
187

TERRY SHINN

WHEN IS SIMULATION A RESEARCH TECHNOLOGY?
PRACTICES, MARKETS, AND LINGUA FRANCA

The practices of simulation are highly diverse: In a given domain, and for a single
problem, practices are frequently multiple, different from one another, divergent, and
more than occasionally contradictory. In view of such acute plurality, how is one to
grasp the sense of ‘simulation’? While the number and scope of practices embedded
in simulation and the magnitude and heterogeneity of the simulation market are syn-
onymous with fragmentation, does fragmentation necessarily prescribe the operation
of the simulation community, and if not, what might be the form and function of a
said community? Is it reasonable to speak in terms of simulation as a system, and if
so, on what grounds? This chapter explores this and related issues. It examines trans-
verse features of simulation that serve as operators of cohesion, which cohesion con-
stitutes a prerequisite for the stabilization of a social/cognitive system. The canvas
presented here will include historical, organizational, professional, and epistemologi-
cal components. The context of the emergence of the C++ general-purpose, multi-
paradigm, object-oriented simulation language will be explored. It will be suggested
that the intellectual and social dynamics of C++ strongly reflect key features of ge-
neric instrumentation and research technologies, and that, by virtue of this corre-
spondence, it is reasonable to think of the practices, structures, and market of simula-
tion in terms of a transverse research technology system.

FOUNDATIONS

Many of the cognitive, organizational, and institutional elements constitutive of con-
temporary simulation were introduced before 1960. With a few notable exceptions,
such as visualization techniques and virtual reality, what has happened since is an
extension of that early orientation. Recent change has largely occurred within the
confines of the historical mold and logic that initially formed today’s huge and di-
verse domain of simulation thought and action.

Questions of simulation emerged for the first time in Germany in the 1920s when
H. Roeder took out a patent for devices intended for use in training pilots of submers-

 – . 187 203J. Lenhard, G. Küppers, and T. Shinn (eds.), Simulation: Pragmatic Construction of Reality,
 Springer. © 2006

CHAPTER 12

TERRY SHINN188

ibles, balloons, and airplanes. The simulators were designed to represent changes of
altitude in three planes of movement, to register commands initiated by pilot trainees,
and to readjust altitude correspondingly. The project came to naught, but the effort is
important. It connects simulation to the emergence, development, and currency of
new forms of technological artifacts. It is an extension of a historically novel form of
technical design, materials, and activities. From the outset, simulation was connected
to aviation, issues of complex motion, equations that describe complex flows and
interactions, and the extension and adoption of new varieties of skills (sometimes
entailing new training programs). Finally, the simulation trainers project of the 1920s
established important parameters that underpin thinking and action in most simula-
tion ventures: 1) representations of multidimensional environments, 2) interaction
between elements figuring in the representation (sometimes including human opera-
tors), 3) emphasis on TIME, that often comprises a key dimension beyond the three
axes of freedom in space (particularly in virtual reality), 4) testing, and 5) validation.

However, it was not until the 1940s that Roeder’s intuition that the components
of simulation, aviation, and training comprise an integrated unit became a reality, and
when it occurred, it was not in Germany but instead in the United Kingdom and
United States. This gap corresponds to a massive growth of a simulation market in
the shape of war-driven demand for expanding numbers of increasingly advanced
combat aircraft, for attendant pilots, and for quick efficient training. It similarly cor-
responds to the design, construction, and spread of simulation-relevant technology
such as ‘fast’ analogue calculating devices, capable of coping with elementary fluid
flow equations and their translation into simulation dynamics and mechanical outputs
adapted to an aircraft control environment. This evolution proved crucial: Today’s
faster, better, and generalized simulations rely entirely on digitalized calculations!
The historical multifront technological advances of the 1930s and 1940s in electron-
ics and calculation provided the mental and material conditions fundamental to simu-
lation. The centrality of technology to simulation cannot be overestimated. Simula-
tion is the technology of technology, of science, and of industrial operations and be-
yond. In its role as the technology of technologies, simulation represents the most
reflexive form of analysis/action yet known to humanity, and broadly practiced in
society.

In 1939, Professor L. Mueller, working at MIT, designed and built a fast analogue
computer to study the longitudinal dynamics of aircraft motion. Mueller’s interest
was in the solution of the set of aerodynamic equations and their simulation for de-
sign purposes. However, in a postscript to his paper, he mentioned that his simulator
could be adapted to flight simulation pilot training. In 1941, an electronic analogue
computer was developed at the TRE unit for the radar training program. The TRE
group, originated at MIT during the war, combined advanced detection, electronics,
and control systems coupled to fast calculators, mainly for military objectives. This
device was based on the ideas of F. Williams, famous for his later contributions to
digital computers, and used the velodyne – another TRE invention for integration.
The first model of this computer had been developed by Dynatron Radio Ltd. in
1941.

The war years saw an increase in the companies involved in simulation as well as
in hardware, accessory, and modeling technology. In 1945, a new system was introduced

WHEN IS SIMULATION A RESEARCH TECHNOLOGY? 189

by K.M. Uttle that incorporated force fields and visual inputs into flight trainers. In
Britain, advanced longitudinal dynamics was added to the flight simulation repertory
through the efforts of G.M. Hellings and the resulting electromechanical analogue
computer. This computer and model was arguably sufficiently general and flexible to
correspond to the flight characteristics of any aircraft then in operation. The simula-
tor boasted a pitch motion system that incorporated an endless moving belt. In the
United States, the Special Devices Division of the Bureau of Aeronautics developed
the Center for Naval Training Equipment. It supported the simulator activities of Bell
Laboratories, which constructed the Navy’s PBM simulator that included a complete
front fuselage, cockpit, accessories, and all instrumentation. The Link trainer was
also developed during this period. In 1948, and during part of the 1950s, the Curtiss-
Wright aviation firm engaged in simulator design, The company produced a new line
of servo devices and what was known as shadow graphics. General Electric entered
the simulation race during the 1960s, developing digital systems for space-related
operations.

