
macros) and extensible by an add-in implemented in Basic; most organizations have
their computers connected and already support some forms of shared workspaces. So
the technology and infrastructure is mature enough to connect people who tailor single
user applications individually in order to be able to introduce collaborative aspects.
Moreover, the case showed how fuzzy the borders between use and tailoring are: The
tailoring files most interesting to the word processor users were document templates,
which are basically write-protected documents. However, as templates they were con-
sidered to be tailoring files, since they modified the functionality of the word processor
in use, because the users could start the word processor by double-clicking a template
and immediately were able to do their task of, say, writing a formal request.

Our results hint to the fact that a tool for sharing tailoring objects as described may
increase the frequency of tailoring activities. We assume that such a tool may also
serve as a medium that encourages groups to discuss group standards, e.g. for letter
templates that then can be shared. The systematization of customizations (Trigg and
Bødker, 1994) resulting from a collaborative tailoring process would then contribute to
common norms and conventions needed for collaborative work (Wulf, 1997).

Suggestions for the use of such a tool cannot be restricted to technical design sug-
gestions but must include organizational aspects as well. We are convinced that the
establishment of a “gardener” (Nardi, 1993) or “translator” (Mackay, 1990), e.g. a local
expert responsible for the coordination of tailoring activities, is a vital part of tailoring
measures in organizations.

SUPPORTING COLLABORATIVE TAILORING 327

Right now it seems that adaptations are most usefully applied in the organizational
context of their emergence supporting the tasks they are made for. The sharing tool
in its current form is most helpful for small work groups with a rather similar work
context.

Our hypothesis about the technical and organizational scalability of such a tool is that
the model of public and private spaces and the distinction between creator and user of
the artefacts need to be enhanced to more than two levels when the group size exceeds
a certain limit. Like in shared workspaces for general purpose, a more sophisticated
access control model is needed (Pankoke and Syri, 1997). Meta-information like an-
notations made by an adaptation’s creator may help to compensate for part of a lacking
context. If such a tool would allow distributing adaptations worldwide, e.g. via the World
Wide Web (WWW), one could even think of supporting global teams or even establish
widely accessible libraries for adaptations. Whether this is, however, reasonable in the
light of the poverty of knowledge of organizational and task context is unclear. How
context could possibly be provided and how large groups of participating contributors
can be handled may be learned from experiences in distributed software development.
This is particularly interesting when taking place without existence of a formal or-
ganization as in the case of the distributed development of Linux and its components.
Anecdotal evidence shows that questions of ownership and membership play an equally
important role here as they do in “ordinary” organizations and settings (Divitini et al.,
2003).

However, in our experience it is clear, that collaborative tailoring does not scale
easily. As always the question remains open how much administrative work the par-
ticipating individuals are willing to contribute for the benefit of a group or organiza-
tion and how much administrative effort is still reasonable to stay on the profitable
side of collaborative tailoring. More refined tools to measure this and more refined
categories to weigh the individual and group pains and gains against each other are
needed.

An alternative to a tool presented above is the embedding of such a mechanism
to exchange Microsoft Word related adaptations into a generic organizer of adapta-
tions belonging to different applications. This organizer could combine mail mecha-
nisms (or even be part of an email client) with the operating systems’ functionality
for access rights or shared workspaces and an enhanced explanation and commenting
functionality.

5. Support for Collaborative Tailoring in “Shared Tool” Scenarios

We now describe different approaches for technological support of “Shared Tool” sce-
narios. Again, the main aspects discussed for tailoring support in “Shared Use” or
“Shared Context” scenarios also apply here. But the necessity to agree on (parts of) a
tool configuration increases the interdependencies among users again and requires a
different kind of support. We discuss several approaches before we elaborate deeper on
some aspects using one of our own concepts.

328 VOLKMAR PIPEK AND HELGE KAHLER

5.1. ASPECTS AND APPROACHES FOR “SHARED TOOL” SCENARIOS

We describe four approaches that cover also the collaborative dimension of tailoring a
shared tool, in most of these cases a Groupware application. All of these approaches
highlight different aspects of the role of collaboration in tailoring: While Oberquelle
(1994) focuses on a process-oriented perspective on tailoring, Fischer (2002) marked
important aspects of design-in-use. Wang and Haake (2000) tried to achieve high lev-
els of flexibility for their tailoring environment. The final two approaches go beyond
classical notions of tailoring activities: Mørch and Mehandijev (2000) focused on op-
portunities for a long-term in-use collaboration between designers and users, and Wulf
et al. (2001) described an approach to defer the decision about how a groupware system
should act until the occurrence of actual “use requests.”

5.1.1. Tailoring Groupware as a Collaborative Design Process

Oberquelle (1994) investigated tailoring as a collaborative design process and proposed
groupware support for several tasks within the tailoring process. He identified five
tasks:

Discuss inadequacies: A groupware system could provide an opportunity for “Meta-
communication” to allow users to discuss inadequacies of the groupware system.

Conceptualize alternatives: With the acknowledged requirement of “objectification”
of tailoring alternatives given, this especially means to allow users to choose
between or model a tailoring alternative.

Evaluate alternatives and decide: All users should participate in the evaluation and
the decision upon the tailoring task to process. The groupware system, with its
messaging capabilities, could support this.

Implement the alternative chosen: Finally, the tailoring alternative chosen should be
implemented.

Notify affected users: All users who are somehow affected by the tailoring alternative
chosen should be notified that the change has been implemented now. Additionally,
explanations of the “how” and “why” of tailoring can be given.

It is important to note that these task descriptions are not meant to be a model
of consecutive, clearly distinguishable phases. Since tailoring processes can become
quite complex regarding the functions modified in a tailoring activity, this would be
an inappropriate restriction of the processes’ flexibility. The ideas presented provide a
first weak process model of collaborative tailoring activities.

5.1.2. The “Meta-Design” Perspective

The “Meta-Design”-philosophy is covered in an own chapter in this book (see there). We
now only want to relate to some of its aspects (described in Fischer and Scharff, 2000)
that we consider important for collaborative tailoring. The baseline of the argumentation
is that most new technologies developed within the IT sector treat the user more as a

SUPPORTING COLLABORATIVE TAILORING 329

consumer than as an active participant in a technological setting. Fischer and Scharff
call for a notion of the user as an active (co-)designer of the technological settings he
works with. Several perspectives on developing adequate design environments form the
“Meta-design” philosophy. In a broader description of the idea and its context, Fischer
(2002) called for designing technical infrastructure, organizational issues (learning
environment and work organization) and a socio-technical environment for design-in-
use at design time.

In this context, tailoring has the notion of a design-in-use activity where several
designers (professional developers and users) are involved into designing the config-
uration of a tool. We point out some aspects and experiences that are relevant for
particularly collaborative tailoring as an activity.

Fischer and Scharff stress the importance of domain orientation for design envi-
ronments. They should reflect the entities that form the design problem as well as
those relevant for describing possible solutions. In the design problem described, this
is the domain of urban planning and mass transportation. The domain orientation does
not only reflect in the concepts and abstractions used but also in their form: Tangi-
ble representations of the design problem result in more appropriate opportunities for
articulations by participants.

In the example domain these tangible representations also play an important role for
collaborative representations. Collaboratively developed representations are important
for developing both, an individual understanding of the concepts and interests of others
as well as a manifestation of the shared notions regarding the design problem.

In a related paper, Fischer and Ostwald (2002) described the combination of an action
space with a reflection space as a basic useful architecture for collaborative design (e.g.
in Urban Planning). In a way this can be associated with collaborative tools having a
“use space” (the ordinary use interface) and a “tailoring space” (where there could be
room for reflection).

The special facet of the “Meta-Design” idea to support design communities (instead
of only individual designers) also is very relevant for collaborative tailoring. This
aspect stresses that the design activity (or tailoring activity) also comprises secondary
activities of learning, communicating and collaborating regarding issues important in
the design process. These are also important to support. Finally, communities may
provide a context of motivation and reward for participating in design activities (“good
community citizenship”).

While pointing out important directions to think about, many of the ideas have to be
concretized to be able to guide the development of support for collaborative tailoring.
Another important problem of the approach is that it mainly addresses “big,” complex
and separate design activities while tailoring activities are often much smaller and
tightly interwoven with the work practice of the users.

5.1.3. The “Cooperative Hypermedia Approach”

Wang and Haake (2000) present CHIPS, a hypermedia-based CSCW toolkit with elab-
orated abstraction concepts (role models, process models, cooperation modes, etc.) in

330 VOLKMAR PIPEK AND HELGE KAHLER

a three-level modelling scheme (meta-model, model and instance) that allows users to
describe and tailor their cooperation scenarios. Generally based on an open hyperlink
structure the system is extendable on any modelling level and thus should be able to
support every cooperation scenario that may occur. In this respect it is similar to CSCW
toolkits earlier proposed by Dourish (1996) or Malone et al. (1992).

Wang and Haake focus on the notion of tailoring as a collaborative activity. The
main example they use to present the toolkit is the collaborative development of a work
environment for a newly formed team. Their toolkit provides access rights systems and
discourse representation facilities oriented at the method of issue-based information
systems (IBIS, Rittel 1973; Conklin and Begemann 1988). The tailoring activity is
incrementally described and performed within the hypermedia system as any other
collaborative activity. In their example they use a weak process model with the steps
idea creation, discussion of alternatives, decision-making and implementation that is
similar to the ideas of Oberquelle (1994). The approach does not explicitly implement
this process but the tools (especially the model and instance editors) are designed to
facilitate that process.

In our eyes, the benefits of the approach are its openness, flexibility and extensibility.
Although they do not provide an example from a real application field, it is credible
that the architecture would cover a large set of collaboration scenarios and associated
tailoring activities. The major drawback is that the cognitive costs for end users to
apply the approach are very high (it requires understanding the modelling layers, the
abstraction concepts and the tools). This might be acceptable in complex or model-
oriented work environments (e.g. software engineering), but even then depending on
the granularity of the modelled descriptions the work costs of keeping the models up
to date might well outweigh the perceived benefits.

5.1.4. Using “Multiple Representations” and “Application Units”

Mørch and Mehandijev (2000) aim explicitly at supporting tailoring as a collaboration
process between end users and professional software developers. They see this as a long-
term cooperation to continuously improve software artefacts and develop concepts to
support communication among the stakeholders involved in these settings (designers
and end users).

They propose to provide multiple representations of the software artefact as well
as the continuing design process and the design decisions taken so far. These repre-
sentations can, for example, represent code, or more abstract perspectives like control
flow diagram, design rationales or other documents produced in the context of earlier
tailoring/design processes. To provide a better overview they should be grouped into
application units that consist of representations of different abstraction levels that be-
long to one aspect of the software’s functionality. These ideas have been successfully
tested in two cases, and proved to produce a higher transparency within the process of
continuous tailoring of an application. Mørch and Mehandijev formulate the finding of
appropriate representations for users with different experience backgrounds and skill

SUPPORTING COLLABORATIVE TAILORING 331

levels as an important open issue, a fact that also shows in their example cases, where
representations still orient much at programming concepts.

5.1.5. “Lazy Evaluation” of Tailoring Alternatives

The approaches presented before cover tailoring activities that take place before the
actual use situation occurs. As an important alternative, Wulf (1997; Wulf et al., 2001)
described an approach of tailoring the access rights in a Groupware application during
the actual use situation. Consciously delaying the specification of the access rights for
every user or role in advance, the framework provides different ways of negotiating ac-
cess to a document by means of communication channels between the requesting and the
granting user. Contrary to the usual notion of tailoring as producing persistent changes,
these changes are temporary and can be handled in very flexible ways. Implementation
of these kinds of strategy complements the conservative notion of tailoring and may be
especially important for settings where users with very heterogeneous interests share
one tool, e.g. communities or virtual organizations (Stevens and Wulf, 2002).

5.2. COLLABORATIVE TAILORING AS “INTEGRATED DESIGN BY DISCOURSE”

From the approaches and concepts described above it already becomes obvious that in a
“Shared tool” scenario, establishing an agreement about the appropriate configurations
of tools becomes the main problem. In that way, the collaborative tailoring process
resembles more a classical design process. In one of our own approaches (Pipek, 2003),
we built a prototype of a collaborative tailoring environment that is based on the ideas
described above. More specifically, it comprised dialogical environment that allows all
users to articulate their needs and concerns, a weakly-structured design process that
culminates in a decision procedure, and additional means to integrate the discourse and
the technological alternatives under consideration.

The tailoring activity to support was the configuration of an “Awareness Service,”
an event notification service that aimed at providing users with contextual information
relevant for their current work activities. It can be tailored by defining three rulesets:
An individual “privacy” ruleset (for defining what events the other users are allowed
to see), an individual “interest” ruleset (for defining what events from other users a
user wants to see), and a “global” ruleset (that supersedes the other rulesets and defines
visibility conventions for different groups of users on different organizational levels).
The definition of that “group” ruleset is a classical representative of a “Shared Tool”
scenario, and was the tailoring activity we wanted to support. The application field we
designed the prototype for was a part of a German federal authority, whose evolving use
of groupware we studied and supported over almost 4 years (see Pipek and Wulf, 1999
for details). Configuring the visibility of group members proved to be highly relevant
for privacy as well as collaboration issues, and called for a participative approach.

The original prototype of the Awareness Service was implemented in the stan-
dard groupware system DEC LinkWorks, that offers similar services like Lotus Notes

332 VOLKMAR PIPEK AND HELGE KAHLER

(Shared Workspaces, messaging, workflow support, etc.) by Fuchs (1998). We extended
the existing prototype to support collaborative tailoring as a design process (see Pipek,
2003 for implementation details). The basic idea was to support “meta-use” of the
groupware features, to use these features to (re)design the groupware itself. We now
reflect on some details.

5.2.1. Tailoring as a Collaborative Design Process

Besides a notion of the tasks and their order within this design process (we rely here
on the descriptions by Oberquelle, 1994, see also above), it is important to consider the
context the users are in when they want to tailor their application.

In general, tailoring does not belong to the primary work task of users. Users
can only spend a very limited amount of time on the tailoring activities them-
selves as well as building up the knowledge necessary for a qualified participa-
tion. It is also important to note that collaborative tailoring can be a task where
group-inherent conflicts may occur. It is necessary to not artificially restrict com-
munications related to this task with a formal process or discourse model (see also
Shipman and Marshall, 1999). Furthermore, tailoring as a design task occurs at dif-
ferent degrees of maturity of an organizations’ groupware infrastructure. There can
be no general assumption on the duration and perceived complexity of a tailoring
activity.

5.2.2. A Discourse Environment for Collaborative Tailoring

Contrary to earlier approaches we did not focus on the configuration activity itself, but
on the discourse process that would accompany it. The discourse then represents the
tailoring activity as a design process that ends with a decision procedure.

We supported the design process itself by providing a decision procedure based on
voting and my suggesting a duration for the tailoring activity. Of course, both aspects
of the design process should be flexible. The question whether this flexibility should
be managed by using shared process administration means, or by delegating this to a
trusted facilitator was left open in our concept.

The participation of users was stimulated by not restricting access to the tailoring
environment (i.e. every user could open a new “tailoring process” by suggesting a
reconfiguration of a rule or ruleset, or just by articulating discontent with current
conventions) and by a conflict detection mechanism that would notify users of ongoing
tailoring activities that would affect them (e.g., because they earlier explicitly agreed on
the convention rule that is now under revision, or, even stronger, because a suggested rule
would conflict with their individual rulesets). A feature we called “discourse awareness”
helped users tracing discussions they participated in (e.g., whenever someone comments
on a tailoring alternative they proposed or answers to one of their statements, they get
notified by email). We also addressed the problem of involving technologically less-
skilled participants on different levels:

SUPPORTING COLLABORATIVE TAILORING 333

Location: The discourse environment could be found exactly where all other tool
configurations of the groupware would be done.

Language: The “tailoring language” worked with the metaphors and entities that
users already knew from using the groupware (“desk,” “shelf,” “file,” documents,
organizational entities, workflows, users, etc.). That initial rule language was
revised to integrate concepts (mapped as predicates of the rule language) that
were derived from ethnographic material collected earlier in the application field
and that represented relations between groupware entities as the users considered
them important (e.g., “user X was involved earlier in workflow Y for document
Z”). In addition, we provided a natural language representation of the convention
rules (following an approach described in Stiemerling et al. 1997). This relates to
the idea of multiple representations (Mørch and Mehandijev, 2000) as well as to
the necessity of domain-oriented languages (Fischer and Scharff, 2000).

Easy Articulation: Providing unrestricted means of communication within the de-
sign process is necessary to address and negotiate conflicts and other social issues.
We additionally supported the free articulations within the discourse environ-
ment by providing means to integrate relevant aspects of the tailoring alternative
under consideration into an articulation (by “quoting” technology, e.g., in our
case natural language representations of the predicates of the conventions under
consideration).

In general, we wanted to limit the complexity of the tools we provide for tailoring
to minimize the learning efforts that would be necessary for a qualified participation.
It should always be easy to join, leave and re-join the shared tailoring effort.

5.2.3. Evaluation of the Prototype

The design of the prototype was informed by about 25 interviews and workplace ob-
servations in the application field (e.g. the tailoring language). Due to re-organizations,
at the time of the completion of our prototype our application field was not available
anymore for a strong evaluation of our concepts in the work setting the prototype was
designed for. We could evaluate the prototype only regarding the comprehensiveness of
our concepts in a laboratory setting (using the “Heuristic Evaluation” method (Nielsen,
1993) although with persons familiar with the original field of application). Some
observations are:

The representation of rules in natural language helps, although it does not sig-
nificantly reduce the complexity of expressions necessary to achieve a desired
result.

The discourse environment for comments can be used not only strictly related to
the design process, but also for more general questions regarding the awareness
feature. It can also contribute to a qualification of users.

The “Quoting” functionality is considered helpful, although it is still problematic to
describe the actual problem with a (part of a) convention in words.

334 VOLKMAR PIPEK AND HELGE KAHLER

In general, the test users were able to orient themselves in the tailoring environment
appropriately.

Stronger than the earlier approaches, our concept focussed on the necessity of end-
user negotiation in collaborative tailoring processes. Of course, this concept and its
implementation are just one other experiment in exploring possible solutions to support
the continuous collaborative (re-) design of shared software artifacts. We will later
describe a notion of opening the discussion of (collaborative) tailoring to support the
appropriation of technologies in many different ways.

6. Collaborative Tailoring of and in “Shared Infrastructures”

We now move to areas of the discussion where we still find more challenges than solu-
tions. In the preceding parts of this chapter we could draw from a rich variety of studies
and concepts that have been published in CSCW research. However, the technolog-
ical solutions that have been developed share one aspect: a typical tailoring activity
is supposed to cover one tool or service. But this is not an appropriate perspective
on current work environments, today the different services and technologies needed
and used to establish computer-supported environments for cooperation can be almost
arbitrarily distributed between operating system platforms, middleware applications,
groupware applications and single-user-applications. With the emergence of more and
more fragmented work environments (Virtual Communities, Virtual Organizations,
Freelancer Networks, etc.), and the development of new technologies “beyond the
Desktop” (Personal Digital Assistants, Mobile Phones, Wearable Computing, Ubiqui-
tous Computing, etc.) the complexity of the technological infrastructure used for intra-
and inter-organizational collaboration is likely to further increase (see illustrating cases
e.g. in Robertson, 1998; Dittrich et al., 2002; Törpel et al., 2003). Regarding the scope
of tailoring activities this means that there may be more than one tool or service to
tailor to reach a desired state of the technological environment. But, as the example we
used for “Shared Infrastructures” in the beginning of this chapter illustrates, there are
also more and hidden dependencies between different artefacts. We are aware that part
of the approaches that we described before can contribute to support for collaborative
tailoring for part of the scenario we now look at. But first we should look at some special
aspects of the “Shared Infrastructure” scenario.

6.1. THE NOTION OF “INNER” AND “OUTER” TAILORABILITY

Similar to the support concepts, also the general discussion of “tailorability” as a
property of an artefact does not reflect the interdependencies with the (technological)
context it is used in. It is useful to widen the perspective in the context of our discussion.

The considerations on tailoring described above assumed software artefacts (espe-
cially groupware tools) as the technologies to provide support for continuing design
in use. In our setting we consider mixed reality environments that may provide a rich

SUPPORTING COLLABORATIVE TAILORING 335

variety of hardware and software artefacts, input and output devices. We now try to
frame our discussion on tailoring for this kind of settings.

From a user’s perspective, all that matters for perceiving an IT artefact as helpful is
whether or not the technology provides the use or functionality the user wanted. Maybe it
is provided in a straightforward way, maybe the desired behavior of the technology can be
achieved through tailoring it. If this is not possible, there may be another technology that
serves the user better. This competition of technologies leads to use environments that
contain different technologies or even technology fragments (in terms of only partial use
of the functionality available). A new, complex image manipulation software product
may be only used to remove the “red eyes” effect off a digital photograph. Maybe adding
an annotation to it will be done using a presentation software product, and the resulting
file will then be sent out to a relative with an email client—all this in spite of the fact
that the image manipulation software initially used would have been able to support all
three tasks described. Established technology usages may be only partially abandoned
in favor of new technologies. The use of different fragmented technologies has been
found in several organizational settings (Robertson, 1998; Dittrich et al., 2002; Törpel
et al., 2003).

This use pattern lets us derive two kinds of tailorability. The “inner” tailorability
addresses the flexibility and ease of manipulation of a tool or device itself to fit dif-
ferent use scenarios. This is the notion of tailorability that was part of most of the
work described above. The use scenario with the image manipulation software requires
something different that we refer to as “outer” tailorability: A technology has to be
prepared for working together with other, even competing technologies to enable users
to tailor their work environment by selecting and combining (partial) technologies.
Technically technologies can achieve that by referring to a common, shared technolog-
ical background that is—for desktop applications—usually provided by the operating
system (e.g. providing a file system and a directory structure, or support for a software
installation procedure), but also comprises standardized protocols (e.g. SQL, OLE),
“common” hardware configurations (e.g. PCs being able to display graphics with a
certain resolution) and a functionality composition and representation that shows the
technology is aware of the fact that it may be used only partially or that it may be even
replaced (Pipek and Wulf, 1999 show an example for a lack of that awareness). Even
more, a technology may have to refer to “softer” standards like usability standards (e.g.
interface items like checkboxes or drop-down menus) or established use patterns (e.g.
copy-paste-functionality) to achieve “outer” tailorability. Additionally, concepts for the
support for collaborative tailoring have to become also aware of “outer” tailorability
issues.

6.2. INFRASTRUCTURE RECONSIDERED

Traditionally, tailoring activities have been seen connected with the organizational
change in a work setting. But our notion of infrastructures and technology interde-
pendencies indicates that the complexity of the technological environment may also

336 VOLKMAR PIPEK AND HELGE KAHLER

require tailoring activities to just maintain current work practice in changing techno-
logical contexts. This “Retrofitting” has previously been observed in workplace settings
on an individual level, e.g. when users tried to re-configure an application after an update
to provide the “old” application behavior (Mackay, 1991). But this kind of “Mainte-
nance Tailoring” (as we like to call it) is not always directed backwards (as the term
“Retrofitting” implies), but also toward the future, e.g. if a user updates an application
because collaborating partners have done so, just to maintain an existing practice of
document exchange.

In this context, it is helpful to take into account another notion of “infrastructure,”
beyond just being a set of interconnected tools, technologies and devices. Star and
Bowker (2002) describe infrastructure as something “in the background,” that “runs
underneath other structures,” something that we rely on without paying much attention
to it. But in the case of a breakdown it comes “into the foreground,” we suddenly notice
its importance, and the correction of the breakdown may become a comparatively urgent
issue. Star and Bowker also stress that there has to be some stability and standardization
to allow a perception of an infrastructure as supportive. Some of the approaches we de-
scribed above relied on this requirement, and were able to support the tailoring of sets of
heterogeneous tools, but only if the tools have been developed within a specific frame-
work (e.g. Wang and Haake, 2000). However, cases from several virtual organizations
showed there are also strong dynamics that work against standardization (Törpel et al.,
2003; Karasti and Baker, 2004). For current developments in the field of distributed
computing, like application service providing, web services and grid computing (Foster
and Kesselmann, 1999), this observation should be taken into account.

For the field of collaborative tailoring, the hidden dependencies and the possible per-
ceived urgency of detecting and correcting infrastructure breakdowns just to maintain
the current work setting pose new challenges that can be illustrated by some questions:

How do I know what part of my infrastructure did change and caused the breakdown?
Who did the re-configuration that was responsible for that? How do I tell that it was
someone else’s tailoring activity, not an accident (e.g. power failure) that caused
the breakdown? How can I react without negotiation in case the reconstitution of
my infrastructure is urgent?

How do I know who will be influenced by my tailoring activity? How do I negotiate
about possible re-configurations of my tools/devices?

One possible way to answer these questions would be to use metadata on the appli-
cations and devices that reflect its capabilities regarding inner and outer tailorability.
Once created, the resulting system of representations may be the foundation for new
approaches to support collaborative tailoring.

6.3. POTENTIALS FOR SUPPORTING COLLABORATIVE TAILORING

One of the key features of the approaches for collaborative tailoring we de-
scribed in the preceding sections is the use of representations of applications and

SUPPORTING COLLABORATIVE TAILORING 337

tailoring objectifications as a basis for computer-supported communication, distribu-
tion, discussion and negotiation processes. It was possible to develop and describe
concrete approaches because the scope of developing the tailoring support was within
one application, and so it was within the scope of the development of the application
itself. The developer of the application had complete control over the functionality and
the possible tailoring activities. Now, looking at tailoring “beyond one tool,” the scope
of possible application-relevant (and use-relevant) tailoring activities goes beyond the
scope of development of the application itself. This situation still carries aspects of the
“Shared Context” and “Shared Tool” scenarios, but a “targeted” design of support for
collaborative tailoring is not possible here. But we can discuss the issue along these
general notion of application representations on the one hand and communication and
collaboration facilities on the other.

There are obvious and simple ways to create representations of applications and
tailoring objectifications using the screen capturing features of modern operating sys-
tems to produce screenshots. However, depending on the interface design these can
be more or less useless to describe tailoring issues, and some aspects of an appli-
cation can’t be represented accordingly (e.g. its architecture or menu structure). The
use of video and/or animation would illustrate problems better (Baecker, 2002), but
the application itself may also provide more sophisticated representations of itself. It
would be possible to draw on representations that have been made during application
development (similar to those described by Mørch and Mehandijev 2000, or in the
context of “design rationale” systems in Moran and Carroll, 1996). Dourish (1997)
discussed the idea of providing “computational representations” of the behavior of
application components for users at the interface as well as for other components to
determine current activities of a component. Reaching the goal to enable every applica-
tion (component) to exactly represent its “area of accountability” (e.g. a text processor
is responsible for the spell check, but not for problems with the file system) would
actually also help to manifest and visualize structure in “Shared Infrastructure” scenar-
ios.

For communication and collaboration, levels of technology have to be used that are
accessible for all the actors involved. As in the concepts developed by Kahler (2000),
this is likely to be the traditional E-Mail infrastructure that can be found at almost
every modern workplace. In another research approach we made first experiments with
web-based forums to negotiate infrastructures (Pipek, subm.).

7. From Collaborative Tailoring to Appropriation Support

For the final part of our discussion we want to take a step back and look at the broader
picture. Several long-term studies (Mackay, 1990; MacLean et al., 1990; Karsten and
Jones, 1998; Pipek and Wulf, 1999; Törpel et al., 2003) pointed out that the technologies
used in organizations are tailored again and again to match the changing user needs.
Through the processes of familiarization, (re-) configuration and usage the technology
is appropriated, that means it is being transformed and specialized from the more or

338 VOLKMAR PIPEK AND HELGE KAHLER

less abstract notions of usage the technology designers once imagined to be possible
with it, to the concrete interests, meanings and purposes of (a group of) users. In this
process of appropriation, we see tailoring as the key activity, since every tailoring ac-
tivity is in fact (at least partially) a re-discovery and re-invention of the practices that
are possible with this technology. Exploring the collaborative dimensions of tailoring
is—in our eyes—also a starting point for exploring the collaborative dimensions of
technology appropriation, where the main point is to not only understand a technology
and its affordances, but to also be able to develop and negotiate alternative scenarios
in a group or organization. The provision of appropriate tailoring environments and
technologies of flexibilization (e.g. component-based systems) is a technological pre-
requisite of appropriation processes, but we now turn from a perspective of more or
less “targeted” tailoring activities to build an appropriate collaborative environment to
“softer” tasks like getting new ideas for a better practice, learning about technologi-
cal options and possible usages, and discussing and deciding on alternative scenarios
(with implementation being only a secondary interest). Can’t we do more in technology
design to support group appropriation processes?

Robinson (1993) described the “common artefact” and the characteristics that afford
its successful appropriation in order to inform the design of collaborative software. For
supporting the appropriation of technology in groups and organizations, the concept
of “double level language” is particularly valuable. It distinguishes between two mu-
tually supportive modalities of communication: “implicit communication” in which
the artefact (e.g. a distributed spreadsheet, “Flight progress strips” used by air traf-
fic controllers, a key rack at a hotel reception) is a medium for communication (by
transmitting the current state of work activities or work results), and “explicit commu-
nication” (e.g. speech, ad-hoc notes), in which the artefact is providing representations
of work-related issues that can be referred to. This suggests an understanding in which
a collaborative technology or tool is as well a medium for implicit communication
as something that provides reference points for explicit work-related communication.
But in addition to that, the discussions of collaborative tailoring above show that a
collaborative technology can also provide the means for explicit communication, can
prepare to be the subject of explicit communication (being a “work-related issue”) and
can support implicit communication regarding technology usage.

We pick up some aspects of the experiences discussed before to show that there is
more to think about along this line of thought. We do that together with developing
our notion of “appropriation activities.” We try to distinguish three purposes of activ-
ities within appropriation processes, and discuss related issues and concepts from the
experiences we described.

7.1. UNDERSTANDING TECHNOLOGIES

By understanding we mean the discovery and aggregation of knowledge on the basic
principles and scopes of technologies (“This software is a text processor,” “Before you
can use software, you have to switch the computer on,” “If you can’t save your text

SUPPORTING COLLABORATIVE TAILORING 339

on a floppy disk, it may be write-protected, it may be not formatted, your operating
system is maybe occupied with doing something else, but it is not the word processor
that is causing the trouble,” etc.). This kind of knowledge is especially important for
the case of breakdowns in the infrastructure. It is to some extent a prerequisite of
technology usage, but it is also very general knowledge. Dourish (1997) pointed out
one possible direction of technological improvements to support “understanding.” He
discussed the intransparency of current technological infrastructures and proposed to
use behavioral descriptions of a technology (and its subparts) as a complement of current
architectural descriptions. The general goal is to enable technologies to “understand”
the behavior of other technologies to be able to orientate in a rich infrastructural setting.
As a consequence they would also be able to deliver a more precise picture of their
capabilities and limitations to the user.

Regarding collaborative aspects, we see this kind of knowledge being gained mostly
through “legitimate peripheral participation” in communities of people who have and
use this technology (cf. Wenger, 1998). Because of the weak shared interests of users,
we consider this to be similar to the situation in “Shared Use” scenarios, and see similar
(limited) opportunities for technological support.

7.2. LEARNING ABOUT A TECHNOLOGY

With learning we want to refer to the acquisition of knowledge necessary to use a
technology according to the purposes that the technology designers embedded into it.
It means to learn about the menu structure and other navigation instruments, and the
functionality the technology offers. It also refers to learning about the means to modify
and tailor the technology.

Currently, small tutorials, help systems and “application wizards” support users in
learning about a software artefact together with non-computer-based means (books,
courses, etc.). However, there could be even more and better representations of tech-
nologies using multimedia technology4 and embedding it into the artefacts themselves.
Another idea would be to offer more different representations of the artefact (e.g. be-
havioral descriptions). But, since learning as a “side effect” of collaborative tailoring
has been mentioned before (Wulf and Golombek, 2001; Pipek, 2003), we again regard
the direct support of tool-related communication as a key feature; and we could well
imagine using concepts and experiences from the field of Computer-Supported Col-
laborative Learning to further improve current tailoring environments to better support
appropriation.

Another important idea for a more active learning process was presented by Wulf
and Golombek (2001). They addressed the problem that the consequences of tailoring
activities are often not visible to the tailor. They suggested integrating “exploration

4 It is interesting to observe that even in “Open Source {XE “Open Source”}” communities there are
videos for explaining and training tool usage (for example for the Content Management System “Typo3”:
http://typo3.org/1407.0.html).

340 VOLKMAR PIPEK AND HELGE KAHLER

environments” into groupware tools that allow users to play with the tailoring interface
of a tool without actually changing something in their organizational context. These
exploration environments also presented the results of the exploratory tailoring activities
from the perspective of the users affected by it. Again, we could well imagine additional
benefit for appropriation processes if there would also be collaborative exploration
environments where users share the experience of exploring the possible configurations
of the technology they use.

7.3. SENSEMAKING OF TECHNOLOGIES

Maybe the most important step of appropriation happens when users start to answer the
question: What can this technology do for me (us)? Usually this involves considering
current abilities, tasks, technologies and their usages, but also the perceived value of
the new technology at stake.

Several studies showed (Mackay, 1990; Pipek and Wulf, 1999) how a new technology
“diffused” into an organization. In a department of a federal authority with approxi-
mately 25 staff members, the introduction of a groupware application took about 18
months from the first user working with it until the last computer was installed. Users
discovered the value the new technology might have for them by observing other users in
the same organizational context (Pipek and Wulf, 1999). Making usages of a technology
better observable, maybe within the technology itself, could support this mechanism.
Linton (2003) described a system for sharing expertise on using a word processor. He
tried to record and associate the “use traces” (consecutive interface actions) of different
users to give recommendations on tool usage. This could also be interesting for just
visualizing the practice of other users. Complemented with additional communication
facilities this might help a new user to assess the perceived value of a technology for
other users in similar use scenarios. With the similar intent to allow users to “leave
their traces” by enhancing their information spaces, Dourish (2003) described a system
that allowed flexible end-user extension of document metadata (“properties”) as well
as attaching dynamic behavior through “active properties”. Dittrich (1998) suggested
to explicate the scenarios and assumptions that the designers had when developing
the software in order to enable the users to understand what the intended use of the
software was and what parts of these assumptions and scenarios apply to the current
use situation the user is in. Similarly to Mørch and Mehandijev (2000) the idea relates
to a designer-user dialogue for sensemaking, but can easily be expanded to support
the user-user dialogue for sensemaking that we consider crucial to support technology
appropriation in organizations.

Reconsidering the “exploration environments” (Wulf and Golombek, 2001) men-
tioned above, we could also imagine using these environments to demonstrate alterna-
tive use scenarios or technologies to a group of users. As a “test simulation” they can
be especially valuable if it is possible to map aspects of the real existing work setting
of the potential users.

SUPPORTING COLLABORATIVE TAILORING 341

7.4. BUILDING “COMMUNITIES OF TECHNOLOGY PRACTICE”

Concluding the discussion above, we want to develop a notion of technical support
for “Communities of technology practice” (following the concept of “Community
of practice” of Wenger (1998)). The ideas of understanding, learning and observing
technology-in-use can be consolidated in a concept of “inhabited technology,” where
environments for collaborative tailoring are extended to give users a permanent pres-
ence within the technology, making the “tool” also a “place.” It is still an open question,
for which (levels of) technologies this is possible and appropriate (see discussion on
“Shared Infrastructures” above).

Again, some of the approaches we described above focus on a perspective of support-
ing “user-user” communication, which we consider most important for appropriation
support. Törpel et al. (2003) and Hansson et al. (2003) show example settings in which
that communication emerged, and changed technology design and usage. The concepts
and experiences developed for virtual communities, especially regarding communi-
cation and the visualization of users and issues, can be exploited to further enhance
tailoring environments in that line of thought. Twidale and Nichols (1998) showed an
example for this support regarding the definition of successful search queries for a li-
brary database system, although because of the lack of persistence (of communication
partners as well as “tailoring objects”) in that solution their system follows neither the
notion of “tailoring” nor the notion of “community” we would like to establish here.
But in their system design as well as their evaluation they also stress the importance
of adequate representations (which are, in their case, visualizations of a query and the
related search process of the database system) of the system’s behavior not only for
understanding, but also for communicating about a technology. Consequently, they also
offer an embedded support for user-user communication.

That perspective above should be complemented by experiences and concepts pub-
lished regarding the improvement of user-designer communication. Getting back on the
ideas of Fischer and Scharff (2000) on the alternating phases of proliferation and con-
solidation (the “Seeding—Evolutionary Growth—Reseeding”—Model), a concept that
Törpel et al. (2003) also encountered in practice, and of Mørch and Mehandijev (2000)
on the need for a solid long-term collaboration between technology designers, tailors
and users, it would be also feasible to incorporate the designers into this community.
Hansson et al. (2003) showed an example of combining methods from Participatory De-
sign and Agile Software Development in order to form a (non-virtual) “Community of
Technology Practice” of software providers and users. This would also change the con-
text of tool development, and complement the “technology push” of the designers with
the “demand pull” of the users. This is common practice in many Open Source Projects,
where users can request new features of software artefacts (e.g. the “requested features”
on http://sourceforge.net/), and has also be reported in commercial contexts (Dittrich
et al., 2002; Hansson et al., 2003). In that concept, the domains of traditional software
development, tailoring and Participatory Design, could find a shared manifestation in
technologies and technology development processes (see also Dittrich et al., 2002).

342 VOLKMAR PIPEK AND HELGE KAHLER

8. Conclusion

In this chapter we tried to capture the collaborative dimension of configuration activities,
and explored opportunities for technological support of collaboration in tailoring activ-
ities. We distinguished four scenarios (“Shared Use,” “Shared Context,” “Shared Tool”
and “Shared Infrastructure”) with different intensities of ties between the potentially
collaborating users, and described existing approaches as well as open research issues.

We pointed out, that especially “Shared Infrastructure” scenarios with their het-
erogeneous, intertwined and interdependent mixes of technologies, still pose a major
challenge to research on tailorable systems. Tailoring activities “beyond one tool” have
not been addressed in the current disussions on collaborative tailoring.

The general line of argumentation in the approaches was—in line with our own
beliefs—that every technology should be aware of the fact that it is subject to commu-
nication and negotiation. The approaches tried to cover this requirement not only by
offering the necessary granularity and flexibility to allow finely differentiated alterna-
tives, but also by providing representations that are helpful in user-user communication
and negotiation. Some also integrated communication facilities into tailoring interfaces.

In the final part of our discussion we addressed another shortcoming of the cur-
rent discussions. While studies about tailoring always suggested a need of user-user-
interaction in the context of tailoring, these activities have rarely found explicit support
in technological approaches. Our taxonomy revealed the different necessities for inter-
action in the different scenarios, but we suggest to use the approaches we presented
only as a starting point for a broader technological support of processes of technol-
ogy appropriation. We suggested improving the safe explorability of technologies and
the visualizations of technology usage. But we consider it most important to further
improve the means of communicating and negotiating (especially user-user interac-
tion, but also user-designer interaction) on the basis of these new ways to represent
technology structures and use.

References

Baecker, R. (2002). Showing instead of telling. In: ACM SIGDOC’02. (Toronto, On, Canada, 2002),
ACM Press, pp. 10–16.

Carter, K. and Henderson, A. (1990). Tailoring culture. In: Reports on Computer Science and Math-
ematics no. 107. Proceedings of 13th IRIS, Åbo Akademi University 1990, pp. 103–116.

Conklin, J. and Begemann, M.L. (1988). gIBIS: A hypertext tool for exploratory policy discussion.
In: Conference on Computer Supported Cooperative Work (Portland, Oregon, USA, 1988), ACM,
pp. 140–152.

Dittrich, Y. (1998). How to make Sense of Software—Interpretability as an Issue for Design, Depart-
ment of Computer Science and Business Administration, University of Karlskrona/Ronneby, TR
98/19, Ronneby, Sweden, p. 9.

Dittrich, Y., Eriksen, S. and Hansson, C. (2002). PD in the wild; Evolving practices of design in use.
In: Participatory Design Conference (Malmö, Sweden, 2002), CPSR, pp. 124–134.

Divitini, M., Jaccheri, L., Monteiro, E. and Trætteberg, H. (2003). Open source processes: No place
for politics? Proceedings of ICSE 2003 workshop on Open Source (Portland, Oregon), pp. 39–44.

SUPPORTING COLLABORATIVE TAILORING 343

Dourish, P. (1996). Open Implementation and Flexibility in CSCW Toolkits. London, UK: University
College London.

Dourish, P. (1997). Accounting for system behaviour: Representation, reflection and resourceful
action. In: M. Kyng and L. Mathiassen (eds.), Computers and Design in Context. Cambridge:
MIT Press, pp. 145–170.

Dourish, P. (2003). The appropriation of interactive technologies: Some lessons from placeless doc-
uments. Computer Supported Cooperative Work (CSCW)—The Journal of Collaborative Com-
puting 12(4). pp. 465–490.

Dourish, P. (1999). Software infrastructures. In: M. Beaudouin-Lafon (ed.), Computer Supported
Co-operative Work, Chichester, England: John Wiley & Sons, pp. 195–219.

Dourish, P. and Edwards, W.K. (2000). A tale of two toolkits: Relating infrastructure and use in
flexible CSCW toolkits. In: Computer-Supported Cooperative Work (CSCW), 9(1). pp. 33–
51.

Fischer, G. (2002). Beyond ‘Couch Potatoes’: From Consumers to Designers and Active Contributors,
Available at http://firstmonday.org/issues/issue7 12/fischer/, 2002. First Monday (Peer-Reviewed
Journal on the Internet) 7(12).

Fischer, G. and Giaccardi, E. (in this volume). Meta-Design: A framework for the future of end user
development.

Fischer, G. and Ostwald, J. (2002). Seeding, Evolutionary growth, and reseeding: Enriching participa-
tory design with informed participation. In: Participatory Design Conference (Malmö, Sweden,
2002), CPSR, pp. 135–143.

Fischer, G. and Scharff, E. (2000). Meta-design: Design for designers. In: International Conference
on Designing Interactive Systems (DIS’00), (Brooklyn, New York, USA, 2000), ACM Press, pp.
396–405.

Foster, I. and Kesselmann, C. (eds.) (1999). The grid: Blueprint for a new computing infrastructure.
Morgan Kaufmann Publ. Inc., San Francisco, CA, USA.

Fuchs, L. (1998). Situationsorientierte Unterstützung von Gruppenwahrnehmung in CSCW-Systemen,
(“Situated Support for Group Awareness in CSCW—Systems”). PhD Thesis, FB Mathematik und
Informatik, Uni-GHS Essen, Germany.

Gantt, M. and Nardi, B.A. (1992). Gardeners and Gurus: Patterns of Cooperation among CAD Users.
In: Proceedings of CHI ‘92. pp. 107–117.

Hansson, C., Dittrich, Y. and Randall, D. (2003): “The development is driven by our users, not by
ourselves”—including users in the development of off-the-shelf software. In: 26th Information
Systems Research Seminar in Scandinavia (IRIS 26), (Haikko Manor, Finland, 2003), IRIS As-
sociation.

Henderson, A. and Kyng, M. (1991). There’s no place like home: Continuing design in use. In: J.
Greenbaum and M. Kyng (eds.), Design at Work: Cooperative Design of Computer Systems,
Lawrence Erlbaum Ass., Hillsdale, NJ, pp. 219–240.

Kahler, H. (2000). Constructive interaction and collaborative work: Introducing a method for testing
collaborative systems. In: acm interactions VII(3) (May/June 2000). pp. 27–34.

Kahler, H. (2001a). More than WORDs—collaborative tailoring of a word processor. In: Journal of
Universal Computer Science (j.ucs) 7(9), pp. 826–847.

Kahler, H. (2001b). Supporting Collaborative Tailoring. Department of Communication, Journalism
and Computer Science, Roskilde University, Roskilde.

Karasti, H. and Baker, K.S. (2004). Infrastructuring for the long-term: Ecological information
management. In: 37th Hawaii International Conference on System Sciences (HICSS 2004),
http://csdl.computer.org/comp/proceedings/hicss/2004/2056/01/205610020c.pdf. (9.3.2004).

Karsten, H. and Jones, M. (1998). The long and winding road: Collaborative IT and organisational
change. International Conference on Computer Supported Work (CSCW’98) (Seattle, WA, USA,
1998), ACM Press, pp. 29–38.

344 VOLKMAR PIPEK AND HELGE KAHLER

Linton, F. (2003). OWL: A system for the automated sharing of expertise. In: M.S. Ackerman, V. Pipek,
and V. Wulf (eds.), Sharing Expertise: Beyond Knowledge Management, MIT Press, Cambridge,
MA, USA, pp. 383–401.

Mackay, W.E. (1990). Patterns of sharing customizable software. In: Proceedings of CSCW ’90.
pp. 209–221.

Mackay, W.E. (1991). Triggers and barriers to customizing software. In: Proceedings of CHI ’91.
pp. 153–160.

MacLean, A., Carter, K., Lövstrand, L. and Moran, T. (1990). User-tailorable systems: Pressing the
issues with buttons. In: Proceedings of CHI 90. pp. 175–182.

Malone, T.W., Grant, K.R., Lai, K.-Y., Rao, R. and Rosenblitt, D. (1988). Semistructured messages are
surprisingly useful for computer-supported coordination. In: Proceedings of CSCW 88. Morgan-
Kaufmann Publishers. pp. 311–334.

Malone, T.W., Lai, K.-Y. and Fry, C. (1992). Experiments with Oval: A radically tailorable tool for
cooperative work. In: International Conference on CSCW (CSCW’92) (Toronto, Canada, 1992),
ACM Press, pp. 289–297.

Moran, T.P. and Carroll, J.M. (eds.) (1996). Design Rationale: Concepts, Techniques and Use. Mah-
wah, NJ, USA: Lawrence Erlbaum Assoc.

Mørch, A. (1997). Three levels of end-user tailoring: Customization, integration, and extension. In:
M. Kyng and Mathiassen, L. (eds.), Computers and Design in Context, Cambridge, MA: MIT
Press, pp. 51–76.

Mørch, A. and Mehandjiev, N. (2000). Tailoring as collaboration: Mediated by multiple representations
and application units. Computer Supported Cooperative Work: The Journal of Collaborative
Computing, Special issue on “Tailorable Systems and Cooperative Work” 9(1), 75–100.

Nardi, B.M. (1993). A Small Matter of Programming. Cambridge, MA: MIT Press.
Nardi, B.A. and Miller, J.R. (1991). Twinkling lights and nested loops: Distributed problem solving

and spreadsheet development. International Journal Man-Machine Studies 34, pp. 161–184.
Nielsen, J. (1993). Usability Engineering. Boston, MA: Academic Press.
Oberquelle, H. (1994). Situationsbedingte und benutzerorientierte Anpaßbarkeit von Group-

ware. (“Situation-dependent and user-oriented Tailorablilty of Groupware”). In: A.
Hartmann, T. Herrmann, M. Rohde, and V. Wulf (eds.), Menschengerechte Groupware—
Software-ergonomische Gestaltung und partizipative Umsetzung, Teubner, Stuttgart, pp. 31–50.

