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SIMULATION UNCERTAINTY AND THE CHALLENGE OF
POSTNORMAL SCIENCE

INTRODUCTION

On January 20, 1999, Hans de Kwaadsteniet, a senior statistician at the Netherlands 
National Institute for Public Health and the Environment (Rijksinstituut voor Volks-
gezondheid en Milieu, RIVM), made news in the Netherlands. After years of trying 
to convince his superiors that the environmental assessment branch1 of the institute 
leaned too much toward computer simulation at the expense of measurements, he 
went public with this criticism by publishing an article on the op-ed page of the na-
tional newspaper Trouw (de Kwaadsteniet 1999). His article was supplemented with 
an interview that resulted in the headline “Environmental Institute Lies and De-
ceives” on the newspaper’s front page. His specific claim was that the RIVM was 
suggesting an excessive accuracy for environmental figures published yearly in its 
State of the Environment report. According to him, too many model results were in-
cluded that had not been compared rigorously with observational data – mostly be-
cause of the lack of sufficiently detailed data to do the necessary comparisons. He 
pointed out that living in an “imaginary world” was dangerous. He thought that if the 
institute spent more time and energy on testing and developing computer-simulation 
models in a way that were to make more use of existing and newly performed obser-
vations, it would become more careful in the way it presented its results to policy 
makers. De Kwaadsteniet identified the deceiving speed, clarity, and internal consis-
tency of the computer-simulation approach as the main causes of the claimed bias 
toward computer simulation at RIVM. 

The institute responded immediately to the publication by suspending de Kwaad-
steniet from his job and stating in an official reaction that a significant fraction of its 
environmental research budget was spent on observations, that no policy recommen-
dations were given when uncertainties were too large, and that the uncertainties were 
not left out of the State of the Environment reports on purpose. The institute prom-
ised to publish information on the uncertainties in next editions. In a later reaction, 
the institute’s Director of the Environment, Klaas van Egmond (1999), argued that 
simulation models must be viewed as “condensed knowledge” and that they are  
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indispensable in environmental assessment, since, without them, it would be impos-
sible to determine cause-effect relationships between sources and effects of pollution. 
Thus, models give meaning to measurement results. And they are needed in envi-
ronmental policy making. Furthermore, he observed that policy makers often are con-
fronted with incomplete knowledge, and that the institute regards it as its task to report 
on the current state of affairs in the environment, including the uncertainties in-
volved. He gave the example that it will take many more years before climate research 
reaches the ‘ultimate truth’ about what is happening to the climate. However, on the 
basis of currently available knowledge and its uncertainties, politicians have to de-
cide whether to take measures now already. Finally, the Director added that the most 
important conclusions contained in the summaries for policy makers of the State of 
the Environment reports are carefully crafted, taking all relevant uncertainties into 
account.

Soon after the publication by de Kwaadsteniet, an intense and long-lasting media 
debate ensued in the Netherlands.2 The affair reached the floor of the Dutch Parlia-
ment within a matter of days. Facing Parliament, the Minister of the Environment, 
Jan Pronk, defended the integrity of the institute. In return for an agreement to organ-
ize more regular external reviews of its environmental assessment activities and im-
prove its communication of uncertainty, the Minister granted the institute additional 
funding for its monitoring activities. 

The episode of de Kwaadsteniet’s questioning of the role of scientific simulation 
in politics is by no means unique in the world. Controversies like that in the Nether-
lands surface regularly in many countries. In such discussions, general questions 
arise about the role of simulation in science as well as its role in policy making. The 
latter question constitutes the subject of this chapter. It focuses particularly on the re-
liability of simulation for political uses.  

