
187 

TERRY SHINN 

WHEN IS SIMULATION A RESEARCH TECHNOLOGY? 
PRACTICES, MARKETS, AND LINGUA FRANCA 

The practices of simulation are highly diverse: In a given domain, and for a single 
problem, practices are frequently multiple, different from one another, divergent, and 
more than occasionally contradictory. In view of such acute plurality, how is one to 
grasp the sense of ‘simulation’? While the number and scope of practices embedded 
in simulation and the magnitude and heterogeneity of the simulation market are syn-
onymous with fragmentation, does fragmentation necessarily prescribe the operation 
of the simulation community, and if not, what might be the form and function of a 
said community? Is it reasonable to speak in terms of simulation as a system, and if 
so, on what grounds? This chapter explores this and related issues. It examines trans-
verse features of simulation that serve as operators of cohesion, which cohesion con-
stitutes a prerequisite for the stabilization of a social/cognitive system. The canvas 
presented here will include historical, organizational, professional, and epistemologi-
cal components. The context of the emergence of the C++ general-purpose, multi-
paradigm, object-oriented simulation language will be explored. It will be suggested 
that the intellectual and social dynamics of C++ strongly reflect key features of ge-
neric instrumentation and research technologies, and that, by virtue of this corre-
spondence, it is reasonable to think of the practices, structures, and market of simula-
tion in terms of a transverse research technology system.   

FOUNDATIONS 

Many of the cognitive, organizational, and institutional elements constitutive of con-
temporary simulation were introduced before 1960. With a few notable exceptions, 
such as visualization techniques and virtual reality, what has happened since is an 
extension of that early orientation. Recent change has largely occurred within the 
confines of the historical mold and logic that initially formed today’s huge and di-
verse domain of simulation thought and action. 

Questions of simulation emerged for the first time in Germany in the 1920s when 
H. Roeder took out a patent for devices intended for use in training pilots of submers-
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ibles, balloons, and airplanes. The simulators were designed to represent changes of 
altitude in three planes of movement, to register commands initiated by pilot trainees, 
and to readjust altitude correspondingly. The project came to naught, but the effort is 
important. It connects simulation to the emergence, development, and currency of 
new forms of technological artifacts. It is an extension of a historically novel form of 
technical design, materials, and activities. From the outset, simulation was connected 
to aviation, issues of complex motion, equations that describe complex flows and 
interactions, and the extension and adoption of new varieties of skills (sometimes 
entailing new training programs). Finally, the simulation trainers project of the 1920s 
established important parameters that underpin thinking and action in most simula-
tion ventures: 1) representations of multidimensional environments, 2) interaction 
between elements figuring in the representation (sometimes including human opera-
tors), 3) emphasis on TIME, that often comprises a key dimension beyond the three 
axes of freedom in space (particularly in virtual reality), 4) testing, and 5) validation. 

However, it was not until the 1940s that Roeder’s intuition that the components 
of simulation, aviation, and training comprise an integrated unit became a reality, and 
when it occurred, it was not in Germany but instead in the United Kingdom and 
United States. This gap corresponds to a massive growth of a simulation market in 
the shape of war-driven demand for expanding numbers of increasingly advanced 
combat aircraft, for attendant pilots, and for quick efficient training. It similarly cor-
responds to the design, construction, and spread of simulation-relevant technology 
such as ‘fast’ analogue calculating devices, capable of coping with elementary fluid 
flow equations and their translation into simulation dynamics and mechanical outputs 
adapted to an aircraft control environment. This evolution proved crucial: Today’s 
faster, better, and generalized simulations rely entirely on digitalized calculations! 
The historical multifront technological advances of the 1930s and 1940s in electron-
ics and calculation provided the mental and material conditions fundamental to simu-
lation. The centrality of technology to simulation cannot be overestimated. Simula-
tion is the technology of technology, of science, and of industrial operations and be-
yond. In its role as the technology of technologies, simulation represents the most 
reflexive form of analysis/action yet known to humanity, and broadly practiced in 
society.

In 1939, Professor L. Mueller, working at MIT, designed and built a fast analogue 
computer to study the longitudinal dynamics of aircraft motion. Mueller’s interest 
was in the solution of the set of aerodynamic equations and their simulation for de-
sign purposes. However, in a postscript to his paper, he mentioned that his simulator 
could be adapted to flight simulation pilot training. In 1941, an electronic analogue 
computer was developed at the TRE unit for the radar training program. The TRE 
group, originated at MIT during the war, combined advanced detection, electronics, 
and control systems coupled to fast calculators, mainly for military objectives. This 
device was based on the ideas of F. Williams, famous for his later contributions to 
digital computers, and used the velodyne – another TRE invention for integration. 
The first model of this computer had been developed by Dynatron Radio Ltd. in 
1941. 