Okamura, K., Fujimoto, M., Orlikowski, W.J. and Yates, J. (1994). Helping CSCW applications
succeed: The role of mediators in the context of use. In: International Conference on CSCW
(1994), ACM Press, pp. 55–65.

Pankoke, U. and Syri, A. (1997). Collaborative Workspaces for Time deferred Electronic Cooperation.
In: Proceedings of GROUP ’97. pp. 187–196.

Pipek, V. (2003). An Integrated Design Environment for Collaborative Tailoring. In: ACIS Inter-
national Conference on Software Engineering, Artificial Intelligence, Networking and Paral-
lel/Distributed Computing (SNPD’03) (Lübeck, Germany, 2003), ACIS, 430–438.

Pipek, V. (2005). Negotiating infrastructure: supporting the appropriation of collaborative software,
International Reports on Socio-Informatics (IRSI), 2(1) IISI, Bonn, Germany, 44 p.

Pipek, V. and Wulf, V. (1999). A groupware’s life. In: European Conference on computer supported co-
operative WORK (ECSCW’99) (Copenhagen, Denmark, 1999), Kluwer, Dordrecht, Netherlands,
pp. 199–218.

Rittel, H.W.J. (1973). On the planning crisis: Systems analysis of the first and the second generation.
Bedriftsokonomen 8. pp. 390–396.

Robertson, T. (1998). Shoppers and tailors: Participative practices in small Australian design compa-
nies. In: Computer Supported Cooperative Work (CSCW) 7(3–4), 205–221.

Robinson, M. (1993). Design for unanticipated use. . . . In: European Conference on CSCW (EC-
SCW’93) (Milan, Italy, 1993), Kluwer, Dordrecht, NL, pp. 187–202.

SUPPORTING COLLABORATIVE TAILORING 345

Shipman, F.M.I. and Marshall, C.C. (1999). Formality Considered Harmful: Experiences, Emerging
Themes, and Directions on the Use of Formal Representations in Interactive Systems. Journal
on Computer Supported Cooperative Work, 8. pp. 333–352.

Stallman, R. (1981). EMACS: The Extensible, Customizable, Self-Documenting Display Editor. In:
Proceedings of the ACM SIGPLAN SIGOA (1981), Mass. Institute of Technology, pp. 301–323.

Star, S.L. and Bowker, G.C. (2002). How to infrastructure. In: L.A. Lievrouw and S. Livingstone (eds.),
Handbook of New Media—Social Shaping and Consequences of ICTs. London, UK: SAGE Pub.
spp. 151–162.

Stevens, G. and Wulf, V. (2002). A new dimension in access control: Studying maintenance engineering
across organizational boundaries. In: International Conference on CSCW (New Orleans, 2002),
ACM Press, pp. 196–205.

Stiemerling, O. and Cremers, A.B. (2000). The EVOLVE project: Component-based tailorability for
CSCW applications. AI & Society 14, 120–141.

Stiemerling, O., Kahler, H. and Wulf, V. (1997). How to make software softer—designing tailorable
applications. In: DIS ’97 (Amsterdam, 1997), ACM Press, pp. 365–376.

Törpel, B., Pipek, V. and Rittenbruch, M. (2003). Creating heterogeneity—Evolving use of groupware
in a network of freelancers. Special Issue of the International Journal on CSCW on “Evolving
Use of Groupware” 12(4), pp. 381–409.

Trigg, R., Moran, T.P. and Halasz, F.G. (1987). Adaptability and tailorability in notecards. In: INTER-
ACT’87 (Stuttgart, Germany, 1987), pp. 723–728.

Trigg, R. and Bødker, S. (1994). From implementation to design: Tailoring and the emergence of
systematization in CSCW. In: Proceedings of CSCW ‘94. pp. 45–54.

Twidale, M. and Nichols, D. (1998). Designing interfaces to support collaboration in information
retrieval. Interacting with Computers 10, pp. 177–193.

Wang, W. and Haake, J.M. (2000). Tailoring groupware: The cooperative hypermedia approach.
International Journal of Computer-Supported Cooperative Work 9(1), 2000.

Wasserschaff, M. and Bentley, R. (1997): Supporting cooperation through customisation: The tviews
approach. In: Computer Supported Cooperative Work: The Journal of Collaborative Computing
(JCSCW) 6, pp. 305–325.

Wenger, E. (1998). Communities of Practice—Learning, Meaning and Identity. Cambridge University
Press, Cambridge.

Wulf, V. (1997). Konfliktmanagement bei Groupware (“Conflict Management in Groupware applica-
tions”). Vieweg, Braunschweig.

Wulf, V. (1999). Evolving cooperation when introducing groupware-A self-organization perspective.
In: Cybernetics and Human Knowing 6(2), 55–75.

Wulf, V. (1999). “Let’s see your Search-Tool!”—On the collaborative use of tailored artifacts. In:
Proceedings of GROUP ’99, New York: ACM-Press, pp. 50–60.

Wulf, V. and Golombek, B. (2001). Exploration environments: Concept and empirical evaluation.
In: International ACM SIGGROUP Conference on Supporting Group Work (Boulder, Colorado,
USA, 2001), ACM Press, pp. 107–116.

Wulf, V., Pipek, V. and Pfeifer, A. (2001). Resolving function-based conflicts in groupware systems.
AI & Society 15, 233–262.

Chapter 16

EUD as Integration of Components Off-The-Shelf:
The Role of Software Professionals
Knowledge Artifacts

STEFANIA BANDINI and CARLA SIMONE
Dipartimento di Informatica, Sistemistica e Comunicazione, Università degli Studi di
Milano-Bicocca, via degli Arcimboldi, 8, 20126 Milano (Italy)

Abstract. An empirical case study highlights that software professionals develop and use specialized
knowledge artifacts to improve the effectiveness of product design based on components-off-the-shelf
integration. Computational counterparts of these artifacts improve the cooperative problem solving
required by the design of applications fulfilling complex user requirements. Integration is likely to
become a typical approach in EUD too, and tools supporting it are required. This chapter describes the
outcomes of the case study. Lessons learned are discussed with regard to EUD, when it is interpreted
as a creative discovery of components to be integrated.

Key words. Knowledge Artifact, Software Integration, Design as Discovery

1. Background and Motivations

In their contribution to this book, Pipek and Kahler (2004) aptly describe the combined
effects of technological evolution and organizations needs for the design of techno-
logical supports. This combination defines scenarios that raise new demands to the
approaches proposed so far to empower end-user and make them able to tailor inno-
vative applications. The authors explicitly recognize that in these scenarios there are
more challenges than solutions: the aim of this chapter is to contribute to this aspect of
EUD drawing inspiration from a study we conducted with professionals of a software
company. We believe that the kind of support they required to improve their production
process can suggest an interesting view on how to complement existing proposals for
EUD in these emerging situations.

Innovative applications are often constructed as the integration of self-standing com-
ponents supplied by different producers, the so called services or commercial-off-the-
shelf (COTS) (Morisio et al. 2000, 2001). These modules, at different levels of ab-
straction, are specialized to optimally solve problems requiring ad hoc competences
in application domains or in specific infrastructural technologies. The trend to base
software development on integration (e.g., the open source strategy) is not only the
result of a rationalization process based on re-use but also a necessity. In fact, software
companies may not want to acquire all the competences needed to guarantee the highest
level of quality of all modules constituting the final solution. Our study confirms this
trend: the company’s professionals were mainly involved in integration activities.

Henry Lieberman et al. (eds.), End User Development, 347–369.
C© 2006 Springer.

348 STEFANIA BANDINI AND CARLA SIMONE

Integration requires modular approaches to software construction and tailorability.
In EUD modularity has been achieved by means of component based approaches (Won
et al., 2004) where components ideally belong to the same adaptable application. We
refer to this situation as composition.1 When the application is constructed as integra-
tion of self-standing components, the scenario is quite different. In fact, composition
and integration, although conceptually similar, are pragmatically quite different. The
former is more about the configuration at the functional level while the underlying
infrastructure is in some way provided together with the components themselves. In-
stead, integration requires the joint selection of the functional components and of the
infrastructure making them operational.

Accordingly, EUD can be viewed as composition or integration, and end-users as
composer (Teege, 2000) or integrators. Although both views are possible and may
coexist in the same reality, we focus our attention on the role of integrator since the
current and expected trend in software production is likely to create this situation in an
increasing way. In this view, integration requires a specialized support to improve EUD
since both infrastructure and “glue” components have to be taken into account. The role
of infrastructure in EUD is emphasized in (Pipek and Kahler, 2004) too: the authors
mention the general “lack of knowledge on applications accountabilities”, introduce
the notion of “outer tailorability” and refer to “strong dynamics that work against
standardization”. All these aspects fit very well the concept of integration introduced
above: our contribution builds on top of their arguments by considering what we have
learnt in observing professionals playing as integrators.

When those professionals described their production process, they recognized that
integration requires a stronger cooperation between technical and non-technical people
(typically, involved in customer management and in company’s strategy definition). In
fact, both COTS and solutions integrating them have to be constantly maintained in
front of the evolution of the COTS market. In addition, this dynamic situation stimu-
lates customers to look for new opportunities to improve their technical supports. In
this situation, professionals emphasized that integration exacerbates the role of the so
called non-functional requirements (Chung et al., 1999) to obtain the quality of the final
application from the end-user point of view. In fact, beside functional requirements that
are focused on the desired set of functionalities and their correctness, non-functional
requirements have to be considered to select the most appropriate solution among the
possible compositions implementing the same set of functionalities. Non-functional
requirements focus on the pragmatic aspects of the application and are more related
to its context of use. Hence, professionals need to access information not only about
the functionality incorporated in the various modules but also about those character-
istics affecting the fulfillment of non-functional requirements. These characteristics—
they claim—are seldom described in software documentation. On the contrary, they
emerge from the combined experiences of different professionals cooperating in

1 The terms composition and integration are defined here, irrespective of their possibly different connotations in
the literature.

EUD AS INTEGRATION OF COMPONENTS 349

interdisciplinary production teams: experts in technical aspects, in application do-
mains, in organizational contexts, in the risk evaluation of the envisioned solutions,
in the overall costs of an experimented solution, and so on.

The final solution is the result of a cooperative effort combining diversified expe-
riences: the latter are stratified in current and past design activities. Accordingly, pro-
fessionals like to describe integration as an activity where explicit and tacit knowledge
(Nonaka and Takeuchi, 1995) are jointly put at work. In fact, they perceive the man-
agement of explicit and, especially, tacit knowledge as a crucial success factor for their
collaborative core activity.

If end-users have to play the role of integrators in EUD, it is worthwhile to look
at professional integrators and see how they find solutions to manage the knowledge
necessary to improve the quality of their products and the productivity of their col-
laborative design efforts. From this observation it is then possible to conceive tools
that, complementing existing proposals, can more comprehensively support EUD. The
following sections illustrate this point.

The chapter is organized as follows. The next sections describe our experience in the
design of a tool supporting the production processes in a software integrator company.
The outcomes of this experience are then reconsidered in the light of EUD in order to
identify tools that may be used in combination with other tools supporting EUD from
different perspectives.

2. Knowledge Artifacts Supporting Professional Design

We have been recently involved in a project sponsored by an American Telecommuni-
cations Company (Telcordia Technologies, Morristown, NJ) whose aim was the design
of a technology supporting software integration, one of the company’s core business
(Bandini et al., 2002a,b). Telcordia is a quite big software company selling services and
integrated solutions for Business-to-Business and Business-to-Consumer applications:
its customer are companies of different size, typically engaged in on-line business. The
company issued a call targeted to research institutions in order to involve in the project
competences complementing the in-house ones.

The core issue was the productivity of the problem solving required by the design of
software solutions in front of customer requests. The latter are of course all different
from each other: however, the required problem solving is about recurrent design aspects
and relies on the experience the involved professionals gained in previous integration
efforts. The challenge was to identify a support that is actually usable and used by these
professionals and at the same time powerful enough to manage the complexity of inte-
gration. It was immediately evident that in this context improving productivity means
facilitating the stratification of experience and the fruition of the related knowledge
without breaking the mechanisms actually put at work by the involved professionals
when they interact and cooperate. A knowledge acquisition campaign was conducted
to uncover these mechanisms and base the solution on them. In the following we focus
on the aspects of this study that are related to EUD.

350 STEFANIA BANDINI AND CARLA SIMONE

2.1. THE SETTING AND THE APPROACH

The integration process involves both technical and non-technical roles. Beside the
obvious software competences owned by software engineers, integration requires addi-
tional knowledge: business manages’ competences in technological products and cus-
tomers needs in order to define the company’s strategies, and consultants’ competences
to negotiate with customers the most suitable solutions for their specific needs. More-
over, software engineers are specialized in various technical domains: for example, web
technology, communication technology, and so on.

In a situation of fragmented and specialized competencies that lead to fragmented and
specialized professional languages, what makes cooperation possible? In the specific
case, what makes sharing of experiences possible?

In order to answer these questions it was necessary to establish ways to grasp the
current practices in a situation that was problematic from two perspectives: first, the
geographical distance between the company and the research team, second a very
strict policy protecting the information about company’s customers and how they are
approached by consultants. Both problems were solved by focusing on the cooperation
among engineers and consultants on the one hand and on the other hand through the
pivotal role of a company’s member who had the possibility to regularly travel to Italy.
Moreover, he owned a deep knowledge of the problem at hand since he was in charge
of the coordination of the consultants’ support. In this role, he was motivated and very
active in involving engineers and consultants in the project, sometimes collecting them
in virtual meetings when the topic was urgent or it was difficult to collect all of them in
the same place. The visits of the research team at the company site were concentrated at
the beginning of the project, to meet and interview about twenty people among engineers
and consultants. This was mainly achieved in a week workshop during which experts
were involved, in groups or individually, in unstructured interviews. Very soon the
interactions concerned the demonstration and validation of various forms of prototypes:
from mock-ups showing the conceptual schemes incorporating the knowledge put at
work in the cooperation among them and with their costumers, up to first versions of
their technological counterpart. In this phase, the above mentioned company’s member
played the role of mediator between the professionals and the research team, thus
reducing the number of site visits. The process lasted about 8 months and ended with
the computational artifacts described in Section 2.2.

The interviews highlighted that people playing different roles as mentioned above
form an implicitly defined community of practice. The latter is identified by the common
goal to make the company successful in the software competitive market, and by a
community language that makes the community survive through the exchange of the
experiences needed to achieve the above goal (Wenger, 1998).

The community language became the focus of our investigation. It borrows elements
from all the specialized professional languages and is different from each of them.
In fact, it captures the subset of concepts and relations that are useful to cooperate
and, more important, at the level of detail that makes mutual understanding possible.
Those concepts and relations with their level of specification constitute the elements

EUD AS INTEGRATION OF COMPONENTS 351

of a pair of tacit knowledge artifacts that are cooperatively maintained and used by
different professionals during integration processes. The elicitation of these artifacts
was achieved by means of both narratives of recurrent scenarios of cooperation and
discussions about the critical points they highlighted. In the interaction with the research
team these artifacts were incrementally externalized (Nonaka and Takeuchi, 1995) and
became the core of the technology supporting integration. Before describing them in
more detail, it is interesting to notice that a similar situation was recognized in another
project targeted to a completely different domain. The path to discover the pertinent
knowledge artifacts was quite similar and led to an analogous technological solution
(Bandini et al., 2003).

2.2. THE KNOWLEDGE ARTIFACTS

The design of software products based on the integration of COTS, requires the selection
of a set of components that fulfill the functional and non-functional needs of specific
customers. Since needs are usually conflicting, the aim is to define an application and
an infrastructure that guarantee an acceptable quality degree.

2.2.1. The Components Model

The company’s jargon recognizes two kinds of components the so called Business
Components (BC) and Middleware Service Components (MSC).

A BC is the implementation of a business functionality: for example, a credit-card
system component implements the business logic dealing with the payment process by
credit card. It was recognized as a common practice that functionalities are associated
with BCs by definition: hence, components implement well-known business concepts,
and experts use that knowledge to assembly software systems. MSCs define the en-
vironment for BC, and therefore support their inter-operation. One relevant attribute
of a MSC is its compliance with standards. An Enterprise Java Bean (EJB) container
is an example of MSC that defines the services an EJB component can access and, in
particular, the way it communicates with other EJB components.

Since a core value of the integration experience is the knowledge about how compo-
nents can be safely combined, a set of basic relations express this knowledge in terms of
links among them. A collaboration by dependency relation links BCs when it is part of
the experience that a component requires other components to provide its functionality.
For example if there is a BC supplying the billing functionality, it is common prac-
tice that a BC supplying the tax handler functionality must be included as well since
the two functionalities are logically co-related. A similar relation holds among MSCs.
Compatibility by dependency means that well-experienced compatibility relations are
defined between MSCs. For example, web experts know very well that the Tomcat
web server and the JBoss EJB container can be used together to develop web-based
applications. Finally, two symmetric relations link BCs and MSCs: the requires relation
expresses the need of a BC for services that can be supplied by one or more MSCs. The

352 STEFANIA BANDINI AND CARLA SIMONE

Figure 16.1. The component model.

supplies relation identifies the different services supplied by the MSCs and is the logical
counterpart of the BCs requires relation.

In the above description, the crucial point is that the knowledge expressed by the
various links is incorporated in the Component Model, and thus recognized as valuable,
only if it is “part of the experience.” In fact, relations do not express “official” knowledge
that can be derived from components documentation (in the broad sense). They express
facts that have been experienced: they can complete but also contradict the official
information. In this respect, they incorporate the core knowledge characterizing the
company’s community of professionals.

Beside relations by dependency, professionals use two additional relations: collabo-
ration by design and compatibility by design, that capture the stratification of experience
in terms of integration of BCs and MSCs (respectively) in an open-ended set of soft-
ware products that can be delivered to the costumers. Experienced architectures can
be re-used as they are—or taken as—a starting point in the future negotiation with
costumers.

The component model is summarized in Figure 16.1. It constitutes the knowledge
artifact that professionals use to build the Component Repository (Comp-Rep). The
latter is basically a labeled graph whose nodes are typed components carrying a name
and a description of the related functionality/service, and whose arcs represent the
above described relations. Before the introduction of the technology, the Component
Model was used to document (in terms of experience of use) both single components
or aggregations of them (full solutions or sub-assemblies). Small examples are given in
Figure 16.2. Simplicity is the key success factor of the model: everybody can use it and,
since it emerged from practice, everybody can understand the intended meaning of the
documentation. Moreover, on the basis of their role, skill, and experience, professionals
associate with symbols more detailed information, or at least are guided in the effort
to look for it in other documentation supports that complement Comp-Rep. In any

EUD AS INTEGRATION OF COMPONENTS 353

case, the latter is recognized as the primary reference artifact supporting co-design
and sharing of experience among professionals. Software engineers are in charge to
update the Comp-Rep since it mainly deals with technical aspects: updates may concern
existing components or new ones, typically acquired in the market. In the latter case,
the initial information is kept to the minimum and in any case considered as indicative,
just to allow the component to be considered in future assemblies. Only the effective
usage enriches its description, as discussed above. Consultants intervene to guarantee
that all the solutions proposed to their customers have been appropriately stored and
documented. In our study we analyzed in detail about 50 components that the company
considered as a representative set. The company actually deals with some hundreds of
them: hence, in order to efficiently manage the related information a computational
support was needed.

The advantage of transforming Comp-Rep in a computational artifact is that it can
be endowed with functionalities supporting the documentation and selection of com-
ponents. Typically, it helps professionals in completing the selection in case of missing
components linked to the selected ones in terms of by dependency relations. Moreover,
the requires relation is used to identify all the MSCs that supply at least one of the
services required by the BCs. When none of the available MSCs provides a required
service, a ghost-MSC is introduced as a placeholder to complete the system architec-
ture. The support identifies the characteristics that the actual MSC must have in order
to fulfill the requirements: this information guides its acquisition in the market or its
implementation. Relations by design are more problematic since they require human
reasoning for their usage in the construction and validation of the target architecture.
In fact, relations by design can express needs that previous solutions could not have
considered. Anyway, the structure of the Comp-Rep helps professionals to identify the
new solution and insert it as a piece of experienced design, i.e., as a new piece of core
knowledge. In addition, the knowledge acquisition campaign highlighted patterns that
are recurrently applied, and hence worth being specifically supported, to obtain consis-
tent solutions. Basically, for any pairs of BCs related to by design relations, the patterns

Figure 16.2. Possible configurations that satisfy the compatibility relationship between MSCs.

354 STEFANIA BANDINI AND CARLA SIMONE

search the Comp-Rep for MSCs or combination of MSCs linked by dependency relations
so that they form a path connecting the MSCs required by the initial BCs. Figure 16.2
proposes typical ways to “implement” a by design relation via different structures of
MSCs linked by compatibility by dependency relations or by the compliance with the
same standard (case d).

The identified patterns have been incorporated in a rule-based module that can
be activated as an interactive support that is especially useful for new-comers, un-
experienced professionals who are unaware of the common practice of the professionals’
community. In fact, this practice emerges from, and can be experienced through, the
dialogue supporting the selection of components.

This concludes the description of the computational knowledge artifact for what
concerns the fulfillment of functional requirements.

2.2.2. The Quality Tree

A complete and consistent coverage of the functionalities that are necessary to address
customer needs is not enough to provide them with an optimal solution. To this aim,
non-functional requirements play an essential role either to evaluate a single solution or
to compare alternative architectures satisfying the same set of functional requirements.
The company’s jargon puts all non-functional requirements under the umbrella of qual-
ity. The quality of the solution is the result of the combination of a variety of properties
concerning the product and positioning it in the market. Accordingly, the jargon used to
discuss quality is very rich: on the one hand, it contains elements coming from several
professional languages; on the other hand, each quality aspect can be referred to at
different levels of detail. In fact, professionals who are not experts in a domain typi-
cally speak of the related quality features using more generic terms than professional
experts in that domain. To manage the quality problem the professionals constructed
a second knowledge artifact: the Quality Tree that supports their discussions about the
desired degree of quality of the target solution and about how to achieve it. Figure 16.3
shows a portion2 of the Quality Tree that has been identified during the interaction with
company’s professionals.

The tree structure reflects the above mentioned richness in an adequate way: branches
represent different quality features, while each hierarchical level corresponds to a spe-
cific degree of granularity for a particular quality feature. Thus, children of a particular
feature node refine the quality metrics for that feature. The tree-structure shows the
main distinction between Marketing Quality Features and Technical Quality Features.
Each branch is extended to include and refine the pertinent quality values. For example,
the marketing quality features have been refined adding three categories: market posi-
tion, investment risk, and cost. Cost category has been further specified in licensing,
support, operation (e.g., dedicated staff, etc.), and configuration. Through further refine-
ments, professionals achieved a fine grain specification of the quality metrics. The tree

2 IPR prevent us from giving more details about the actual Quality Tree structure.

EUD AS INTEGRATION OF COMPONENTS 355

Figure 16.3. The quality tree that has been identified during the knowledge acquisition campaign.

structure naturally supports the extension of the Quality Tree both to add new features
and to refine them. Hence the same structure was incorporated in the computational
artifact.

The main role of the Quality Tree is to guide the characterization of components
(BCs and MSCs) in terms of their quality features. To this aim, each element of the
Comp-Rep has associated a Quality Tree whose values are defined, possibly in an
incremental way, by an expert of the production team appointed to be responsible for it.
Values are expressed in qualitative terms using a stratified set of linguistic conventions
(ranges, terminology, etc.). Since the true meaning of non-functional requirements
heavily depends on the specific architecture and on its context of use at the customer site,
the capability to correctly interpret the values of the quality features is a competence that
is owned by professionals irrespective of their specific expertise, and is a glue keeping
the professionals community alive. In other terms, the unavoidable under-specification
characterizing qualitative metrics does not prevent professionals from using the metrics

356 STEFANIA BANDINI AND CARLA SIMONE

in a very precise way for the aspects related to their domain of expertise. Moreover,
they can still cooperate with other professionals by referring to the part of the metrics
related to the different expertise of the latter at an appropriate level of precision. The
coexistence of differently detailed interpretations is not a problem: rather, it is a mean
to make cooperation smooth and effective.

The above considerations explain why experts assigning values to quality features
play a very important role within the professionals’ community. In fact, they master
the knowledge concerning the deep pragmatic meaning of each feature. Moreover,
they are able to use the professionals social network to balance possibly controversial
opinions. For this reason these experts are the point of reference for any request of
interpretation or motivation for the assigned values. The consciousness of the value
of an adequate assessment of quality features pushes all professionals to assume a
collaborative attitude towards the persons responsible for product characterization.
Of course, the branch of the tree containing Technical Quality features is the main
concern of software engineers while the branch containing Marketing Quality features
is the main concern of consultants. But again, the two competences are blended to
guarantee mutual consistency and understandability of the specific values. This practice
of collaboration absorbs a considerable effort, typically at the end of the construction of a
new technological solution, and characterizes the team of professionals as a community.

The computational artifact incorporating the Quality Tree contains functionalities
to enhance its role in the definition of the most suitable product architecture. Beside
the possibility to incrementally update and browse the Quality Trees, an additional
functionality plays a more active role in component selection, again to help identifying
(initial) solutions or supporting more un-experienced professionals. Comp-Rep users
may select products based on their quality features by means of a “query-by-example”
mechanism that reflects quality requirements for a given class of products. A query
is a tree template that is isomorphic to the features tree defined above. Each node is
associated with an expression defining a (possibly empty) constraint for the value of
the corresponding node of the selected product quality tree. A typical constraint is a
range. The goal of the query is to fetch a predefined (maximum) number of compo-
nents (carrying with them the related components) whose trees satisfy the relational
constraints or a relaxed version of them. This is achieved by first fetching a limited-size
answer set; then its ranking is based on the number of required components (the fewer
the better) and on three functions computed for each tree in the answer set: its distance
from the query tree, a quality indicator, and a constraint violation index. Details of
the ranking can be found in (Bandini et al., 2002b). In practice, professionals access
a “wizard-like” interactive interface to input quality requirements that refer both to
company’s and customer needs. Users are confronted with simple, high level questions
to establish the qualitative values, for example, the propensity to risk, software budget,
and expected connectivity. Then the tool constructs the tree that represents the query,
and submits it to the module responsible for product selection.

The Component Model, the Quality Tree and the tool incorporating them constitute
a conceptual and technological framework characterizing the company and supporting

EUD AS INTEGRATION OF COMPONENTS 357

the management of relevant parts of its core knowledge. This framework is currently in
use with a “pragmatically” positive evaluation: the company wants to take the structure
of the above knowledge artifacts as a standard, their software providers should comply
with, in the documentation of their products. The framework is typically accessed
by homogeneous groups of professionals to discuss topics under their responsibility:
for example by consultants to prepare an offer. The incorporated language is used in
conversations among different professionals who then access the framework to recover
the details of the discussed topics.

3. Applying Professional Knowledge Artifacts in EUD

The experience described above shows characteristics that make it meaningful in
the framework of EUD. Let us recall them briefly. First, software development is a
knowledge-based activity where knowledge is about a rich set of software properties
that are not only functional: non-functional ones are equally worth being managed
and fulfilled. Second, collaboration among different professionals and the stratification
of their experience are so relevant that it is natural for them to invest their energy in
the definition of knowledge artifacts supporting both collaboration and stratification.
These artifacts are unique to each given professionals community and reify their spe-
cific and tacit core knowledge. Third, tools based on these knowledge artifacts can be
used effectively by professionals during their core activities, more than generic software
engineering tools based on representations and visualizations that do not account for
the company’s culture.

The relevance of the above aspects for EUD relies on how much professional devel-
opment and EUD share common problems. Obviously, we interpret EUD in the light of
the considerations made in the introductory section, that is, interpreting development
as the integration of off-the-shelf components.

The next section describes a scenario that illustrates how the artifacts can be put at
work in a EUD situation. To this aim, let us suppose that the proposed framework is
integrated with a component based one like FREEVOLVE (Won et al., 2004): we will
discuss this integration in Section 3.3.

3.1. THE ARTIFACTS AND THE INVOLVED ROLES

Different roles interact with the artifacts supporting tailoring: typically, end-users,
power users, technical professionals belonging to the organization, COTS providers.
Users are not all alike. Their technical and non-technical competences are different
as well as their attitude towards technology or their ability to play the role of teacher
and promoter for less skilled or motivated colleagues. Several field studies reported in
the literature have identified this role and called it “power users” (Won et al., 2004) or
“gardeners” (Nardi, 1993). These individuals are likely to play the role of “experts”
in the presented field study since power users or gardeners and experts show a similar
behavior. They are involved in normal activities and their work to assist their colleagues

358 STEFANIA BANDINI AND CARLA SIMONE

and keep the artifacts updated is an additional effort they informally but highly per-
spicuously accept to perform for various motivations (social ties, personal visibility,
professional maturity, etc). All the above mentioned roles influence the content of the
tailoring artifacts in a more or less direct way as illustrated by the following scenario.

Technical professionals are in charge to look for COTS that providers make available
in the market. This activity can be driven, top–down, by a strategy of the hosting organi-
zation, or, bottom-up, by specific end-users requests. In any case, they insert the “new”
components in the Comp-Rep and fill in the Quality Tree for each of them using infor-
mation contained in the documentation or directly obtained from the providers. This is
an activity that implies a special care by the user. In fact, it requires translating standard
documentations as produced by external suppliers, into the language incorporated in
the above artifacts.

The new components are now part of the Comp-Rep together with the components
that have already been used and validated in some applications. Moreover, the expe-
rience and knowledge owned by the technical professionals allow them to establish
hypothetical links expressing the different compatibility relations constituting the un-
derlying component model. Since they are dealing with COTS they can identify, again
on the basis of their experience, “ghost” components (see Section 2.2.1) to mark that
the use of some components requires ad hoc programming: this is again a valuable
information for end-users in the evaluation of the most suitable solution fitting their
needs. The presence of ghost components allows the Comp-Rep to stay coherent also
in front of the lack of a uniform reference architecture against which component in-
tegration is defined. Moreover, ghost components can be incrementally substituted by
actual ones when implemented solutions construct them, or when the technical staff
wants to promote the adoption of specific components requiring them.

At this point, an end-user may want to tailor a specific aggregate of components
constituting an application in use in order to add a new functionality. For sake of
illustration let us consider a very simple case: the application is a word-processor
and the desired functionality is about the management of bibliographical references.
The user accesses the Comp-Rep, looks for a (compound) module implementing this
functionality. Suppose that Comp-Rep proposes two possibilities: one component has
limited functional capabilities but a fully supported auto-installation procedure; the
second one is more flexible (e.g., it allows importing references, databases complying
with different standards) but requires ad hoc configuration (e.g., in terms of APIs).
These pieces of information are contained in the Comp-Rep and in the Quality Trees of
the two components. A naive end-user realizes that the first solution is less flexible and
has not yet been experienced. However, the auto-install feature makes it more appealing
since, in principle, he does not need to look for help to perform its integration. When
he completes it successfully, the tailoring support registers this fact so that who is in
charge of the artifacts maintenance can store this information. The responsibility to
update the tailoring artifacts can be assigned by adopting different policies depending
on the kind of information to be stored: an automatic update is suitable when no human
interpretation is required (as in the above case); an update performed by power users

EUD AS INTEGRATION OF COMPONENTS 359

with an adequate level of expertise and experience is required when integration is of a
limited complexity; finally, an update performed by the technical staff is necessary when
integration requires more complex components or the development of glue (“ghost”)
components. In any case, on the one hand the policies are driven by the local culture
and can be flexibly (re-)assigned (as in content management systems) depending on
dynamic levels of mutual confidence among the various involved actors; on the other
hand, the basic requirement to keep the highest level of trust in the stored information
imposes that the role of the administrator (like in mailing lists) is assigned to the
technical staff, at least in supervisory mode. We will come again to this point later on.

On the contrary, if the end-user is not happy with the simple solution, he decides to
look at the second component to get the information related to its functional and non-
functional aspects. If the solution has already been experienced with success, Comp-Rep
already contains the required components: the user enters the FREEVOLVE-like part
of the tailoring environment and is guided by its interface to establish the appropriate
connections among them, possibly with the help of the end-users having performed
a similar tailoring experience. In the opposite case, it is likely that power users are
technically not enough empowered and gardeners, or more likely the technical staff,
have to be involved to provide the ad hoc glue components. This is one of the main
reasons why integration, more than composition, requires a strong collaboration among
end-users, gardeners, and technical staff. When the tailoring effort is completed and the
solution proved correct, the related information is introduced in Comp-Rep and in the
affected Quality Trees, under the supervision of the technical staff, as discussed above:
collaboration by design relations are complemented by collaboration by dependency
relations involving glue components. The FREEVOLVE-like part of the tailoring envi-
ronment has to be updated too by specifying the interfaces each involved component
exposes to the other ones: in this way, they incorporate the experience of their current
use and configuration, and can be taken into account in future applications. Details of
these updates are discussed in Section 3.3.

The process continues with the usage of the tailored solution. Any experience con-
tradicting what drove its selection and/or construction should generate an update of
the two artifacts: typically, the malfunctioning of some integrated components or the
change of non-functional aspects. For example, a provider associates to COTS an up-
grade pricing policy. Sometimes, the provider directly proposes the upgrade to the user
who might realize that the policy did change in terms of license, price, and the like.
The same information can be uncovered by the technical staff, maybe later on. This is
a relevant non-functional aspect that should be reported in the Quality Tree of these
COTS. Failures, COTS upgrades, new needs, changes of the underlying technological
infrastructure start new tailoring efforts that are based on the updated artifacts.

This scenario does not cover all the possible cases generated by a real and more
complex tailoring: however, it gives an idea of how the artifacts can be used in an
integrated way and of the functionality that the tailoring support should make available.

One might argue that maintaining the artifacts supporting tailoring is a too demanding
activity for the target organization and for each individual involved role. The shortage

360 STEFANIA BANDINI AND CARLA SIMONE

of personnel, the increasing tailoring needs to improve domain specific applications
of growing complexity, the recurrence of similar (although seldom identical) tailoring
requests by the end-users, the different attitude of the latter toward tailoring efforts
are all good motivations for a strategy decentralizing the adaptation of applications by
means of an increasingly self-understandable tailoring technology. This strategy goes
in the opposite direction with respect to managerial approaches, mainly induced by the
availability of web technologies. These approaches implement a centralized adaptation
that is standardized and offered as a black box: the end-users are trained on its new
features and functionality. The management justifies the centralized approach in terms
of efficiency, without considering its effectiveness: it often underestimates that the
centralized strategy causes strained relations between users and technical staff. From
the end-users point of view, the negative impacts of this strategy are frustration, lack
of appropriation, alienation, lack of usability of the resulting technology: in fact, users
are excluded from any learning process tailored to their needs. From the technical staff
point of view, the tension is generated by what is perceived as a disorderly set of requests
that can hardly be satisfied in an efficient and effective way.

3.2. DESIGN AS DISCOVERY

Many situations show that technology is used beyond its “anticipated” functionality:
users “invent” a combination of technologically and socially based procedures to am-
plify the technological capability to cope with their needs. Consequently, the term
“design for unanticipated use” has been proposed (Robinson, 1993) to stress how flexi-
ble the technology should be in order to cope with the above requirement. Composition,
as interpreted in this chapter, shows a degree of flexibility that is circumscribed by the
set of “anticipated” components constituting a potentially coherent application: the lat-
ter can be tailored through the appropriate selection of a subset of components. In this
respect, composition gives a partial answer to “design for the unanticipated use” that
in principle calls for an open-ended composition of basic functionalities made avail-
able by a dynamically identified set of components. This is exactly what integration is
about: the available COTS are, by definition, open-ended and constructed by indepen-
dent providers. Hence, their composition offers a wider range of possibilities but has
to be managed with additional care.

In this radical view, EUD can be read as End-User Discovery. In front of an emergent
need, the question (formulated in our software company’s jargon) is: does the market
provide BCs with the needed functionality? Which MSCs are needed and to what
extent are they compatible with the installed technology at the BCs and MSCs levels?
Do the new components possess a degree of quality that is compliant with the needs
of their local context of use? Is the required effort commensurable with the available
resources (time, knowledge, organizational and technological support)? As illustrated
in the Section 2, these are the same questions professionals have to answer in front of a
new customer request. Hence, professional development and EUD are not so far from
each other: they at least share the same kind of involved knowledge.

EUD AS INTEGRATION OF COMPONENTS 361

Let us go deeper in this argumentation. End-users play different “professional” roles
in the different stages of tailoring. In particular, they behave like “marketing people”
when they have to figure out to what extent a solution fulfills their needs, by possibly
adding and/or deleting or modifying existing functionalities. In this very preliminary
stage of integration, the language incorporated in the identified Component Model
allows them to deal with the problem at an adequate level of abstraction, that is, focus-
ing on the possibility to find components fulfilling the desired functionality: the latter
constitutes a (complete) set at the BCs and MSCs levels, and defines a solution that is ac-
ceptable in terms of non-functional requirements. Like professional marketing people,
end-users are interested more in “what” the solution is about in terms of functionality,
infrastructure, and quality than in “how” the solution is actually constructed. The latter
is the focus on a different phase, when they play as “technical people” and have to
connect properly the selected components. At this stage, the language has to express
flexible information flows. Languages inspired by coordination models (Papadopolos
and Arbab, 1998) can be the right choice since they propose different patterns to express
connectivity on the basis of concepts like shared variables or tuples, ports, channels,
streams, and message passing. For example, FREEVOLVE (Won et al., 2004) proposes
a port-based visual language that helps end-users in establishing information flows
among the selected components.

The proposed distinction between the “what” and the “how” is especially suitable
since the identification of the optimal set of components (providing an equivalent func-
tionality) can be based on features that have to be evaluated before the actual connections
are defined. In fact, integration usually refers to components whose development is not
in the hands of the end-users (or of the organization they belong to). License, upgrade,
assistance policies and the actual related services can play an equally important role
in selection as well as cost, easy installation and the like. The actual values of these
features can be determined in a safe way through previous experience only: they can
hardly be read in documentation. This is the added value of the language incorporated
in the Quality Tree artifacts: they play a complementary and supportive role in selection
as well as in communication among end-users.

In the long run, design as discovery promotes creativity in thinking about technology.
The latter can be viewed as a tool to be defined, not as a constraint to comply with.
Obviously, the initial experiences have to be positive in order to avoid frustration: the
additional effort required by creativity has to be supported. Unlike professionals, end-
users can refuse to perform any sort of development if they do not perceive that they
can manage the task with tangible advantages. This support can be created in different
ways, as described in the next sections.

3.3. THE TERRITORY OF DISCOVERY

As the kind of knowledge used in design as discovery is similar between end-users and
professionals, the general approach and the conceptual framework characterizing the
professionals knowledge artifacts presented in Section 2 can be considered in the EUD

362 STEFANIA BANDINI AND CARLA SIMONE

framework. In this view, knowledge artifacts like Comp-Rep and Quality Tree support
EUD by providing end-users with tools to structure the territory where they move in an
easier and more productive way.

The territory of (design as) discovery is likely to be populated by concepts describ-
ing functional and infrastructural components, by relations linking them, by quality
features, and possibly by other objects that are uncovered on the way. This complexity
can be managed if the set of tools ready at the hands of end-users allow for different
and integrated views at different levels of abstraction (Mørch and Mehandjiev, 2000).
Knowledge artifacts like Comp-Rep and Quality Tree give an example of how one of
these views can be constructed and combined with views provided by other approaches.
In order to illustrate this point, we consider again FREEVOLVE as a reference proposal,
since it naturally complements the approach inspiring these artifacts. The two related
component models are based on different relations: compatibility/dependency rela-
tions in the first case, data streams connection in the second one. In both cases, there is
the possibility to build a hierarchy of increasingly complex aggregates of components
that can be viewed as progressive refinements in aggregates of sub-components. These
levels can support the flexible interplay of component roles as white, black, and gray
components within the same hierarchy (Won et al., 2004). Suppose to have a framework
including both hierarchies expressing composition in terms of the “what” and the “how”
as illustrated in Section 3.2. The above flexibility is increased by allowing end-users to
traverse both hierarchies at the same time in order to reason on the appropriated repre-
sentation depending on their current “professional role.” This simultaneous traversing
accounts for the fact that end-users play the “marketing” and “technical” roles in an
interleaved way. In fact, an end-user could browse or search the Comp-Rep and find
a specific aggregation of components that implements the desired functionality and
quality criteria, and requires an infrastructure that is feasible and compatible with the
current technological environment of the user. In other words, Comp-Rep tells whether
there is the possibility to realize an exchange of information among the selected compo-
nents through the patterns shown in Figure 16.2, and gives an evaluation of the required
effort. The patterns on the left side tell that no specific software is needed: at most
local configuration is required. The ones on the right side show that glue software has
to be constructed to make the components interoperate through standards: if the latter
are connected by a link the solution requires a relatively small effort by experienced
people to make this case fall again in the previous one. If the structure of the selected
components does not correspond to any of the above patterns the desired aggregation
either is not feasible or needs a programming effort requiring the competences of the
technical staff.

Once the existence of a path connecting the selected components has been checked,
the user needs to deal with the finer detail of how the components can be combined
to define the actual streams of information flowing between them. To this aim, the
more abstract by dependency and by design relations (of the “what” hierarchy) are
complemented by more detailed information about the content of the interface of each
component: what is imported or exported and the related data type and format. This

EUD AS INTEGRATION OF COMPONENTS 363

finer grain information is typically incorporated in the technical description of each
component to allow its integration in some architecture: in the worst case, it is embedded
in a dedicated portion of the code. Of course, the identification of this information highly
depends on the quality of the considered COTS and can be made easier by the recognition
of recurrent connectivity patterns. Again, the construction of the hierarchy describing
“how” components can be combined has to translate the technical information in a
language understandable by the end-user.

The port-based language of FREEVOLVE nicely supports this need in the case of
composition. In fact, its graphical interface allows the user to perceive the options
to create the desired connections, to perform the tailoring in a simple and effective
way, and finally to test the results of tailoring. Specifically, the visualization of the
components and their named ports, together with the direction of the information flow
and connection capabilities, suggest an approach that can be adapted to the case of
integration, that is, to represent in terms of finer grained connectivity the information
more abstractly contained in Comp-Rep. Moreover, the distinction between usage and
tailoring mode nicely fits the distinction between BC and MSC components. In fact, the
former are perceived through the application interface in use mode and become fully
visible “through the projection of the interface in the tailoring space” when the user
enters the tailoring mode: at this point, they are combined with the MSC components
that are visible at this stage only. A naive user is likely to apply the above process
to tailor the integration of BC components, and specifically the ones whose default
(or proposed) fine grained architecture is not fully satisfactory. A more experienced
end-user could play the same game at the MSCs level too.

To sum up, the conjectured integrated framework provides users with two different
ways to move across levels of abstraction: the one that can be interpreted as refinement
in sub-assemblies that are linked by the same kinds of relations (describing either the
“what” or the “how”), and the one that allows users to change perspective when moving
across levels (that is, alternatively considering the “what” and the related “how”). We
are not claiming that the integration of the two hierarchies is straightforward: it requires
additional functionalities to keep the two hierarchies mutually consistent and supportive
for the end-users. However, we claim that this effort is worth being done in order to
provide end-users with two perspectives that help them to manage the complexity of
discovering what can be successfully integrated.

3.4. NEGOTIATION AND VISUALIZATION

The construction of a supportive framework based on the design as discovery requires
additional considerations. First, the kind of knowledge incorporated in the Comp-Rep
and Quality Tree artifacts is highly qualitative: the involved concepts and relations
highly depend on the local culture and less on formalized technical aspects of the com-
ponents. Although quite reasonable, the possibility to express whether a component is
mandatory or simply complements a basic aggregation is not the only possible one.
End-users can identify their favorite relations and how to express them. The point is

364 STEFANIA BANDINI AND CARLA SIMONE

that, as shown by the professional marketing people, appropriate artifacts incorporating
the suitable relations can be profitably co-constructed and used by non-technical profes-
sionals too. This is an important point since end-users, although technically empowered,
will still remain non-technical professionals. Co-construction requires negotiation of
meaning (Boland and Takesi, 1995), concerning both the adopted concepts and the
relations, and the descriptions of components classified according to them. This nego-
tiation takes place, implicitly, as part of the normal interactions among different actors.
However, power users are likely to play a basic role. In fact, when they support other
end-users they are in the privileged position to collect their experiences and their points
of view, and consequently to find the appropriate “underspecification” to (re)formulate
descriptions that are understandable and usable for them. Moreover, they are the natural
interlocutors of the technical staff when its members supervise the contents to guar-
antee their technical soundness. In fact, technical professionals should be aware that
the descriptions must make sense to end-users and not to them. Hence, they have to
accept a certain level of impreciseness they would probably not accept in discussing
among them. However, this is exactly what happened in the reported case. “Experts”
in charge of updating the artifacts belong to different professional roles, and are col-
lectively responsible of the quality and usability of their content. Discussing meanings
“in front of” a co-constructed artifact is perceived as an advantage since it makes the
outcome of the negotiation permanent and re-usable at any moment (Sarini and Simone,
2002).

Second, the contents of the various artifacts have to be presented and accessed in the
appropriate way: this is of course the second basic aspect of usability. Here tailorability
recursively applies since end-users and the context in which they start integration are
not all alike. The wizard like interface requested by professional marketing people (see
Section 2.2.2) is suitable when users do not need to browse the Comp-Rep or the Qual-
ity Tree since they can formulate a satisfactory query-by-example to obtain the most
suitable aggregate(s). Interfaces similar to the ones proposed, e.g., for FREEVOLVE
(either 3D or 2D) could be offered to add information about the distributed structure
of the target application. This aspect was, however, not emphasized by the profession-
als in the reported case since their focus was more on the interplay of functional and
non-functional requirements in the selection of the suitable aggregation. They consid-
ered distribution more linked to “how” components are actually connected. To draw
a conclusion from this experience, in the light of component based approaches like
FREEVOLVE, we can say that the main visualization structure is the hierarchical com-
ponent model with its relations among components. The Quality Tree associated to
each component is usually navigated once a component or an aggregation is selected.
The interesting aspect is that this special kind of “meta-data” is expressed in a hier-
archical way too, allowing for different levels of detail that fit the needs of different
professional roles. The effective visualization of graph structures is notably a difficult
and challenging open problem (Pirolli et al., 2003), since the interface must support
the visualization of a rich set of details associated to a node, without loosing the overall
view of where the node is located in the broader structure. In hierarchical component

EUD AS INTEGRATION OF COMPONENTS 365

models, the deeper the node is the more difficult it is to characterize its functionality
and quality in a way that makes sense to the user. In fact, deep nodes usually corre-
spond to general purpose components that can belong to several aggregates: their true
meaning in the current search mainly depends on the path the user followed to reach
them.