Work surrounding the atomic bomb constitutes a second current of simulation ac-
tivity. During the latter phase of bomb research, Los Alamos scientists and engineers
set out to study the magnitude of their bomb’s explosive impact. At the time, nothing
was known about nuclear blast extent. To determine this, scientists selected numer-
ous possibly relevant parameters, and assigned a huge variety of values to each. The
number of permutations was astronomic. They engaged the newly emergent compu-
tational technology of computers becoming available at that time to calculate the
likelihood of the selected parameters and to estimate the consequences of each. The
resulting calculations indicated a statistical likelihood of bomb effects. The probabil-
ity-based technique of this project soon acquired the name Monte Carlo simulation,
presumably suggesting the probabilistic aspects of operations. It rapidly became cen-
tral to a sweep of simulation endeavors. On a different register, starting in the 1950s
with scenarios based on ‘if-then’ logic, insurance companies used Monte Carlo simu-
lation to work out actuarials, and soon banks and investment firms were using it for
investment and client advice. Monte Carlo simulation has similarly become the cor-
nerstone for much risk assessment research and public policy, and it is today a tech-
nique deployed by nuclear energy lobbies seeking to quiet public unease about nu-
clear hazard. The introduction of high-power individual computer technology has
even further accelerated the generalization of this form of simulation (e.g., for calcu-
lating possible trends in the stock market).

The initial organization of simulation technology was rooted in engineering prac-
tice and undertaken by engineers and not by scientists, scientific societies, or univer-
sities. One of the first simulation forums to be scheduled and the first simulation or-
ganization founded was venued in Europe, and not in the United States, where much
of the early simulation work had been carried out. One explanation for this is that
part of European postwar reindustrialization was free to build around new technol-
ogy, the older prewar production capacity and technology having been destroyed by
bombing, battle, and sabotage. In 1955, a meeting was convened in Brussels at the
Free University attended by researchers, managers, and observers of the simulation
laboratories that existed at the time. Many of the laboratories were a by-product of
the enormous simulation-related activities of World War II. Participation was

TERRY SHINN190

international, with delegates coming from most west European countries, the United
States, and Japan. The conference decided there existed a need for a permanent
means of communication between members of the emerging simulation community.
Participants perceived that extant professional and scientific bodies were too restric-
tive in composition and outlook to include the diversity of backgrounds, skills, and
interests that characterized the multidisciplinary, multisectoral, and multipractice
new world of simulation. The result was the creation of the AICA (L’Association
Internationale pour la Computation Analogue). Under the influence of technological
and scientific innovation, the initial scope of the AICA expanded to include more
mathematical analysis (particularly numerical operations), mathematical modeling,
and digital technology. This body played a crucial role in the introduction of simula-
tion particularly into Europe. Its outstanding successes lay in the domains of chemi-
cal engineering, automatic system engineering, and later simulation-based design,
specifically in the realm of mechanics. In 1976, the pioneering body took the name
International Association for Mathematics and Computation for Simulation, to better
reflect the broadening technology, uses, and markets of simulation. The original
AICA was significant for the establishment of simulation, because it tried to coordi-
nate and combine the analytic practices developing in simulation, which, at the time,
was still an outside cognitive corpus and set of practices as well as being socially
nebulous.

SIMULATION AT WORK – POST 1960

Most post-1960s simulation activity has focused on engineering-related and indus-
try/service-oriented work, as measured by the focus of simulation societies and jour-
nals. John McLeod and Vincent Amico have been pillars of simulation in the United
States since World War II. McLeod earned a BS in engineering at Tulane University,
and has been associated with the universities of Chicago, Harvard, and MIT. He is an
expert in the design and construction of automatic control systems (boasting two pat-
ents) in which simulation is the principal tool. He served in the US Navy’s Guidance
Systems Simulation Laboratory for a decade, acquiring initial simulation-based de-
sign experience there. He then went to work for the Northrop Company, moving to
General Dynamics between 1956 and 1963 – again in design. McLeod became an
independent simulation researcher for a brief period during the 1960s when he de-
signed a heart-lung machine using principles of simulation-driven design techniques.
He was an active consultant throughout his career.

Amico earned a BS in engineering from New York University in 1941 and went
on to study physics. From 1941 to 1945, he worked on the structural design of mis-
siles and aircraft at the Static Test Laboratory at Wright Field. After 1948, he worked
as a civilian for the US Navy as product engineer for flight training equipment. In
1969, Amico became Research Director of engineering of his design unit; and, in
1979, he was appointed Research Director of the Navy’s entire flight training pro-
gram. Throughout, Amico based his endeavors on simulation development and simu-
lators. They comprised the mainstay of his career. Beginning in 1972, he taught at
the computer department of the University of Southern California, specializing in
simulation techniques.

WHEN IS SIMULATION A RESEARCH TECHNOLOGY? 191

McLeod and Amico figured importantly in the development and successes of the
Society for Computer Simulation that became the United States major organization
specializing in simulation publications, and to a lesser degree simulation conferences.
Although the Society was set up in 1952, it remained a relatively small and obscure
body until the late 1960s, when McLeod helped expand its activities, often assisted
by Amico. McLeod turned this American organization into an international body;
and under his careful guidance, the Society was rechristened the Society for Modeling
and Simulation International. McLeod managed to connect the American simulation
community to a broader simulation environment based in Great Britain, France, Hol-
land, Germany, Italy, Denmark China, Korea, and Japan. From the 1970s onward,
simulator experts and users regularly participated in the annual meetings of the Soci-
ety for Modeling and Simulation International – the Summer Computer Simulation
Conference that specializes in continuous event simulation.

