
57

MICHAEL HAUHS* AND HOLGER LANGE**

FOUNDATIONS FOR THE SIMULATION OF ECOSYSTEMS

INTRODUCTION

Interactive simulation of ecosystems is a new computational technique that extends 
the scope of information technology (IT) applications into ecology. As with every 
newly introduced technology, it has the potential of changing the problem perception 
within its field of application. What appears now as a technically solvable problem, 
and what remains an unsolvable problem – technically or in principle? By their suc-
cesses and failures, simulation models may change the attitudes toward ecosystems 
not only in science but also in ecosystem management. The relationship between 
ecosystem practice and research is usually a problematic one (Peters 1991; Beven 
2001; Bocking 2004; Kimmins et al. 2005). Successful utilization schemes predate 
ecology and ecosystem research, as can be seen, for example, in the “plenterforests” 
of Central Europe (Schütz 2001).  

Ecosystems commonly fall under the rubric of complex systems (West and 
Brown 2004). Nevertheless, in the practical management of certain ecosystems, we 
encounter simple heuristic rules of human interference that are often derived from 
cultural traditions rather than from scientific study. The increased technical power of 
computer-based simulation tools and their increased mathematical formalization may 
either remove former technical limits (e.g., of prediction) or, in contrast, reveal the 
fundamental character of some of these limits. Here, we shall argue that both cases 
occur, and that the main effect of simulation technology is to bring the distinction 
between these cases into scientific awareness.  

This chapter is organized as follows: First, we clarify our terminology to demon-
strate that we are actually introducing a new modeling paradigm, and exemplify its 
domain of application. Then, we briefly review the traditional algorithmic modeling 
paradigm for state-based systems before discussing interactive simulation as an ex-
tension to this based on the mathematical notion of streams as an abstraction of be-
havior. We try to show that interactive simulation becomes especially useful when 
applied to models of living systems and ecosystems. Finally, we discuss the different 
limits encountered in genuine interactive behavior and displayed by genuine complex 
systems. Although both notions can be used to address theoretical and practical limits 
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of simulating ecosystems, currently, complexity is used exclusively for demarcating 
limits of simulation models (Ulanowicz 2004). Interactive simulations may explain 
the empirical simplicity that is often encountered in ecosystem management. Thus, 
they ought to play an enhanced or even dominating role in theoretical as well as ap-
plied ecosystem research. 

INTRODUCING TERMINOLOGY

For systems as well as models, we distinguish between algorithmic and interactive 
types of behavior. Behavior addresses all kinds of temporal changes, both in an ac-
tive and a passive sense. In particular, we use a notion of behavior that goes beyond 
dynamic systems theory and allows for active choice-making behavior within the 
systems considered. In dynamic systems theory, behavior is reduced to (algorithmic) 
functions of state transitions alone. The concept of state is a very prominent model-
ing abstraction developed in physics.1 However, active choice-making behavior is 
impossible to incorporate in algorithmic models, although it is often encountered in 
living systems.  

The Traditional Algorithmic Modeling Paradigm 

In algorithmic models, functional behavior is reduced to structure, that is, the con-
figuration of objects in (state) space and their change over time under the entailment 
of ‘Natural Law’ (Rosen 1991). The observed behavior in, for example, experiments 
can be explained or predicted algorithmically by a system of equations subject to 
specific boundary conditions. When one views the world from this approach, behav-
ior is inevitably reduced to a secondary role, referring to state transitions governed by 
dynamics. Many examples of this approach and the relationships between structure 
and function are given in the introduction to this book. 

In the cases of ecosystems and social systems, the observed structure appears to 
be irreducibly complex. Thus, any simplicity or regular behavior encountered in 
these systems appears surprising to ‘reductionist science’ and is typically lost in sci-
entifically rigorous approaches to such systems. Ecosystem researchers confronted 
with some seemingly simple rules of ecosystem managers tend to ascribe their suc-
cess to a system simplification obtained by taming; the main effect of, for example, 
agroforest monocultures is a reduced number of degrees of freedom (Bocking 2004). 
On the other hand, the predictive ability of models based on scientific process under-
standing (e.g., for a forest under climate change) is very low. This mismatch is a hint 
that the wrong modeling paradigm might be being used. 

Where these systems are studied and simulated today in ecosystem research, the 
ultimate goal is to replace the heuristics of management with a process-based under-
standing of the dynamics (Lansing et al. 1998). Here, scientific knowledge in consid-
ered to be, in principle, superior to any other form of knowledge. The leading exam-
ple in environmental and ecological sciences is meteorology, in which empirical 
models have been replaced successfully by physical models in operational weather 
prediction. The computational tools used for weather prediction express the current 
technical limit of the state model type introduced by Newton. Its solution was already 
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recognized as a technical problem a century ago (Bjerkenes 1904). Attempts to 
sketch a similar path for the simulation of ecosystems (including the complete bio-
sphere) appear much less convincing (Schellnhuber and Wenzel 1998), because they 
lack thorough real-world case studies. The application to climate models already has 
to deviate from a mechanistic recipe of dynamic state theory (see Lenhard’s argu-
ment, this volume, and the introduction). 

The Interactive Modeling Paradigm 

Systems with relatively simple external behavior at a user interface and complex in-
ternal structure occur today in high-end human technology. A computer is only one 
out of many examples for designed systems that, while becoming increasingly diffi-
cult to built, are simpler and more robust to use. A computer is deliberately designed 
to provide a simple intuitive service. Recently, a number of theoretical approaches 
have been suggested to express formally ‘what computer scientists do’ when they 
build interactive or concurrent programs. These approaches are based on the notion 
of streams and are, mathematically speaking, algebraic duals to the traditional, algo-
rithmic ones in computer science (Gumm 2003; Arbab 2005). Instead of seeking the 
model that provides the simplest explanation of a phenomenon by identifying an ini-
tial state, they search for the most comprehensive model of behavior in terms of sets 
of streams.  

Examples for interactive behavior include cases in which the simulation is not de-
rived from a comprehensive scientific understanding or reconstruction of the model-
ed ecosystem, but documents and communicates heuristic knowledge about (man-
aged) ecosystems and how they have been actively sustained by human interference.2
We shall argue below that such simulations have been established in other areas and 
may, in a more long-term perspective, change the foundations of ecological model-
ing. 

Applications of interactive simulation models occur in many fields today. Promi-
nent and well-established examples are chess computers or flight simulators. We 
shall argue that silviculture in forestry may provide examples of interactive simula-
tion as well, and that this model type may be regarded as a fundamental one in terms 
of ecosystem research. We conjecture that interactive simulation models are qualita-
tively different from the model classes used in physics.  