Since World War II, computational approaches in science have emerged and ex-
panded – not in isolation, but often in strong contact with experimental and observa-
tional fields in the natural sciences, and aided by developments in mathematics and 
computer science.3 Outside science as well, simulations have become important tools 
in, for instance, providing scientific advice to policy makers.4 In highly politicized 
cases, such as climate change, methodological questions about what constitutes 
‘good’ or ‘sound’ science, often left implicit in scientific practices, are brought into 
the open. The characteristics of ‘sound’ science on which policies can be based are 
contested in political forums. Typically, the issue of the reliability of computer simu-
lation plays an important role in these debates. The state of affairs in which there are 
high political stakes in conjunction with high systems uncertainty has given rise to 
normative appeals for systematically dealing with uncertainty in scientific policy ad-
vicing. Funtowicz and Ravetz’s (1991) proposal for a “post-normal science” prob-
lem-solving strategy constitutes a prominent example. 

This chapter first discusses the use of scientific simulation for policy. Subse-
quently, after treating general issues related to the science–policy interface and the 
challenge of postnormal science, it presents a case study on simulating climate 
change along with a new methodology for assessing and communicating uncertainty 
in science-for-policy developed by RIVM and external uncertainty experts in  
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response to the media affair. Finally, it outlines the implications of this new method-
ology for managing the use of simulation in science-for-policy. 

SIMULATION UNCERTAINTY IN SCIENCE-FOR-POLICY

Scientific simulation models are not just used within science. The results of scien-
tific simulation models are frequently employed in public policy making as well.5
How important it is to assess computer-simulation uncertainty, as part of the process 
of providing scientific advice to policy makers and politicians, depends on the ques-
tions asked of science. In cases in which policy makers ask questions “which cannot 
be answered by science” (Weinberg 1972) – that is, even though the questions are 
scientifically formulated, the uncertainties are too large to answer those questions 
unequivocally – it is typical that many different answers can be produced by apply-
ing different simulation models to the policy issue. In this chapter, it is argued that, in 
such cases, computer-simulation uncertainty must be assessed thoroughly – and that 
this must be done in a way that is appropriate to the decision-making context. 

Similar arguments were developed by the philosophers of science Silvio Funto-
wicz and Jerry Ravetz (e.g., 1990, 1991, 1993). The aim of Funtowicz and Ravetz’s 
work is to improve the decision-making process by introducing into the policy-
advisory process appropriate information about the uncertainty and quality of the un-
derlying science (“science providing advice to policy” can be called “science-for-
policy” in short). In the Prologue to their book, this aim is set in the following con-
text: 

There is a long tradition in public affairs which assumes that solutions to policy issues 
should, and can, be determined by ‘the facts’ expressed in quantitative form. But such 
quantitative information, either as particular inputs to decision-making or as general pur-
pose statistics, is itself becoming increasingly problematic and afflicted by severe uncer-
tainty. Previously it was assumed that Science provided ‘hard facts’ in numerical form, 
in contrast to the ‘soft’, interest-driven, value-laden determinants of politics. Now, policy 
makers increasingly need to make ‘hard’ decisions, choosing between conflicting op-
tions, using scientific information that is irremediably ‘soft’ (Funtowicz and Ravetz 
1990: 1). 

In Funtowicz and Ravetz’s analysis, the stated “softness” of the scientific informa-
tion relates mainly to their claim that for many pressing policy problems, we cannot 
draw on the reliable knowledge that can be gained from experiments, but instead 
must use much less reliable knowledge from simulation. Even though one cannot 
make the general statement that all simulations are less reliable than laboratory ex-
periments, nor that simulations are in all respects untestable, the question of the reli-
ability of simulation is indeed pressing for the particular cases discussed by Fun-
towicz and Ravetz – that is, very complicated and complex environmental issues.  