The Society for Modeling and Simulation operates a large, prestigious stable of
simulation publications. It publishes Simulation – the society’s flagship review, and
the most well-read and respected journal in the field. It also publishes Transactions
for Modeling and Simulation, Simulation Magazine, and The Journal of Defence
Modeling and Simulation: Applications, Methodology, and Technology (with the US
Army and Simulation Office).

However, it is not the Summer Computer Simulation Conference that constitutes
the foremost venue for the exposition of new work in the field of simulation, but in-
stead the Winter Simulation Conference. Whereas the beginnings of the Winter
Simulation Conference date back indirectly to a series of small simulation seminars
held during the late 1940s, the organization was set up only in 1967. The initial meet-
ing was headed by H.J. Hixson (head of operations systems research analysis with
the US Air Force logistics command and program director of the IBM SHARE users
group) and by J. Reipman (prominent user of the general purpose simulation system
approach in the Nordon division of the United Aircraft Corporation and a leader in
the IEEE). It differs from the Summer Computer Simulation Conference in several
important respects. The latter deals with continuous simulation, whereas the Winter
Conference specializes in discrete event simulation. Discrete event simulation effi-
ciently represents events in which time is a subordinate consideration. In contrast,
continuous simulation, based on the solution of differential equations, unceasingly
monitors time, but is less attentive to details of complex events. Continuous simula-
tion is used to model activities like continuous flow engineering and aircraft auto-
matic pilot systems. Manufacturing and services are modeled with discrete event
simulations. However, as indicated by Küppers and Lenhard (this volume), a closer
analysis reveals that matters are becoming increasingly complicated, because even
continuous simulation relies on discrete models.

Whereas the Summer Conference has rejected sponsorship by professional engi-
neering bodies, interest groups, and public agencies, the Winter Simulation Confer-
ence has multiplied such connections. The Association for Computing Machines, the
IEEE, and IBM sponsored the initial meeting. An audience of 225 was expected, but
interest ran so high that 401 attended. The proceedings were published by the IEEE
Transaction in a special issue in 1968 on systems science and cybernetics.

TERRY SHINN192

The second Winter Simulation Conference took place in December 1968: Its
theme was Simulation Applications. In addition to the initial sponsors, this meeting
also received backing from Simulations Council Inc. There were twenty-two ses-
sions, and eighty-eight papers were presented on a range of simulation applications.
Statistical research, simulation computer language development, and simulation edu-
cation were included in the program. Attendance jumped to 856. A 356-page digest
of conference papers was subsequently published. The 1969 Winter Simulation Con-
ference was sponsored by the American Institute of Industrial Engineers and the In-
stitute of Management Sciences/College on Simulation and Gaming. In 1971, the
Operations Research Society of America also became a sponsor. That year, atten-
dance reached over 1,200 – the highest figure ever.

In 1974, the tide turned: The number of participants fell sharply, as did financial
support for the program. The future looked bleak for several years, until the National
Bureau of Standards intervened, infusing organizational vigor, new ideas and pro-
jects, and fresh money. In the 1980s, the Winter Simulation Conference regained its
former ascendancy and has maintained it ever since. But, why the collapse in the
mid-1970s, and what structural considerations contributed to its newfound energy?

Although the exact circumstances require further research, one can point to sev-
eral contributory factors: By the 1970s, there existed a plethora of simulation re-
search directions, projects, application niches, and implementations. The field had
fragmented considerably. Functional sectors and individual firms were working out
their specific simulation solutions. The initial flush of enthusiasm that fuels a new
venture had begun to erode. Two key initiatives regalvanized the simulation venture.
Intervention by the US National Bureau of Standards provided a measure of stability
and coordination that was otherwise lacking. The Bureau pulled together divergent
simulation movements. Second, new initiatives in programming language began to
emerge. Introduction of a language like C++ (to be analyzed in detail below) helped
the simulation community by providing a focus of technological, intellectual, and
professional convergence.

In sum and as indicated above, military-related programs lay at the center of the
development of simulation work. This was facilitated by the introduction of fast digi-
tal computing power and by the swift broad spread of computers. Nevertheless, simu-
lation efforts had begun to thrive on the basis of predigital computation. Slow ana-
logue devices had already permitted simulation to successfully invade a growing
range of military-related realms before advanced digital developments. Additionally,
the vast majority of simulation endeavors occurred in the narrow engineer-
ing/technology sphere.

STRUCTURING SIMULATION – THE BIRTH, EVOLUTION, AND ROLE
OF THE C++ GENERAL-PURPOSE, MULTI PARADIGM, OBJECT-ORIENTED

PROGRAMMING LANGUAGE

The pages that follow will document the centrality of the C++ computer language to
the internal development and point to the diversification and growth of the simulation
markets and community since the mid-1980s. It will be further suggested that C++
exhibits many of the key attributes of research technologies. Grounded on these twin

WHEN IS SIMULATION A RESEARCH TECHNOLOGY? 193

observations, I argue that simulation itself may usefully be perceived as a research
technology rich in generic instrumentation that simultaneously provides a stable ker-
nel to the simulation domain and permits diversity, yet transversality, commensur-
ation, coherence, and cohesion.

The C++ simulation-directed, general-purpose, object-oriented, multipurpose lan-
guage was developed between 1983 and 1985. The programming language’s author
is Bjarne Stroustrup (1950), a brilliant, energetic, successful, and some would say
charismatic, general-purpose language developer. Today, C++ is the most wide-
spread language in simulation. In 2003, estimates range between 1.3 and 3 million
users. C++ is a generic technology, fathered, matured, and organized in an interstitial
environment. The disembedding of its generic features and their reembedding in spe-
cific applications involves intermittent selective boundary crossings. It corresponds
to a form of metrology. By virtue of this combination of characteristics, C++ consti-
tutes a research technology (Joerges and Shinn 2001; Shinn and Joerges 2002; Shinn
and Ragouet 2005).