The war years saw an increase in the companies involved in simulation as well as 
in hardware, accessory, and modeling technology. In 1945, a new system was introduced 
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by K.M. Uttle that incorporated force fields and visual inputs into flight trainers. In 
Britain, advanced longitudinal dynamics was added to the flight simulation repertory 
through the efforts of G.M. Hellings and the resulting electromechanical analogue 
computer. This computer and model was arguably sufficiently general and flexible to 
correspond to the flight characteristics of any aircraft then in operation. The simula-
tor boasted a pitch motion system that incorporated an endless moving belt. In the 
United States, the Special Devices Division of the Bureau of Aeronautics developed 
the Center for Naval Training Equipment. It supported the simulator activities of Bell 
Laboratories, which constructed the Navy’s PBM simulator that included a complete 
front fuselage, cockpit, accessories, and all instrumentation. The Link trainer was 
also developed during this period. In 1948, and during part of the 1950s, the Curtiss-
Wright aviation firm engaged in simulator design, The company produced a new line 
of servo devices and what was known as shadow graphics. General Electric entered 
the simulation race during the 1960s, developing digital systems for space-related 
operations. 

Work surrounding the atomic bomb constitutes a second current of simulation ac-
tivity. During the latter phase of bomb research, Los Alamos scientists and engineers 
set out to study the magnitude of their bomb’s explosive impact. At the time, nothing 
was known about nuclear blast extent. To determine this, scientists selected numer-
ous possibly relevant parameters, and assigned a huge variety of values to each. The 
number of permutations was astronomic. They engaged the newly emergent compu-
tational technology of computers becoming available at that time to calculate the 
likelihood of the selected parameters and to estimate the consequences of each. The 
resulting calculations indicated a statistical likelihood of bomb effects. The probabil-
ity-based technique of this project soon acquired the name Monte Carlo simulation,
presumably suggesting the probabilistic aspects of operations. It rapidly became cen-
tral to a sweep of simulation endeavors. On a different register, starting in the 1950s 
with scenarios based on ‘if-then’ logic, insurance companies used Monte Carlo simu-
lation to work out actuarials, and soon banks and investment firms were using it for 
investment and client advice. Monte Carlo simulation has similarly become the cor-
nerstone for much risk assessment research and public policy, and it is today a tech-
nique deployed by nuclear energy lobbies seeking to quiet public unease about nu-
clear hazard. The introduction of high-power individual computer technology has 
even further accelerated the generalization of this form of simulation (e.g., for calcu-
lating possible trends in the stock market).  

The initial organization of simulation technology was rooted in engineering prac-
tice and undertaken by engineers and not by scientists, scientific societies, or univer-
sities. One of the first simulation forums to be scheduled and the first simulation or-
ganization founded was venued in Europe, and not in the United States, where much 
of the early simulation work had been carried out. One explanation for this is that 
part of European postwar reindustrialization was free to build around new technol-
ogy, the older prewar production capacity and technology having been destroyed by 
bombing, battle, and sabotage. In 1955, a meeting was convened in Brussels at the 
Free University attended by researchers, managers, and observers of the simulation 
laboratories that existed at the time. Many of the laboratories were a by-product of 
the enormous simulation-related activities of World War II. Participation was  
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international, with delegates coming from most west European countries, the United 
States, and Japan. The conference decided there existed a need for a permanent 
means of communication between members of the emerging simulation community. 
Participants perceived that extant professional and scientific bodies were too restric-
tive in composition and outlook to include the diversity of backgrounds, skills, and 
interests that characterized the multidisciplinary, multisectoral, and multipractice 
new world of simulation. The result was the creation of the AICA (L’Association 
Internationale pour la Computation Analogue). Under the influence of technological 
and scientific innovation, the initial scope of the AICA expanded to include more 
mathematical analysis (particularly numerical operations), mathematical modeling, 
and digital technology. This body played a crucial role in the introduction of simula-
tion particularly into Europe. Its outstanding successes lay in the domains of chemi-
cal engineering, automatic system engineering, and later simulation-based design, 
specifically in the realm of mechanics. In 1976, the pioneering body took the name 
International Association for Mathematics and Computation for Simulation, to better 
reflect the broadening technology, uses, and markets of simulation. The original 
AICA was significant for the establishment of simulation, because it tried to coordi-
nate and combine the analytic practices developing in simulation, which, at the time, 
was still an outside cognitive corpus and set of practices as well as being socially 
nebulous.  

SIMULATION AT WORK – POST 1960 

Most post-1960s simulation activity has focused on engineering-related and indus-
try/service-oriented work, as measured by the focus of simulation societies and jour-
nals. John McLeod and Vincent Amico have been pillars of simulation in the United 
States since World War II. McLeod earned a BS in engineering at Tulane University, 
and has been associated with the universities of Chicago, Harvard, and MIT. He is an 
expert in the design and construction of automatic control systems (boasting two pat-
ents) in which simulation is the principal tool. He served in the US Navy’s Guidance 
Systems Simulation Laboratory for a decade, acquiring initial simulation-based de-
sign experience there. He then went to work for the Northrop Company, moving to 
General Dynamics between 1956 and 1963 – again in design. McLeod became an 
independent simulation researcher for a brief period during the 1960s when he de-
signed a heart-lung machine using principles of simulation-driven design techniques. 
He was an active consultant throughout his career.  