Negotiation of meanings and their visualization by interfaces usable both individually
and cooperatively brings up the theme of collaboration in software development in
general, and in EUD in particular.

3.5. COLLABORATIVE DISCOVERY

Discovery in unpredictable territory is a risky task that is usually performed by a team
of people with different skills and experiences. Design as discovery in an open-ended
market requires collaboration, much more than in other design situations. This was the
basic motivation leading the professionals we have observed to become a community
of practice “acting around” the two basic artifacts.

Collaboration cannot be taken for granted for all groups of end-users: some of
them naturally behave as a community of practice, others take a more individualistic or
competitive attitude. The challenge is to prove that in design as discovery, collaboration
is a best practice which is worth to be supported and to show that a collaborative
development and maintenance of useful tools is possible.

As for any kind of strategy to promote EUD, design by discovery asks end-users to
assume a “professional” attitude to master the functionality and the quality of the final
outcome. How this attitude is articulated and develops during EUD experiences depends
on local culture, needs and practice. However, the promotion of the development of an
end-user professional attitude cannot be based only on a technological training and
support. In addition, it requires an educational effort to start or reinforce this process.
Narratives have been recognized as a useful means to support education and sharing
of experiences (Bruner, 1991). The case presented here can be used as an example
of best practice. As already claimed, we are not suggesting a passive use of the same
artifacts. Instead, the case can stimulate end-users to identify the relevant piece of
knowledge that is useful to stratify and organize their own experience, and show how
collaboration among end-users and software professionals is a basic means to make the
collected knowledge effective. The advantage of using a professional case is that end-
users become aware, in quite concrete terms, that software development (irrespective
of how development is interpreted) is a hard job for professionals too, and that they
have to take care of it (Ciborra, 1996) to become as successful as professionals are. On
the positive side, they become aware that one key of this success is in their hands since
it is based on the elicitation of the knowledge that is created by their experience and by
their collaboration with other end-users and with software professionals.

Collaboration in design as discovery takes place inside groups of end-users and
between them and software professionals. The first kind of collaboration is necessary
when the target functionality involves many of them (as in the case of collaborative

366 STEFANIA BANDINI AND CARLA SIMONE

applications): in fact, all local needs and context of use have to be simultaneously taken
into account.

The situations under which end-users may want to tailor their current technology
can be different too: e.g., time pressure, critical functionality, overload, and so on. End-
user collaboration can mitigate the impact of these differences through the sharing of
their experiences and mutual assistance. To this aim, knowledge artifacts of the kind
illustrated in the previous section complement other means of collaboration that have
already been proposed for EUD (as reported by Pipek and Kahler, 2004), like face to
face meetings, mail, newsgroup, etc. The artifacts proposed here make the contents
of communication persistent since they support the stratification and sharing of ex-
periences under the basic hypothesis that they capture the way in which the specific
group of end-users speak about and solve problems related to (distributed) tailoring.
In this way, tools supporting the construction of solutions which are more oriented to
answer a single need (Kahler et al., 2000) can be profitably based on, or combined with,
tools oriented to stratify and recover the knowledge and experience that this (collabo-
rative) construction generates. The tools can be extended to incorporate functionalities
to promote awareness (Dourish and Bellotti, 1992) of the changes of their contents.
The literature proposes several approaches and technologies for awareness promotion
(accounting to this rich literature is out of the scope of this paper). Irrespective of the
differences among them, these technologies can be used to let the proposed artifacts
notify different kinds of information: who performed the updates, which components
were involved, who installed which aggregates, and so on. On the other hand, end-
users can subscribe notification services and filter the information according to their
interests. Awareness functionality contributes to making the tailoring tool an inhabited
place, and hence stimulates its usage and collaborative maintenance. Moreover it can be
combined with other functionalities supporting learning, understanding, making sense
of the technology actually or potentially in use (Pipek and Kahler, 2004) to reward the
maintenance effort.

The collaboration between end-users and (in-house) software professionals cannot
be avoided in many EUD situations: for example, when the accumulated experience is
not sufficient to construct new solutions, when the latter ask for the experimentation
of new functional or infrastructure components, or when integration requires the ad
hoc development of specialized software components (typically, wrappers, adapters,
and so on). By the way, this interaction becomes mandatory in absence of any form
of EUD since end-users fully depend on software professionals. As for any form of
collaboration, a mutual learning process takes place (whose pace again depends on the
attitude of the collaborating partners). Moreover, a common language is likely to be
incrementally created to make the interaction possible (Mark et al., 1997). Knowledge
artifacts incorporating the stratified contents of this mutually learning process empower
end-users in their cooperation with professionals since they are stronger in discussing
their needs and in understanding the more technical issues. In the opposite direction,
it helps professionals to understand the end-users language that reifies their point of
view, priorities, and needs.

EUD AS INTEGRATION OF COMPONENTS 367

To our knowledge, the research efforts towards EUD promotion and support do not
explicitly consider most of the non-functional requirements constituting the Quality
Tree artifact. The case reported here shows that all of them are a relevant part of the
language used by the community of integrators and that the focus on functionality
should not obscure their relevance for the success of the final solution. This is relevant
for EUD too since in appropriation and re-use of experienced solutions infrastructure
and quality are as relevant as functionality to put them at work. Moreover, distributed
tailoring, by definition, has to do with the heterogeneity of the local contexts in terms
of infrastructure and quality requirements.

But more importantly, the case shows that sharing and negotiating solutions is possi-
ble if it is supported by a common reference conceptual structure that incorporates the
understanding of what the solution to be shared is about. As already mentioned, this un-
derstanding can involve views of the target solution from different perspectives, where
the appropriate under-specification can play a relevant role to make communication
and collaboration easier.

In addition, available solutions are “trusted” by who did not produce them if they
have been experimented and assessed by reliable people. This kind of tacit knowledge,
when supported and made as explicit as possible, is the key factor, the engine that makes
the overall process work. It is not surprising that, being a knowledge work (Drucker,
1999), software design takes advantages of knowledge management approaches and
technologies (see, e.g., Briand, 2002 and the series of Software Engineering and Knowl-
edge Engineering conferences). The crucial point is the degree by which knowledge
artifacts are being constructed starting from true experience, bearing in mind that the
mechanisms by which the involved actors stratify knowledge and experience have not to
be destroyed: these principles characterize the case reported in this chapter. Moreover,
the case shows that it is possible to build a technological support of integration that
also non-professionals can use to speak of functionality, quality, compatibility and so
on, and to interact with software professionals when their knowledge and capabilities
are required.

4. Concluding Remarks

EUD is a challenging goal that requires supporting users through several actions: educa-
tion, motivation, and availability of tools to master the complexity of software develop-
ment. EUD requires end-users taking a “professional” attitude toward this development
if they want to avoid that the low quality of the final product thwarts their effort. Finally,
EUD takes place in different contexts, asking end-users to act on the target software
ranging from surface adaptation up to the design of its deep structure. Hence, EUD can
be successful only in presence of different kinds of tools, possibly smoothly integrated,
that end-users can use according to their needs, skill, and experience.

The paper suggests to identify a class of tools by considering software development
as a knowledge work where technical support can be fruitfully integrated with tools
allowing the stratification of experiences that end-users have gained in individual and

368 STEFANIA BANDINI AND CARLA SIMONE

cooperative efforts. The presented tools are examples and can be taken as a starting
point to stimulate the identification of knowledge artifacts that serve the same purpose
and reflect the end-users local culture and the way in which they act as a professional
community.

According to the ongoing trend to avoid that users implement deep technical de-
tails, the proposed approach goes in the direction of supporting them in the creative
identification of the most appropriate components to be integrated: in doing so, they
focus their attention on the characterization of the context in which the final application
operates and the quality features that make it successful. This approach, combined with
other complementary proposals, allows them to interact with software professionals,
when needed, in a more aware and profitable way. We have sketched a possible integra-
tion with tools supporting tailoring based on composition. Integration raises interesting
challenges also to approaches based on End-Users Programming (Goodell et al., 1999)
that, in the case of integration, should support the construction of glue components:
environments supporting this kind of programming could be very useful at least when
end-users have to implement recurrent patterns of connectivity. Last but not least, inte-
gration on a large scale, involving non-technical roles, is on the one hand an interesting
market for COTS providers but, on the other hand, requires them to build and document
components in the light of “outer tailorability”: this effort would be a great contribution
to EUD. The open source initiative could play a relevant role in this direction.

References

Bandini, S., De Paoli, F., Manzoni, S. and Mereghetti, P. (2002a). A Support System to COTS-based
Software Development for Business Services. Proceedings of the Fourteenth Conference on
Software Engineering, ACM Press, New York, NY, USA. pp. 307–314.

Bandini, S., Manzoni, S. and Mereghetti, P. (2002b). Business Service Components: a Knowledge
Based Approach. Proceedings of the 22nd SGAI. International Conference on Knowledge Based
Systems and Applied Artificial Intelligence (ES2002). Springer-Verlag, pp. 238–250.

Bandini, S., Colombo, E., Colombo, G., Sartori, F. and Simone C. (2003). The role of knowledge
artifacts in innovation management: the case of a Chemical Compound CoP, M. Huysman, E.
Wenger and V. Wulf (eds), Communities and Technologies, Kluwer Academic, pp. 327–345.

Boland, R.J. and Tenkasi, R.V. (1995). Perspective making and perspective taking in communities of
knowing. Organization Science 4–6, pp. 350–372.

Briand, L.C. (2002). On the may ways Software Engineering can benefit from Knowledge Engineering.
Proceedings of the 14th Conference on Software Engineering and Knowledge Engineering, ACM
Press, pp. 3–14.

Bruner, J. (1991). The Narrative Construction of Reality, Critical Inquiry 18. University of Chicago
Press, Chicago, USA. pp. 1–21.

Chung, L., Nixon, B.A., Yu, E. and Mylopoulos, J. (1999). Non-Functional Requirements in Software
Engineering, Kluwer Academic, Boston, USA.

Ciborra, C. (ed., 1996). Groupware and Teamwork, NY: John Wiley.
Dourish, P. and Bellotti, V. (1992). Awareness and coordination in shared workspaces. Proceedings of

the Conference on Computer Supported Cooperative Work (CSCW92’), ACM Press, New York,
USA. pp. 107–111.

Drucker, P. (1999). Knowledge-Worker Productivity: The Biggest Challenge. California Management
Review 41–2, 79–94.

EUD AS INTEGRATION OF COMPONENTS 369

Goodell, H., Kuhn, S., Maulsby D. and Traynor, C. (1999). End user programming/informal program-
ming. SIGCHI Bulleting 31–64, 17–21.

Kahler, H., Mørch, A., Stiemerling, O. and Wulf V. (eds., 2000). Tailorable systems and cooper-
ative work. Computer Supported Cooperative Work: The Journal of Collaborative Computing
(JCSCW) 9–1, Kluwer Academic Publishers, Dordrecht.

Mark, G., Fuchs, L. and Sohlenkamp, M. (1997). Supporting groupware conventions through contex-
tual awareness. Proceedings of the European Conference on Computer Supported Cooperative
Work (ECSCW97), Lancaster, England, Kluwer Academic Publishers, Dordrecht, pp. 253–268.

Mørch, A.I. and Mehandjiev, N.D. (2000). Tailoring as collaboration: the mediating role of multiple
representations and applications units. Computer Supported Cooperative Work: The Journal of
Collaborative Computing (JCSCW) 9–1, Kluwer Academic Publishers, Dordrecht. 75–100.

Morisio, M., Seaman, C., Basili, V., Parra, A., Kraft, S. and Condon, S. (2002). COTS-based software
development: Processes and open issues. The Journal of Systems and Software 61–3, 189–199.

Morisio, M., Seaman, C., Parra, A., Basili, V., Condon, S. and Kraft, S. (2000). Investigating and
Improving a COTS-Based Software Development Process. Proceedings of the 22nd International
Conference on Software Engineering (ICSE 2000), Elsevier, New York, USA. pp. 32–41.

Nardi, B.A. (1993). A Small Matter of Programming, MIT Press, Cambridge, MA.
Nonaka, I. and Takeuchi, H. (1995). The Knowledge-Creating Company. Oxford University Press,

New York, USA.
Papadopolous, G. and Arbab, F. (1998). Coordination Models and Languages. Advances in Computers

46, The Engineering of Large Systems, Academic Press.
Pipek, V. and Kahler, H. Supporting collaborative tailoring, in this volume.
Pirolli, P., Card, S. and van der Wege, M. (2003). The effects of information scent on visual search in

the hyperbolic tree browser. ACM Transactions on Computer Human Interaction 10–1, 20–53.
Robinson, M. (1993). Design for unanticipated use. Proceedings of the European Conference on

Computer Supported Cooperative Work (ECSCW’93), Milano, Italy, Kluwer Academic Publish-
ers, Dordrecht, 187–202.

Sarini, M. and Simone, C. (2002). Recursive Articulation work in Ariadne: the alignment of meanings.
Proceedings of the Conference on Cooperative Systems Design (COOP2002). Saint-Raphael,
France, IOS Press, 191–206.

Teege, G. (2000). Users as composers: parts and features as a basis for tailorability in CSCW systems.
Computer Supported Cooperative Work: The Journal of Collaborative Computing (JCSCW) 9–1,
Kluwer Academic, pp. 101–122.

Wenger, E. (1998). Community of Practice: Learning, Meaning and Identity. Cambridge, MA: Cam-
bridge University Press.

Won, M., Stiemerling, O. and Wulf, V. (2004). Component-based approaches to tailoring systems, in
this volume.

Chapter 17

Organizational View of End-User Development

NIKOLAY MEHANDJIEV, ALISTAIR SUTCLIFFE
and DARREN LEE
School of Informatics, University of Manchester, U.K.
{N.Mehandjiev | Alistair.G.Sutcliffe}@manchester.ac.uk

Abstract. Assuming end-user development (EUD) is here to stay, we must begin to consider the
economic, organizational and societal factors which would impact its adoption and use. Such studies
have so far focused on the wider issues of IT adoption and users controlling information processing
power (end-user computing), whilst EUD research has focused on the cognitive and technology aspects
of programming by non-specialists. In this chapter we describe the start of a research programme
addressing this gap. We present our findings from a pilot survey of researchers, practitioners and
end-users conducted over several months in Spring/Summer 2003. The survey analysed two group
discussions and 38 questionnaire returns to elicit organisational perceptions and views on End User
Development, and to help formulate further research directions in the area, including an outline
strategy for managing the integration of EUD.

Key words. organizational factors, EUD acceptance, survey of EUD perceptions

1. Introduction

End-user development (EUD) aims to enable non-software specialists to develop non-
trivial software artefacts to support their work and improve the quality of their leisure
time. It was estimated that by 2005 in the United States alone, there would be 55
million end-user developers as opposed to 2.75 million professional software developers
(Boehm, 1995). Currently the most diffused EUD technology is the spreadsheet (United
States Bureau of the Census, 1999).

We believe that the predicted number of end-user developers is an underestimate.
As the complexity of information processing required of us in the office, on the Web
and at home increases, we will have to interact with software in non-trivial ways, which
will often cross the boundary from interaction to programming. And since there are
not enough professionals to do the programming on our behalf, we will increasingly
engage in programming activities in the context of our everyday work and leisure
pursuits, regardless of our background and experience.

Assuming EUD is here to stay, we must begin to consider the changes it will bring to
our society and organizations, or to take a less deterministic perspective ask what the
requirements of society for this new technological artefact are. A body of work in end-
user computing (Brancheau and Brown, 1993; Panko, 1988; Powell and Moore, 2002),

Henry Lieberman et al. (eds.), End User Development, 371–399.
C© 2006 Springer.

372 NIKOLAY MEHANDJIEV ET AL.

for example, has looked at organizational implications of users controlling processing
power such as desktop PCs and installing applications and databases.

EUD is, by contrast, focused on the activities of developing and modifying code
by non-programmers, and has until now focused on enabling technical innovations
and on the low-level cognitive and machine–centric interactions between system and
user. Within this tradition, a growing body of research looks at the technological issues
such as abstractions in language design (Fischer, 1994; Repenning, 1993), modes of
interfaces (Burnett et al., 1995; Green and Petre, 1996), the AI approaches to the system
inferring our programming intentions (Lieberman, 2001) and human factors of EUD
(Nardi and Miller, 1991), while making often unsupported claims of revolutionary
impacts on how we work and entertain ourselves throughout society. When research
does look beyond the technology it does not go further than the dynamics of small
groups with studies looking at the emergence of specialized team roles, such as Nardi’s
work on spreadsheets (Nardi, 1993). EUD research is rarely prescriptive; instead, it
just reports findings without attempting to provide decision makers with the necessary
knowledge of how to deal with problems and conflicts which are likely to emerge from
the formalization of EUD.

We believe that the growing practical dimension of EUD calls for EUD researchers
to step into the “macro world” of organizations and EUD economics, sharing findings
with the end-user computing community and conducting focused investigation of the
perceptions and implications of users developing code within social and organizational
settings. Example questions to be investigated are: “How will EUD practices scale
up to complex artefacts and work settings?” “How would EUD affect organizational
strategy and profitability?” and “What are the impacts of EUD on human resources and
corporate governance?”

Requirements found at this level will influence work at both organizational and
technology levels, thus furthering EUD acceptance. Organizations should be helped to
make the best of EUD by recognizing its occurrence and leveraging its benefits whilst
hedging against its potential downsides. Before EUD can be sold to key organizational
decision makers, we need to understand both what the problems with this technology
are from an organizational perspective and how can they be managed.

In this chapter, we describe the start of a research programme addressing this area of
investigation. We present our findings from a pilot survey of researchers, practitioners
and end-users conducted over several months in Spring/Summer 2003. The survey
analyzed two group discussions and 38 questionnaire returns to elicit organizational
perceptions and views on EUD, and to help formulate further research directions in the
area.

2. Data Collection

The data for this chapter was collected from a survey consisting of two group discussions
at an industrial seminar held at the University of Manchester in April 2003, and a larger
questionnaire survey conducted over several months in Spring/Summer of 2003.

ORGANIZATIONAL VIEW OF EUD 373

2.1. SURVEY DESIGN

The survey was designed to capture a variety of attitudes, opinions, and experiences
related to EUD. It combined a questionnaire and group discussions to balance the
measurement and discovery aspects of the investigation.

2.1.1. Aim and Objectives

The overall aim of the survey is to gain an insight into the perceived costs and benefits
to industry from the adoption of EUD techniques and tools, and thus to answer the
research question: “What are the perceived costs and benefits of EUD?”

The survey design objectives were therefore specified as follows:
Objective 1: To identify perceived benefits of EUD to industry (Motivations).
Objective 2: To identify perceived costs of EUD to industry and understand the

barriers preventing EUD from becoming a mainstream competitor to
professional development (Disincentives).

Objective 3: To identify areas for future work.
Objective 4: To document interpretations of what EUD is as a concept and to

measure the awareness of EUD as a label for the activities it describes.

2.1.2. Questionnaire

The primary instrument for the survey was a questionnaire consisting of three sections:
Section A contained questions aiming to gather some data about the respondent,

their organizational role and their use and understanding of EUD technologies and
tools, working toward Objective 4.

Section B contained 15 questions using a 5-point “Likert” scale to access attitudes
toward uni-dimensional concepts of EUD. The questionnaire asked respondents to rate
their agreement to a set of statements using a scale of Agree Strongly, Agree, Indiffer-
ent, Disagree, Disagree Strongly. The questions were designed to measure perceptions
relevant to Objectives 1, 2, and 3 as cross-referenced in Appendix A.

Section C provided the opportunity for some open-ended responses and comments,
unconstrained by the format in Sections A and B.

The questionnaire is reproduced in Appendix C.

2.1.3. Group Discussions

Group discussion sessions were structured in three stages. During Stage 1, participants
were asked to answer the questionnaire, thus preparing their thoughts and ideas regard-
ing the issues to be discussed. Group formation was the aim of Stage 2, which consisted
of “round-the-table” introductions of each participant and their experiences with EUD
technology and organizational structures. This stage also provided some input to Ob-
jective 4. The proper discussions took place during Stage 3, when each group was asked
to discuss the following set of questions:

374 NIKOLAY MEHANDJIEV ET AL.

1. What are the business requirements for EUD? (Objectives 1 and 3)
2. How would you sell the benefits to your team or to the boardroom? (Objectives 1

and 2)
3. What are the management/social barriers to the uptake of new technologies and work

practices related to EUD? (Objective 2)
4. What technical barriers do you see for practical EUD? (Objectives 2 and 3)
5. What technical innovations do you see impacting positively or negatively on EUD?

(Objectives 1 and 2)
6. What contemporary organizational change factors do you see impacting positively

or negatively on EUD? (Objectives 1 and 2)
7. Do you believe further concerted effort is needed in EUD? (Objective 3)

Each group had an appointed moderator whose main role was to steer discussions back
on track and keep watch on the time available for discussing each point.

2.1.4. Method

The survey targeted individuals within industry, government organizations and universi-
ties. The academics were chosen for their work in the area of EUD; the other participants
were selected for their practical experience in managing information technology within
organizations, but they were not expected to be specialists in EUD. Invitations for the
first workshop were sent to a large number of potential participants from the UK and
Europe, using pre-existing lists of industrial contacts in the IT area. Questionnaires were
distributed at this workshop and at a number of EUD-related events over the following
months.

Following the Grounded Theory approach (Strauss and Corbin, 1998), the questions
guiding the discussion; those from the questionnaire were treated as a set of generative
questions which helped to guide the research but were not intended to confine its
findings. The questionnaire, for example, included a section for open-ended comments
and responses, and a semi-structured section to establish current EUD practices within
an organization (see Section 2.1.2).

Aggregate information was collected regarding questionnaire responses as follows:
The questionnaire responses were mapped on to a scale from 2 for “agree strongly,”
through 0 for “indifferent” to −2 for “disagree strongly.” Distribution charts of answers
and averages for each of the questions were then created as an indication of respondents’
perceptions on a particular issue or statement. These are provided in Appendix B. To
gain a broader understanding of the overall scope of perceptions, the questionnaire
statements were divided into three groups according to the survey objective they were
formulated to address, and a summary diagram was then created for each objective. We
discuss these results in Section 2.3, but it is important to note that these results were
also used to support results from analyzing and coding group discussions.

The group discussions were audio-recorded and transcribed at a later date. They
were then analyzed following the coding process from the Grounded Theory approach
(Strauss and Corbin, 1998), where the development of a theoretical framework was
interwoven with open coding stages and integrative workshop sessions.

ORGANIZATIONAL VIEW OF EUD 375

Table 17.1. Mapping between discussion topics and emergent themes.

Initial set of discussion topics Emergent themes

IT Strategy
Corporate Strategy

Agility Organisational demand for EUD
Market
Control Managerial controls
Success factors Cost benefit of end-users
Learning burden (who are doing delopment work)
End User Developer rewards Worker Recognition and Responsibility

EUD methodologies
Testing and professional culture

Professionalisation
The EUD technology
Future technology
needs and predictions

Tools to tasks match

Domain

a) Open coding. During the initial stages of coding, discussion fragments were first
grouped into an initial set of 11 discussion topics (see Table 17.1).

b) Integrative sessions. During these sessions the discussion topics were subjected to
critical review by the authors, and re-arranged in eight emergent themes, using crit-
icial analysis and integration with the quantitative aggregate information produced
by analyzing the questionnaire responses, presented in Section 2.3.

The process of analysis resulted in eight emergent themes plus three core concepts of
risk, control, and motivation, which served as a focus for a theoretical framework, and
were used to guide the subsequent analysis of the data. Following the discussion, we
created an influence model to guide the introduction of and support for EUD activities
within an organization. The model is presented and discussed in Section 4.

2.2. PARTICIPANTS

Contributors to the group discussions had a good knowledge of information technol-
ogy. In addition, they had either experience with end-user technologies as end-users,
or knowledge of the implementation of EUD tools in organizations. There were 18
participants in the group discussions, of which 7 were from industrial companies, 4
were from government organizations, and 7 were academics involved in collaborative
research with industrial companies.

The 38 questionnaire respondents included end users, consultants, auditors, regula-
tory authorities, and academic researchers, according to the following composition:

– Government and regulators 5
– Industrial and administrative 18, of which

– End-User Application Providers 2
– IT Implementers and Consultancies 4
– Industrial Research 1

376 NIKOLAY MEHANDJIEV ET AL.

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Improves efficiency

Job enrichment

Faster developmentDomain expertise

Perceived benefit

Average Agreement Score Neutral boundary

Figure 17.1. Perceptions of EUD benefits and motivator objective 2: perceived costs and barriers.

– Financial Services 6
– Administrators 5

– Academics 15

2.3. SURVEY RESULTS

2.3.1. Questionnaire Results

The results of the questionnaire analysis are summarized in Appendix A; they show,
for example, that respondents were in slight disagreement with the statement “Software
development is the responsibility of software specialists,” resulting in an average score
of −0.26; while the statement “The domain expertise of end-users can create more
effective software to support their activities” resulted in a fairly strong agreement among
respondents, with an average score of 1.34.

The table in Appendix A also contains cross-references between each question and
the first three survey design objective(s) from Section 2.1.1. This cross-reference will
now be used to review the contributions of the questionnaire responses to the survey
objectives. In this we will use the average value of responses; detailed frequency charts
of each question are provided in Appendix B. In each of the sections below, average
responses for each group of questions are arranged in a radial graph, which has “strongly
disagree” in its center (mapped to a value of −2). For an example see Figure 17.1. The
“strongly agree” values (mapped to 2) are at the periphery of the chart. The dashed
line halfway through the axis is the “neutral” point, so everything inside the dashed
line indicates disagreement; answers in the outer sector of the chart indicate agreement
with a particular statement in the survey.

ORGANIZATIONAL VIEW OF EUD 377

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Quality risks

Operational Risks

Perceived benefit

Loss of Control

Distraction from main work

Development is for specialists

Programming difficulty

EUD too expensive

Average Agreement Score Neutral boundary

Figure 17.2. Perceptions of EUD costs and barriers.

Objective 1: EUD Benefits and Motivators

The responses indicate strong agreement with the five motivators for EUD accep-
tance we put forward as questionnaire statements. The strongest support was for the
role of domain expertise in producing more effective software with better fit to users’
tasks; see Figure 17.1.

Objective 2: Costs and Barriers

Responses to risk-related questions indicate strong agreement with the suggestion that
different risks associated with EUD are a major barrier to EUD acceptance. Interest-
ingly, survey respondents on average disagreed with another set of suggested barriers,
including prohibitive EUD costs and difficulty of programming. A third set of suggested
barriers, such as loss of managerial control and distraction of main job function for end
users elicited neutral responses. See Figure 17.2.

Objective 3: Areas of Further Work

Responses to the three statements designed to test preferences for areas of further
work to be explored as a priority issue (Figure 17.3) indicated equal weight to all three
main directions suggested in the questionnaire. This can also be seen as a consequence
of the large number of respondees who are not research-oriented and would therefore
not have to think about future research directions within a “here-and-now”-focused
business environment.

378 NIKOLAY MEHANDJIEV ET AL.

-2

-1

-1.5

-0.5

0

0.5

1

1.5

2

Cognitive priority

Socio-technical priorityOrganisational priority

Average Agreement Score Neutral boundary

Figure 17.3. Perceptions regarding directions for further work.

2.3.2. Discussion Results

The method of analyzing discussion transcripts described in Section 2.1.4, which iter-
ated between open coding and integrative workshops, resulted in the eventual emergence
of eight themes out of the initial set of 11 discussion topics, following the mapping
expressed in Table 17.1.

These eight themes were then positioned along the interactions between three core
management concepts underpinning the themes: Motivation (for EUD), Risk (arising
from EUD practices), and Control (of EUD practices). The resultant framework is
discussed in detail in the next section.

3. Areas of Concern and Emergent Themes

The analysis of the results from the questionnaire and the emergent themes from the
discussions allowed us to develop a framework of the main concerns of organizational
decision makers toward the adoption of EUD of the three core concepts underpinning
the main areas of concern in relation to EUD practices in organizations Motivation is
rooted in the EUD benefits for both individuals and organizations. Risk refers to the
potential of EUD to cause damage to operations and reputation. This could be through
the changing of business processes which expose the firm to greater operational risk,
poor implementation of models in spreadsheets, and the danger of untested code acting
in unpredictable ways. At the social level any organizational change has a risk dimension
to it; the introduction of new working practices and the changing of job descriptions and
responsibilities can have a negative effect on organizations. Core competencies may
be lost during such a change although the original idea might have been to enhance
them. Control refers to the mechanisms used by the organization to allocate and audit
the use of resources to best meet its goal, but it also includes political issues related
to the power of individual managers. Indeed, EUD introduces new levels of autonomy

ORGANIZATIONAL VIEW OF EUD 379

Figure 17.4. Emergent EUD themes.

into the work environment which may be perceived as a threat to the authority of some
managers.

These three areas of concern underpin all eight themes emerging from the survey
described in Section 2, to different degrees. Figure 17.4 visualizes this by positioning
the eight themes along the following three main axes of interaction: Motivation and
Risk. Motivation for EUD and the EUD benefits balance the risks which can arise out of
EUD practices. Four emergent themes can be seen as strongly relevant to this balance:

(a) IT Strategy determining the organization’s attitudes toward IT-induced risks and
benefits.

(b) Organizational Demand for EUD as a function of organizational perceptions of
the balance between risks and benefits.

(c) Cost benefit for end-users doing development work, expressing the balance between
risks and motivation at the level of individuals.

(d) Tools to Tasks Match, serving as a powerful factor for reducing learning costs and
risks of failure for end-user development activities.

Control and Risk. Controls are introduced with the aim of reducing EUD risks, and the
following emergent themes are relevant to this interaction:

(a) IT Strategy provides the general framework for organizational control of any IT
activities, including EUD.

(b) Managerial control of EUD processes will consist of a set of measures designed
to reduce risks by controlling EUD activities and practices.

(c) EUD methodologies, the EUD equivalent of SE methodologies, can be used to
reduce those risks that relate to the actual development.

(d) Professionalisation describes organizational support for professional attitudes to
EUD activities, a control which can alleviate risk to a significant degree.

Control and Motivation. In addition to controls seeking to reduce risks, there are some
organizational controls which support EUD by increasing motivation as follows:

380 NIKOLAY MEHANDJIEV ET AL.

s7

0

5

20

Disagree
strongly

Disagree Indifferent Agree Agree strongly

1.34

-2.00 -1.00 0.00 1.00 2.00

Average

15

10

Figure 17.5. Histogram of responses to “The domain expertise of end users can create more effective software to
support their activities” statement, with the average of 1.34 positioned above it.

(a) Worker Recognition and Responsibility focuses on the dual approach of increas-
ing motivation by recognizing an individual’s contribution whilst at the same time
making clear the increased responsibilities brought about by EUD practices. This
requires reward systems to recognize the contributions made by end-user develop-
ers to organizational effectiveness.

(b) Professionalisation of EUD relies on supporting individuals’ motivation for a
more professional approach to EUD.

It is worth noting that certain themes, such as IT Strategy, include elements of two
interaction axes, and have therefore been mentioned more than once above. The more
detailed discussion below, however, will include each emergent theme only once, under
the first relevant interaction axis.

3.1. MOTIVATION AND RISK

The balance between motivation and risk will determine if decision makers within
organizations think it is desirable to allow EUD to occur, and if individuals would
be willing to engage in EUD activities. The four emergent themes grouped by this
interaction are now reviewed in some detail.

3.1.1. IT Strategy

Discussion participants saw EUD as a useful mechanism to tailor information systems
quickly in response to dynamic operating conditions. They believed that “EUD is good
as it allows the operators of a business rather than programmers to themselves react to
a changing situation.”

Questionnaire responses mirror this by indicating a strong belief that EUD is per-
ceived as increasing the capability and agility of the organizations at an affordable
price. There was a strong agreement that the Domain expertise of end-users can create
more effective software to support their activities (see histogram in Figure 17.5). A
similar histogram pattern confirms agreement with the Faster development statement:

ORGANIZATIONAL VIEW OF EUD 381

s12

0
2
4
6
8

10
12
14
16

Disagree
strongly

Disagree IndiIfferent Agree Agree strongly

-0.53

-2.00 -1.00 0.00 1.00 2.00

Average

Figure 17.6. Histogram of responses to the statement “EUD is too expensive for organizations to implement,”
with the average disagreement of −0.53 positioned above it.

“EUD can speed up software development” (average of 0.97 out of 2). All histograms
are included in Appendix B.

The costs of introducing EUD are perceived as being low enough to be worthwhile
with an average score of −0.53 (mild disagreement) to the survey statement asserting
that “EUD is too expensive for organizations to implement.” The histogram of answers
(Figure 17.6) is still with a single mode although with a less skewed pattern of answers
compared to the previous case.

Interesting discussion points complemented and clarified the questionnaire opinions.
Survey participants proposed that EUD should be used only as a “tactical weapon” due
to the perception of its being cheap, and therefore potentially “dirty.” This led to the
idea that EUD artefacts should not be moved into the mainstream of an organization
or be used in critical tasks without being audited by professional developers. Others
thought that organizations would have “core business processes supported by software
which must not be touched by end users because it would be too dangerous” and “other
processes around the outside which the end user should be able to tailor.” This was
reinforced by the score of 1.05 agreeing with the Operational Risks statement: “EUD
can be dangerous (e.g. data security).” The problem in deciding which process an end-
user could tailor would depend on having a mechanism to identify core and peripheral
processes; one suggestion was the idea of a process risk map. The risk map would
be a “measurable business model” which allows an organization to asses the risk of
altering critical processes; this model could be used to place the end-user developer in
a “play-pen” of processes where it is safe to practice EUD, the underlying idea being
that if the risks were quantifiable the consequences could be bounded. A play-pen
approach should cover all organizational levels to avoid errors at the strategic level,
such as developing a flawed spreadsheet model for a strategic decision. This could be
as equally damaging as inadvertently affecting a core business process. For example
Transalta lost $24 million due to a cut and paste error in one spreadsheet (Cullen, 2003).

Overall, the main conclusions related to the strategic value of EUD practices were
focused on the added corporate value in terms of better support for agile working
practices, but also on the need for appropriate auditing and control procedures related to
the organizational diffusion of an EUD artefact. Indeed, issues of management control

382 NIKOLAY MEHANDJIEV ET AL.

were quite pronounced at the discussions, and are covered in detail later on in this
chapter.

3.1.2. Organizational Demand for EUD

Discussion transcripts confirmed the questionnaire responses that organizations are
naturally interested in EUD because it promises agility and effective reaction to external
market pressures as discussed in the previous section. However, the attitudes to EUD
are shaped to a large extent by the culture of the organization, and by the presence
or absence of quantified benefits. For example, the Perceived benefit questionnaire
statement: “EUD success in organizations depends primarily on perceived benefits
outweighing the perceived costs” elicited a positive agreement response with an average
score of 0.79.

Business cases were identified as a very important driver for organizations exploring
new technologies or practices such as EUD: “In today’s economic environment, the
benefits of EUD need to be quantified to stand a chance of selling it to the organization.”

In terms of the market sector, “EUD is just part of a spectrum from COTS and ERP
systems to reuse approaches.” EUD tools such as Agentsheets will be in a competition
with the following accepted practices:

a) Tailorable (but not by users) COTS systems such as ERP packages
b) Application Generators, and
c) Component Engineering.

Of these, tailorable COTS systems require a trade-off between ready-made function-
ality “out-of-the-box” and power of supporting complex business practices specific to
the organization in question. Survey participants believed that the market had tended
to favour ready-made functionality, which keeps organizations “straight-jacketed” into
uniform systems and does not support business innovation. However, they hypothesized
that “technology adoption goes with the business cycle,” and that changing markets may
require more agile organizations with tailored support for core business processes. This
would ultimately benefit EUD acceptance.

3.1.3. Costs and Benefits to End-User Developers

Some costs for end-user developers should be taken into account when designing ap-
propriate conditions for EUD. For example, learning curve costs tend to be quite high
because of the rapid evolution of contemporary technologies, where “each new version
of software creates a learning burden on the user.” This is also compounded by the need
for the EU Developer to “go back and change the underlying code” to make it work
with the new technology.

These costs were not deemed unavoidable, for example the questionnaire state-
ment on Programming difficulty: “Programming will always be too hard for the non-
specialist” elicited a mild disagreement score of −0.5. Ways of reducing the costs were

ORGANIZATIONAL VIEW OF EUD 383

identified during the discussions; for example, one discussion participant stated that
“the challenge of EUD systems is to make them so intuitive that the end-user does not
realize that they are doing it,” in other words we should aim to minimize the cognitive
distance between the work task and the development task.

Reducing learning curve costs should be combined with increasing the benefits
to end-user developers. Perceived benefits confirmed from questionnaire responses
included EUD Improves efficiency statement: “Using EUD tools will make me more
efficient in my main job task” (agreement of 0.84), and Job enrichment statement:
“Using EUD tools could make my work more interesting” (agreement of 0.89).

Measures to further increase benefits were identified in the discussion, including the
introduction of appropriate organizational processes and polices to recognize the extra
work done. This is further discussed under the “Worker Recognition and Responsibility”
theme below.

3.1.4. Matching EUD Tasks to Appropriate EUD Tools

The discussion outlined the importance of tuning EUD tools to the EUD tasks in hand.
Many end users start their development activities on a very small scale addressing toy
problems, and are surprised when their initial successes are not repeated when they
have to deal with problems of realistic complexity.

If EUD tools are to “remove the cognitive effort so the focus is on the task,” they
have to use domain-specific languages, and it was felt that these “will come from
the domains themselves, e.g. medicine, architecture, space physics already have well
developed common languages for discussing the domain.” The importance of do-
main expertise in producing good software was confirmed by the strong agreement
(a score of 1.34) to the Domain expertise statement from the questionnaire: “The
domain expertise of end users can create more effective software to support their
activities.”

Making EUD tools task- and domain-specific can help reduce their complexity and
decrease the slope of their learning curve, thus redressing the balance between learning
costs and effectiveness benefits, and creating a powerful source of motivation for using
EUD.

3.2. CONTROL AND RISKS

Out of the four emergent themes relevant to the interaction between control and risks,
this section will focus on the two specific to this axis of interaction; the rest are discussed
in the other two sections.

3.2.1. Management Control

Naturally line management have a desire to maintain control over subordinate workers;
EUD could impact this control dimension because the complexity of the artefacts may be

384 NIKOLAY MEHANDJIEV ET AL.

difficult to audit and the hidden activities of workers may create a problem of software
quality. There is a strong belief that “EUD creates a software quality issue,” with
questionnaire responses for this statement (labelled Quality risks) producing an average
score of 1.26 with a large majority of answers indicating “agree” and no indifferent
respondents (see Appendix B). This was supported by an average agreement score of
1.05 on the Operational Risks statement: “EUD can be dangerous (e.g. data security).”
Questionnaire responses were also supported by the discussion, focusing on the need
for “Good old-fashioned quality assurance.”

To protect against the quality problems associated with EUD we need first to allocate
the responsibility for the quality, and decide if it should be with the worker, with the
user of an EUD artefact, with the local manager or with an external authority such as
the IS department. Auditing was perceived as a viable approach to quality, as long as
there is a clear point of responsibility for auditing EUD practices.

Different control policies were deemed necessary for different domains of EUD
activities. For example “You would not want to prevent a user from filtering e-mail. So
it is not just control, it is control of specific areas” and “Legislation and regulation could
prevent the scope for EUD. Some domains are locked down so tightly for security and
safety reasons that EUD will not happen.”

An issue that emerged in relation to control is that EUD could create a power shift
and affect ownership in the workplace by creating unnecessary barriers to information
access. It is potentially the case that those who may have previously had informal access
to information via conventional means may lose this access if information access is
provided via an EUD application over which they have no control, compared to the
end-user developer. The power generated by EUD practices was seen as requiring
stronger levels of accountability and some clear auditing practices.

A nearly-neutral average of 0.11 on the loss of control statement: “EUD can un-
dermine managerial authority” indicates that the sample of respondents were not sure
about the relationship between EUD and management authority. During the discussions
it emerged that this was because managers at present lack control of EUD practices,
even those occurring within their immediate span of responsibility (“At present there
is a lot of archaic development going on”).

3.2.2. EUD Methodology

The strong concerns with the quality risks questionnaire statement discussed in the
previous section were mirrored in a large number of discussion fragments about ways
of ensuring quality and auditability of EUD activities. This included a re-visit of the idea
of “incorporation of professional development methodologies,” testing their suitability
for structuring EUD activities and adapting them for the specific requirements of EUD.
Participatory development may provide some of the initial ideas and instruments which
can drive this adaptation. However, traditional software engineering methodologies
may easily overwhelm any EUD effort with rigidity, process detail, and unnecessary
structure.

ORGANIZATIONAL VIEW OF EUD 385

New ways of constructing software were perceived to bring substantial changes to the
way EUD will be conducted. The idea of delivering software not as a monolithic product
but as a service composed and delivered at the point of need, for example, removes
the need for software maintenance and replaces programming with procuring suitable
services on a service marketplace. This software provision model, called Software-as-a-
Service (Bennett et al., 2002) and presented at the Manchester workshop, can underpin
a realistic EUD methodology in the future, but is clearly not applicable to the existing
software environments supporting current-day EUD activities.

3.3. MOTIVATION AND CONTROL

The issues along this axis of interaction focus on the manner in which motivation may
alleviate the need for top–down and procedural controls.

3.3.1. Worker Recognition and Responsibility

Survey respondees felt that using EUD tools could make their work more interesting
and would make them more efficient in their main job task, with agreement averages
of 0.89 to the Job enrichment statement, and 0.84 to the improves efficiency statement.

The discussion elaborated on the necessary reward mechanisms and models to reward
EU developers for taking on the extra work associated with EUD. One discussion
participant observed that “You get credit amongst your peers but not from elsewhere,”
whilst another stated that “EUD will require good reward models in organizations.”

It was also felt that “Accountability of the role of end user is important. Freedom for
EUD and accountability (for the artefacts produced) must come together.” This duality
of accountability and recognition for EUD was considered vital for acceptance by both
management and workers.

3.3.2. Professionalisation

Survey respondents agreed strongly with the Operational Risks and Quality Risks state-
ments (averages of 1.05 and 1.24). To counteract this perceived risk, the discussion
focused on promoting professional approaches to EUD, including (a) customized Soft-
ware Engineering methodologies (discussed in Section 3.2.2) and (b) promoting testing.

Indeed, testing practices and methods were perceived as an important sign of pro-
fessionalism. A general lack of testing culture was perceived (“There is a lack of a
culture of testing,” “End users do not test.”), because of the predominant paradigm of
immediate results for short-term gain. One participant observed: “The pressure is to
deliver the artefact, not on structure testing or load testing.”

One way forward was to foster the transfer of testing practices from the users’
professional domain to their software development activities. For example, marketing
specialists and biologists use sophisticated testing approaches in their professional

386 NIKOLAY MEHANDJIEV ET AL.

activities. The same culture of testing should be transferred to their programming
activities as end-user developers, given the appropriate training and incentives.

Another way to stimulate the social acceptance of testing is to make the responsibil-
ity of the end user transparent. Highlighting the degree to which an EUD artefact has
been tested is one technical approach to doing this (Burnett et al., 2002). For example,
if a spreadsheet is full of red boxes then the others may not believe the figures. How-
ever, one participant observed that “Visible testedness will help make inroads into the
acceptability of EUD, but there are probably problems with this idea moving away from
the spreadsheet model.” It was felt that technical solutions should be complemented
by organizational procedures and rules to enforce testing of EUD artefacts at the level
appropriate for each case.

4. Strategies for Managing the Integration of EUD

In this section we develop the implications of the survey to propose recommendations
for management and EUD technology providers. We also draw on further sources,
including a substantial EUD technology survey which has resulted in a compara-
tive framework (Sutcliffe et al., 2003). As we have pointed out elsewhere (Sutcliffe
et al., 2003), successful introduction of EUD depends on motivating end users to invest
learning effort to use new tools and, conversely, on minimizing the costs of learning
and operation. However, other barriers are more social in nature, as the survey reported
in this chapter has demonstrated. Hence the future success of EUD will depend on
improving the tools and integration of development activities into the end users’ work
tasks as well as on addressing managerial concerns of control and quality.

An overview influence diagram summarizing the issues involved in controlling the
balance between motivation and risk is shown in Figure 17.7.

The centre of the figure outlines the core management process of (a) deciding to adopt
EUD technology, (b) managing the change and planning the introduction of EUD, and
(c) controlling EUD practices. Starting from the first stage in this process, Section 3
suggests we should look at four main ways to facilitate positive decisions regarding the
adoption of EUD:

1. Improving EUD technology
2. Improving user motivation
3. Finding suitable applications
4. Positive assessment of risks.

The next two sub-sections will discuss the first two suggestions in detail.

4.1. EUD TECHNOLOGY

The current generation of EUD tools are still difficult to learn, although clearly, when
motivated, users are prepared to invest in the necessary effort. The following three

ORGANIZATIONAL VIEW OF EUD 387

Adopting EUD
technology

Increase
incentives

Make
benefits
visible

Reduce
learning costs Adaptive

customisation
tools

Better
task fit

Target on
domain

User
motivation

EUD
technology

Change
management

Controlling
EUD

Assess suitable
applications

Planning the
introduction of EUD

Monitoring
progress

Assess
risks

Impact
analysis

Audit (QA)
procedures
Culture of
responsibility
Guidelines
and incentives

Reliability
Privacy
Security
Data accuracy
Maintenability

Interfaces
Connections to
other systems
Usage of
output

Socio-
Technical
Approach

Mitigate risks by:

Figure 17.7. Summary of managerial issues in controlling the motivation and risk of EUD.

directions should be explored to improve the EUD technology and thus facilitate the
adoption of EUD technology:

Adaptive customization tools include tools that are capable of intelligent adaptation
or allow users to customize them (Oppermann, 1994). The former can reduce the users’
effort but do so at the penalty of de-motivating errors when the system makes incorrect
inferences (Sutcliffe et al., 2003). Adaptive systems should be restricted to areas where
inference has a high probability of being accurate, and when there is doubt, mixed
initiative dialogues are preferable.

User-customizable tools allow end-user developers to choose the level of program-
ming sophistication they desire. However, customization imposes a learning burden
on the user and increases the complexity of the user interface. One approach to miti-
gating the burden is to adopt a minimalist approach (Carroll, 1990) by revealing only
essential customization functions first; then, as the user’s confidence grows, the range
of functions can be expanded.

EUD tools can also be tuned to achieve better task fit; for example, in control ap-
plications for home use the scope of programmability can be limited to the functions

388 NIKOLAY MEHANDJIEV ET AL.

of the devices (e.g. lighting controls, thermostats), thus simplifying the learning bur-
den. The task fit idea underpins supportive development environments where learn-
ing and creating are seamlessly integrated activities. Users should be encouraged to
learn by experimentation while the system provides explanatory feedback to remedy
mistakes. This requires ways of simulating effects so programs can be validated by
inspection.

