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GÜNTER KÜPPERS,* JOHANNES LENHARD,* AND TERRY SHINN**

COMPUTER SIMULATION:
PRACTICE, EPISTEMOLOGY, AND SOCIAL DYNAMICS

What does the word ‘simulation’ refer to? What is done during a simulation, and 
what are the technical, intellectual, and epistemological issues raised by it? Who are 
the practitioners of simulation? What sorts of problems are addressed? What is the 
scope and composition of the market? Finally, if anything, what does simulation have 
to do with transformations in science, in technology, and, if postmodern thinkers are 
to be believed, in the very structure and substance of contemporary society? This 
book attempts to address some of these questions, and in doing so, it often raises ad-
ditional ones. 

The word ‘simulation’ comes from the Latin simulare. For almost three centuries, 
the principal lexical meaning of simulation in the English, French, and German lan-
guages referred to ‘imitation’ or, alternatively, to ‘deception.’ In everyday parlance, 
someone simulates when he imitates a certain behavioral pattern, for instance, the 
actor in a drama, but also a malingerer who imitates the symptoms of a disease, in an 
authentic, albeit deceitful, way. A case from literature is Felix Krull, from Thomas 
Mann’s novel Confessions of Felix Krull, Confidence Man (1954). Krull studies 
medical literature to learn about the symptoms of a particular nervous disease, and 
subsequently simulates the disease to deceive military doctors and obtain a medical 
exemption from the army. A slightly different meaning of simulation is equated with 
illusion: In late Renaissance and Baroque painting, the imitation of tableau became 
fashionable. One famous example is a painting by Cornelius Gijsbrechts (about 
1670) entitled Back of Painting (see Figure 1), which seems to depict what the title 
says. The spectator’s impression is of a real painting hanging on the wall, but show-
ing the back of the canvas. This example of illusionistic painting in fine art may also 
count as an instance of simulation. 

The meaning of the term simulation changed after World War II, as the definition 
given by the Oxford English Dictionary (fourth edition 1989) reflects: “The tech-
nique of imitating the behavior of some situation or process […] by means of a suita-
bly analogous situation or apparatus, especially for the purpose of study, or the train-
ing of personnel.” In contemporary life, however, simulation has generally come to 
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be equated with science and technology and is viewed as synonymous with computa-
tion and the digital computer. 

In recent decades, simulation has increasingly become established as a new 
means of knowledge production and especially representation of complex dynamics 
in science and technology as well as a tool for the development of new and better 
technical artifacts in a rapidly expanding range of fields. Undoubtedly, one essential 
reason for this development is the amount of computing power that has become 
available over the last twenty-five years, and it is perhaps not inappropriate to think 
of simulation as ‘computer simulation,’ so strongly connected is simulation to the 
computer and computer science. The diversity of the sites of usage, applications, and 
practitioners connected with computer simulation today have turned it into a perva-
sive and often prominent social, organizational, and cognitive sphere that either di-
rectly or indirectly, unwittingly or consciously, impacts on the lives of most people. 

Computer simulations are applied in science, technology, engineering, different 
areas of technical and professional training, economics, leisure, and art. To illustrate 
the broad field of applications, we cite three examples: In science, the dynamics of 
galaxies, encompassing billions of stars, cannot be grasped theoretically or experi-
mentally. The fundamental theories are known and unquestioned, but the resulting 
mathematical equations cannot be treated by the traditional analytical methods. 
Computer simulation is currently viewed as the sole acceptable path for exploring a 
complex universe. In technology and engineering, the situation is similar. The inves-
tigation of how colliding cars behave and how passengers become injured can be 

Figure 1.  Cornelius Gijsbrechts: Trompe l’oeil. The reverse of a framed painting. (By 
courtesy of the Statens Museum for Kunst, Copenhagen. Photographer: SMK Foto.) 
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conducted in experimental crash tests. Yet many automotive companies prefer virtual 
collision tests conducted during the R&D phase rather than awaiting experimentation 
using advanced prototype vehicles. Finally, climate change has become a major issue 
in science, in policy, and in the media. What will be the consequences of global 
warming? Computer simulations are the main instrument for obtaining predictions 
here as well. 

Traditional scientific knowledge has generally taken the form of either theory or 
experimental data. However, where theory and experiment stumble, simulations may 
offer a third way. The central question is: What are the characteristics of this mode, 
and how reliable is simulation-based knowledge? If computer simulations provide a 
new way beyond theory and experiment, that is, if they are not merely numerical so-
lutions of theoretical problems, new practices of validation and assessment also be-
come necessary. Alternatively, the roles of simulation within science may prove 
more restricted, and its epistemological effects more limited. 

It is important to ask: Does simulation constitute a newly emergent scientific dis-
cipline? There exist over a score of scholarly journals in the Science Citation Index 
database specifically connected to simulation; yet does this necessarily signify that 
simulation should be regarded as a scientific or technical discipline? Is this number 
of reviews as elevated as one might anticipate for a ‘revolutionary’ full-fledged re-
search domain? Indeed, it proves extremely difficult to identify the social and organ-
izational locus of computer simulation. There are no university departments in the 
field, no diplomas, no established intellectual corpus, or certified body of skill. But 
does it necessarily follow that in terms of social and organizational significance, 
simulation represents nothing more than a merely loosely coupled, fragmented body? 
It may be queried whether simulation is not instead a historically important, perhaps 
even historically unusual, research instrument. One thing is certain, simulation is a 
relatively new entity, whose usages are in flux and whose ‘good practices’ have not 
yet even been determined in full. 

Computer simulation is a domain of growing interest to sociologists, historians, 
and philosophers of science. Sociologists query the organizational and material con-
ditions that surrounded simulation’s foundations, question the dynamics and structure 
of the movement, interrogate the internal form of the occupation/profession, and fo-
cus on its relations with other bodies as well as the size and scope of its market. They 
are concerned with the shape of the computer simulation field, the expression of its 
diverse forms of symbolic capital, the forms and rules of competition, what counts as 
legitimacy, and finally, they are concerned with the relations between the field of 
simulation and other science, technology, and fields beyond (Bourdieu 1975, 2001). 
For their part, historians of science demand to know the backdrop of simulation ac-
tivities; who practiced it; where, why, and how. To what extent does computer simu-
lation constitute an extension of earlier practice and forms of knowledge, and to what 
extent does it comprise something unprecedented? Finally, due to the complex and 
ambiguous linkage between simulation, models, and representation, philosophers of 
science too are increasingly drawn to this often elusive domain. They are interested 
in the epistemology and methodology of simulation and also in the complex relations 
extant between theory, models, simulation models, computation, and the material 
laborant to which they all refer. In order to frame a clearer understanding of the 
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aforementioned problems, this book assembles contributions from the intersection of 
all three domains.  

GENESIS AND BACKDROP

Prior to the appearance of simulation in science, itself now linked to digital com-
puters (and for that matter even to any form of computer), a kind of simulation was 
already applied in technology. In the late nineteenth century, nautical design was 
sometimes assisted by data and ideas obtained by studying the behavior of miniature 
ship hulls carefully displaced through a variety of hydraulic conditions. Development 
of such early simulation was stimulated by the passage from sail to steam and from 
wood to steel. Traditional knowledge about wooden hulled sailing boats had been 
outdated by iron as new materials for the construction of bigger and faster ships de-
veloped. Experiences with the new steamboats were rare. 

This early real-world simulation may be associated with a form of early technical 
modeling that differed from previous practices based on the extension and modifica-
tion of noncodified craft data and on lessons drawn from observing unfortunate de-
sign errors. France had a different nautical tradition based on applying mathematics 
and deductive principles to ship building. However, this often remained disconnected 
from observational inputs. At that time, the theories to describe the relation between 
the resistance of a body in water flow and its velocity were available to physics. 
However, the resulting equations had no general solution because of nonlinearities. 
Hence, when investigating the influence of different hull shapes, one had been lim-
ited to trial and error – a costly affair with full-size ships. Later on, the wind tunnel 
was employed as a simulation instrument to investigate the dynamic properties of 
objects in air flow in a very similar way. It may reasonably be hypothesized that the 
form of simulation practiced during this era may have acted as a sort of bridging 
mechanism that drew diverse and divergent design practices more closely together. 

The twentieth century witnessed a huge growth in the frequency of this kind of 
‘real-world’ simulation that takes place in reality and not in the symbolic realm of a 
digital computer. Already in the interwar era, simulation had been proposed and de-
veloped for the solution of technology-related problems. In 1929, German engineers 
took out patents for a device designed for training pilots in airplanes, dirigibles, and 
submersibles. The apparatus involved elementary indicators of vehicle altitude, an 
altitude control system, and an interactive system between the two mechanisms based 
on electromechanical devices. Response flight simulators permit the training of pilots 
who have to react correctly in risky situations – without risking a ‘real’ crash. 
Throughout World War II, simulated flight and gunnery training became common. In 
the later stages of the war, physicists and engineers sometimes managed to harness 
analog computers to simulation, with astounding consequences. The introduction of 
the computer permitted critical advances on three fronts: (1) Simulated experience 
became more ‘realistic’ due to finer-grained responses and shorter response time. (2) 
More situations and variables could be introduced. (3) The new capacity to inject 
information into simulation based on the real-time solution and representation of 
complex mathematical equations not only refined simulated learning but also trans-
formed simulation into a research tool. Very soon, simulation moved beyond training 
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and became a central instrument in technical design, particularly for aircraft and 
rocket development. One perceives here the genesis of a virtual simulation cycle in 
which the ‘reality-constrained’ feaures in technology simulation fuel and advance the 
‘symbol-bounded’ features in science simulation; and the symbol-bounded method-
ologies, representations, and proofs of simulation in science nurture the realities em-
bodied in technological simulations. 

The advent of the digital computer triggered a radical transformation that changed 
simulation from a refined technology for imitation into a full-scale polyvalent re-
search instrument. Nonetheless, at first glance, the shift within simulation might ap-
pear to be rather trivial and mainly technical, constituting an important advance, but 
not a decisive one. In flight training, for example, analog devices were replaced by 
digital computing devices. Yet, despite this technical substitution, for all ostensible 
purposes, the flight simulator remains a flight simulator. However, this seeming in-
variance obscures a fundamental discontinuity. The transition from analog devices to 
digital simulation models, which, for example, describe the dynamic behavior of a 
plane’s wings, transformed the very essence of even the flight simulator by enabling 
it to generate physically possible, even likely, aircraft performance, which to date had 
not yet been observed. In effect, the flight simulator commanded by a digital com-
puter is capable of extending a vehicle’s latent material conditions and the scope of 
pilot experience beyond observed routines. The meaning of simulation is thereby 
deeply transformed. This book is devoted to digital computer simulation. It will focus 
on the new aspects introduced through computer simulations, distinguishing them 
from older usages. 

The student of the practices, epistemology, and social dynamics of computer 
simulation wants to know how and why this important transformation came about. 
Was it connected with the introduction of new problems, or even a new species of 
problem on the research agenda that could not be examined other than by simulation? 
Did the acceptance and spread of simulation in science signify the introduction of 
some new, commonly accepted form of proof of the reliability of simulation outputs? 
Does simulation represent a general switch, whereby a younger generation sets itself 
apart from older generations through the adoption of a formerly low-status and little 
used technique? And, beyond all this, can the prevalence of simulation in science 
today be likened to a ‘paradigm shift’: Does it necessarily entail the emergence of a 
new way of knowledge production incommensurable with the common ones (that is, 
theory and experiment)? Or more conservatively, is simulation instead mainly a tre-
mendously powerful generic instrument, constituting an enabling device? These 
questions themselves reveal that simulations mark a multifaceted change, as indi-
cated by the following four interacting factors: 
1. The pace of evolution in the speed and capacity of calculation in computer tech-

nology (Humphreys 2004) obtained through the technological development of 
hardware and software makes increasingly complex problems accessible. The 
steep increase in speed and quantity is an important determinant of the possibili-
ties and limiting conditions of simulation as an instrument. Developments in high 
energy physics (Merz, this volume) and in economics (Boumans, this volume) 
document how the availability of the computer as a technological instrument has 
opened up new fields of application that have, in turn, permanently driven the 
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scientific characteristics of simulation. On a slightly different register, the total 
reliance of nanotechnology research on the computer demonstrates, for instance, 
that computer simulations go far beyond simply generating a mutual adaptation 
between science and the computer: The computer has changed the very nature 
and form of the questions being asked in this field and has transformed the mod-
els being constructed (Johnson and Winsberg, this volume). The technology of 
the computer is by no means fixed, and with increasing computing power, things 
change decisively. 

2. This development is connected closely to the capacity to generate visualizations, 
to process images, or more generally, to handle ever more sophisticated man-
machine interfaces. Computer images render visible the fine-grained details of at-
oms (in nanoscience, see Johnson and Winsberg, this volume) as well as the 
global dynamics of the climate (both in Technicolor). Such graphics underline the 
character of simulation as an ‘observational instrument,’ but one in which the 
concept ‘observation’ assumes an entirely novel meaning. They can enable access 
to complex patterns of behavior undetected by classical instruments such as tele-
scopes or microscopes. Whereas telescopes and microscopes render phenomena 
visible by affecting the scale of ‘tangible’ entities through optical processes of 
resolution, simulation renders ‘visible’ the affects of parameters and forces such 
as time, dynamic interactions, and so forth that are not dealt with by optics-
related transformations. Thus, simulation, by constructing images, may translate 
absolutely nonvisual events into a visual media! Often there is no opportunity to 
compare simulated images with the original – there may be no possible perspec-
tive from which to view things like this, or it may even be that the depicted mate-
rial does not exist in the real world. Hence, simulations may equip virtual worlds 
with visual and other qualities that do not mirror those of real-world processes. 
Ihde (this volume) analyzes the computer as a new ‘epistemology engine’ that 
succeeds the ‘camera obscura’ as the paradigm in epistemology. 

3. Language is also an essential factor in the development of simulation. The evolu-
tion of complex and powerful programming languages has turned simulation into 
a manageable instrument. Algorithms implemented in software packages have 
made simulation methods, at least partly, a ready-made tool. The structure and 
features of programming language, for example, object orientation, determine to 
an important extent how programs can be conducted and how the practice, includ-
ing the social practice, of programming operates. Shinn (this volume) considers 
the significance of this evolution in some detail. 

4. Today, simulation has penetrated innumerable spheres of social experience, be-
coming manifest in ways totally undreamed of thirty or forty years ago! In the 
realm of medicine, ‘artificial organ transplants’ are tested in a simulated human 
body before being implanted in patients. Simulations form an essential part in the 
design and manufacture of technological artifacts from cars to bridges and build-
ings. The market for computer games and simulated film sequences is an instance 
in which increasingly more realistic virtual worlds are offered. What may rea-
sonably be described as the cultural evolution of simulation, or co-evolution of 
culture and simulation, is also an important factor, because it opens up new atti-
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tudes toward virtuality. Four decades ago, it was regarded as bad form for a theo-
retical physicist to rely on numerical computations, a professional methodological 
prejudice that is extremely rare today, as more and more scholars depend on the 
simulation technique. In sum, a growing number of people in contemporary soci-
ety spend a significant part of their life in virtual worlds. 

A coherent overall picture of the reciprocal relations between culture and simulation 
is still lacking, and this book does not aspire to a definitive view. Rather, the contri-
butions gathered here try to clarify those questions and discuss some possible an-
swers. 

SIMULATION MODELING

Simulations are often portrayed as solutions to out-of-reach problems. Whereas this 
description is by and large valid, an important clarification has to be added. Problems 
are also often created and formulated as an ‘answer’ to new instrumental capacities. 
Thus, the new research instrument, and the problems and contexts this instrument is 
applied to, co-evolve. Some simulation approaches exploit novel strategies that for-
mulate new problems, and apply entirely new kinds of models that were formerly 
unknown. We shall now consider some of these simulation models whose character-
istics and particularities generate new practices and conceptions of modeling. But 
first we want to point to an important difference – the difference between numerical 
calculation and computer simulation. 

Consider the calculation of a zero for a complicated function. The algorithm cal-
culates the value of the function for two arguments so that the unknown zero lies be-
tween them. In a second step, one calculates the values at mesh points between the 
initial arguments. If a change in the sign of the function occurs between two mesh 
points, a zero lies in that interval of the mesh. Now one divides this interval into a 
finer grid, starts the calculation again, and so on. This rather straightforward proce-
dure calculates zeros with arbitrary precision – a numerical calculation of a solution 
in the strict sense. Computer simulations, however, rely on procedures that differ 
fundamentally from numerical calculation in the strict sense. They do not simply 
solve complex systems of equations. Rather, simulations are numerical imitations of 
the unknown solution of differential equations, or, more precisely, the imitation of 
complex dynamics by a suitable generative mechanism. 

The Monte Carlo method may illustrate our claim. This method is one of the first 
simulation methods dating back to the cooperation between mathematicians Stanis-
law Ulam (1909–1984) and John von Neumann on the Manhattan project in Los 
Alamos. Imagine that one intends to determine the volume of a certain body via 
Monte Carlo – in most cases, an analytical integration is not possible. One can embed 
the body into a cube of which the volume is known. The idea is to replace the (un-
known) primitive by a ratio that can be determined ‘empirically,’ or quasi-empiric-
ally, by iterating computer runs. The computer determines a point out of the cube at 
random. If this point belongs to the body, the trial is said to be successful. By repeat-
edly re-iterating this random choice, one can determine the unknown volume as the 
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ratio of successful trials out of a great number of trials. In other words, the integra-
tion is imitated by a generative mechanism. 

Ulam, surely one of the central figures in the development of simulation tech-
niques, was enthusiastic about such ‘statistical experiments,’ appraising them as a 
new mathematical instrument. Von Neumann more reservedly looked at computa-
tional methods as a kind of emergency solution for when an elegant mathematical 
treatment is not possible. As mentioned above, even in the mid-1960s, to rely on the 
computer instead of working out analytical approaches as far as one could counted as 
bad form among theoreticians. Today, the situation has switched nearly completely. 
Simulations have lost their poor image and low ranking in the cognitive and episte-
mological hierarchy as a last resort, and have obtained a kind of autonomous status. 
They are clearly applied in many fields in which theoretical approaches do not even 
exist. The various simulation modeling approaches establish a spectrum in which the 
extreme cases start with a detailed theoretical model or, respectively, no model at all. 