Amico earned a BS in engineering from New York University in 1941 and went 
on to study physics. From 1941 to 1945, he worked on the structural design of mis-
siles and aircraft at the Static Test Laboratory at Wright Field. After 1948, he worked 
as a civilian for the US Navy as product engineer for flight training equipment. In 
1969, Amico became Research Director of engineering of his design unit; and, in 
1979, he was appointed Research Director of the Navy’s entire flight training pro-
gram. Throughout, Amico based his endeavors on simulation development and simu-
lators. They comprised the mainstay of his career. Beginning in 1972, he taught at 
the computer department of the University of Southern California, specializing in 
simulation techniques.  
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McLeod and Amico figured importantly in the development and successes of the 
Society for Computer Simulation that became the United States major organization 
specializing in simulation publications, and to a lesser degree simulation conferences. 
Although the Society was set up in 1952, it remained a relatively small and obscure 
body until the late 1960s, when McLeod helped expand its activities, often assisted 
by Amico. McLeod turned this American organization into an international body; 
and under his careful guidance, the Society was rechristened the Society for Modeling 
and Simulation International. McLeod managed to connect the American simulation 
community to a broader simulation environment based in Great Britain, France, Hol-
land, Germany, Italy, Denmark China, Korea, and Japan. From the 1970s onward, 
simulator experts and users regularly participated in the annual meetings of the Soci-
ety for Modeling and Simulation International – the Summer Computer Simulation 
Conference that specializes in continuous event simulation.  

The Society for Modeling and Simulation operates a large, prestigious stable of 
simulation publications. It publishes Simulation – the society’s flagship review, and 
the most well-read and respected journal in the field. It also publishes Transactions 
for Modeling and Simulation, Simulation Magazine, and The Journal of Defence 
Modeling and Simulation: Applications, Methodology, and Technology (with the US 
Army and Simulation Office).  

However, it is not the Summer Computer Simulation Conference that constitutes 
the foremost venue for the exposition of new work in the field of simulation, but in-
stead the Winter Simulation Conference. Whereas the beginnings of the Winter 
Simulation Conference date back indirectly to a series of small simulation seminars 
held during the late 1940s, the organization was set up only in 1967. The initial meet-
ing was headed by H.J. Hixson (head of operations systems research analysis with 
the US Air Force logistics command and program director of the IBM SHARE users 
group)  and by J. Reipman (prominent user of the general purpose simulation system 
approach in the Nordon division of the United Aircraft Corporation and a leader in 
the IEEE). It differs from the Summer Computer Simulation Conference in several 
important respects. The latter deals with continuous simulation, whereas the Winter 
Conference specializes in discrete event simulation. Discrete event simulation effi-
ciently represents events in which time is a subordinate consideration. In contrast, 
continuous simulation, based on the solution of differential equations, unceasingly 
monitors time, but is less attentive to details of complex events. Continuous simula-
tion is used to model activities like continuous flow engineering and aircraft auto-
matic pilot systems. Manufacturing and services are modeled with discrete event 
simulations. However, as indicated by Küppers and Lenhard (this volume), a closer 
analysis reveals that matters are becoming increasingly complicated, because even 
continuous simulation relies on discrete models.  

Whereas the Summer Conference has rejected sponsorship by professional engi-
neering bodies, interest groups, and public agencies, the Winter Simulation Confer-
ence has multiplied such connections. The Association for Computing Machines, the 
IEEE, and IBM sponsored the initial meeting. An audience of 225 was expected, but 
interest ran so high that 401 attended. The proceedings were published by the IEEE
Transaction in a special issue in 1968 on systems science and cybernetics. 
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The second Winter Simulation Conference took place in December 1968: Its 
theme was Simulation Applications. In addition to the initial sponsors, this meeting 
also received backing from Simulations Council Inc. There were twenty-two ses-
sions, and eighty-eight papers were presented on a range of simulation applications. 
Statistical research, simulation computer language development, and simulation edu-
cation were included in the program. Attendance jumped to 856. A 356-page digest 
of conference papers was subsequently published. The 1969 Winter Simulation Con-
ference was sponsored by the American Institute of Industrial Engineers and the In-
stitute of Management Sciences/College on Simulation and Gaming. In 1971, the 
Operations Research Society of America also became a sponsor. That year, atten-
dance reached over 1,200 – the highest figure ever. 

In 1974, the tide turned: The number of participants fell sharply, as did financial 
support for the program. The future looked bleak for several years, until the National 
Bureau of Standards intervened, infusing organizational vigor, new ideas and pro-
jects, and fresh money. In the 1980s, the Winter Simulation Conference regained its 
former ascendancy and has maintained it ever since. But, why the collapse in the 
mid-1970s, and what structural considerations contributed to its newfound energy?  

Although the exact circumstances require further research, one can point to sev-
eral contributory factors: By the 1970s, there existed a plethora of simulation re-
search directions, projects, application niches, and implementations. The field had 
fragmented considerably. Functional sectors and individual firms were working out 
their specific simulation solutions. The initial flush of enthusiasm that fuels a new 
venture had begun to erode. Two key initiatives regalvanized the simulation venture. 
Intervention by the US National Bureau of Standards provided a measure of stability 
and coordination that was otherwise lacking. The Bureau pulled together divergent 
simulation movements. Second, new initiatives in programming language began to 
emerge. Introduction of a language like C++ (to be analyzed in detail below) helped 
the simulation community by providing a focus of technological, intellectual, and 
professional convergence.  