Especially in simulation studies of the future, we must recognize our ignorance 
about the complex systems under study. Verification and validation of these com-
puter models is impossible, and confirmation is inherently partial. Furthermore, since 
models are products made by scientists, we must always be aware of the possible 
presence of personal, institutional, or ideological dimensions – their potential ‘value-
ladenness.’ Knowledge claims based on simulation should be tailored to be insensi-
tive to artifactual aspects of models and precise about real effects (Norton and Suppe 
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2001: 84). In order to be able to tailor these claims to such requirements, simulation-
ists must, on the one hand, do much practical work to determine the sensitivity of 
their model results to all sources of uncertainty. It is often not feasible, however, to 
establish the reliability of a simulation in quantitative terms. Therefore, one has to 
also assess the reliability of a model in a qualitative manner, for which a thorough 
review of the model is usually helpful. But even then, the quality of the simulation is 
only established according to the scientific community’s methodological standards. 
Finally, the scientists must think about remaining uncertainties that have not been es-
timated (yet) and determine what they can say about them. All these steps require a 
substantial amount of work. Since policy makers are usually not able to judge the re-
liability of scientific simulation-model outcomes themselves, scientific policy advis-
ers must carefully assess the reliability of their simulations and be aware of the un-
certainties in the presentation of their conclusions.6

Simulation models of ecological systems, for example, although they may give an 
impression of the scope of behavioral possibilities of such systems and, as such, may 
contribute reasons for taking policy measures, cannot predict the future states of 
these open and unpredictable systems. If modeling assumptions were made in a more 
transparent manner, and if, in concrete problem contexts, all relevant policy actors 
were involved in the framing of the models (what questions to address, where to lo-
cate the system boundaries, etc.), the choice of the models, and the evaluation of the 
models, then 

[m]odelling could … contribute to the organization of knowledge, e.g. it could catalyze 
mutual learning processes and it could contribute to the integration of scientific and non-
scientific knowledge and of exo- en endo-perspectives [perspectives from respectively 
outside or within the system studied] (Haag and Kaupenjohann 2001: 57). 

This is proposed as an ideal situation. Current practice is far from this ideal, how-
ever. Leaving aside the question of whether the ideal can ever be reached, we can ob-
serve that simulation uncertainties do not often get the airing they may well deserve. 
Sometimes, policy makers, politicians, and other actors do not see a need to dwell on 
the uncertainties and treat them explicitly. Policy decisions are just taken without be-
ing explicit about the level of uncertainty of the risk involved. A concrete example 
from the area of international environmental policy making is the formation of the 
Mediterranean Action Plan (Med Plan), a regional environmental cooperation for 
dealing with the issue of marine pollution in the Mediterranean that arose in the 
1970s. The uncertainty in this example is related to uncertainties in ecotoxicological 
simulations. The main scientists and policy makers involved in the Med Plan “shared 
an abiding belief in ecological principles and were committed to preserving the 
physical environment, which they thought was threatened by pollution” (Haas 1990: 
74–75). These ecological principles were partly derived from theoretical ecological 
computer simulations used to study the behavior of complex ecological systems. 
These simulations are relatively unreliable. This did not seem to hinder the main pol-
icy actors. The uncertainties in ecological computer simulations were dealt with only 
implicitly, not explicitly, by the actors involved in the Med Plan and remained at an 
unreflective level while decisions were being taken. Increased transparency about 
simulation uncertainties need not have changed the same policy outcomes, but would 
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have made the decisions more robust against these uncertainties. An explicit precau-
tionary approach could have been used, for instance.  

Recently, however, national and international governmental bodies have under-
gone a reflective transition in their attitudes toward scientific uncertainty. At the end 
of the 1980s, when environmental policy makers were faced with significant scien-
tific uncertainties surrounding large-scale and high-impact environmental problems 
such as biodiversity loss and climate change, they started referring more and more 
often to the “precautionary principle,” for instance. Loosely formulated, the principle 
states that if there is evidence that a certain activity may be harmful to humans or the 
environment, that activity should be abandoned. The principle provides politicians 
with the possibility to install measures even when uncertainty still exists about a 
problem.7

Thus, scientific simulation models are often used in providing policy advice, and 
they typically have significant uncertainties attached to them. In practice, it turns out 
that many experts still find it difficult to deal with these uncertainties when providing 
their policy advice. Within their own disciplines, they typically do not learn the skills 
needed to deal adequately with these uncertainties when providing advice (van Asselt 
and Petersen 2003: 144–145). There is clearly a need for including these issues in 
core academic curricula. 