Bjarne Stroustrup is currently the College of Engineering Professor at the Texas
A&M University Department of Computer Science, and director of the Large-Scale
Programming Research Department at AT&T Laboratories. He was born in Den-
mark, and did his undergraduate work at Aarhus University, taking a degree in
mathematics and computer science, before moving to Cambridge University for his
doctoral studies. His dissertation adviser was David Wheeler, a well-known pro-
grammer who contributed to the Illiac. The Illiac, built in 1952, based on von Neu-
mann architecture and located at the University of Illinois, was the United States’
most powerful university computer, even surpassing the capacity of the combined
Bell Laboratory machines.

Stroustrup studied at the Cambridge Computer Laboratory, conducting research
on alternatives for the system software of distributed systems. He composed new
software from existing systems and tested feasibility and efficiency using simulation
techniques. On completing his doctorate in 1979, Stroustrup took a position in the
computer science research center in Bell Laboratories at Murray Hill, New Jersey,
where he undertook research alongside language specialists like Denis Ritchi, who
had recently developed the programming language C. From 1979 to 1983, when
Stroustrup set out to build a new language, he was involved in a range of Bell-related
tasks. He was notably active in simulation research intended to improve distributed
network system operations, and explored applications of this approach. In 1979,
Stroustrup set out to analyze the Unix kernel to determine how it could be distributed
over a network of computers connected by a local area network. He also worked on
improving the low-level language C (Stroustrup 1993).

One way of describing C++ is that it contains many elements of C that have been
enriched with Simula and an object-oriented perspective. Stroustrup often says that
C++ is three languages in one: a C-like language (supporting low-level program-
ming), an Ada-like language (supporting abstract data-type techniques), and a
Simula-like language (supporting object-oriented programming) (Stroustrup 1994:
198). C++ is also organically connected to additional languages (Stroustrup 1994:
198). Algora68 gives to C++ operator overloading and the capacity to declare vari-
ables anywhere in a block. BCPL allows comments. Simula gives organization.

TERRY SHINN194

Whereas one strength of C is its proximity to computational machines, via the intro-
duction of elements from Simula and from the object-oriented perspective, C++ con-
nects directly to material problems by analysis of language application. C’s logic
connects with computational machinery, whereas C++’s logic retains this property
and adds the property of smooth problem application logic.

Stroustrup’s design emphasized three stable features – application, the generic
concept of classes, and portability (the latter allowing cross-boundary flexibility and
translanguage communication). Stroustrup has always been concerned with promot-
ing solutions to real problems (Stroustrup 1997a,b). While his Denmark training in
mathematics was interesting and stimulating, it nevertheless left him uncomfortable,
as he is committed to confronting problems. He often insists that his language in-
sights and successes result from thinking about programming with reference to per-
sonal problem-solving experience. He generalizes up from problems. C++ has been
built to enable real and diverse users to better grasp their problems and treat them
computationally. In this sense, the C++ language is application- and user-driven.

Second, C++ was designed to operate in a framework of classes. Initially, C with
classes was developed by Stroustrup to allow simulators to be built for research in
network design being carried out by Sandy Fraser at Bell. Inclusion of the term ‘C’ in
the name C++ indicates the extent of C’s parentage to C++. One frequently asked
question is why C++ did not simply emerge as an evolution of C, rather than distinct
from it, and as a powerful and eventually victorious competitor. Part of the answer is
the centrality of classes in C++. While Stroustrup seriously tried to reconcile the im-
portation of classes into C, as witnessed by his construction of C with classes, the
architecture of C limits the full expression of classes. This drove Stroustrup to further
diverge from C, as he continued in his project to build a more useful programming
language. The relationship between C and C++ is expressed in a phrase submitted by
Stroustrup in a 1989 article As close to C as possible, but no closer (Koenig and
Stroustrup 1989).

According to Stroustrup, classes possess a multifold advantage (Venners 2003;
Dolya 2003). Classes promote reasoning in terms of connections crucial to object-
oriented representations and work. C++ is not an object-based programming lan-
guage; it is an object-oriented code, which may be more restrictive. Classes help
identify the similarities shared by elements. They facilitate computation between
them. They furthermore allow passage from one part of a program to another with a
minimum of difficulty, facilitating the work of programmers and users. Classes in a
program reduce runtime, making computation efficient. In C++, the combination of
classes and static checking helps alleviate the need for garbage collection, which
constitutes an important economy in runtime and memory. Stroustrup also suggests
that elegance is a desirable quality of a good language, and the use of classes pro-
motes elegance. But, above all, in C++, the true purpose of classes is that they pro-
vide a platform for clear reasoning about complex structures.

Classes, in conjunction with other components like static checking, restrictive
garbage collection, and multiple inheritance, constitute the generic feature of C++.
The centrality of classes in C++, along with the role played by the object-oriented
perspective, makes C++ ubiquitous in much simulation work.

WHEN IS SIMULATION A RESEARCH TECHNOLOGY? 195

While classes comprise the generic anchor of C++ that allows the general purpose
code to be adapted and adopted by multiple applications, portability represents the
format through which classes and other generic features of the language are vehicled.
Portability was crucial to Stroustrup from the outset. He tried to design a language
far more portable than C. Portability infers compatibility and flexibility. C++ is not a
restrictive language, as it can easily be connected to a range of hardware and soft-
ware. It operates in innumerable environments – Unix, Windows, and Macintosh.
C++ links conveniently to many application tools. It is thus embedded in a huge
range of informatic products without restriction, whereas the architecture of other
languages limits their partnering. C++ functions as a foundational language tool in-
side an ever extending variety of application-specific local tools. Most computer lan-
guages are written either by language designers for other designers or by users for a
particular application; but this is not the case for C++, whose architecture integrates a
breadth of perspectives and conveys a multitude of mechanisms felicitous to mobil-
ity. This drive for breadth echoes Stroustrup’s twin concerns for and experiences in
concrete application practice and design involvement.