This chapter takes an ‘engineering perspective’ on interactive behavior: The (sup-
posed) simplicity of ecosystem responses as perceived in traditions of, for example, 
hunting, farming, or silviculture provides us with a unique modeling challenge. There 
may be considerable human expertise (skill) present in any of these traditions, but 
skill3 when evaluating and deciding on proper management is difficult to explain 
within a scientific context. Skilled behavior toward ecosystems can be referred to as 
‘tacit knowledge.’ In traditional indigenous utilization schemes, it is part of an em-
bedded relation with respect to the environment. It may appear in sharp contrast to 
scientific attitudes toward and perception of the same environment (Ingold 2000).   

Where traditional systems of ecosystem management and land use have been 
studied in anthropology, the leading paradigm of the natural sciences has been criti-
cized, and an extension to it has been proposed (Ingold 2000). We shall show below 
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that the technical and theoretical extensions provided by computer science to the is-
sues of interactive computation in the form of modern simulation models correspond 
to the concepts derived in anthropology to classify human culture: They all seem to 
aim at the (irreducible?) interactive aspects of these systems. It can be conjectured 
that earlier attempts by ‘western’ scientists to substitute indigenous forms of land use 
knowledge by dynamical models might have failed for principal reasons when truly 
interactive situations were involved. How much interactivity is implicated in a given 
ecosystem management scheme varies a lot and needs empirical testing. With the 
modern extension to IT, however, these situations can now be studied much more 
explicitly and locally. Silviculture in forestry serves as an example here. 

When searching for the most appropriate simulation model class (algorithmic or 
interactive), we answer three parallel questions in the context of modeling the behav-
ior of ecosystems: 

What is it that humans do, when they manage an ecosystem to fulfil a function4

(and make a living)?  
What is it that scientists do when they study and model an ecosystem (to under-
stand it, document and narrate its past; or estimate its future, evaluate its poten-
tial)? 
What is it that a computer provides, when modelers try to represent knowledge 
(managerial and scientific) and simulate an ecosystem? 

We start with the definition of interaction proposed in computer science that provides 
us with a precise and sufficiently general notion of (choice) behavior in machines. 
The functional (algorithmic) behavior of machines will subsequently be recovered by 
imposing restrictions (i.e., algorithmic models are a special [limiting] case of interac-
tive ones). An interactive model contains two elements:  

streams (Gumm 2003) serving as the mathematical representation of behavior, 
for example, of choice events that characterize an ongoing or already realized in-
teraction, and  
a real-world context in which the outcome of any choice depends upon the se-
quence of choices made before. The outcomes of realized choices and the 
choices still to be made in the future are related through valuation and norms – 
technically, these introduce equivalence classes in the set of possible choices.  

Typically, normative constraints will apply to choices. Take the following three ex-
amples:   

In chess playing, the options of winning should not be decreased as a conse-
quence of the current choice.  
In airplanes, the options for a safe landing should not be decreased by an actual 
maneuver.  
In sustainable forestry, the options for further production and productivity should 
not be decreased by an actual thinning or harvesting decision. 

In all three cases, the normative element stems from a predefined goal function (to 
win, to land safely, to sustain timber production). However, in computer science, a 
typical situation even lacks goal orientation, as in a persistent client/server interaction 
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in which perennial service provision on the server side is mandatory but not an ele-
ment of the ‘goal’ of the interaction with the client. It is obvious that the ‘ultimate’ 
outcome (after any finite time) of an ordered ‘stream’ of choices is fundamentally 
unpredictable for an algorithmic model. By definition, a precisely predictable situa-
tion5 is noninteractive, and could only be considered as such by an observer ignorant 
of this algorithmic possibility. In any other situation, the choices taken become inter-
spersed with evaluations of their outcomes and a reassessment of the altered potential 
for follow-up choices. This is one of the most important aspects by which the algo-
rithmic and the interactive simulation models differ. In an algorithmic simulation, the 
predictive task is the challenging one, whereas evaluation of its results is relatively 
easy (again, weather prediction provides an illustrative example). In an interactive 
simulation, the evaluation task is the challenging one, whereas the (immediate) pre-
diction of the results of the next choice is trivial, and the long-term prediction either 
appears to be or is impossible. Here, chess playing, silviculture, and pilot training 
share an interactive character demonstrating the need for a new abstraction in simula-
tion models. 

The reason for this difference lies in the relationship to the environment and not 
in the system itself. The options provided by the environment through an interactive 
interface may change as a result of past choices, and an observer enclosed by interac-
tive interfaces meets an algorithmically unsolvable problem. For example, in planta-
tion forestry, more trees are planted than will ever reach mature age. However, at the 
time of planting, which trees are to be harvested or taken out is left open for later 
thinning decisions. Here, the reason is the phenotypic plasticity of trees, or the geno-
type/phenotype distinction in general. Uncertainty with respect to the actual soil con-
ditions (may vary due to spatial heterogeneity) or with respect to the actual weather 
conditions over a rotation period renders interactive decisions by foresters in many 
cases inevitable. 

In flying, the interaction between different airplanes or with traffic control leads 
to another example in which choice situations posed by the environment are unpre-
dictable but can be handled more efficiently through interaction. These choices re-
quire the proper training of human pilots in (interactive) flight simulators to reliably 
provide the necessary competence.  

GENERALIZING NOTIONS OF BEHAVIOR: WHAT IS INTERACTION IN COMPUTER
SCIENCE?

Models for computation are usually based on the notion of the Universal Turing Ma-
chine (TM). Recently, an extension of the TM to a Persistent Turing Machine (PTM) 
has been proposed by Goldin et al. (2004) and Wegner and Goldin (1999). Persis-
tence is introduced by a read/write tape that is not reset to an initial state between 
subsequent computational cycles. The PTM interacts with its environment in the 
sense that later input from the environment may depend upon former output from 
completed computations of the machine. PTMs may imply a new and more general 
meaning for ‘computing’ than the TM. If we want to restrict the notion of computing 
to what is formalized by TMs, than it becomes unclear what extra services today’s 
computers are able to provide (Arbab 2005).  
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This relationship between external interactive behavior and internal persistent 
memory states also holds outside computer science. It links memory and a privileged 
perspective from the inside with interaction on the outside. We apply it here to ex-
plain the pattern encountered in the success and failure of ecosystem modeling and 
simulation. What new capacities and limits of interactive computing can be expected 
to be relevant for describing and abstracting those real-world systems that have re-
sisted progress in algorithmic computing so far? Whereas in the algorithmic model, 
one needs to distinguish computable from noncomputable functions, the limits of 
interactive models exist between unbounded and bounded forms of interaction de-
pending on the question whether entirely new features and choices may appear at any 
time. Candidates for unbounded interactions are open-ended evolution (life) and 
open-ended communication (culture). In the realm of interactions, the cases in which 
the class of all possible choices has a finite (infinite) representation are termed 
bounded (unbounded). We see little or no progress in the capacity to predict ecosys-
tems as computers become faster and able to handle observations from more complex 
systems (see Figure 1, upper part).   