THE CHALLENGE OF POSTNORMAL SCIENCE

Many social scientists who have studied the relationship between science and deci-
sion making have concluded that these two activities cannot be separated neatly in 
practice. One way to phrase this conclusion is the following: “Natural knowledge and 
political order are co-produced through a common social project that shores up the 
legitimacy of each” (Jasanoff and Wynne 1998: 16). An example may serve to illus-
trate this point. 

A much-discussed, though exceptional, coproduction of natural knowledge and 
political order is the ongoing assessment process conducted by the Intergovernmental 
Panel on Climate Change (IPCC), which receives questions from and feeds back into 
the United Nations Framework Convention on Climate Change. Due to widely publi-
cized warnings from scientists in the 1980s, the public in Western democracies be-
came interested in the risks involved in an enhanced greenhouse effect induced by 
anthropogenic emissions of CO2 leading to a human-induced global warming – and 
its associated effects, such as sea-level rise. The attribution of climate change to hu-
man influences and the projections of climate change into the future have made 
heavy use of climate simulations. Since the societal changes implied by the different 
solutions proposed for solving the global warming problem are quite drastic, one of 
the first steps politicians took to address the problem was to ask scientists to regu-
larly assess the state of climate science as well as the possibilities for adaptation to 
climate change and mitigation of the problem by reducing anthropogenic greenhouse 
gas (mostly CO2) emissions. This led to the establishment of the IPCC in 1988.8 The 
advisory process involving the IPCC is regarded by many social scientists as being a 
‘co-production’ of, on the one hand, our knowledge about the climate system and, on 
the other hand, the international political order: 
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The IPCC’s efforts to provide usable knowledge resonated with the belief of sponsoring 
policy organizations that climate change is a manageable problem within the framework 
of existing institutions and cultures (Jasanoff and Wynne 1998: 37). 

Already earlier in the 1980s, before the IPCC was established, the special chal-
lenges facing experts under conditions of potential alignment of scientific and politi-
cal views became evident in the area of risk assessment. Recognizing that the interac-
tions between science and policy making on risks were often unproductive in cases in 
which the decision stakes and system uncertainty are very high, Funtowicz and 
Ravetz proposed to distinguish a new type of risk assessment called “total-
environmental assessment” (Funtowicz and Ravetz 1985: 228). This is a form of risk 
assessment in which the “total environment” – that is, the complete context – of a 
risk issue is taken into account. This kind of risk assessment is appropriate for cases 
with high decision stakes and system uncertainty.9 In very polarized settings, the 
least one can hope for, according to Funtowicz and Ravetz (1985: 229), is a “consen-
sus over salient areas of debate.” 

According to Funtowicz and Ravetz, structural changes in the direction of en-
hanced participation are needed in order to democratize scientific advisory proceed-
ings. For this reason, they have generalized their original normative view on risk as-
sessment into a sweeping normative statement on the future of science-for-policy: 

Now global environmental issues present new tasks for science; instead of discovery and 
application of facts, the new fundamental achievements for science must be in meeting 
these challenges. … In this essay, we make the first articulation of a new scientific 
method, which does not pretend to be either value-free or ethically neutral. The product 
of such a method, applied to this new enterprise, is what we call ‘post-normal science’ 
(Funtowicz and Ravetz 1991: 138). 

When Funtowicz and Ravetz first wrote about “risk assessment,” they subse-
quently generalized their analysis to “problem-solving strategies.” The problem-
solving strategy of “postnormal science” (or ‘second-order science’) corresponds to 
the “total-environmental” type of risk assessment discussed above (Funtowicz and 
Ravetz 1991: 137, 144–145).10

Whether or not one agrees with Functowicz and Ravetz’s statement that “science” 
as a whole has to tackle the “new tasks,” whoever takes up the challenge has the re-
sponsibility to conscientiously (a) assess the issues, which may involve building very 
complicated computer simulations; (b) assess the uncertainties; and (c) communicate 
the policy-relevant findings of both these assessment activities. 