Consideration of the former case, in which one has a theoretical model at hand, 
suggests that even the most law-based simulation models may exploit the characteris-
tics of behavioral imitation – instead of presenting a numerical solution of a theoreti-
cal model. Let us argue briefly for that point. In some branches of science, especially 
those related to physics, generally accepted theories provide laws that govern a sys-
tem’s dynamics. Typically, a set of coupled partial differential equations (PDEs) de-
scribe the relevant dynamic system. One of the main goals in the development of 
early computers was to design a machine that could tackle such systems of PDEs. 
Climate research presents an instructive example. It was initiated by John von Neu-
mann, who considered the atmosphere’s global dynamics as a paradigmatic out-of-
reach problem (of hydro- and thermodynamics) that could be tackled by simulation 
methods. There exists a known and accepted set of PDEs, but the equations are too 
complex to be analyzed by traditional mathematical methods. 

To mesh them with a digital computer, the continuous equations have to be trans-
formed into discrete objects. Continuous differential equations are replaced by differ-
ence equations. Whereas the differential equations represent the functional (global) 
relationship between the variables, the difference equations determine the local val-
ues of the variables in different time steps. Starting with an arbitrary initial value, the 
variables are calculated step by step. If a specific grid in time and space is chosen, no 
values are available for the in-between variables. Hence, the continuous global proc-
esses described by the differential equations are replaced by a discrete series of local 
changes. The difference equation imitates the behavior of the continuous dynamics of 
the differential equation. Prior to simulations, modeling of complex dynamics, such 
as the atmosphere’s global circulation, was commonly seen as impossible, lying far 
beyond the range of the available scientific tools. Even the existence of a simple 
model of PDEs able to describe the complex dynamics of the atmosphere was incon-
ceivable. It was believed that the description of a complex system would require a 
model of at least the same complexity. The simulations approach changed that opin-
ion. In 1955, Norman Phillips, who was then working in the meteorology group at 
Princeton’s Institute for Advanced Studies, successfully conducted the so-called ‘first 
experiment,’ in which he used a set of five PDEs to model the complex dynamics of 
the atmosphere. He built a model of difference equations and managed to show by 
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numerical experiment that they simulated important features of the atmosphere’s dy-
namics. The reason for his success lies in the fact that complex systems may reach a 
steady state that depends on only a few variables and is resistant to perturbations 
from the external world. It is exactly that steady state – that is to say, a pattern of 
behavior – which is imitated by computer simulation. 

After the first experiment had prepared the ground, simulation models became the 
focal point of atmospheric and climate research, shaping this discipline to a major 
extent. The question arises whether an observed steady state of a simulation is an 
artifact of the program or a realistic description of the dynamics under consideration. 
An answer to this question cannot be decided on the basis of the simulation itself. 
Therefore, simulations call for new ways of validating knowledge and assessing its 
uncertainties – in the case of climate policy institutions, a very practical task (see 
Petersen, this volume). Does the numerical treatment of the difference equation 
match the solution of the differential equation, that is, does the simulated atmos-
pheric circulation match the dynamics of the theoretical model that is believed to be a 
realistic one? 

This question can be answered in a strict sense only when analytical solutions are 
available. Without them, one has nothing to compare with. But such solutions are 
rarely at hand, and in most cases do not even exist. Thus, in general, the actual qual-
ity, or the goodness of fit of the simulation cannot be grasped mathematically! The 
difference equations approximate the differential equations when the grid becomes 
finer and finer. Ultimately, they become identical. In practice, however, one is bound 
to finite grid sizes, because the finer the grid, the greater the truncation error. There-
fore, it remains unclear how adequately the difference equations represent the differ-
ential equations. In other words, there is no knowledge about the correspondence 
between the simulation and the theoretical model – it has to stand on its own 
grounds. Hence, extensive computational experimentation has to assure that the be-
havior of the system is simulated adequately and is not merely an artifact of the 
simulation method.  

For this reason, computer simulations are not numerical solutions of a theoretical 
model: Rather, they employ a generative mechanism to imitate the dynamic behavior 
of the underlying process. Thus, starting from a highly theoretical law-driven ap-
proach, simulation practice ‘cycles’ to behavioral imitation! The result is a sound 
simulation, on the basis of differential equations, that imitates the dynamic behavior 
of the underlying process. Yet the issue of representational adequacy remains open 
(for a more detailed argumentation, see Küppers and Lenhard 2006). 

This observation is even more true in the case of other types of model that do not 
rely on exact theoretical models – cellular automata, neural networks, and agent-
based simulations. Cellular automata (CA) also employ a discrete generative mecha-
nism to (re)produce the dynamic of a process. They divide the (often two-
dimensional) state space into cells, thereby inducing a neighborhood structure of 
cells. Each cell can adopt different states, often two are sufficient; and it does so in 
each time step, dependent on the states of its neighboring cells. Simple rules for 
changing states can result in very complex dynamic patterns. It may be the case that a 
theoretical model serves as paradigm – Stephen Wolfram holds US patents for the 
treatment of differential equations via CA. Or it may not be the case – John H.  
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Conway’s famous Game of Life (Gardner 1970) takes CA as autonomous, original 
generators. 

Neural networks may be regarded as a similar case, perhaps marking the pole of 
the simulation models’ spectrum opposite to the theoretical approach via PDE. Here, 
there is simulation of a system’s behavior without employing the rules or laws that 
are thought to govern the real system’s dynamics. It aims at a purely functional imi-
tation. Such a network starts with a simple model of layers of neurons and then itself 
‘learns’ or adapts the connection rules by optimizing its behavior. This learning 
process strives for functional or behavioral imitation, not for representation of the 
imitated system’s structure. In the social sciences, so-called agent-based simulation 
models have been developed. In this context, agents are small autonomous programs 
that represent some knowledge and are able to communicate with others. These simu-
lation models can reveal the complex behavior of social systems without using ‘theo-
ries’ of social interaction. For many years, artificial intelligence and other fields that 
investigate complex behavior focused on the reduction of that behavior to explicit 
rules. More recently, however, it has become clear that the context, that is, the 
boundary conditions of the dynamics, plays an equally important role in the emer-
gence of complex behavioral patterns. Hauhs and Lange (this volume) argue in that 
direction when they draw some lessons from the failures when modeling ecosystems 
that are not only complex but also interactive systems. They argue that the inherent 
interactivity may be the fundamental obstacle to traditional modeling approaches, but 
that this may be dealt with by what they call ‘interactive simulation.’ 

This observation of the often implicit properties of simulations is in no way dis-
qualified by the fact that only ‘explicit’ commands constitute an algorithm. A com-
plex dynamic may be based on few and simple assignments – albeit the resulting dy-
namics is not known in advance, but only from simulation experiments that render 
behavior visible. Again, consider a neural network, or CA: Admittedly, a program 
starts with explicit rules that specify the neurons and their synapses. The behavior of 
the network, however, is never characterized by the initial assignments! It is the very 
essence of this method that the simulation model does not incorporate the dynamic 
rules of the imitated system. 

The neural network has to ‘learn’ and to adapt during the course of extended runs 
in which ‘good’ solutions become amplified and ‘bad’ ones are eliminated by posi-
tive or negative feedback loops. In other words, the simulation is a kind of numerical 
experiment in which different ways of operating are tested. This recursive process 
makes explicit some of the implicit properties of the model – relying fundamentally 
on this experimental strategy to achieve this goal. Numerical experimentation lies at 
the heart of a whole family of new experimental strategies and has been identified 
repeatedly as a key to the philosophical characterization of simulation modeling 
(Rohrlich 1991; Humphreys 1994; Keller 2003; Morgan 2003). 

In complex systems, many simulation models may exist that produce the same 
dynamics. Therefore, very different generative mechanisms may be employed to 
tackle the same problem. A case in point is automatic translation. Automatic transla-
tion can be implemented in quite different ways: A structural approach would try to 
identify and apply the basic rules of grammar in the languages involved, thus setting 
a general semantic framework for the translation of concrete texts. In contrast, a 
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functional approach is based solely on a statistical analysis of neighboring words and 
phrases in known texts that the computer first has to ‘learn.’ The translation of an 
unknown text is thus a kind of statistical estimate on the basis of the learned cases – 
not employing semantics at all! Both simulation approaches are being applied today. 

Knuuttila (this volume) considers in detail the (functional) ‘constrained grammar’ 
approach to syntactic parsing that is a module needed for translation. This approach 
not only relies on a list of forbidden grammatical patterns that is implemented and 
can be processed and adapted effectively, but, at the same time, aims to imitate the 
behavior of a competent speaker. Different modeling approaches may even merge 
and give birth to hybrids like the so-called cellular neural networks (CNN) that are an 
effective technical – and US-patented – approach to deal with visual patterns (Chua 
and Roska 2002). Mathematically viewed, universal Turing machines, games of life, 
and cellular neural networks are equivalent in their ability to produce and transform 
patterns. They nonetheless present very different paths with respect to the technical 
implementation of simulations. 

MEDIATION AND TENSION

Even a cursory reading of this book will document that discussion and debate about 
modeling play a strikingly prominent role. This observation reflects the significance 
of modeling practices for simulation, and, at the same time, the versatility of the cur-
rent discourse about modeling in philosophy of science and in science and technol-
ogy studies. The traditional philosophical account of models located them in the con-
text of a theory – models are models of a theory. Today, this view has changed dra-
matically due to the beneficial influences of studies of scientific practice. A now fa-
mous controversy in philosophy was initiated by Nancy Cartwright’s How the Laws 
of Physics Lie (1983) that attacked the assumed hegemony of theories and laws. 
Mary Morgan and Margaret Morrison’s edited volume Models as Mediators (1999) 
advocates an account of models as ‘autonomous mediators.’ They thereby themselves 
play the role of a mediator between proponents of theory-based hierarchy and model-
oriented pluralism. This discourse about autonomy and mediation effectively fits 
simulation and simulation models, because they mediate between theory, models, 
phenomena, and technology in new ways, highlighted by the investigation of simula-
tion modeling practices (Winsberg 1999, 2003). In short, the new instrument of 
simulation offers new ways of mediating these elements. 

The construction of models establishes an idealized model world that itself be-
comes an object of analysis. When leading to applications, this model world and the 
conclusions drawn from it have to be mediated with respect to the real world. An-
other case in which models have to mediate is between general laws and concrete 
applications. Recall the instance of atmospheric circulation in which a grand theory 
(hydrodynamics) had to be coined into a theoretical model, that is, a system of differ-
ential equations together with initial and boundary conditions. This model’s behav-
ior, which long lay out of reach, was brought into range by the superior power of the 
digital computer. We have argued that the theoretical model has to be modeled again 
to obtain a discrete simulation model that suits the abilities of a digital computer. 
Thus, simulations are kinds of model that additionally involve features of  
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algorithmical implementation. The discrete simulation model imitating the atmos-
phere’s dynamics has to mediate between theory, theoretical model, and phenomena, 
thus diversifying and further developing the autonomous mediating role. Winsberg 
(this volume) considers a simulation model from nanoscience that contains several 
autonomous components that become mediated by what he nicely calls a ‘handshake’ 
between autonomous regimes. 

The mediation task becomes even more important when more attention is paid to 
the ‘theory-free’ pole of the simulation modeling spectrum: Simulations that imitate 
phenomena without representing underlying theoretical structures at all demand par-
ticular strategies of mediation. Simulations may be used to integrate a panoply of 
heterogeneous sciences as well as actors, scientists, and stakeholders. Climate sci-
ence, for instance, embraces fields that range from physics and biology to economics 
and public policy. Simulations are placed in the midst – employed to forecast as well 
as to guide political negotiations. In what manner is simulation modeling organized 
to fulfill the various demands? Simulations are ‘boundary objects’ that impose medi-
ating tasks, precisely because simulation lies on the level of institutions. Küppers and 
Lenhard (this volume) investigate how the organizational structure of climate re-
search institutions and the architecture of simulation models interact. 

If simulations imitate behavior – which criteria are appropriate to evaluate them? 
What makes a simulation a good simulation? That is, what are the validation criteria? 
In the case of real simulations like a flight simulator, it is relatively easy to decide on 
the quality of the simulation. Experienced pilots are able to judge with respect to 
their experience with real airplanes. In the case of computer simulations, there is little 
opportunity to compare a simulation with experience directly. In some cases, data 
from simulations can be checked with data from measurements. The computer model 
of the wings of an airplane and their dynamic behavior can be compared with ‘real’ 
data, but in the case of climate research, for example, the validation of predictive 
models is based mainly on the comparison with earlier time. The relevant data on the 
climate’s history, however, are themselves reconstructed on the basis of models – a 
rather indirect relation. Petersen (this volume) considers the dangers of virtual worlds 
that may impress the experiencing subject because of their “speed, clarity, and inter-
nal consistency.” The reliability of simulation-based knowledge, Peterson argues, 
poses new problems regarding how to assess virtual worlds appropriately and how to 
communicate with them effectively. The tension between reality and the virtuality of 
computer simulation, although sometimes acute, is often not exclusionary, leaving 
open possibilities for dialogue and for cycling back and forth between the simulation 
and the simulated. While frequently complex and difficult, this cycling proves fun-
damental to computer simulation’s internal dynamics. 

Alan Turing (1912–1954) situated the validation of a simulation in the setting of 
an “imitation game” (Turing 1950). An interrogator had to pose questions via telex 
and received responses from a human and a computer. Could he discriminate which 
set of answers was given by the machine and which by the human? A computer 
whose answers are indiscernible would imitate the answers of a human being and 
thus pass the ‘Turing Test.’ To date, no computer has succeeded! 

Hence the imitation game that constitutes the Turing Test afforded a sophisticated 
arrangement to filter the functional equivalence out of the plenitude of theoretical 
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possibilities. A computer has to behave like a human to pass the test, but the potential 
success has to be independent of the mechanisms that are employed to simulate. Tur-
ing, therefore, adhered strongly to a functionalist perspective. In short, Felix Krull 
passes a kind of ‘Turing Test,’ because he simulates the symptoms well. This stand-
point has been challenged by a position that can be called ‘structural’ and that main-
tains that a valid simulation has to be structurally valid, that is, has to be based on a 
simulation model that represents the structure of the system under investigation. This 
problem has been taken up in J. Searle’s (1980) famous and controversial ‘Chinese 
room’ argument that boils down to the point that imitation of intelligent behavior is 
not itself intelligent behavior. There have been a number of attempts to refine and 
redefine the Turing Test (Shieber 2004) based on controversial approaches to artifi-
cial intelligence: Should it provide a functional or structural imitation of cognition? 
For a long time, the computer – the electronic brain – was believed to be a structural 
model of the brain. Today it is known from brain research that cognition has nothing 
to do with calculation. The important point here is that the question “Is a computer 
imitating the behavior of a human being?” differs fundamentally from the question 
“Is a computer model an adequate model for human reasoning?” Artificial intelli-
gence constitutes an early and important site for debate over this fundamental di-
lemma, but the tension between a functional (Question 1 about imitation) and a struc-
tural (Question 2 about models of mind) interpretation is of even broader significance 
for the simulation method in general. 

In the preceding section, we discussed the example of automatic language transla-
tion. Structural approaches that try to implement the ‘correct’ rules of grammar com-
pete with functional ones that focus on statistical analyses without modeling the 
grammatical structure of a language at all. Other cases are not that symmetrical. Eco-
nomic predictions may be reliable if they are based on the ‘correct laws’ (for a criti-
cal discussion of this case, see Boumans, this volume). Climate simulations are held 
to be valid, because they are based on the physical laws that ‘really’ govern climate 
dynamics. 

This structural viewpoint is attractive to practitioners of simulation, because of 
their attendant perception that it addresses the question of validity directly. Why 
should one trust simulation-based knowledge if successful imitation of behavior con-
stitutes a consensually shaky category of evidence? Hence, the common view holds 
that a simulation is valid if it is based on a model that truly reflects the structure of 
the system under consideration. This form of argument is pivotal for many of those 
who adhere to the structural viewpoint. A popular benchmark in the technical litera-
ture is B. Zeigler’s Theory of Modeling and Simulation (1976), in which he discusses 
different types of validity (replicative, predictive, and structural). Zeigler ranks 
‘structural validity’ the highest, because it rests on the correspondence between the 
generative mechanism of the simulation and the real system, thereby offering an ex-
planation of a simulation’s successful performance. Consequently, according to the 
structural view, the aim is to implement the ‘right’ mechanism, whereas a functional 
perspective would be more liberal and cope with a potential plurality of mechanisms 
that may imitate a certain behavior under certain conditions. We seem to end up with 
a hierarchical order between structural and functional perspectives: The former is 
stronger, but more difficult to achieve. In many cases, a structural equivalence is far 
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from evident, if not impossible to identify. The second choice would be the func-
tional option: Reduce the demands on validity, don’t be choosy regarding generative 
mechanisms, thereby permitting a gain in the number and range of applications. 

However, to hold that a structural approach solves the problem of validation in-
troduces a critical error in the appreciation of the performance of the category of 
elements referred to as ‘models.’ It is a rather general fact about models that they do 
not implement real structures or real generative mechanisms, regardless of whether 
they are structural or functional (whatever be their properties as models). Perhaps the 
hyperrealistic presentations employed by simulations lead practitioners of simulation 
to forget about the fundamental distinction between model on the one hand, and the 
modeled system on the other. Nevertheless, the problem of validation remains invari-
ant regarding structural or functional approaches. 

Recall the example of climate research in which the reliability of the simulations 
is said to depend strongly on the physical equations that form the basis of the simula-
tion model. Cases like this are presented as the paradigms for the structural view, 
because the generative mechanisms of the simulation are said to coincide with the 
real ones. We have seen in the previous section on modeling, however, that even in 
this case, the modeling step from differential equations (representing laws of physics) 
to discrete, finite difference equations in an important respect makes simulation 
models a functional representation of the atmospheric dynamics. This transformation 
from the theoretical model to the simulation model is of utmost importance, because 
it changes the structure of the model. Hence, in most practical cases, the validity of 
the simulation model cannot be derived from the structural validity of the theoretical 
model but has to be judged by comparisons with the behavior of the real system. 