Simple 
states 

Bounded 
streams 

Dynamic law
Complex 
states 

Technical limit of 
algorithmic simulation 

e.g., Evolution
Unbounded 
streams 

Technical limit of 
interactive simulation

Figure 1.  For algorithmic simulation models, a state may be too complex to be represented by 
a computable function (as e.g., in chaotic systems). For interactive models, the set of 
choices that produce entries in a (data) stream may be bounded or unbounded (as, e.g., in 
biological or cultural evolution). Only bounded sets can be represented in any model of an 
interaction  

However, we may still expect progress when, for example, the relationships be-
tween forest growth models and a forester become represented by interactive models, 
and formerly unbounded situations can now be evaluated as bounded ones. All three 
examples above match this situation, whereas in chess, a winning strategy has re-
mained algorithmically unattainable, the online access to the documented history of 
played out matches allows interactive simulation models to treat the choice problem 
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as (almost) bounded (see Figure 1, lower part). In pilot training, flight simulators 
become better; the critical situations that may occur unexpectedly have become 
documented and are covered by the simulator. In silviculture, only the very initial 
steps in this direction have been taken, but, here as well, a bounded choice situation 
based on the historically documented and approved examples has become technically 
possible (Hauhs et al. 2003). 

GENERALISING TERMINOLOGY: MODELING, COMPUTATION AND SIMULATION

We shall use the terms modeling, computation, and simulation in the following 
sense. Modeling is the most general activity, referring to a symbolic or virtual aspect 
of an investigated system in relation to its observed structure and/or memorized be-
havior.6 Modeling is based on (consists of) mappings, termed ‘representation’ and 
‘implementation,’ that establish relationships between a real, concrete realm of the 
world we live in and an abstract or virtual world providing the (partial) referents for 
models (see Figures 2 and 3). Social systems individually and collectively have ac-
cess to the real world through observation and memory. They have established pro-
cedures (partly outside science) on how agreement can be achieved between different 

Figure 2.  Relationships in scientific modeling (under the state model paradigm). In the real 
world, every system has a set of observables attached, which are represented as abstract 
state variables. Time variations in states are conceptualized as abstract functional behav-
iors resulting from transitions under a dynamic law. Experiments in the real world can 
be conceptualized as local implementations of the dynamic laws. This traditional model-
ing paradigm will be referred to in the text as ‘algorithmic computation.’ A model in 
which the functional behavior is inferred from a ‘faithful’ representation of the observed 
states is termed an (algorithmic) ‘computation.’ A model in which the functional behav-
ior is inferred without restrictions about the states is termed here an (algorithmic) ‘simu-
lation’

World-access: 
Observations of objects

are abstracted as: 

    Simple states 

Algorithmic simulation

Implements

 Represents 

Functional
streams

Dynamic System Theory:
State Model

Complex states 
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individuals and subgroups over the content of their observations and memories. In a 
scientific context, access by (objective) observation is regarded as superior to access 
by memories (Rubin 1995; see Figure 2). 

Modeling as a science needs to be open to testing, criticism, and revision. Scien-
tific models are distinguished from nonscientific models by this grounding procedure 
in empirical knowledge agreed upon among a group of experts and open to critique. 
If, in addition, modeling can be a) formalized by mathematical structures or b) trans-
ferred into a (representational/symbolic) form in which steps are executed automati-
cally by a computer, we will term this computation.7 The sciences in which modeling 
can make use of an established (mathematical, systematic) theory are those that have 
developed computational branches, such as computational physics, computational 
chemistry, computational biology, or computational meteorology (the latter is not a 
standard technical term; we refer to computer-based weather forecasting as done rou-
tinely nowadays).  

Other sciences, mostly those lacking underlying fundamental mathematical theo-
ries, use the label ‘modeling’ instead, as in, for example, ecological or environmental 
sciences. Besides scientifically based understanding, other forms of knowledge exist 
and are referred to as heuristics, skills, or tacit knowledge. Such forms of knowledge 
abound in ecosystem utilization and their respective management traditions (such as 
in hunting, agriculture, forestry, fisheries, gardening, etc.).  

Figure 3.  Relationships under the proposed second model paradigm. In the real-world sys-
tem, time-ordered data streams are accessible by memory of agents. If the streams are 
generated interactively, they become represented as virtual choices in an interactive simu-
lation (technically by persistent states of the interactive machine). Experienced time is 
conceptualized as choices realized by interacting partners subject to internal motives and 
social norms. This new modeling paradigm will be referred to in the text under ‘interac-
tive model.’ It corresponds to a second and new notion of simulation, here referred to as 
interactive simulation   

World-access: 
Memories of events 
are abstracted as: 

Interactive streams 

Functional streams 

Interactive simulation 
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Represents

Virtual
 interactions

       Theory missing?  
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When the objective of the modeling is not to provide a realistic representation of 
the system’s structure, but still to reproduce the observed behavior of target vari-
ables, the system is said to be simulated. In this usage, simulation means something 
different and, in terms of scientific rigor, less than computation. There is, however, a 
second use of the term simulation, and both of these usages have historic examples 
(see Terry Shinn’s chapter in this book). The second case applies to situations related 
to interactive choices in which a body of knowledge changes only slowly relative to 
the lifetime of an expert. Relevant situations in which such tacit knowledge becomes 
relevant are sparse, and thus training to expert levels is a difficult task. Historical 
examples are generals’ skills in battle tactics simulated in sandbox scenarios, or air 
force pilots’ and gunners’ skills in World War II simulated in analogue models of 
airplanes. Competence in chess playing simulated by modern computers can serve as 
another example or, as we shall argue below, many examples in ecosystem utilization 
such as silvicultural skills in forestry. 

In this second sense, an (interactive) simulation approach represents more than a 
computational model (Figure 3). Despite the fact that the examples above appear to 
be modeled less rigorously when viewed in terms of the traditional approach, interac-
tive simulations are practically without any rivals. In fact, they have added something 
new to the respective application field that is not yet properly accounted for in the 
foundations of modeling based on dynamic systems theory. 

DEFINITION OF LIFE AND ECOSYSTEMS

Life is a phenomenon occurring at scales between macromolecules and the bio-
sphere. Neither the molecular building blocks of a cell nor the global cycles of life’s 
resources (e.g., of water) are alive. Physical processes can be used to delineate living 
systems from larger spatial scales by (noninteractive) functional behavior downward 
and from its simple (noninteractive) building units upward.  