EUD support tools need to adopt the lessons from domain-oriented design environ-
ments (Fischer, 1994) and provide critics, templates, explanation facilities, and syntax
directed editors to support design and learning in EUD.

The languages and techniques underpinning such tools should target the user do-
main. One example would be to use realistic metaphors based in the user domain, such
as wiring together signal processing modules in LabView (National Instruments, 2004)
to help the users understand programming actions and effects.

A natural development of this idea is to develop more natural lexicons and syntax
to express instructions in a domain. Investigating sub-language theory from linguistics
may provide a useful approach although there will be scope and expressability trade-
offs, i.e. a language which applied EUD in a narrow domain, such a programming
genomic analysis in bioinformatics, could be easy to learn for the domain experts but
limited in application to a small number of such experts. More general EUD languages
will solve the dilemma of being easy to learn while having sufficient power to address
a wide range of problems.

One of the important lessons from our survey was the importance of the socio-
technical approach to supporting EUD, including fostering supportive communities
of developers, both end-user and expert who share problems and solutions. Tools
will support EUD collaboration by allowing end-user developers to share designs,
reusable code, examples, etc. (see the contribution of Pipek and Kahler in this
volume).

On a cognitive level this is particularly important because learning to develop suc-
cessfully requires not only mastering syntax of a language but also conceptual and
abstract thinking about computation design. Education and sharing conceptual com-
putation metaphors, data structures, models, and procedures are thus important user
development tasks, and socio-technical design of the EUD support community ensures
better task fit on the technical side and reduction of learning costs, as reviewed in detail
in the next section.

4.2. USER MOTIVATION

To foster user motivation, user roles and incentives need to be designed with care. Some
users will invest more effort in software/programming tools while others will have
less motivation to do so. The socio-technical approach discussed above can help this
through enabling supportive end-user communities, where end-user developer experts
may emerge, called local experts (Mumford, 1981) or gardeners (Nardi, 1993). For
discussion of the collective, cultural, and motivational aspects the reader is referred to

ORGANIZATIONAL VIEW OF EUD 389

Carter and Henderson (1990). The following three policies should lead to increasing
user motivation:

Make benefits visible by sharing examples of EUD success stories and demonstrations
about how the technology can improve work efficiency. Note that this recommendation
has implications for collaborative tools.

Increase incentives for individuals to engage in end-user development where appro-
priate, to share expertise and solutions. Plan diffusion of expertise within and across
groups.

Reduce learning costs by ensuring end-users have time to learn new tools and attend
training sessions. Costs of error can be dramatically reduced by providing a protective
environment so end users can experiment and make mistakes safely while learning new
tools.

4.3. CHANGE MANAGEMENT AND CONTROLLING EUD

One of the stronger indications from the survey was the concern about control of EUD.
This revisits the debate from earlier generations of EUD languages (Martin, 1982,
1984). Controlling EUD practices relies on two core activities: Impact Analysis and
Assessing Risks.

4.3.1. Impact Analysis

Impact analysis helps the management to strike the balance between (a) convenience and
speed of development and (b) the need to maintain quality when developed systems
might have lasted some time and have critical dependencies with other systems. It
requires assessment of suitability of applications for EUD, depending on their interfaces,
connections to other systems and usage of their output.

For example, stand-alone systems for personal use are considered suitable for EUD
because they do not provide direct inputs to mission-critical systems. The key to manag-
ing potential exposure lies in careful assessment since EUD systems may have hidden
indirect interfaces with other systems such as reports and data used by others for core
decision-making.

Deciding whether to allow EUD for systems on a case by case basis can be laborious
to implement so assessment of impact and risks may be conducted for types of systems
rather than for individual applications.

4.3.2. Assessing and Mitigating Risks

The perceived dangers of applications created by end-users are poor software reliability,
maintainability, security, data accuracy, and loss of privacy. All these factors constitute
risks which need to be assessed and managed.

Risk assessment will depend on the duration and potential impact of system output,
which are both results from the impact analysis activity.

390 NIKOLAY MEHANDJIEV ET AL.

Alternatively risks can be mitigated by one of the following approaches:

� Foster culture of responsibility so the onus of preventing reliability and accuracy
exposures lies with the end users.

� Design and implement audit (quality assessment) procedures to check on EUD
systems.

� Set guidelines for (a) data access and distribution of system output to safeguard
privacy and confidentiality, and ensure compliance with data protection legislation;
and (b) for best practice in development and project management of end-user
activities.

The dilemma for management is that end-user activity is frequently motivated by
agility and empowerment of users. Controls and standards militate against EUD which
by its nature will tend to be less formal that traditional IS department procedures. EUD
lends itself to agile methods, XP approaches, and prototyping style development rather
than systematic engineering (Rational Corporation, 2002), and process maturity styles
of management (Paulk et al., 1993).

The problem is how to draw the line between core corporate systems which need to
be developed and managed by software professionals on one hand and “quick and dirty”
development on the other. One model which traces its heritage to System Development
(Jackson, 1982) is to maintain transaction processing and database updating systems
under IS control while permitting reporting and information access functions to be
controlled by end-users. However, this model needs to be extended to forecasting,
planning and decision support system which end-users will want to develop themselves.
The degree of audit and control of end-user DSS depends on the impact analysis of
system output.

5. Conclusion

In this chapter we explore the social and contextual issues surrounding EUD and sup-
porting technology. We report our findings from a questionnaire and two structured
group discussions regarding perceptions of factors which may impede or support the
introduction of EUD in organizations. We use the findings to develop a conceptual map
of EUD issues with recommendations for the adoption and management of end-user
activities. This map targets managers and technology developers, focusing attention
on different ways to lower perceived costs and increase perceived benefits to motivate
users and justify their investment in the effort of learning. In this respect, we see the
following three main directions of future work in EUD.

Explore differences in the characteristics of EUD activities within different appli-
cation domains. Our survey has highlighted that EUD in the home and personal enter-
tainment domain would have different requirements, barriers, and motivating factors
from EUD activities concerning business information systems. EUD of scientific ap-
plications such as bioinformatics would be different yet again. We need to create a map

ORGANIZATIONAL VIEW OF EUD 391

of such differences, and use this map to judge the suitability of different cognitive and
organizational solutions, and thus guide the effort of technology developers in the area.

Address a number of tools and technology challenges. The cognitive fit between a
particular EUD task and the supporting tool has been asserted as an important factor
facilitating the acceptance of EUD in different contexts. Studies of different EUD
tasks can help us identify appropriate development metaphors and features of design
environments to optimize the trade-off between design power and need for abstract
thinking by end-user developers.

Investigate social challenges to EUD acceptance. The survey has demonstrated the
importance of carefully designing organizational rewards and responsibility systems to
balance the costs and motivations for individuals capable of doing EUD. Organizations
should also decide on the appropriate trade-off between control risks and the agility
brought about by unconstrained EUD activities. Finally, we would like to explore the
potential relationship between organizational learning and collaborative EUD activities
and clarify benefits accruing from such a relationship.

APPENDIX A: Questionnaire Results and Relationship with
Survey Objectives

Related to survey objective No

1. Benefits 2. Costs 3. Further Agreement
and and work on scale
Motivators Barriers areas Question label Statement (−2 to +2)

√
Domain expertise The domain expertise of end-users

can create more effective
software to support their
activities

1.34

√
Faster development EUD could speed up software

development.
0.97

√
Job enrichment Using EUD tools could make my

work more interesting.
0.89

√
Improves efficiency Using EUD tools will make me

more efficient in my main job
task

0.84

√ √
Perceived benefit EUD success in the organization

depends primarily on the
perceived benefits out-weighing
the perceived costs

0.79

√
Quality risks EUD creates a software quality

issue.
1.24

√
Operational risks EUD can be dangerous (e.g., Data

security)
1.05

√
Loss of control EUD can undermine managerial

authority
0.11

√
Distraction from

main work
Using EUD tools will consume

time which I should be spending
on my main job task

0.08

(Continued)

392 NIKOLAY MEHANDJIEV ET AL.

Related to survey objective No

1. Benefits 2. Costs 3. Further Agreement
and and work on scale
Motivators Barriers areas Question label Statement (−2 to +2)

√
Development is for

specialists
Software development is the

responsibility of software
specialists

−0.26

√
Programming

difficulty
Programming will always be too

hard for the non-specialist.
−0.5

√
EUD too expensive EUD is too expensive for

organizations to implement
−0.53

√
Organizational

priority
EUD work should focus on

organizational issues first
0.24

√
Cognitive priority EUD work should focus on solving

the cognitive issues first
0.21

√
Socio-technical

priority
EUD work should focus on

socio-technical issues first
0.21

APPENDIX B: Histograms of Responses

s7

0
2
4
6
8

10
12
14
16
18
20

Disagree
strongly

Disagree Indifferent Agree Agree
strongly

1.34

-2.00 -1.00 0.00 1.00 2.00

Figure 17.8. Answers to the “Domain expertise” question: ‘The domain expertise of end-users can create more
effective software to support their activities.’

s5

0

2

4

6
8

10

12
14

Disagree
strongly

Disagree Indifferent Agree Agree strongly

0.97

-2.00 -1.00 0.00 1.00 2.00

Figure 17.9. Answers to the “Faster development” question: ‘EUD could speed up software development.’

ORGANIZATIONAL VIEW OF EUD 393

s4

0

5

10

15

20

25

Disagree
strongly

Disagree Indifferent Agree Agree strongly

0.89

-2.00 -1.00 0.00 1.00 2.00

Figure 17.10. Answers to the “Job enrichment” question: ‘Using EUD tools could make my work more interesting.’

s2

0
2
4
6
8

10
12
14
16

Disagree
strongly

Disagree Indifferent Agree Agree strongly

0.84

-2.00 -1.00 0.00 1.00 2.00

Figure 17.11. Answers to the “Improves efficiency” question: ‘Using EUD tools will make me more efficient in
my main job task.’

s8

0
2
4
6
8

10
12
14
16
18
20

Disagree
strongly

Disagree Indifferent Agree Agree strongly

0.79

-2.00 -1.00 0.00 1.00 2.00

Figure 17.12. Answers to the “Perceived benefit” question: ‘EUD success in the organisation depends primarily
on the perceived benefits out-weighing the perceived costs.’

394 NIKOLAY MEHANDJIEV ET AL.

s6

0

5

10

15

20

25

Disagree
strongly

Disagree Indifferent Agree Agree strongly

1.24

-2.00 -1.00 0.00 1.00 2.00

Figure 17.13. Answers to the “Quality risks” question: ‘EUD creates a software quality issue.’

s11

0

5

10

15

20

25

Disagree
strongly

Disagree Indifferent Agree Agree strongly

1.05

-2.00 -1.00 0.00 1.00 2.00

Figure 17.14. Answers to the “Operational Risks” question: ‘EUD can be dangerous (e.g. Data security).’

s10

0
2

4

6
8

10

12

14

Disagree
strongly

Disagree Indifferent Agree Agree strongly

0.11

-2.00 -1.00 0.00 1.00 2.00

Figure 17.15. Answers to the “Loss of control” question: ‘EUD can undermine managerial authority.”

ORGANIZATIONAL VIEW OF EUD 395

s3

0
2
4
6
8

10
12
14

Disagree
strongly

Disagree Indifferent Agree Agree strongly

0.08

-2.00 -1.00 0.00 1.00 2.00

Figure 17.16. Answers to the “Distraction from main work” question: ‘Using EUD tools will consume time which
I should be spending on my main job task.’

s1

0
2

4

6

8

10

12

14

Disagree
strongly

Disagree Indifferent Agree Agree strongly

-0.26

-2.00 -1.00 0.00 1.00 2.00

Figure 17.17. Answers to the “Development is for specialists” question: ‘Software development is the responsi-
bility of software specialists.’

s9

0
2
4
6
8

10
12
14
16
18
20

Disagree
strongly

Disagree Indifferent Agree Agree strongly

-0.50

-2.00 -1.00 0.00 1.00 2.00

Figure 17.18. Answers to the “Programming difficulty” question: ‘Programming will always be too hard for the
non-specialist.’

396 NIKOLAY MEHANDJIEV ET AL.

s12

0
2
4
6
8

10
12
14
16

Disagree
strongly

Disagree Indifferent Agree Agree strongly

-0.53

-2.00 -1.00 0.00 1.00 2.00

Figure 17.19. Answers to the “EUD too expensive” question: ‘EUD is too expensive for organisations to
implement.’

s15

0
2
4
6
8

10
12
14
16
18

Disagree
strongly

Disagree Indifferent Agree Agree strongly

0.24

-2.00 -1.00 0.00 1.00 2.00

Figure 17.20. Answers to the “Organisational priority” question: ‘EUD work should focus on organisational issues
first.’

s13

0
2
4
6
8

10
12
14
16

Disagree
strongly

Disagree Indifferent Agree Agree strongly

0.21

-2.00 -1.00 0.00 1.00 2.00

Figure 17.21. Answers to the “Cognitive priority” question: ‘EUD work should focus on solving the cognitive
issues first.’

s14

0
2

4

6
8

10

12

14

Disagree
strongly

Disagree Indifferent Agree Agree strongly

0.21

-2.00 -1.00 0.00 1.00 2.00

Figure 17.22. Answers to the “Socio-technical priority” question: ‘EUD work should focus on socio-technical
issues first.’

ORGANIZATIONAL VIEW OF EUD 397

APPENDIX C: End User Development Perceptions Questionnaire

|PART A|
(Q1) Name: _______________________
(Q2) Organisation Size: ________________
(Q3) How does your job relate to Information Technology? ___________________

__
(E.g. are you an IS developer, Researcher, End-User....)

(Q4) Have you used End User Development technologies? Yes/No (please circle)

(Q5) If yes which? ___
__
(e.g. spreadsheets, macro programming....):

|PART B|
Please complete this section by rating your sentiments towards the statements. Place a mark in
the box of the option which best describes opinion.
Statement Agree

strongly
Agree Indiffer

ent
Disag
ree

Disagree
Strongly

(S1) Software development is the
responsibility of software specialists.

(S2) Using EUD tools will make me more
efficient in my main job task.

(S3)Using EUD tools will consume time which
I should be spending on my main job task.

(S4)Using EUD tools could make my work
more interesting.

(S5) EUD could speed up software
development.

(S6) EUD creates a software quality issue.
(S7) The domain expertise of end-users can
create more effective software to support their
activities.

(S8) EUD success in the organisation depends
primarily on the perceived benefits out-
weighing the perceived costs.

(S9) Programming will always be too hard for
the non-specialist.

(S10)EUD can undermine managerial authority.
(S11) EUD can be dangerous (e.g. Data
security).

(S12) EUD is too expensive for organisations
to implement.

(S13) EUD work should focus on solving the
cognitive issues first.

(S14) EUD work should focus on socio-
technical issues first.

(S15) EUD work should focus on
organisational issues first.

398 NIKOLAY MEHANDJIEV ET AL.

ORGANISATIONAL VIEW OF END-USER DEVELOPMENT

|PART C|
Please use this space for comments about either this questionnaire or on End-User

Development in general.

(QX)

Acknowledgments

This work was partially supported by the EU 5th Framework programme, Network of
Excellence EUD(End-User Development) Net. IST-2002-8.1.2.

References

Bennett, K.H., Gold, N.E., Munro, M., Xu, J., Layzell, P.J., Budgen, D., Brereton, O.P. and Mehandjiev,
N. (2002). Prototype Implementations of an Architectural Model for Service-Based Flexible
Software. In: Ralph, H. Sprague, Jr. (ed.), Proceedings of 35th Hawaii International Conference
on System Sciences (HICSS-35). CA: IEEE Computer Society, ISBN 0-7695-1435-9.

Boehm, B.W., Clark, B., Horowitz, E., Westland, C., Madachy, R. and Selby, R. (1995). In: J.D. Arthur
S.M. Henry and J.C. Baltzer AG (eds.), Cost models for future software life cycle processes:
COCOMO 2.0, Annals of Software Engineering, Special Volume on Software Process and Product
Measurement. Amsterdam, The Netherlands: Science Publishers.

Brancheau, J.C. and Brown, C.V. (1993). The management of end user computing: Status and direc-
tions. ACM Computing Surveys 25(4), 437–482.

Burnett, M.M., Baker M.J., et al. (1995). Scaling up visual programming languages. IEEE Computer,
28(3), 45.

Burnett, M., Sheretov, A., Ren, B. and Rothermel, G. (2002). Testing homogeneous spreadsheet
grids with the ‘What You See Is What You Test’ methodology. IEEE Transactions on Software
Engineering 29(6), 576–594.

Carroll, J.M. (1990). The Nurnberg Funnel: Designing Minimalist Instruction for Practical Computer
Skill. Cambridge, MA: MIT Press.

Carter, K. and Henderson, A. (1990). Tailoring culture. In: Reports on Computer Science and
Mathematics no 107, Åbo Akademi university 1990, Proceedings of 13th IRIS Conference,
pp. 103–116, Turku, Finland.

Cullen, D. (2003). Excel snafu costs firm $24m, published by The Register, available from
http://www.theregister.co.uk/content/67/31298.html, last accessed 15 Nov 2003.

Fischer, G. (1994). Domain-oriented design environments. Automated Software Engineering 1(2),
177–203.

Green, T.R.G., and Petre, M. (1996). Usability analysis of visual programming environments: A
cognitive dimensions framework. Journal of Visual Languages and Computing 7(2), 131–174.

Jackson, M. (1982). System Development. London: Prentice-Hall.
Lieberman, H. (Ed.). (2001). Your Wish is my Command: Programming by Example. San Francisco:

Morgan Kaufmann.
Martin, J. (1982). Application Development without Programmers. London: Prentice Hall.
Martin, J. (1984). An Information Systems Manifesto. London: Prentice-Hall.

ORGANIZATIONAL VIEW OF EUD 399

Mumford, E. (1981). Participative Systems Design: Structure and Method. Systems, Objectives,
Solutions 1(1), 5–19.

Nardi, B.A. (1993). A Small Matter of Programming: Perspectives on End-User Computing.
Cambridge, MA: MIT Press.

Nardi, B.A. and Miller, J.R. (1991). Twinkling lights and nested loops: Distributed problem solving
and spreadsheet development. International Journal of Man-Machine Studies 34(2), 161–184.

National Instruments. (2004). LabVIEW—The Software that Powers Virtual Instrumentation,
http://www.ni.com/labview/, last accessed on 4th May 2004.

Oppermann, R. (1994). Adaptive User Support Ergonomic Design of Manually and Automatically
Adaptable Software. Hillsdale, New Jersey: Lawrence Erlbaum Associates.

Panko, R. (1988). End User Computing: Management Applications and Technology. Chichester: John
Wiley & Sons.

Powell, A. and Moore, J.E. (2002). The focus of research in end user computing: Where have we come
since the 1980ties? Journal of End User Computing 14(1), 3–22.

Paulk, M.C., Curtis, B., Chrissis, M.B. and Weber, C.V. (1993). Capability Maturity Model for Soft-
ware, Version 1.1. IEEE Software 10(4), 18–27.

Repenning, A. (1993). Agentsheets: A Tool for Building Domain Oriented-Dynamic Visual Environ-
ments. Technical Report, Dept of Computer Science, CU/CS/693/93. Boulder, CO: University of
Colorado.

Rational Corporation. (2002). The Rational Unified Process, published 2002, now available.
http://www.ibm.com/software/awdtools/rup/, last accessed 15 Nov 2003.

Strauss, A. and Corbin, J. (1998). Basics of Qualitative Research: Techniques and Procedures for
Developing Grounded Theory, 2nd ed. Thousand Oaks, CA: Sage.

Sutcliffe, A., Lee, D. and Mehandjiev, N. (2003). Contributions, Costs and Prospects for End-user
Development, Human Computer Interaction—International Proceedings. Mahwah NJ: Lawrence
Erlbaum Associates.

United States Bureau of the Census. (1999). Computer Use in the United States, October 1997,
Department of Commerce, Washington D.C, September 1999.

Chapter 18

A Semiotic Framing for End-User Development

CLARISSE SIECKENIUS DE SOUZA and SIMONE DINIZ
JUNQUEIRA BARBOSA
Departamento de Informática, PUC-Rio-Rua Marquês de São Vicente 225/410 RDC-Rio de
Janeiro, RJ—Brasil, Clarisse@inf.puc-rio.br, Simone@inf.puc-rio.br

Abstract. One approach to designing usable and enjoyable computer applications is to say that
designers need better methods and tools to understand users and their contexts, and to encode this
understanding into closed computer systems. Another is to acknowledge that there will always be
unattended user needs, and that the way to increase users’ satisfaction is to help them modify systems
in order to meet constantly changing requirements. Different techniques are proposed in one approach
usually without reference to the other. We present an overarching perspective of human–computer
interaction where both meet, and provide a semiotic characterization of designers’ and users’ activities
that clarifies the tradeoffs involved in designing and choosing techniques in either approach. Central to
this characterization is the role of intentions in what users mean to say and do when using computers.
Our characterization is in line with a broader concept of usability, in which systems must support
users’ improvisation and creativity.

1. Meeting End-Users’ Expectations

In spite of speedy technological evolution and voluminous knowledge generated by
research and development in human–computer interaction (HCI), users of information
technology (IT) products still have to live with a high dosage of frustration and confusion
when trying to get systems to do what they want. Building usable and enjoyable systems
remains a challenge for the IT industry, regardless of the excitement brought about by
such things as miniature multi-function mobile devices, sophisticated virtual reality
caves, or intelligent buildings and vehicles. The old challenge can be stated in very
simple terms: how do we design technology that meets the users’ needs?

Very large portions of contemporary work in HCI center around techniques and
tools that can help designers enhance their understanding of users and use situations.
Their aim is to minimize the mismatch between what users want to do with computer
systems and how computer systems respond to their expectations. There is a variety
of approaches for solving this problem, two of them lying at opposite ends. One seeks
to increase a designer’s ability to capture finer distinctions in the users’ behavior and
context, and to encode such improved distinctions into computer systems. The idea
is to cover a maximum share of the users’ world and to prepare the system to react
appropriately as situations evolve. The other approach seeks to empower users with the
ability to tailor computer systems to their specific needs, by customizing the systems’

Henry Lieberman et al. (eds.), End User Development, 401–426.
C© 2006 Springer.

402 CLARISSE SIECKENIUS DE SOUZA AND SIMONE DINIZ JUNQUEIRA BARBOSA

appearance and behavior, or by adding and assembling new functionality. The idea is to
build applications that support a range of basic (re)design and (re)codification activities
that enable the user to react creatively as situations evolve. End-user development (EUD)
is a generalization of this approach.

An invariant strategy taken by adopters of both approaches has been an emphasis
on producing techniques to solve perceived problems, rather than accounts of what
these problems are at a more foundational level. As a consequence, telling why, when
and how various techniques can or should be applied to improve the users’ satisfaction
has some times brought up more guesses than justifications. Useful answers to these
questions require a deeper understanding not only of EUD and HCI problems, their
nature and scope, but also of solutions and their implications, local and global. For
example, among popular usability guidelines (Nielsen, 1993) we find explicit references
to computer systems having to be flexible and efficient. However, we do not know when
greater flexibility (achieved, say, through macro recording) becomes detrimental to
other usability musts such as ease of use or robust error prevention. Likewise, we
know that programming by demonstration (PbyD) can help users build small programs
by means of relatively simple interactive patterns (Cypher, 1993; Lieberman, 2001).
However, the reason why in spite of its power PbyD is not widely adopted in IT design
or, when adopted, why it is not understood by most users is unclear to both researchers
and developers.

In this chapter, we shift the focus of discussion from techniques to an integrated
account of EUD as part of HCI. Unlike in other EUD approaches (for a brief overview
see Fischer et al., 2004), in ours the development of applications “from scratch” does
not constitute an immediate goal for EUD. We believe that this represents an advanced
evolutionary stage in a “do-it-yourself computing” path, whose achievement depends on
the applications’ designers’ ability to understand and respond to a number of relatively
simpler EUD challenges. Our discussion centers mainly around two aspects of EUD
that are of paramount importance for usable HCI products: customizing and extending
applications. We use semiotic theory to substantiate our views, aiming at two main
targets. First, we propose to show why the customization and extension of IT products
should be taken as a fundamental usability requirement. We draw the reader’s attention
to the consequences of some constraints imposed by the irreducible gap that separates
what users may mean from what computer systems can understand. Second, we propose
a semiotic characterization of some of the practical issues that currently challenge EUD.
By so doing, we expect to advance explanations about why EUD may still be difficult
for most users, and to provide ingredients for the elaboration of enhanced technical
solutions.

We start by retrieving some of the early connections between HCI and end-user
programming, made by such researchers as Nardi (1993), Adler and Winograd (1992),
and Fischer (1998). We then present a semiotic description of how meaning is expressed
in signification systems and communication processes. In particular, we resort to the
notion of unlimited semiosis, and show that what users and computer systems mean
are fundamentally different things. Human meanings are indissociable from human

SEMIOTIC FRAMING FOR EUD 403

intent—a highly contingent and changing factor in communication, with other humans
or with computers. Computer meanings, however, are determined by semantic rules that
systematically apply whenever certain predefined system states are achieved. This idea
is akin to the one presented in Winograd and Flores (1986). Based on phenomenology
and speech act theory, these two authors have set the basis for the language-action
perspective in software design as to be practiced by designers. Our semiotic perspective
allows us to go one step further and to inspect the very codification and interpretation of
intent, when users as designers try to configure or program applications to do what they
mean. We illustrate our characterization of EUD activities with examples drawn from
different types of techniques, with special emphasis on the challenges and opportunities
of PbyD (CACM, 2000; Lieberman, 2001), given their close connection with HCI.
Finally, we discuss our integrative semiotic characterization of the user’s activity, where
interaction, customization, and extension are brought together. We show how it can
help HCI and EUD designers frame design problems more clearly, and make more
informed decisions about the tradeoffs between popular views of usability and user
empowerment.

2. Usability Challenges and EUD

Adler and Winograd (1992) discuss the usability challenge proposing that usability
should be viewed as a dialogue of change. In their own words, “the key criterion of a
system’s usability is the extent to which it supports the potential for people who work
with it to understand it, to learn, and to make changes” (p. 7). They explicitly say that
usable systems must allow users to cope with novelty, and that “design for usability
must include [. . .] design for improvisation, and design for adaptation” (p. 7). Their
view is echoed by Nardi (1993), for whom “users like computers because they get
their work done” (p. 5). This may occasionally involve creating novel functions that
serve some particular purpose, unanticipated by designers who produced the original
system. From an end-user’s point of view, the specific procedure required for creating
new functions “is not important, so long as [this activity] is easy and relatively rapid”
(p. 6). Nardi proposes that “human–computer communication is best facilitated by task-
specific programming languages that tap users’ task knowledge and related interests”
(p. 10). This view brings interface and end-user programming languages together and
makes designing them part of the usability challenge. The author remarks that different
techniques such as PbyD or customization dialogues can help users tailor computer
applications to their specific needs easily and rapidly.

Fischer (1998) says that “computational media have the unique potential to let peo-
ple be designers or assist them to incrementally become designers. Unfortunately, most
current computational environments do not allow users to act as contributors and design-
ers” (p. 2). His view also points to Adler and Winograd’s usability challenge, especially
when he proposes that design should not produce technology that “restricts knowl-
edgeable and skilled human professionals [. . .] to answering yes or no to questions
generated by the system” (p. 2). The underlying message of Fisher’s elaboration on his

404 CLARISSE SIECKENIUS DE SOUZA AND SIMONE DINIZ JUNQUEIRA BARBOSA

initial ideas—meta-design (Fischer et al., 2004; Fischer and Giaccardi, this volume), is
that useful computer systems should be cast as environments for end-user design and
end-user development.

An important usability question in this context is: how would users express their
design? Before we propose possible answers to this question we should examine what
users may wish to express.

3. A Semiotic Account of Meaning for Humans and Computers

One approach to finding how users would best express their design is to start with
a more fundamental question: what do users mean to say when they interact with
computer systems? This question underlines complex communicative aspects of HCI
rarely tackled in cognitively inspired research on usability.

A semiotic account of communication, like the one proposed by Eco (1976) for exam-
ple, identifies two important pillars that support human communicative exchanges. The
first is that of signification systems, established by virtue of social and cultural conven-
tions adopted by users of such systems. Signification systems determine codified associ-
ations between content and expression, like that between the topic of this paragraph—
communication—and the words “communication” in English or “comunicação” in
Portuguese. The second pillar is that of communication processes, through which
sign producers explore the possibilities of established signification systems in order
to achieve an open range of purposes. The important factor in communication, as de-
fined by such semiotic theory, is that communicators are not constrained to expressing
themselves exclusively by means of signs established by existing signification systems.
They can, and most often do, invent novel ad hoc ways to communicate ideas originally.
For example, people may use irony or humor to get their message across (two kinds of
expression where the literal meaning of signs is usually a blatant lie with respect to what
they systematically express in generic contexts). By so doing, they may improve certain
aspects of their intent and meet their communicative goals with increased efficiency.
People can also use puns or invent new terms and phrases to express the meanders of
their imagination and expand the universe of communication. A contemporary token of
this strategy is the term “earcon,” which bears rich semiotic associations with the word
“icon” and its pronunciation (“eyecon”), made explicit in the definition of an earcon as
“an auditory icon” (The Word Spy, 2004).

These characteristics draw our attention to an important factor in communication—
intent. When communicating with others, we explore content-expression associations
existing in our culture in order to cause certain effects on our listeners. Irony, humor,
metaphor, invention, and all are expressive strategies that we may choose in order to
maximize our efficiency in bringing about our intent or, as speech act theorists have put
it, in doing things with words (Austin, 1962; Searle, 1969). Expression, content and
intent are therefore three fundamental dimensions in human communication. Linguis-
tic theories have usually aligned them to lexico-grammar, semantics, and pragmatics,
respectively.

SEMIOTIC FRAMING FOR EUD 405

Nevertheless, the situation with computers is considerably different. Formal lan-
guages and automata theory (Hopcroft and Ullman, 1979), which provide the foun-
dations for the design of computer languages, only refer to a lexico-grammatical
component (usually split into vocabulary and syntax) and a semantic component. On-
tologically, computers do not have any intent. A system can only get users to do things if
users willingly assign intentionality to program-generated signs, which reproduced in
strict accordance with the rules encoded in the formal signification systems that drive
all computation. Thus, successful human–computer communication crucially depends
on the effects that computer signs actually have on users (be it by design, or by chance).
The reverse effect is even more critical in HCI, namely the effect that human-generated
signs have on computer systems. Computers cannot react appropriately when humans
step outside the limits of the signification systems encoded in programs, although hu-
mans may not even realize that they are doing it. For instance, if a user selects a table
cell and commands a text editor to “paint it yellow” he may be amused (or perhaps
annoyed) if the system replies that “a table cell cannot be painted,” although when com-
manded to “change a table cell’s fill color to yellow” the system immediately paints
it yellow. Similar mysteries with systems that react as expected when told to “thicken
a line” but fail to understand what the user means when told to “thicken a character”
(although characters are literally thickened when users apply the command “bold”) are
encountered by users on a daily basis.

Semiotic theory can illuminate important facets of signs and their meaning, in hu-
man and computer contexts. First, in Peircean semiotics (Peirce, 1931–1958) a sign
is anything that someone (or some mind) takes to be meaningful. So, for instance, a
perceptible image in a system’s interface may be a sign for one user, but not for the
other. It is a sign for the user that takes the image to mean something (no matter what
it means to the computer). Meaningless images are—by definition—not signs. Sec-
ond, the structure of a sign includes three inter-related elements: a representation (the
representamen), a referent (the object) and a meaning (the interpretant). However, the
interpretant is itself another sign (which is another way to say that the meaning of a sign
necessarily means other things). Thus, unlike views in which meaning is a static final
entity (a mental state, a relational configuration between abstract and concrete worlds,
a definable concept, or some other kind of delimited object), in this theory meaning is
an infinite process that generates indefinitely many other meanings associated to each
other by interpretive functions. This process is called unlimited semiosis (Eco, 1976).
The shape and direction of associative chains, in shorter and longer time intervals,
cannot be predicted in any strict sense. Although culture strongly motivates the occur-
rence of certain key signs in semiosis (which ultimately make communication possible),
we should not expect culture to determine completely and uniquely the individual inter-
pretations of signs. Quite contrarily, it is our individual ability to make free and creative
sign associations in interpreting the world that allows us to capture innovative discourse
produced by others, and to produce it ourselves.

Evidence of unlimited semiosis in HCI can be easily found. For instance, the meaning
of such popular interface expression as “cancel” evolves as one gains experience with

406 CLARISSE SIECKENIUS DE SOUZA AND SIMONE DINIZ JUNQUEIRA BARBOSA

computers and applications. Regardless of the fact that “cancel” necessarily involves
aspects of that which is being “canceled” (e.g., canceling a download process is different
from canceling an installation process), the pragmatic effects of saying “cancel” in
HCI cannot be fully defined. Although it is true, from a programming standpoint, that
“canceling” may amount to a small and well-defined set of basic actions (e.g., halt
current computation, restore previous system configuration, and the like), from a user’s
standpoint “canceling” may mean such different things as: “Oops! I made a mistake.”
or “Hmm, I do not know. . . better not do this.”; or “Forget about it.”; or “Stop.”; or “This
is not what I meant.”; or whatever other paraphrase can be used to express the unlimited
variety of intent that a user might be trying to achieve by saying “cancel.” All of them
become part of an evolving signification of what “cancel” means when interacting with
computers.

Third, provisionally defined meanings play a critical role in fundamental sense-
making activities that enable and support HCI. For example, let us examine the follow-
ing interactive situation, which is analogous to many encountered outside the context
of interacting with computers, and whose sequentially numbered stages concur to as-
signing meaning to what is really going on.

1. The user cannot open the file a:\file.pdf.
2. The user assumes that there is a general rule saying that pdf files can only be opened

if some viewer.exe is installed in the machine.
3. The user verifies that in fact some viewer.exe is not installed in the machine and

that, as expected, a:\ another file.pdf and a:\ yet another file.pdf cannot be opened.
4. The user concludes that his not being able to open pdf files means that

some viewer.exe is not installed (or, in other words, that the absence of program
some viewer.exe explains his problem).

5. The user also concludes that if he installs some viewer.exe in the machine, a:\file.pdf
and the pdf files will then be normally opened.

So, in view of what this interactive breakdown means, the user proceeds to install
some viewer.exe. However, after having done this, the user sees that a: \file.pdf
still cannot be opened. The user may equivocally conclude that (CACM, 2000) was
wrong (which it was not, because pdf files do require some viewer.exe in order to be
viewed, or opened). Successful sense making in this case may only be achieved if the
user produces further provisional meanings. For instance, the user may decide to test if
drive a: is working properly. If a:\file.txt cannot be opened although the associated
text editor for txt files is running properly in the machine, then the user has counter
evidence for the equivocal conclusion that (CACM, 2000) was wrong, which may lead
him to invoke another general rule that precedes the one in (Austin, 1962), namely that
files in drive a: can only be opened if the hardware is working properly.

Notice that the computer meanings involved in this problem are fixed and algorith-
mically produced throughout the whole episode, regardless of the directions in which
the user’s semiosis evolves. “Open a:\file.pdf” means: access the file; and activate
some viewer.exe taking a:\file.pdf as input parameter. The role of HCI design is to

SEMIOTIC FRAMING FOR EUD 407

provide the user with useful error message signs, so that the appropriate meanings are
associated with the interactive events he experiences. In a typical Windows R© environ-
ment, if some viewer.exe is not installed in the machine, the system merely asks the
user to indicate which application must be used to open the file (it does not tell the
user that some viewer.exe is not installed). However, if there is a hardware problem,
the user gets a message with a more precise diagnosis of the problem: “a:\ is not ac-
cessible.” Depending on how the user interprets the word “accessible” the appropriate
meaning of not being able to open pdf files may be closer or farther away. The user’s
sense-making process is based on hypothetical reasoning, also known as abduction,
that underlies all human interpretive processes in communication.

Because computer symbol processing rests on rule-based causal connections be-
tween symbols and physical machine behavior, computer meanings are not only ul-
timately predictable, but also essentially unchanging. As illustrated in the example
above, in spite of all the learning process which leads users to stop and resume their
interpretation of the same signs emitted by computers, the underlying meaning of such
signs for the computer is ever the same. The rules that govern how symbols affect the
machine’s behavior define the semantic scope of all possible symbols that the machine
can process. This is true even in the case of programs that can expand their initial
semantic base by taking other programs as input. There must be rules defining how
the meanings encoded in the input program are to interact with the ones of the host
program and, consequently, what types of semantic expansions can be accommodated.

Given these differences between human semiosis and computer symbol processing,
a semiotically-informed approach to usability carries the promise to help designers sup-
port the users’ semiosis while engaged in computer-supported activities, and not strictly
the users’ tasks. Letting users customize and extend meanings encoded in computer
languages enables systems to respond usefully to at least some portion of the evolving
interpretations that users continually assign to their own activities, and subsequently
incorporate to the way they express themselves about such activities.

4. Meeting the User’s Intent Through EUD

Taking Adler and Winograd’s approach to usability leads us to an integrated view of
HCI and EUD. The designers of usable systems have to support the activities of users
as designers; in Fischer’s terms, they have to engage in meta-design. All design must
be expressed through signification systems that not only allow users to express their
intent to achieve task-related goals (like “format document”), but also to create, inspect,
modify and elaborate on extensions that they may produce with various EUD techniques
(like macro recording or PbyD). Thus, designers of usable computer systems have to
(de Souza, 2004):

� synthesize a signification system to support HCI,
� communicate their design vision through this particular signification system,

408 CLARISSE SIECKENIUS DE SOUZA AND SIMONE DINIZ JUNQUEIRA BARBOSA

Figure 18.1. Semiotic manipulation possibilities of symbols and signs from a computer symbol-processing per-
spective and a human communication one.

� communicate the rules and principles according to which certain expressions are
systematically associated to certain contents in order to achieve a specific range
of intents,

� communicate if and how such principles and rules can be modified, and
� communicate how modified meanings can be effectively used in interaction with

the application.

Users can only benefit from the qualities that such design adds to computer systems
if they can:

� understand the designed signification system,
� formulate a satisfactory hypothesis of how meanings are encoded in this system,
� master its use for communicating intents to the system and achieving a variety of

purposes with it,
� formulate a satisfactory hypothesis of which new meanings (or meaning modifi-

cations) can be encoded and how, and
� encode such meanings in the system and incorporate them to the possible varieties

of interactive discourse with the application.

In Figure 18.1, we project the semiotic dimensions introduced in Section 3 onto
two different tables. The upper table refers to the symbol-processing perspective that
applies to computers. In it, manipulations of the lexical, syntactic, and semantic dimen-
sions of the underlying signification system (i.e., the computer languages that users

SEMIOTIC FRAMING FOR EUD 409

and/or programmers have access to) can be used to effect different symbolic transfor-
mations (numbered from I to VII). The lower table refers to the human communication
perspective. In it, manipulations of the expression, content, and intent dimensions of
the underlying signification system can be used to achieve different communicative
goals (numbered from A to G). Computer and human semiotic dimensions involved
in signification system manipulations projected in both tables are not in one-to-one
correspondence with each other. Notice that the lexical and the syntactic dimension
of computer languages refer to the expression dimension in human communications,
whereas the content and intent dimensions in human communication collapse into a
single symbol-processing dimension—semantics. As a consequence, it is not possi-
ble to establish clear-cut objective mappings between the two, saying for instance that
changes in the users’ expressive possibilities affect only the lexical dimensions of com-
puter languages, or that changes in the semantics of computer languages refer only
to changes of content in human communication. Because this is not the case, EUD
involves very complex design decisions for professional developers.

However, Figure 18.1 shows that it is possible to identify two different subsets of
manipulations in both tables. In the upper table, a dividing line can be drawn between
the first three types of manipulations and the remaining four. Types I, II, and III are
meaning-preserving manipulations of computer signification systems, because they do
not affect the semantics of the application. The preservation of meaning thus becomes
a convenient criterion to distinguish between customization and extension. Customiza-
tion is an EUD activity that does not affect meanings encoded in computer program
semantics. Extension is an EUD activity that does. This distinction is often fuzzy in EUD
literature, possibly because proposals and discussions usually center around techniques
rather than around the linguistic effects that they produce on the underlying models of
applications. Notice that we are speaking strictly of computer symbol-processing di-
mensions, and not of human communicative goals. One of the benefits of distinguishing
between customization and extension is that this can help us examine the pro’s and con’s
of various techniques. For example, meaning-preserving EUD techniques have impor-
tant consequences in terms of software architecture, modularization, program reuse,
and the like. Systems developers can and perhaps should design applications in such a
way that all types of customization affect only the interface component. If they do it,
customized interfaces might be saved as interactive templates, interactive template li-
braries might be built, and so on. All such possibilities spring from the fact that one can
safely distinguish between meaning-preserving and meaning-changing manipulations
of computer signification systems.

Meaning-changing manipulations of type IV, V, VI, and VII, in their turn, affect the
semantic base of an application. Some may be defined to affect only a pre-established
subset of the system. For example, the scope of such manipulations may be limited to
selected lexical, syntactic, and semantic items and rules. These usually represent type-
controlled extensions to the base, like generalization and/or specialization of meanings
(a popular form of EUD). Other manipulations, however, may be genuinely unrestricted,
potentially affecting the whole range of items and rules in the computationally encoded

410 CLARISSE SIECKENIUS DE SOUZA AND SIMONE DINIZ JUNQUEIRA BARBOSA

signification system that users have access to. Such unrestricted types of manipula-
tions can expand, retract, and modify—partially or completely—the original applica-
tion. They may even enable the development of other applications altogether. Whereas
compared to type-controlled extensions the power of users is undoubtfully greater, un-
restricted manipulations of the underlying signification system make it difficult (if not
impossible) to build “safety nets” for the users, like consistent error-prevention and
error-recovery mechanisms, useful help systems, and sensible interactive design. Thus,
they typically trade power for usability, since empowered users—in this case—cannot
rely on the system to help it understand, correct, undo, or improve the way how their
(re)programmed functionalities work.

In order to complete the semiotic characterization of such signification system ma-
nipulations, we finally define two useful concepts: that of application identity and that
of sign impermeability. An application’s identity refers to the designer’s choice of what
constitutes its core ontology. It comprises the minimal signification systems (and asso-
ciated behavior) necessary for users to recognize, understand, and effectively use it as
a legitimate computational tool.

The concept of impermeability is related to the encapsulation of signs. Users cannot
get inside the atomic capsule of an impermeable sign and alter its meaning. Thus, the
originally encoded meaning of impermeable signs is always preserved. Impermeable
signs can be essential or accidental (in the Aristotelian sense). Essential imperme-
able signs can only be used in monotonic manipulations, those that do not destroy
the basic meanings (identity) of the application. Accidental impermeable signs may
not be changed either, but they may be subtracted from the application by means of
an operation we call pruning (as in the case of add-ons or features which users may
choose not to install, for instance). These concepts help us restrict EUD extensions to
meaning-changing manipulations that preserve the original application’s identity. This
is a crucial requirement for usable EUD because it allows designers to predict the limits
and contours of meaning manipulations, and to build the types of “safety nets” we have
mentioned above.

In the remainder of this section, we give examples of how the semiotic characteri-
zation of signification system manipulations can be used to categorize design choices
and probe the consequences they bring about.

4.1. TYPE I: CHANGES TO LEXICAL ITEMS ONLY (RENAMING AND ALIASING)

Type I changes correspond to renaming and aliasing operations that affect only the
lexical component. Changing the label of a button or menu item and changing an icon
in a toolbar button are examples of renaming (Figure 18.2). Renaming should be limited
to lexical items that are not part of the application’s identity. Otherwise, users might
end up a situation where a “Save” menu item actually means “Exit”, or vice-versa.

Aliasing may be illustrated by macro recording mechanisms, in which a new lexical
item (name or graphical image) is designated to represent and activate a sequence of
instructions (that have made available by the designer in the original system). In fact,

SEMIOTIC FRAMING FOR EUD 411

Original design after renaming manipulation

Figure 18.2. Illustration of renaming (type I manipulation).

in this kind of manipulation we are just giving different names to compositions of signs
that exist in the original signification system (Figure 18.3). A significant source of
interactive problems with aliasing achieved through macro recording is the scope of
semantic variables associated to each individual instruction after and before aliasing.
For instance, recording three interactive steps in a row—(1) save [current file] as . . . , (2)
choose “HTML” code, and (3) confirm—under the name of “save as HTML” may end
up in assigning the name and address of the file used when the macro was recorded to
every file that the user wants to “save as HTML.” This is because the original file name
and address may have been encoded as a constant value in the resulting macro, instead
of a variable whose value must be recalculated each time the recorded macro is run.

4.2. TYPE II: CHANGES TO GRAMMATICAL STRUCTURES ONLY

Type II manipulations involve making changes only to syntactic components, such as
reordering: changing the layout sequence of user interface elements or the order in which
operations are performed (Figure 18.4). Reordering can only be applied to components
that do not involve mutual determination of signs across reordered components. The
effect of changes is to allow for different sign combinations to express the same range
of meanings as before, such as changing a command pattern from Action + Object to
Object + Action. Visual programming techniques may be used in this case to enable
and facilitate these kinds of manipulation.

original design after an aliasing manipulation

Figure 18.3. Illustration of aliasing (type I manipulation).

412 CLARISSE SIECKENIUS DE SOUZA AND SIMONE DINIZ JUNQUEIRA BARBOSA

Figure 18.4. Illustration of reordering (type II manipulation).

For instance, in a text editor environment, the user might be able to switch the
command pattern from (i) selecting the text to be searched and then activating the
mechanism to (ii) activating the search mechanism first and then informing the desired
search expression (Figure 18.5). The EUD mechanism for achieving this could use a
workflow representation to let the users rearrange the individual task components at
will.

In reordering tasks, there will usually be constraints to the kinds of valid manipula-
tions, depending on pre- and post-conditions defined for each task component. Thus,
in order to increase the usefulness of this kind of manipulation, designers may need
to relate task components to plans associated to users’ goals, and use plan recognition
techniques to guide users in making sensible customizations.

4.3. TYPE III: CHANGES TO LEXICAL ITEMS AND GRAMMATICAL STRUCTURES,
BUT NOT TO MEANINGS

The last kind of manipulation that affects only impermeable signs and preserves the
application identity is “pruning.” In a pruning operation, changes are made by removing
non-essential (accidental) signs from the application. Such signs may be isolated items
(such as “a→X” in Figure 18.6, a lexical component) or encapsulated sentences (such
as “(b,c)→Y” in Figure 18.6, a syntactic component).

Figure 18.5. Workflow representation of tasks that may be reordered by end-users.

SEMIOTIC FRAMING FOR EUD 413

Figure 18.6. Illustration of pruning.