In sum and as indicated above, military-related programs lay at the center of the 
development of simulation work. This was facilitated by the introduction of fast digi-
tal computing power and by the swift broad spread of computers. Nevertheless, simu-
lation efforts had begun to thrive on the basis of predigital computation. Slow ana-
logue devices had already permitted simulation to successfully invade a growing 
range of military-related realms before advanced digital developments. Additionally, 
the vast majority of simulation endeavors occurred in the narrow engineer-
ing/technology sphere. 

STRUCTURING SIMULATION – THE BIRTH, EVOLUTION, AND ROLE 
OF  THE C++ GENERAL-PURPOSE, MULTI PARADIGM, OBJECT-ORIENTED 

PROGRAMMING LANGUAGE 

The pages that follow will document the centrality of the C++ computer language to 
the internal development and point to the diversification and growth of the simulation 
markets and community since the mid-1980s. It will be further suggested that C++ 
exhibits many of the key attributes of research technologies. Grounded on these twin 
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observations, I argue that simulation itself may usefully be perceived as a research 
technology rich in generic instrumentation that simultaneously provides a stable ker-
nel to the simulation domain and permits diversity, yet transversality, commensur-
ation, coherence, and cohesion.  

The C++ simulation-directed, general-purpose, object-oriented, multipurpose lan-
guage was developed between 1983 and 1985. The programming language’s author 
is Bjarne Stroustrup (1950), a brilliant, energetic, successful, and some would say 
charismatic, general-purpose language developer. Today, C++ is the most wide-
spread language in simulation. In 2003, estimates range between 1.3 and 3 million 
users. C++ is a generic technology, fathered, matured, and organized in an interstitial 
environment. The disembedding of its generic features and their reembedding in spe-
cific applications involves intermittent selective boundary crossings. It corresponds 
to a form of metrology. By virtue of this combination of characteristics, C++ consti-
tutes a research technology (Joerges and Shinn 2001; Shinn and Joerges 2002; Shinn 
and Ragouet 2005).  

Bjarne Stroustrup is currently the College of Engineering Professor at the Texas 
A&M University Department of Computer Science, and director of the Large-Scale 
Programming Research Department at AT&T Laboratories. He was born in Den-
mark, and did his undergraduate work at Aarhus University, taking a degree in 
mathematics and computer science, before moving to Cambridge University for his 
doctoral studies. His dissertation adviser was David Wheeler, a well-known pro-
grammer who contributed to the Illiac. The Illiac, built in 1952, based on von Neu-
mann architecture and located at the University of Illinois, was the United States’ 
most powerful university computer, even surpassing the capacity of the combined 
Bell Laboratory machines.  

Stroustrup studied at the Cambridge Computer Laboratory, conducting research 
on alternatives for the system software of distributed systems. He composed new 
software from existing systems and tested feasibility and efficiency using simulation 
techniques. On completing his doctorate in 1979, Stroustrup took a position in the 
computer science research center in Bell Laboratories at Murray Hill, New Jersey, 
where he undertook research alongside language specialists like Denis Ritchi, who 
had recently developed the programming language C. From 1979 to 1983, when 
Stroustrup set out to build a new language, he was involved in a range of Bell-related 
tasks. He was notably active in simulation research intended to improve distributed 
network system operations, and explored applications of this approach. In 1979, 
Stroustrup set out to analyze the Unix kernel to determine how it could be distributed 
over a network of computers connected by a local area network. He also worked on 
improving the low-level language C  (Stroustrup 1993).  

One way of describing C++ is that it contains many elements of C that have been 
enriched with Simula and an object-oriented perspective. Stroustrup often says that 
C++ is three languages in one: a C-like language (supporting low-level program-
ming), an Ada-like language (supporting abstract data-type techniques), and a 
Simula-like language (supporting object-oriented programming) (Stroustrup 1994: 
198). C++ is also organically connected to additional languages (Stroustrup 1994: 
198). Algora68 gives to C++ operator overloading and the capacity to declare vari-
ables anywhere in a block. BCPL allows comments. Simula gives organization. 
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Whereas one strength of C is its proximity to computational machines, via the intro-
duction of elements from Simula and from the object-oriented perspective, C++ con-
nects directly to material problems by analysis of language application. C’s logic 
connects with computational machinery, whereas C++’s logic retains this property 
and adds the property of smooth problem application logic. 

Stroustrup’s design emphasized three stable features – application, the generic 
concept of classes, and portability (the latter allowing cross-boundary flexibility and 
translanguage communication). Stroustrup has always been concerned with promot-
ing solutions to real problems (Stroustrup 1997a,b). While his Denmark training in 
mathematics was interesting and stimulating, it nevertheless left him uncomfortable, 
as he is committed to confronting problems. He often insists that his language in-
sights and successes result from thinking about programming with reference to per-
sonal problem-solving experience. He generalizes up from problems. C++ has been 
built to enable real and diverse users to better grasp their problems and treat them 
computationally. In this sense, the C++ language is application- and user-driven. 