This argument applies a fortiori to modeling approaches like cellular automata or 
neural networks. Hence, in general, at least some functional ingredients are inevita-
bly part of simulations that imitate behavior by generative mechanisms. In fact, struc-
tural and functional approaches do not exclude one another, they are instead inter-
twined in simulation and set up a characteristic tension. The reader will encounter 
this tension repeatedly in this book. Boumans (this volume), for example, portrays 
how economic modeling has drawn its lessons from the Turing Test, and how the 
construction of an ‘imitation’ economy faces the tension between the functional and 
structural approach. He describes these standpoints aptly as white-box versus black-
box modeling. 

There is a similar situation with respect to scientific explanations. Humberto 
Maturana, a Chilean biologist and one of the founders of the constructivistic concept 
of autopoiesis, has also used the term ‘generative mechanism,’ not specifically in ref-
erence to simulation, but rather in reference to scientific explanations in general. He 
has suggested that explanations consist in “a reformulation of the experience (phe-
nomenon) to be explained in the form of a generative mechanism” (Maturana 1990: 
18), that is, a mechanism whose operation generates the phenomenon. Maturana, not-
withstanding his radical constructivist account, suggests that an explanation would 
have to specify the generative mechanism that produces the phenomenon for which 
an explanation is sought. This places him in a structural framework. His account of 
validation thus encounters the same problem faced in simulation: The potential plur-
ality of generative mechanisms seems to contradict a structural view that, in turn, 
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offers the clue to valid results. In the case of heat, friction may count as a generative 
mechanism; chemical exogenic processes may count as another. It is sometimes pos-
sible to specify a basic generative mechanism for multiple physical expressions and 
thus provide a unified account. But one cannot expect this either in general or in 
practice. Thus, the tension between functional and structural accounts makes the 
question of validation an open one – and an intriguing one, particularly in simulation. 

COMPUTER SIMULATION AS A SOCIOCOGNITIVE FIELD

The sociocognitive field of computer simulation is exceptionally complex and in 
constant flux, and is thus often difficult to characterize. Nonetheless, one can point to 
four persistent features: 
1. Simulation practices are accompanied by considerable reflectivity. In view of the 

crucial character of cycling between the imitation/functionalist and the represen-
tational/structural perspectives, and with respect to the adoption and interplay of 
models in computer simulation and their persistence and omnipresence, this field 
is perhaps the most reflective domain of contemporary cognitive and technical 
life. The polysemy of computer simulations and the processes of cycling con-
stantly call for an interrogation of the validity and limitations of one’s orientation, 
the questioning of methodology on an extremely subtle and profound level, and 
the identification/establishment of the meaning of results and outcomes. Such 
also requires reflection by practitioners on the very grounds for their own reflec-
tion (Bourdieu 2001). Computer simulation does not just occasion efforts at ob-
jectivization of immediate activities and outcomes. It additionally invites analysis 
of the position of a practitioner with reference to alternatives, to the path adopted 
by others in the same technical and cognitive field, and, not least, it invites criti-
cal thought on one’s own critical stances. In the absence of such reflectvity, the 
practices of computer simulation are at risk of quickly becoming either trivial or 
arbitrary to a degree far greater than in neighboring intellectual and technical do-
mains. 

2. Practitioners are engaged in a continuous re-embedding and reverse-flow re-
embedding of methods, models, and perspectives in the course of movement back 
and forth between specific applications and involvement with simulation as a ge-
neric instrument. During re-embedding, the hub concepts expressed in a generic 
device, methodology, protocol, or language are transferred outward, and are 
adapted for adoption in a particular local environment with specific technical re-
quirements. Reverse-flow re-embedding occurs when practitioners from local 
user niches combine their experienced-based indigenous practices with the sur-
plus value derived from the acquisition of a generic device, and transfer the ac-
cumulated learning back to the generic apparatus. Johnson (this volume) gives an 
instructive example of this when she tracks down the movements of visualization 
experts and their knowledge to new environments, thereby concretizing the visual 
manifestations of nanoscience. Mattila (this volume) describes another example 
of a simulation model involving practitioners from mathematics, epidemiology, 
and health politics in which re-embedding processes evolve on different levels.  
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3. Due to the polysemy of computer simulation, and, for this reason, its innumerable 
domains of application, numerous computer simulators move across occupational 
and organizational boundaries. Multilayer meaning and multiple meaning charac-
terize endeavors in computer simulation. This is connected to the centrality of the 
functional/structural issue and to the novel and complex dynamics of modeling in 
this field. It reinforces the opportunities for re-embedding and reverse-flow re-
embedding just mentioned. Merz (this volume) discusses in detail the multilay-
ered structure that simulations display in high energy physics – a whole chain of 
simulations is involved that connects tentative simulation experiments with the 
simulation-based design of large particle detectors. This chain is accompanied by 
various re-embedding and even dis-embedding processes of methods, objects, and 
researchers.  

4. Computer simulators participate in the development and diffusion of a sort of 
simulation-linked ‘lingua franca.’ Metrologies, language, images, and competen-
cies attached to hub concepts and methods in computer simulation become part 
and parcel of the procedures and skills of innumerable simulation user domains as 
simulation is taken up in them. The gradual growth of confidence in simulation 
and in its technologies, derived from application successes, comes to form a base 
for local validation and belief. Since the central precepts and concepts of com-
puter simulation find expression in a similar manner wherever they are applied, 
the local practitioners and users of simulation evolve a common way of speaking, 
seeing, and doing – a lingua franca. It may be justified here to speak of the emer-
gence of a kind of socially-based ‘practical universality.’ In his study of the 
Monte-Carlo simulation method, P. Galison (1996, 1997) coined the term ‘trading 
zone’ to designate that area in which boundary crossing between disciplines and 
actors takes place, and in which a common language, a ‘creole’ has to be devel-
oped to enable communication. 

It has been suggested above that computer simulation is fundamentally an instru-
ment; and it may indeed be effectively hypothesized that it is a ‘generic instrument.’ 
Simulations may be used as a kind of platform, like, for example, the SWARM simu-
lation developed at the Santa Fe Institute that is intended to be a device to study mac-
roscopic behavior based on individual dynamics as diverse as the behavior of fish 
swarms and the social dynamics of  collective phenomena. A generic instrument may 
be defined as a device that incorporates and highlights a general instrumentation 
principle or concept. The principles are by essence open-ended, potentially allowing 
their expression in a large number of diverse domains.  

Such genericity overlaps with our observed structure and operation of contempo-
rary simulation. The Science Citation Index (SCI) database reveals some remarkable 
facts. The percentage of published papers with ‘simulation’ in the title relative to all 
articles in the database has grown linearly since 1960. It has reached about 0.6% 
which is not very astonishing, but the percentage of articles that mention simulation 
in keywords or abstract is growing much faster: It has doubled during the last decade, 
today attaining a level of more than 3% of total articles. This implies that the major-
ity of papers that use simulation methods are not about simulation itself – nicely sup-
porting our view of simulation as a generic instrument. Moreover, the disciplines that 
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SCI attaches to the journals that publish those simulation papers are extremely scat-
tered. Physics, engineering, mathematics as well as the medical and even social sci-
ences are discernible, but no concentration can be found. This finding again coin-
cides with the universality of simulation thesis. 

It is indeed the generic quality of the computer simulation instrument that has 
neutralized, in the case of simulation activities, the form of restriction and disciplin-
ing that are required of a body of learning in order for it to become an organization-
ally defined and closed academic discipline. Computer simulation is fundamentally 
heterogeneous with respect to practices, practitioners, and applications. Even the 
most cursory inspection of the occupational domains in which simulation is used and 
simulators are employed shows that there are hundreds and hundreds of them (see the 
list of members and tables of content of the annual meetings of the Summer and 
Winter Computer Simulation Conferences, Shinn, this volume). 

A generic instrument possesses a kind of schizophrenic character: It functions in 
two spaces and two timeframes (Joerges and Shinn 2001; Shinn and Joerges 2002). 
The generic device incorporates, on the one hand, general simulation principles; on 
the other hand, the expression of said principles in concrete applications. In the one 
instance, there is a re-embedding of principles drawn from the generic apparatus in 
local situations; and, as will now be seen, there is also a reverse-flow re-embedding, 
as the experiences acquired during re-embedding are channeled back toward the ini-
tial generic device.  

This process of re-embedding and reverse-flow re-embedding finds instantiation 
on two registers. The first instantiation pertains to the organizational dynamics of 
computer simulation. To design and develop a generic instrument, individuals often 
operate out of an interstitial environment located between the confines and require-
ments of dominant organizations like universities, firms, or state technical services 
(Joerges and Shinn 2001; Shinn and Joerges 2002). Whereas practitioners may be 
paid by one or another such body, they are nevertheless linked to it only loosely, and 
they often circulate freely between these bodies. He/she who works for everyone is 
the bondsman of no one. Simultaneously, re-embedding of generic principles in par-
ticular user domains demands computer simulation practitioners to cross occupa-
tional boundaries. They do this intermittently and selectively. Of utmost importance 
is that although the generic instrument may take root in an appropriately tailored 
form in a local space, it does not violate the specificity of the indigenous knowl-
edge/practice base, nor does it violate the indigenous division of labor or organiza-
tional frame. Conversely, during the phase of reverse-flow re-embedding, in which 
local users inform the generic instrument, tactical boundary crossing of individuals 
away from their home coordinates takes place. Here, one discerns the operation of 
transverse social dynamics, a species of dynamics that connects and nourishes differ-
entiated niches without imperiling their autonomy. Computer simulation can thus 
amply penetrate a host of application domains without jeopardizing them, and this 
constitutes one of the pillars of its universal success. 

The second register of instantiation pertains to the homogenizing effects of the re-
embedding and reverse-flow re-embedding processes associated with the dynamics 
of transversality. The presence in computer simulation of genericity, interstitiality, 
re-embeddings, and intermittent and selective boundary crossing has given rise to 
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what might be termed fractal knowledge. At whatever segment of the whole, with 
whatever scale one looks (microscopic or macroscopic), one always discerns an un-
derlying identical geometry. This disposition was perceived initially by Benoit Man-
delbrot in pure mathematics and has since been observed in a variety of materials. 
The idea of fractals suits computer simulation in important respects. Through re-
embeddings of the generic instrument of simulation in innumerable applications, and 
through reverse-flow re-embedding, there has come to co-exist a kernel concept of 
simulation and a range of heterogeneous expressions of that kernel. We have dis-
cussed a range of simulation modeling techniques and we have witnessed the charac-
teristics of simulation-as-imitation on the coarse level of ordinary language, on the 
level of discussions in artificial intelligence or climate research, and again on the 
fine-grained level of difference equations that imitate differential equations. Stated 
differently, independent of whatever level one looks at, one discerns a basic com-
puter simulation disposition – a kind of fractal simulation geometry. The efficacy of 
the generic principles in diverse environments, as directly experienced by practitio-
ners and users, has produced a form of pragmatic proof of the robustness of simula-
tion’s validity. It has established the legitimacy of simulation as a concept and tool. 
This experience and the interactions between the generic device and local applica-
tions have led to the emergence of common skills and learning. This takes the form 
of shared techniques (the neural network model, cellular automata, Monte Carlo 
models, etc.), shared simulation-linked informatics languages (such as Simula or the 
general purpose, multiparadigm, object-oriented C++ simulation language, Shinn, 
this volume), shared competencies, shared images, and shared horizons. Taken to-
gether, such common resources, reactions, and perceptions constitute a lingua franca, 
itself akin in some ways to a form of practical universality. Such a practical univer-
sality, born mostly of communication spawned from a meaningful matrix of social 
and technical interaction, injects intelligibility into a professional, organizational, and 
intellectual/skill environment that is often characterized by extreme differentiation 
and even fragmentation. It may indeed be argued that computer simulation comprises 
one of the most pervasive and deeply rooted of all of the lingua franca that have 
arisen in recent decades. 

Computer simulation has caused many aspects of science, culture, and society to 
change. The nature and scope of that change has not yet stabilized historically, and 
analysis of the dynamics remains an on-going endeavor. Indeed, the answers to a 
multitude of capital questions are not currently forthcoming; and it sometimes even 
proves difficult to identify the questions. No wonder, the instrument of simulation is 
still undergoing an evolutionary process, thereby transforming science, technology, 
and society – and still awaiting reflective considerations on multiple planes. As E.F. 
Keller has shrewdly and elegantly put it: 

Just as with all the other ways in which the computer has changed and continues to 
change our lives, so too, in the use of computer simulations – and probably in the very 
meaning of science – we can but dimly see, and certainly only begin to describe, the 
ways in which exploitation of and growing reliance on these opportunities changes our 
experience, our sciences, our very minds (Keller 2003: 201). 

The contributions to this book identify, localize, and analyze some of the important 
changes that come with computer simulations. Foremost, they are taken to be an  
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instrument for science and research that is applied in highly different ways and places – 
it is a generic instrument. Genericity, however, emerges out of the instruments’ par-
ticular properties whose explication is the aim of this book. The term Pragmatic 
Constructions of Reality in its title alludes to the affinities of simulation to hyperreal-
istic models and experiences that not only represent the world but also create a new 
one: A virtual world. 

From the very beginning, the computer was perceived as a transparent instrument 
capable of carrying out tedious tasks without sweat and without even leaving a fin-
gerprint. Though simulations provide us with insights into the landscape of complex-
ity, one must keep in mind a well-known principal distinction that may be expressed 
by the maxim ‘the map is never the landscape.’ Computer simulations can imitate the 
dynamics of a complex process or complex function by employing generative 
mechanisms. These mechanisms are construed in pragmatic ways and may employ 
sophisticated visualizing and experimental strategies. At first sight and on some lev-
els, simulation even seems to overcome the above indicated ontological split between 
‘reality’ and ‘representation’ with the aid of its simulation-generated, visually over-
whelming images in the form of very landscape-like maps. But can they dissipate the 
fundamental tension between reality and its perfect imitations? The specific contribu-
tion of this book is to explore how computer simulations carry that relationship to the 
extreme. They do so in a way quite analogous to Gijsbrechts’ ‘simulated’ painting 
that carries to the extreme the relation between illusion and representation. 
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2

THE SHAPE OF MOLECULES TO COME

INTRODUCTION

Everyone knows that the origins of the computer lie at least partly in the develop-
ment of scientific research in the twentieth century. The development of computing 
technology cannot be described without invoking key developments of twentieth cen-
tury science, math, and engineering from the Manhattan Project to Bletchley Park to 
NASA. However, in most cases, the ‘effect’ of the computer on science is told with 
an assumption in mind – that adoption of the computer involved applying a new 
technology to already existing problems, theories, and methods. That is, science be-
came computerized. Subsequently, the history of scientific computing often focuses 
on mutual adaptation – the ways scientific research and computing technology recip-
rocally transformed one another. Furthermore, there is clearly truth to this model – 
the Electronic Numerical Integrator and Computer (ENIAC) and the Colossus are 
neatly explained using this narrative. But, since the 1960s, this model has been in-
creasingly outdated – the computer is a standard resource in the construction of new 
theories, experiments, and even new scientific disciplines – there is no longer a proc-
ess of ‘applying’ the computer to long standing questions. Rather, the computer has 
changed the nature and form of the questions being asked. The new scientific ques-
tions that have been asked over the last third of a century are questions which would 
not even be asked without the existence of high-speed machine computation, and, 
increasingly, high resolution computer graphics. As a result, the adaptation approach, 
effective for the immediate post-World War II period, must be reexamined and sup-
planted by a new model – one which takes into account the dynamics of science and 
engineering that have developed during the computerized regime. 

NANOTECHNOLOGY AS COMPUTER-AIDED SCIENCE AND ENGINEERING

Nanotechnology is a scientific and engineering research area that has developed since 
the early 1980s. Broadly speaking, researchers in nanotechnology work to show how 
molecules behave. But the emphasis in most nanotechnology is to create new types 
and combinations of molecules, which will yield new kinds of materials, and, even 
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more powerfully, will generate new structures built from these substances. But given 
its relatively recent development, nanotechnology’s reliance on computing is total. 
That is, without computers, there is no nanotechnology. Unlike some disciplines in 
which there exists a continuity between present-day computer-aided research and the 
kinds of questions asked in the early twentieth century before the advent of scientific 
computing, computers, from supercomputers to PCs, predate nanotechnology. As a 
result, practices in nanotechnology have been built around computers. Of course, I do 
not suggest that computing technology is static. In fact, as computing capacity 
evolves, so do the uses of computational techniques and the kinds of questions that 
are computationally tractable.  

Nanotechnology research uses computing technology in a variety of ways, which 
can be grouped into three broad categories of use. In experimental work, scanning 
tunneling and scanning probe microscopes use computers (essentially, CNC-
technology) to control the movement of the probes. Then the data collected from the 
movement of the probe is fed into a computer, where software produces images of 
the surface of the substance being examined. All images of the nanoscale are gener-
ated using algorithms which map data into a graphical display. Pictures of the nano-
scale are not photographic images; the images are produced through the meditating 
work of software engineers who write code to transform a series of data (i.e., meas-
urements) into an image. Therefore, even what qualifies as the physical, experimental 
realm in nanotechnology research is heavily governed by computing techniques de-
veloped both within and imported into nanotechnology research.  

However, there is another distinct category of computer use central to the con-
struction of new knowledge of the nanoscale. A significant part of nanotechnology 
research takes place entirely on the computer, with only a limited connection to the 
physical world of the scanning microscope. This is the world of computer simula-
tions of nanoscale structures (i.e., molecules). Since the 1990s, researchers have used 
computers to create a virtual, or simulated, experimental field. Simulated experi-
ments can be performed on nanostructures, which, for a variety of reasons, are not 
possible in the physical world. This type of research in nanotechnology is called 
computational nanotechnology. This type of research is the focus of this paper, al-
though, to reiterate, this is not the only or even the primary use of computers in 
nanotechnology. Computational nanotechnology is, however, the area in which the 
existing models of scientific knowledge production fall flat, stagnating in the muddy 
problem of differentiating theory, experiment, and model. 