Pruning corresponds to the possibility of selecting non-essential components to
be included in or excluded from the application. In other words, it is equivalent to
turning on or off some of the system’s features or modules, or choosing components
during software installation. In most text editors, for instance, one of the main effects
of uninstalling a feature such as a spell checker is to eliminate all interface signs
corresponding to the uninstalled feature, such as menu items and graphical elements.
This is a standard pruning operation.

Not only must pruning preserve the identity of the application, but also the imper-
meability of the pruned components. Thus, an important design decision in EUD is to
select which of the impermeable signs can be pruned if the application’s identity is to
be preserved (or, put in another way, which signs constitute the application’s identity).
If internal sign structures (i.e., permeable signs) are changed, the operation is no longer
called pruning. Instead, it is either a type-controlled or a type-free operation, as will be
seen next.

4.4. TYPE IV: CHANGES TO MEANINGS ONLY BUT NOT TO LEXICAL ITEMS

OR GRAMMATICAL STRUCTURES

This kind of manipulation involves using existing signs to mean something differ-
ent from what they were designed to mean (Figure 18.7). To illustrate this kind of

Figure 18.7. Illustration of type IV manipulations.

414 CLARISSE SIECKENIUS DE SOUZA AND SIMONE DINIZ JUNQUEIRA BARBOSA

manipulation, suppose that a text editor user needs to print some documents. When no
document is open and the user triggers the Print operation, the system would typically
present an Open and Print dialog for him to select the file(s) to be printed. If all the files
in a folder need to be printed, the user would need to select all the files individually (rep-
resented on the left-hand side of Figure 18.7 by a direct connection between “a” and “x”
and an arbitrary path connecting “x” to the desired outcome “y”). An extension to this
would be to have the system assign a useful interpretation to a “print folder” operation
(represented on the right-hand side of Figure 18.7 by a direct connection between “a”
and the desired outcome “y”). Applications that originally do not support multiple-file
printing typically issue an error-handling or error-prevention message when the user
combines the “print” and “folder” expressions. EUD and extensions may be achieved,
however, if the error handling and preventing mechanisms are “relaxed.” Inferencing
mechanisms that enable systems to produce potential interpretations to existing sign
combinations may lead to a gain in flexibility (Barbosa and de Souza, 2000; 2001).

Another example of extensions resulting from Type IV manipulations may involve
a generalization of the existing drawing functionalities of a hypothetical application
that can “fill shapes with background color,” but has not been programmed to highlight
text, for instance. If users combine “fill” and “shape” signs with “color” signs, the
computer interpretation of the expression results in filling the shape’s background with
a specified color. However, if users combine “fill” and “text” signs with “color” signs, an
error-preventing or error-handling message is issued. Just as in the preceding example,
relaxing error prevention and handling along with increased inferencing power can
enable the creation of new functionality—in this hypothetical text editor’s case, the
creation of a highlight text function expressed as “fill text background with color.”
These two examples illustrate the use of metonymies and metaphors in EUD, which
we have discussed more extensively in previous publications (Barbosa and de Souza,
2000; 2001).

4.5. TYPE V: CHANGES TO MEANINGS AND LEXICAL ITEMS BUT NOT

TO GRAMMATICAL STRUCTURES

This kind of manipulation is characterized by changes in the lexical and semantic di-
mensions. If in the Type IV example, above, the user gave a name (e.g., “highlight
text”) to the extension that fills text background with color, not only would the se-
mantic base be extended, but also the vocabulary included in the lexical base of the
original application. Other examples may be found with the use of formatting styles in
contemporary text editors: users may introduce a new lexical item (the name of the new
style) and associate some existing signs (formatting features) to it (Figure 18.8). The
important distinguishing feature in this type of manipulation is that no further (syntac-
tic) structure is associated to composite signs that are used to expand the semantic and
lexical base of the application. Thus, the creation of “My Style” based on analogies
with the “Body Text” style (see the right-hand side of (Figure 18.8) does not require

SEMIOTIC FRAMING FOR EUD 415

Figure 18.8. Illustration of type-controlled extension in which changes are made to lexical and semantic compo-
nents (e.g., paragraph styles in MS Word).

the introduction of new syntactic structures in the signification system. Users can rely
on existing expressive patterns that communicate style-formatting operations on text.

An interesting aspect of our semiotic characterization is to show that some features
present in many commercial applications are actually related to EUD features that can
be systematically applied to other parts of the application (and not be restricted to ad
hoc instances of incidental design decisions).

Type V manipulations presents some special challenges for meta-design. If, for
example, the creation of new functionality based on existing one is a recursive process—
in other words, if it is possible to create a new component Z “based on” another extended
component X—additional consistency-checking mechanisms must be included. One
must be sure, for example, that if the user chooses to delete component X, the semantics
associated to component Z is nevertheless preserved. Some significant breakdowns
from a user’s perspective may nevertheless follow from this possibility. For instance,
if after recording the “save as HTML” macro mentioned when we explained Type I
manipulations above the user reads or writes another macro—say “upload file to my
website,” which (1) executes the “save as HTML” macro, (2) executes “open FTP session
with [my] IP address,” (3) gets [file saved in HTML format], and (4) executes “close
FTP session”—deleting “save as HTML” may ruin “upload file to my website,” although
this should not necessarily be the case.

4.6. TYPE VI: CHANGES TO MEANINGS AND GRAMMATICAL STRUCTURES

BUT NOT TO LEXICAL ITEMS

Type VI manipulations are characterized by changes in the syntactic and semantic bases
that are not accompanied by changes in the lexical base. They may involve reordering
components or even eliminating components while shaping an application to the user’s
evolving needs and interpretations.

This kind of manipulation occurs when users are allowed to select default values
for certain tasks, thus eliminating intermediate value-setting structures present in the

416 CLARISSE SIECKENIUS DE SOUZA AND SIMONE DINIZ JUNQUEIRA BARBOSA

Figure 18.9. Illustration of type-controlled manipulation in which changes are made to syntactic and semantic
components.

originally designed command. For instance, when triggering a print task, the system
typically presents a print dialog asking users to select the target printer (this completes
the grammatical specification of the “print document” command). If the user always
prints files in a constant specific device, he might wish to define it as the default printer
for that system (and thus shorten the grammatical specification of the “print document”
command). This would be achieved by replacing the value-setting structures of the
command with a constant (default) value. In this case, the next time the user issues a
“print document” command, no value-setting elements need to be expressed and the
document is printed in the default printer (Figure 18.9). The designer would, of course,
need to provide straightforward means for users to change (or “undo”) this configuration
in the future, which is an important usability requirement associated to this extension
strategy.

Notice that outside the scope of our semiotic framing, this type of EUD operation
may be taken as an instance of customization, because it involves default parameter
setting. However, as our framing helps to show, parameter-setting techniques can be
used to achieve both customization and extension effects. The underlying computational
complexity in each case, as well as the usability requirements associated to them, may
be quite different in spite of the fact that the selected EUD technique is the same.

We also have a case of Type VI manipulations when we allow users to reorder
task components and achieve different effects as a result. They differ from Type II
manipulations, although visual programming techniques may be used to support the
user’s activities in both cases. Type VI reordering problems may occur if there is a
partial ordering among the reordered components. In an image editor program, for
instance, changing the order of the tasks from [Resize picture, Change to 256 colors]
to [Change to 256 colors, Resize picture] may yield different and undesirable effects.
Namely color schemes may affect image resolution in important ways and yield poor
results, especially in the case of image magnification.

Useful Type VI manipulations may result from reordering other graphic editor com-
mands. Taking Figure 18.10 as reference, suppose that in the original design (a) selecting

SEMIOTIC FRAMING FOR EUD 417

Figure 18.10. Illustration of a type-controlled manipulation of reordering.

a shape then (b) choosing a color value causes (x) the shape color to change to the cho-
sen color value and the default color value to be restored. A Type VI manipulation
may introduce an extension where (b) choosing a color value then (a) selecting a shape
causes (z) the shape color to change to the chosen color value (but the default color value
is not restored unless the user explicitly issues a restoring command). This extension
is particularly convenient for repetitive tasks, usually handled with PbyD techniques
which require heavy inferencing machinery.

4.7. TYPE VII: CHANGES TO MEANINGS, GRAMMATICAL STRUCTURES

AND LEXICAL ITEMS

This last kind of manipulation can freely affect the inside of any sign capsule and thus
it can potentially override the limits of the application’s identity. Namely, they can go
as far as reencoding original atomic meanings and reprogramming the application’s
identity. For example, a user of a text editor that supports searches for text with a given
style (e.g., search text with font type Courier) may be annoyed by the fact that searches
return one instance at a time, never letting him know the actual scope of replacing that
style with another one. This user may decide to reprogram the “search style” function
so as to have it present found items in the same way as a page sorter does in popular
visual presentation applications—all pages containing text in the specified style are
visualized side by side, which gives the user a better notion of how costly style changes
may be. A convenient technique to achieve such reprogramming is to use components
(Mørch et al., 2004; Won et al., this volume). Figure 18.11 shows an example of the
effect of the reprogrammed search. The risk of such componential approach, as this
example illustrates, is that, although the user’s intention is only to preview pages in the
way afforded by the component, a typical page sorter component allows for individual
page manipulation (since they have been designed to support decisions about the order
of page or slide presentations). So, when importing this component to a linear text
editing environment, a user might end up (inadvertently or not) placing page 12 before
page 9, and so on. The role of impermeable signs in this case is precisely to prevent
such undesirable side effects (or at least prevent affording non-sensical interaction).
Signs involved with linear text visualizations must not afford free page reordering
(enabled in visualizations of presentation elements whose global coherence, unlike that

418 CLARISSE SIECKENIUS DE SOUZA AND SIMONE DINIZ JUNQUEIRA BARBOSA

Figure 18.11. Illustration of full-fledged manipulation with a page sorter component.

of linear text, is not fully determined by ordering itself). In our view, EUD should
adopt only a constrained version of Type VII manipulations—it should preserve the
designed identity of the application. EUD within such limits requires that designers
make careful decisions about how to control the types of modifications that will not
destroy their original design vision.

Going back to Figure 18.1, where we proposed classifications and distinctions for ma-
nipulations of signification systems in both a symbol processing and a human communi-
cation perspective, we see that a dividing line can also be drawn with respect to the kinds
of manipulations that help users make changes in the expression, content, and/or intent
dimensions of the signification system underlying computer–human interaction. Manip-
ulations of type A, B, and C can be said to correspond to intent-preserving changes. They
amount to reencoding certain ways of achieving the same intent. Type A manipulations
typically introduce synonyms in the signification system (different expressions that

SEMIOTIC FRAMING FOR EUD 419

mean and achieve the same things). For instance, changing the label or name of inter-
face signs is one such type of reencoding. Another is macro recording, when a new key
chord can be assigned to express a series of sequential key chords that the user wishes
to repeat frequently.

Type B and type C manipulations have rhetorical effects, since they change content
to achieve the same range of intent (with or without changing the set of expressions
defined in the system). Such rhetorical effects help humans achieve very fine goals in
communication, but only because speaker and listener share the same pragmatic com-
petence. However, because computer languages typically do not have an independent
and enriched pragmatic component, even if such effects are attempted by users they do
not systematically cause an appropriate response from a computer system. For instance,
although a user may see that indenting a paragraph by “typing the paragraph, selecting
it, and activating the indent function” is different from “creating an indented paragraph
style, setting the style of the text about to be typed to this style, and then typing the
paragraph,” both have virtually the same immediate effect on the paragraph being typed
(and all others that fall within the scope of the interactive commands that caused it).
The effect on the system is not the same in each case. If the user creates an indented
paragraph style, and gives it a name, the expression and the content base of the system
are expanded. Even if the user does not realize it at that point in time, this expansion
automatically enables a new range of intent (e.g., creating style sheets where “indented
paragraph” can figure in the specifications of textual documents).

Type D manipulations handle the situation when a user wishes only to associate
new intent to existing correspondences between expression and content of the signi-
fication system he uses to communicate with a computer application. This amounts
to repurposing the existing application, an interesting kind of modification that is not
usually discussed in customization, extension, or end-user development activities. For
instance, a table structure in HTML (marked by <table></table> tags) has been de-
signed to support text representations in tabular form (with cells distributed across
rows and columns). However, if a user discovers that table structures have certain inter-
esting properties when a browser window is resized (i.e., they keep all text in the table
within the user’s view port, provided that certain table attributes like its width are set to
the appropriate values) the purpose of the table structure may be extended. Instead of
applying only to tabular forms of text, it may also come to be applied to text that must
be kept within the user’s view port across a variety of browser window sizes. Although
it may not be considered EUD in the sense that the system has not been modified, it is
certainly an expansion of the scope of system usage, especially in view of the user’s
unlimited semiosis process, where new meanings associated to view port control in text
visualization become part of text formatting possibilities.

Type E manipulations introduce new intent marked by new expressions. However,
these expressions do not signal a change of content. This effect is also rhetorical and
very similar to type B and C manipulations; however there is an explicit change in the
spectrum of intent. For instance, suppose that a user builds a macro in which he encodes
the expression “Forget about this” as meaning the same as “close current window” (an

420 CLARISSE SIECKENIUS DE SOUZA AND SIMONE DINIZ JUNQUEIRA BARBOSA

element of the original signification system whose meaning is to abort all execution
triggered by interaction expressed in the current window). For all practical purposes
associated to the user semiosis, he may not distinguish between aborting execution
and returning control to the next active function, so expressions associated to one and
the other are synonyms (which only resembles what is computationally the case in
special contexts where the aborted execution returns control to the previously activated
application function and leaves no trace in the system state). If the user develops an
idiolect, a personal way of using the signification system in communicating with the
computer, where he uses the expression “Forget about this” to achieve the intent of
communicating “None of these options is good,” for instance, serious communicative
problems may lie ahead. Although the user may be successful if the effect he wishes
to achieve with his macro is, for example, to have a preview of file contents (in this
case “Forget about this”—that is, closing the active window—is fine if the previewed
material is useless), the same is not true if the macro is designed to import a spreadsheet
into a text document. In the latter case, although “Forget about this” may sound fine if
the user realizes that the wrong spreadsheet is about to be imported, “closing the active
window” (i.e., aborting the spreadsheet editor activated by the import process) may have
serious consequences on the integrity of the spreadsheet. This mismatch between what
the users may mean and what computers may interpret is the cause of many problems
both in HCI (where they take the guise of usability problems) and EUD (where they
take the guise of specification problems).

Type F manipulations refer to the use of specific communicative strategies that
very efficiently extend the spectrum of contents without necessarily expanding the
set of basic items and structures that support linguistic expressions. They involve the
use of figurative speech, in particular that of metaphors and metonymies. Studies in
cognitive semantics (Lakoff and Johnson, 1980; Lakoff, 1987) have provided extensive
evidence that human cognition is structured in terms of basic types of metaphors,
and that these and other related tropes are powerful sources of new meanings and
cognitive expansion (Eco, 1984; Jakobson and Halle, 1956; Turner and Fauconnier,
2000). A wide range of extensions can be achieved through the use of metaphors and
metonymies (Barbosa and de Souza, 2001), provided that interface language interpreters
be prepared to handle expressions like “delete the bold faces” (meaning a new procedure
that searches all bold face words and turns this attribute off) or “create a document of
documents” [defining a new (unnamed) concept and simultaneously creating an instance
of it]. These expressions will most probably cause symbol processing to halt in regular
interaction, although, as seen in Section 3, they belong to the vast majority of human
verbal exchanges. The importance of metaphorical and metonymical expressions is
that some applications are ready to process them during interaction (even as an ad hoc
side effect of implementation strategies), but not ready to handle them when the user is
specifying new functions or extensions to existing ones. For instance, Microsoft Word
is apt to interpret the following commands as “change font face to bold”:

(a): wor|d + Ctrl B ⇒ wor|d
(b): word + Ctrl B ⇒ word

SEMIOTIC FRAMING FOR EUD 421

The user’s expression in (a) is metonymical, in that the word is not selected but the
cursor (“|”) being located within the word boundaries is interpreted as an equivalent of
“take the object that contains this location”—a classical case of contained for container
metonymy. The user’s expression in (b) explicitly indicates the object of the formatting
operation. Users should not be misled into thinking that all metonymical specifications
will work as beautifully. For example, defining as new function “backup” as “saving
a copy of the current file preserving its name and changing its extension to ‘.bkp”’ is
very likely to cause problems to users when working in different directories. In some
operating systems, a file’s name is a compound identifier that includes its name and
address. So, if the user defined the function referring only to manipulations in the file’s
name, backup copies of files from different directories are likely to be all placed in one
and the same directory. The metonymy “name for identifier” does not work.

Finally, type G manipulations require fine linguistic awareness, not to be encountered
easily in typical end-user populations. Notice that users must be able to specify how
certain innovative (or modified) expression/content associations are to be systematically
related to the occurrence of certain kinds of intent. Compared to all other ways of intro-
ducing new meanings in an encoded system, this is by far the most powerful one, but
also the one that requires a larger range of programming skills. From a human commu-
nication perspective, such manipulations can only be successful if the communicative
abilities of both speaker and listener are considerably good, since they are innovat-
ing (or occasionally subverting) the established signification system by fully encoding
expression-content-intent mappings just like culture (in natural settings) or full-fledged
design (in artificial settings) can do. So, we can see that such skilled metalinguistic
manipulations require semiotic expertise that is very unusual among end-users who do
not have highly specialized professional training.

We conclude Section 4 by remarking that signification system manipulations are very
different when analyzed from a computer language perspective and a human communi-
cation perspective. There is no one-to-one correspondence between what users mean to
do and what computers take users’ meanings to be. The absence of a pragmatic compo-
nent that can handle intent—a fundamental dimension in human communication—may
lie at the source of the greatest challenges for EUD. Moreover, as our analysis shows,
this difference accounts for both usability problems and specification problems, typi-
cally dealt with in separation from one another by researchers interested in techniques
that support better interaction or adaptations, extensions and development.

In the next section, we discuss the main implications of the semiotic characterization
of signification system manipulations presented above.

5. Final Discussion

The need to bring HCI and EUD together has been recognized by Nardi (1993) and other
researchers, especially those that propose the adoption of programming by demonstra-
tion (Cypher, 1993; Lieberman, 2001). Some of the main challenges and opportunities
for PbyD in the current IT scenario have been discussed in recent years (CACM, 2000;
Lieberman, 2001), restating the fact that PbyD is one of the few techniques that can

422 CLARISSE SIECKENIUS DE SOUZA AND SIMONE DINIZ JUNQUEIRA BARBOSA

nicely combine usability and specification issues. It addresses a major challenge that
all EUD approaches must face: “Most computer end-users do not have the background,
motivation, or time to use traditional programming approaches, nor do they typically
have the means to hire professional programmers to create their programs” (Repenning
and Perrone, 2001).

Most researchers doing PbyD have taken a technical perspective on HCI and EUD
issues. For example, bye emphasizing that “it is important that there be a well-designed
feedback mechanism so that users can understand and control what the system is doing
and change the program later,” Myers and McDaniel (2001) place the focus of research
on designing appropriate EUD mechanisms. Seldom is the focus placed on inspecting
the potential causes of the relatively timid success of PbyD in HCI at large. One excep-
tion is Smith, Cypher, and Tesler (2001), who raise important theoretical issues closely
related to HCI and to computing. They draw on theoretical approaches to knowledge
representation in order to drive their approach to the design of PbyD environments.
However, they do not explicitly discuss the user’s intent. As a result, their account falls
short of capturing some points that ours clarifies precisely because our focus is placed
on the semiotic dimensions of signification systems underlying both EUD and HCI.
Among the most prominent ones we can list the fact that our approach can spell out the
semiotic effects that existing techniques can achieve, as well as indicate some kinds of
precautions that designers must take if final product usability is to be achieved. The
most relevant distinctions and effects advanced by our approach are discussed in what
follows.

5.1. DISTINGUISHING EUD FROM FULL-FLEDGED PROGRAMMING

Computer systems’ designers communicate design to users through interface signs.
These signs are organized in signification systems that can only be processed by com-
puters if they conform to the basic symbol-processing model of Turing machines.
However, such conformity brings up a crucial semiotic distinction between computer
symbol-processing and human sense making—computers can only handle expressions
that have fixed grounded meanings (encoded by systems’ designers and developers at
application development time).

Programming is achieved through various sub-systems and programs that must com-
pute on grounded symbols. If users were allowed to make all sorts of meaning mod-
ifications, including modifications of how any processible symbol is grounded with
respect to the application domain or the technology to which it refers, this would
amount to re-programming the application (type VII manipulations). If, however, there
were a subset of symbols whose grounding could not be changed (what we metaphori-
cally call impermeable symbols), these would constrain the space of possible meaning
modifications. Some of the impermeable symbols would be chosen to constitute the
application’s identity, whereas the remaining impermeable symbols would constitute
encapsulated add-ons or features which can be subtracted from the application, but
not internally modified (type III manipulations). Every application requires that users

SEMIOTIC FRAMING FOR EUD 423

learn a new and unique signification system that is used in HCI. Therefore, the ap-
plication’s identity and the notion of impermeability are important to keep the user’s
semiosis sufficiently tied to the designer’s vision, so that productive interpretations can
be motivated, and unproductive ones discouraged. More extensive analyses of the role
of identity-related signs on users’ semiosis have been proposed by Brown and Duguid
(1992), who talk about the role of motivated interpretations in design, and de Souza
and co-authors (2001), who talk about the importance of establishing the core iden-
tity of end-user programming applications. We use the concept of impermeability to
situate EUD in what has often been treated of a fuzzy continuum leading from mere
user-system interaction to full-fledged programming by end-users (Myers, 1992). In
our view, usable EUD must involve only manipulations on sign systems that are built
on a culture of software use and interactive patterns (such as direct manipulation, for
example). Because full-fledged programming (which is required for genuinely uncon-
strained end-user design activities involved in a “do it yourself computing”) involves
sign systems that are built upon a culture of software development and specification
practices, end-users may have to deal with signs that are meaningless for them (i.e.,
they may even not be taken as signs at all). Hence the benefit of establishing semiotic
boundaries for EUD. This allows designers to build “safety nets” like online help, pow-
erful error-preventing and error-handling mechanisms, intelligent agents, and the like,
based on application ontologies that can systematically refer to a culture of software use
and not to knowledge derived from a culture of software development and specification
practices.

5.2. DISTINGUISHING CUSTOMIZATION FROM EXTENSION

As we lay out the semiotic dimensions involved in sense-making and symbol-
processing, some interesting distinctions become apparent. The most evident one is
that between modifications that do and those that don’t involve changes in meaning. In
the context of human and social sciences this position is often disputed, in that for many
theoreticians every alteration in expression is necessarily tied to an intended alteration
in meaning at content and/or intent level (see papers in Silverman, 1998). However, in
the HCI environment the situation is subtly different. Given that signification systems
appearing in computer systems are engineered—they do not causally spring up from
ongoing cultural process—users may intuit the arbitrary character of labeling a function
“save” instead of “write,” or in deciding that a line is deleted when you type “Ctrl+Y”
instead of “Ctrl+K,” or else that the appropriate syntax for a “grep” command in UNIX
is “grep, [pattern], [file]” instead of “grep, [file], [pattern].” This realization grants a
considerable degree of autonomy to expression with respect to content and intent.

From a symbol processing point of view, two different kinds of modifications can be
made: meaning-preserving modifications (types I, II, and III) and meaning-changing
ones (types IV through VII). Naturally, meaning-preserving manipulations of the origi-
nal signification system keep the application’s identity intact. This might be a convenient
borderline between customization and extensions, another differentiation not too clearly

424 CLARISSE SIECKENIUS DE SOUZA AND SIMONE DINIZ JUNQUEIRA BARBOSA

established in some of the previous work about end-user development, including end-
user programming, interface customization, and related topics (Myers, 1992; Nardi,
1993).

5.3. IDENTIFYING DIFFERENT SEMIOTIC DIMENSIONS IN EUD

A semiotic analysis also allows us to see that there are different dimensions involved in
signification system manipulations when we take a symbol processing or a human com-
munication perspective. One of the leading factors in such distinctions is the role played
by intention. Whereas in a computer-centric semiotic characterization of signification
systems intent and content are typically merged into computer language semantics, a
human-centric characterization cannot disregard the fact that users know that there are
(and consequently expect that there be) different ways to mean the same thing or to
achieve the same intent. In social life, mastering such distinctions is the key to success
in achieving goals that depend on communication. Attempts to map computer systems’
and users’ dimensions of semiotic competence onto each other reveal some important
design challenges for building mechanisms to support EUD (as illustrated in the as-
sociations shown in Figure 18.1: lexical and syntactic with the expression dimension;
content and intent with the semantic dimension). Typically what comes naturally to hu-
mans requires the addition of considerable reasoning power to basic symbol-processing
in computation. Conversely, what is easily derivable from symbol-processing operations
may be confusing or meaningless to users.

Another point that becomes explicit through the kind of analysis we propose is that
certain interactive deviations that are usually taken as mistakes may in fact constitute
rhetorical manipulations that the user really means to introduce in his experience with
the application (type IV manipulations). Although these have virtually no computational
effect, some relevant cognitive and/or communicative effects may be associated to
them. As users develop their own idiolect to interact with applications they shape the
signification system that will play a fundamental role in EUD tasks. Extensions where
new expressions are designed (see the example involving the meaning of “Forget about
this” when encoded as meaning the same as “close active window”) are prime instances
of the decisive role played by the user’s interactive idiolect in enhancing the usability
of computer applications.

5.4. ORGANIZING THE PROBLEM SPACE FOR INTEGRATED HCI AND EUD DESIGN

Finally, by looking at the results of a comparative semiotic analysis of encoded sign sys-
tems manipulations, the designer of interfaces for EUD applications may become more
aware of the challenges and possibilities of various EUD techniques. Combined with
the distinction between customization and extension, EUD and full-fledged program-
ming, this kind of awareness represents a powerful resource for framing EUD design
problems more consistently and, consequently, for searching and selecting improved
problem-solving strategies.

SEMIOTIC FRAMING FOR EUD 425

Our proposed analysis can help us organize the design space. We do not claim that
ours is the only possible organization, nor that it is the best. However, it certainly rep-
resents one step in the direction of more systematic research about EUD, springing
from theories rather than techniques. Many of our perceptions and interpretations re-
quire further studies. The advantage of being backed by theories is that some global
relations between phenomena can be more easily traced. This may help designers and
researchers take a more holistic perspective on EUD and aim at advancing the field in
a more concerted way.

Moreover, this perspective redresses the usability challenge posed by Adler and
Winograd more than a decade ago. It shows that supporting users’ improvisation and
creativity (i.e., good HCI design) requires EUD. It also shows how different ontolo-
gies (from computer languages and human communication languages) may be brought
together and constrain each other, when supporting users as they adapt and extend
applications to meet their individual goals and expectations.

Acknowledgments

The authors would like to thank the Brazilian Council for Scientific and Technological
Development (CNPq) for ongoing support to their research.

References

Adler, P. and Winograd, T. (1992). Usability: Turning Technologies into Tools. New York, NY: Oxford
University Press.

Austin, J.L. (1962). How to do Things With Words. Cambridge, MA: Harvard University Press.
Barbosa, S.D.J. and de Souza, C.S. (2000). Extending software through metaphors and metonymies.

Knowledge-Based Systems, 14, 15–27.
Brown, J.S. and Duguid, P. (1992). Enacting design for the workplace. In: P.S. Adler and T. Winograd

(Eds.), Usability: Turning Technologies into Tools, New York, NY: Oxford University Press,
pp. 164–197.

CACM. (2000). Programming by example. Communications of the ACM, 43(3), 72–114.
Cypher, A. (ed.). (1993). Watch What I Do: Programming by Demonstration. Cambridge, MA: The

MIT Press.
de Souza, C.S., Barbosa, S.D.J. and da Silva, S.R.P. (2001). Semiotic engineering principles for

evaluating end-user programming environments. Interacting with Computers, 13(4), 467–495.
de Souza, C.S. (2004). The Semiotic Engineering of Human–Computer Interaction. Cambridge, MA:

The MIT Press.
Eco, U. (1976). A Theory of Semiotics. Bloomington IN: Indiana University Press.
Eco, U. (1984). Semiotics and the Philosophy of Language. Bloomington, IN: Indiana University

Press.
Fischer, G. (1998). Beyond ‘couch potatoes’: from consumers to designers. In: Proceedings of the 5th

Asia Pacific Computer—Human Interaction Conference. IEEE Computer Society, pp. 2–9.
Fischer, G., Giaccardi, E., Ye, Y.; Sutcliffe, A.G. and Mehandjiev, N. (2004). Meta-design: a manifesto

for end-user development. Communications of the ACM, 47(9), 33–37.
Hopcroft, J.E. and Ullman, J.D. (1979). Introduction to Automata Theory, Languages, and Computa-

tion. Reading. MA: Addison-Wesley.

426 CLARISSE SIECKENIUS DE SOUZA AND SIMONE DINIZ JUNQUEIRA BARBOSA

Jakobson, R. and Halle, M. (1956) Fundamentals of Language. The Hague: Mouton.
Lakoff, G. and Johnson, M. (1980). Metaphors We Live By. Chicago: The University of Chicago Press.
Lakoff, G. (1987). Women, Fire, and Dangerous Things. Chicago: The University of Chicago Press.
Lieberman, H. (ed.). (2001). Your Wish is My Command: Programming by Example. San Francisco,

CA: Morgan Kaufmann Publishers.
Mørch, A.I., Stevens, G., Won, M., Klann, M., Dittrich, Y. and Wulf, V. (2004). Component-based

technologies for end-user development. Communications of the ACM, 47(9), 59–62.
Myers, B.A. (ed.). (1992). Languages for Developing User Interfaces. Boston: Jones and Bartlett

Publishers, Inc.
Myers, B.A. and McDaniel, R. (2001). Sometimes you need a little intelligence, sometimes you need

a lot. In: Henry Lieberman (ed.), Your Wish is My Command: Programming by Example. San
Francisco, CA: Morgan Kaufmann Publishers, pp. 45–60.

Nardi, B. (1993). A Small Matter of Programming. Cambridge, MA: The MIT Press.
Nielsen, J. (1993). Usability Engineering. Boston: Academic Press.
Peirce, C.S. (1931). Collected Papers. Cambridge, MA: Harvard University Press (excerpted in Buch-

ler, Justus, ed., Philosophical Writings of Peirce, New York: Dover, 1958).
Repenning, A. and Perrone, C. (2001). Programming by analogous examples.” In: Henry Lieber-

man (ed.), Your Wish is My Command: Programming by Example. San Francisco, CA: Morgan
Kaufmann Publishers, pp. 351–369.

Searle, J.R. (1969). Speech Acts. Cambridge: Cambridge University Press.
Silverman, H.J. (1998). Cultural Semiosis—Tracing the Signifier. London: Routledge.
Smith, D.C., Cypher, A. and Tesler, L. (2001). Novice programming comes of age. In: Henry Lieber-

man (ed.), Your Wish is My Command: Programming by Example. San Francisco, CA: Morgan
Kaufmann Publishers, pp. 7–19.

The Word Spy (2004). A web site by Paul McFedries. http://www.wordspy.com/words
/earcon.asp/. Last visited in October.

Turner, M. and Fauconnier, G. (2000). Metaphor, metonymy, and binding. In: Barcelona, A. (ed.),
Metonymy and Metaphor at the Crossroads. Berlin: Mouton de Gruyter, pp. 133–145.

Winograd, T. and Flores, F. (1986). Understanding Computers and Cognition: New Foundations for
Design. Reading, MA: Addison Wesley.

Chapter 19

Meta-design: A Framework for the Future
of End-User Development

GERHARD FISCHER AND ELISA GIACCARDI
Center for Lifelong Learning & Design (L3D), Department of Computer Science and
Institute of Cognitive Science, University of Colorado, Campus Box 430, Boulder,

Abstract. In a world that is not predictable, improvisation, evolution, and innovation are more than
a luxury: they are a necessity. The challenge of design is not a matter of getting rid of the emergent,
but rather of including it and making it an opportunity for more creative and more adequate solutions
to problems.

Meta-design is an emerging conceptual framework aimed at defining and creating social and
technical infrastructures in which new forms of collaborative design can take place. It extends the
traditional notion of system design beyond the original development of a system to include a co-
adaptive process between users and a system, in which the users become co-developers or co-designers.
It is grounded in the basic assumption that future uses and problems cannot be completely anticipated
at design time, when a system is developed. Users, at use time, will discover mismatches between their
needs and the support that an existing system can provide for them. These mismatches will lead to
breakdowns that serve as potential sources of new insights, new knowledge, and new understanding.

This chapter is structured in four parts: conceptual framework, environments, applications, and
findings and challenges. Along the structure of the chapter, we discuss and explore the following es-
sential components of meta-design, providing requirements, guidelines, and models for the future of
end-user development: (1) the relationship of meta-design to other design methodologies; (2) the Seed-
ing, Evolutionary Growth, Reseeding Model, a process model for large evolving design artifacts; (3) the
characteristics of unself-conscious cultures of design, their strengths and their weaknesses, and the
necessity for owners of problems to be empowered to engage in end-user development; (4) the possibil-
ities created by meta-design to bring co-creation alive; and (5) the need for an integrated design space
that brings together a technical infrastructure that is evolvable, for the design of learning environments
and work organizations that allow end-users to become active contributors, and for the design of rela-
tional settings in which users can relate, find motivations and rewards, and accumulate social capital.

Key words. co-creation, design for change, design space, design time, domain-oriented design en-
vironments, Envisionment and Discovery Collaboratory, interactive art, open systems, SER model,
social capital, underdesign, unself-conscious cultures of design, use time, value-feelings.

1. Introduction

Considering end-user development and meta-design as a challenge, one has to move
beyond the binary choice of low-level, domain-unspecific interactive programming
environments and over-specialized application systems defined by the two end-points
on a spectrum:

Henry Lieberman et al. (eds.), End User Development, 427–457.
C© 2006 Springer.

CO 80309-0430, USA, gerhard@colorado.edu, elisa.giaccardi@colorado.edu

428 GERHARD FISCHER AND ELISA GIACCARDI

� Turing tar pit: “Beware of the Turing Tar Pit, in which everything is possible, but
nothing of interest is easy.” (Alan Perlis)

� The inverse of the Turing tar pit: “Beware of over-specialized systems, where
operations are easy, but little of interest is possible.”

The Turing tar pit argument provides a supporting argument as to why interactive
programming environments, such as Lisp, Logo, Smalltalk, Squeak, Agentsheets, and
many others (Lieberman, 2001) are not ideal for supporting meta-design. These tools
provide the ultimate level of openness and flexibility (e.g., Squeak is an open source im-
plementation of Smalltalk written entirely in itself). As general-purpose programming
languages, they are capable of representing any problem that computers can be used to
solve, and as open systems they let users change any aspect of the system if necessary.
Although these systems are useful as computational substrates, they by themselves are
insufficient for meta-design. The essential problem with these systems is that they pro-
vide the incorrect level of representation for most problems (Shaw, 1989). Expressing
a problem and designing a solution in these systems requires creating a mapping from
the context of the problem to the core constructs provided by the programming lan-
guage and its supporting library. On the other side of the spectrum, domain-specific but
closed systems [e.g., SimCity 4 (Electronic-Arts, 2004)] provide extensive support for
certain problem contexts, but the ability to extend these environments is fundamentally
limited.

Based on our research over the last two decades at the Center for Lifelong Learn-
ing and Design at the University of Colorado, Boulder, we will first provide some
arguments for the desirability and need of meta-design. We will then develop a
conceptual framework for meta-design and illustrate the approach with prototype
developments mostly drawn from our own work. The description of meta-design ap-
proaches in several application areas (with a focus on interactive art) shows the po-
tential and applicability of the concept. We will conclude with a section of findings
and challenges for future developments. Figure 19.1 illustrates how different themes
of the chapter are interrelated and how they contribute to the unifying theme of
meta-design.

2. The Rationale for Meta-Design

In a world that is not predictable, improvisation, evolution, and innovation are more
than luxuries: they are necessities. The challenge of design is not a matter of getting rid
of the emergent, but rather of including it and making it an opportunity for more cre-
ative and more adequate solutions to problems. Meta-design is a conceptual framework
defining and creating social and technical infrastructures in which new forms of collab-
orative design can take place. For most of the design domains that we have studied over
many years (e.g., urban design, software design, design of learning environments, and
interactive art) the knowledge to understand, frame, and solve problems is not given,
but is constructed and evolved during the problem-solving process.

META-DESIGN 429

Figure 19.1. The structure of our contribution: how themes are interrelated.

Meta-design addresses the following three necessities for socio-technical environ-
ments (Fischer and Scharff, 2000):

1. They must be flexible and evolve because they cannot be completely designed prior
to use.

2. They must evolve to some extent at the hands of the users.
3. They must be designed for evolution.

The goal of making systems modifiable and evolvable by users does not imply
transferring the responsibility of good system design to the user. Domain experts (who
see software development as a means to an end) will design tools and create contents
of a different quality than professional software designers (for whom software is both
a means and an ends). Domain experts are not concerned with the tool per se, but in
doing their work. However, if the tool created by the developer does not satisfy the
needs or the tastes of the user (who knows best), then the user should be able to adapt
the system without always requiring the assistance of the developer.

Meta-design extends the traditional notion of system design beyond the original
development of a system to include a co-adaptive process between users and system, in
which the users become co-developers (Mackay, 1990). Users learn to operate a system

430 GERHARD FISCHER AND ELISA GIACCARDI

and adapt to its functionality, and systems are modified to adapt to the practices of its
users. Meta-design supports the dialog evolving between the participants in the process
of co-adaptivity—that is, the software artifact and the human subject—so that both move
beyond their original states. In this way, meta-design sustains the interactive feedback
of information amongst technological and human systems and their components, a
practice early recognized and adopted by those artists that utilized technology in the
production of art (Shanken, 2002).

An example that we have studied extensively involves high-functionality applications
(HFAs) (Fischer, 2001). These systems already contain too much unused functionality
(at least in the abstract)—so why would it be necessary to create even more functional-
ity? Even though HFAs are large and complex, it is often the case that the functionality
required for a specific problem does not exist in the system. Meta-design approaches to
HFAs (Eisenberg and Fischer, 1994) are necessary because (1) the information and func-
tionality represented in the system can never be complete because the world changes
and new requirements emerge and (2) skilled domain professionals change their work
practices over time. Their understanding and use of a system will be very different after
a month compared to after several years. If systems cannot be modified to support new
practices, users will be locked into old patterns of use, and they will abandon a system
in favor of one that better supports the way they want to work.

3. A Conceptual Framework for Meta-Design

Extending the traditional notion of system design beyond the original development of
a system, meta-design (Fischer and Scharff, 2000; Giaccardi, 2003) includes a process
in which users become co-designers not only at design time, but throughout the whole
existence of the system. A necessary, although not sufficient condition for meta-design
is that software systems include advanced features permitting users to create com-
plex customizations and extensions. Rather than presenting users with closed systems,
meta-design provides them with opportunities, tools, and social reward structures to
extend the system to fit their needs. Meta-design shares some important objectives
with user-centered and participatory design, but it transcends these objectives in sev-
eral important dimensions, and it has changed the processes by which systems and
content are designed. Meta-design has shifted some control from designers to users
and empowered users to create and contribute their own visions and objectives. Meta-
design is a useful perspective for projects for which “designing the design process” is a
first-class activity [this perspective of meta-design is not restricted to end-user develop-
ment, but can be applied to the work of professional software engineers as well (Floyd
et al., 1992)]. This means that creating the technical and social conditions for broad
participation in design activities is as important as creating the artifact itself (Wright
et al., 2002) because “a piece of software does not guarantee you autonomy. What it
is, what it is mixed with, how it is used are all variables in the algorithms of power
and invention that course through software and what it connects to” (Fuller, 2003)
(Table 19.1).

META-DESIGN 431

Table 19.1. Traditional design versus meta-design

Traditional design Meta-design

Guidelines and rules Exceptions and negotiations
Representation Construction
Content Context
Object Process
Perspective Immersion
Certainty Contingency
Planning Emergence
Top-down Bottom-up
Complete system Seeding
Autonomous creation Co-creation
Autonomous mind Distributed mind
Specific solutions Solutions spaces
Design-as-instrumental Design-as-adaptive
Accountability, know-what Affective model, know-how

(rational decisioning) (embodied interactionism)

Compared to traditional design approaches, meta-design puts the emphasis on differ-
ent objectives [see Giaccardi, (2003); some of these shifts overlap with those emerging
in the esthetics of interactive art (Ascott, 2003)]. A number of these objectives are
further elaborated and discussed in the following sections.

3.1. DESIGN FOR CHANGE

Meta-design has to do not only with situatedness in order to fit new needs at use time and
account for changing tasks, it has to do also with the embeddedness of computer artifacts
in our daily life and practices (Ehn and Malmborg, 1999). This represents a challenge
to the idea of user participation and empowerment, as well as tailorability, because it
becomes necessary to look not only to professional work practices, but also to a private
life more and more blurred with professional life within “mixed reality environments”
(Pipek and Kahler, 2004). To argue that design for change (in buildings, in systems, and
in socio-technical environments) (Dittrich and Lindeberg, 2003) is nearly universal does
not help much in understanding how the process works, nor in conjuring how it might
go better. Our idea of design must be reframed. Meta-design contributes to the invention
and design of cultures in which humans can express themselves and engage in personally
meaningful activities. The conceptual frameworks that we have developed around meta-
design explore some fundamental challenges associated with design for change:

1. How we can support skilled domain workers who are neither novices nor naive users,
but who are interested in their work and who see the computer as a means rather
than as an end?

2. How we can create co-adaptive environments, in which users change because they
learn, and in which systems change because users become co-developers and active
contributors?

432 GERHARD FISCHER AND ELISA GIACCARDI

3. How we can deal with the active participation and empowerment of a subject, the pro-
file of which tends to blur and dissolve beyond the limits of definite and independent
professional domains, practices, and technologies?

3.2. DESIGN TIME AND USE TIME

In all design processes, two basic stages can be differentiated: design time and use time
(see Figure 19.2). At design time, system developers (with or without user involvement)
create environments and tools. In conventional design approaches, they create complete
systems for the world-as-imagined. At use time, users use the system but their needs,
objectives, and situational contexts can only be anticipated at design time, thus, the
system often requires modification to fit the user’s needs. To accommodate unexpected
issues at use time, systems need to be underdesigned at design time, while directly
experiencing their own world. Underdesign (Brand, 1995) in this context does not mean
less work and fewer demands for the design team, but it is fundamentally different from
creating complete systems. The primary challenge of underdesign is in developing not
solutions, but environments that allow the “owners of problems” (Fischer, 1994b) to
create the solutions themselves at use time. This can be done by providing a context
and a background against which situated cases, coming up later, can be interpreted
(Fischer, 1994a). Underdesign is a defining activity for meta-design aimed at creating
design spaces for others.

However, as indicated in Figure 19.3, we do not assume that being a consumer
or a designer is a binary choice for the user: it is rather a continuum ranging from
passive consumer, to well-informed consumer (Fischer, 2002), to end-user, to power
users (Nardi, 1993), to domain designer (Fischer, 1994a) all the way to meta-designer
[a similar role distribution or division of labor for domain-oriented design environ-
ments is defined in Figure 19.5]. It is also the case that the same person is and wants

end usersystem developer user (representative)

key

design
time

use
time

time

world-as-imagined
planning

world-as-experienced
situated action

Figure 19.2. Design time and use time.

META-DESIGN 433

Figure 19.3. Beyond binary choices—the consumer/designer spectrum.

to be a consumer in some situations and in others a designer; therefore “con-
sumer/designer” is not an attribute of a person, but a role assumed in a specific
context.

A critical challenge addressed by our research is to support a migration path (Burton
et al., 1984) between the different roles mentioned in Figure 19.3: consumers, power
users, and designers are nurtured and educated, not born, and people must be supported
to assume these roles.

3.3. BEYOND USER-CENTERED DESIGN AND PARTICIPATORY DESIGN

User-centered design approaches (Norman and Draper, 1986) (whether done for users,
by users, or with users) have focused primarily on activities and processes taking place
at design time in the systems’ original development, and have given little emphasis
and provided few mechanisms to support systems as living entities that can be evolved
by their users. In user-centered design, designers generate solutions that place users
mainly in reactive roles.

Participatory design approaches (Schuler and Namioka, 1993) seek to involve users
more deeply in the process as co-designers by empowering them to propose and generate
design alternatives themselves. Participatory design supports diverse ways of thinking,
planning, and acting by making work, technologies, and social institutions more re-
sponsive to human needs. It requires the social inclusion and active participation of
the users. Participatory design has focused on system development at design time by
bringing developers and users together to envision the contexts of use. But despite the
best efforts at design time, systems need to be evolvable to fit new needs, account for
changing tasks, deal with subjects and contexts that increasingly blur professional and
private life, couple with the socio-technical environment in which they are embedded,
and incorporate new technologies (Henderson and Kyng, 1991).

Different from these approaches, meta-design creates open systems that can be mod-
ified by their users and evolve at use time, supporting more complex interactions (rather

434 GERHARD FISCHER AND ELISA GIACCARDI

than linear or iterative processes). Open systems allow significant modifications when
the need arises. The evolution that takes place through modifications must be supported
as a “first-class design activity.” The call for open, evolvable systems was eloquently
advocated by Nardi (1993):

We have only scratched the surface of what would be possible if end users could freely
program their own applications. . . . As has been shown time and again, no matter how
much designers and programmers try to anticipate and provide for what users will need,
the effort always falls short because it is impossible to know in advance what may be
needed. . . . End users should have the ability to create customizations, extensions, and
applications. . . (p. 3).

3.4. THE SEEDING, EVOLUTIONARY GROWTH, AND RESEEDING PROCESS MODEL

The seeding, evolutionary growth, and reseeding (SER) model (Fischer and Ostwald,
2002) is a process model for large evolving systems and information repositories based
on the postulate that systems that evolve over a sustained time span must continually
alternate between periods of activity and unplanned evolutions and periods of deliberate
(re)structuring and enhancement. The SER model encourages designers to conceptu-
alize their activity as meta-design, thereby supporting users as designers in their own
right, rather than restricting them to being passive consumers. Figure 19.4 provides an
illustration of the SER model.

We have explored the feasibility and usefulness of the SER model in the development
of complex socio-technical systems. The evolutions of these systems share common
elements, all of which relate to sustained knowledge use and construction in support of
informed participation.

3.4.1. Seeding

System design methodologies of the past were focused on the objective of building
complex information systems as “complete” artifacts through the large efforts of a

Evolutionary Growth

Seeding ReSeeding

Seeded
Information

Space

Evolved
Information

Space

Reseeded
Information

Space

Developers UsersDevelopers

Users

Users

Figure 19.4. The seeding, evolutionary growth, and reseeding process model.

META-DESIGN 435

small number of people. Conversely, instead of attempting to build complete and closed
systems, the SER model advocates building seeds that can be evolved over time through
the small contributions of a large number of people.