First. we shall try to define life and ecosystems exclusively using the terminology 
of the algorithmic model (dynamic systems theory). This represents an approach to 
define and relate terms by using established physical notions (i.e., reductionism). In 
this perspective, life is regarded as a phenomenon requiring a minimal complexity in 
order to execute or perform typical behavioral features such as self-reproduction, the 
abilities to adapt, evolve, and so forth. In this context, the potentially interactive 
character of these behaviors is (implicitly) abstracted away, or simply placed into the 
eyes of the observer. Above the complexity threshold and when provided with the 
appropriate conditions, the emergence of life may then become inevitable. Molecular 
biology seeks to identify minimal forms of living entities, whereas systems biology is 
often viewed as an attempt to compute or synthesize according to this modeling 
paradigm. These attempts have not been successful yet; in other words, the first liv-
ing organism synthesized in the lab from molecular building blocks has still to arrive 
(“we are missing something fundamental” [Brooks 2001]).  

At the other end of the scale, ecosystems are open to their environment and con-
tain life. They do not live themselves but consist of living entities and abiotic con-
stituents. Ecosystem is probably the most popular term among ecologists. It is de-
fined only vaguely and carries many different meanings (even if we restrict its use to 
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ecology alone). The openness toward its external environment can be described in 
(noninteractive) physical terms, for the living aspects we shall use interactive behav-
ior as described in ecology. Thus, external boundaries delineating an ecosystem will 
be based on physical aspects, whereas delineation of behavioral epochs will be based 
on biological aspects. 

Here we regard minimal ecosystems as the smallest evolvable living units that 
exchange abiotic fluxes of matter and energy with the environment in a noninterac-
tive manner. When living systems become aggregated in the form of whole landscape 
units (such as watersheds), their behavior at the boundaries often becomes relatively 
simple and can be simulated algorithmically; matter and energy fluxes across water-
shed boundaries are functional (i.e., noninteractive). External relationships of such 
functional units can be studied only on the basis of the physical concept of inter-
action (Wechselwirkung in German). 

In our terminology, an ecosystem is a noninteractive unit of a landscape (Pittroff 
and Pedersen 2005). The observed behavior of such units, however, appears as an 
anomaly in terms of hydrological transport models. It has not been possible to ex-
plain (uniquely reconstruct) runoff data by physical models (i.e., distributed hydro-
logical models). Algorithmic simulation models are typically overparameterized with 
respect to the observed runoff data. The ‘true’ internal transport mechanisms needed 
to perform typical transport models cannot be identified directly from data. Within 
the algorithmic modeling approach, these difficulties are discussed in terms of the 
broad heterogeneity of hydrological catchments and the technical limitations of 
proper sampling. 

To summarize, at the lower and upper cutoff scale of life, the modeling ap-
proaches based on  algorithmic (simulation) models have, to our knowledge, not yet 
led to a ‘living reconstruction’ or a nontrivial prediction. There is a widely accepted 
explanation of these difficulties: Living entities and ecosystems appear to be (too) 
complex. However, empirical modeling of a runoff signal hardly involves more than 
two or three parameters (Jakeman and Hornberger 1993). This appears as an anomaly 
for algorithmic simulation models. Why does the complex system provide us with 
simple responses that turn out to be of particular interest for human utilization? We 
shall turn to the second modeling paradigm (interactive models) to seek more consis-
tent answers to these questions.  

We have suggested considering life as an irreducible interactive phenomenon. In 
order to extend this proposal to the ecosystem scale, we have to generalize the primi-
tives used in the above ecosystem definition: Fluxes across the boundary will be gen-
eralized to streams. 

STREAMS AND FLUXES

The basic mathematical notion used here for describing the boundaries of an ecosys-
tem with an abiotic environment is a (data) stream.8 A stream is a potentially infinite 
ordered (time) series of instances of discrete events – in our case, we are interested in 
abiotic events at the boundary of an ecosystem. With this application in mind, 
streams consist of transport events of extensive variables (matter, energy). Our primary 
example is water transport. Hence, we are seeking boundaries that are related to precipi-
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tation and runoff. These data streams can be described in a continuous or a discrete 
way; the latter being the canonical choice for digital computers. Also, measurements 
that have to respect the finite sensitivity of the instruments are inevitably discrete. 
The typical dimension will be that of a flux across a boundary, that is, mass per time 
and area.  

It looks as if this is only a change of wording, because streams appear to be 
closely related to the flux concept. However, this terminology is implicated in the 
direction of evaluation. In hydrology, the relationships governing the input and out-
put of water for catchments are usually described in terms of matter and energy 
fluxes that can be observed, and the theoretical framework taken from physics relates 
them to potentials and forces (gradients of potentials) that are not directly observable, 
but represent the states of the system. These relations are formulated as conservation 
laws, with mass budgets as the paradigmatic example. Local transport equations are 
obtained (such as Darcy’s Law or Fick’s Law) from the conservation laws using 
variational calculus. It is important, however, that the concept of flux as observed 
and transport as modeled quantity are formally independent if conservation is not 
given, as is often the case in nonequilibrium situations (e.g., for rainfall, sedimenta-
tion, or chemical weathering).  

Streams are a more straightforward abstraction starting from the observed input 
and output of the ecosystem. Their definition refers to the temporal order among the 
recorded events and the fact that events can only be produced in an ‘online manner,’ 
analogue to that of infinite data types in computation (Gumm 2003). They imply an 
irreducible diachronic aspect and are therefore retrieved from the memory of an ob-
server rather than being just (synchronic) observations of a state. In the algorithmic 
approach (Figure 1), states are accessible through observation and imply behavior 
(here fluxes) by their changes. Therefore, fluxes, when abstracted as a form of behav-
ior, are derived from state changes. This relation becomes reversed under the notion 
of streams. Documented streams as memorized from past behavior (say a runoff re-
cord) imply corresponding internal states (mostly inaccessible to observation). 
Hence, in this perspective, the states are derived and evaluated from the memorized 
streams. As long as the stream is noninteractive, the difference between the two ap-
proaches is one of perspective only. 

The usual conception of fluxes and forces is that they have a deeply rooted trans-
lational invariance in time built into them. This is of utmost importance both theo-
retically as well as culturally in physics: Nonrepeatable experiments and thus nonre-
producible results are inacceptable and ignored in the scientific community. We pro-
pose that this worldview is impossible for ecosystems. History dependence and the 
implied uniqueness of each such system are crucial. Unlike observations from purely 
state-based, memoryless systems that can be reproduced, lost records about streams 
cannot be substituted in principle. This is reflected by the high value of long-term 
records in some of the environmental (hydrology) and most of the ecological sci-
ences (Kratz et al. 2003). These facts make the abstraction as streams the more ‘natu-
ral’ for runoff from ecosystems. 

We regard the definition and delineation of ecosystems based on the notion of 
streams as also being the more fundamental one. It allows us to address and to deal 
with simplicities in ecosystem behavior much more straightforwardly, rather than 
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obscure such simple aspects by using elements of complexity theory from the begin-
ning. Simplicity and universal features in runoff data may, in this view, be regarded 
as signatures of internal interaction. There is by definition no interaction in abiotic 
streams across ecosystem boundaries. The simplicity of runoff data lies in the fact 
that choices may produce simple patterns after they are made, but that this does not 
include the ability to predict them (Hauhs et al. 2005).  