Given the centrality of computer-generated images to the practices of nanotech-
nology research, attention must be paid to the ways these images are generated. In-
stead of describing the role of simulations in nanotechnology in a way that accom-
modates older models of theory and experiment, here I argue that the way to under-
stand the new role of simulations is to focus on the process of making computer 
models by asking questions such as the following: “What has been modeled thus far? 
Who has modeled it, and who employs the researchers? What are the short and 
longer term goals of the modeling projects?” The answers to questions like these can 
only come from specific case studies in computational nanotechnology. However, 
before discussing a specific case study, I would like to lay out a few more of the im-
portant questions related to the framework of this study.  
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Since the computer models of computational nanotechnology almost always re-
sult in images, it is important to define the nature of these pictures. Computer-
generated images raise some of the same questions that photographic images do – 
principally, what does the image actually show? But because of their reliance on nu-
merical data and algorithms, computer-generated images also raise unique questions, 
divisible into three epistemological categories:  

1.  Data – what data is being used as an input to the model? Where did it come 
from? What are its underlying assumptions?  

2. Programming – What are the algorithms? Who created them? What assumptions 
do they carry with them?  

3. Conclusions – What do the simulations show or prove? What kind of evidence 
do they provide for the expansion, modification, or refutation of some theoretical 
frame for the phenomena being studied? 

These issues have both social and epistemological components. Understanding the 
processes by which scientific and engineering knowledge is produced often requires 
attention to the interrelated social and epistemological dynamics. By this, I mean the 
ways the research questions are informed by the particular individuals who ask them. 
Programmers ask different kinds of questions about simulation environments than do 
computational chemists, but both kinds of questions are part of the process of making 
new knowledge about simulated molecules. The kind of knowledge constructed de-
pends on the kinds of people involved, and who is involved is conversely dependent 
on the kinds of research being undertaken. Social and epistemological dimensions are 
not neatly separable; neither category is prior to the other. With this framework in 
mind, I plan to focus on three questions to provide an entry into the broader questions 
about computer simulations that I lay out above: What is it that simulations of 
nanotechnology model? Who is using these models, in both institutional and personal 
terms? What are the researchers actually doing with the models? 

COMPUTATIONAL NANOTECHNOLOGY – ORIGINS

The term ‘computational nanotechnology’ was first used publicly in a 1991 article in 
the journal Nanotechnology, by Ralph Merkle, a computer scientist, at that time 
working for Xerox PARC. Merkle drew both the term and its methods from com-
putational chemistry. From the beginning, computational nanotechnology has de-
pended on three computer-aided modeling methods from computational chemistry: 
molecular dynamics, semi-empirical methods, and ab initio methods. Merkle’s claim 
for the utility of these methods in 1991 is that they would allow nanotechnologists to 
build and test molecular systems on the computer just as “Boeing might ‘build’ and 
‘fly’ a new plane on a computer before actually manufacturing it” (Merkle 1991). 
Merkle’s interest in computational or computer-generated models of molecular sys-
tems came from experimentalists’ inability to build any of the systems he wanted to 
design. As a result, the computer screen acted as the only experimental space that 
would allow Merkle to design molecular machines.  

But Merkle justified the use of computer-aided molecular design in a very specific 
way. He argued from his experience in computer science that computer-generated 
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models in a number of fields had proven reliable indicators of the feasibility of vari-
ous mechanical configurations. According to Merkle, knowing that a system will be 
feasible, even though the technology to actually construct it does not yet exist, will 
accelerate the process of developing the technology to build molecular machines. 
Computer simulations allow the development of assembler technology to be carried 
out in a parallel, modular process instead of a linear, serial one. In this way, computer 
simulations promise to accelerate the development of actual assembler technology by 
pinpointing the best routes to development. Merkle writes: 

Doing things in the simple and most obvious way often takes a lot longer than is needed. 
If we were to approach the design and construction of an assembler using the simple se-
rial method, it would take a great deal longer than if we systematically attacked and si-
multaneously solved the problems that arise at all levels of the design at once and the 
same time. That is, by using methods similar to those used to design a modern computer, 
including intensive computational modeling of individual components and sub-systems, 
we can greatly shorten the time required to design and build complex molecular ma-
chines (Merkle 1991). 

For Merkle, the computer allows technological development to proceed on a broad 
front. This approach makes an interesting contrast with Thomas Hughes’ notion of 
reverse salients as catalysts for technological developments in Edison’s lab. Hughes 
credits Edison with a great facility in seeing bottlenecks in the development of new 
technologies (Hughes 1983). Using language from military strategy, Hughes refers to 
these bottlenecks as reverse salients. Merkle hopes that computational models will 
help avoid reverse salients, yet Hughes shows that reverse salients play a crucial role 
in successful technological development and that their origins are diverse. One can-
not predict, a priori, where the reverse salients will lie; they only become obvious 
once they surface. Therefore, the question about Merkle’s desire to use computer 
models of nanosystems to allow development of many components simultaneously is 
whether the reverse salient problem will continue to exist. So far, most of the attacks 
about the feasibility have pointed to fundamental limits in technology to make nano-
systems – as of yet, computer models have not eliminated Hughes’ reverse salient 
problem. Furthermore, the reverse salient for a computational model may very well 
not be the one that presents itself in the lab or production process. 

It is also important to mention that Merkle’s claims and work echo that of Eric 
Drexler. Drexler’s own work, especially that of the early 1990s, consisted of the 
kinds of computer models of nanosystems that Merkle was arguing would speed the 
development of actual, physical nanosystems (Drexler 1992). But Drexler was less 
dependent on established techniques in computational chemistry, drawing instead on 
computational models from physics and electrical engineering. Drexler also never 
referred to his work as computational nanotechnology, presumably out of concern 
that this qualifier would fuel his critics’ arguments that his brand of nanotechnology 
was not actually possible (it was only computational). Merkle, as a computer scien-
tist, used the term ‘computational’ with impunity – it was merely one kind of 
nanotechnological research, and a highly useful one at that. Merkle was also ready to 
claim a central role for computer science in the development of nanotechnology. In a 
1999 article in Technology Review, speaking about self-replicating assemblers, 
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Merkle claimed: “Computer scientists are very comfortable with the idea. You can do 
it on a computer” (Voss 1999). 

In the early 1990s, Merkle generated interest for computational nanotechnology 
in his own Silicon Valley backyard, and his work, at least in part, led to the creation 
of a computational nanotechnology research group in the NASA Advanced Super-
computing (NAS) Division at NASA’s Ames Laboratory in Silicon Valley. There 
NASA has concentrated on developing techniques for modeling nanosystems, par-
ticularly novel nanomaterials and nanomachines that have not only extended compu-
tational chemistry techniques but also transformed these tools by adding other simu-
lation methods from other disciplines. While Merkle claimed that the existing com-
mercial computational chemistry software packages in 1991 were sufficient to design 
and test a number of critical components for the construction of molecular machines 
(on the computer, that is), the subsequent progression of new techniques has made 
that claim look increasingly naive (Musgrave et al. 1991). Over the decade of the 
1990s, computational nanotechnology research has developed its own computer-
aided methods that were more than simply borrowed techniques from chemistry, 
bringing in ideas, theories, software, and programming techniques from engineering 
and computer science. 

NASA’S INTEREST IN COMPUTATIONAL NANOTECHNOLOGY

In 1998, Merkle co-authored a paper on “NASA applications of molecular 
Nanotechnology” in the Journal of the British Interplanetary Society. His six co-
authors all worked at the NASA Ames Research Laboratory. The paper laid out a 
number of products and materials which NASA researchers were working on, all of 
which promised great importance in space research and travel. Most of the develop-
ments named in the article were to take advantage of significantly improved strength-
to-weight ratios of nano-structured materials (Globus et al. 1998). It is in describing 
the novel properties of nanomaterials that computational nanotechnology has had the 
greatest impact. While the 1998 article was not exclusively devoted to computational 
methods, the importance of computer models was reinforced in the article’s conclu-
sion: 

… it is clear that computation will play a major role regardless of which approach … is 
ultimately successful. Computation has already played a major role in many advances in 
chemistry, SPM manipulation, and biochemistry. As we design and fabricate more com-
plex atomically precise structures, modeling and computer-aided design will inevitably 
play a critical role. Not only is computation critical to all paths to nanotechnology, but 
for the most part the same or similar computational chemistry software and expertise 
supports all roads to molecular nanotechnology. Thus, even if NASA’s computational 
molecular nanotechnology efforts should pursue an unproductive path, the expertise and 
capabilities can be quickly refocused on more promising avenues as they become appar-
ent (Globus et al. 1998). 

In 1997, the year before the appearance of this article, a research team for computa-
tional nanotechnology had been created at Ames. Locating the team at Ames was an 
important step, since Ames plays a critical role as NASA’s primary computing re-
search facility. The Ames location facilitated cross-fertilization between nanotech-
nology and developments in computer science and programming. In addition,  



ANN JOHNSON30

computational nanotechnologists would be able to access easily and freely the very 
high-end computing facilities of NASA. Since the size of computational chemistry 
simulations were limited by computational power, and researchers thought these lim-
its could be breeched only by faster computing power, this arrangement was crucial 
to the progress of computational nanotechnology. 

The limits in computational chemistry came from the computational dynamics of 
scale versus detail – computational models of chemical systems ran along a spectrum 
with detail at one end (i.e., systems with quantum effects and temporal changes in 
bonding) and size (i.e., number of molecules involved) at the other. Computational 
methods had to balance this computational zero-sum game – examining either large 
systems with very limited detail or very detailed systems of very limited size. While 
classical molecular dynamics could be used to model stable systems of thousands of 
atoms, ab initio methods, which could deliver the energy states of more complex, 
unstable systems, were solvable for systems of less than 100 atoms. Computational 
chemistry methods in the mid-1990s were only feasible for molecular arrays of se-
verely limited size and of a stable chemical nature – exactly the opposite of the kinds 
of novel nanostructures that organizations like NASA were interested in. Ab initio
methods, which required the highest level of calculational complexity, were solvable 
for systems of less than 100 atoms. The molecular machines that Merkle envisioned 
modeling in 1991 contained hundreds of thousands, if not millions, of atoms.  

Over a decade has passed since Merkle’s original statements about the feasibility 
of computational chemistry tools, and yet the systems he was most interested in 
modeling have not been made fully tractable by developments in memory and paral-
lel computing. Progress has instead come from modifications in simulation methods. 
Other techniques, from engineering, have been coupled with computational chemis-
try in order to simplify nanostructures and make their properties manageable. The 
last thing Merkle or NASA advocated was waiting for developments in computing 
technology to catch up with the kinds of problems they were interested in solving. 
Problems needed instead to be re-parsed in ways that would make them tractable. 
They found many resources for this process in the fact that mechanical engineers had 
been doing this kind of simplification for computing for decades. 

CARBON NANOTUBES AND THE COMPUTATIONAL NANOTECHNOLOGY RESEARCH 
GROUP AT NASA-AMES

Work at Ames has focused largely on the carbon nanotube. Nanotubes are carbon 
molecules based on the Nobel prize-winning research on buckminsterfullerenes (a 
spherical arrangement of C60) by Robert F. Curl, Harold W. Kroto, and Richard E. 
Smalley. In 1991 Sumio Iijima, of NEC’s Fundamental Research Laboratories in 
Japan, discovered the nanotube arrangement of fullerene molecules. A single walled 
nanotube is essentially a rolled sheet of graphene made of six folded benzene type 
rings. Multiple wall nanotubes, which are easier to produce, can be thought of as a 
stack of graphene sheets rolled into a cylinder, capped with half-fullerenes. By 1992, 
Iijima had established that these molecules had some unique properties making them 
a very promising research focus. By 1993, Iijima’s lab had produced single-walled 
nanotubes in very small quantities.  
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Three particular properties of nanotubes peaked NASA’s interest (Srivastava 
1997). First, nanotubes are potentially very high strength materials, several times 
stronger than diamond, but at the same time potentially less brittle. The magnitudes 
of nanotubes’ strength and ductility still needed to be determined, both computation-
ally and experimentally, but the underlying assumption at Ames was that nanotubes 
would offer significant advantages in their structural properties. Nanotubes could be 
used as both composite materials themselves and as threads in composites using 
other newly engineering materials – their unique strength-to-weight ratio, although 
yet to be precisely determined, recommended them for both. However, scale itself 
did pose questions (which continue to be debated), particularly whether the strength 
exhibited by a single molecule would translate to a comparable strength in the bulk 
material.  

The second property that interested NASA was the electrical behavior of the 
nanotube. Single wall nanotubes could be manipulated to have the properties of ei-
ther metallic electrical conductors or semiconductors, making them promising mate-
rials for both nanoelectronics and sensors (Hamada et al. 1992). They could even act 
as quantum conductors (Tans et al. 1997).  

The third property, which was uniquely interesting to NASA, was the fact that 
nanotube arrays could, at least in computer simulations, be constructed into a hollow 
cage (Dillon 1997). The spaces between the atoms in the cage would be smaller than 
fuel molecules, which would allow fuel tanks to be constructed of this new molecule-
scale mesh material. Since the weight of fuel tanks on spacecraft constituted a sig-
nificant load, finding novel ways to contain the stored fuel would be one way to re-
duce the weight of space vehicles. Lighter spacecraft would be cheaper to launch, 
and reducing launch costs has been a NASA goal since the early 1970s, and was one 
of the driving motivations behind the whole space shuttle program (Coopersmith 
2004).  

Because of these three uses, the computational nanotechnology research program 
at Ames spanned NASA’s four challenge areas (nanoelectronics and computing; op-
toelectronics; sensor technologies; and structural materials) and made computational 
work the keystone of nanotechnology research at Ames. The Ames web page on the 
computational nanotechnology research group defines their approach as follows, 
“Modeling and simulation across time and length scales coupling fundamental phys-
ics, chemistry, and materials science, and validation against experiments” 
(http://itp.arc.nasa.gov/computationalnano.html). As a result, simulations set priori-
ties in laboratory work through the need, often unmet, to confirm or explain the re-
sults of simulated experiments.  

The computational nanotechnology research team that developed at NASA-Ames 
was led by Deepak Srivastava, a well-established nanotechnology researcher with a 
PhD in theoretical physics. The nascent nanotechnology community has already rec-
ognized Srivastava with the 1997 Feynman Prize for Theory from the Foresight Insti-
tute. Srivastava focused NASA’s nanotechnology research on an examination of the 
novel mechanical, electrical, and mechanical behaviors of carbon nanotubes. His 
models ran on the SGI SMP computer at Ames, as well as an SGI Origin 2000 super-
computer at the National Supercomputing Center. For Srivastava, a computer mod-
eler from his graduate training on, simulations held the advantages Merkle had 
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claimed – they were the only cost-effective way to actually design new nanomateri-
als. The shortcomings of computational models, based on the fact that they could 
only rarely be validated by physical experiments, promised to be erased by simulta-
neous developments in the laboratory.  

Since 1997, Srivastava’s work has focused on investigating a wide variety of me-
chanical, chemical, and electromagnetic properties of nanotubes. Unlike Merkle, who 
worked from methods already developed in computational chemistry, Srivastava 
wanted to determine parallels to macroscopic mechanical properties. To understand 
mechanical behavior, engineers begin with ordinary mechanical properties – elastic-
ity, stress, strain, and others. Examining these properties at the nanoscale immedi-
ately brought new questions about the relationships between mechanical, chemical, 
and electromagnetic properties. In a macroscale structure, strain causes visible de-
formation of the structure, but rarely is there any concern about the strains having 
any effect on the chemical stability of the material – strain does not reverberate down 
to the molecular level in any profound way.1 However, strain in a nanotube poten-
tially deformed the chemical bonds holding the molecule together; as a result, strain 
could make the molecule chemically instable. That is, the strain could cause chemical 
bonds to be broken and remade in new locations. None of the simulation environ-
ments from computational chemistry were able to handle this kind of problem, since 
they did not model strain, and, for most, bonding is addressed only in ab initio simu-
lations of very limited scale molecules.  

However, from an engineering perspective, strain is easily defined in energy 
terms, which could easily bridge to the mathematical language of computational 
chemistry that also traffics in energy terms. As a result, new modeling tools have 
been created in order to simulate the chemical effects of mechanical strain. This was 
done by blending different techniques from computational chemistry as well as 
bringing in new approaches from mechanical engineering and materials science 
(Srivastava 1997). A new way of thinking about the behavior of molecules – new 
knowledge – was thus constructed, because a group of scientists and engineers came 
together from different disciplines, and existing assumptions became suspect to prac-
titioners unfamiliar with them. Physicists and mechanical engineers called into ques-
tion the scale assumptions of computational chemists, while computational chemists 
questioned engineers’ and physicists’ notions of physical strain and its potential ef-
fects on chemical bonding. These practitioners were also used to working at different 
scales – crudely put, physicists concentrate on the quantum scale, chemists at the 
atomic and molecular, and engineers at the molecular or bulk. The result of this in-
terdisciplinary collaboration was a set of new simulation techniques that produced 
solutions to particular questions the researchers were asking about previously intrac-
table molecular systems.  

Srivastava’s work at Ames is best characterized as a hybrid, according to the us-
age of the term in Peter Galison’s Image and Logic. According to Galison, hybrid 
practices are detectable in both the social makeup of research teams, looking at 
where the members have come from and the ways they are arranged in the research 
effort. But hybrid practices are also evident in the artifacts and processes that the re-
searchers construct. The seams between various methods are often visible – espe-
cially at the beginning – and in physical artifacts, the hybridity of the components is 
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also apparent (Galison 1997). In the case of Ames computational nanotechnology 
group, members of the group came from physics, chemistry, mechanical and chemi-
cal engineering, and computer science. As Galison predicts, the hybridity of the 
group is reflected in the approach and the modeling tools they produce. Beginning 
with basic computational chemistry methods, the Ames group began with a simula-
tion of single-wall carbon nanotubes. Using existing molecular dynamics tools, they 
wanted to show the elastic instability of the nanotube. In other words, when the tube 
was put into compression, it remained straight until a threshold was reached, at 
which point it buckled. However, there was little elastic deformation prior to the 
buckling. At this buckling point, the chemical bonds of the tube became unstable and 
the tube was permanently (plastically) deformed. In 1997, Srivastava wanted to ex-
tend this process to multiple-walled nanotubes, which he hoped would be stiffer and 
less prone to this catastrophic kind of deformation. Multi-walled nanotubes presented 
much more difficult problems of analysis. They were comprised of a much larger 
number of atoms, which was a critical problem for computing capacity. Second, they 
required computational tools which would describe changes in long range van der 
Waals interactions. Ignoring these meant assuming a multi-wall nanotube acted the 
same as a single wall nanotube, which was both counterintuitive and contraindicated 
by the limited laboratory experiments on nanotubes in 1997. 