Portability is the hallmark of boundary crossing. This feature permits the expres-
sion of classes in terms of genericity and class reembedding in diverse applications.
Without C++’s portability, movement across boundaries would be rare or impossible.
Portability spells ongoing communication between evolving C++ design and other-
wise isolated C++ niche users. Thanks to portability, C++ can thus stand as a generic
language, as a language of application, and also as a reflexive transverse language
that permits transapplication exchange.

The break of C++ with C, and its subsequent promotion in 1984–85, proved both
problematic and easy. Its possible competitors, Modula-2 and Ada among others,
were often regarded as restrictive, entailing awkward problems, or simply did not
find dynamic outlets on the United States market. The Bell Laboratory, where
Stroustrup worked, had experimented with and contributed to numerous languages,
and was thus not irreconcilably committed to any particular one. The research unit
was big, leaving room for individual initiatives and maneuver. Furthermore, Dennis
Ritchi, who also worked at Bell and, along with Kristen Nigaart, is one of the pio-
neers of C, never strongly opposed Stroustrup and his endeavors, which increasingly
distanced C++ from C. The rapid successes of C++ also owes much to the expansion
of the mini- and microcomputer market and to the growth in the number and range of
applications. Foremost in these applications was simulation, to which C++ was per-
ceived as appropriate and congenial. The diffusion of C++ was also connected to
keen interest in the new language among language designers and programmers. C++
required good compilers and libraries to ensure its spread and effectiveness in differ-
ent applications (Venners 2003), and much to even Stroustrup’s surprise, the compu-
tation community responded in record time to his proposed architecture with a num-
ber of world-class compilers.

The number of C++ users rocketed. In 1984–85, the emergent language was
largely restricted to the Bell Laboratory. In the months that followed, C++ was dis-
tributed in a preliminary version to selected universities and a few users (Stanford,
University of California, Cal Tech, University of Wisconsin, MIT, Carnegie Mellon,
University of Copenhagen, Rutherford Laboratory in Oxford, etc.). The response was

TERRY SHINN196

not what was expected. Rather than expanding, demand stagnated. The motive for
this was unanticipated. Users loved the new language and wanted nothing better than
to use it extensively: but its use in consulting and in public applications required the
stabilization and standardization of the language, its public recognition, and the de-
velopment of adequate compiler architecture. Soon, however, the quick involvement
of fresh C++ work, often originating outside of Bell Laboratories, allowed both the
size and diversity of the C++ community to expand on an unforeseen scale.

Table 1. Growth in the size of the C++ community

Date Estimated number of C++ users

1979 1

1980 16

1981 38

1982 85

1983 87

1984 135

1985 500

1986 2,000

1987 4,000

1988 15,000

1989 50,000

1990 150,000

1991 400,000

2002 1.300,000

The following ventures indicate the range of activities associated with C++ in the
decade since 1985: Animation, autonomous submersibles, billing systems, bowling
alley control, circuit routing (telecom), CAD/CAM, chemical engineering process
simulations, compilers, control panel software, cyclotron simulation and data proc-
essing, database systems, decision support systems, digital photography processing,
digital signal processing, electronic mail, expert systems, factory automation, finan-
cial reporting, flight mission telemetry, foreign exchange dealing (banking), search
software, hardware description, hospital records management, industrial robot con-
trol, instruction set simulation, interactive multimedia, magneto hydrodynamics,
medical imaging, missile guidance, mortgage company management, network man-
agement and maintenance systems (telecom), network monitoring (telecom), operat-
ing systems (real-time, distributed, workstation, mainframe, ‘fully object-oriented’),

WHEN IS SIMULATION A RESEARCH TECHNOLOGY? 197

programming environments, superannuation, insurance, shock-wave physics simula-
tion, SLR camera software, switching software, test tools, transmissions systems
(telecom), transport system fleet management, user interfaces, video games, and vir-
tual reality (Stroustrup 1994: 172).

By the late 1980s and 1990s, C++ had become a major language among computer
languages, or perhaps even the foremost. The C++ Journal appeared in 1991. Com-
puter Language, The Journal of Object-Oriented Programming, The C++ Users
Journal, Journal of Object-Oriented Programming (JOOPS), and Dr. Dobbs Journal
all ran regular articles on the C++ language. To this must be added the score of Inter-
net language publications that frequently feature C++ and present recent C++-related
tools and implementations.

C++ owes much to social factors. By the mid-1980s, the computer language and
computer programming community had grown greatly. The consequence was two-
fold: First, numbers of young talented specialists could now loosen their ties with the
big powerful computer firms that had earlier exercised considerable influence. Sec-
ond, conditions permitted some individuals to become independent free-lance pro-
grammers. In 1986–87, a movement of independent compilers developed. This was
opportune for C++, whose evolution and diffusion required expanding beyond the
walls of Bell laboratory, and the participation of many people and inputs from many
quarters.

The now famous Santa Fe compilers meeting was held in November 1987. This
event marks a turning point for C++. Stroustrup anticipated an attendance of only a
few dozen people in Santa Fe, but over 200 showed up! Papers were presented on
C++ application, education, environment compatibility, and, strategically most cru-
cial, on compiler development. Building effective C++ compilers was essential to
users, as they ease the work of application. For a compiler to be in step with the C++
generic/reembedding/boundary-crossing Stroustrup precepts, it must support many
other operating languages. This meeting initiated the design, construction, and diffu-
sion of a spate of C++ inspired compilers and libraries – among others, the 1988
Zortec compiler and the 1990 Borlan compiler. In 1991, Windows marketed its C++
compiler; and in 1992, IBM came out with its version of a C++ compiler. A C++
groundswell ensued. In 1988, the NIH helped sponsor a C++ meeting and began to
acquire C++ programs, tools, and other application implementations. In 1988, the
second C++ conference was held In Denver, and, since then, there have been C++
conferences on an almost yearly basis.