Whereas streams can be rigorously formalized by coalgebraic notions (see, e.g., 
Rutten 2000) as primitives of a theoretical approach, fluxes appear in the canonical 
algebraic approach as secondary (derived) quantities.9 The direction of formalization 
becomes reversed in this respect as well: Traditionally, one starts with symmetries in 
the underlying dynamics (of states) and calculates the resulting order in fluxes, and 
this then has to be validated from observations. Here, we argue for a data-driven ap-
proach in which the order and properties of documented streams are used to reach 
conclusions on the properties of the underlying interactive process. This approach is 
unusual for natural sciences but quite common in computer science and engineering; 
a number of theorems are available for inferences about existence and uniqueness in 
models. 

Interactivity is not a new mechanism that can be constructed (syntactically) by 
adding additional features to an algorithmic machine. In an algorithmic universe in 
which interaction does not exist, it cannot be generated de novo. However, in a uni-
verse of discourse in which we allow for interaction, it can be expressed and demon-
strated in the form of interactive computing. 

INTERACTIVE STREAMS

The next distinction about streams is whether or not they are generated interactively 
by the system(s) from which they originate. That is, it concerns the way in which the 
order in their basic events is implemented: by the action of one system alone or by 
alternating actions of a system and its environment. The above examples of abiotic 
streams occurring in the environment of ecosystems and many more such as short-
wave radiation, transpiration by vegetation, weathering, or precipitation of secondary 
minerals in rooting zones are all instances of noninteractive streams. The widespread 
use of such terms in ecosystem research reflects the fact that these noninteractive 
streams can be recorded much more easily than interactive streams.  

One may illustrate this situation with chess playing: In the preparations for a 
chess game, one can either try to reduce the (seemingly?) interactive situation to a 
noninteractive one (e.g., find a winning strategy, i.e., solve the game algorithmically, 
read out the complete chess-related memory content of the opponent10). Otherwise, 
one has to cope with the consequences of interaction (i.e., prepare for the game by 
training and updating ones own memory with relevant content; increase the ability to 
evaluate a board rather than predicting it). One promising strategy to be considered is 
to reduce the interactivity of the game to a minimum by making the opponent’s be-
havior more predictable. This ideal is implied in the frequently heard advice to nov-
ice players “always play the board, not the opponent.” 

We want to grasp the large gap between scientific and empirical models of eco-
systems through this analogy: In the natural sciences, by using one of the two  
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definitions/approaches below, an exo-observer (natural scientist) currently has to 
avoid interactivity completely if she or he wants to achieve understanding and pre-
diction. Ecosystem managers, however, inevitably have to cope with interaction 
when they want to sustain a service function. Thus, they will get little help from state 
models when trying to do so. Even worse, any managerial expertise acquired in the 
form of heuristics has only a dubious scientific status under the prevailing modeling 
concept that should be replaced later by some proper understanding of processes and 
is thus often dismissed by ecosystem researchers (Bocking 2004).  

There is no easy classification of whether a data stream across an interface is in-
teractive or noninteractive. Furthermore, such a classification may change with time 
and technical progress. The a priori classification of ecosystems into the complexity 
realm (placing them exclusively under dynamic systems theory) narrows the range of 
possible models. In addition, it may even narrow the model classes considered to a 
set of unsolvable tasks. Interactivity may turn out to be an illusion when one ulti-
mately acquires the ‘true’ dynamic representation of an ecosystem, but we do not 
care as long as interactive simulations are closer to the nature of the managerial prob-
lem than models based on dynamic systems theory. 

WHAT IS AN ECOSYSTEM IN NATURAL SCIENCES?

Geosciences 

Ecosystems can be delineated spatially on the basis of noninteractive streams at their 
boundaries. An ecosystem in the perspective of geosciences has to fulfil two condi-
tions: 

The smallest region whose boundaries can be characterized completely by nonin-
teractive streams. 
The volume included by this boundary contains some systems that are classified 
independently11 as being alive (by unbounded behavioral features such as being 
able to adapt, evolve, or reproduce). 

No further conditions for the internal aspects are imposed.  
This first definition imposes the existence of an upper cutoff scale for any bio-

logical interaction. This definition has proven useful when investigating the relation-
ship of biotic responses to changes in streams at the boundaries within a larger geo-
chemical and geophysical context, as in ‘biogeology’ or ‘biogeochemistry.’ It is (im-
plicitly) widely used in monitoring ecosystem response in the context of environ-
mental changes such as deposition of air pollutants or eutrophication.  

Biosciences

The second definition aims at avoiding interaction by heading for the lower cutoff 
scale of life. An ecosystem can be defined secondly on the basis of the noninteractive 
components. These are components without any persistent states. Their state is a 
function of external forces alone. An ecosystem in the perspective of biosciences is: 

the largest aggregation of noninteractive components  
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that maintains across its outer boundary unbounded interaction as an irreducible 
aspect of its behavioral repertoire with the environment  
while using genes as persistent states for maintaining interaction. 

No further conditions for the character of the interactive potential are specified here 
other than that this type of ecosystem appears as a carrier of some unbounded inter-
actions. This may include phenomena such as an ability to evolve new behavior 
through (open-ended) evolution. The character of models applied to such ecosystems 
is in most cases direct (i.e., trying to predict functional output or structural change 
from given input and initial conditions). The technical challenge in direct modeling is 
the combinatorial explosion resulting from an iterated combination of the basic (non-
interactive) building blocks. In general, such models produce too much data. Their 
outcome is difficult to evaluate algorithmically. Hence, modelers end up with a se-
vere selection problem that is insufficiently covered by the available data set. Living 
systems appear as structurally too complex.  

A number of biological terms can be made more precise when considering life as 
an instance of interaction: A multicellular organism emerges through a coordinated 
bounded interaction among locally connected cells (Minelli 2004). A species extends 
the notion of bounded (ritualized) interaction beyond an organism to an interbreeding 
population. The bounded set of interactions among organisms that potentially leads 
to reproduction defines a species. The interaction with members of other species re-
mains unbounded. This general relationship among species is characterized as open-
ended coevolution – used here as our primary example of an unbounded interaction. 
Hence, the notion of ecosystems in biosciences addresses the difference between 
bounded versus unbounded interaction, whereas the notion of ecosystems in geo-
sciences addresses the difference between unbounded and ‘amnesic’ interaction (i.e., 
noninteraction across functional boundaries). 

A reproducing population of biological agents is thus a group of agents using 
DNA as a hidden persistent state. No agent outside this group is able to access this 
memory in any other way than by observing their phenotype (behavior/structure) or 
interacting with such phenotypes.12 The fact that the meaning of the persistent states 
is hidden from external observers and can only become expressed interactively (with 
a responsive environment) is the reason for the necessity of the genotype/phenotype 
distinction in biology. This distinction sets biology apart from other natural sciences, 
especially in terms of models (Rosen 1991). We regard it as a primary signature of 
interaction. 