A seed is an initial collection of domain knowledge that is designed to evolve at
use time. It is created by environment developers and future users to be as complete as
possible. However, no information repository can be truly complete due to the situated
and tacit nature of knowledge as well as the constant changes occurring in the environ-
ment in which the system is embedded (Suchman, 1987; Winograd and Flores, 1986).
No absolute requirements exist for the completeness, correctness, or specificity of the
information in the seed, but the shortcomings and breakdowns often provoke users to
add new information to the seed.

3.4.2. Evolutionary Growth

The evolutionary growth phase is one of decentralized evolution as the seed is used and
extended to do work or explore a problem. In this phase, developers are not directly
involved because the focus is on problem framing and problem solving. Instead, the
participants have a direct stake in the problem at hand and are designing solutions to
problems.

During the evolutionary growth phase, the information repository plays two roles
simultaneously: (1) it provides resources for work (information that has been accu-
mulated from prior use) and (2) it accumulates the products of work, as each project
contributes new information to the seed. During the evolutionary growth phase, users
focus on solving a specific problem and creating problem-specific information rather
than on creating reusable information. As a result, the information added during this
phase may not be well integrated with the rest of the information in the seed.

3.4.3. Reseeding

Reseeding is a deliberate and centralized effort to organize, formalize, and generalize
information and artifacts created during the evolutionary growth phase (Shipman and
McCall, 1994). The goal of reseeding is to create an information repository in which
useful information can be found, reused, and extended. As in the seeding phase, devel-
opers are needed to perform substantial system and information space modifications,
but users must also participate because only they can judge what information is useful
and what structures will serve their work practices.

Reseeding is necessary when evolutionary growth no longer proceeds smoothly. It
is an opportunity to assess the information created in the context of specific projects
and activities, and to decide what should be incorporated into a new seed to support the
next cycle of evolutionary growth and reseeding. For example, open source software
systems (Raymond and Young, 2001) often evolve for some time by adding patches,
but eventually a new major version must be created that incorporates the patches in a
coherent fashion.

436 GERHARD FISCHER AND ELISA GIACCARDI

3.5. TOWARD AN UNSELF-CONSCIOUS CULTURE OF DESIGN

Being ill-defined (Rittel, 1984), design problems cannot be delegated (e.g., from users to
professionals) because they are not understood well enough to be described in sufficient
detail. Partial solutions need to “talk back” (Schön, 1983) to the owners of the problems
who have the necessary knowledge to incrementally refine them. Alexander (1964)
has introduced the distinction between an unself-conscious culture of design and a
self-conscious culture of design. In an unself-conscious culture of design, the failure
or inadequacy of the form leads directly to an action to change or improve it. This
closeness of contact between designer and product allows constant rearrangement of
unsatisfactory details. By putting owners of problems in charge, the positive elements
of an unself-conscious culture of design can be exploited in meta-design approaches
by creating media that support people in working on their tasks, rather than requiring
them to focus their intellectual resources on the medium itself (Table 19.2).

Informed participation (Brown and Duguid, 2000), for instance, is a form of collab-
orative design in which participants from all walks of life (not just skilled computer
professionals) transcend beyond the information given to incrementally acquire owner-
ship in problems and to contribute actively to their solutions. It addresses the challenges
associated with open-ended and multidisciplinary design problems. These problems, in-
volving a combination of social and technological issues, do not have “right” answers,
and the knowledge to understand and resolve them changes rapidly. To successfully
cope with informed participation requires social changes as well as new interactive
systems that provide the opportunity and resources for social debate and discussion
rather than merely delivering predigested information to users.

Table 19.2. Comparing self-conscious and unself-conscious cultures of design

Self-conscious Unself-conscious

Definition An explicit, externalized description of a
design exists (theoretical knowledge)

Process of slow adaptation and error
reduction (situated knowledge)

Original association Professionally dominated design, design
for others

Primitive societies, handmade things,
design for self

Primary goal Solve problems of others Solve own problems
Examples Designed cities: Brasilia, Canberra;

Microsoft Windows
Naturally grown cities: London, Paris;

Linux
Strengths Activities can be delegated; division of

labor becomes possible
Many small improvements; artifacts

well suited to their function; copes
with ill-defined problems

Weaknesses Many artifacts are ill-suited to the job
expected of them

No general theories exist or can be
studied (because the activity is not
externalized)

Requirements Externalized descriptions must exist Owners of problems must be involved
because they have relevant,
unarticulated knowledge

Evaluation criteria High production value; efficient process;
robust; reliable

Personally meaningful; pleasant and
engaging experience; self-expression

Relation with context Context required for the framing of the
problem

Both problem framing and solving take
place within the bigger context

META-DESIGN 437

4. Environments Supporting Meta-Design

The objectives and the impact of meta-design transcend the development of new compu-
tational environments and address mindsets, control, motivations, and the willingness
to collaborate with others. Even the most sophisticated computational environments
will not be sufficient to achieve these objectives, but they are necessary to allow owners
of problems to act as informed participants in personally meaningful tasks. Meta-design
will benefit from all of the following developments (many of them discussed in other
chapters of this book):

� to offer task-specific languages that take advantage of existing user knowledge
among domain professionals (National-Research-Council, 2003) and to hide low-
level computational details as much as possible from users (see Figure 19.5);

� to provide programming environments such as Squeak, Agentsheets, and others
(Lieberman, 2001) that make the functionality of the system transparent and acces-
sible so that the computational drudgery required of the user can be substantially
reduced;

� to exploit the power of collaboration (Arias et al., 2000; Nardi and Zarmer, 1993);
and

� to support customization, reuse, and redesign effectively (Morch, 1997; Ye and
Fischer, 2002).

In this section, we briefly describe two of our developments (domain-oriented design
environments and the Envisionment and Discovery Collaboratory) that were inspired
by meta-design and in return contributed to our understanding of meta-design.

4.1. DOMAIN-ORIENTED DESIGN ENVIRONMENTS

Domain-oriented design environments (Fischer, 1994a) support meta-design by ad-
vancing human–computer interaction to human problem–domain interaction. Because
systems are modeled at a conceptual level with which users are familiar, the interaction

Figure 19.5. A layered architecture supporting human problem–domain interaction.

438 GERHARD FISCHER AND ELISA GIACCARDI

mechanisms take advantage of existing user knowledge and make the functionality of
the system transparent and accessible. Thus, the computational drudgery required of
users can be substantially reduced.

Figure 19.5 illustrates a layered architecture in support of human problem–domain
interaction. This architecture allows domain designers to engage in end-user develop-
ment by describing their problems with the concepts of a design environment rather
than with low-level computer abstractions (Girgensohn, 1992).

4.2. THE ENVISIONMENT AND DISCOVERY COLLABORATORY

The Envisionment and Discovery Collaboratory (Arias et al., 2000) is a second-
generation design environment focused on the support of collaborative design by inte-
grating physical and computational components to encourage and facilitate informed
participation by all users in the design process.

The Envisionment and Discovery Collaboratory represents an explicit attempt to
create an open system (following the process of the SER model) to address some of the
shortcomings of closed systems. Closed systems (in which the essentialfunctionality
is anticipated and designed at design time; see Figure 19.2) are inadequate to cope
with the tacit nature of knowledge and the situatedness of real-world problems. In our
research, we have carefully analyzed why simulation environments such as SimCity
(Electronic-Arts, 2004) are not used for real planning and working environments. Sim-
City supports some superficial kinds of modifications (such as changing the appearance
of buildings in the city), but most functional aspects of the simulation environment have
been determined at the original design time. For example, the only way to reduce crime
in a simulated city is to add more police stations. It is impossible to explore other
solutions, such as increasing social services. Because the functionality of the system
was fixed when the system was created, exploring concepts that were not conceived
by the system designers is difficult. Due to SimCity’s closed nature, it may be a good
tool for passive education or entertainment, but it is inadequate for actual city planning
tasks, as our empirical investigations have demonstrated (Arias et al., 2000). One vi-
sion that drives the Envisionment and Discovery Collaboratory is to create an end-user
extensible version of SimCity.

The Envisionment and Discovery Collaboratory supports users to create
externalizations (Bruner, 1996) that have the following essential roles to support in-
formed participation:

� They assist in translating vague mental conceptualizations of ideas into more
concrete representations. They require the expression of ideas in an explicit form,
and in this process may reveal ideas and assumptions that previously were only
tacit (Polanyi, 1966).

� They provide a means for users to interact with, react to, negotiate around, and
build upon ideas. Such a “conversation with the materials” of the design problem
(Schön, 1983) is a crucial mode of design that can inspire new and creative ideas.

META-DESIGN 439

� They focus discussions upon relevant aspects of the framing and understanding
the problem being studied, thereby providing a concrete grounding and a common
language among users.

5. Application of Meta-Design Approaches

Different domains express a meta-design approach, applying related concepts and
methodologies. Some of these applications, when conceptualized as meta-design, sug-
gest new insights (e.g., interactive art), others rather represent a concrete assessment
of our conceptual framework (e.g., learning communities). We illustrate here how the
application of meta-design approaches have transformed existing design approaches in
different domains, including interactive art, information repositories, design environ-
ments, and classrooms as design studios.

5.1. INTERACTIVE ART

Interactive art, conceptualized as meta-design, focuses on collaboration and co-
creation. The original design (representing a seed in our framework) establishes a
context in which users can create and manipulate at the level of code, behavior, and/
or content, and perform meaningful activities. Interactive art is based on the premise
that computational media, as discrete structures, allow people to operate at the sources
of the creative process, and that this creativity can be shared and no longer limited to
the realm of professional artists. Therefore, interactive art puts the tools rather than
the object of design in the hands of users. It creates interactive systems that do not
define content and processes, but rather the conditions for the process of interaction.
These objectives correspond to cultural shifts in the emerging esthetics of interactive
art (Ascott, 2003).

Interactive artworks have an “experiential” or esthetic dimension that justifies their
status as art, rather than as information design. According to Manovich (2001), these
dimensions include a particular configuration of space, time, and surface articulated in
the work; a particular sequence of user’s activities over time to interact with the work;
and a particular formal, material, and phenomenological user experience. But most of
all, when conceptualized as meta-design, they include the indeterminacy of the event of
creation (Giaccardi, 2001a), given by the empowerment of users’ creative capabilities
in an open and collaborative environment. Through interactivity, users do not simply
send and receive a mono-directional flow of information, but act as performers of a
mutual exchange between themselves and the computer, or between themselves and
other users. Interactive art is concerned with setting up and seeding the place of this
exchange, and sees interaction itself as the real object of creative production.

The esthetics of co-creation developed in interactive art comes up with an approach
to design that shares with meta-design concerns about interaction, participation, and
collaboration as means for an expansion of human creativity. Interactive art shows us
how different kinds and different layers of interactivity and connectivity (Giaccardi,

440 GERHARD FISCHER AND ELISA GIACCARDI

1999) can affect the socio-technical flexibility of the system. Hence, we are shown
its capability to increase the scope and complexity of the space of creation (which
can correspond to the space of problem framing/problem solving from a non-artistic
perspective).

5.1.1. Electronic Café

Artistic practices based on the interactive and participatory use of networked technolo-
gies adopted meta-design as a term for an alternative design approach and art vision
since the beginning of the 1980s. One of the earliest practices of meta-design in the
field of interactive art was the Electronic Café project, designed by Kit Gallowey and
Sherrie Rabinowitz in 1984 (http://www.ecafe.com/; see Figure 19.6). This project inte-
grates social and technological systems by setting up computational environments and
a wide range of interactions that enable people to control the context of their cultural
and artistic production as autonomous, electronic communities (Youngblood, 1984).

The Electronic Café was a pervasive telecommunications system characterized as an
accessible, flexible, end-user modifiable (in terms of files, archives, and environment),
and visual components-based system. By incorporating fully interactive word process-
ing, handwriting, drawing, animation and slow-scan video, and providing the ability to
combine these elements, the Electronic Café provided a structure that allowed its users
the greatest possible freedom (at that time) to design and control their own information
environments.

Figure 19.6. The Electronic Café Project. c© 1995/2002 Kit Galloway and Sherrie Rabinowitz.

META-DESIGN 441

With their work, the artists highlighted design requirements and guidelines that
characterize a consistent path of research and experimentations in the field of interactive
art. In particular, the visual component of environments was important to determine the
transcendence of barriers of literacy and language. Also important was users’ exposure
to the esthetic sensibility of the involved artists in a direct, experiential manner; that is
to say, by being in the world in the same way. According to Rabinowitz: “It’s a kind of
spontaneous encounter that can’t be engineered or marketed” (Youngblood, 1984).

5.1.2. A-Volve

As new technological possibilities arise, so do interactive art advances, enhancing
the layers of interaction and collaboration. New computational development not only
allows users to create content, fostering evolution by elaborations, completions, and
additions, they also allow the modification of the behavior of an interactive system or
the change of the interactive system itself. In the first case, the user can modify the
behavior of the system at use time through interaction with the system. In A-Volve
(http://www.iamas.ac.jp/∼christa/; see Figure 19.7), for example, users interact in real
time with virtual creatures in the space of a water-filled glass pool. These virtual
creatures are products of evolutionary rules and are influenced by human creation
and decision. Users can design any kind of shape and profile with their fingers on
a touch screen and automatically the designed creature will be “alive,” able to swim
in the real water of the pool and to react to users’ hand movements in the water. In
A-Volve, algorithms are the seed, and they ensure the “animal-like” behavior of the
creatures, but none of the creatures is pre-calculated. They are all born exclusively in
real time and evolve through different layers of interaction (creation, human–creature
interaction, creature–creature interaction, and human–human interaction) (Sommerer
and Mignonneau, 1997a,b).

5.1.3. SITO

Current projects of interactive art, especially when networked, allow the modification
or the development from scratch of the interactive system and its features. In these
projects, the source is often developed by a community of artists, and can be adjusted

Figure 19.7. “A-Volve”—Design and Interaction. c©1994/1995, Christa Sommerer and Laurent Mignonneau
interactive computer installation supported by ICC-NTT Japan and NCSA, USA.

442 GERHARD FISCHER AND ELISA GIACCARDI

Figure 19.8. One layer of interaction in SITO/Gridcosm.

and improved at different levels and different times according to the “talk back” de-
riving from the continuing and direct experience of the creative environment and the
resulting changing needs. For example, in SITO, which is a virtual community of “ar-
ticipants” (artists-participants), interaction and evolution occur both at the level of the
development of the source and at the level of the creation, elaboration, and completion
of collective artworks (in the section called Synergy). SITO (http://www.sito.org; see
Figure 19.8) is active for 24 hours and is open to anyone. Most of SITO’s collaborative
art projects (such as Gridcosm) start from seed images by different artists and involve
the serial manipulation or the creation of several “generations” of images, variously
interlinked.

The focus is on shaping a “collaborative synchronicity” (a concept close to the idea
of a work practice in the business field) in which users interact and communicate both
by expressing opinions about the community and their projects and by discussing the
on-going collaborative process (concepts, technical aspects, interaction rules, image
creation and esthetical issues, and suggestions for further developments) (Verle, 1999).
This allows the system and the supporting scripts to be modified by the power users
(Nardi, 1993) of the community on the basis of continuous feedback and suggestions
(Table 19.3).

5.2. SOCIAL CREATIVITY

Complex design problems require more knowledge than any single person can possess,
and the knowledge relevant to a problem is often distributed among all users, each
of whom has a different perspective and background knowledge, thus providing the
foundation for social creativity (Arias et al., 2000). Bringing together different points
of view and trying to create a shared understanding among all users can lead to new
insights, new ideas, and new artifacts. Social creativity can be supported by innovative

META-DESIGN 443

Table 19.3. Comparing three interactive art projects from a meta-design perspective

The Electronic Café (1984) A-Volve (1997) SITO synergy (since 1993)

Design contributions
of the users

Participation in system
development and
content generation
(these two activities
occur at different
times)

Participation in content
generation and algorithm
instantiation (these two
activities overlap)

Participation in content
generation and
manipulation;
support of script
development and
modification;
definition and
negotiation of
interaction rules (all
these activities are
continuous)

Capabilities of the
users

Creation, storage and
retrieval of texts,
images and videos
(both individual and
collective)

Generation and modification
of artificial life creatures,
their behavior and evolution

Creation, elaboration,
and completion of
collective images

Empirical analysis Users and artists
collaborate both at
design time and use
time: seeding (data
bank)

Users and artists collaborate
both at design time and use
time: seeding, evolutionary
growth (artificial creatures)

Users/artists
collaborate both at
design time and use
time: seeding,
evolutionary
growth, reseeding
(images and
interaction schemes)

Selection criteria Early attempt; direct
“encounter”
between people and
artists through the
system

Interactive installation open to
an “ordinary” audience;
different layers of
interaction and
collaboration (creation,
human–creature interaction,
creature–creature
interaction, and
human–human interaction);
embeddedness

Online community of
art lovers; different
layers of interaction
and collaboration
(content, rules,
source);
situatedness

computer systems that allow all users to contribute to framing and solving these prob-
lems collaboratively. By giving all users a voice and empowering them to contribute,
meta-design approaches are a prerequisite to bring social creativity alive.

Project complexity forces large and heterogeneous groups to work together on
projects over long periods of time. The large and growing discrepancy between the
amount of such relevant knowledge and the amount any one designer can remember
imposes a limit on progress in design. For socio-technical systems to effectively support
collaborative design, they must adequately address not only the problem situations, but
also the collaborative activity surrounding the problem. By addressing real-world prob-
lems that are inherently ill-structured and ill-defined, systems must cope with problem
contexts that change over time.

444 GERHARD FISCHER AND ELISA GIACCARDI

Providing closed systems, in which the essential functionality is fixed when the
system is designed, is inadequate for coping with dynamic problem contexts. Providing
open systems is an essential part of supporting collaborative design. By creating the
opportunities to shape the systems, the owners of the problems can be involved in the
formulation and evolution of those problems through the system. The challenge for
these open systems is to provide opportunities for extension and modification that are
appropriate for the people who need to make changes. The Envisionment and Discovery
Collaboratory (see Section 4.2), for example, supports social creativity by empowering
users to act as designers.

5.3. LEARNING COMMUNITIES

One of the most impoverished paradigms of education is a setting in which “a single,
all-knowing teacher tells or shows presumably unknowing learners something they pre-
sumably know nothing about” (Bruner, 1996). Courses-as-seeds (dePaula et al., 2001)
is an educational model that explores meta-design in the context of university courses
by creating a culture of informed participation (Brown et al., 1994). It explores how to
supplement community-based learning theories (Rogoff et al., 1998) with innovative
collaborative technologies. Participants shift among the roles of learner, designer, and
active contributor. The predominant mode of learning is peer-to-peer (P2P), and the
teacher acts as a “guide on the side” (a meta-designer) rather than as a “sage on the stage.”

Courses are conceptualized as seeds [see Section 3.4 and (dePaula et al., 2001)],
rather than as finished products, and students are viewed as informed participants who
play active roles in defining the problems they investigate. The output of each course
contributes to an evolving information space that is collaboratively designed by all
course participants, past and present.

As in all meta-design activities, the meta-designer (i.e., the teacher) gives up
some control; there is little room for micro-managed curricula and precise sched-
ules. The courses-as-seeds model requires a mindset in which plans conceived at
the beginning of the course do not determine the direction of learning but in-
stead provide a resource for interpreting unanticipated situations that arise dur-
ing the course (Suchman, 1987). Examples of courses-as-seeds can be found at
http://www.cs.colorado.edu/∼gerhard/courses/.

5.4. OPEN SOURCE

Open source development (Fischer et al., 2003; Raymond and Young, 2001; Scharff,
2002) is not directly applicable to end-user development because the users/domain
designers in open source communities are highly sophisticated programmers. But there
are many lessons to be learned in open source developments for meta-design, and the
meta-design framework can in turn contribute to a better understanding of open source
development by analyzing it as a success model for organizing large-scale distributed
cooperative work (Resnick, 1994).

META-DESIGN 445

In open source development, a community of software developers collaboratively
constructs systems to help solve problems of shared interest and for mutual benefit. The
ability to change source code is an enabling condition for collaborative construction
of software by changing software from a fixed entity that is produced and controlled
by a closed group of designers to an open effort that allows a community to design
collaboratively on the basis of their personal desires and following the framework
provided by the SER process model (Fischer and Ostwald, 2002). Open source invites
passive consumers to become active contributors (Fischer, 2002).

Open source development (Raymond and Young, 2001; Resnick, 1994; Scacchi,
2002, 2004) is an example of unself-conscious design because (1) the developers are the
owners of problems, (2) they create software systems primarily for their specific needs,
and (3) the software is personally meaningful and important. Sharing and collaborating
is common in open source communities. People reuse the whole system developed by
others by adapting the system to their own needs.

Using open source as a success model for collaborative design (Scharff, 2002),
we have identified the following principles relevant to meta-design (Fischer et al.,
2003):

1. Making changes must seem possible: Users should not be intimidated and should
not have the impression that they are incapable of making changes; the more users
become convinced that changes are not as difficult as they think they are, the more
they may be willing to participate.

2. Changes must be technically feasible: If a system is closed, then users cannot make
any changes; as a necessary prerequisite, there needs to be possibilities for extension.

3. Benefits must be perceived: Contributors have to believe that what they get in return
justifies the investment they make. The benefits perceived may vary and can include:
professional benefits (helping for one’s own work), social benefits (increased status in
a community, possibilities for jobs), and personal benefits (engaging in fun activities).

4. Open source environments must support tasks that people engage in: The best open
source system will not succeed if it is focused on activities that people do rarely or
consider of marginal value.

5. Low barriers must exist to sharing changes: If sharing is awkward, it creates an
unnecessary burden that participants are unwilling to overcome. Evolutionary
growth is greatly accelerated in systems in which participants can share changes
and keep track of multiple versions easily.

6. Findings and Challenges for The Future

This section provides some findings and challenges that can be seen as open questions
for the future of end-user development: the tension between standardization and impro-
visation, and between being a consumer and/or a designer; ways of enabling co-creative
processes and supporting meaningful activities as an issue of motivation and finally of

446 GERHARD FISCHER AND ELISA GIACCARDI

technology appropriation; and the new design space defined by meta-design and its
shifts from traditional design.

6.1. STANDARDIZATION AND IMPROVISATION

Meta-design creates an inherent tension between standardization and improvisation.
The SAP Info (July 2003, p. 33) argues to reduce the number of customer modifications
for the following reasons: “every customer modification implies costs because it has
to be maintained by the customer. Each time a support package is imported there is
a risk that the customer modification my have to be adjusted or re-implemented. To
reduce the costs of such on-going maintenance of customer-specific changes, one of
the key targets during an upgrade should be to return to the SAP standard wherever this
is possible.” Finding the right balance between standardization (which can suppress
innovation and creativity) and improvisation (which can lead to a Babel of different and
incompatible versions) has been noted as a challenge in open source environments in
which forking has often led developers in different directions. The reseeding phase of
the SER models tries to address this problem.

6.2. CONSUMERS AND DESIGNERS

Cultures are substantially defined by their media and their tools for thinking, working,
learning, and collaborating. A great amount of new media is designed to see humans only
as consumers (Fischer, 2002). The importance of meta-design rests on the fundamental
belief that humans (not all of them, not at all times, and not in all contexts) want to
be and act as designers in personally meaningful activities. Meta-design encourages
users to be actively engaged in generating creative extensions to the artifacts given to
them and has the potential to break down the strict counterproductive barriers between
consumers and designers (Brown and Duguid, 2000).

Many computer users and designers today are domain professionals, competent
practitioners, and discretionary users, and should not be considered as naı̈ve users or
“dummies.” They worry about tasks, they are motivated to contribute and to create good
products, they care about personal growth, and they want to have convivial tools that
make them independent of “high-tech scribes” (whose role is defined by the fact that the
world of computing is still too much separated into a population of elite scribes who can
act as designers and a much larger population of intellectually disenfranchised computer
phobes who are forced into consumer roles). The experience of having participated in
the framing and solving of a problem or in the creation of an artifact makes a difference
to those who are affected by the solution and therefore consider it personally meaningful
and important.

A fundamental challenge for the next generation of computational media and new
technologies is not to deliver predigested information to individuals, but to provide the
opportunity and resources for social debate, discussion, and collaborative design. In
many design activities, learning cannot be restricted to finding knowledge that is “out

META-DESIGN 447

there.” For most design problems (ranging from urban design to graphics design and
software design, which we have studied over many years), the knowledge to understand,
frame, and solve problems does not exist; rather, it is constructed and evolved during
the process of solving these problems, exploiting the power of “breakdowns” (Fischer,
1994c; Schön, 1983). From this perspective, access to existing information and knowl-
edge (often seen as the major advance of new media) is a very limiting concept (Arias
et al., 1999; Brown et al., 1994).

By arguing for the desirability of humans to be designers, we want to state explicitly
that there is nothing wrong with being a consumer and that we can learn and enjoy many
things in a consumer role (e.g., listening to a lecture, watching a tennis match, attending
a concert, and admiring a piece of art). As argued in Section 3.2, “consumer/designer” is
not an attribute of a person, but a role assumed in a specific context. Good designers, for
instance, should be well-informed consumers (e.g., they should exploit reuse as a pow-
erful design strategy by “consuming” existing information and using the contributions
of the “giants” who preceded them).

Meta-design creates the enabling conditions “to engage the talent pool of the whole
world” (Raymond and Young, 2001). Design engagement, from participation in plan-
ning to participation in continuous change (from do-it-yourself to adaptable environ-
ments), gives all the people access to the tools, resources, and power that have been
jealously guarded prerogatives of the professional. The idea of a possible “design by all”
always produces strong reactions in the field of professional designers, who perceive
meta-design and end-user development as a challenge to their design expertise. The
goal of making systems modifiable by users does not imply transferring the responsi-
bility of good system design to the user. In general, “normal” users do not build tools
of the quality that a professional designer would because users are not concerned with
the tool per se, but in doing their work. Even so, professionalism is a particular kind
of specialization, and specialization is the technique of production-line technology. As
we develop new technologies, we need also to develop new roles and new images of
ourselves.

Designers have to give up some control. Content creation in large information repos-
itories must be distributed. This distribution can be supported by meta-design, as ev-
idenced by digital libraries (Wright et al., 2002), the worldwide web, open source
software (Scharff, 2002), and interactive art (Giaccardi, 2003). Designers must engage
in co-creative and evolutionary processes that enable people to design for themselves.
To do so, meta-designers seed both the technical infrastructure and the social envi-
ronment in which the system is embedded. Their goal of creating the technical and
social conditions for collaborative design activities becomes as important as creat-
ing the artifact itself, and it requires attitude and capabilities. Meta-designers need
to be good systems integrators (Kit Galloway, personal communication), able to ac-
tively interface a multiplicity of tools, services, and organizations, as well as good
facilitators, capable of establishing collaborative relationships and using their own cre-
ativity to set the socio-technical environment in which other people can, in turn, be
creative.

448 GERHARD FISCHER AND ELISA GIACCARDI

6.3. ENABLING CO-CREATION

In a world that is not predictable, and where solutions are neither given nor confined
in one single mind, meta-design allows exploration of the collaborative dimension
of human creativity. This produces a novel approach in the design of both interac-
tive systems and their socio-technical environment that aims to include the emergent
as an opportunity for evolution and innovation. Meta-design deals with co-creation
(Giaccardi, 2003). It enables and activates collaborative processes that allow the emer-
gence of creative activities in open and evolvable environments.

The possibility for the user to transform from viewer to co-creator, or from consumer
to co-designer requires (National-Research-Council, 2003) an expansion of the creative
process in art and in design, respectively. Interactive art—and its networked practices in
particular—explores the expansion of human creativity in terms of an expansion of the
inter-subjective dimension, and deals primarily, although not exclusively, with feelings
and emotions rather than with rational decision making.

A cross-case analysis of networked practices of interactive art shows that co-creation
is perceived by users as an inter-subjective experience engendered by collaborative
activities, which does not show necessarily any explicit goal. Main motivational paths
to co-creation are emotionally driven and based on the perception of the environment
as open and unpredictable. Computationally, such an environment enables co-creation
by allowing two main techniques (Giaccardi, 2003):

� Emotional seeding is based mainly on an exploitation of non-verbal commu-
nication. It takes place thanks to the visual embodiment of the emotional tone
and activities of participants within the interactive system. The embodiment
(Dourish, 2001) of participants in the computational environment, as engendered
by emotional seeding, ensures that time, space, and physicality are experienced
in relational, rather than merely informational, terms.

� Agency patterning is the setting of specific spatial-temporal parameters aimed to
let dynamic agencies emerge from the system. It defines size, resolution, and level
of the agency that is performing a global activity.

The attention paid by interactive art to the design of relational settings and affective
bodies (i.e., to the conditions and dynamics for mutual interaction) produces an un-
derstanding of the spatial-temporal parameters of an interactive system in terms of
inter-subjective proximity and individuals’ intentionality. That is, interactive art deals
in terms of how “closely” people interact with each other, and how their intentions
determine and recognize chains of actions and meaningful events, over time.

6.4. “EASE-OF-USE” REVISITED

“Ease-of-use” along with the “burden of learning something” are often used as ar-
guments for why people will not engage in design. Building systems that support
users to act as designers and not just as consumers is often less successful than the

META-DESIGN 449

meta-designers have hoped for. A student in one of our courses reacted to our attempts to
establish a meta-design culture as follows: “Humans want things as easy as possible for
them. The reason why we are a consumer society is because that’s what we want to be.”

The end-user modifiability and end-user programming features themselves add even
considerably more functionality to already very complex environments (such as high
functionality applications and large software reuse libraries)—and our empirical anal-
yses clearly show that not too many users of such systems are willing to engage in this
additional learning effort. Beyond just defining them, extensions need to be integrated
(stored, made retrievable, and sustained) in the work environment. The answer to this
challenging situation may be in the development of social structures around these sys-
tems such as collaborative work practices (Nardi, 1993; National-Research-Council,
2003).

Without the willingness to learn something, users remain trapped with “over-
specialized systems where operations are easy, but little of interest is possible” (see
Section 1). Based on our work with user communities (Arias et al., 2000), it is obvious
that serious working and learning do not have to be unpleasant—they can be empower-
ing, engaging, and fun. Many times the problem is not that programming is difficult, but
that it is boring (e.g., in cases where domain designers are forced to think and articulate
themselves at the level of human–computer interaction rather than human problem–
domain interaction; see Figure 19.5). Highly creative owners of problems struggle and
learn tools that are useful to them, rather than believing in the alternative of “ease-
of-use,” which limits them to pre-programmed features (National-Research-Council,
2003).

Meta-design can tackle this learning problem in two different ways by paying atten-
tion to the following equation:

utility = value/effort,

Meaning that people will decide on the worthiness of doing something (utility) by
relating the (perceived) value of an activity to the (perceived) effort of doing it. In
many design activities, the question to be asked is: “Who puts in the effort?” Often an
important trade-off exists: more effort at design time results in smaller effort at use time.
From a meta-design perspective, to create the structures that will empower users at use
time and greatly reduce their endeavor, major efforts at design time are needed. However,
value consideration at design time can induce an organization to put in the effort in order
to establish a culture of “design in use” and produce “better” systems that: (1) more
people will buy (economic incentive) or (2) more people will use (social capital).

At the same time, value consideration at use time is greatly influenced by allowing
people to engage in personally meaningful tasks, and it can induce them to serious
working and learning. People are willing to spend considerable effort on things that are
important to them, so the value dimension for truly personal meaningful activities is
more important than the effort dimension. For example, learning to drive an automobile
is not an easy task, but almost all people learn it because they associate a high personal
value with it.

450 GERHARD FISCHER AND ELISA GIACCARDI

6.5. MOTIVATION AND REWARDS

The creation of new environments and the emergence of new social mindsets and
expectations lead to succeeding waves of new technologies. P2P computing, open
source, and extreme programming (XP), for instance, could be considered in software
design as new developments mostly originating with user communities (i.e., P2P and
open source) that reflect a shift of human motives and express the human desire to be
in control of human destiny (Raymond and Young, 2001). For an example in existing
technology, we could consider the Internet, and describe the following socio-technical
upward spiral (Giaccardi, 2003): (1) exploitation of computational malleability and
modifiability (e.g., the worldwide web); (2) shared design activities and reinterpretation
for democratic purposes (e.g., online communities); or (3) the emergence of new social
mindsets and expectations as a result of new environments.

What makes people, over time, become active contributors and designers and share
their knowledge requires therefore a new “design culture,” involving a mindset change
and principles of social capital accumulation. But before new social mindsets and
expectations emerge, users’ active participation comes as a function of simple moti-
vational mechanisms and activities considered personally meaningful. One focus of
meta-design is the design of the socio-technical environment in which the interactive
system is embedded, and in which users are recognized and rewarded for their contri-
butions and can accumulate social capital. Social capital is based on specific benefits
that flow from the trust, reciprocity, information, and cooperation associated with social
networks (Fischer et al., 2003; Florida, 2002; Putnam, 2000). However, an analysis of
co-creation, and a survey (Giaccardi, 2003) of the way in which some theories and
practices of meta-design address the issue of motivation in relation to the new so-
cial relationships produced by emergent artificiality and increasing interconnectivity
contribute to question the values plane associated with the design of socio-technical
environments. Beside the consideration and evaluation of the specific benefits that can
be associated with social networks, the “lasting value” of social capital can be con-
ceptualized as a form of human creativity, and fundamentally based on inter-subjective
relationships, feelings, and emotions. We assign importance through value-feelings that
make us experience emotion only in regard to that which matters (Thompson, 1999).
Emotions, as value-feelings, generate the world of our values, and enable us to “see”
a situation that addresses us immediately, here and now, before deliberating rationally
about it (Donaldson, 1991).

Meta-design enhances spontaneous and autonomous ways of relating and interact-
ing, and in doing so it liberates processes of construction of reality that enable substan-
tial participation and flexibility in the transformation of our environment. From this
perspective, meta-design can be seen as socio-technical know-how (Giaccardi, 2003)
embodied in the evolving practices of fluid and interdependent communities, rather
than driven exclusively by explicit motivations and benefits. This orientation toward a
co-creative framework matches those trends in socio-technical systems design, which—
assuming a technological modifiability both at design and use time—call for attention

META-DESIGN 451

to the relationships and interconnections occurring between the micro and macro lev-
els of the socio-technical environment (Callon and Latour, 1981; Mumford, 1987). It
also matches the need for “non-targeted” design in a “shared infrastructure” scenario,
where technologies (and we would add human and social systems, i.e., organizations)
are heterogeneous, intertwined, and interdependent (Pipek and Kahler, 2004).

6.6. THE NEW DESIGN SPACE OF META-DESIGN

Meta-design encompasses three levels of design, meant as a new “design space.” These
three levels of design can be summarized as: (1) designing design; (2) designing to-
gether; and (3) designing the “in-between.” Such levels of design refer to the field of
meanings that the term meta-design has developed in the course of its various uses.
They correspond, quite evidently, to the anticipatory, participatory, and socio-technical
issues raised by meta-design, and highlighted in this chapter. We can think of the design
space of meta-design as a threefold design space (Giaccardi, 2003) aimed at integrating
the design of (1) a technical infrastructure that is evolvable, (2) a learning environment
and work organization that allows users to become active contributors, and (3) a socio-
technical system in which users can relate and find motivations and rewards.

The first level of meta-design (designing design) refers to the concept of higher-
order design, and the possibility of a malleability and modifiability of structures and
processes, as provided by computational media. It can be seen as the ground for a
design approach that focuses on general structures and processes, rather than on fixed
objects and contents. Methodologically, this first level entails methods and techniques
for designing at a meta-level (e.g., underdesign). It can be seen as the field where
meta-designers play an important role in establishing the conditions that will allow
users, in turn, to become designers. This first level of meta-design concerns the im-
possible task of fully anticipating at design time users’ needs and tasks, situations and
behaviors. The possibility of transforming and modifying components, contents, and
even contexts by interacting with the system and adjusting it allows the user to re-
spond to the deficit between what can be foreseen at design time and what emerges at
use time. This non-anticipatory feature of meta-design is realized through principles
of end-user modifiability and programming (Girgensohn, 1992; Lieberman, 2001) and
seeding mechanisms (Fischer and Ostwald, 2002). It provokes a creative and unplanned
opportunism, which focuses on situated processes and emergent conditions, rather than
on the anticipatory aspects of decision making.

The second level of meta-design (designing together) is concerned with the way in
which designers and users can collaborate on the design activity, both at design time
and at use time. Methodologically, this second level provides participatory methods and
techniques for letting users be involved in the initial setting stage at design time, and it
relies on critiquing methods and techniques (Fischer et al., 1998) for enabling users to
learn and become in turn designers at use time. It can be seen as the level at which desi-
gners and users play a fluid role in the collaborative design activity at different times
and different planes of social interaction (i.e., from individual to communitarian).

452 GERHARD FISCHER AND ELISA GIACCARDI

This second fold can be framed as a response to issues concerning the participation
of the users in the design process due to the impossibility of completely anticipat-
ing users’ needs and tasks at design time. Compared to traditional participatory ap-
proaches to design, meta-design represents an advance on the methodological level
by supporting structural changes and co-evolutionary processes and transforming par-
ticipation into a participative status (Dourish, 2001) of the user coupling with the
system rather than as a way of increasing the probability a design will be used as
intended.

The third level of meta-design (designing the “in-between”) concerns the design
of relational settings and affective bodies. It aims to support existing social networks,
and to shape new ones. Both existing and novel social networks, though, are not sim-
ply determined by technology. Rather, they are a system of relationships that people
experience and negotiate in relation to technology itself. From this perspective, tech-
nology is seen as “a trigger for structural change” or an intervention into the active
relationship between people and their organizational structures that can alter roles and
patterns of interaction (Dourish, 2001). Within an interactive system conceived as a
relational system, co-evolution takes place through reciprocal and recursive interac-
tions (Maturana, 1997), whereas co-creation is triggered by the senses, emotions, and
interactions of the users “embedded” and active within the computational environment
(Giaccardi, 2003) and therefore capable of affecting and being affected (“affective
bodies”).

Methodologically, the third level of meta-design defines how co-evolutionary pro-
cesses and co-creative behaviors can be sustained and empowered on the basis of the
way in which people relate (both with the technical system and among themselves)
within a computational environment. This level can be seen as a response to socio-
technical issues. The design of the socio-technical system is neither only a matter of
designing and adjusting technological artifacts in harmony with the people that will
use that system, nor only a matter of understanding how to accumulate social capi-
tal. It is also a matter of methods and techniques to allow those sensing, emotioning,
and “affective” activities (e.g., emotional seeding and agency patterning) that can
sustain a condition of “inhabited technology” (Giaccardi, 2001b; Pipek and Kahler,
2004).

These three levels of meta-design are interdependent. They provide a structural open-
ness given by computational malleability (first level of meta-design) corresponding to
and integrated with an interactive openness (Stalder, 1997) given by collaborative (sec-
ond level) and embodied (third level) relationships and activities. They can also be
considered dimensions of meta-design, encompassing at different levels the cognitive
(self-conscious versus unself-conscious design), social (social creativity), computa-
tional (systems and environments), and methodological aspects relevant to meta-design,
finally meant not only as a collaborative design activity, but also as a possible cultural
strategy of technology appropriation according to which the “tool” is also a “place”
(Giaccardi, 2001b; Pipek and Kahler, 2004). Table 19.4 provides on overview of the
different relationships.

META-DESIGN 453

Table 19.4. Overview of the design space for meta-design

Description Methods and
Levels of the level Problem Dimensions techniques

First level Designing design:
meta-designers play an
important role in
establishing the
conditions that will
allow users to become
designers

Anticipation. Users’
needs and tasks
cannot be fully
anticipated at
design time (they
are ill-defined and
change over time)

Epistemological/
computational

End-user development
and seeding: users
transform, modify,
and adjust systems
to achieve greater
fit between what
can be foreseen at
design time and
what emerges at use
time

Second level Designing together:
designers and users
collaborate in the
design activity, both at
design time and at use
time, and at different
levels of social
aggregation (as an
individual, group,
and/or community)

Participation. Users
need to be engaged
in the problem
framing/problem-
solving process
both at design time
and use time

Social/cognitive Participatory design:
users are involved
in the initial setting
stage at design
time, while
critiquing and other
support techniques
empower users to
learn and become
designers at use
time

Third level Designing the in-between:
defines how
co-evolutionary
processes and
co-creative behaviors
can be sustained

Socio-technical.
Social and technical
dimensions need to
be integrated not
only in order to be
optimized and
efficient, but to let
new interactions
and relationships
emerge

Cognitive/social Emotional seeding
and agency
patterning: methods
and techniques to
allow sensing,
emotioning, and
“affective”
activities among
users

7. Conclusions

Meta-design is not only a technical problem, it also requires new cultures and new
mindsets. If the most important role of digital media in the future is to provide peo-
ple with a powerful medium to express themselves and engage in personally mean-
ingful activities, the medium should support them to work on the task, rather than
require them to focus their intellectual resources on the medium itself. In this sense,
computers are empowering artifacts: they are not only powerful tools, but also pow-
erful meta-tools that can be used to create problem-specific tools. This empowerment,
though, cannot be fully utilized until owners of problems are enabled “to retool.”
By putting the computational technology directly into the hands of owners of prob-
lems, meta-design is an important step to unleash the ultimate power of computer
technology.

454 GERHARD FISCHER AND ELISA GIACCARDI

Meta-design is a conceptual framework informing a specific socio-technical
methodology for end-user development, which includes design techniques (e.g.,
underdesign), process models (e.g., the SER model), and motivational mechanisms for
communication, collaboration, and social capital accumulation (e.g., emotional seeding
and reward structures). We have evaluated our approach in different settings, with
different task domains, and with different users. Meta-design is a promising approach
to overcome the limitations of closed systems and to support applications of informed
participation and social creativity. However, it creates many fundamental challenges
in the technical domain as well as in the social domain, including: (1) the tension
between standardization and improvisation, (2) the additional efforts to integrate the
work into the shared environment, (3) the willingness of users to engage in additional
learning to become designers, (4) effective ways of supporting meaningful activities
and enabling co-creation, (5) the need for social capital and technology appropriation,
and (6) the need for a new, integrated design space that brings together the design of
both technical and social conditions.

Meta-design allows a sort of creative and unplanned opportunism (Wood, 2000), and
it addresses one of the fundamental challenges of a knowledge society (Florida, 2002):
to invent and design a culture in which all participants in a collaborative design process
can express themselves and engage in personally meaningful activities. End-user de-
velopment requires a change in mindsets and cultures—people who want to be active
contributors and designers, not just consumers. If we achieve this culture and mindset
change and we provide people with the right computational environments, then we will
have a chance to make one of the most challenging and exciting research topics a reality!

Acknowledgments

The authors thank the members of the Center for LifeLong Learning and Design at the
University of Colorado, who have made major contributions to the conceptual frame-
work described in this chapter. Anders Morch provided us with important feedback on
earlier version of this chapter. The research was supported by (1) the National Science
Foundation, Grants (a) REC-0106976 “Social Creativity and Meta-Design in Lifelong
Learning Communities,” and (b) CCR-0204277 “A Social-Technical Approach to the
Evolutionary Construction of Reusable Software Component Repositories”; (2) SRA
Key Technology Laboratory, Inc., Tokyo, Japan; (3) the Coleman Institute, Boulder,
CO; and (4) Fondazione Eni Enrico Mattei, Grant “Ideas for the Future,” for the aspects
related to interactive art.

References

Alexander, C. 1964, The Synthesis of Form. Cambridge, MA: Harvard University Press.
Arias, E.G., Eden, H., Fischer, G., Gorman, A. and Scharff, E. (1999). Beyond access: Informed par-

ticipation and empowerment. In: Proceedings of the Computer Supported Collaborative Learning
(CSCL ’99) Conference, Stanford, pp. 20–32.

Arias, E.G., Eden, H., Fischer, G., Gorman, A. and Scharff, E. (2000). Transcending the individual
human mind—creating shared understanding through collaborative design. ACM Transactions
on Computer–Human Interaction 7(1), 84–113.

META-DESIGN 455

Ascott, R. (2003). Telematic embrace: Visionary theories of art, technology, and consciousness. In:
E.A. Shanken (ed.), Berkeley: University of California Press.

Brand, S. (1995). How Buildings Learn: What Happens After They’re Built. New York: Penguin Books.
Brown, J.S. and Duguid, P. (2000). The Social Life of Information. Boston, MA: Harvard Business

School Press.
Brown, J.S., Duguid, P. and Haviland, S. (1994). Toward informed participation: Six scenarios in

search of democracy in the information age. The Aspen Institute Quarterly 6(4), 49–73.
Bruner, J. (1996). The Culture of Education. Cambridge, MA: Harvard University Press.
Burton, R.R., Brown, J.S. and Fischer, G. (1984). Analysis of skiing as a success model of instruc-

tion: Manipulating the learning environment to enhance skill acquisition. In: B. Rogoff and J.
Lave (eds.), Everyday Cognition: Its Development in Social Context. Cambridge, MA: Harvard
University Press, pp. 139–150.

Callon, M. and Latour, B. (1981). Unscrewing the big leviathan: How actors macro-structure reality
and how sociologists help them to do so. In: K. Knorr-Cetina and A. Cicourel (eds.), Advances
in Social Theory and Methodology: Toward an Integration of Micro- and Macro-Sociologies.
Boston, London, and Henley: Routledge and Kegan Paul, pp. 277–303.

dePaula, R., Fischer, G. and Ostwald, J. (2001). Courses as seeds: Expectations and realities.
In: Proceedings of the Second European Conference on Computer-Supported Collaborative
Learning(Euro-CSCL’ 2001), Maastricht, Netherlands, pp. 494–501.

Dittrich, Y. and Lindeberg, O. (2003). Designing for changing work and business practices. In: N.
Patel (ed.), Adaptive Evolutionary Information Systems. Hershey, PA: Idea group Inc, pp. 152–
171.

Donaldson, M. (1991). Human Minds: An Exploration. London: Penguin Books.
Dourish, P. (2001). Where the Action Is—The Foundations of Embodied Interaction. Cambridge, MA:

The MIT Press.
Ehn, P. and Malmborg, L. (1999). Everything that rises must converge. http://www.nordic-

interactive.org/nimres2/html/malmborg ehn.html.
Eisenberg, M. and Fischer, G. (1994). Programmable design environments: integrating end-user pro-

gramming with domain-oriented assistance. In: Human Factors in Computing Systems, CHI’94
(Boston, MA), ACM, New York, pp. 431–437.

Electronic-Arts (2004). SimCity 4. http://simcity.ea.com/.
Fischer, G. (1994a). Domain-oriented design environments. Automated Software Engineering 1(2),

177–203.
Fischer, G. (1994b). Putting the owners of problems in charge with domain-oriented design envi-

ronments. In: D. Gilmore, R. Winder and F. Detienne (eds.), User-Centered Requirements for
Software Engineering Environments. Heidelberg: Springer Verlag, pp. 297–306.

Fischer, G. (1994c). Turning breakdowns into opportunities for creativity. Knowledge-Based Systems,
Special Issue on Creativity and Cognition 7(4), 221–232.