During the 1980s, why did Bjarne Stroustrup push first to obtain the standardiza-
tion of C++ by ANSI (the American National Standards Institute) and then by ISO a
decade later (ISO/IEC14882)? What does standardization signify for a code, and
what form of work is involved? How does standardization impact on a language?
What has the standardization of C++ meant to simulation?

Before the standardization of C in the late 1980s, the language counted over 160
dialects. In this instance, standardization neutralized fragmentation and imposed or-
der. The development of libraries and compilers can be used to hijack a language by
locking in users. By standardization, a code becomes public and thus cannot be ap-
propriated. Stroustrup deplores the idea of a proprietary language, and above all de-
sired C++ to remain public. His design goal and subsequent strategy entailed that

TERRY SHINN198

C++ be an open pathway, not a closed system. He has often declared that C++ is for
the average user as well as for the untypical user. It is for everyone! Finally, the
documentation that necessarily accompanies standardization allows clarifications –
clarifications in the work of design itself, design improvements, and clarification for
users who want or need to know more about their code. Metrology thus fulfills the
functions of stabilization, transparence, accessibility, and pedagogy.

In the early 1990s, C++ was certified by the American National Standards Insti-
tute, the German Institute of Norms, and by the British Institute. This achievement
culminated five years of effort. Stroustrup was motivated by numerous considera-
tions during his drive to win certification. Although the growing number of users
approved and employed his language, general acceptance demands code homogeni-
zation and stabilization. This is necessary for a technology to be perceived as trans-
parent, transferable, and reliable. Stroustrup understood this. By all means, code de-
viance must be avoided and prohibited. Lock in of parts of the language also had to
be prevented! Standardization of C++ at ANSI required several years. ANSI operates
in conjunction with code designers, subsequent contributors, tool and implementation
designers, firms that develop and market the tools, attorneys of said firms, independ-
ent code experts, and users from many sectors. Observers and freelancers are also
implicated in the standardization process. Deliberations occur on two levels: Techni-
cal committees deal with issues of detail. A general body discusses questions of prin-
ciple, law, and policy. For C++, deliberations advanced relatively smoothly. At the
end of the process, Stroustrup had given up nothing essential to his initial design
plan.

The ANSI and ISO procedures affected several important evolutions in C++.
Templates were made central to the code. They were connected to libraries, and the
template standard (TSL) resulted. Multiple inheritance also became a key feature.
Stroustrup had earlier been weary of inheritance, but in the form that it was engi-
neered during standardization and combined with C++, he came to accept it and ap-
preciate its power. The next steps in modifying C++, states Stroustrup, will be its
extension to distributive programming that will necessarily introduce threads (Dolya
2003).

The upshot of standardization is that C++ became even more general-purpose/
multiparadigm than before. C++’s compatibility with other codes was enhanced. It is
a general user’s language, a specialty language, and a programmer’s code. It remains
a language for high-level designers, as its openness and generic quality continue to
make it interesting, challenging, and a turf still sufficiently malleable and open to
correctly support future evolutions.

THE INTERSTITIAL ENVIRONMENT

Genericity, reembedding, and boundary crossing are coupled to an interstitial envi-
ronment, and this environment figures centrally in the development of C++ practices
and the simulation community. An interstitial arena emerges in the interspecies be-
tween established dominant organizations, such as the university, corporations or
small technology-based firms, state technical services, the military, and so forth.
While individuals who occupy the interstitial environment may work for a dominant

WHEN IS SIMULATION A RESEARCH TECHNOLOGY? 199

organization, they nevertheless frequently escape organizational control by move-
ment or by fostering arrangements that connect them to multiple organizations. Mul-
tiple connections increase resources and extend margins of maneuver. He who works
for everyone is the bondsman of no one. In what ways has Bjarne Stroustrup and the
design and evolution of C++ been affiliated with the interstitial environment?

Today, Stroustrup divides his time between contacts with C++ users and markets,
code design, education, and acquiring new language skills and experience (Doyla
2003).

Stroustrup’s experience is distributed, extending to pure and applied mathematics,
language and program writing and use, and simulation. His endeavors bridge theory
and application. Some of this output occurs in the framework of universities, state
research or technical services (the NIH), private/semi-public services (ISO and
ANTI), huge corporations (Bell and AT&T), and small technological companies
(Silicongraphics). Concurrent and sequential employment is a rule. While once an
employee of Bell Laboratories and still an active employee of AT&T Laboratory,
Stroustrup has often simultaneously held other positions.

The interstitial environment respects and maintains divisions of labor inside sci-
ence, inside technology, between science and technology, and between science and
enterprise, while new important permutations are also invented continually (Joerges
and Shinn 2001; Shinn and Joerges 2002; Shinn and Ragouet 2005). Stroustrup held
to his C++ general-purpose, multiparadigm project. He used the relative autonomy
provided by the interstitial environment to focus long-term attention on his objective.
The interstitial arena is not an interest group, not a producer, and not a market. As
often stressed by Stroustrup, his goal is steadfastly nonproprietary. He has no plan to
encroach on the productions or operations of specific user/market niches. Consistent
with this neutrality, the interstitial arena thus provides Stroustrup a platform for
crossing the boundaries of innumerable organizations, markets, producers, and users,
but without affecting the internal division of labor or infringing on their traditions,
plans, or autonomy. He reembeds C++’s generic features into niche applications, and
conversely uses the application experience of niches to design and enrich C++.

C++ comprises a lingua franca: A lingua franca is the result of genericity, reem-
bedding, and boundary crossing. A generic technology like C++ contains one or sev-
eral fundamental instrumentation features, for example, an emphasis on classes in
combination with abstraction, object orientation, and portability. When the generic
technology moves into a particular market niche, several things occur. The generic
features of the technology are reembedded in the local technical culture. In the case
at hand, applications absorb certain selected features of C++ in accordance with
short-term demand. Parts of C++ are reshaped in this process of adoption. Neverthe-
less, C++’s adaptation does not alter the fact that the generic characteristics of the
base technology survive intact. The stamp of the generic base is permanently im-
printed on the local technical expression. The lingua franca arises out of this complex
concatenation. For example, a specific library accompanies C++ into the separate
applications of hydrodynamics research, auto piloting, and so forth. Nevertheless, the
presence in C++ of a base code governing the organization of classes and logic of
portability persists both in the piloting and science research extensions, and it is these
stable, constant transverse features that enable users from both specialties to

TERRY SHINN200

communicate effectively about the language and about more substantive issues be-
yond their fields on a metalevel.