RESULTS OF THE NANOTUBE MODELS AT NASA-AMES

The Ames group began with a FORTRAN77 code written in 1990 by D. W. Brenner, 
a materials scientist with a PhD in chemistry. The Brenner-Tersoff potential ap-
proximates the potential carbon-carbon interactions of a complex molecule, by using 
the Hamiltonian of Newton’s Second Law to define potential energy functions in an 
array of atoms. The unique aspect of the Brenner-Tersoff potential is that it allows 
short-range bonds to be interactive, meaning that bonds can be made and broken in 
the course of the simulation. This feature also means that the simulation is much 
more costly in computational terms than a nonreactive simulation. However, the 
Ames group also had access to a SGI Origin 2000 supercomputer at the National 
Center for Supercomputing, which allowed them to be less concerned about compu-
tational demands. Previously, they had used SGI’s SMP, a four processor system. 
The Origin 2000 was a distributed shared memory system, which could run the pre-
vious code, but also had a great deal more capacity. Code written for the SMP was 
optimized by the Ames group for use on the Origin 2000, allowing them to benefit 
maximally from the supercomputer’s power, running simulations of a much larger 
number of atoms than the SMP could handle. Using the Origin’s parallel shared 
memory architecture, the Ames group simulated a system of over 100,000 atoms. 
This scale of investigation required changes in Brenner’s code, since his focus was to 
look in great detail at a small system. The real challenge facing the NASA group in 
examining multi-walled nanotubes was that they wanted to see tight detail, dynamic 
processes, and a large number of atoms – all of which demanded intense computa-
tion. This kind of complexity had not been modeled previously.  

Still, the simulation was created with an outcome already in mind – they were 
seeking to show that the multi-walled nanotubes would present a solution to the 
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catastrophic buckling problems that they had already simulated in simpler single-
walled nanotubes. And the simulations demonstrated these assumptions to be true, at 
least in most cases. The multi-walled tubes buckled less because the inter-wall van 
der Waals forces prevented the worst pinching and deformation. For the kind of se-
vere deformation seen in the single-wall nanotubes to occur, the walls of tube needed 
to be closer together than the relatively weak van der Waals normally allow (3.4Å). 
Still, as strain increased in the multi-walled tubes to 17%, the deformation became 
plastic and the tubes came apart, as had the single-walled tubes at a lower strain level 
(8.5%). But multi-walled nanotubes appeared in these simulations to have significant 
benefits over single-walled tubes. In the range of 5-16% axial strain, the strain curve 
was linear and largely elastic. Only at the extreme end of 17% strain did the sudden 
transformation to plastic deformation occur. Given the high level of strain required 
for this transition, double what was required to deform single-walled nanotubes, 
multi-walled nanotubes looked like an improvement. Furthermore, multi-walled 
nanotubes are more easily and reliably produced. This simulation was considered a 
great success and led to further funding of the computational nanotechnology group 
at Ames. 

The Ames group also ran comparable simulations on single-walled nanotubes, 
even though, because they were only single-walled, they would not have the advan-
tage of the van der Waals forces between the layers of graphene to strengthen them 
against buckling. In a way, this repetition of earlier simulations using a new method 
was a way of checking the simulations against previous simulations, the only verifi-
cation possible, since experimental tests were not feasible. While previous simula-
tions of strain in single-walled nanotubes had been of tubes 7 nanometers long, the 
Ames group ran tests on 45 nanometer tubes as well and found that they also had 
unique properties owing to their length. The longer tube simulations showed the re-
searchers that the deformations were highly localized and at random locations – 
showing that the results of the shorter tubes could not simply be scaled up for the 
longer ones. The strain appeared to accumulate at the ‘sharp kink’ locations and 
bonds were rearranged at those locations – being broken by the geometry of the kink 
in some locations and rebonded in others. The group called for a similar set of ex-
periments on actual nanotubes using an atomic force microscope to confirm the ve-
racity of the simulations. However, in 1997, the production of nanotubes was not 
reliable enough to facilitate this type of work. 

SECOND GENERATION SIMULATIONS AT AMES

By 2000, the methods used to model strain in nanotubes had developed significantly 
more quickly than had laboratory techniques to confirm the results of simulations. 
Consequently, a decade after Merkle’s claims about the importance of computer 
simulations in speeding the development of nanotechnology, it was ironic that the 
computer simulations that were supposed to speed development had so far out-
stripped the development of physical nanosystems. It would seem that the real cata-
lytic effect of computational nanotechnology was on computational nanotechnology 
itself. Still, in a 2001 article in the journal Computing in Science and Engineering,
Srivastava restated Merkle’s words from a decade earlier:  
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The role of computational nanotechnology has become critically important in nanotech-
nology development. The length and time scales of nanoscale systems and phenomenon 
[sic] have shrunk to where we can directly address them with computer simulations and 
theoretical modeling with high accuracy. The rapidly increasing computing power used 
for large-scale and high-fidelity simulations make it increasingly possible for nanoscale 
simulations to be also predictive (Srivastava et al. 2000).  

While Srivastava clearly agreed with Merkle’s devotion to computational nanotech-
nology, it is worth noting that Srivastava did not make claims about the importance 
of computational nanotechnology as an accelerant to the development of nanosys-
tems. Furthermore, there is a subtle shift from thinking in a scientific, theory-based, 
‘knowing that’ manner in Merkle to an engineering, prediction-oriented, ‘knowing 
how’ attitude in Srivastava. This shift is also reflected in Srivastava’s collaborators 
for the 2001 article – Madhu Menon, the associate director of the Center for Compu-
tational Sciences at the University of Kentucky, and Kyeongjae Cho in the mechani-
cal engineering department at Stanford. In the 1990s, computational nanotechnology 
had taken the existing tools of computational chemistry and used them in new ways 
to solve new problems, which was possible through marrying them with techniques 
from mechanical engineering. This new way of working is evident in Srivastava’s 
and the Ames’ groups’ work at the turn of the twenty-first century. 

 The Ames group was still using molecular dynamics models to describe the 
interactions of the atoms in the system, but they were also using a number of other 
tools. The most significant change between 1997 and 2001 was the adoption of a 
common technique from engineering, which was to vary the scale of examination by 
using different methods to model different parts of a structure. This approach had 
been developed during the initial phase of computerization in engineering in the 
1950s and 1960s (Johnson 2004). An engineer designing a structure would model 
areas with possible stress concentrations in a highly detailed manner, while using 
much looser modeling techniques for areas where critical stresses were not expected. 
This allowed computer time and capacity to be used where they were most important 
and not wasted on areas where problems were not anticipated. Some engineers, and 
more commonly physicists, fought against this approach, relying as it does on the 
modeler’s intuition and experience in determining a priori where problems lie. But 
despite some resistance, this technique has become a mainstay in engineering com-
puter-aided design. By 2001, Srivastava was using this idea to model nanosystems, 
looking at varying levels of detail by using different tools to model different parts of 
the nanostructure. Eric Winsberg’s piece in this volume examines in detail this proc-
ess in a different case study.  

MULTIPLE TOOLS FOR MULTIPLE SCALES OF EXAMINATION

The Ames group divides their methods into three categories drawn from computa-
tional chemistry: classical molecular dynamics methods, semi-empirical quantum 
simulations, and ab initio quantum molecular dynamics and density functional theory 
(DFT) methods. The classical molecular dynamics methods are similar to the Bren-
ner-Tersoff modeling techniques used in the 1997 work to show the effect of the van 
der Waals forces on the elastic/plastic deformation of a multi-walled nanotube under 
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compression. Even simpler molecular dynamics models are sometimes used, which 
ignore the chemical bonds that may be formed and broken during the event simu-
lated. For example, in single-wall nanotubes, where there are no van der Waals 
forces between layers (because there is only one layer of graphene), classical molecu-
lar dynamics models optimize computing effort by eliminating bond interactions that 
do not exist, or in other cases, are not relevant.  

But in many nanoscale systems, quantum effects start to matter, and classical MD 
methods are not effective in these cases. In moving to a quantum approach called 
tight binding molecular dynamics (TBMD), the Ames group modeled the atoms as a 
collection of quantum mechanical particles governed by the Schrödinger equation. In 
this approximation, the electron is tightly bound to its own atom except during “the 
capture interval, when the electron can orbit around a single ion uninfluenced by 
other atoms, so that its state function is essentially that of an atomic orbital” 
(Srivastava et al. 2000). The advantages of TBMD are its computational efficiency 
and the method’s facility to determine the energy potential of a nanosystem without 
excessive computing resources. The development of more elaborate TBMD models 
has required the construction of new algorithms, and this has interested the computa-
tional geometry community.  

At the extremely computationally demanding end of the spectrum of modeling 
tools used at Ames are ab initio simulation methods. Ab initio simulations solve 
complex quantum many-body Schrödinger equations with numerical algorithms. The 
ab initio methods are approximately a tousand times less computationally efficient 
than TBMD methods (Srivastava et al. 2000). As a result, ab initio models are lim-
ited to systems no larger than a few hundred atoms. The Ames group uses ab initio
methods in conjunction with TBMD in order to vary the level of detail they need on 
atomic scale processes. The most important ab initio method for Ames is driven by 
density functional theory, which shows that the ground state total electronic energy 
of a many electron system is a function of the system’s total electron density. At 
Ames, they use a specific algorithm called the Kohn-Sham equation, a single electron 
Schrödinger equation that can predict material properties “without using any experi-
mental inputs, other than the identity of the constituent atoms” (Srivastava et al. 
2000). This method is available through a commercial DFT simulation program, the 
Vienna Ab Initio Simulation Package. Despite the computational inefficiency of DFT 
methods relative to semi-empirical or classical MD, there have been significant im-
provements in recent years, which have allowed larger and larger systems to be mod-
eled. However, it also seems likely that the modeling projects at Ames will continue 
to be composed of multiple simulation tools in order to model precise effects in the 
most efficient manner. Since the end goal of many nanosystems is to create macro-
scopic effects or even artifacts, there is no boundary on the size of systems to be 
modeled, therefore figuring out computationally efficient ways to predict energy lev-
els promises to be a continuing focus in computational nanotechnology. 

The way these three groups of modeling techniques have been used at Ames is il-
lustrative of the practice of finding particular locations, energy levels, or processes 
that require greater detail and sharper focus in the modeling phase. When simulating 
carbon nanotubes to determine their mechanical characteristics, researchers at Ames 
first ran classical MD models to determine the limits of elasticity, as previously  
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described in the 1997 work. When they found nonlinear elastic instabilities (which 
they called ‘fins’) in the deformed tubes, they ran TBMD simulations to further in-
vestigate the deformities. With TBMD models, their results were similar to classical 
MD models for strain values less than 8% (this was also the strain level where differ-
ences were seen between single wall and multi-wall nanotubes). But with strains 
greater than 8%, changes in the bonds occur and cause the molecular structure of the 
nanotubes to collapse inward. As new diamondoid bonds form, the structure is pulled 
even further into itself. In addition to running TBMD simulations of carbon nano-
tubes, they also ran the same simulations on Boron-Nitride (B-N) nanotubes. These 
results were also different for B-N nanotubes, since the B-B and N-N bonds make 
these tubes less stable than the C-C bonds. Changing the geometry of the nanotube 
from structures that look like \_/¯\_/ (called an armchair nanotube) to ones with 
bonds that look like /\/\/\ (called a zig zag nanotube) was one way to overcome the 
instability of the B-N nanotubes, and work in this direction was a direct outcome of 
the computer simulations. Srivastava and his collaborators claimed in their article 
that “this set of simulations for nanotube mechanics shows that in the nanoworld, 
simulations not only an verify and explain experimental observation – they can also 
predict new phenomena” (Srivastava et al. 2000) But it is clear that in the three to 
four years since the creation of the computational nanotechnology group at Ames, the 
researchers have drawn in many different kinds of resources, all of which moved 
their work toward a predictive, engineering design direction. Computational 
nanotechnology at Ames uses many tools from computational chemistry, but in con-
junction with tools from computer science and mechanical engineering. Furthermore 
the ethos, or way of thinking, of the Ames researchers seems to have more in com-
mon with engineering design than theoretical chemistry. In this sense, computational 
nanotechnology is clearly a hybrid field. 

WHERE DOES COMPUTATIONAL NANOTECHNOLOGY LEAD?

Computer simulations of nanoscale objects moved from being an application of 
computational chemistry in the early 1990s to a well-developed research area in the 
exploding field of nanotechnology by the turn of the century. One of the difficulties 
of discussing the evolution of computational nanotechnology is the simultaneous 
development of nanotechnology. It may be hard to see computational nanotechnol-
ogy as a subfield, because some would argue that nanotechnology does not yet rate 
as a discipline. Yet, for the purposes of examining computer simulation, this argu-
ment seems peripheral. Computer simulation has been central to the development of 
nanotechnology – to the extent that it has been and remains the leading edge of the 
field. Partially due to the difficulties presented by experimental nanotechnology, 
computational nanotechnology is the validation test field for much of nanotechnol-
ogy. Still, this position presents problems exactly because simulations are neither 
physical experiments nor first-principle-based mathematical models. Srivastava and 
other Ames researchers do claim that simulations act as feasibility proofs for nano-
scale systems – they show what could be possible given our current understanding of 
the physics and chemistry of molecules. In this sense, and Srivastava makes this 
claim, computational nanotechnology has taken a role very similar to finite element 
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models for engineering design – they show what is possible, what design aspects re-
quire further investigation, and how different techniques can be combined in highly 
contingent ways to maximize computational efficiency and minimize design 
throughput time. Computational models play a key role in ruling out certain options 
and concentrating researchers’ efforts on areas which simulate positively. But the 
similarity of computational nanotechnology models to finite element models for mac-
rostructures also shows the potential problems of computational methods, especially 
when based on thin experimental data. In the nearly half century since the develop-
ment of finite element analysis, numerous examples of computer-aided failures have 
accumulated (Petroski 1999). In macroscale engineering, failures fly in the face of 
FEA models, requiring reexamination of the models as well as the failed structures. 
In a peculiar sense, this is a luxury that computational nanotechnology does not yet 
have. In nanoscale engineering, the line between technical capacity and physical fea-
sibility remains unclear, and this is a distinction that even the most complex simula-
tions cannot fully clarify. 

University of South Carolina, Columbia, SC, USA 

NOTES

1 However, fracture mechanics is an area in which the relationships between mechanical stress and mo-
lecular bonds are critical. In addition, heat-induced strain can be chemically significant, as heat itself 
causes bulk deformation as well as changing a material’s properties. Nowhere was this more graphically 
illustrated than in the collapse of the World Trade Center Towers. However, the concerns NASA was 
investigating were neither fracture- nor heat-related. 
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TARJA KNUUTTILA 

FROM REPRESENTATION TO PRODUCTION:  
PARSERS AND PARSING IN LANGUAGE TECHNOLOGY 

INTRODUCTION 

In many interesting case studies, social research on science has demonstrated how 
facts and new scientific objects are created, or constructed, in scientific practice. The 
findings of these studies have challenged the representationalist view of science, ac-
cording to which knowledge consists of a bundle of accurate representations of an 
independently existing external world. In opposition to this view, an alternative per-
formative conception has been presented that conceives of science as a production 
process in which the artificial and the real are intermingled (see, e.g., Hacking 1983; 
Pickering 1995). The performative conception of science works well in the case of 
experimentation: It does not lead to any exaggerated form of relativism, as the oppo-
nents of ‘social constructivism’ once feared. Indeed, laboratory work, which has been 
the main focus of constructivist science studies so far, seems well grounded in physi-
cal reality, as its experimental effects are produced with the help of the material ma-
chinery.  

When it comes to modeling, however, this neat distinction between performative 
and representational conceptions of science becomes muddled, and nagging ques-
tions concerning representation persist. This is because models are typically made 
out of different stuff and embodied in a different scale than the things modeled. 
Whereas experimentation under laboratory conditions means experimenting with the 
objects of interest themselves, the experiments provided by models seem to be virtual 
at best, giving us merely ‘surrogates’ for reasoning. Consequently, philosophers have 
tended to analyze the epistemic value of models more or less solely in terms of repre-
sentation. Irrespective of the other differences in their philosophical outlook, phi-
losophers of science have been nearly unanimous in holding that if they are to give 
us knowledge, models have to be representative (e.g., Morrison and Morgan 1999; 
French 2003; Giere 2004). Often, an even stronger claim has been made: Models are 
representations (e.g., Hughes 1997; Teller 2001; Frigg 2003). However, this way of 
ascribing the epistemic value of models to their representative aspects then tends to 
overlook the epistemic importance of many more performative aspects of models: 

41–55. J. Lenhard, G. Küppers, and T. Shinn (eds.), Simulation: Pragmatic Construction of Reality,
  Springer. © 2006

CHAPTER 3



TARJA KNUUTTILA42

They typically function also as heuristic tools, demonstrations, test beds, and as de-
tachable ‘templates’ (Humphreys 2002) that can be applied across the disciplines. 

This paradoxical nature of modeling is especially striking in the case of simula-
tion models, which, from the very outset, seem to be “caught between machine life 
and symbol life” (Galison 1996: 139).1 This is already reflected in the way the early 
practitioners used to talk about simulations as theoretical experiments (p. 138). Nev-
ertheless, even when the simulation consists of a ‘discretization’ of a theoretically 
well-established differential equation, the resulting simulation model is not a direct 
transformation of the original theoretical formulation (e.g., Winsberg 1999, 2003). 
What is more, the approximations, idealizations, and even falsifications typical of 
modeling are, in the case of simulation, importantly tied to the affordances and con-
straints of a specific material machine, namely, the computer. Thus, what Galison 
calls “symbol life” is configured and prepared to fit the machine life that makes it 
experimentable in the first place. Moreover, simulations are typically valued for their 
functional properties, whereas less stress is placed on their being structurally repre-
sentative.2 On the other hand, one epistemically important dimension of simulations 
consists in the output representations they generate (see Humphreys 2004). These 
properties of simulations call for new analyses that investigate how the representa-
tional and performative aspects relate to each other in modeling in general and in 
simulation in particular. 