ASSESSING AND COMMUNICATING SIMULATION UNCERTAINTY IN 
SCIENCE-FOR-POLICY

How should we deal with the challenge that postnormal science poses to the use of 
computer simulation in policy making? Let us take a look at a specific example, that 

The alignment of scientific and political views seems to be a common feature of en-
vironmental assessment (see, e.g., Haas 1990 for a similar analysis of science and 
policy involved in the Med Plan). From these and other examples, one may conclude 
that the knowledge used in scientific assessments for policy purposes, often largely 
based on computer simulations, is potentially ‘value-laden.’ 
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of climate simulation and climate policy. Climate simulations play an important role 
in climate science. These simulations involve mathematical models that are imple-
mented on computers and imitate processes in the climate system. Like the history of 
numerical weather prediction, the history of climate science is strongly related to the 
history of the computer. There are two main reasons why simulation is so important 
in climate science. First, computers removed an actual barrier in meteorological prac-
tice: They greatly enhanced the speed with which calculations could be done. The 
calculations in climate simulations cannot be done practically without the use of 
computers. Second, simulation is an important ingredient of climate science, because 
real experiments with the climate as a whole are impossible. If we want to manipu-
late climate ‘experimentally,’ we need to perform such manipulations on a digital 
representation of the climate system. 

It must be borne in mind here that climate science is an observational science in 
which the scientific activities encompass much more than performing computer 
simulations. In fact, climate observations are of pivotal importance – also for cli-
mate-simulation practice. From climate observations, the world’s climate scientists 
have concluded that it is very likely that the earth’s climate has changed over the last 
100 years. In 2001, the Third Assessment Report of the Intergovernmental Panel on 
Climate Change (IPCC) concluded that the global average surface temperature has 
increased by 0.6 ± 0.2°C (95% confidence range) over this period (IPCC 2001: 2). 
The uncertainty is expressed here as a range of temperature change (from 0.4 to 
0.8°C) together with the probability that the real value lies within this range (that is, 
95%). For the Northern Hemisphere, it is considered likely (a judgmental estimate of 
confidence that there is a 66 to 90% chance) that current temperatures are higher than 
historic temperatures over the last millennium (IPCC 2001: 2). 

Alongside temperature, precipitation is also a component of climate. It is consid-
ered very likely that precipitation has increased by 5 to 10% during the twentieth 
century over most mid- and high latitudes of the Northern Hemisphere continents 
(IPCC 2001: 4). Furthermore, in the mid- and high latitudes of the Northern Hemi-
sphere it is likely, according to the climate experts, that there has been a 2 to 4% in-
crease in the frequency of heavy precipitation events over the latter half of the twen-
tieth century (IPCC 2001: 4). Also such extreme events are typically included in the 
description of climate. 

The above statements about observed climate change have been obtained without 
the use of climate simulations. This means that the sources of uncertainty are of a dif-
ferent kind to those encountered in simulation practice. For example, for global aver-
age surface temperature, the sources of uncertainty on the 100-year timescale are lo-
cated in data and (statistical) model assumptions made in data processing: “data gaps, 
random instrumental errors and uncertainties, uncertainties in bias corrections in the 
ocean surface temperature data and also in adjustments for urbanisation over the 
land” (IPCC 2001: 3). For the Northern Hemisphere temperature on the 1,000-year 
timescale, the sparseness of ‘proxy’ data11 is the main source of uncertainty (IPCC 
2001: 3), besides the unreliability of proxies for determining local temperatures in 
the past. 

It is not possible, however, to deduce the causes of the observed changes in cli-
mate directly from the observations. When climate scientists want to attribute climate 
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changes to causes or make future projections, they need to make use of climate simu-
lations. One of the most important conclusions of the IPCC (2001) is that “most of 
the observed warming over the last 50 years is likely [between 66 and 90% chance] 
to have been due to the increase in greenhouse gas concentrations” (IPCC 2001: 10). 
In order to arrive at this conclusion, climate simulations have been performed as a 
substitute for experiments. This function of simulation is crucial in climate science, 
because there is only one historical manifestation of the system under study. Real (in 
the sense of controlled and reproducible) experiments on the scale of the whole cli-
mate system are impossible. 