The geoscience approach is usually chosen when one studies the functional and 
spatial embedment of living systems into an abiotic environment: Where does life 
occur, under which conditions? The bioscience approach is usually chosen when one 
studies the emergence of living behavior: How did it first arise from its nonliving 
constituents? 

WHAT IS A MANAGED ECOSYSTEM?

We have defined life as an (unbounded) interaction in which the persistence of states 
is related to genes. The interactive modeling paradigm is accompanied by a typical 
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perspective: An agent typically finds itself embedded within an interactive network 
and views interfaces across which interaction occurs from their ‘inside.’ An interact-
ing agent may look back at realized interactions documented in its accessible mem-
ory. The role of an interactive simulation is to carry a bounded (and possibly com-
plete) representation of the choices that have been reproducible within this interac-
tion. Then, proper actual choices can be judged by the agent against the choices made 
during the training phase and their corresponding outcomes in the memorized past. 

Memory may exist at an individual or collective level depending on accessibility. 
One could define the ‘self-model’ of the agent by individually accessible memory 
and the identity of a culture by collectively accessible memory, though this is beyond 
the scope of this paper. Here, we are only interested in a small subset of collective 
memories: those addressing the realized interactions with ecosystems. By definition 
(see above), the interaction of humans with co-species can only occur within the bi-
otic realm of an ecosystem (disregarding the position of its spatial boundaries to their 
abiotic environment).  

Humans evolved from biotic interactions with co-species. Such interaction was 
initially unbounded and symmetrical as in any coevolution. With the first human cul-
ture, a new form of persistence (besides the persistent states of the genome) and, 
hence, a new form of memory emerged. Co-species were excluded from this human 
cultural memory and interaction. Hence interaction of humans with co-species be-
came asymmetrical and bounded for the latter from then onward: Humans domesti-
cated other species. Domestication can be viewed as a finite set of intervening op-
tions by which further evolution in one species can be stopped or directed by another 
one. Unlike coevolution, it constitutes an asymmetrical relationship among species. 
The future survival of domesticated species became dependent on human culture.  

The role of humans is unique in being almost the only species that is able to do-
mesticate other species and make their survival dependent on cultural transmission. 
Note that the two definitions introduced above referred to the unbounded features of 
life (open evolvability). The existence of domesticated species (and related ecosys-
tems) allows us to introduce another, third notion of an ecosystem that refers to 
bounded interaction. In the case that one succeeds in establishing an ecosystem in 
which a domesticated species becomes a dominating population (e.g., a field of 
wheat, or pasture with a herd of cattle), the concept of bounded interaction transfers 
to the ecosystem. Choice options open for the domesticated species are culturally 
constrained to a finite set that is exhaustively known to the domesticating human cul-
ture. Ecosystem management becomes a mixture of functional and interactive rela-
tionships between humans and the system hosting domesticated species. Abiotic 
streams across ecosystem boundaries, as defined above, are examples in which the 
functional relationship is appropriate: for example, watering or supplying additional 
nutrients to an ecosystem. The selection of individuals for breeding is an example in 
which a bounded interactive relationship holds.  

Experts in farming, pasture, forestry, and so forth use the term ecosystem in this 
third type of meaning. It is the system that they can interactively force into a stan-
dardized overall function (Bocking 2004). This interaction is bounded; it can be rep-
resented in a tradition and can be applied in a sustainable manner. That is why it can 
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be embedded into an external overall function for the civilization of which it is a part: 
providing timber, fiber, food, and so forth for the society. 

The dilemma of the two scientific notions above for an ecosystem is a methodo-
logical one. As long as observers remain ‘exo-’ with respect to the observed system, 
they will encounter instances of unbounded interaction that occur within it. We con-
jecture that these phenomena (and the corresponding states) can neither be identified 
by inverse modeling (geosciences) nor can they be generated de novo by direct mod-
eling (biosciences). The rigorous scientist, who strives to study untouched or only 
experimentally conditioned ecosystems, may not be able to get rid of internal un-
bounded interaction. This feature will limit and intervene in any predictive modeling 
attempt. If interaction is taken seriously, the difficulties discussed above appear as a 
signature of a principal limit rather than as technical difficulties to be overcome by 
refinements in measurements or more comprehensive modeling attempts. 

Successful managers of an ecosystem are able to interactively prevent unbounded 
choice within the system occurring. If they can demonstrate reproducibility, they 
have achieved the ultimate management condition: sustainable ecosystem manage-
ment. The ‘price’ that has to be paid for this, however, is that managers are inevitably 
participatory endo-observers for some interactions. Their observations and memories 
are by no means objective. Here, (interactive) simulation may be a decisive new 
technology that helps to document, investigate, and disseminate such expert knowl-
edge beyond the idiosyncracies of its origins. The flight simulator example can in 
this respect be extended into ecosystem management (Hauhs et al. 2003). 

A model comprehensively representing a bounded interaction may serve at the 
same time as the carrier of norms for proper intervention. It may become a basis for 
the evaluation of new instances of interactions in a similar manner as a minimal (ex-
planatory) model may be the basis of predictions in the algorithmic paradigm. If a 
chess computer can represent and handle anything (bounded) that might happen in 
chess, it may also direct a novice to proper moves; if a flight simulator includes any-
thing (bounded) that can happen to the pilot of a specific plane, it can be used for 
training. If a forest growth simulator includes what has happened in a particular type 
of forest, it can be used to train thinning operations. In real-world situations, function 
and interaction may thus occur in a nested manner making them difficult to separate. 
Ecosystem utilization is an example in which a bounded interaction can be delegated 
to experts such that the whole system serves a function such as providing food. Note 
that the embedding relationship between interactive and functional aspects can also 
occur in a reversed manner. A musical instrument or a lasso (Ingold 1994) are both 
examples in which a functional tool with complete physical (algorithmic) description 
can be used by experts to serve an interaction. It can also only be learned interac-
tively. 

In interactive computing, simulations do not provide an explanation of what has 
happened; they do not represent the ‘natural laws’ governing the true dynamics as in 
the case of algorithmic models. However, they represent the past choices that may 
reoccur in a bounded interaction and may hence represent social norms in an inter-
subjective and novel way. This makes it possible to evaluate rare and decisive situa-
tions in a systematic way (e.g., in chess, the aviation industry or forestry). 
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Table 1.  Limits of the two modeling paradigms and how they are related to prominent simu-
lation tasks in science, engineering, and ecosystem research

Algorithmic models  Interactive models 

Accomplished tasks  

Many examples in phys-
ics

Reconstructing plant 
structure (L-Grammar) 

Chess computer  

Flight simulator for pilots 

Current limit Weather prediction 

Flight simulator for
foresters

Assessment of empirical 
models (e.g., in hydrol-
ogy) 

Out of reach for techni-
cal reasons 

Assessment of empirical 
models  

Predicting forest growth 
under climate change 

Open-ended evolution  

Flight simulator for nature 
conservationists 

Out of reach in principle Nothing of practical rele-
vance? 