In the following, I shall attempt to give a new account of models that is better 
able to capture the different epistemic characteristics of models and modeling. I pro-
ceed by studying the Constraint Grammar Parser, which can be characterized as a 
computational model of syntax, whose task is to give the same kind of linguistic 
analyses of a written text as a human (linguist) can. Thus, the Constraint Grammar 
Parser is a simulation in the sense that it is both a stand-in for a human linguist and a 
computer program that executes the grammatical constraints of a specially devised 
language model. Instead of asking whether or not simulation constitutes a new mode 
of doing science that presents us with a radically new kind of tool, I rather take it that 
simulation models give us good cause to reflect on the interrelationships between 
productive and representative aspects of modeling. 

I shall specifically argue that the traditional emphasis on representation does not 
give due consideration to the epistemic intricacies of model building and use, in 
which a special kind of expertise, bound to the specific models and methods of mod-
eling, is seen to emerge. This seems to be especially true of simulation models, 
which, in addition to being models, are complex technological artifacts. Yet repre-
sentation has an important place in modeling, though not the one it has been granted 
most often – as is particularly well demonstrated by computer models. First, often in 
the case of simulation models, the epistemically interesting locus of representation 
has moved from the structure of the model to its output. Parsers, for instance, are 
valued for what they produce and the accuracy of their output, rather than for being 
realistic representations of human linguistic competence. Second, even though pars-
ers cannot be considered as straightforwardly representative entities, they are none-
theless constructed by various representational procedures. Consequently, the case of 
parsing challenges our established views on representation. It shows that much of the 
work of representation that takes place in modeling remains invisible if we are 
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mainly interested in what the ready-made models supposedly stand for in reality. 
This, in turn, leads us to realize that what is being represented when we build models 
is usually something that has already been theoretically rendered and conveyed 
somehow. 

CONSTRAINT GRAMMAR PARSER3

The process of describing a word or a sentence grammatically is called parsing. It 
has long roots in Western grammatical tradition with origins in the Latin pars ora-
tionis, which means ‘part of speech.’ A part of speech is a class of words with shared 
grammatical characteristics that distinguish them from other words. Generally recog-
nised parts of speech are, for example, nouns, verbs, pronouns, adverbs, adjectives 
and conjunctions. In the context of language technology, parsing means ”the auto-
matic assignment of morphological and syntactic structure (but not semantic interpre-
tation) to written input texts of any length and complexity” (Karlsson1995: 1). A 
parser is thus a language-technological device, a program devised for producing the 
parsed text necessary for various different language-technological tasks such as word 
processing, grammar-checking, and information retrieval.  

There are two primary approaches to parsing. One is a grammar-based, linguistic, 
and descriptive approach; the other is probabilistic, data-driven, and statistical. The 
methods of the data-driven approach include corpus-based learning rules, hidden 
Markov models, and machine-learning approaches. Although the probabilistic ap-
proach is more popular, good results have been achieved with both methods. I shall 
concentrate on the grammar-based approach, that is, on the Constraint Grammar 
Parser for English (EngCG), which is a product of long-term research in language 
technology being carried out at the Department of General Linguistics at the Univer-
sity of Helsinki. Even though EngCG is a grammar-based parser, it is also firmly 
grounded on linguistic corpora. Thus, the constraint grammar approach to parsing 
differs radically from Noam Chomsky’s universal grammar (1957), which is genera-
tive in the sense that it strives to define a set of rules capable of generating all well-
formed, that is, grammatical, sentences of the language. Now, this idea seems to be 
closely analogous to the structural approach4 to simulating physical systems in its 
aim to generate the complex phenomena of language with the help of relatively small 
set of simple rules applied to primitive atomic sentences.5 Constraint Grammar (CG), 
in contrast, remains entirely on the level of surface structure, and instead of stipulat-
ing the rules for well-formed expressions, it consists of constraints that reject the im-
proper ones. I shall come back to the distinctive features of the different approaches 
to parsing later in this article. 

Constraint Grammar is a parsing formalism whose main task is to give a correct 
grammatical reading to each word of a running text and to enrich each word with 
further syntactical information. CG parsing builds on a preceding morphological 
analysis performed by a so-called morphological analyzer. Such an analyzer is two-
level morphology (TWOL, Koskenniemi 1983), whose development was the basis 
for the Helsinki group’s early international breakthrough. TWOL strives to give all 
the possible morpho-syntactic readings for each word of the text to be analyzed. 
Typically, the words we use are such that the same word form, say ‘round,’ can be 



TARJA KNUUTTILA44

read differently depending on the context in which it is used. Thus, TWOL gives the 
word ‘round’ a total of eight different readings, of which four are verbal; however, it 
can be read also as a preposition, noun, adjective, or adverb (Voutilainen 1995: 165). 
Consequently, the word ‘round’ is ambiguous; without any additional contextual in-
formation, we cannot decide how to interpret it. The task of the parser is to choose 
which one of these readings is the proper one in the context of its occurrence in the 
text. This is called disambiguation.6

Parsing proceeds as follows: Once the morphological analyzer has provided all 
the correct morphological readings of the words of an input text, the parser checks 
which readings are appropriate by applying morphological constraints. The con-
straints make use of the context of each word (i.e., the words in the vicinity of the 
word in question), whereby the clause boundaries provide the limit for the relevant 
context. For instance, if a word has both nominal and verbal readings and is preceded 
by an article, the relevant constraints rule out all the verbal readings of the word on 
this basis (see Table 1). Ideally, the input text should be disambiguated so that none 
of its constituent words have more than one morphological interpretation.  

Once the parser has disambiguated the morphologically ambiguous words, the 
next task is to give them a surface syntactic analysis (Karlsson 1990).7 The output of 
the morphological disambiguation module becomes, in turn, an input to the next 
module, namely, syntactic mapping; and this subsequently assigns all possible (sur-
face) syntactic functions to each accepted morphological reading. Once again, a cer-
tain word form can have several different surface syntactic functions. A noun, for 

Table 1.  Disambiguation of the word ‘lack’ with the help of Eng CG 

“(“<the>” 
    (“the” ART)) 
(“<lack>” 
    (“lack” V SUBJUNCTIVE) 
    (“lack” V IMP) 
    (“lack” V INF) 
    (“lack” V PRES -SG3) 
    (“lack” N NOM SG))” 

The word ‘lack’ can have both verbal (SUBJUNCTIVE, IMP, INF, PRES) and 
nominal (NOM) readings. However, if it occurs after an article (ART), all possi-
ble verbal readings can be eliminated. Consequently, one can apply to the am-
biguous word ‘lack’ the constraint (@w =0 (V) (-1C DETERMINER) that dis-
cards (=0) all lines containing the feature ‘V’ from an ambiguous cohort if the 
first word to the left (-1) is an unambiguous (indicated by the letter C) determiner 
(the feature ART being a member of the set DETERMINER) (Voutilainen, Heik-
kilä, and Anttila 1992: 2). 
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instance, can be a subject, object, indirect object, and so forth. Consequently, to give 
each word its correct syntactic reading, syntactic constraints are applied after map-
ping. These constraints are similar to morphological disambiguation constraints in 
that they discard contextually illegitimate syntactic function tags (see Voutilainen 
1994: 16–17). The final output of the parser is a text in which, in a best-case sce-
nario, each word is labeled (or ‘tagged’) with its correct morphological reading and 
syntactic function.  

Layers of Representation 

A CG parser for a certain language is a set of constraints written with the CG formal-
ism for that language and implemented as a computer program. The algorithm is lan-
guage-independent and has been used to write grammars for different languages. Be-
cause of the way the CG parser for a particular language is made, its construction can 
be approached as a continuous process of representation involving different represen-
tative layers and repeated testing with corpora. In order to create a (grammar-based) 
parser for a particular language, one has to describe the rules of that language with 
the aid of a parsing formalism, a sort of metalanguage (such as CG). This set of rules 
(which are actually constraints in the case of CG) is, in turn, implemented as a com-
puter program, whose code constitutes another layer of representation. In practice, 
the set of rules and computer program have been developed concurrently with the 
help of previously annotated text corpora. The work of representation is time-
consuming and piecemeal – the first full-blown version of the EngCG parser (Karls-
son et al. 1995) incorporated more than 2,000 rules, and a group of linguists and 
computer scientists needed several years to develop it into an effective language-
technological tool. The linguists developed different aspects of the parser, including 
word-class disambiguation, syntax, and lexicon, and the computer scientist pro-
grammed the EngCG parser with the C language. 

Prior to building the parser, however, the problem of how to represent the rules of 
a language had to be solved. This involves developing a proper formalism, which is, 
in fact, the crucial epistemic challenge in making a parser. In an interview, Fred 
Karlsson, the original creator of the CG-formalism, said that he tried for many years 
to develop a syntactic parser by applying several different theoretically grounded 
linguistic formalisms before he realized that in order to make a functionally robust 
parser, he had to “turn everything upside down and try to do something by rejecting” 
instead of stating positively what might be possible. Thus, in contrast to traditional 
grammars, which are licencing grammars, a CG grammar is a reductive grammar. 
The idea behind it is contrary to that of formal grammars, such as Chomsky’s Trans-
formational-Generative Grammar. Instead of defining the rules for the formation of 
correct expressions in a language (L), the task becomes to specify constraints that 
discard as many improper alternatives as possible (Karlsson 1995: 10). Of course, 
one may ask whether the eventual success of this way of proceeding is crucially due 
to the fact that processing a list of commands is the sort of task typically undertaken 
by computers.8 This serves to highlight how, in simulation, the theoretical and other 
properties of the modeled systems are adapted to the requirements of computation 
and to the affordances of the machines themselves. 
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To show to the scientific community that a grammar-based parser could really be 
designed along these lines, the Helsinki group set out to build a functionally robust 
parser for English. The CG grammar is written in a corpus-based fashion. One starts 
with a morphologically analyzed text for which one writes constraints that disam-
biguate the words of that text. After the resulting grammar is applied to the manually 
disambiguated benchmark corpus, the software of the system generates application 
statistics for each of the constraints. On the basis of these statistics and after identify-
ing the mispredictions, the grammarian either corrects or removes old constraints or 
creates new ones. Then the cycle is repeated, making use of any new corpus evidence 
until, as one of the researchers put it, “the grammar approximates human perform-
ance sufficiently.” 

One critical phase in the work of representation underlying the EngCG-parser is 
the implementation of the grammar as a computer program, which poses a delicate 
epistemic challenge in itself.9 The fate of the Finite State Parser, which is another 
parser the group was developing, illustrates the indeterminacy and ambiguity of the 
transformation that occurs during implementation. The Helsinki group had great ex-
pectations of the Finite State Parser, but these hopes never materialized. Despite the 
theoretical attractiveness of the finite state method in modeling language, the Finite 
State Parser proved to be technically impossible given the current computational ca-
pacity of machines. However, not one of the researchers I interviewed was certain 
whether this objective was an impossible task to begin with, or whether it might have 
been accomplished by other means. The researchers also discussed the properties of 
different programming languages in the implementation task. One researcher ex-
plained the merits of programming language C, with which the fastest implementa-
tion of the EngCG is made, in the following way:  

If you have to make a really tight code, then you have to use a language that is as near as 
possible to the commands of the processor … C is very close to the machine and yet it 
sustains the abstractions sufficiently. You have to choose a tool according to the task. 
Sometimes it is a shovel, sometimes it is tweezers. Here, because I am aiming at effi-
ciency, I'm using C. It is old-fashioned, yes, and awkward. But on the other hand it is a 
… handicraft-language (Lauri Carlson, Interview). 

From the point of view of representation, it is interesting to note that the linguist and 
the programmer actually represent entirely different things, even though they are 
building the selfsame artifact. This was pointed out by the computer scientist of the 
group: 

And then I have to recognize the [parsing] problem as one of those abstract problems, 
that is, what kind of computational world it relates to … In linguistic theory you try to 
make a description of the world and in computer science you try to erase it (Pasi Tapana-
inen, Interview).

Thus parser construction opens up a view of representation that differs greatly from 
the traditional one which focuses on the relation between a ready-made model and 
its real target system. According to the traditional view, a model is epistemically 
valuable if it, in itself, gives us an accurate depiction of its object. Here, on the other 
hand, although the parser is an outcome of the labor of representation, the parser it-
self is valued instead for what it produces. The accuracy of this output representation 
is more important for the researchers than the ability of the parsing process itself to 
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realistically imitate human linguistic performance. The researchers I interviewed 
were all of the opinion that, above all, the parser must function well, which means 
that a parser must be able to carry out some of the same tasks (i.e., syntactic analysis) 
that humans can. To do this, parsers do not necessarily have to be ‘psychologically 
realistic,’ and it is highly probable that they will not be so. 

I am speaking about the work of representation rather than about representation, 
because of the piecemeal character of the process of building the parser. In actuality, 
the process renders what is already described theoretically (i.e., word classes and 
syntactical functions) into another form (i.e., into constraints) with the help of a pars-
ing formalism and subsequently programming language. It is not a question of repre-
senting the structure of language itself (as the traditional model of representation 
would have us believe), but rather of depicting in a specific way a certain kind of 
linguistic knowledge:  

In the end, that which is being modeled is nothing more than … the sort of analyses a 
linguist – not a normal speaker but a linguist – would give for a certain data. … It is 
modeled from a very close perspective or small angle. Maybe one could say that what we 
model is the way in which a linguist would analyze, on a certain level, texts of a certain 
language (Atro Voutilainen, Interview). 

Consequently, the epistemic problem of parsing is not so much about finding out 
what something (i.e., language) is like, but how something can be done given certain 
resources (the computer providing the critical resource in this case). Thus, the prob-
lem concerns more the ways of representing themselves rather than what is repre-
sented. It directs our attention to the process of representation in which what we rep-
resent is already represented somehow. This insight leads us to question the represen-
tationalist supposition that it is the real target system as such that is being repre-
sented. It redirects our attention to the importance of various representative devices 
and methods as means of production instead of focusing exclusively on what the 
ready-made model – which, from this point of view, is already a complex representa-
tive achievement – is supposedly about. Important though this question is, the fact 
that it has received such exclusive attention so far has led to a certain mystification of 
the question of representation itself. One is left wondering what connects the repre-
sentation and its supposed target system, and one loses sight of the process of repre-
sentation that provides at least part of the answer being sought. 

Theory and Expertise 

If the EngCG-parser cannot be seen as a clear-cut representation of any part of the 
world that exists independently from our representational endeavors, its relationship 
to theory is also not straightforward. In addition to treating models as representations, 
the philosophical tradition often considers models as interpretations or some sort of 
concretizations of (formal) theories, but this captures poorly the part that theory plays 
in language technology. In fact, the CG parser as a model is not an application of any 
distinct autonomous theory. Due to the corpus-based way it is created, the CG 
grammar does not resemble the ordinary grammars of any given language, and the 
constraints are quite different from the grammar rules described by syntactic theories. 
Instead of one general rule in the CG grammar, “there will be a few dozens of 
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down-to-earth constraints that state bits and pieces of the phenomenon, approaching 
or even reaching the correct description by ruling out what cannot be the case in this 
or that context” (Karlsson 1995: 26).  

There are also certain parsers based on autonomous grammar theory, but their 
success in parsing running texts has been rather modest (see Black 1993). The prob-
lem has been that the numerous distinctions made in these grammatical representa-
tions of language require a certain semantic and higher-level knowledge of language 
that is not readily available (Voutilainen 1994: 30–31). Because modeling can be 
seen as a continuous process of representation, the problem here can probably be 
interpreted as one of transformation. Grammatical representations that are explicitly 
bound to a certain formal theory fail because such representations are not unambigu-
ously transformable to an empirical level. 

It should be noted that a parser such as EngCG should not be considered to be an 
atheoretical entity, despite not being a concretization of any autonomous formal the-
ory. It nevertheless embodies linguistic concepts such as dependence, word class, and 
syntactical functions in its construction and output. In fact, in the field of language 
technological research, the Constraint Grammar is presented as a theory of how to 
design a doable parser – it is a description of the principles needed for inducing the 
grammatical structure of the sentences by automatic means. In the theoretical presen-
tation of the Constraint Grammar (Karlsson et al. 1995), these principles are given in 
the form of a discussion of twenty-four parsing goals (e.g., G-10 “Morphological and 
lexical analysis is the basic step of parsing”) and seven specific strategies (e.g., S-1 
“Disambiguate as soon as possible”) (Karlsson 1995).10 The very generality of these 
principles, however, serves to underline the importance of a specific kind of expertise 
in parser construction. 

Expertise has typically been attributed to local, experience-bound, and tacit di-
mensions of science, but it has remained rather difficult to tell what expertise consists 
of and how it is born (see, e.g., Collins and Evans 2002). The parser-building process 
described above suggests that expertise is tied importantly to certain specific meth-
ods and artifacts, and that it involves many kinds of knowledge and skills and an 
ability to synthetize them in view of certain goals. These goals should not be under-
stood as pregiven or fixed. It also appears that an important part of expertise is the 
ability to define goals in such a way that they are doable. In this sense, expertise can 
be considered as object-bound knowledge and skills that emerge in given activities 
with their own characteristic tools and goals. 

The epistemic challenge and the special kind of expertise needed in parsing were 
expressed very well by the response one interviewee gave to my question of whether 
building a parser is a practical problem (because linguistic theories do not play any 
noticeable part in it): 

Building a proper parser is not a practical problem at all. If it were, it would have been 
solved a long time ago. It’s not a question of lacking effort or that not enough work was 
invested in it. … It is in a certain way a genuinely difficult problem that is difficult to 
explain to anybody who does not know the structure of language. … [Because of the 
complexity and ambiguity of language] the combinatorics explode. In Finite State pars-
ing, we even had 10 to the power of 100 choices to choose from, so that we were infi-
nitely far away from anything that could be computed, and because of that you have to 
have a certain strategy to attack this difficult problem (Kimmo Koskenniemi, Interview). 
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As this comment shows, the epistemic challenge of building a parser is to find a 
strategy for or an idea on how to take into account both the complexities of language 
and the computational capacity of computers in view of the task to be accomplished. 
This involves an ability to deal simultaneously with different kinds of knowledge and 
to find out what is doable given the resources at hand. One interviewee pointed out 
that, in his opinion, Karlsson’s main achievement was exactly his insight in setting 
the goal of syntactic parsing to a doable level, to that of surface syntax, instead of 
aspiring to more theoretically bound, deeper levels. Several researchers also stressed 
the importance of methodological know-how; the ability of a researcher to (fore)see 
what can be done with different methods.  