Fischer, G. (2001). User modeling in human–computer interaction. User Modeling and User-Adapted
Interaction (UMUAI) 11(1), 65–86.

Fischer, G. (2002). Beyond ‘couch potatoes’: From consumers to designers and active con-
tributors, in firstmonday (Peer-Reviewed Journal on the Internet). http://firstmonday.org/
issues/issue7 12/fischer/.

Fischer, G., Nakakoji, K., Ostwald, J., Stahl, G. and Sumner, T. (1998). Embedding critics in design
environments. In: M.T. Maybury and W. Wahlster (eds.), Readings in Intelligent User Interfaces.
San Francisco: Morgan Kaufmann, pp. 537–559.

Fischer, G. and Ostwald, J. (2002). Seeding, evolutionary growth, and reseeding: enriching par-
ticipatory design with informed participation. In: T. Binder, J. Gregory and I. Wagner (eds.),
Proceedings of the Participatory Design Conference (PDC’2002), CPSR, Malmö University,
Sweden, pp. 135–143.

Fischer, G. and Scharff, E. (2000). Meta-design—design for designers. In: 3rd International Confer-
ence on Designing Interactive Systems (DIS 2000), New York, pp. 396–405.

456 GERHARD FISCHER AND ELISA GIACCARDI

Fischer, G., Scharff, E. and Ye, Y. (2004). Fostering social creativity by increasing social capital. In:
M. Huysman and V. Wulf (eds.), Social Capital and Information Technology. Cambridge, MA:
MIT Press, pp. 355–399.

Florida, R. (2002). The Rise of the Creative Class and How It’s Transforming Work, Leisure, Community
and Everyday Life. New York, NY: Basic Books.

Floyd, C., Züllighoven, H. and Budde, R., Keil-Slawik, R. (eds.) (1992). Software Development and
Reality Construction. Berlin, Heidelberg: Springer.

Fuller, M. (2003). Grid unlocked. http://9.waag.org/Info/grid en.html.
Giaccardi, E. (1999). Interactive strategies of network art relationships and agency. In: CADE ’99:

Third Conference on Computers in Art and Design Education, Teesside, Middlesbrough.
Giaccardi, E. (2001a). Interconnectivity and relational embodiment in art and design. In: Proceedings

of ISEA2000—Révélation: 10th International Symposium on Electronic Art, Paris, France.
Giaccardi, E. (2001b). Transcultural vision and epistemological shift: from aesthetics to high tech

society. In: G. Marchianò and R. Milani (eds.), Frontiers of Transculturality in Contemporary
Aesthetics, Trauben, Torino, pp. 507–519.

Giaccardi, E. (2003). Principles of Metadesign: Processes and Levels of Co-Creation in the New
Design Space. Ph.D. Dissertation. CAiiA-STAR, School of Computing, Plymouth, UK.

Girgensohn, A. (1992). End-User Modifiability in Knowledge-Based Design Environments. Ph.D.
Dissertation. University of Colorado at Boulder.

Henderson, A. and Kyng, M. (1991). There’s no place like home: Continuing design in use. In: J.
Greenbaum and M. Kyng (eds.), Design at Work: Cooperative Design of Computer Systems.
Hillsdale, NJ: Lawrence Erlbaum Associates, Inc., pp. 219–240.

Lieberman, H. (ed.) (2001). Your Wish is My Command: Programming by Example. San Francisco:
Morgan Kaufmann.

Mackay, W.E. (1990). Users and Customizable Software: A Co-Adaptive Phenomenon. Sloan School
of Management Dissertation. Massachusetts Institute of Technology.

Manovich, L. (2001). The Language of New Media. Cambridge, MA: MIT Press.
Maturana, H.R. (1997). Metadesign. http://www.hum.auc.dk/∼rasand/Artikler/metadesign.htm.
Morch, A. (1997). Three levels of end-user tailoring: customization, integration, and extension. In:

M. Kyng and L. Mathiassen (eds.), Computers and Design in Context. Cambridge, MA: MIT
Press, pp. 51–76.

Mumford, E. (1987). Sociotechnical systems design: Evolving theory and practice. In: G. Bjerk-
nes, P. Ehn and M. Kyng (eds.), Computers and Democracy. Brookfield, VT: Avebury, pp. 59–
77.

Nardi, B.A. (1993). A Small Matter of Programming. Cambridge, MA: The MIT Press.
Nardi, B.A. and Zarmer, C. (1993). Beyond models and metaphors: Visual formalisms in user interface

design. Journal of Visual Languages and Computing 4(1), 5–33.
National-Research-Council (2003). Beyond Productivity: Information Technology, Innovation, and

Creativity. Washington, DC: National Academy Press.
Norman, D.A. and Draper, S.W. (eds.) (1986). User-Centered System Design, New Perspectives on

Human–Computer Interaction. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.
Pipek, V. and Kahler, H. (2004). Supporting collaborative tailoring: Issues and approaches. In: V. Wulf

(ed.), End User Development—Empowering People to Flexibly Employ Advanced Information
and Communication Technology. Dordrecht, The Netherlands: Kluwer Academic Publishers.

Polanyi, M. (1966). The Tacit Dimension. Garden City, NY: Doubleday.
Putnam, R. (2000). Bowling Alone: The Collapse and Revival of American Community. New York,

NY: Simon and Schuster.
Raymond, E.S. and Young, B. (2001). The Cathedral and the Bazaar: Musings on Linux and Open

Source by an Accidental Revolutionary. Sebastopol, CA: O’Reilly and Associates.

META-DESIGN 457

Resnick, M. (1994). Turtles, Termites, and Traffic Jams. Cambridge, MA: The MIT Press.
Rittel, H. (1984). Second-generation design methods. In: N. Cross (ed.), Developments in Design

Methodology. New York: John Wiley and Sons, pp. 317–327.
Rogoff, B., Matsuov, E. and White, C. (1998). Models of teaching and learning: Participation in a

community of learners. In: D.R. Olsen and N. Torrance (eds.), The Handbook of Education and
Human Development—New Models of Learning, Teaching and Schooling. Oxford: Blackwell,
pp. 388–414.

Scacchi, W. (2002). Understanding the requirements for developing open source software systems.
IEEE Proceedings—Software 149(1), 24–39.

Scacchi, W. (2004). Socio-technical design. In: W.S. Bainbrigde (ed.), The Encyclopedia of Human–
Computer Interaction. Berkshire Publishing Group, pp. 656–659.

Scharff, E. (2002). Open Source Software, a Conceptual Framework for Collaborative Artifact and
Knowledge Construction. Ph.D. Dissertation. University of Colorado at Boulder.

Schön, D.A. (1983). The Reflective Practitioner: How Professionals Think in Action. New York: Basic
Books.

Schuler, D. and Namioka, A. (eds.) (1993). Participatory Design: Principles and Practices. Hillsdale,
NJ: Lawrence Erlbaum Associates.

Shanken, E.A. (2002). Art in the information age: Technology and conceptual art. Leonardo 35(4),
433–488.

Shaw, M. (1989). Maybe your next programming language shouldn’t be a programming language.
In: C. Science and T. Board (eds.), Scaling Up: A Research Agenda for Software Engineering.
Washington, DC: National Academy Press, pp. 75–82.

Shipman, F. and McCall, R. (1994). Supporting knowledge-base evolution with incremental for-
malization. In: Human Factors in Computing Systems, INTERCHI’94 Conference Proceedings,
ACM, New York, pp. 285–291.

Sommerer, C. and Mignonneau, L. (1997a). Interacting with artificial life: A-Volve. Complexity
Journal 2(6), 13–21.

Sommerer, C. and Mignonneau, L. (1997b). A-Volve—an evolutionary artificial life environment. In:
V.C. Langton and K. Shimohara (eds.), Artificial Life. Boston: MIT Press, pp. 167–175.

Stalder, F. (1997). Actor-Network-Theory and Communication Networks: Toward Conver-
gence. Ph.D. Dissertation. Faculty of Information Studies, University of Toronto,
http://felix.openflows.org/html/Network Theory.html.

Suchman, L.A. (1987). Plans and Situated Actions. Cambridge, UK: Cambridge University Press.
Thompson, E. (1999). Human consciousness: From intersubjectivity to interbeing (A proposal to the

Fetzer Institute). http://www.consciousness.arizona.edu/pcs/pcsfetz1.html.
Verle, L. (1999). Novas Imagens Para Um Novo Meio: Um Estudo de Caso do Website de Arte Interativa

SITO. M.A. Dissertation. Pontificia Universidade Catolica do Rio Grande do Sul, Brasil.
Winograd, T. and Flores, F. (1986). Understanding Computers and Cognition: A New Foundation for

Design. Norwood, NJ: Ablex Publishing Corporation.
Wood, J. (2000). Towards an ethics of flow: Design as an anticipatory system. International Journal

of Computing Anticipatory Systems. Liège, Belgium: Centre for Hyperincursive Anticipation in
Ordered Systems, pp. 87–102.

Wright, M., Marlino, M. and Sumner, T. (2002). Meta-design of a community digital library, D-Lib
magazine, Volume 8, Number 5. http://www.dlib.org/dlib/may02/wright/05wright.html.

Ye, Y. and Fischer, G. (2002). Supporting reuse by delivering task-relevant and personalized infor-
mation. In: Proceedings of 2002 International Conference on Software Engineering (ICSE’02),
Orlando, FL, pp. 513–523.

Youngblood, G. (1984). Virtual space. The electronic environments of mobile image, ars electronica
symposium. http://kultur.aec.at/20Jahre/.

Chapter 20

Feasibility Studies for Programming
in Natural Language

HENRY LIEBERMAN and HUGO LIU
Media Laboratory, Massachusetts Institute of Technology, {lieber, hugo}@media.mit.edu

Abstract. We think it is time to take another look at an old dream—that one could program a computer
by speaking to it in natural language. Programming in natural language might seem impossible,
because it would appear to require complete natural language understanding and dealing with the
vagueness of human descriptions of programs. But we think that several developments might now make
programming in natural language feasible. First, improved broad coverage natural language parsers
and semantic extraction techniques permit partial understanding. Second, mixed-initiative dialogues
can be used for meaning disambiguation. And finally, where direct understanding techniques fail, we
hope to fall back on Programming by Example, and other techniques for specifying the program in
a more fail-soft manner. To assess the feasibility of this project, as a first step, we are studying how
non-programming users describe programs in unconstrained natural language. We are exploring how
to design dialogs that help the user make precise their intentions for the program, while constraining
them as little as possible.

Key words. natural language programming, natural language processing, parsing, part-of-speech
tagging, computer science education, programming languages, scripting languages, computer games.

1. Introduction

We want to make computers easier to use and enable people who are not professional
computer scientists to be able to teach new behavior to their computers. The Holy Grail
of easy-to-use interfaces for programming would be a natural language interface—just
tell the computer what you want! Computer science has assumed this is impossible
because it would be presumed to be “AI Complete”—require full natural language
understanding.

But our goal is not to enable the user to use completely unconstrained natural lan-
guage for any possible programming task. Instead, what we might hope to achieve is to
attain enough partial understanding to enable using natural language as a communica-
tion medium for the user and the computer to cooperatively arrive at a program, obviat-
ing the need for the user to learn a formal computer programming language. Initially, we
will work with typed textual input, but ultimately we would hope for a spoken language
interface, once speech recognizers are up to the task. We are now evaluating commer-
cially available speech recognizers, and are developing new techniques for correction
of speech recognition errors based on Common Sense knowledge (Stocky et al., 2004).

We believe that several developments might now make natural language program-
ming possible where it was not feasible in the past.

Henry Lieberman et al. (eds.), End User Development, 459–473.
C© 2006 Springer.

460 HENRY LIEBERMAN AND HUGO LIU

� Improved language technology. While complete natural language understanding
still remains out of reach, we think that there is a chance that recent improvements
in robust broad-coverage parsing (Collins, 2003) (MontyLingua), semantically
informed syntactic parsing and chunking, and the successful deployment of natural
language command-and-control systems (Liu, 2003) might enable enough partial
understanding to get a practical system off the ground.

� Mixed-initiative dialogue. We do not expect that a user would simply “read the code
aloud.” Instead, we believe that the user and the system should have a conversation
about the program. The system should try as hard as it can to interpret what the
user chooses to say about the program, and then ask the user about what it doesn’t
understand, to supply missing information, and to correct misconceptions.

� Programming by Example. We will adopt a show and tell methodology, which
combines natural language descriptions with concrete example-based demonstra-
tions. Sometimes it is easier to demonstrate what you want then to describe it in
words. The user can tell the system “here is what I want,” and the system can
verify its understanding with “Is this what you mean?” This will make the system
more fail-soft in the case where the language cannot be directly understood, and,
in the case of extreme breakdown of the more sophisticated techniques, we will
simply allow the user to type in code.

2. Feasibility Study

We were inspired by the Natural Programming Project of Pane and Myers at Carnegie-
Mellon University (Pane et al., 2001). Pane and Myers (2004) conducted studies asking
non-programming fifth-grade users to write descriptions of a Pac-Mac game (in another
study, college students were given a spreadsheet programming task). The participants
also drew sketches of the game so they could make deictic references.

Pane and Myers then analyzed the descriptions to discover what underlying abstract
programming models were implied by the users’ natural language descriptions. They
then used this analysis in the design of the HANDS programming language. HANDS
uses a direct-manipulation, demonstrational interface. While still a formal programming
language, it hopefully embodies a programming model that is closer to users’ “natural”
understanding of the programming process before they are “corrupted” by being taught
a conventional programming language. They learned several important principles, such
as that users rarely referred to loops explicitly, and preferred event-driven paradigms.

Our aim is more ambitious. We wish to directly support the computer understanding
of these natural language descriptions, so that one could do “programming by talk-
ing” in the way that these users were perhaps naively expecting when they wrote the
descriptions.

As part of the feasibility study, we are transcribing many of the natural language
descriptions and seeing how well they will be handled by our parsing technology (Liu,
online). Can we figure out where the nouns and verbs are? When is the user talking
about a variable, loop, or conditional?

FEASIBILITY STUDIES FOR PROGRAMMING 461

Figure 20.1. Non-programmer’s description of Pac-Man.

One of our guiding principles will be to abandon the programming language dogma
of having a single representation for each programming construct. Instead, we will try
to collect as many verbal representations of each programming construct as we can,
and see if we can permit the system to accept all of them.

3. Designing Dialogue Management for Natural Language Programming

The paradigm for the user interaction should reproduce the situation of the user talking
to a more knowledgeable programmer, who knows all the implementation techniques.
The goal for the user is to communicate their intent.

We have been inspired by some of the dialogue management philosophy of Collagen
(Rich et al., 2001). Collagen uses a discourse model to support a user and an on-screen
agent cooperatively working on a task. Either the user or the system can take initiative
at any point, and the system keeps track of such dialogue management issues as which
goals are being worked on and which are pending.

We envision a possible dialogue as follows, inspired by the Pac-Man example above,

User: We are going to program a game, Pac-Man.
System: OK. I know a few things about how to make games. We need to decide what

the playing field looks like, design some characters for the game, how the users
are going to control the characters, and how the scoring system is going to work.
OK?

462 HENRY LIEBERMAN AND HUGO LIU

U: Sure. The yellow dots are set through a maze, and Pac-Man, the chomping yellow
circle, has to collect them (see the user’s sketch in Figure 20.1).

S: OK, let me see if I have got this straight. You want the playing field to be a grid of
squares, each containing a yellow dot, right? (System displays a grid of squares
with yellow dots). To make it a maze, we need to have some walls. Can you draw
some walls for me?

(1). U: (User draws in walls, selecting color, texture, etc.)
S: Pac-Man is the name of a character in the game, represented as a yellow circle,

is that right? How is this? (System displays a yellow circle in one of the grid
squares).

(2). U: Oh, the dots should be red. (Things do not have to be done “in order.” You
can refer to something previously said.)

S: OK. What does it mean for Pac-Man to “collect” a dot?
U: Whenever Pac-Man is on a square with a dot, he eats it. That means that the dot

is gone and the player gets another point. (The system introduces a variable to
count the number of dots eaten by Pac-Man).

S: OK, now I do not understand what “eats” means. Can you explain it?
U: When you draw Pac-Man, you alternate between a picture of Pac-Man with his

mouth open and a picture of Pac-Man with his mouth closed.
S: Can you draw me what Pac-Man looks like when he has his mouth open? Mouth

closed?
(3). U: (Draws.) There are blinking big yellow dots that allow you to eat the ghosts

(draws picture of ghost).
S: (Continues dialogue about dots and ghosts)

Below, we give some analysis of the above-presented dialog. From (1), the system
must recognize that a “game” is the top-level programming goal. To conduct the rest
of the dialog, we assume the system has some script- or frame-based knowledge about
the major programming subgoals in programming a game. It should leverage this un-
derstanding to dually know what to expect from the user, and to act as a tutor to guide
the user.

As (3) demonstrates, users will attempt to convey a lot of information all at once.
It is the job of the language understanding system to identify major intended actions
(e.g., “set through”), each of which are associated with a thematic agent role (e.g.,
“the yellow dots”), and a thematic patient role (e.g., “a maze”). The system will also
try to correlate these filled role slots with its repertoire of programming tricks. For
example, in (3), “yellow dots” might be visual primitives, and “a maze” might invoke
a script about how to construct such a structure on the screen and in code. In (4), the
dialog management system reconfirms its interpretation to the user, giving the user the
opportunity to catch any glitches in understanding.

In (5), the system demonstrates how it might mix natural language input with input
from other modalities as required. Certainly we have not reached the point where good
graphic design can be dictated in natural language! Having completed the maze layout

FEASIBILITY STUDIES FOR PROGRAMMING 463

subgoal, the system planning agency steps through some other undigested information
gleaned from (3). In (6), it makes some inference that Pac-Man is a character in this
game based on its script knowledge of a game.

Again in (9), the user presents the system with a lot of new information to process.
The system places the to-be-digested information on a stack and patiently steps through
to understand each piece. In (10), the system does not know what “eats” should do, so
it asks the user to explain that in further detail. And so on.

While we may not be able to ultimately achieve all of the language understanding
implied in the example dialogue above, and we may have to further constrain the dia-
logue, the above example does illustrate some important strategies, including iterative
deepening of the program’s understanding (Lieberman and Liu, 2002).

4. Designing Natural Language Understanding for Programming

Constructing a natural language understanding system for programming must be distin-
guished from the far more difficult task of open domain story understanding. Luckily,
natural language understanding for programming is easier than open domain story un-
derstanding because the discourse in the programming domain is variously constrained
by the task model and the domain model. This section attempts to flesh out the benefits
and challenges which are unique to a language understanding system for programming.

4.1. CONSTRAINTS FROM AN UNDERLYING SEMANTIC MODEL

The language of discourse in natural language programming is first and foremost, con-
strained by the underlying semantic model of the program being constructed. Consider,
for instance, the following passage from a fifth-grader non-programmer’s description
of the Pacman game:

Pacman eats a big blink dot and then the ghosts turn blue or red and pacman is able to
eat them. Also his score advances by 50 points.

In the previous section, we argued that through mixed-initiative dialogue, we can
begin to progressively disambiguate a programmatic description like the one shown
above, into an underlying semantic model of a game. Establishing that “Pacman” is the
main character in the game helps us to parse the description. We can, for example, rec-
ognize that the utterances “Pac man” and “pacman” probably both refer to the character
“Pacman” in the game, because both are lexicographically similar to “Pacman,” but
there is also the confirming evidence that both “Pac man” and “pacman” take the action
“to eat,” which is an action typically taken by an agent or character. Having resolved
the meanings of “Pac man” and “pacman” into the character “Pacman,” we can now
resolve “his” to “Pacman” because “his” refers to a single agent, and “Pacman” is the
only plausible referent in the description. We can now infer that “eat” refers to an ability
of the agent “Pacman,” and “score” is a member variable associated with “Pacman,”
and that the score has the ability to advance, and so on and so forth.

464 HENRY LIEBERMAN AND HUGO LIU

In summary, the underlying semantic model of a program provides us with unam-
biguous referents that a language understanding system can parse text into. All levels of
a language processing system, including speech recognition, semantic grouping, part-
of-speech tagging, syntactic parsing, and semantic interpretation, benefit from this
phenomena of reference. Although the natural language input is ideally unconstrained,
the semantic model we are mapping into is well-constrained. Language resolution also
has a nice cascading effect, which is, the more resolutions you make, the more you are
able to make (by leveraging existing “islands of certainty”). Resolving “Pac man” and
“pacman” in turn allows us to resolve “his” and these in turn allow us to resolve “eat”
and “score.” Of course, in our proposed mixed-initiative model, we can always prompt
the user for confirmation of any ambiguities which cannot be resolved.

In the above example, we discuss how objects and actions get resolved, but what
about programmatic controls? Are these easy to recognize and resolve? By studying
the “programming by talking” styles of many users, we expect to be able to identify a
manageable set of salient keywords, phrases, and structures which indicate program-
matic controls like conditionals and loops. Although, it would come as no surprise
if “programming by talking” maps somewhat indirectly rather than directly onto pro-
gramming control structures. For example, in the usability studies of Pane and Myers,
it is uncommon to find explicit language to describe loops directly. Instead, there is
evidence for natural language descriptions mapping into implicit loop operations in
the form of Lisp-style list processing functions like “map,” “filter,” and “reduce.” For
example, the utterance, “Pacman tries to eat all the big blinking dots” does not seem
like a programmatic control, but it actually expresses several loops implicitly (and
quite elegantly, as we might add). We can paraphrase the utterance in pseudo-code as
follows:

map(Pacman.eat,
filter(lambda dot:

dot.big AND dot.blinking,
dots))

We are aided in the generation of this pseudo-code interpretation by knowledge of the
preferences/constraints of the underlying semantic model, i.e., something that Pacman
can do is eat (x.y () relation), a dot is something which can be eaten (x(y) relation), and
dots can be big and blinking (x .y relations).

Thus far, we have generally outlined a strategy for mapping a programmatic descrip-
tion into a code model by progressive stages of semantic resolution, but we have not
been rigorous about presenting a framework for semantic interpretation. Now, we will
propose to leverage the following ontological framework given by Liu (2003), which
enumerates ways of resolving English into code:

� function x .y()
� ability x .y()
� param x(y)

FEASIBILITY STUDIES FOR PROGRAMMING 465

car tires rating fast((a.b).c)=d(a.b).ca.b

car paint drying
time

fast((a.b).c)=d(a.b).ca.b

car top
speed

fasta.b (a.b)=c

car drive

speed fasta.b(c=d)a.b(c)a.b()

car
wash

speed fastb.a(c=d)b.a(c)b.a()

car drive

road fasta.b(c)a.b()
speed

limit
c.d &
a.b(c)

c.d=e &
a.b(c)

car drive

road fasta.b(c)a.b()
road

material
c.d &
a.b(c)

pave-
ment

c.d=e &
a.b(c)

drying
time

e.f &
c.d = e
a.b(c)

e.f=g &
c.d = e
a.b(c)

(a)The car whose top speed is fast.

(b)The car that can be driven at a speed that is fast.

(c)The car whose tires have a rating that is fast.

(d)The car whose paint has a drying time that is fast.

(e) The car that can be washed at a speed that is fast.

(f) The car that can be driven on a road whose speed limit is fast.

(g) The car that can be driven
on a road whose road material
is pavement, whose drying time
is fast.

Figure 20.2. An underlying semantic model of English is used to generate interpretations of “fast car.” From (Liu,
2003).

� property x .y
� isA x :y (subtype)
� value x = y
� assoc x-related-to-y

In (Liu, 2003), it is proposed that natural language phrases can be understood in
terms of compositions using the above ontology. An “interpretation” of a phrase is thus
defined as one possible mapping from the surface language to some path in the network
semantic model (Figure 20.2).

In our task of mapping surface natural language to programmatic code, we could
view the problem in a way analogous to (Liu, 2003), i.e., an underlying semantic model
of programming can be used to generate possible interpretations of inputted natural
language, followed by the use of contextual cues, further semantic constraints, and
dialog with the user to disambiguate from all possible interpretations to one or two
likely interpretations.

Our approach to generating and selecting interpretive mappings from programmatic
description to code is also supported by the natural language understanding literature,
where there is precedent for exploiting semantic constraints for meaning disambigua-
tion. BCL Spoken Language User Interface Toolkit (Liu, Alam and Hartomo, 2002),
developed by BCL Technologies R&D, used Chomsky’s Projection Principle and Pa-
rameters Model for command and control. In the principle and parameters model,
surface features of natural language are seen as projections from the lexicon. The in-
sight of this approach is that by explicitly parameterizing the possible behaviors of each
lexical item, we can more easily perform language processing. We expect to be able to
apply the principle and parameters model to our task, because the variables and struc-
tures present in computer programs can be seen as forming a naturally parameterized
lexicon. An approach for using domain constraints to make natural language interaction
reliable is also outlined in Yates (2003).

466 HENRY LIEBERMAN AND HUGO LIU

4.2. EVOLVABLE

The approach we have described thus far is fairly standard for natural language
command-and-control systems. However, in our programming domain, the underly-
ing semantic system is not static. Underlying objects can be created, used, and de-
stroyed all within the breath of one sentence. This introduces the need for our language
understanding system to be dynamic enough to evolve itself in real-time. The condition
of the underlying semantic system including the state of objects and variables must be
kept up-to-date and this model must be maximally exploited by all the modules of the
language system for disambiguation. This is a challenge that is relatively uncommon
to most language processing systems, in which the behavior of lexicons and grammars
are usually defined or trained a priori and are not very amenable to change at run-
time. Anyone who has endeavored to build a natural language programming system
will likely have discovered that it is not simply the case that an off-the-shelf natural
language processing packaging can be used.

To most optimally exploit the information given by the underlying semantic model,
the natural language processing system will need to be intimately integrated with and
informed by feedback from this evolving model. For example, consider the following
fifth-grader non-programmer’s description.

Pacman gets eaten if a ghost lands in the same space.

Without information from the underlying semantic model, some pretrained part-of-
speech taggers will interpret “lands” as a noun, causing a cascade of misinterpretations,
such as interpreting “ghost lands” as a new object. However, our underlying semantic
model may know that “ghost” is a character in the game. If this knowledge is trickled
back to the part-of-speech tagger, that tagger can have enough smarts to prefer the
interpretation of “lands” as a verb untaken by the agent “ghost.” This example illus-
trates that natural language processing must be intimately informed by the underlying
semantic model, and ideally, the whole natural language programming system will be
built end-to-end.

4.3. FLEXIBLE

Whereas traditional styles of language understanding consider every utterance to be
relevant and therefore must be understood, we take the approach that in a “programming
by talking” paradigm, some utterances are more salient than others. That is to say, we
should take a selective parsing approach which resembles information extraction–style
understanding. One criticism to this approach might be that it loses out on valuable
information garnered from the user. However, we would argued that it is not necessary
to fully understand every utterance in one pass because we are proposing a natural
language dialog management system to further refine the information dictated by the
user, giving the user more opportunities to fill in the gaps.

Such a strategy also pays off in its natural tolerance for user’s disfluencies; thus,
adding robustness to the understanding mechanism. In working with user’s emails

FEASIBILITY STUDIES FOR PROGRAMMING 467

in a natural language meeting command-and-control task, Liu et al. found that user
disfluencies such as bad grammar, poor word choice, and run-on sentences deeply
impacted the performance of traditional syntactic parsers based on fixed grammars.
Liu et al. found better performance in a more flexible collocational semantic grammar,
which spotted for certain words and phrases, while ignoring many less-important words
which did not greatly affect semantic interpretation. The import of such an approach
to our problem domain will be much greater robustness and a greater ability to handle
unconstrained natural language.

4.4. ADAPTIVE

In working with any particular user in a programming task, it is desirable to recognize
and exploit the specific discourse style of that user in order to increase the perfor-
mance of the language understanding system. In our analysis of the natural language
programming user studies performed by Pane and Myers (2004), we note that some
users give a multi-tiered description of the program, starting with the most abstract
description and iteratively becoming more concrete, while others proceed linearly and
concretely in describing objects and functions. Consider for example, how the following
two fifth-grader non-programmers begin their descriptions of Pacman quite differently:

The object of the game is to eat all the yellow dots. If you[‘re] corn[er]ed and there
is a blinking dot eat that and the ghosts will turn a color and when you eat them you
get 200 points. When you eat all the dots you win the game.

To tell the computer how to move the Pacman I would push letters, and arrows. If I
push the letter A[,] pacman moves up. When I push Q it moves down. To make it go
left and right I use the arrows.

Whereas the first non-programmer begins with a breadth-first description of the
game, starting from the highest-level goals of the game, the second non-programmer
begins with the behavioral specifics of user control, and never really explicates the
overarching goals of game anywhere in the whole description. Understanding the de-
scriptive style of the user allows us to improve the quality of the parsing and dialogue.
If the user is accustomed to top–down multi-tiered descriptions like non-programmer
#1, the system can assume that the first few utterances in a description will expose
many of the globally salient objects in the semantic model that will later be referred
to. For example, from the utterance, “The object of the game is to eat all the yellow
dots,” we can assume that “yellow dots” are salient globally, and that “eat” is an action
central to the game. If, however, the user is accustomed to giving details straight away
like non-programmer #2, the system can perhaps be more proactive to ask the user for
clarifications and context for what the program is about, e.g., asking the user, “Are you
programming a game?”

There are also many other dimensions along with user style can vary, such as inter
alia, example-driven scenario giving versus if-then-else explication, describing posi-
tive behavior of a system versus negative behavior, and giving first-person character
description (e.g., “You like to eat dots”) versus third-person declarative description

468 HENRY LIEBERMAN AND HUGO LIU

(e.g., “There is a Pacman who eats dots”) versus first-person user description (e.g.,
“You press the left arrow key to move Pacman.”). A natural language programming
system should characterize and recognize many of these styles and style-dimensions,
and to use this knowledge to inform both an adaptive case-based parsing strategy, and
an adaptive case-based dialogue strategy.

4.5. CAN NOVICES’ DESCRIPTIONS OF PROGRAMS BE FULLY OPERATIONALIZED?

In addition to concerns about natural language understanding per se, there is also the
concern that novice descriptions of programs are vague, ambiguous, erroneous, and
otherwise not fully precise in the way the programming language code would be. Our
analysis of the CMU data shows that, indeed, this is often the case. But that does not
render the cause of natural language programming hopeless. The imprecision manifests
itself in different forms, each of which has important consequences for the dialog design.

4.6. INTENTIONAL DESCRIPTIONS

Above, we discussed some of the linguistic problems surrounding determining the
referents of natural language expressions such as “it” or “him.” These issues consist
of figuring out ways to map expressions either to known objects in the program or to
recognize when new objects are being introduced or created. In addition there is the
problem of determining when objects are referred to by descriptive phrases rather than
direct references.

We often saw descriptions such as “the player being chased,” where in a conventional
program, one might see a direct reference to a program variable. We need to be able to
distinguish between intentional descriptions used to reference objects that the system
knows about “at compile time,” e.g., “When the ghosts chase a player, the player being
chased has to run away” (two different ways of referring to a particular player), and
those that imply a “run time” search, e.g., “Find a player who is being chased and turn
him green.”

Further, people use different levels of specificity to refer to an object. “Pac-Man” (by
name), “the yellow circle” (by appearance), “the player” (by role) can be interchangeable
in the discourse, but may have vastly different effects when the program is re-executed
in a different context. In Programming by Example (Lieberman, 2001) this is referred
to as the “data description problem,” and is also a central problem here. The best way
to deal with that problem is to give the user sufficient feedback when future examples
are executed, so that the user will see the consequences of a learned description. New
examples can be executed step-by-step, and the system can feed back its description, so
that users understand the relation between descriptions and selected objects, and change
them if they are incorrect. Systems like Lieberman, Nardi and Wright’s Grammex
(Lieberman et al., 2001) provide ways of incrementally generalizing and specializing
descriptions or sub-descriptions so that a desired result is achieved. To some extent,
however, the user needs to learn that the exact way in which an object is described

FEASIBILITY STUDIES FOR PROGRAMMING 469

will have consequences for the learning system. Even at best, it is not possible to be as
sloppy about descriptive phrases as we typically are in interpersonal discourse. This is
a crucial part of what it means to learn to “think like a programmer.”

4.7. ASSUMING CONTEXT

Natural language descriptions of programs tend to make a lot of assumptions about
context that are not explicitly represented in the text. In programming languages, such
context is represented by the scope of declarations and placement of statements. In
natural language discourse, speakers assume that the listener can figure out what the
context is, either by such cues as recently mentioned objects and actions, or by filling
in necessary background knowledge. In doing natural language programming in the
context of a programming by example system, we have the advantage of having a
runtime context available which can help us discern what the user is talking about.

You should put the name and the score and move everyone below the new score down one.

Nowhere in this phrase does it include the implied context, “When one of the players
has achieved a new total, and the scoreboard is displayed.” However, if the user is
programming interactively with concrete examples, the most likely time for the user to
make such a statement is just when such a new score has occurred. It is the responsibility
of the programming environment to figure out that what is important about the current
situation is the posting of a new score. In Wolber and Myers (2001) discuss the problem
of demonstrating when to do something as well as how to do it, under the rubric of
Stimulus-Response Programming by Example.

Again, in the case of failure to recognize the context for a statement, the strategy is
to initiate a dialogue with the user explicitly about in what context the statement is to
be taken.

4.8. OUT-OF-ORDER SEQUENCES AND ADVICE

As noted by Pane and Myers (2004), users tend not to think linearly, and provide
instructions that are not properly ordered, which is why they adopted an event driven
style for HANDS. Sometimes, this is a matter of making assumptions about the temporal
context in which commands will be executed.

Packman gets eaten if a ghost lands in the same space as Packman.
If Packman gets a power pill, then he gets points by landing in the same space as a ghost.

Taken literally as code, these statements are in the wrong order—the condition of
eating the power pill should be checked before deciding what action to take when
Pac-Man and the ghost arrive at the same spot. But the user is adopting the quite
reasonable strategy of telling us what the usual or most common case is first, and only
then informing us about the rare exceptions. The system needs to be able to untangle
such cases.

470 HENRY LIEBERMAN AND HUGO LIU

Other natural language statements provide advice. Advice is not directly executable,
but may affect what gets executed at future points in the interaction. Advice may
incrementally supply parameters or modifiers to other commands. Advice may affect
the level of generality of object descriptions. This is an important style of interac-
tion that is not well supported by current programming methodologies (Lieberman,
2001).

The object of the game is to eat as many dots as you can without getting eaten by the
ghosts.

Some utterances are not actually code themselves, but directives to make edits to the
program.

When monsters are red . . . [they] run . . . to the other side of the screen. Same goes for
Pac-Man.

Here, “same goes” means “write the same code for Pac-Man as you did for the red
monsters.” This suggests that users are assuming a capability for high level program
manipulation, that can, for example, insert statements into already-written code or gen-
erate code from design patterns. The best-known project for providing such capabilities
directly to a programmer is The Programmer’s Apprentice (Rich, 1990).

4.9. MISSING OR CONFLICTING CASES

Because order constraints are more relaxed in a natural language style interaction, it is
often more difficult to determine if all cases have been covered. Of course, even in con-
ventional programming, nothing prevents writing underconstrained or overconstrained
programs. Some software engineering test methodologies for end users do attempt to
infer case coverage in some situations (Ruthruff), and we envision similar techniques
might be applied in our domain.

In an event driven style as advocated by Pane and Myers it is also possible for
handlers of different events to conflict. Graphical- and example-based feedback helps
avoid, and catch cases of, underconstrained and overconstrained situations. We also like
the critique-based interaction found by McDaniel (2001), where directions “stop this”
(for overconstrained situations) and “do something” (for underconstrained situations)
correct the system’s responses.

4.10. CHANGE OF PERSPECTIVE

Users do not always describe things from a consistent viewpoint. They may switch,
unannounced, between local and global viewpoints, between subjective and objective
viewpoints, between the viewpoints of various actors in the program. For example, a
user might say “When you hit a wall . . . ” (you meaning a screen representation of a
game character), and “When you score a point . . . ” (you meaning the human user),
in the same program without warning. Again, this is a form of missing context which

FEASIBILITY STUDIES FOR PROGRAMMING 471

Figure 20.3. Tam et al’s U-Tel lets users annotate text describing a program.

the reader is expected to supply. People do recognize the inherent ambiguity of such
references, so they are often willing to supply clarification if necessary.

5. Annotation Interfaces

Another, less radical, possibility for a natural language programming interface is
to let the user annotate a natural language description. The idea would be for the
user to type or speech-transcribe a natural language description of the program, and
then manually select pieces of the text that correspond to meaningful entities in the
program. This reduces the burden on the system of reliably parsing the text. Such an
approach was taken by Tam et al., (1998) in U-Tel (see Figure 20.3), which has an un-
derlying model-based interface methodology. In the illustration, the full text appears in
the upper left, and highlighted words for “steps,” “actions,” and “objects” are collected
in the other panes.

U-Tel, however, did not construct a complete program; rather it functioned mainly
as a knowledge elicitation aid, and required further action by a programmer conversant
in the Mobi-D model-based formalism.

The annotation approach is attractive in many circumstances, particularly where
a natural language description of a procedure already exists, perhaps for the purpose
of communicating the procedure to other people. We believe the approach could be
extended to support full procedural programming. Other attractive features of this
approach are that it is less sensitive to order, and does not require the system to

472 HENRY LIEBERMAN AND HUGO LIU

understand everything the user says. Even in natural language programming, users
“comment” their code!

6. Note

Portions of this paper were written by dictation into the speech recognition program
IBM ViaVoice, by the first author when he was recovering from hand injuries sustained
in a bicycle accident.

Current speech interfaces are not good enough to perform unaided transcription;
all require a mixed-initiative critique and correction interface to display recognition
hypotheses and allow rapid correction. The author thus experienced many issues sim-
ilar to those that will arise in natural language programming; among them: inherent
ambiguity (no speech program can distinguish between too and two by audio alone),
underspecification and misunderstanding of natural language directives. Although to-
day’s speech interfaces leave a lot to be desired, we were struck by how successfully
the interaction is able to make up for deficiencies in the underlying recognition; this
gives us hope for the approach. We apologize for any errors that remain in the paper as
a result of the transcription.

7. Conclusion

Programming directly in natural language, without the need for a formal programming
language, has long been a dream of computer science. Even COBOL, one of the very
early programming languages, and for a long time, the dominant business programming
language, was designed to look as close as possible to natural language to enhance
readability. Since then, very few have explored the possibility that natural language
programming could be made to work.

In this paper, we have proposed an approach based on advances in natural language
parsing technology, mixed-initiative dialog, and programming by example. To assess
the feasibility of such an approach we have analyzed dialogs taken from experiments
where non-programmer users were asked to describe tasks, and it seems that many
of the important features of these dialogs can be handled by this approach. We look
forward to the day when computers will do what we say, if only we ask them nicely.

Acknowledgments

We would like to thank John Pane and Brad Myers for sharing with us the data for their
Natural Programming experiments.

References

Alam, H., Rahman, A., Tjahjadi, T., H. Cheng, H., Llido, P., Kumar, A., Hartono, R., Tarnikova, Y.
and Wilcox, C. (2002). Development of spoken language user interfaces: A tool kit approach. In:

FEASIBILITY STUDIES FOR PROGRAMMING 473

T. Caelli, A. Amin, R. Duin, M. Kamel and D. Ridder (eds.), Lecture Notes in Computer Science
LNCS 2396, 339–347.

Collins, M. (2003). Head-driven statistical models for natural language parsing. Computational Lin-
guistics 29(4), MIT Press, Cambridge, MA, USA.

Lieberman, H., Nardi, B. and Wright, D. (2001). Training agents to recognize text by example. In:
H. Lieberman (ed.), Your Wish is My Command: Programming by Example, Morgan Kaufmann,
San Francisco, CA, USA.

Lieberman, H. (2001). Interfaces that give and take advice, in human–computer interaction for the new
millenium, John Carroll (ed.), ACM Press/Addison-Wesley, Reading, MA, USA, pp. 475–485.

Lieberman, H. and Liu, H. (2002). Adaptive linking between text and photos using common sense
reasoning. In: De Bra, Brusilovsky, Conejo (eds.), Adaptive Hypermedia and Adaptive Web, 2nd
International Conference, AH 2002, Malaga, Spain, May 29–31, Proceedings. Lecture Notes in
Computer Science 2347 Springer 2002, ISBN 3-540-43737-1, pp. 2–11.

Liu, H., Alam, H. and Hartono, R. Meeting Runner: An Automatic Email-Based Meeting Sched-
uler. BCL Technologies—US. Dept of Commerce ATP Contract Technical Report. Available at:
http://www.media.mit.edu/∼hugo/publications/

Liu, H. (2003). Unpacking meaning from words: A context-centered approach to computational lex-
icon design. In: Blackburn et al. (eds.), Modeling and Using Context, 4th International and
Interdisciplinary Conference, CONTEXT 2003, Stanford, CA, USA, June 23–25, 2003, Pro-
ceedings. Lecture Notes in Computer Science 2680 Springer 2003, ISBN 3-540-40380-9, pp.
218–232.

Liu, H. (2003). MontyLingua: An End-to-End Understander for English. At:
http://web.media.mit.edu/∼hugo/montylingua.

McDaniel, R. (2001). Demonstrating the Hidden Features That Make an Application Work, in Your
Wish is My Command, H. Lieberman (ed.), Morgan Kaufmann, San Francisco, CA, USA.

Pane, J.F., Ratanamahatana, C.A. and Myers, B.A. (2001). Studying the language and structure in non-
programmers’ solutions to programming problems. International Journal of Human-Computer
Studies, 54(2), 237–264. http://web.cs.cmu.edu/∼pane/IJHCS.html.

Pane, J.F. and Myers B.A. (2004). More Natural Programming Languages and Environments, in
End-User Development, Kluwer, Dordrecht, Netherlands.

Rich, C., Sidner, C.L. and Lesh, N.B. (2001). COLLAGEN: Applying collaborative discourse theory
to human–computer interaction. Artificial Intelligence, 22(4), Winter, 15–25.

Rich, C.H. and Waters, R.C. (1990). The Programmer’s Apprentice. Reading, MA, USA: Addison-
Wesley.

Ruthruff, J.R., Prabhakararao, S., Reichwein, J., Cook, C., Creswick, E. and Burnett, M. (in appear).
Interactive Visual Fault Localization Support for End-User Programmers, Journal of Visual Lan-
guages and Computing.

Stocky, T., Faaborg, A., Espinosa, J., Lieberman, H. A Commonsense Approch to Predictive Text Entry,
ACM Conference on Computer-Human Interaction (CHI-04), Vienna, Austria, April 2004.

Tam, R.C., Maulsby, D. and Puerta, A.R. U-TEL: A Tool for Eliciting User Task Models from Domain
Experts. IUI98: International Conference on Intelligent User Interfaces, San Francisco, January
1998, pp. 77–80.

Wolber, D. and Myers, B. (2001). Stimulus-Response PBD: Demontrating “When” as Well as “What”,
In: H. Lieberman (ed.), Your Wish is My Command, Morgan Kaufmann, San Francisco, CA, USA.

Yates, A., Etzioni O. and Weld, D. (2003). A Reliable Natural Language Interface to Household Ap-
pliances, Conference on Intelligent User Interfaces, Miami, Florida. Association for Computing
Machinery, New York, NY, USA.

Chapter 21

Future Perspectives in End-User Development

MARKUS KLANN1, FABIO PATERNÒ2 and VOLKER WULF3

1Fraunhofer FIT, Schloß Birlinghoven, 53754 Sankt Augustin, Germany,
markus.klann@fit.fraunhofer.de
2ISTI—CNR, Via G. Moruzzi 1, 56124 Pisa, Italy, fabio.paterno@isti.cnr.it
3University of Siegen, Hölderlinstr. 3, 57068 Siegen and Fraunhofer FIT, Schloß
Birlinghoven, 53754 Sankt Augustin, Germany, volker.wulf@uni-siegen.de

Abstract. The research field of end-user development has evolved, during recent years, to a certain
degree of internal structure, problem awareness and consistency. Both academia and industry have
begun to consider it an important field for research and development. In order to let EUD research
contribute to the Information Societies, research and development must continue in a consolidated
and well-balanced way. This chapter provides an overview of major challenges, motivates why these
challenges should be addressed with considerable effort to bring about an Information Society with
empowered end-users, and finally discusses how these challenges should be translated into a concrete
research and development agenda for the short- and mid-term future.

Key words. tailorability, end user programming, flexibility, usability

1. Introduction

This concluding chapter presents the most important aspects for future EUD research
and development, and tries to identify the principle lines along which EUD should or
will most likely unfold. Being a relatively young field, EUD is yet rather diversified in
terms of terminology, approaches and subject areas considered. Recently, a number of
activities started within academia and industry to gain a better understanding of this
field, consolidate the terminology and identify the most urging research questions.

In the center of EUD are the users who change IT-systems to better meet their re-
quirements. As such, EUD defines a specific perspective on the practical application
level of IT-systems, rather than a specific set of technological or methodological ques-
tions concerning such systems. EUD has its roots in various disciplines and fields of
research, including HCI, cognitive science, requirements engineering, software engi-
neering, artificial intelligence, CSCW, user communities, information systems, and the
psychology of programming. EUD can be considered a focus in the application do-
main, bringing together the various more specific or technical research done in these
fields into one approach of high practical relevance. Increased networking between key
players in research and industry is thus a prerequisite for developing interdisciplinary
solutions and marketable products.

The environments IT-systems are operating in are increasingly characterized by
change and diversity. As an example, networked mobile devices and computerized

Henry Lieberman et al. (eds.), End User Development, 475–486.
C© 2006 Springer.

476 MARKUS KLANN ET AL.

artifacts will enable computing anywhere and anytime in rapidly changing and diverse
contexts of use. Also, IT-systems are used by heterogeneous groups of people, having
diversified requirements that depend on the users’ level of expertise, current task and
other factors. Systems should adapt to these changing contexts and requirements. It is
the goal of EUD to empower users to carry out and control these adaptations themselves.

Flexibility at this level, necessitating highly adaptable systems as well as users willing
and capable of these adaptations, would allow for what may be EUDs central goal: a
co-evolution of users and IT-systems through mutual adaptation to share a common
context.

In the following we will look at a number of aspects that are important for EUDs
future development. In particular we will discuss the needs of users and the software
industry, areas of application, important technical requirements, appropriate methods,
and design criteria. Finally, we will present a roadmap for EUDs development until
2020, pointing at some of the probable milestones and discussing how the unfolding
Information Society relates to this process.