The roles of climate simulation in climate science are manifold. Furthermore, 
climate models of varying levels of concreteness exist and are valued differently by 
different groups of climate scientists. On the one hand, we find relatively simple cli-
mate models that do not require huge computational resources but can be used for 
genuine climate-scientific research. On the other hand, we encounter very compre-
hensive climate models that demand high-end supercomputers in order to be able to 
work with them. For this latter category of climate models, computing power is cur-
rently a bottleneck. This situation will remain unchanged for at least the next decade 
(the demand for computational power will keep growing faster than what can be de-
livered). The IPCC reports have taken a pragmatic stance in this matter and acknowl-
edge that both comprehensive and simple models have important roles to play in cli-
mate science (see, also, Petersen 2000). The observed plurality at the methodological 
level is correlated with a plurality of aims and goals held by climate-simulation prac-
titioners in their scientific practice. The social context of climate-simulation practice 
has a significant influence on this practice. Thus, in evaluating climate simulations, 
the potential value-ladenness of choices should not be overlooked. 

Even though all climate models contain ad hoc ‘parameterizations’ and can be 
criticized methodologically for that reason, climate scientists generally feel confident 
about using these models for climate-change studies. However, the IPCC lacks a 
methodology for uncertainty assessment and a typology of uncertainty that can be 
used to assess uncertainties more systematically. The challenge to postnormal science 
is for the IPCC to become even more rigorous and transparent in its treatment of un-
certainty. 

The MNP faces a similar challenge. In the year 2000, the MNP identified the lack 
of systematic treatment of uncertainty in the area of environmental policy making as 
one of the causes of the media affair reported at the beginning of this chapter. In or-
der to help environmental assessors to deal with uncertainty and frame policy prob-
lems in a more appropriate way, the Netherlands Environmental Assessment Agency 
(Milieu- en Natuurplanbureau, MNP), then part of RIVM, together with Utrecht 
University and an international team of uncertainty experts, developed the RIVM/
MNP Guidance for Uncertainty Assessment and Communication (Petersen et al. 
2003; Janssen et al. 2003; van der Sluijs et al. 2003; van der Sluijs et al. 2004).  

The RIVM/MNP Guidance for Uncertainty Assessment and Communication
(www.mnp.nl/guidance) offers assistance to employees of the Netherlands Environ-
mental Assessment Agency in mapping and communicating uncertainties in envi-
ronmental assessments.12 It was judged that the Guidance should facilitate dealing 
with uncertainties throughout the whole environmental assessment process and not 
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be limited to applying ready-made tools for uncertainty analysis and communication, 
because choices are made in all parts of environmental assessments that influence the 
way uncertainties are dealt with. The way in which the perspectives of other scien-
tists and stakeholders are treated is particularly crucial when assessing relatively un-
structured policy problems.  

The Guidance identifies six parts of environmental assessments that have an im-
pact on the way uncertainties are dealt with. These parts are: 

1. problem framing; 
2. involvement of stakeholders (i.e., all those involved in or affected by a policy 

problem including experts); 
3. selection of indicators representing the policy problem; 
4. appraisal of the knowledge base; 
5. mapping and assessment of relevant uncertainties; 
6. reporting of the uncertainty information. 

A focused effort to analyze and communicate uncertainty is usually made in parts 5 
and 6. However, the choices and judgments made in the other four parts are also of 
high importance for dealing with uncertainty.  