Predicting forest growth 
under climate change 

Open-ended evolution 

‘Flight simulator for God’ 

The new model type may lead to a very different perception of where to expect 
technical and fundamental limits (Figure 1; Table 1). Some problems such as predict-
ing an ecosystem response under an altered climate, appeared to be complex but 
solvable in principle under the algorithmic modeling paradigm: These will be reclas-
sified in the new paradigm, and may become unsolvable in principle. Despite the 
disappointment that such a result may mean for ongoing research projects (e.g., cli-
mate change), in the long term, we consider it a step forward. If a situation is truly 
interactive in the sense we have used the term here, there is no way to substitute for 
missing experiences from an open interaction (e.g., if a type of choice or behavior 
has not occurred yet). This is due to a variant of the combinatorial explosion men-
tioned already: the mismatch between genotypic potential and actual phenotypic ex-
pression. Only an almost negligible fraction of the former can be realized within the 
lifetime of an organism, an ecosystem, or even a whole species.13 On the other hand, 
other problems such as assessing empirical knowledge and expertise in ecosystem 
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management appeared as similarly complex under the old paradigm. Under the new 
paradigm, these problems may now be within the reach of modern IT.    

A different case is nature conservation, a problem that, even with today’s IT, may 
remain technically too hard for interactive simulation models (see Table 1). In these 
cases, the goal is to keep an ecosystem-wide set of species, of growth potential, or its 
biodiversity. We still do not know whether this is a management task that can be or-
ganized as in forestry or agriculture, or a goal of a different character (e.g., in terms 
of ethical values). If it becomes a management task, then any reproducible measure 
of success has to be based on bounded interaction with technical norms. In other 
words, successfully managed ecosystems will, under the goal of nature conservation, 
ultimately become domesticated by halting open-ended evolution. If not, the result of 
any protective action cannot be judged by its results, but rather by its intentions. In-
tent, however, is not an operational criterion for unbounded interactions among dif-
ferent species.  

Ecosystems not touched by humans (if there are any), natura naturans, cannot be 
represented by a bounded interactive simulation. Modeling and evaluating their be-
havior remains elusive under the second modeling paradigm.14 The anomaly men-
tioned in the introduction between what should be and what appears to be possible 
with respect to ecosystem management is thus resolved. The addition of human goals 
and proper interventions is what makes the modeling problem tractable for natura 
naturata under the new interactive paradigm, whereas human interference has been 
considered as a disturbance rendering modeling even more difficult under the tradi-
tional algorithmic simulation approach. 

CONCLUSIONS

Up to now, most simulation models developed in the social and biological sciences 
still use the algorithmic modeling paradigm. Technically, such models do not leave 
the realm of dynamic systems theory. These approaches abstract from any interactive 
aspects of the modeled system. The results are ambivalent and leave ecological (and, 
as far as we can see, also social) modeling in a dilemma: The models still do not yet 
deliver contra-intuitive predictions relevant for management. However, these models 
are very useful when used as communication tools for arguing about the cases stud-
ied (Bousquet and Le Page 2004). A model developed for prediction under dynamic 
systems theory becomes a communication tool when it fails to predict blindly and is 
thus calibrated to observations. For this purpose of communicating and documenting 
existing experiences, however, more efficient, interactive simulation tools are avail-
able today. As long as various forms of interaction are not defined and studied more 
rigorously, simulation models may focus on the wrong aspects of ecosystems. While 
we may still fail to predict ecosystems, we miss a chance of improving their evalua-
tion by experts.  

The interactive modeling paradigm provides us with a different and new way of 
representing human knowledge. It may become recognized as a dual form of the tra-
ditional approach. The proliferation of artificial objects resulting from functional and 
industrial production interested philosophers in the nineteenth century. Today’s increase 
in interactive simulations of artificial (choice) behavior is facilitating communication 
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and sets current technology changes against this historical background of facilitating 
production. (Interactive) simulation attracts the attention of philosophers of science 
as documented by this book. 

Interaction cannot be created de novo in a computer. However, if it is a useful 
concept, with a promising potential to become a formal rigorous one, some of its ex-
isting bounded forms can be transferred to a computer. It allows us to abstract from 
and to deal with a human perspective toward valuation and choice from an endo-
perspective. This time, it is not an abstraction with respect to observation (and spatial 
perspective) as in Renaissance times, but has a memory and a temporal perspective. 
It may provide areas of professional expertise in ecosystem management with an in-
tersubjective way of documenting and communicating knowledge about bounded 
sets and the proper order of decisions in certain interactive situations.  

In a more general sense, a better understanding of simulation technologies and 
especially interactive ones may acquire a role comparable with the mastering of per-
spective in arts. For visual perception, the invention of perspective became a histori-
cal stepping stone for the ‘cognitive enlightenment’ and subsequently modern science. 
Today’s interactive simulation is about to acquire the technical potential for rehabili-
tating memory (alongside vision) as a similarly reliable source of intersubjective 
knowledge. In some restricted areas such as chess or flight simulation, it has become 
a carrier of norms and is already used routinely for training to expert levels. If this 
approach can be extended to the human relationship with ecosystems, it may trigger a 
corresponding ‘normative enlightenment.’ 

We have argued above that under this modeling paradigm, it becomes easy and 
straightforward  to define the key notions of ecosystem research and modeling. In 
addition, it allows us to discuss technical and principal limits, and this seems to give 
a simple explanation of past successes and failures in ecological modeling. It is at 
least a complementary approach to the same systems from a distinctively different 
perspective, and exploits knowledge on them that was dismissed all too quickly in 
the traditional approach. 

Taken together, this seems to be sufficient reason for the distinction introduced 
above and especially interactive simulation to be taken more seriously by philoso-
phers of science as well. Which modeling tools will yield better results in ecology 
and ecosystem research will, of course, depend on empirical testing. 

*University of Bayreuth, Germany  
**Norwegian Institute for Forest Research, Ås, Norway

NOTES

1 “The central concept of Newtonian mechanics, from which all others flow as corollaries or collaterals, 
is the concept of state, …” (Rosen 1991). 

2 If ecosystems are viewed under dynamic systems theory, one could ask instead: … despite continued 
human interference. However, the search for dynamic models assessing the stability of ecosystems is 
an old and still controversial field, which we shall not go into here (McCann 2000).  
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3 We use the notion of  ‘skill’ in the same sense as Ingold (2000). 
4 Nature conservation may be regarded as an exception. There the management goal is often to sustain 

an ongoing interaction with ‘nature’ (see last section). 
5 The presence of noise is unrelated to interactivity. Noise does not make choices by definition. 
6 Representations are often modified with the effect that a model is largely simplified or extended be-

yond its ‘grounding in reality.’ In the first case, the model seeks the most concise representation of a 
state; in the second, the most comprehensive representation of a choice. 