2. How to Carry on With EUD

A major goal of research on EUD is to provide techniques to make IT-systems cope with
changes. Quite generally, this means making them easier to develop, including setting
up the initial design before use, as well as modifying them during use. In order to adapt
IT-systems to their needs, individuals have to invest time and attention that they would
normally focus on the task at hand, and being responsible for their operations they run
the risk of committing errors. Accordingly, research on EUD has to provide the means
for end-users to understand the consequences of their EUD operations, carry them out as
safely as possible, and exercise an appropriate level of control. Also, end-users must be
motivated to pay the (cognitive) cost of performing EUD operations. To this end, EUD
research has to find ways of keeping these costs at a minimum, to make operations
intuitive, to provide assistance and to make the benefits transparent and assessable.
Possibly, incentive systems could be used to encourage people in carrying out EUD
activities. Another issue to be resolved is that EUD beyond a certain level of complexity
will require people to acquire voluntarily additional skills beforehand. Finally, doing
EUD in collaboration with other people will involve new communication and work
processes, as well as privacy issues, for which research will have to provide solutions.

What seems to be clear is that good environments for end-user development (EUD)
will differ from tools conventionally used in software engineering because of the dif-
ferent needs of end-users and organizations running EUD-systems. Within organiza-
tions, for example, there is particular need for support of collaborative EUD activities.
Nonetheless, it is of course a promising approach to investigate what methods and
tools from professional software engineering can be adapted to the needs of end-user
developers.

Before starting with specific research topics, let’s take a look at three more general
requirements EUD research should comply to.

FUTURE PERSPECTIVES IN END-USER DEVELOPMENT 477

1. Research should be driven by sound theoretical assumptions about user needs.
These assumptions can be identified and refined by a variety of methods: situated
(ethnographical) analysis, prototype-led development of future scenarios, task anal-
ysis, cognitive modelling, and both successful and failing case studies.

2. There is a strong consensus for the need of a sound empirical base. These may be
conducted to determine people’s EUD behavior (e.g. their motivation), to investigate
the long-term changes of IT-systems and the contexts of use, to validate methodology,
tools and representational formats, and to study the impact of EUD on conventional
software engineering processes.

3. EUD research must find good solutions for a number of trade-offs created by empow-
ering end-users to carry out substantial adaptations of IT-systems at a complexity-
level no higher than needed for the task at hand. These trade-offs exist between
expressiveness, freedom, and being general-purpose on the one hand and usability,
learnability, control, and being domain-specific on the other.

In the following, we shall present a number of areas that are important for current
and future EUD research.

2.1. APPLICATION DOMAINS FOR EUD

A survey questionnaire filled out by several parties from both academia and industry
indicated that office, home, and research are considered the most promising application
domains for EUD (Costabile and Piccinno, 2003). Other application domains, not
listed in the questionnaire, were also pointed out: education (indicated by most people),
decision analysis, and the medical domain. We will take a brief look at some of these
application domains.

In their homes people are likely to interact with more and more electronic devices
that will become interconnected and much more flexible in the near future. This will
create a mass-market where people will want to adapt systems to their specific context
and requirements and where they will value personalized, adaptive, and anticipatory
system behavior. Such contextually embedded or “social devices” are obviously a hot
spot for EUD research. Particularly interesting is the question of how to deal with
adapting shared resources through collaborative EUD techniques such as negotiation
and conflict resolution.

Another interesting application domain is industrial design in manufacturing enter-
prises, usually supported by CAD systems, with evident potential for improving finan-
cial and quality aspects of their development process. Designers as end-users, who have
deep knowledge of their specific environment and who are not professional developers,
must be supplied with visual development tools to adapt their design systems to their
needs.

In the scientific domain there is a lot of interest in EUD. For example in biology,
experience acquired at the Pasteur Institute in Paris during several years indicates that
in the field of biology applications there are many local developments in order to deal

478 MARKUS KLANN ET AL.

with daily tasks, such as managing data, analyzing results, or testing scientific ideas
(cf. Letondal, in this volume). Moreover, it is worth mentioning that many biologists
have no or very limited programming skills, and yet feel the need of modifying the
application they use to better fit their needs.

Enterprise Resource Planning (ERP) is an important sector in the software indus-
try. Again, leading companies in the market have recently realized the importance of
end-user concepts that allow various types of users of large ERP systems to modify the
software in order to obtain systems more suitable for their actual needs (cf. Beringer,
2004). Over the past years, we have seen a significant change in the expectation of busi-
ness applications. Traditional ERP applications gravitated very much around one single
functional area and the dominant user scenarios were data entry, reporting, and ERP
workflow. This simplified user model is not sufficient for modern business solutions
like Customer Relationship Management, Human Capital Management, Knowledge
Management, and Supplier Relationship Management. In these systems, the user is
an active knowledge worker who needs communication tools, analytics, content man-
agement, and ad-hoc collaborative workflow and the capability of tailoring the sys-
tem to his own needs. At the same time, the total cost of ownership (TCO) of ERP
software becomes the main competitive argument. TCO can only be reduced by dra-
matically simplifying the customization process and by enabling business experts and
end-users to modify the software themselves without the need of hiring IT consultants
or IT-administrators (cf. Beringer, 2004; Wulf and Jarke, 2004). Already today, En-
terprise Portals offer the personalization or creation of custom-made web pages and
reports. Last but not least, companies such as SAP see a shift into a service-based
architecture of business applications that may result in a new application develop-
ment paradigm in which traditional coding is replaced by orchestration of existing
enterprise services. Service composition including generation of user-interfaces may
become an activity of business experts using simplified development environments
with pre-packaged semantics. Considering these changes in the user model of ERP
software, such companies see an increasing relevance of EUD-functionality in their
products.

Another application domain is the one related to systems supporting data intensive
businesses like telecommunication, e-government or banking. Computer applications
become integrated in infrastructures connecting different work practices within and
across organizational borders. The flexibility of such infrastructures is of strategic
importance when developing new services. Often the need to redevelop part of the
computer support to accommodate business or organizational development prohibits
the entire development. Thus, tailorable systems and domain specific EUD provide a
competitive advantage.

2.2. ARCHITECTURES AND GENERAL EUD FUNCTIONALITY

The recurrent theme of EUD is that end-users should be empowered to make substan-
tial adaptations to IT-systems easily. The answer to the apparent contradiction is that

FUTURE PERSPECTIVES IN END-USER DEVELOPMENT 479

there should be means of adaptation that are comparable in complexity to the problem
at hand. This means that end-users will generally not program in a conventional pro-
gramming language but will use higher-level means of adaptation that can do the job
but are otherwise as simple as possible. The thing to observe here is that ultimately the
modified system must be executed regardless of the means by which adaptations were
carried out. Hence, allowing for adaptations from an ideally gentle slope of adaptation
complexity to consistently and safely change a system’s run-time behavior requires an
appropriately specialized system architecture. For EUD to become a widespread suc-
cess such architectures must become generally available in the form of frameworks to
substantially facilitate the development of EUD-enabled systems.

There are a number of additional requirements that EUD architectures must provide
for others than the adaptations as such. One is that EUD-systems must remain maintain-
able and interoperable in the face of run-time changes. Another is that EUD-systems
should allow for reflexivity and inspection to make users understand the current system
status and enable them to assess the consequences of their adaptation activities. Finally,
knowledge on the relation between adaptation operations and system properties should
be used as much as possible to analyze adaptation operations and restrict those that are
insecure or otherwise undesirable.

One promising approach is to add a model-layer to the architecture of IT-systems
allowing for relatively easy modifications of the underlying system. A similar approach
is not to build-in the system behavior into the actual architecture and implementation,
but to separate it into a sort of meta-description, which the system interprets during
run-time.

Component-based EUD systems are another promising approach, allowing for a
gentle slope of complexity by way of successive decomposition of components in
case the overall component structure has been properly designed (cf. Won et al., in
this volume). One challenge here is to find “patterns of decomposition” that facilitate
finding appropriate component structures when designing new applications (cf. Stevens
et al., in this volume). Another challenge is to combine general component interfaces,
which may not be very intuitive to end-users, with domain-specific components, which
users know how to handle within their domain of expertise.

The architectural challenge for EUD-enabled systems becomes particularly apparent
in the vision of ubiquitous computing. Here, an array of distributed and interconnected
devices is supposed to create and provide in an ad-hoc way a consistent, personalized,
and context-sensitive service to its users. The context of use can be considered as the
combination of the user (with his background, interests, tasks, . . .), the surrounding
environment, and the devices at hand. While adaptivity and self-configuration can
certainly carry a long way, user-driven adaptability remains crucial so that users can
fine-tune the system to their work practices, business goals, etc. These adaptation
activities will also enhance the users’ competence and support their understanding of
the system. An example in this direction is the TERESA environment (Mori et al.,
2003) that provides support for the design and development of nomadic applications,
which can be accessed through different types of interaction platforms.

480 MARKUS KLANN ET AL.

2.3. USER INTERFACES

As EUD wants to empower end-users to perform substantial modifications to IT-
systems, while at the same time not hampering them in their every-day work, extending
user-interfaces with EUD-functionality is as important as it is difficult. Users must be
able to understand and assess the existing systems and to specify and test their own EUD
operations. In order to enable end-users to go from the running system to a change-
able representation and back again, EUD-environments must support both reverse and
forward engineering processes. Also, representational formats must be devised that
are especially suitable for end-users, keeping them from making errors typical of con-
ventional programming languages. Research is necessary on creating and evaluating
domain-specific and graphical (2D and 3D) formats. Interfaces should proactively assist
the user to explore and understand the systems and to create and annotate new EUD ar-
tifacts. To this end, various interesting approaches exist, like “interactive microworlds,”
zoomable multi-scale interfaces, tangible user-interfaces (TUIs), augmented reality
(AR), etc. Another requirement is that EUD functionality has to be presented as un-
obtrusively as possible and only when needed, so as to deviate as little of the users’
attention as possible from their primary task.

Generally speaking, interfaces and representational formats play an important role in
mediating communication processes between different actors, like software profession-
als and end-users during initial system design as well as between groups of end-users
during cooperative EUD activities.

2.4. COOPERATIVE ACTIVITIES AND ORGANIZATIONAL SETTINGS

Cooperation is an essential part of EUD. Future research will have to investigate ef-
fective means for communities of end-users to communicate about their adaptation
problems, negotiate solutions, and share both their EUD expertise and reusable EUD
artifacts. Cooperation on EUD activities is largely a social phenomenon and research
will have to understand how an appropriate EUD culture can be fostered by incentive
mechanisms, trust building, and community awareness.

As with any cooperation the organizational context must be taken into account when
developing and deploying EUD systems. They must be properly embedded into their
organizational environment to be interoperable with existing IT-systems, and thus to
fully exploit the benefit of widespread EUD activities within the organization and to
motivate end-users to actually carry out such activities. Conversely, EUD will have
an impact on organizational structure and processes, allowing faster and more precise
adaptations of IT-systems to support, for example, the setting up of project-specific
team structures and collaborative processes. Research is needed to determine how
organizations must change to exploit the full potential of EUD for becoming more
flexible and powerful.

One of the difficulties associated with EUD-software used within organizations is that
administration and support of the software has to deal with a system that is continuously

FUTURE PERSPECTIVES IN END-USER DEVELOPMENT 481

changing through its users’ adaptations. For such changing EUD-systems new ways of
professional IT-services must be developed that go beyond the “If you change it, we
won’t support it!” mind-set while still being manageable for the service providers. One
first step is to restrict the number of potentially hazardous end-user adaptations by
defining and enforcing certain desired system properties, such as consistency.

2.5. THE ROLE OF ADAPTIVITY

As noted above, interfaces should provide users only with such an amount of EUD-
functionality that is appropriate to their current context. In particular, for normal use
requiring no adaptations, interfaces should rather hide EUD-functionality and may just
offer a specific access point, for instance via the context menu. Moreover, systems
may proactively assist their users by adapting themselves automatically if sufficient
information is available, or at least generate suggestions for partial solutions for the
users to choose from. In order to do this, research is needed on how systems can build
up a knowledge base by monitoring their environment (e.g. user, task, place, time, etc.)
and on how this context-awareness can be turned into adaptive system behavior (cf.
Dey and Sohn, 2003). One promising approach is to investigate how an EUD-system
might build-up a history of its own use and of the EUD operations it has been subjected
to and to generate suggestions for future EUD operations in similar situations.

2.6. QUALITY ASSURANCE

Giving end-users the means to substantially alter IT-systems goes with the risk of having
them produce erroneous adaptations. While it is possible to reduce this risk by properly
designing the means for EUD operations, errors cannot be ruled out altogether. But it
is possible to assist the end-users in detecting and correcting errors, by continuously
monitoring and checking different system properties like coherence, consistency, and
correctness, alerting the user in case an error has been detected and possibly making
suggestions on how to correct it (cf. Burnett et al., in this volume; Won, 2003). To reduce
the damage caused by errors, EUD-systems should provide some sort of “simulation
environment” where users can test their modifications without risk (cf. Wulf, 2000).
Moreover, systems should provide an undo-mechanism, so that users can easily and
confidently reverse their operations. Finally, a more social mechanism of making the
reliability of already existing EUD artifacts assessable to the users is to annotate the
artifacts with information about their creator(s) and about their history of use (e.g. uses,
malfunctions, and ratings) (cf. Costabile et al., 2002; Wulf, 1999). Research on these
topics is needed to provide what might be called “quality assurance” for EUD.

2.7. INDUSTRIAL PERSPECTIVES

Understandably, industry players interested in EUD are looking for practical applica-
bility and fast deployment, while not being enthusiastic about major changes to their

482 MARKUS KLANN ET AL.

development processes. As explained above, this can be done by integrating EUD with
existing development practices. Nonetheless, finding the right processes and organi-
zational structure for EUD development, and making appropriate changes will still
be necessary. To this end, results from EUD research must be validated in real-world
projects within the industry and the acquired experience must effectively be dissemi-
nated in adequate communities within industry and research. An example of a promising
area for EUD applications of industrial interest is that of services for mobile devices.
In the near future many people will access interactive software services through their
mobile phones or PDAs. It will become important that such services will be modifiable
and adaptable. Users should be enabled to carry out certain of these adaptations even
by means of their mobile devices overcoming the limits of the limited input and output
interfaces.

One specific field of industrial interest is to use results from EUD to foster the
understanding of existing IT-systems and support the integration of new applications
by generating comprehensible representations at an appropriate level of complexity.

Generally speaking, the industry will have to find out how the promising potential of
EUD translates into concrete market opportunities for profitable products and services.
This concerns the costs of providing EUD systems, and, for example, whether there is
a market for selling software components that can be used and adapted in such EUD
systems. Competition between various component vendors may cause interoperability
issues, when, for example, one vendor will add proprietary extensions to his components
to defend or extend his market share. This has not been uncommon in the software
industry and as it constitutes a serious threat to a widespread success of EUD, industrial
standardization efforts are crucial.

3. An EUD-Roadmap to an Information Society With Empowered
End-Users

In order to outline a roadmap for research in EUD, as illustrated in Figure 21.1, we
suggest here to focus on three intertwined lines of research: software architectures,
interfaces, and support for collaboration.

Starting with the current state of EUD, we discuss what research activities could
reasonably be carried out until about 2007, what status would then be reached, and how
research could continue until 2012. As for the predictions for 2012 and 2020, they are
obviously rather general in nature and do not yet include concrete recommendations
for research activities. Rather, they deal with the impact of EUD on the Information
Society, state possible applications and societal aspects and make guesses on what EUD
goals might be achieved at the corresponding time.

With regard to software architectures a number of different approaches exist in re-
search (e.g. agent-based, component-based, and rule-based). However, empirical knowl-
edge on suitability in real-world settings is still insufficient. A major challenge is to
refine existing approaches and to develop new architectures permitting both systems
and users to evolve. The combination with conventional architectures and the adaptation

FUTURE PERSPECTIVES IN END-USER DEVELOPMENT 483

Figure 21.1. The future of end-user development.

of the respective development processes have to be investigated. Moreover, one has to
look into the suitability of different EUD-architectures to support run-time changes
with a gentle slope of complexity. Case studies need to show the suitability of these
frameworks for different application domains.

With regard to interfaces, research has been carried out on various interface tech-
niques, for example, Augmented Reality and Tangible User Interfaces. One of the main
goals of current research in user interfaces is to obtain natural interaction, where users
can interact with their applications in a way similar to how they communicate with
other humans. This paradigm can be successfully applied to EUD. Natural develop-
ment (Berti et al., 2004) implies that people should be able to work through familiar
and immediately understandable representations that allow them to easily express rel-
evant concepts, and thereby create or modify applications. On the other hand, since
a software artifact needs to be precisely specified in order to be implemented, there
will still be the need for environments supporting transformations from intuitive and
familiar representations into precise—but more difficult to develop—-escriptions. Ex-
amples of informal input for more structured representations are sketches on board
(Landay and Myers, 2001). For example, non-programmer users feel comfortable with
sketch-based systems that allow them to concentrate on concepts by exploiting natural
interactions, instead of being distracted by cumbersome low-level details required by
rigid symbolisms. Such systems are generally able to recognize graphical elements
and convert them into formats that can be edited and analyzed by other software
tools.

484 MARKUS KLANN ET AL.

New UI-techniques, for example, combining adaptability and adaptive context-
sensitive system behavior (Klann et al., 2003), need to be developed. Moreover, in-
terfaces need to be developed that make EUD-functionality available with a gentle
slope of complexity.

Collaborative aspects have been taken up in research as a key element of EUD
(e.g. gardening-metaphor). However, empirical knowledge on collaborative EUD is
still insufficient and implementations of collaborative EUD-functionality are only in
their beginnings. Therefore, concepts for collaborative EUD have to be developed.
Conventions and standards for describing EUD artifacts have to be worked out to make
them exchangeable, for example, with regard to quality, recommendations, and purpose.
Based on such conventions, EUD-artifacts can be described and placed into repositories
for sharing. Software agents should be able to recommend suitable artifacts available
from such repositories.

Looking toward 2012, we believe that architectural frameworks, decomposition tech-
niques, patterns, interfaces, and tools for collaboration support can exist in a consoli-
dated and integrated manner. End-users will be supported by tools for exploring, testing,
and assessing while carrying out EUD activities. Cases of best practices will have been
documented to explain EUD as an activity that is embedded in social networks. Concepts
to acquire EUD-skills will be integrated into educational curricula. EUD will become
an important aspect of applications in most domains: education, scientific research (e.g.
bioinformatics), business (CAD, ERP, GIS), and domestic domains.

Toward 2020, substantial adaptability has become a property of all newly developed
software systems. Adaptable software-systems have penetrated into all domains, for
example, business, leisure, home, culture. Most people have skills in EUD. EUD has
become an important activity for most jobs and for the majority of people. A high
level of adaptivity in all devices is a big part of what is called “Ambient Intelligence.”
EUD has gained central importance in the application of information technology and
the use of EUD techniques has become a common practice for users of all ages and
professional background. EUD has become an integral aspect of their cultural practices
and appropriation of IT.

4. Conclusion

EUD can be seen as an important contribution to create a user-friendly Information
Society, where people will be able to easily access information specific to their current
context and to their cognitive and physiological abilities or disabilities. People will
have access to adapt IT-systems to their individual requirements, and if all actors will
be involved the design of IT-systems will find a higher common acceptance. Providing
end-users with effective development environments is therefore one strategic goal for
the European Information Society.

On the economic side, EUD has the potential to enhance productivity and to create
a competitive advantage by empowering employees to quickly and continuously adapt
IT-systems to their specific business requirements.

FUTURE PERSPECTIVES IN END-USER DEVELOPMENT 485

As Figure 21.1 shows, the road to achieving an EUD enabled Information Society is
still long, even if prototypes, mainly research ones, have already appeared. Particularly
challenging areas that will be addressed in the near future are novel interface tech-
niques for EUD, integration of context-awareness and adaptability, effective sharing of
EUD artifacts through repositories with recommendation support, and decomposition
guidelines for flexible component-based systems. Quite generally there is further need
for theoretical research on the foundations of EUD as well as applied research to gain
experience in and develop methods for EUDs various application domains.

The ultimate goal is to provide end-users with non-intrusive, “invisible” support for
their developments and thus empower them to use their domain specific know-how to
shape the IT tools to better support them in their daily practices. As such, EUD will
become an integrative part of our cultural practices and should be considered part of a
comprehensive computer literacy.

Acknowledgments

Our understanding of the research field of EUD and the problems associated with
its industrial uptake, as expressed in this chapter, was substantially deepened by the
valuable discussions we had within the context of the EUD-Net project. At several
events organized by EUD-Net a number of participants from outside the project made
further important contributions to this discussion. We thank everybody from academia
and industry who shared their approaches and experiences with us.

References

Arondi, S., Baroni, P. et al. (2002). Supporting co-evolution of users and systems by the recognition
of Interaction Patterns. AVI 2002, Trento, Italy.

Beringer, J. (2004). Reducing expertise tension, in communications of the ACM. 47(9), 39–40.
Berti, S., Paternò, F. and Santoro C. (2004). Natural development of ubiquitous interfaces. Commu-

nications of the ACM (September), 63–64, ACM Press.
Boehm, B.W., Abts, C. et al. (2000). Software Cost Estimation with COCOMO II. Upper Saddle River,

NJ: Prentice Hall PTR.
Burnett, M., Rothermel, G. and Cook, C. (in this volume). An Integrated Software Engineering

Approach for End-User Programmers.
Cockburn, A. (2002). Agile Software Development, Addison Wesley.
Costabile, M.F., Fogli, D. et al. (2002). Computer environments for improving end-user accessibility.

ERCIM Workshop “User Interfaces For All”, Paris.
Costabile, M.F., Fogli, D. et al. (2003). Building environments for end-user development and tailoring.

IEEE Symposia on Human Centric Computing Languages and Environmnets, Aukland.
Costabile, M.F. and Piccinno A. (2003). Analysis of EUD Survey Questionnaire, D4.2, EUD-Net.
Dey, A.K. and Sohn, T. (2003). Supporting end user programming of context-aware applications.

Workshop on End-User Development at CHI 2003, Fort Lauderdale, Florida.
Henderson, A. and Henderson, K.M. (1991). There’s No Place Like Home. Continuing Design in Use.

Design at Work, Lawrence Erlbaum Assoc., 219–240.
Klann, M., Eisenhauer, M. et al. (2003). Shared initiative: Cross-fertilisation between system adap-

tivity and adaptability. UAHCII 2003, Crete.

486 MARKUS KLANN ET AL.

Landay, J. and Myers, B. (2001). Sketching interfaces: Toward more human interface design. IEEE
Computer 34(3), 56–64.

Lehman, M. (1980). Programs, Life Cycles, and Laws of Software Evolution. IEEE 68.
Letondal, C. (2001). Programmation et interaction, Phd-thesis, Orsay, Université de Paris XI.
Letondal, C. (in this volume). Participatory Programming: Developping Programmable Bioinformat-

ics Tools for End-Users in context.
Liebermann, H. (2001). Your Wish is My Command: Programming by Example. Morgan Kaufmann,

San Francisco.
Majhew, D.J. (1992). Principles and Guideline in Software User Interface Design, Prentice Hall.
Mehandjiev, N. and Bottaci, L. (1995). End user development with visual programming and ob-

ject orientation. 1st International Workshop on End User Development at CaiSE’95, Juvaskyla,
Finland.

Mehandjiev, N. and Bottaci, L. (1996). User-enhanceability for organizational information systems
through visual programming. Advanced Information Systems Engineering: 8th International
Conference, CAiSE’96, Springer-Verlag.

Mørch, A.I. and Mehandjiev, N.D. (2000). Tailoring as collaboration: The mediating role of multiple
representations and application units. Computer Supported Cooperative Work 9(1), 75–100.

Mori, G., Paternò, F. and Santoro, C. (2003). Tool support for designing nomadic applications. In:
Proceedings ACM IUI’03, Miami, pp. 141–148, ACM Press.

Oppermann, R. and Simm, H. (1994). Adaptability: User-initiated individualization. Adaptive User
Support—Ergonomic Design of Manually and Automatically Adaptable Software. R. Oppermann.
Hillsdale, New Jersey, Lawrence Erlbaum Ass.

Orlikowski, W.J. and Hofman, J.D. (Pipek 1997). An improvisational model for change man-agement:
The case of groupware technologies. Sloan Management Review, pp. 11–21.

Paternò, F. (1999). Model-Based Design and Evaluation of Interactive Applications, Springer Verlag.
Repenning, A., Ioannidou, A. et al. (2000). AgentSheets: End-user programmable simulations. Journal

of Artificial Societies and Social Simulation 3(3).
Stevens, G., Quaißer, G. and Klann M. (in this volume). Breaking it Up—An Industrial Case Study

of Component-based Tailorable Software Design.
Sutcliffe, A., Lee, D. et al. (2003). Contributions, costs and prospects for end-user development. HCI

International 2003, Crete, Greece, Lawrence Erlbaum Associates.
Won, M. (2003). Supporting end-user development of component-based software by checking se-

mantic integrity. ASERC Workshop on Software Testing, Banff, Canada.
Won, M., Stiemerling, O. and Wulf, V. (in this volume). Component-based Approaches to Tailorable

Systems.
Wulf, V. (1999). “Let’s see your Search-Tool!”—Collaborative Use of Tailored Artifacts in Groupware.

In: Proceedings of GROUP ’99, ACM-Press, New York, 1999, pp. 50–60.
Wulf, V. (2000). Exploration environments: Supporting users to learn groupware functions. Interacting

with Computers 13(2), 265–299.
Wulf, V. and Jarke, M. (2004). The economics of end user development. Communications of the ACM

47(9), 41–42.

Index

abstract syntax, 94, 95
abstraction, 18, 21, 80, 125, 147, 151–154,

175–177, 178, 180, 186, 214, 215, 237,
296, 329, 330, 347, 361–363

accountability, 337, 384, 385, 431
adapter objects, 120
adaptive, 3–5, 8, 184, 200, 247–249, 295,

296, 298, 300, 302, 304, 306, 308, 310,
387, 399, 429, 431, 467, 468, 477, 481, 484

ADOS-X, 285, 286, 287
affordances, 61, 227, 338
agency patterning, 448, 452, 453
agents, 51, 55–57, 62, 70, 71, 74, 76, 79, 81,

82, 134, 135, 423, 484
AgentSheets, 8, 15, 51–53, 55–66, 69–76,

79–82, 251, 382, 399, 428, 437
aggregate operations, 39, 44–47
Agile Software Development, 341
AI Complete, 459
alarm clock, 245, 246
ambient intelligence, 243, 249, 484
analogies, 66, 67, 68, 186, 414
analogy, 23, 67, 68, 183, 191, 219, 246
animation, 36, 45, 61, 75, 251, 252, 259–261,

264–266, 337, 440
annotation, 3, 4, 66, 133, 191, 192, 195–199,

202, 218, 335, 471
API, 118, 119, 233
application units, 8, 213, 236, 307, 330
appropriation activities, 315, 338
artificial intelligence, 3, 56, 475
ASN.1, 304
assertions, 87, 88, 93, 94, 95, 96, 98, 99, 100,

101, 102, 103, 106, 107
Attention Investment, 21, 22, 23, 25, 88, 98,

102
automatic test generation, 87
A-Volve, 441, 443

back office system, 295, 297
Behavior Exchange, 56, 81
Behavior Wizard, 79, 80
behavioral rules, 248, 249

Billing Gateway, 295, 296, 302, 303, 304,
307, 308, 309, 310, 311

bioinformatics, 189, 207, 209–211, 214,
226–228, 230, 232, 233, 388, 390, 484

biok, 191, 207, 208, 213, 218–232, 235, 237
biologists, 189–191, 207–222, 225–227, 231,

232, 237, 238, 385, 478
BITPICT, 15, 252
Blocking Technique, 105, 106
BSCW Shared Workspace, 324
Business Components, 351
business requirements, 296, 374, 484
Buttons, 72, 116, 120, 193, 213, 324

C++, 34, 47, 216, 299, 305, 306
CAMELEON, 153
CDR, 304
cellphone, 155, 156, 157
change management, 387, 389
client server architecture, 123
closed systems, 428, 430, 435, 438, 444, 454
CoCoWare, 135
co-creation, 427, 431, 439, 448, 450, 452, 454
co-developers, 427, 429, 431
co-evolution, 183, 186–189, 195, 200, 202,

207, 452, 453, 476
Cognitive Dimensions, 22, 23, 52, 88, 398
cognitive neuroscience, 10
cognitive psychology, 9, 10, 25
collaboration, 6, 8, 82, 162, 273, 276,

315–322, 324, 328, 330, 331, 334, 337,
341, 342, 351, 352, 356, 357, 359,
365–367, 388, 437, 439, 441, 443, 454,
476, 482, 484

collaboration by dependency, 351, 359
collaboration by design, 352, 359
collaborative synchronicity, 442
collaborative tailoring, 8, 115, 137, 315–342
collaborative tool, 162, 320, 321, 329, 389
collaborative work practices, 449
communication processes, 402, 404, 480
communicative goals, 404, 409
community of practice, 341, 350, 365

488 INDEX

component repositories, 131, 352, 454
components, 4, 20, 41, 43, 58, 61, 64, 68, 69,

71, 72, 74, 75, 81, 88, 89, 98, 101, 115,
117–137, 165, 168, 169, 173, 179, 180,
188, 193, 213, 221, 222, 232– 237,
269–273, 276–278, 282–285, 288–292,
302, 327, 337, 347, 348, 351–368,
411–417, 427, 430, 438, 440, 451, 479,
482

Comp-Rep, 352, 353, 354, 355, 356, 358,
359, 362, 363, 364

computational complexity, 416
Computer-Supported Collaborative Learning,

339
constraints, 5, 22, 24, 128, 129, 130, 150, 172,

177, 191, 211, 219, 253, 255, 296, 301, 302,
308, 310, 356, 402, 412, 463, 464, 465, 470

consultants, 209, 279, 350, 353, 356, 357,
375, 478

consumer electronics, 249
context-aware, 247, 248, 249, 481, 485
continuous rewriting, 257, 266
contract handler, 295, 297, 298, 299, 302,

307, 308, 310
control and risk (EUD), 379
co-operative method development, 299
COTS, 347, 348, 357, 358, 359, 360, 368,

382
courses-as-seeds, 444
creativity, 246, 361, 401, 425, 439, 442, 443,

444, 446, 447, 448, 450, 452, 454
Creator, 64, 251, 252
cross-platform, 162, 168, 180
CSCW, 1, 3, 5, 134, 136, 235, 271, 329, 330,

334, 475
CTTE, 143, 144, 147, 148, 149, 151, 152,

157
culture, 132, 137, 183, 186, 187, 194–196,

200, 321, 322, 324, 357, 359, 363, 365,
368, 375, 382, 385, 386, 387, 390, 398,
404, 405, 421, 423, 436, 444, 449, 450,
454, 480, 484

customization, 3, 8, 79, 116, 166, 190, 192,
201, 212, 233, 236, 284, 387, 402, 403,
409, 416, 419, 423, 424, 437, 478

DARWIN, 121, 135, 233
database, 36, 37, 40, 161, 162, 164, 167, 168,

169, 170, 173, 174, 175, 176, 177, 178, 179,
180, 190, 210, 217, 225, 281, 284, 285,
289, 297, 298, 299, 300, 301, 309, 341, 390

dataflow, 88–92, 99, 105, 223, 233, 303, 305,
308

debugging, 25, 32, 47, 69, 71, 72, 87, 89, 92,
96, 106, 168, 178, 179, 180, 221, 225, 228,
229, 230, 300, 306

decomposition, 4, 118, 137, 272, 273, 282,
288, 307, 479, 484, 485

Deconstruction Kits, 56
dependencies, 23, 64, 91, 117, 277, 321, 322,

334, 336, 389
design as discovery, 347, 360, 361, 363, 365
design for change, 295, 297, 302, 427, 431
design patterns, 16, 58, 309, 470
development cycle, 2, 144
d-expert, 184, 185, 189, 190, 191, 192, 193,

195, 200, 201, 202
dialogue management, 461
dicing, 104, 105
discourse process, 332
Disincentives, 373
Distance Learning, 56
distributed tailoring, 120, 132, 367
diversity, 1, 2, 6, 7, 183, 187, 189, 191, 194,

202, 273, 475
DNA, 190, 209, 210, 217, 219, 221
documentation, 14, 24, 72, 73, 133, 189, 200,

208, 209, 225, 228, 278, 280, 306, 309,
310, 312, 348, 352, 353, 357, 358, 361

domain experts, 2, 145, 184, 189, 190, 192,
195, 388, 429

domain orientation, 65, 66, 82, 227, 329
domain-oriented design, 201, 388, 427, 432,

437
du-adequacy criterion, 91
DUP, 304, 305, 306, 309
DVD, 247

economic incentive, 449
EcoWorlds, 64
Educational Games, 56
EJB, 351
Electronic Café, 440, 443
Electronic Program Guide, 248
embedded systems, 243
embeddedness, 431, 443
Emotional seeding, 448, 452, 453, 454
Emotions, 245, 448, 450, 452
Empirical Studies of Programmers, 9, 14, 22,

31, 93, 165
End-User Discovery, 360
Enterprise Resource Planning, 478
Envisionment and Discovery Collaboratory,

427, 437, 438, 444
Ericsson, 302, 304, 306, 308, 309
ERP, 1, 382, 478, 484

INDEX 489

errors, 5, 17, 21, 31, 33, 35, 39, 59, 82, 103,
129, 130, 145, 149, 184, 219, 225, 301,
312, 381, 387, 459, 472, 476, 480, 481

espoused theory, 275, 276
ethnographic methods, 269, 275, 276
Ethnographic studies, 292
ethnomethodology, 10
EUD-Net, 6, 7, 184, 185, 188, 203,

485
EUSES, 6, 48, 107
event flow integrity, 130
event notification, 331
event-based, 38, 42, 43, 44, 89, 119, 120, 130,

135
everyday life, 243, 244
evolution, 6, 183, 186–191, 195, 200–202,

207, 208, 218, 232, 271, 302, 347, 348,
382, 401, 427–429, 434, 435, 441–444,
448, 452, 453, 476

evolutionary development, 163
Excel, 18, 24, 89, 107, 108, 109, 398

fail-soft, 459, 460
fault localization, 87, 88, 103, 104, 106,

107
feedback, 18, 23, 52, 61, 68–71, 88, 100, 106,

179–181, 195, 200, 220, 246, 249, 266,
274, 279, 299, 308, 322, 388, 422, 430,
442, 454, 466, 468, 470

figurative speech, 420
fisheye view, 151
Flash, 13, 47, 167, 178, 202, 252
FLEXIBEANS, 115, 118, 119, 120, 121, 130,

135, 282
Flight progress strips, 338
Forms/3, 17, 25, 88, 89, 90, 92, 96, 98,

107
FREEVOLVE, 115, 118–121, 135, 282, 283,

284, 357, 359, 361–364
fuzzy generating, 251
fuzzy matching, 251
fuzzy rewriting, 251, 252, 253, 255, 263, 265,

266

gardener, 323, 326
gardeners, 116, 209, 323, 357, 359, 388
gentle slope, 3, 4, 21, 34, 46, 61, 116, 170,

179, 188, 193, 201, 270, 291, 479, 483, 484
Gentle Slope System, 33, 34, 46, 201
Google, 72, 74, 168
grain, 186, 187, 188, 202, 259, 354, 363
grammatical structures, 411, 412, 413, 414,

415, 417

granularity, 52, 71, 92, 135, 220, 330,
342, 354

Graphical Rewrite Rules, 51, 57, 60
Grounded Theory, 374, 399
Group discussion, 77, 371, 372, 373, 374,

375, 390
groupware, 6, 8, 118, 119, 122, 123,

131–136, 316, 319, 320, 324, 325, 328,
331–334, 340

guard, 95, 98, 281
gulfs of execution and evaluation, 33

HANDS, 6, 16, 31, 32, 40–46, 183,
361, 362, 365, 429, 439, 453, 460

Handy, 43, 44
HANK, 16, 17, 44
Help Me Test, 92, 99
high-functionality applications, 430
home experiences, 244
Human-Computer Interaction, 1

IBIS, 330
idiolect, 420, 424
Impact Analysis, 387, 389, 390
impermeable sign, 410, 412, 413,

417
implicit loop operations, 464
incentives, 386, 387, 388, 389
information extraction, 466
Information Lens, 323
information scent, 23
Information Society, 2, 183, 475, 476, 482,

484, 485
Integrated Organization and Technology, 137,

278
intelligent environment, 143, 243
Intentional descriptions, 468
interactive art, 427, 428, 431, 439, 440,

441, 443, 447, 448, 454
interdependencies, 318, 319, 320, 327, 334,

335
interpretant, 405
islands of certainty, 464
IT Strategy, 289, 375, 379, 380

Java, 19, 31, 34, 61, 119, 121, 135, 153,
162, 167, 180, 214, 282, 301, 351

JAVABEANS, 119, 120, 282
JavaScript, 13, 31, 162, 167, 178,

180

K-12, 56
KidSim, 15, 64, 89, 252

490 INDEX

knowledge acquisition, 349, 353, 355
Knowledge Engineering, 367
Knowledge Management, 367, 478

language-action perspective, 403
Lazy evaluation, 89, 331
LDAP, 320, 321
Learning Communities, 439, 444, 454
learning costs, 383, 387, 388, 389
LEGO Mindstorms, 13, 14, 61, 76
LEGOsheets, 76
life cycle, 198, 311, 398
Lisp, 12, 59, 216, 428, 464
Logo, 16, 69, 73, 145, 428

macro recording, 218, 402, 407, 410, 411,
419

macros, 2, 3, 12, 13, 24, 201, 317, 323, 324,
326

maintenance, 24, 25, 37, 64, 66, 92, 109, 166,
180, 181, 192, 210, 278, 280, 281, 295,
296, 300, 302, 306–312, 336, 358, 365,
366, 385, 446

Managerial controls, 375
Marketing Quality Features, 354, 356
metadata, 300, 336, 340
Meta-Design, 212, 328, 329, 404, 407, 415,

427–454
meta-object protocol, 235, 297, 298, 300, 301
meta-tools, 453
metonymies, 414, 420
Middleware Service Components, 351
MIT, 1, 8, 76, 398, 399, 459
Mitigating Risks, 389
mixed initiative dialogue, 154, 387
mixed-initiative dialogues, 459
Mobile Switching Centers, 303
mode axis, 216
model-based, 3, 8, 143, 145, 146, 153, 154,

156, 157, 471
Model-based development, 3
molecular sequences, 190, 209
Motivation (for EUD), 378
Mr. Vetro, 77, 78
MSC, 351, 353, 363
multimedia, 13, 87, 147, 339
multiple representations, 8, 147, 330, 333
multiprocessor, 305, 306, 309

natural development, 143, 144, 146, 147, 148,
150, 152, 154, 156, 157, 388, 483

natural language, 35, 39, 63, 149, 171, 333,
459–472

Natural Programming, 3, 10, 31, 32, 34, 36,
38, 40, 42, 44, 46, 47, 144, 145, 460, 472

negotiation of meaning, 364, 365
Network of Excellence, 6, 158, 398
NoPumpG, 90

object-oriented, 42, 121, 134, 220, 232, 235,
236, 299

ontological framework, 464
open source, 137, 180, 201, 339, 341, 347,

368, 428, 435, 444, 445, 446, 447, 450
open system, 208, 231, 232, 233, 234, 427,

428, 433, 434, 438, 444
Open systems, 208, 231, 232, 233, 234, 427,

428, 433, 434, 444
organization structure, 275
organizational implication, 372
OTD, 278
outlier, 89

P.O.-box, 283, 284, 286, 287
PacMan, 36, 38, 39, 56, 463, 464, 466, 467,

468
Pac-Man, 461, 462, 463, 468, 469, 470
participatory design, 178, 180, 184, 195, 207,

208, 213, 219, 221, 238, 271, 275, 292,
298, 341, 430, 433, 453

Participatory Development, 384
Participatory Programming, 207, 208, 211,

213, 221, 227, 238
perceived costs and benefits, 373
PITUI, 227
pneumologists, 194, 198
power shift, 384
power users, 2, 13, 25, 51, 116, 212, 244, 357,

358, 359, 364, 401, 432, 433, 442, 449,
453, 476

PowerBuilder, 299
pragmatics, 145, 404
privacy, 5, 320, 331, 387, 389, 390, 476
process risk map, 381
Professionalisation, 375, 379, 380, 385
programmability, 207, 208, 232, 235,

387
Programmable Brick, 76
programming by demonstration, 3, 12, 18,

190, 191, 212, 251, 402, 421
Programming by Example, 3, 18, 19, 51, 57,

60, 265, 398, 459, 460, 468, 469, 472
Programming In the User Interface, 212, 221,

227
Programmorphosis, 79, 80
PRONTO, 247, 248

INDEX 491

protein sequences, 190, 209, 221, 223, 230
prototyping, 165, 178, 179, 181, 213, 218,

219, 231, 275, 390
psychology of programming, 9–25, 32, 475
Psychology of Programming Interest Group, 9
Python, 13, 214, 216, 221, 228, 232

Quality Assurance, 384, 481
Quality Tree, 354, 355, 356, 358, 359,

361–364, 367
query by example, 164
questionnaire, 167, 245, 371–378, 380–384,

390, 391, 397, 398, 477

radiologists, 194, 198
real-time applications, 309, 312
reflexivity, 234, 479
Regis, 135
reMIND+, 89
remote control, 247, 248
representamen, 405
repurposing, 419
requirements analysis, 273
requirements specification, 89
Reseeding, 201, 341, 427, 434, 435, 443,

446
rewriting systems, 251
rituals, 243, 244
rule-based, 38, 57, 66, 76, 80, 129, 137, 164,

252, 354, 407, 482

SAP, 289, 446, 478
scaffolding, 79, 82, 234
Scientific Modeling, 56
security, 5, 108, 167, 168, 169, 178, 180, 281,

381, 384, 387, 389, 391, 394, 397
Seeding, 201, 341, 427, 431, 434, 435, 439,

443, 448, 451, 452, 453, 454
seeds, 201, 435, 444
semantic extraction, 459
semantic grammar, 467
Semantic Rewrite Rules, 66
Semantic zoom, 151, 152
semantics, 36, 66, 88, 101, 102, 120, 135,

153, 251, 404, 409, 415, 420, 424, 478
semiotic, 6, 200, 271, 401–406, 408–410,

412, 414–416, 418, 420–424
semiotics, 186, 405
sensor, 76, 247, 248
Shared Context, 315, 318, 319, 321, 322, 327,

337, 342
Shared Infrastructure, 315, 320, 321, 324,

334, 337, 341, 342, 451

Signification systems, 402, 404, 405, 407,
409, 410, 418, 422, 423, 424

SimCity, 428, 438
simulations, 8, 16, 43, 46, 55, 64, 77, 79,

82
SITO, 441, 442, 443
situatedness, 270, 273, 431, 438, 443
slices, 105
Smalltalk, 428
soccer, 70, 71, 259, 260, 261
social barriers, 374
social capital, 137, 427, 449, 450, 452,

454
social fabric, 243
socio-technical environment, 329, 429, 431,

433, 447, 448, 450, 451
socio-technical upward spiral, 450
software architecture, 5, 125, 207, 277, 282,

295, 300, 307, 409, 482
software engineering, 1, 2, 6, 15, 16, 17, 24,

25, 87–90, 92, 94, 96, 98, 100, 102–04,
106–108, 115, 117, 120, 131, 132, 135,
136, 185, 214, 269, 276, 277, 295, 307,
309–311, 330, 357, 367, 384, 385, 398,
470, 475–477

Software Shaping Workshops, 183, 185, 190
Software-as-a-Service, 385
speech recognition, 56, 149, 459, 464, 472
spreadsheet, 17, 18, 34, 36, 55, 56, 65, 87–94,

96, 98, 102–110, 161, 164, 176–179, 214,
217, 223, 224, 227, 236, 307, 323, 338,
371, 381, 386, 398, 399, 420, 460

Squeak, 251, 428, 437
standardization, 318, 323, 336, 348, 445, 446,

454, 482
steel mill, 278, 279, 280, 281, 284, 289
story understanding, 463
Surprise-Explain-Reward, 98, 99, 101,

103
syndetic, 185
Syntonicity, 73, 74, 75, 82
systems integrators, 447

T&M, 271, 276, 277, 282, 292
tacit knowledge, 183, 186, 187, 188, 202,

349, 351, 367
Tactile Programming, 69, 70, 71
tailorability, 1, 3, 8, 115–120, 128, 134–137,

163, 166, 221, 269, 270–277, 283, 288,
289, 291, 292, 295, 296, 299, 307,
309–312, 315, 316, 326, 334, 335, 336,
348, 364, 368, 431, 475

task axis, 216

492 INDEX

task model, 146, 147, 148, 149, 150,
152, 154, 155, 463

TCO, 478
technical barriers, 374
Technical Quality Features, 354,

356
Telcordia, 349
telecommunications, 302, 349, 440
TERESA, 143, 144, 146, 148, 154, 155,

157, 479
test adequacy, 90, 91
testing, 46, 70, 71, 87–92, 101, 103, 106, 107,

109, 170, 179, 190, 220, 228, 300, 306,
309, 310, 312, 326, 375, 384, 385, 386,
398, 478, 484

Text-to-speech, 56
theory in use, 275, 276
theory of action, 275
tool tips, 75, 92, 101, 109
Tools & Materials, 271, 276, 277
total cost of ownership, 478
Towers of Hanoi, 46
transaction handler, 297, 298
Turing Tar Pit, 428
TV, 53, 56, 247

Ubiquitous Computing, 52, 334, 479
UML, 4, 14, 145
Underdesign, 427, 432, 451, 454
unlimited semiosis, 402, 405, 419
User testing, 71, 228
User-centered design, 3, 32, 65, 433

VCF, 321
VCR programming, 53, 55
ViaVoice, 472

Virtual Communities, 334, 341
Viscuit, 251, 252, 255, 257, 261, 262, 264,

265, 266
Vispatch, 252, 253
Visual AgenTalk, 57, 61, 62, 65, 79, 80,

135
Visual Basic, 12, 34, 47, 135, 193, 326
visual programming, 3, 12, 18, 21, 23, 51, 52,

58, 61, 66, 69, 72, 88, 89, 134, 136, 144,
190, 212, 217, 251, 272, 398, 411, 416

Visual Studio, 23, 54, 164
Visulan, 252
Vodafone Sweden, 297
VoiceXML, 156

wake-up experience, 244, 245, 246, 247
Wearable Computing, 334
Web, 13, 23, 32, 46, 72, 73, 75, 79–82, 87, 89,

147, 154, 161–181, 196, 201, 224, 228,
233, 318, 322, 336, 337, 350, 351, 360,
371, 447, 478

web engineering, 163, 167, 168
webmasters, 161, 163, 165, 166, 171,

173–175, 177
white box, 87, 117
wizards, 59, 80, 164, 170, 178, 180, 181,

339
work practice, 231, 273, 275, 276, 278–280,

283, 284, 291, 324, 329, 336, 374, 430,
431, 435, 442, 449, 478, 479

Worker Recognition and Responsibility, 375,
380, 383, 385

WYSIWYT, 89, 90, 91, 92, 103, 107, 108, 109

XML, 130, 148, 154, 155, 157, 194, 201,
203