The reembedded generic technology vehicles a particular metrology in the form
of standards or units of measurement, a specific vocabulary, form of imagery, meth-
odology, or even a new paradigm. This residue is deposited in the local niche tech-
nology during reembedding. Although the product of reembeddings in diverse mar-
kets results in heterogeneous artifacts, the generic element remains uniform, a kind of
technical fingerprint. However, C++ is expressed in the innumerable applications it
serves; C++’s underlying signature persists. Through ‘assimilating’ the metrology,
methods, vocabulary, or images of the hub generic instrument, niche practitioners
come to share familiarity with, and competence in, a particular syntax and semantics.
This common language becomes an integral feature of the practitioner’s niche lan-
guage. The language is associated with a set of local, efficient, robust practices. The
technology, practices, and outcomes associated with the local techniques enjoy the
status of ‘truth’ – in the sense of ‘practical truth.’ The lingua franca of C++ is the
generic residue of the reembeddings of C++ in a multiplicity of fragmented market
niches. It is that part of the C++ hub technology that transcends the transformations
occurring during the process of adaptation and adoption. Since there persists a trans-
verse stable kernel used in the discourse of market practices, when practitioners who
come from diverse economic or disciplinary sectors and have different functions (and
come from different nations and have even different cultural horizons) meet, they can
nevertheless communicate with reference to a technical field and generate intel-
ligibility. The common parlance available through this generic-driven lingua franca
promotes cognitive, artifactual, and organizational transversality that somewhat neu-
tralizes the otherwise often disruptive effects of today’s rampant intellectual and so-
cial differentiation and fragmentation. Witness to the existence and efficiency of C++
as a lingua franca in simulation can be found in two venues. The annual Summer and
Winter Simulation Conferences draw users from scores of applications. They com-
municate through C++ about C++, and also use the medium of C++ to communicate
about their respective different and sometimes divergent simulation applications.

By virtue of the fact that C++ represents a kind of research technology connected
to many and diverse audiences and functions and highly amenable to transversality in
the form of boundary crossing and commensuration, and by virtue of the fact that
C++ constitutes a dominant code in simulation practice, one may reasonably estab-
lish the operation of a link between simulation practices and markets on the one
hand, and research technology on the other. Simulation’s stability and strengths owes
much to atributes drawn from research technology. Research technologies provide
simulation (here demonstrated through analysis of C++) with open-ended techniques,
representations, codes, and language that make it applicable in a miriad spheres, and
it simultaneously offers a solid, self-referencing platform that gives definition, mean-
ing, and direction to the more general, overall, quasi-universal simulation enterprise.

WHEN IS SIMULATION A RESEARCH TECHNOLOGY?

Simulation is a system whose architecture emphasizes three features: First, simula-
tion involves a remarkably large number of markets, and the number continues to

WHEN IS SIMULATION A RESEARCH TECHNOLOGY? 201

expand. Second, the particularities and demands of simulation niches are diverse and
even divergent. Many markets require specific simulation practices, representations,
robust results, and efficiency. Engineering demands predictability and information
that promotes risk avoidance. Science counts on precision and understanding. These
demands on simulation are very different. Third, traversing all markets and practices,
there exists a kind of common denominator of expectations. Practitioners demand
‘truth.’ The relevant form of truth might be described as ‘practical truth.’ Practical
truth, as distinguished from the epistemological truth of philosophy, refers to de-
pendable matter-ground individual and group satisfaction based on perceived reliable
material inputs and outcomes. What counts here as ‘satisfactory’ is connected both to
individual experience and to the expectations and norms of society. Practical truth is
hence simultaneously concretely personal and the fruit of collective routines. Upon
determining that technical objects and protocols yield the anticipated result, practi-
tioners gradually come to equate a technical ensemble as ‘true’ to their understanding
of the technical system’s properties and ensuing yield. Indeed, stable controlled tech-
nical ‘yield’ comprises the key facet of pragmatic truth.

Heterogeneity of environment, form, and function are constitutive of the underly-
ing logic and action of simulation. In view of the extremes of heterogeneity, what
gives the simulation system substance, stability, and continuity? Part of the answer
lies in research technology.

Several of the principal ingredients of research technology have been introduced
in the above analysis: genericity, the interstitial environment, markets and technical
niches, divisions of labor, relative autonomy, boundary crossing, reembedding,
commensuration, practical truth, and lingua franca. Simulation is stretched between
two imperatives: its multiple practices and markets; and the need to preserve a stable
and standard kernel. Simulation necessitates unchanging standards in order to con-
vince users that outputs are effective and comparable, and to provide ground rules for
internal community communication and the further development of simulation tech-
niques.

An intellectual and organizational formula must be evolved capable of ensuring
transversality across practices and markets while preserving technical and commu-
nity cohesion. Research technology contributes to this end. In the case of simulation,
the emergence of a generic, general-purpose, multiparadigm code specifically de-
signed with objects in mind, like C++, provides a balance between centrifugal and
centripetal action. Spawned along tenets of research technology, C++ has given
simulation the power to expand into ever more applications and markets through im-
plementation tools (classes, portability, compilers, and standard template libraries).
The ANSI and ISO standardization of the code has ensured uniformity and continu-
ity, urgently called for by clients. The standardization process has allowed simulation
practitioners and design specialists to further work out generic foundations. Finally,
simulation boasts an interstitial environment, witnessed in the complex cognitive and
organizational trajectories of Bjarne Stroustrup, John McLeod, and Vincent Amico.