Second, C++ was designed to operate in a framework of classes. Initially, C with 
classes was developed by Stroustrup to allow simulators to be built for research in 
network design being carried out by Sandy Fraser at Bell. Inclusion of the term ‘C’ in 
the name C++ indicates the extent of C’s parentage to C++. One frequently asked 
question is why C++ did not simply emerge as an evolution of C, rather than distinct 
from it, and as a powerful and eventually victorious competitor. Part of the answer is 
the centrality of classes in C++. While Stroustrup seriously tried to reconcile the im-
portation of classes into C, as witnessed by his construction of C with classes, the 
architecture of C limits the full expression of classes. This drove Stroustrup to further 
diverge from C, as he continued in his project to build a more useful programming 
language. The relationship between C and C++ is expressed in a phrase submitted by 
Stroustrup in a 1989 article As close to C as possible, but no closer (Koenig and 
Stroustrup 1989). 

According to Stroustrup, classes possess a multifold advantage (Venners 2003; 
Dolya 2003). Classes promote reasoning in terms of connections crucial to object-
oriented representations and work. C++ is not an object-based programming lan-
guage; it is an object-oriented code, which may be more restrictive. Classes help 
identify the similarities shared by elements. They facilitate computation between 
them. They furthermore allow passage from one part of a program to another with a 
minimum of difficulty, facilitating the work of programmers and users. Classes in a 
program reduce runtime, making computation efficient. In C++, the combination of 
classes and static checking helps alleviate the need for garbage collection, which 
constitutes an important economy in runtime and memory. Stroustrup also suggests 
that elegance is a desirable quality of a good language, and the use of classes pro-
motes elegance. But, above all, in C++, the true purpose of classes is that they pro-
vide a platform for clear reasoning about complex structures.  

Classes, in conjunction with other components like static checking, restrictive 
garbage collection, and multiple inheritance, constitute the generic feature of C++. 
The centrality of classes in C++, along with the role played by the object-oriented 
perspective, makes C++ ubiquitous in much simulation work.  
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While classes comprise the generic anchor of C++ that allows the general purpose 
code to be adapted and adopted by multiple applications, portability represents the 
format through which classes and other generic features of the language are vehicled. 
Portability was crucial to Stroustrup from the outset. He tried to design a language 
far more portable than C. Portability infers compatibility and flexibility. C++ is not a 
restrictive language, as it can easily be connected to a range of hardware and soft-
ware. It operates in innumerable environments – Unix, Windows, and Macintosh. 
C++ links conveniently to many application tools. It is thus embedded in a huge 
range of informatic products without restriction, whereas the architecture of other 
languages limits their partnering. C++ functions as a foundational language tool in-
side an ever extending variety of application-specific local tools. Most computer lan-
guages are written either by language designers for other designers or by users for a 
particular application; but this is not the case for C++, whose architecture integrates a 
breadth of perspectives and conveys a multitude of mechanisms felicitous to mobil-
ity. This drive for breadth echoes Stroustrup’s twin concerns for and experiences in 
concrete application practice and design involvement. 

Portability is the hallmark of boundary crossing. This feature permits the expres-
sion of classes in terms of genericity and class reembedding in diverse applications. 
Without C++’s portability, movement across boundaries would be rare or impossible. 
Portability spells ongoing communication between evolving C++ design and other-
wise isolated C++ niche users. Thanks to portability, C++ can thus stand as a generic 
language, as a language of application, and also as a reflexive transverse language 
that permits transapplication exchange.  

The break of C++ with C, and its subsequent promotion in 1984–85, proved both 
problematic and easy. Its possible competitors, Modula-2 and Ada among others, 
were often regarded as restrictive, entailing awkward problems, or simply did not 
find dynamic outlets on the United States market. The Bell Laboratory, where 
Stroustrup worked, had experimented with and contributed to numerous languages, 
and was thus not irreconcilably committed to any particular one. The research unit 
was big, leaving room for individual initiatives and maneuver. Furthermore, Dennis 
Ritchi, who also worked at Bell and, along with Kristen Nigaart, is one of the pio-
neers of C, never strongly opposed Stroustrup and his endeavors, which increasingly 
distanced C++ from C. The rapid successes of C++ also owes much to the expansion 
of the mini- and microcomputer market and to the growth in the number and range of 
applications. Foremost in these applications was simulation, to which C++ was per-
ceived as appropriate and congenial. The diffusion of C++ was also connected to 
keen interest in the new language among language designers and programmers. C++ 
required good compilers and libraries to ensure its spread and effectiveness in differ-
ent applications (Venners 2003), and much to even Stroustrup’s surprise, the compu-
tation community responded in record time to his proposed architecture with a num-
ber of world-class compilers.  

The number of C++ users rocketed. In 1984–85, the emergent language was 
largely restricted to the Bell Laboratory. In the months that followed, C++ was dis-
tributed in a preliminary version to selected universities and a few users (Stanford, 
University of California, Cal Tech, University of Wisconsin, MIT, Carnegie Mellon, 
University of Copenhagen, Rutherford Laboratory in Oxford, etc.). The response was 
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not what was expected. Rather than expanding, demand stagnated. The motive for 
this was unanticipated. Users loved the new language and wanted nothing better than 
to use it extensively: but its use in consulting and in public applications required the 
stabilization and standardization of the language, its public recognition, and the de-
velopment of adequate compiler architecture. Soon, however, the quick involvement 
of fresh C++ work, often originating outside of Bell Laboratories, allowed both the 
size and diversity of the C++ community to expand on an unforeseen scale. 