The Guidance is not set up as a protocol. Instead, it aspires to stimulate reflection 
on the choices made in different parts of environmental assessments, in order to 
make them more conscious and produce a better way of dealing with uncertainties. 
Aside from stimulating reflection during the execution of environmental assessments, 
the Guidance is intended to signal in a timely way which bottlenecks might occur 
when dealing with uncertainties (and what additional effort should perhaps be made 
in the field of uncertainty assessment). The Guidance offers advice on the selection 
of methods and tools for adequately estimating uncertainties in the given context and 
communicating them to scientific researchers, the ‘clients’ (usually ministries), other 
actors in the policy process, and the broader public. The group of envisaged users of 
the Guidance comprises a large fraction of the employees of the Netherlands Envi-
ronmental Assessment Agency (among others, those who fulfill the roles of project 
leader, project-team member, researcher, or policy adviser).  

The Guidance can be used in different phases of a project (at the beginning, dur-
ing, after). At the beginning of a project, it can play an important role in designing 
and elaborating the way uncertainty will be dealt with during the project. During a 
project, the Guidance can be of assistance in performing the uncertainty assessment 
and communicating the results. After a project, it can be of use in reviewing and 
evaluating the project. 

The most important function of the instrument is to make the practitioners reflect 
on the importance of uncertainties and on the way they should communicate these 
uncertainties to stakeholders (including policy makers). Table 1 shows the uncertainty 
typology used in the Guidance.13 The Guidance typology is presented as a matrix. 
This ‘uncertainty matrix’ is based on five dimensions of uncertainty. In the Guidance, 
it is used as an instrument for generating an overview of where one expects the most 
important (policy-relevant) uncertainties to be located (the first dimension), and how 
these can be further characterized in terms of four other uncertainty dimensions.  
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Using the matrix can serve as a first step toward a more elaborate uncertainty as-
sessment in which the size of uncertainties and their impact on the policy-relevant 
conclusions is assessed explicitly.15 For further details about the Guidance, the reader 
is referred to the Guidance website and publications. 

This typology of simulation uncertainty can be applied fruitfully in the analysis of 
climate-simulation uncertainty, as is shown for the simulation-related sources of un-
certainty in climate-change attribution studies by Petersen (in preparation). By apply-
ing the typology, it becomes immediately obvious that only part of the uncertainty 
can be expressed statistically. Additional qualitative judgments on the methodologi-
cal quality of the climate-simulation models (qualification of the knowledge base) are 
needed – and indeed played an important role in the production of the IPCC (2001) 
report. Since the vocabulary needed to explicitly distinguish between the two uncer-
tainty sorts of statistical uncertainty (“inexactness” in the vocabulary of Funtowicz 
and Ravetz 1990) and qualification of the knowledge base (methodological “unreli-
ability” according to Funtowicz and Ravetz 1990) was not available to the lead au-
thors, the influence of their qualitative judgments on reaching their final conclusion 
remained largely invisible to outsiders. 

Since the Guidance was released in December 2002, it has become part of the 
agency’s system of quality assurance for all projects including those making heavy 
use of simulations. Through teaching courses, an increasing proportion of scientific 
advisers have become acquainted with the new methodology. Specific tools for un-

Table 1.  Uncertainty matrix14
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certainty assessment that are presented in the Guidance have demonstrated their use-
fulness for prioritizing research activities in simulation modeling, for instance, the 
research on the global energy simulation model TIMER (van der Sluijs et al. 2002). 

Even though the Guidance is only an instrument for reflection, a change in simu-
lation practice can be observed within the agency in the sense that modeling choices 
are made more reflectively and reports pay more attention to uncertainties. It remains 
to be seen whether the institute has become less vulnerable to media affairs such as 
the one caused by de Kwaadsteniet, but my contention is that the answer will be posi-
tive. 

CONCLUSION

The facts that science and policy cannot be separated neatly and that experts provide 
policy advice under conditions of high political stakes and high system uncertainty 
pose a severe challenge to those expert advisers who use scientific simulation models 
that have significant uncertainties attached to them. From their own disciplines, ex-
perts typically do not gain the necessary skills to adequately deal with these uncer-
tainties when providing their advice. By making systematic use of an instrument such 
as the RIVM/MNP Guidance on Uncertainty Assessment and Communication, ex-
perts are better able to meet the challenge of the postnormal science problem-solving 
strategy.