GEMAS, Maison des Sciences de l’Homme, Paris, France

TERRY SHINN202

REFERENCES

Allison, C. (1996). Interview with Bjarne Stroustrup on his reaction to the imminent completion of the
ANSI/ISO C++ Standard, The C/C++ Journal, October 1996, 14 (10);
http://public.research.att.com/~bs/interviews.html (acc. April 13, 2004).

Dolya, A.V. (2003). Interview with Bjarne Stroustrup for the Linux Journal, posted August 28, 2003,
http://public.research.att.com/~bs/interviews.html (acc. April 13, 2004).

IEEE Computer (1998). “Open Channel” Interview with Bjarne Stroustrup: The Real Stroustrup Interview.
“The Father of C++ explains why standard C++ isn't just an object-oriented language”,
http://www.research.att.com/~bs/ieee_interview.html (acc. April 13, 2004).

IEEE Transaction (1968). Special Issue on Systems Science and Cybernetics, Vol. SSC-4, No. 4.
Joerges, B. and T. Shinn (eds.) (2001). Instrumentation Between Science, State and Industry, Dordrecht,

NL: Kluwer Academic Publishers.
Kalev, D. (2001). “An interview with Bjarne Stroustrup”, LinuxWorld.com, August 2nd, 2001,

http://www.itworld.com/AppDev/710/lw-02-stroustrup (acc. April 13, 2004).
Koenig, A. and B. Stroustrup (1989). “C++: As close to C as possible – But no closer”, The C++ Report,

July 1989.
McLeod, J. (1968). Simulation: The Dynamic Modeling of Ideas and Systems with Computers, New-

York: McGraw -Hill.
McLeod, J. (1982a). Computer Modeling and Simulation: Principles of Good Practice, The Society for

Computer Simulation International.
McLeod, J. (1982b). “Simulation” in the Encyclopedia of Science and Technology, New-York: McGraw-

Hill.
McLeod, J. and P. House (1977). Large-Scale Models for Policy Evaluation, New York: Wiley-

Interscience.
Nelson, E. (2004). Interview with Bjarne Stroustrup for Visual C++ Developers Journal (VCDJ),

http://www.research.att.com/~bs/devXinterview.html (acc. April 13, 2004).
Pradeepa Siva C. (2004). Interview with Bjarne Stroustrup for Addison-Wesly Longman about the third

edition of The C++ Programming Language, http://www.research.att.com/~nineteen nineteen
bs/3rd_inter1.html (acc. April 13, 2004).

Shinn, T. and B. Joerges (2002). “The tranverse science and technology culture: Dynamics and roles of
research technology”, Social Science Information, 41 (2): 207–251.

ShinnT. and B. Ragouet (2005). Controverses sur la science: Pour une sociologie transversaliste de l'ac-
tivité scientifique, Paris, Raisons d’agir.

Stroustrup, B. (1980). “Classes: An Abstract Data Type Facility for the C Language”, Bell Laboratories
Computer Science Technical Report CSTR-84.

Stroustrup, B. (1981). “Extensions of the C language type concept”, Bell Labs Internal Memorandum.
Stroustrup, B. (1982). “Adding classes to C: An exercise in language evolution”, Bell Laboratories Com-

puter Science Internal Document.
Stroustrup, B. (1986) The C++ Programming Language, Reading, MA: Addison-Wesley.
Stroustrup, B. (1987a). “The evolution of C++: 1985–1987”, Proceedings USENIX C++ Conference,

Santa Fe, NM.
Stroustrup, B. (1987b). “Possible directions for C++”, Proceedings USENIX C++ Conference, Santa Fe,

NM.
Stroustrup, B. (1989). “Standardizing C++”, The C++ Report, Vol. 1, No. 1.
Stroustrup, B. (1990). “On language war”, Hotline on Object-Oriented technology, Vol. 1, No. 3.
Stroustrup, B. (1993). “The history of C++ : 1979–1991”, Proceedings ACM History of Programming

Languages Conference (HOPL-2). ACM SIGPLAN Notices.
Stroustrup, B. (1994). The Design and Evolution of C++, Indianapolis, IN: Addison-Wesley.
Stroustrup, B. (1997a). “The object magazine online interview”,

http://www.research.att.com/bs/omo_interview.html (acc. April 13, 2004).
Stroustrup, B. (1997b). Design and Use of C++ by Bjarne Stroustrup, Talk given November 3, 1997 at

Computer Literacy Bookstore in San Jose, CA, http://www.research.att.com/~bs/Cbooks_QnA.html
(acc. April 13, 2004).

Stroustrup, B. (2000). C++ Answers From Bjarne Stroustrup, e-mail interview with slashdot.org in the
week of February 25, 2000, http://www.research.att.com/~bs/slashdot_interview.html (acc. April 13,
2004).

WHEN IS SIMULATION A RESEARCH TECHNOLOGY? 203

Stroustrup, B. (2004). Interview, http://members.shaw.ca/qjackson/writing editing/interviews/Bjarne-
Stroustrup.htm (acc. April 13, 2004).

Venner, B. (2003). “The C++ style sweet spot. A conversation with Bjarne Stroustrup, Part I”, October 13,
2003, http://www.artima.com/intv/elegance.html (acc. April 13, 2004).
“Modern C++ style. A conversation with Bjarne Stroustrup, Part II”, November 24, 2003,
http://www.artima.com/intv/modern2.html (acc. April 14, 2004).

“Abstraction and efficiency. A conversation with Bjarne Stroustrup”, Part III”, February 16, 2004,
http://www.artima.com/intv/abstreffi2.htm (acc. April 14, 2004).

”Elegance and other design ideals. A conversation with Bjarne Stroustrup, Part IV”, February 23, 2004,
http://www.artima.com/intv/elegance.html (acc. April 13, 2004).