Even though the invention of a parsing formalism and the setting of an appropri-
ate goal for parsing were crucial for the success of the EngCG parser, much must 
also be attributed to the specific competencies of the linguists and computer scientists 
who actually made it. The efficiency of parsing, which is one of the most important 
features of a parser, is largely due to implementation and thus to the programming 
skills of the computer scientist in question. But even more than that, the interviewees 
emphasized the respective skills of the linguists making the grammar. Once again, 
these skills consist importantly in the ability to use and combine different kinds of 
mostly linguistic knowledge about the structure of language and its use. Moreover, 
the expertise is coupled with the artifact and cannot be easily detached from it. Con-
sider Voutilainen’s reflections on the learning process that occurs during the creation 
of a grammar: 

In the making of a grammar it’s not so much a question of how well you know the lan-
guage you are examining, it’s more or less like programming. … It is as if you just saw 
the generalisations there. What I have learned, at least, is to think through that formal 
grammar … through that descriptive machinery. In a way it is a question of getting into a 
kind of rut, too … (Atro Voutilainen, Interview).

From the philosophical point of view, the language technologists also displayed a 
rather instrumental attitude toward parsing. For instance, even though the rule-based 
and probabilistic approaches to parsing seem to imply very different suppositions 
concerning language and cognition (i.e., language as a categorical vs. probabilistic 
phenomenon, and cognition as symbol manipulation vs. pattern-matching), the lan-
guage technologists were typically more interested in the respective results and prop-
erties of different modeling architectures. To be sure, in the 1990s, there was an oc-
casionally heated debate between the proponents of the two paradigms (see Vouti-
lainen 1999b: 218–219). The outcome of that discussion has been the realization that 
both paradigms have their strong and weak points. For instance, building state-of-
the-art statistical taggers needs carefully annotated training corpuses (preferably a 
few thousand words), but then the tagger can be trained with very little human effort, 
whereas writing a grammar is relatively time-consuming (requiring several months of 
rule-writing and testing). This seems to speak in favor of the statistical method. Yet, 
if the input text represents a domain or style not adequately represented in the train-
ing corpus, the statistical tagger’s accuracy is likely to deteriorate, whereas correcting 
and improving the grammar of a linguistic tagger (e.g., for customizing the system 
for the analysis of texts from some particular domain) is not particularly difficult. 
Different kinds of hybrid approaches have been developed once “the most proponents 
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of both camps have recognized that the ‘enemy’ is making useful contributions to the 
development of tagging” (Voutilainen 1999a: 20).  

THE PARSER AS AN EPISTEMIC RTIFACT

A parser is an example of a model whose scientific status is neither predominantly 
tied to its representative function nor based on any pre-existing autonomous formal 
theory. In assessing its epistemic value, it seems to me that one promising approach 
is to treat it as a constructed thing, an artifact, that can give us knowledge in various 
ways and that also, in itself, provides us a new object of knowledge. Elsewhere, I 
have argued that models in general can be treated as epistemic artifacts (Knuuttila 
and Voutilainen 2003; Knuuttila 2004).  

Approaching models as epistemic artifacts draws attention to both their inten-
tional and material dimensions from the interplay of which their epistemic qualities 
arise. Models gain their intentionality by being constructed, used, and interpreted in 
purposeful human activities. On the other hand, there is nothing to use, construct, or 
interpret unless models are materialized in some medium. This material dimension of 
models makes them able to mediate and travel between different groups, epistemic 
activities, and disciplines, and this, in turn, accounts for their multiplexity (Merz 
1999). In fact, it is typical of modeling that the same computational templates travel 
across sciences (see Humphreys 2002, 2004). As they gain different interpretations 
and uses, they become part of the embodiment of different models. 

The concept ‘epistemic artifact’ draws attention to the fact that in modeling, we 
are devising artificial things of which we know either the structure or the initial con-
ditions and the mechanism. The traditional way to approach models would be to 
claim that these structures or mechanisms stand for something in the real world that 
exists independently of its representation. I call this an observational approach to the 
epistemic value of models. It keeps the artificial and the real separate from each 
other, and claims that the artificial gives us knowledge of the reality because it hap-
pens to depict the real things correctly in some respect. This approach abstracts away 
from the representative and interpretative work that goes on in science, losing sight 
of the cognitive point of modeling. Even if we aimed to model a certain external 
phenomenon in order to acquire knowledge of it – which need not be the purpose of 
our model, as the case of parsers shows – modeling proceeds rather by representing 
something tentatively than by isolating or abstracting some ‘essential’ features of the 
world as if we knew them already! 

In treating models as investigative instruments, Morrison and Morgan (1999) 
break away from the observational approach to models and move toward a more in-
teractive approach according to which the epistemic value of models can be seen to 
emerge in the processes of building and using them (instead of “using” models, Mor-
rison and Morgan talk about “manipulating” them, probably because most of their 
examples are of theoretical models in physics and economics). Because of its focus 
on how we learn from models by building and manipulating them, this approach in 
fact implies that there needs to be something more concrete to work on than just con-
ceptual ideas. For us to learn from a model, it has to be a self-contained thing with 
which we can interact. 

A
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Building on this approach, I prefer, however, to go one step further and treat 
models as artifacts, because I feel that this leads us to deal more concretely with the 
actual processes of modeling. Moreover, the word ‘artifact’ underlines the general 
claim of this paper that the epistemic value of models can be attributed to their pro-
ductivity rather than to their being straightforward representations of something. It 
also seems to me that this artifactual and productive approach makes sense especially 
in the context of computer modeling. It makes allowance for the ineluctable material-
ity of the computer itself, the laborious work of writing the code, and the genuinely 
cross-disciplinary computational methods that are used to model widely different 
things, all of which are important characteristics of simulation modeling. 

In which ways are models then productive? If we consider the EngCG-parser as 
an epistemic artifact, its scientific value can be approached through its different roles 
as a tool, object, and inferential device. As tools, parsers are valuable for both their 
product – a tagged text – and as a first stage in many natural language processing 
(NLP) systems. Tagged corpora are needed for many purposes such as corpus-based 
dictionaries11 and grammars as well as corpus-based linguistic research. In the devel-
opment of language technology, parsers are, in turn, typically used as modules in a 
variety of NLP applications, such as automatic term recognition, automatic thesauri, 
and speech technology appliances. Furthermore, not only linguists use parsing meth-
ods. Parsing formalisms might also be useful for the analysis of any symbol string, 
such as a DNA sequence. 

One could, of course, ask whether these instrumental uses of parsers really make 
them valuable epistemic objects in their own right. I think they do. In discussing 
epistemic things, Hans-Jörg Rheinberger notes how any experimental system is de-
fined by the technical tools it employs, through their impact on “a new generation of 
emerging epistemic things” (Rheinberger 1997: 30). This applies also to the role of 
parsers in the development of new NLP systems. Rheinberger notes further that the 
difference between a technical tool and an epistemic thing is functional rather than 
structural, “depending on the place or ‘node’ it occupies in the experimental context” 
(p. 30). Indeed, parsers function not only as tools but also as objects of language 
technological research.

The strong focus on the representative aspects of models makes it easy to forget 
that the models and computational methods used in science are interesting and im-
portant research objects in themselves. Much of our knowledge actually concerns the 
artifactual sphere with which we have surrounded ourselves, instead of natural sys-
tems. As soon as we start building parsers, for example, their fabrication becomes an 
interesting epistemic and methodological issue in its own right. We have, in fact, 
created new objects of research that spawn a host of new problems: The analysis of 
words in the lexicon of a parser is not an inconsequential problem, and neither is the 
problem of how to implement the parser so that it works more quickly and is more 
space-effective. Furthermore, one needs to find out what kind of information is 
needed for correct disambiguation, how this information can be acquired (e.g., on the 
basis of observations by linguists, automatic learning algorithms, or combinations 
thereof), and how such information should be represented (e.g., in the form of rules, 
collocational matrices, hidden Markov models, or neural networks). 
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The epistemic value of a parser as an inferential device derives largely from its 
being a constructed thing whose principles, mechanism, or structure we know. In this 
regard, parsers resemble theoretical models. The epistemic functioning of both com-
puter and theoretical models is due to the constraints and affordances they embody. 
Interestingly, the constraints and the affordances of models are intertwined, and it is 
difficult to tell them apart. One might say that the constraints built into a model af-
ford various kinds of inferences. In the case of parsers, the constraints are made op-
erative by implementing the language description as a computer program, and this 
has actually made grammars more interesting as scientific objects. Traditionally, the 
evaluation of grammars has relied on conventional academic discussion, but it is 
practically impossible for humans to consistently follow such complex rule systems 
as extensive grammars. Thus the computer makes the evaluation of grammars easier 
by providing an interpreter with well-known knowledge sources and well-known 
operation (Knuuttila & Voutilainen 2003). Due to the implementation of the gram-
mar, the linguist also has the possibility to learn from the performance of the model 
by finding out which rules cause trouble and by trying out different ones – which 
stresses the epistemic importance of the workability and ‘experimentability’ of mod-
els. Finally, it seems clear that making functional language-technology tools has 
taught us a lot about language, for instance, about the regularities of our language use 
and the polysemous and ambiguous nature of our linguistic ‘order.’ In that sense, 
language technology has had at least an indirect impact on more theoretically in-
clined linguistics. 

One might want to categorize only the grammar underlying the parser as a model 
– which would be in line with the semantic conception of models as abstract struc-
tures – and then ask whether these constraints taken as a model of language correctly 
represent our linguistic competence or the structure of language. But because of the 
computational complexity of the task, this and many other questions cannot be an-
swered unless the set of constraints is implemented as a computer program. More-
over, the formal language with which the constraints are described is devised with its 
implementation – and workability – in mind. Consequently, rather than being a lin-
guistic description that is interesting as such, the set of constraints underlying the 
parser should instead be considered as a part of the parser. 

Focusing on the parser rather than only on the set of constraints underlines the 
importance of the instrumental fitness of the parser for creating new epistemic links. 
Once the parser functions well, it provides an interesting starting point for diverse 
interpretations and questions. One can study, for instance, what properties distinguish 
successful models from unsuccessful ones, what assumptions can be made about hu-
man language faculties, and so on. Indeed, one of the criteria for assessing parsers is 
ascertaining how ‘realistic’ they are, even though they are not considered to be com-
plete representations of human linguistic competence. Moreover, the fact that a work-
ing parser can be made by eliminating rather than licensing supports the traditional 
(pre-Chomskyan) view that a language is an open-ended system with no strict de-
marcation lines between what is grammatical and what is not. These examples show 
that most of the evidence and insights into language and cognition with which 
parsers provide us are indirect – linking, as they do, to other bodies of knowledge.  
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Consequently, a parser, much like many other models used in science, seems to func-
tion more like an inferential device than as a straightforward representative entity. 

CONCLUSIONS 

I have argued that viewing models as productive entities gives us a more full-fledged 
picture of their epistemic value than the traditional focus on their representative func-
tion. As an example, I have used the Constraint Grammar parser, which, at first sight, 
seems to be relatively uninteresting from the epistemic point of view. However, ap-
proaching the Constraint Grammar parser as an epistemic artifact actually demon-
strates how many roles it has in science and how it already in itself presents us with a 
new kind of reality. Models need not be treated just as surrogates for reality proper. 

In stressing the epistemic value of the materiality, and the consequent workability 
and ‘experimentability’ of models, the artifactual and productive approach to models 
set forth in this paper differs significantly from the traditional philosophical accounts 
of models. These accounts have more often than not been predisposed to treat models 
as abstract, idealized, or theoretical structures that stand for real target phenomena. 
The tendency to treat representation as the epistemic task of models derives from this 
point of view. If models were but abstract structures, it would be difficult to under-
stand how they could give us knowledge except by representing the world more or 
less accurately. But, on the other hand, if models are recognized as material and pro-
ductive things, then it is evident that they already provide us with something tangible 
to work on and experiment with. This, in turn, speaks for the indispensable and ver-
satile role of artifacts as regards our cognitive endeavor: Because the nature of our 
language is not intuitively known to us, the only way to gain knowledge here (as well 
as anywhere else) is mediated through the creation and use of artifacts. 

The main thrust of this article is not, however, directed against representation per 
se, but rather at a certain conception of representation and its place in scientific en-
deavor. I have suggested that a close look at the practices of modeling provides a 
new angle from which to approach representation. Rather than being representations 
in themselves, models are often valued for the results they produce. Yet they are enti-
ties created by representing some initial conditions, mechanisms, rules, or structures. 
Both of these properties of models are especially salient in the case of simulation 
models. On the one hand, simulation models are an outcome of complicated repre-
sentative procedures. These procedures are not reducible to any underlying theory, 
but make use of knowledge and expertise of different kinds. On the other hand, simu-
lations are characteristically valued for their output representations.12 Thus, being 
productive things created by representation, simulation models question the distinc-
tion between the performative and representational conceptions of science and chal-
lenge us to approach representation performatively. From this point of view, repre-
sentation is less a relation to be aspired to by philosophical analysis than an impor-
tant object of factual knowledge itself.  
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NOTES 
 1 The simulations and simulation models I am talking about in the following are computer simulations. 
 2 See Küppers, Lenhard, and Shinn in this volume. 
 3 The empirical part of this study is based on 24 semistructured, 1.5- to 3-hour long transcribed inter-

views that I conducted during the years 2000–2004. I interviewed a total of 16 researchers and represen-
tatives of language technological companies who have either been doing long-term language techno-
logical research in the Department of General Linguistics at the University of Helsinki or have other-
wise been affiliated with the group. The written material on which the study is based consists of publi-
cations by the researchers interviewed, and of reports and documents concerning the Research Unit for 
Multilingual Language Technology at the University of Helsinki.  

 4 On the different approaches to simulation, see Küppers, Lenhard, and Shinn in this volume. 
 5 These reminiscences are of course not accidental: Chomsky emphasizes the importance of the “techni-

cal devices for expressing a system of recursive processes” for the development of his grammatical the-
ory (1965: 8). 

 6 Depending on the language, the disambiguation problem differs widely. In English, it is indeed typical 
that many familiar words can be both nouns and verbs, and, in many cases, they can have other readings 
as well. It has been estimated that nearly every second word in English is thus categorially ambiguous 
(DeRose 1988).  

 7 Surface syntactic functions deal with the actual written words and do not attempt to reach potentially 
deeper, theoretically motivated levels.  

 8 I owe this important insight to Johannes Lenhard. 
 9 For the implementation of EngCG Grammar, see Tapanainen (1996). 
10 Thus the ‘theory’ here can be considered as a set of general instructions, resembling somewhat the gen-

eral-equilibrium approach in macroeconomics described by Marcel Boumans in this volume. 
11 For instance, the entire Bank of English, a large text bank containing 200 million words launched by 

COBUILD (a division of HarperCollins Publishers) and The University of Birmingham, has been 
tagged and parsed in Helsinki using the TWOL and CG computer programs (see Järvinen 1994). 

12 This discussion has mostly concerned the different merits of visualization (see, e.g., Hughes 1999; 
Humphreys 2004; Winsberg 2003). 
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FOUNDATIONS FOR THE SIMULATION OF ECOSYSTEMS

INTRODUCTION

Interactive simulation of ecosystems is a new computational technique that extends 
the scope of information technology (IT) applications into ecology. As with every 
newly introduced technology, it has the potential of changing the problem perception 
within its field of application. What appears now as a technically solvable problem, 
and what remains an unsolvable problem – technically or in principle? By their suc-
cesses and failures, simulation models may change the attitudes toward ecosystems 
not only in science but also in ecosystem management. The relationship between 
ecosystem practice and research is usually a problematic one (Peters 1991; Beven 
2001; Bocking 2004; Kimmins et al. 2005). Successful utilization schemes predate 
ecology and ecosystem research, as can be seen, for example, in the “plenterforests” 
of Central Europe (Schütz 2001).  

Ecosystems commonly fall under the rubric of complex systems (West and 
Brown 2004). Nevertheless, in the practical management of certain ecosystems, we 
encounter simple heuristic rules of human interference that are often derived from 
cultural traditions rather than from scientific study. The increased technical power of 
computer-based simulation tools and their increased mathematical formalization may 
either remove former technical limits (e.g., of prediction) or, in contrast, reveal the 
fundamental character of some of these limits. Here, we shall argue that both cases 
occur, and that the main effect of simulation technology is to bring the distinction 
between these cases into scientific awareness.  

This chapter is organized as follows: First, we clarify our terminology to demon-
strate that we are actually introducing a new modeling paradigm, and exemplify its 
domain of application. Then, we briefly review the traditional algorithmic modeling 
paradigm for state-based systems before discussing interactive simulation as an ex-
tension to this based on the mathematical notion of streams as an abstraction of be-
havior. We try to show that interactive simulation becomes especially useful when 
applied to models of living systems and ecosystems. Finally, we discuss the different 
limits encountered in genuine interactive behavior and displayed by genuine complex 
systems. Although both notions can be used to address theoretical and practical limits 
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of simulating ecosystems, currently, complexity is used exclusively for demarcating 
limits of simulation models (Ulanowicz 2004). Interactive simulations may explain 
the empirical simplicity that is often encountered in ecosystem management. Thus, 
they ought to play an enhanced or even dominating role in theoretical as well as ap-
plied ecosystem research. 

INTRODUCING TERMINOLOGY

For systems as well as models, we distinguish between algorithmic and interactive 
types of behavior. Behavior addresses all kinds of temporal changes, both in an ac-
tive and a passive sense. In particular, we use a notion of behavior that goes beyond 
dynamic systems theory and allows for active choice-making behavior within the 
systems considered. In dynamic systems theory, behavior is reduced to (algorithmic) 
functions of state transitions alone. The concept of state is a very prominent model-
ing abstraction developed in physics.1 However, active choice-making behavior is 
impossible to incorporate in algorithmic models, although it is often encountered in 
living systems.  