Netherlands Environmental Assessment Agency (MNP), Bilthoven, The Netherlands

NOTES

1 Over the years, this branch has become an independent part of the RIVM: The Netherlands Environ-
mental Assessment Agency (Milieu- en Natuurplanureau, MNP). 

2 See, for more information about this debate, van Asselt (2000) and van der Sluijs (2002). 
3 Computer simulation as a scientific approach is not limited to the natural sciences, however. Simulation 

is gaining ever more prominence in, for example, psychology, sociology, political science, and econom-
ics. The recent rise in the amount of work on simulation in these fields may be partly related to the wide 
applicability of the concept of ‘complex systems’ (see Casti 1997, who provides a popularized account 
of the use of simulation to study complex systems in the natural and social sciences). Many simulations 
in both the natural and social sciences share system-theoretical concepts. 

4 Other examples of the use of simulation techniques outside science are flight simulators for training pi-
lots and simulations used in technology development as tools to design and ‘test’ new technologies, be 
they in automobile design (simulations of aerodynamics or crashes) or nuclear weapons design (simula-
tion of stockpile safety or explosions). 

5 Not all scientific simulation models find their application in policy making. This chapter only deals with 
those models that do. 

6 Obviously, there is also a more general need to provide insight into the uncertainties involved in policy 
advice, and not just in the case of scientific computer simulation. Whereas the main emphasis of this 
chapter is on simulation-model uncertainty, the general discussion on the science–policy interface and 
assessing uncertainty in science-for-policy does not just apply to scientific simulation. 
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7 Many references can be given to literature on the precautionary principle. Petersen and van der Zwaan 
(2003) offer a concise introduction to the principle and how it relates to the responsibility of scientific 
advisers to communicate about uncertainties. 

8 The IPCC consists of three working groups. Currently, Working Group I deals with the (natural) scien-
tific basis of climate change; Working Group II addresses issues of impacts, adaptation, and vulnerabil-
ity; and Working Group III assesses mitigation options. The analysis presented in this chapter focuses 
on Working Group I. 

9 These two variables are not totally independent, in the sense that the recognition of system uncertainty 
is typically enhanced if the decision stakes are high (see Jasanoff and Wynne 1998: 12). 

10 The other two types of problem-solving strategies are applied science (low systems uncertainty and/or 
low decision stakes) and professional consultancy (medium-level systems uncertainty and/or medium-
level decision stakes) (e.g., Funtowicz and Ravetz 1991, 1993). 

11 ‘Proxies’ such as tree rings, corals, ice cores, and historical records are “interpreted, using physical and 
biophysical principles, to represent some combination of climate-related variations back in time” (IPCC 
2001: 795). 

12 Only some elements of the Guidance are specific to environmental assessment, however. With only 
some minor changes, the Guidance can be used in any science-for-policy activity. Furthermore, al-
though a strong emphasis is placed on assessing simulation uncertainty, the methodology encompasses 
all sources of information used in science-for-policy. 

13 This uncertainty typology is based partly on a paper by Walker et al. (2003). That paper was the result 
of a process involving some of the uncertainty experts who also participated in developing the Guid-
ance. In Walker et al. (2003), uncertainty is classified according to three dimensions: its ‘location’ 
(where it occurs), its ‘level’ (where uncertainty manifests itself on the gradual spectrum between deter-
ministic knowledge and total ignorance), and its ‘nature’ (whether uncertainty primarily stems from 
knowledge imperfection or is a direct consequence of inherent variability). Janssen et al. (2003) have 
extended this typology by adding two additional dimensions (represented by two columns on the right-
hand side of the uncertainty matrix) denoted ‘qualification of knowledge base’ and ‘value-ladenness of 
choices.’ In order to make the uncertainty matrix more widely applicable than in model-based decision 
support studies, two location categories have been added, namely ‘expert judgment’ and ‘data.’ 

14

 This is done by directly linking the different cells in the matrix to a list of uncertainty-assessment tools 
(van der Sluijs et al. 2004). 

15
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