Table 1.  Growth in the size of the C++ community 

Date Estimated number of C++ users 

1979  1 

1980  16 

1981  38 

1982  85 

1983  87 

1984  135 

1985  500 

1986  2,000 

1987  4,000 

1988  15,000 

1989  50,000 

1990  150,000 

1991  400,000 

2002      1.300,000    

The following ventures indicate the range of activities associated with C++ in the 
decade since 1985: Animation, autonomous submersibles, billing systems, bowling 
alley control, circuit routing (telecom), CAD/CAM, chemical engineering process 
simulations, compilers, control panel software, cyclotron simulation and data proc-
essing, database systems, decision support systems, digital photography processing, 
digital signal processing, electronic mail, expert systems, factory automation, finan-
cial reporting, flight mission telemetry, foreign exchange dealing (banking), search 
software, hardware description, hospital records management, industrial robot con-
trol, instruction set simulation, interactive multimedia, magneto hydrodynamics, 
medical imaging, missile guidance, mortgage company management, network man-
agement and maintenance systems (telecom), network monitoring (telecom), operat-
ing systems (real-time, distributed, workstation, mainframe, ‘fully object-oriented’), 
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programming environments, superannuation, insurance, shock-wave physics simula-
tion, SLR camera software, switching software, test tools, transmissions systems 
(telecom), transport system fleet management, user interfaces, video games, and vir-
tual reality (Stroustrup 1994: 172). 

By the late 1980s and 1990s, C++ had become a major language among computer 
languages, or perhaps even the foremost. The C++ Journal appeared in 1991. Com-
puter Language, The Journal of Object-Oriented Programming, The C++ Users 
Journal, Journal of Object-Oriented Programming (JOOPS), and Dr. Dobbs Journal 
all ran regular articles on the C++ language. To this must be added the score of Inter-
net language publications that frequently feature C++ and present recent C++-related 
tools and implementations.  

C++ owes much to social factors. By the mid-1980s, the computer language and 
computer programming community had grown greatly. The consequence was two-
fold: First, numbers of young talented specialists could now loosen their ties with the 
big powerful computer firms that had earlier exercised considerable influence. Sec-
ond, conditions permitted some individuals to become independent free-lance pro-
grammers. In 1986–87, a movement of independent compilers developed. This was 
opportune for C++, whose evolution and diffusion required expanding beyond the 
walls of Bell laboratory, and the participation of many people and inputs from many 
quarters.  

The now famous Santa Fe compilers meeting was held in November 1987. This 
event marks a turning point for C++. Stroustrup anticipated an attendance of only a 
few dozen people in Santa Fe, but over 200 showed up! Papers were presented on 
C++ application, education, environment compatibility, and, strategically most cru-
cial, on compiler development. Building effective C++ compilers was essential to 
users, as they ease the work of application. For a compiler to be in step with the C++ 
generic/reembedding/boundary-crossing Stroustrup precepts, it must support many 
other operating languages. This meeting initiated the design, construction, and diffu-
sion of a spate of C++ inspired compilers and libraries – among others, the 1988 
Zortec compiler and the 1990 Borlan compiler. In 1991, Windows marketed its C++ 
compiler; and in 1992, IBM came out with its version of a C++ compiler. A C++ 
groundswell ensued. In 1988, the NIH helped sponsor a C++ meeting and began to 
acquire C++ programs, tools, and other application implementations. In 1988, the 
second C++ conference was held In Denver, and, since then, there have been C++ 
conferences on an almost yearly basis. 

During the 1980s, why did Bjarne Stroustrup push first to obtain the standardiza-
tion of C++ by ANSI (the American National Standards Institute) and then by ISO a 
decade later (ISO/IEC14882)? What does standardization signify for a code, and 
what form of work is involved? How does standardization impact on a language? 
What has the standardization of C++ meant to simulation?  

Before the standardization of C in the late 1980s, the language counted over 160 
dialects. In this instance, standardization neutralized fragmentation and imposed or-
der. The development of libraries and compilers can be used to hijack a language by 
locking in users. By standardization, a code becomes public and thus cannot be ap-
propriated. Stroustrup deplores the idea of a proprietary language, and above all de-
sired C++ to remain public. His design goal and subsequent strategy entailed that 
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C++ be an open pathway, not a closed system. He has often declared that C++ is for 
the average user as well as for the untypical user. It is for everyone! Finally, the 
documentation that necessarily accompanies standardization allows clarifications – 
clarifications in the work of design itself, design improvements, and clarification for 
users who want or need to know more about their code. Metrology thus fulfills the 
functions of stabilization, transparence, accessibility, and pedagogy. 

In the early 1990s, C++ was certified by the American National Standards Insti-
tute, the German Institute of Norms, and by the British Institute. This achievement 
culminated five years of effort. Stroustrup was motivated by numerous considera-
tions during his drive to win certification. Although the growing number of users 
approved and employed his language, general acceptance demands code homogeni-
zation and stabilization. This is necessary for a technology to be perceived as trans-
parent, transferable, and reliable. Stroustrup understood this. By all means, code de-
viance must be avoided and prohibited. Lock in of parts of the language also had to 
be prevented! Standardization of C++ at ANSI required several years. ANSI operates 
in conjunction with code designers, subsequent contributors, tool and implementation 
designers, firms that develop and market the tools, attorneys of said firms, independ-
ent code experts, and users from many sectors. Observers and freelancers are also 
implicated in the standardization process. Deliberations occur on two levels: Techni-
cal committees deal with issues of detail. A general body discusses questions of prin-
ciple, law, and policy. For C++, deliberations advanced relatively smoothly. At the 
end of the process, Stroustrup had given up nothing essential to his initial design 
plan.  