7 However, not every computer has to be an algorithmic machine. There may be aspects in the heuristics 
of IT engineering that have not yet been properly formalized. Interactive computing can be considered 
as an example; it is economically important, but not all aspects of it have been given a formal ground-
ing (see Introduction of Turi [1996]). 

8 As used in the computer sciences, particularly in coalgebraic approaches to computational structures. 
9 We tried a formalization of fluxes as boundary-determining objects for ecosystems earlier (Hauhs and 

Lange 1996). However, this does not lead to any fundamental and concise notion as is possible for 
streams in coalgebra. 

10 Try this only if it is a computer! 
11 The logic relationships among the attributes usually used to define life remain unclear (Ruiz-Mirazo et 

al. 2004). 
12 There may be observations of the genotype, but since the mapping from genotype to phenotype is an 

interactive one, this mapping cannot be identified by observations alone (but requires an interactive 
approach itself). This leads to the conjecture that the proteomic research program must fail on principal 
grounds similar to the alchemistic program, that is, failure due to choosing a wrong model category 
(and hence ignoring limits). 

13 With the possible exception of unicellular organisms. 
14 Whereas explaining their behavior under the first paradigm only appeared to be very difficult. 

REFERENCES

Arbab, F. (2005). “Abstract behavior types: A foundation model for components and their composition”, 
Science of Computer Programming, 55: 3–52. 

Beven, K. (2001). “On modeling as collective intelligence”, Hydrological Processes, 15: 2205–2207. 
Bjerkenes, V. (1904). “Das Problem der Wettervorhersage, betrachtet vom Standpunkt der Physik und 

Mechanik”, Meteorologische Zeitschrift.
Bocking, S. (2004). Nature’s Experts. Science, Politics, and the Environment, New Brunswick, NJ: Rut-

gers University Press. 
Bousquet, F. and C. Le Page (2004). “Multi-agent simulations and ecosystem management: A review”, 

Ecological Modelling, 176: 313–332. 
Brooks, R. (2001). “The relationship between matter and life”, Nature, 409: 409–411. 
Goldin, D., S.A. Smolka, P. Attie, and E. Sonderegger (2004). “Turing machines, transition systems, and 

interaction”, Information and Computation Journal, 194: 101–128. 
Gumm, H.P. (2003). “Universelle Coalgebra”, in T. Ihringer (ed.), Allgemeine Algebra, Lemgo, Germany: 

Heldermann Verlag, Appendix.
Hauhs, M. and H. Lange (1996). “Das Problem der Prozeßidentifikation in Waldökosystemen am Beispiel 

Wassertransport“, IHI-Schriften Zittau, 2: 212–222. 
Hauhs, M., F.-J. Knauft, and H. Lange (2003). “Algorithmic and interactive approaches to stand growth 

modeling”. in A. Amaro and D. Reed (eds.), Modeling Forest Systems, Wallingford, UK: CABI Pub-
lishing, pp. 51–62. 

Hauhs, M., J. Koch, and H. Lange (2005). “Comparison of time series from ecosystems and an artificial 
multi-agent network based on complexity measures”, in J.T. Kim (ed.), Systems Biology Workshop at 
the VIIIth European Conference on Artificial Life (ECAL 2005), Canterbury, Kent, UK: University of 
Kent, 12pp.  

Ingold, T. (1994). Companion Encyclopedia of Anthropology, London: Routledge. 
Ingold, T. (2000). The Perception of the Environment – Essays in Livelihood, Dwelling and Skill, London: 

Routledge. 



FOUNDATIONS FOR THE SIMULATION OF ECOSYSTEMS 77

Jakeman, A.J. and G.M. Hornberger (1993). “How much complexity is warranted in a rainfall-runoff 
model”, Water Resources Research, 29: 2637–2649. 

Kimmins, H., C. Welham, B. Seely, M. Meitner, R. Rob, and S. Tom (2005). “Science in forestry: Why 
does it sometimes disappoint or even fail us?”, IUFRO 205.

Kratz, T.K., L.A. Deegan, M.E. Harmon, and W.K. Lauenroth (2003). “Ecological variability in space and 
time: Insights gained from the US LTER Program”, Bioscience, 53 (1): 57–67. 

Lansing, J.S., J.N. Kremer, and B. Smuts (1998). “System-dependent selection, ecological feedback, and 
the emergence of functional structure in ecosystems”, Journal of Theoretical Biology, 192: 377–391. 

McCann, K.S. (2000). “The diversity-stability debate“, Nature, 405: 228–233. 
Minelli, A. (2004). The Development of Animal Form - Ontogeny, Morphology and Evolution, Cambridge, 

UK: Cambridge University Press. 
Peters, R.H. (1991). A Critique for Ecology, Cambridge, UK: Cambridge University Press. 
Pittroff, W. and E.K. Pedersen (2005). Ecological Modeling, Encyclopedia of Life Sciences

(http://www.els.net), Chicester, UK: Wiley; doi:10.1038/npg.els.0003270. 
Rosen, R. (1991). Life Itself – A Comprehensive Inquire into the Nature, Origin, and Fabrication of Life,

New York: Columbia University Press. 
Rubin, D.C. (ed.), (1995). Remembering Our Past – Studies in Autobiograhical Memory, Cambridge, UK: 

Cambridge University Press. 
Ruiz-Mirazo, K., J. Peretó, and A. Moreno (2004). “A universal definition of life: Autonomy and open-

ended evolution”, Origins of Life and Evolution of the Biosphere, 34: 323–346. 
Rutten, J. (2000). “Universal coalgebra: A theory of systems”, Theoretical Computer Science, 249 (1):  

3–80. 
Schellnhuber, H.J. and V. Wenzel (eds.). Earth System Analysis, Berlin, Heidelberg, New York: Springer. 
Schütz, J.-P. (2001). Der Plenterwald und weitere Formen strukturierter und gemischter Wälder, Berlin: 

Parey Buchverlag. 
Turi, D. (1996). Functional Operational Semantics and its Denotational Dual, Amsterdam: Free Univer-

sity of Amsterdam. 
Ulanowicz, R.E. (2004). “On the nature of ecodynamics”, Ecological Complexity, 1 (4): 341–354. 
Wegner, P. and D. Goldin (1999). “Interaction as a framework for modeling”, in P. Chen, J. Akoka,  

H. Kangassalo, and B.Thalheim (eds.), Conceptual Modeling: Current Issues and Future. Lecture 
Notes in Computer Science 1565, Springer, Heidelberg, pp. 243–257. 

West, G.B. and J.H. Brown (2004). “Life’s universal scaling laws”, Physics Today, 57 (9): 56. 