The ANSI and ISO procedures affected several important evolutions in C++. 
Templates were made central to the code. They were connected to libraries, and the 
template standard (TSL) resulted. Multiple inheritance also became a key feature. 
Stroustrup had earlier been weary of inheritance, but in the form that it was engi-
neered during standardization and combined with C++, he came to accept it and ap-
preciate its power. The next steps in modifying C++, states Stroustrup, will be its 
extension to distributive programming that will necessarily introduce threads (Dolya 
2003).  

The upshot of standardization is that C++ became even more general-purpose/ 
multiparadigm than before. C++’s compatibility with other codes was enhanced. It is 
a general user’s language, a specialty language, and a programmer’s code. It remains 
a language for high-level designers, as its openness and generic quality continue to 
make it interesting, challenging, and a turf still sufficiently malleable and open to 
correctly support future evolutions. 

THE INTERSTITIAL ENVIRONMENT

Genericity, reembedding, and boundary crossing are coupled to an interstitial envi-
ronment, and this environment figures centrally in the development of C++ practices 
and the simulation community. An interstitial arena emerges in the interspecies be-
tween established dominant organizations, such as the university, corporations or 
small technology-based firms, state technical services, the military, and so forth. 
While individuals who occupy the interstitial environment may work for a dominant 
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organization, they nevertheless frequently escape organizational control by move-
ment or by fostering arrangements that connect them to multiple organizations. Mul-
tiple connections increase resources and extend margins of maneuver. He who works 
for everyone is the bondsman of no one. In what ways has Bjarne Stroustrup and the 
design and evolution of C++ been affiliated with the interstitial environment?   

Today, Stroustrup divides his time between contacts with C++ users and markets, 
code design, education, and acquiring new language skills and experience (Doyla 
2003).  

Stroustrup’s experience is distributed, extending to pure and applied mathematics,  
language and program writing and use, and simulation. His endeavors bridge theory 
and application. Some of this output occurs in the framework of universities, state 
research or technical services (the NIH), private/semi-public services (ISO and 
ANTI), huge corporations (Bell and AT&T), and small technological companies 
(Silicongraphics). Concurrent and sequential employment is a rule. While once an 
employee of Bell Laboratories and still an active employee of AT&T Laboratory, 
Stroustrup has often simultaneously held other positions.  

The interstitial environment respects and maintains divisions of labor inside sci-
ence, inside technology, between science and technology, and between science and 
enterprise, while new important permutations are also invented continually (Joerges 
and Shinn 2001; Shinn and Joerges 2002; Shinn and Ragouet 2005). Stroustrup held 
to his C++ general-purpose, multiparadigm project. He used the relative autonomy 
provided by the interstitial environment to focus long-term attention on his objective. 
The interstitial arena is not an interest group, not a producer, and not a market. As 
often stressed by Stroustrup, his goal is steadfastly nonproprietary. He has no plan to 
encroach on the productions or operations of specific user/market niches. Consistent 
with this neutrality, the interstitial arena thus provides Stroustrup a platform for 
crossing the boundaries of innumerable organizations, markets, producers, and users, 
but without affecting the internal division of labor or infringing on their traditions, 
plans, or autonomy. He reembeds C++’s generic features into niche applications, and 
conversely uses the application experience of niches to design and enrich C++.  

C++ comprises a lingua franca: A lingua franca is the result of genericity, reem-
bedding, and boundary crossing. A generic technology like C++ contains one or sev-
eral fundamental instrumentation features, for example, an emphasis on classes in 
combination with abstraction, object orientation, and portability. When the generic 
technology moves into a particular market niche, several things occur. The generic 
features of the technology are reembedded in the local technical culture. In the case 
at hand, applications absorb certain selected features of C++ in accordance with 
short-term demand. Parts of C++ are reshaped in this process of adoption. Neverthe-
less, C++’s adaptation does not alter the fact that the generic characteristics of the 
base technology survive intact. The stamp of the generic base is permanently im-
printed on the local technical expression. The lingua franca arises out of this complex 
concatenation. For example, a specific library accompanies C++ into the separate 
applications of hydrodynamics research, auto piloting, and so forth. Nevertheless, the 
presence in C++ of a base code governing the organization of classes and logic of 
portability persists both in the piloting and science research extensions, and it is these 
stable, constant transverse features that enable users from both specialties to  
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communicate effectively about the language and about more substantive issues be-
yond their fields on a metalevel.    

The reembedded generic technology vehicles a particular metrology in the form 
of standards or units of measurement, a specific vocabulary, form of imagery, meth-
odology, or even a new paradigm. This residue is deposited in the local niche tech-
nology during reembedding. Although the product of reembeddings in diverse mar-
kets results in heterogeneous artifacts, the generic element remains uniform, a kind of 
technical fingerprint. However, C++ is expressed in the innumerable applications it 
serves; C++’s underlying signature persists. Through ‘assimilating’ the metrology, 
methods, vocabulary, or images of the hub generic instrument, niche practitioners 
come to share familiarity with, and competence in, a particular syntax and semantics. 
This common language becomes an integral feature of the practitioner’s niche lan-
guage. The language is associated with a set of local, efficient, robust practices. The 
technology, practices, and outcomes associated with the local techniques enjoy the 
status of ‘truth’ – in the sense of ‘practical truth.’ The lingua franca of C++ is the 
generic residue of the reembeddings of C++ in a multiplicity of fragmented market 
niches. It is that part of the C++ hub technology that transcends the transformations 
occurring during the process of adaptation and adoption. Since there persists a trans-
verse stable kernel used in the discourse of market practices, when practitioners who 
come from diverse economic or disciplinary sectors and have different functions (and 
come from different nations and have even different cultural horizons) meet, they can 
nevertheless communicate with reference to a technical field and generate intel-
ligibility. The common parlance available through this generic-driven lingua franca 
promotes cognitive, artifactual, and organizational transversality that somewhat neu-
tralizes the otherwise often disruptive effects of today’s rampant intellectual and so-
cial differentiation and fragmentation. Witness to the existence and efficiency of C++ 
as a lingua franca in simulation can be found in two venues. The annual Summer and 
Winter Simulation Conferences draw users from scores of applications. They com-
municate through C++ about C++, and also use the medium of C++ to communicate 
about their respective different and sometimes divergent simulation applications.  

By virtue of the fact that C++ represents a kind of research technology connected 
to many and diverse audiences and functions and highly amenable to transversality in 
the form of boundary crossing and commensuration, and by virtue of the fact that 
C++ constitutes a dominant code in simulation practice, one may reasonably estab-
lish the operation of a link between simulation practices and markets on the one 
hand, and research technology on the other. Simulation’s stability and strengths owes 
much to atributes drawn from research technology. Research technologies provide 
simulation (here demonstrated through analysis of C++) with open-ended techniques, 
representations, codes, and language that make it applicable in a miriad spheres, and 
it simultaneously offers a solid, self-referencing platform that gives definition, mean-
ing, and direction to the more general, overall, quasi-universal simulation enterprise.    

WHEN IS SIMULATION A RESEARCH TECHNOLOGY?

Simulation is a system whose architecture emphasizes three features: First, simula-
tion involves a remarkably large number of markets, and the number continues to 
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expand. Second, the particularities and demands of simulation niches are diverse and 
even divergent. Many markets require specific simulation practices, representations, 
robust results, and efficiency. Engineering demands predictability and information 
that promotes risk avoidance. Science counts on precision and understanding. These 
demands on simulation are very different. Third, traversing all markets and practices, 
there exists a kind of common denominator of expectations. Practitioners demand 
‘truth.’ The relevant form of truth might be described as ‘practical truth.’ Practical 
truth, as distinguished from the epistemological truth of philosophy, refers to de-
pendable matter-ground individual and group satisfaction based on perceived reliable 
material inputs and outcomes. What counts here as ‘satisfactory’ is connected both to 
individual experience and to the expectations and norms of society. Practical truth is 
hence simultaneously concretely personal and the fruit of collective routines. Upon 
determining that technical objects and protocols yield the anticipated result, practi-
tioners gradually come to equate a technical ensemble as ‘true’ to their understanding 
of the technical system’s properties and ensuing yield. Indeed, stable controlled tech-
nical ‘yield’ comprises the key facet of pragmatic truth.   

Heterogeneity of environment, form, and function are constitutive of the underly-
ing logic and action of simulation. In view of the extremes of heterogeneity, what 
gives the simulation system substance, stability, and continuity? Part of the answer 
lies in research technology.  

Several of the principal ingredients of research technology have been introduced 
in the above analysis: genericity, the interstitial environment, markets and technical 
niches, divisions of labor, relative autonomy, boundary crossing, reembedding, 
commensuration, practical truth, and lingua franca. Simulation is stretched between 
two imperatives: its multiple practices and markets; and the need to preserve a stable 
and standard kernel. Simulation necessitates unchanging standards in order to con-
vince users that outputs are effective and comparable, and to provide ground rules for 
internal community communication and the further development of simulation tech-
niques.  

An intellectual and organizational formula must be evolved capable of ensuring 
transversality across practices and markets while preserving technical and commu-
nity cohesion. Research technology contributes to this end. In the case of simulation, 
the emergence of a generic, general-purpose, multiparadigm code specifically de-
signed with objects in mind, like C++, provides a balance between centrifugal and 
centripetal action. Spawned along tenets of research technology, C++ has given 
simulation the power to expand into ever more applications and markets through im-
plementation tools (classes, portability, compilers, and standard template libraries). 
The ANSI and ISO standardization of the code has ensured uniformity and continu-
ity, urgently called for by clients. The standardization process has allowed simulation 
practitioners and design specialists to further work out generic foundations. Finally, 
simulation boasts an interstitial environment, witnessed in the complex cognitive and 
organizational trajectories of Bjarne Stroustrup, John McLeod, and Vincent Amico.   

GEMAS, Maison des Sciences de l’Homme, Paris, France 
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