The Traditional Algorithmic Modeling Paradigm 

In algorithmic models, functional behavior is reduced to structure, that is, the con-
figuration of objects in (state) space and their change over time under the entailment 
of ‘Natural Law’ (Rosen 1991). The observed behavior in, for example, experiments 
can be explained or predicted algorithmically by a system of equations subject to 
specific boundary conditions. When one views the world from this approach, behav-
ior is inevitably reduced to a secondary role, referring to state transitions governed by 
dynamics. Many examples of this approach and the relationships between structure 
and function are given in the introduction to this book. 

In the cases of ecosystems and social systems, the observed structure appears to 
be irreducibly complex. Thus, any simplicity or regular behavior encountered in 
these systems appears surprising to ‘reductionist science’ and is typically lost in sci-
entifically rigorous approaches to such systems. Ecosystem researchers confronted 
with some seemingly simple rules of ecosystem managers tend to ascribe their suc-
cess to a system simplification obtained by taming; the main effect of, for example, 
agroforest monocultures is a reduced number of degrees of freedom (Bocking 2004). 
On the other hand, the predictive ability of models based on scientific process under-
standing (e.g., for a forest under climate change) is very low. This mismatch is a hint 
that the wrong modeling paradigm might be being used. 

Where these systems are studied and simulated today in ecosystem research, the 
ultimate goal is to replace the heuristics of management with a process-based under-
standing of the dynamics (Lansing et al. 1998). Here, scientific knowledge in consid-
ered to be, in principle, superior to any other form of knowledge. The leading exam-
ple in environmental and ecological sciences is meteorology, in which empirical 
models have been replaced successfully by physical models in operational weather 
prediction. The computational tools used for weather prediction express the current 
technical limit of the state model type introduced by Newton. Its solution was already 
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recognized as a technical problem a century ago (Bjerkenes 1904). Attempts to 
sketch a similar path for the simulation of ecosystems (including the complete bio-
sphere) appear much less convincing (Schellnhuber and Wenzel 1998), because they 
lack thorough real-world case studies. The application to climate models already has 
to deviate from a mechanistic recipe of dynamic state theory (see Lenhard’s argu-
ment, this volume, and the introduction). 

The Interactive Modeling Paradigm 

Systems with relatively simple external behavior at a user interface and complex in-
ternal structure occur today in high-end human technology. A computer is only one 
out of many examples for designed systems that, while becoming increasingly diffi-
cult to built, are simpler and more robust to use. A computer is deliberately designed 
to provide a simple intuitive service. Recently, a number of theoretical approaches 
have been suggested to express formally ‘what computer scientists do’ when they 
build interactive or concurrent programs. These approaches are based on the notion 
of streams and are, mathematically speaking, algebraic duals to the traditional, algo-
rithmic ones in computer science (Gumm 2003; Arbab 2005). Instead of seeking the 
model that provides the simplest explanation of a phenomenon by identifying an ini-
tial state, they search for the most comprehensive model of behavior in terms of sets 
of streams.  

Examples for interactive behavior include cases in which the simulation is not de-
rived from a comprehensive scientific understanding or reconstruction of the model-
ed ecosystem, but documents and communicates heuristic knowledge about (man-
aged) ecosystems and how they have been actively sustained by human interference.2
We shall argue below that such simulations have been established in other areas and 
may, in a more long-term perspective, change the foundations of ecological model-
ing. 

Applications of interactive simulation models occur in many fields today. Promi-
nent and well-established examples are chess computers or flight simulators. We 
shall argue that silviculture in forestry may provide examples of interactive simula-
tion as well, and that this model type may be regarded as a fundamental one in terms 
of ecosystem research. We conjecture that interactive simulation models are qualita-
tively different from the model classes used in physics.  

This chapter takes an ‘engineering perspective’ on interactive behavior: The (sup-
posed) simplicity of ecosystem responses as perceived in traditions of, for example, 
hunting, farming, or silviculture provides us with a unique modeling challenge. There 
may be considerable human expertise (skill) present in any of these traditions, but 
skill3 when evaluating and deciding on proper management is difficult to explain 
within a scientific context. Skilled behavior toward ecosystems can be referred to as 
‘tacit knowledge.’ In traditional indigenous utilization schemes, it is part of an em-
bedded relation with respect to the environment. It may appear in sharp contrast to 
scientific attitudes toward and perception of the same environment (Ingold 2000).   

Where traditional systems of ecosystem management and land use have been 
studied in anthropology, the leading paradigm of the natural sciences has been criti-
cized, and an extension to it has been proposed (Ingold 2000). We shall show below 
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that the technical and theoretical extensions provided by computer science to the is-
sues of interactive computation in the form of modern simulation models correspond 
to the concepts derived in anthropology to classify human culture: They all seem to 
aim at the (irreducible?) interactive aspects of these systems. It can be conjectured 
that earlier attempts by ‘western’ scientists to substitute indigenous forms of land use 
knowledge by dynamical models might have failed for principal reasons when truly 
interactive situations were involved. How much interactivity is implicated in a given 
ecosystem management scheme varies a lot and needs empirical testing. With the 
modern extension to IT, however, these situations can now be studied much more 
explicitly and locally. Silviculture in forestry serves as an example here. 

When searching for the most appropriate simulation model class (algorithmic or 
interactive), we answer three parallel questions in the context of modeling the behav-
ior of ecosystems: 

What is it that humans do, when they manage an ecosystem to fulfil a function4

(and make a living)?  
What is it that scientists do when they study and model an ecosystem (to under-
stand it, document and narrate its past; or estimate its future, evaluate its poten-
tial)? 
What is it that a computer provides, when modelers try to represent knowledge 
(managerial and scientific) and simulate an ecosystem? 

We start with the definition of interaction proposed in computer science that provides 
us with a precise and sufficiently general notion of (choice) behavior in machines. 
The functional (algorithmic) behavior of machines will subsequently be recovered by 
imposing restrictions (i.e., algorithmic models are a special [limiting] case of interac-
tive ones). An interactive model contains two elements:  

streams (Gumm 2003) serving as the mathematical representation of behavior, 
for example, of choice events that characterize an ongoing or already realized in-
teraction, and  
a real-world context in which the outcome of any choice depends upon the se-
quence of choices made before. The outcomes of realized choices and the 
choices still to be made in the future are related through valuation and norms – 
technically, these introduce equivalence classes in the set of possible choices.  

Typically, normative constraints will apply to choices. Take the following three ex-
amples:   

In chess playing, the options of winning should not be decreased as a conse-
quence of the current choice.  
In airplanes, the options for a safe landing should not be decreased by an actual 
maneuver.  
In sustainable forestry, the options for further production and productivity should 
not be decreased by an actual thinning or harvesting decision. 

In all three cases, the normative element stems from a predefined goal function (to 
win, to land safely, to sustain timber production). However, in computer science, a 
typical situation even lacks goal orientation, as in a persistent client/server interaction 
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in which perennial service provision on the server side is mandatory but not an ele-
ment of the ‘goal’ of the interaction with the client. It is obvious that the ‘ultimate’ 
outcome (after any finite time) of an ordered ‘stream’ of choices is fundamentally 
unpredictable for an algorithmic model. By definition, a precisely predictable situa-
tion5 is noninteractive, and could only be considered as such by an observer ignorant 
of this algorithmic possibility. In any other situation, the choices taken become inter-
spersed with evaluations of their outcomes and a reassessment of the altered potential 
for follow-up choices. This is one of the most important aspects by which the algo-
rithmic and the interactive simulation models differ. In an algorithmic simulation, the 
predictive task is the challenging one, whereas evaluation of its results is relatively 
easy (again, weather prediction provides an illustrative example). In an interactive 
simulation, the evaluation task is the challenging one, whereas the (immediate) pre-
diction of the results of the next choice is trivial, and the long-term prediction either 
appears to be or is impossible. Here, chess playing, silviculture, and pilot training 
share an interactive character demonstrating the need for a new abstraction in simula-
tion models. 

The reason for this difference lies in the relationship to the environment and not 
in the system itself. The options provided by the environment through an interactive 
interface may change as a result of past choices, and an observer enclosed by interac-
tive interfaces meets an algorithmically unsolvable problem. For example, in planta-
tion forestry, more trees are planted than will ever reach mature age. However, at the 
time of planting, which trees are to be harvested or taken out is left open for later 
thinning decisions. Here, the reason is the phenotypic plasticity of trees, or the geno-
type/phenotype distinction in general. Uncertainty with respect to the actual soil con-
ditions (may vary due to spatial heterogeneity) or with respect to the actual weather 
conditions over a rotation period renders interactive decisions by foresters in many 
cases inevitable. 

In flying, the interaction between different airplanes or with traffic control leads 
to another example in which choice situations posed by the environment are unpre-
dictable but can be handled more efficiently through interaction. These choices re-
quire the proper training of human pilots in (interactive) flight simulators to reliably 
provide the necessary competence.  

GENERALIZING NOTIONS OF BEHAVIOR: WHAT IS INTERACTION IN COMPUTER
SCIENCE?

Models for computation are usually based on the notion of the Universal Turing Ma-
chine (TM). Recently, an extension of the TM to a Persistent Turing Machine (PTM) 
has been proposed by Goldin et al. (2004) and Wegner and Goldin (1999). Persis-
tence is introduced by a read/write tape that is not reset to an initial state between 
subsequent computational cycles. The PTM interacts with its environment in the 
sense that later input from the environment may depend upon former output from 
completed computations of the machine. PTMs may imply a new and more general 
meaning for ‘computing’ than the TM. If we want to restrict the notion of computing 
to what is formalized by TMs, than it becomes unclear what extra services today’s 
computers are able to provide (Arbab 2005).  
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This relationship between external interactive behavior and internal persistent 
memory states also holds outside computer science. It links memory and a privileged 
perspective from the inside with interaction on the outside. We apply it here to ex-
plain the pattern encountered in the success and failure of ecosystem modeling and 
simulation. What new capacities and limits of interactive computing can be expected 
to be relevant for describing and abstracting those real-world systems that have re-
sisted progress in algorithmic computing so far? Whereas in the algorithmic model, 
one needs to distinguish computable from noncomputable functions, the limits of 
interactive models exist between unbounded and bounded forms of interaction de-
pending on the question whether entirely new features and choices may appear at any 
time. Candidates for unbounded interactions are open-ended evolution (life) and 
open-ended communication (culture). In the realm of interactions, the cases in which 
the class of all possible choices has a finite (infinite) representation are termed 
bounded (unbounded). We see little or no progress in the capacity to predict ecosys-
tems as computers become faster and able to handle observations from more complex 
systems (see Figure 1, upper part).   

Simple 
states 

Bounded 
streams 

Dynamic law
Complex 
states 

Technical limit of 
algorithmic simulation 

e.g., Evolution
Unbounded 
streams 

Technical limit of 
interactive simulation

Figure 1.  For algorithmic simulation models, a state may be too complex to be represented by 
a computable function (as e.g., in chaotic systems). For interactive models, the set of 
choices that produce entries in a (data) stream may be bounded or unbounded (as, e.g., in 
biological or cultural evolution). Only bounded sets can be represented in any model of an 
interaction  

However, we may still expect progress when, for example, the relationships be-
tween forest growth models and a forester become represented by interactive models, 
and formerly unbounded situations can now be evaluated as bounded ones. All three 
examples above match this situation, whereas in chess, a winning strategy has re-
mained algorithmically unattainable, the online access to the documented history of 
played out matches allows interactive simulation models to treat the choice problem 
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as (almost) bounded (see Figure 1, lower part). In pilot training, flight simulators 
become better; the critical situations that may occur unexpectedly have become 
documented and are covered by the simulator. In silviculture, only the very initial 
steps in this direction have been taken, but, here as well, a bounded choice situation 
based on the historically documented and approved examples has become technically 
possible (Hauhs et al. 2003). 

GENERALISING TERMINOLOGY: MODELING, COMPUTATION AND SIMULATION

We shall use the terms modeling, computation, and simulation in the following 
sense. Modeling is the most general activity, referring to a symbolic or virtual aspect 
of an investigated system in relation to its observed structure and/or memorized be-
havior.6 Modeling is based on (consists of) mappings, termed ‘representation’ and 
‘implementation,’ that establish relationships between a real, concrete realm of the 
world we live in and an abstract or virtual world providing the (partial) referents for 
models (see Figures 2 and 3). Social systems individually and collectively have ac-
cess to the real world through observation and memory. They have established pro-
cedures (partly outside science) on how agreement can be achieved between different 

Figure 2.  Relationships in scientific modeling (under the state model paradigm). In the real 
world, every system has a set of observables attached, which are represented as abstract 
state variables. Time variations in states are conceptualized as abstract functional behav-
iors resulting from transitions under a dynamic law. Experiments in the real world can 
be conceptualized as local implementations of the dynamic laws. This traditional model-
ing paradigm will be referred to in the text as ‘algorithmic computation.’ A model in 
which the functional behavior is inferred from a ‘faithful’ representation of the observed 
states is termed an (algorithmic) ‘computation.’ A model in which the functional behav-
ior is inferred without restrictions about the states is termed here an (algorithmic) ‘simu-
lation’
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Observations of objects

are abstracted as: 

    Simple states 

Algorithmic simulation

Implements
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Complex states 
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individuals and subgroups over the content of their observations and memories. In a 
scientific context, access by (objective) observation is regarded as superior to access 
by memories (Rubin 1995; see Figure 2). 

Modeling as a science needs to be open to testing, criticism, and revision. Scien-
tific models are distinguished from nonscientific models by this grounding procedure 
in empirical knowledge agreed upon among a group of experts and open to critique. 
If, in addition, modeling can be a) formalized by mathematical structures or b) trans-
ferred into a (representational/symbolic) form in which steps are executed automati-
cally by a computer, we will term this computation.7 The sciences in which modeling 
can make use of an established (mathematical, systematic) theory are those that have 
developed computational branches, such as computational physics, computational 
chemistry, computational biology, or computational meteorology (the latter is not a 
standard technical term; we refer to computer-based weather forecasting as done rou-
tinely nowadays).  

Other sciences, mostly those lacking underlying fundamental mathematical theo-
ries, use the label ‘modeling’ instead, as in, for example, ecological or environmental 
sciences. Besides scientifically based understanding, other forms of knowledge exist 
and are referred to as heuristics, skills, or tacit knowledge. Such forms of knowledge 
abound in ecosystem utilization and their respective management traditions (such as 
in hunting, agriculture, forestry, fisheries, gardening, etc.).  

Figure 3.  Relationships under the proposed second model paradigm. In the real-world sys-
tem, time-ordered data streams are accessible by memory of agents. If the streams are 
generated interactively, they become represented as virtual choices in an interactive simu-
lation (technically by persistent states of the interactive machine). Experienced time is 
conceptualized as choices realized by interacting partners subject to internal motives and 
social norms. This new modeling paradigm will be referred to in the text under ‘interac-
tive model.’ It corresponds to a second and new notion of simulation, here referred to as 
interactive simulation   

World-access: 
Memories of events 
are abstracted as: 

Interactive streams 

Functional streams 

Interactive simulation 
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When the objective of the modeling is not to provide a realistic representation of 
the system’s structure, but still to reproduce the observed behavior of target vari-
ables, the system is said to be simulated. In this usage, simulation means something 
different and, in terms of scientific rigor, less than computation. There is, however, a 
second use of the term simulation, and both of these usages have historic examples 
(see Terry Shinn’s chapter in this book). The second case applies to situations related 
to interactive choices in which a body of knowledge changes only slowly relative to 
the lifetime of an expert. Relevant situations in which such tacit knowledge becomes 
relevant are sparse, and thus training to expert levels is a difficult task. Historical 
examples are generals’ skills in battle tactics simulated in sandbox scenarios, or air 
force pilots’ and gunners’ skills in World War II simulated in analogue models of 
airplanes. Competence in chess playing simulated by modern computers can serve as 
another example or, as we shall argue below, many examples in ecosystem utilization 
such as silvicultural skills in forestry. 

In this second sense, an (interactive) simulation approach represents more than a 
computational model (Figure 3). Despite the fact that the examples above appear to 
be modeled less rigorously when viewed in terms of the traditional approach, interac-
tive simulations are practically without any rivals. In fact, they have added something 
new to the respective application field that is not yet properly accounted for in the 
foundations of modeling based on dynamic systems theory. 

DEFINITION OF LIFE AND ECOSYSTEMS

Life is a phenomenon occurring at scales between macromolecules and the bio-
sphere. Neither the molecular building blocks of a cell nor the global cycles of life’s 
resources (e.g., of water) are alive. Physical processes can be used to delineate living 
systems from larger spatial scales by (noninteractive) functional behavior downward 
and from its simple (noninteractive) building units upward.  

First. we shall try to define life and ecosystems exclusively using the terminology 
of the algorithmic model (dynamic systems theory). This represents an approach to 
define and relate terms by using established physical notions (i.e., reductionism). In 
this perspective, life is regarded as a phenomenon requiring a minimal complexity in 
order to execute or perform typical behavioral features such as self-reproduction, the 
abilities to adapt, evolve, and so forth. In this context, the potentially interactive 
character of these behaviors is (implicitly) abstracted away, or simply placed into the 
eyes of the observer. Above the complexity threshold and when provided with the 
appropriate conditions, the emergence of life may then become inevitable. Molecular 
biology seeks to identify minimal forms of living entities, whereas systems biology is 
often viewed as an attempt to compute or synthesize according to this modeling 
paradigm. These attempts have not been successful yet; in other words, the first liv-
ing organism synthesized in the lab from molecular building blocks has still to arrive 
(“we are missing something fundamental” [Brooks 2001]).  

At the other end of the scale, ecosystems are open to their environment and con-
tain life. They do not live themselves but consist of living entities and abiotic con-
stituents. Ecosystem is probably the most popular term among ecologists. It is de-
fined only vaguely and carries many different meanings (even if we restrict its use to 
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ecology alone). The openness toward its external environment can be described in 
(noninteractive) physical terms, for the living aspects we shall use interactive behav-
ior as described in ecology. Thus, external boundaries delineating an ecosystem will 
be based on physical aspects, whereas delineation of behavioral epochs will be based 
on biological aspects. 

Here we regard minimal ecosystems as the smallest evolvable living units that 
exchange abiotic fluxes of matter and energy with the environment in a noninterac-
tive manner. When living systems become aggregated in the form of whole landscape 
units (such as watersheds), their behavior at the boundaries often becomes relatively 
simple and can be simulated algorithmically; matter and energy fluxes across water-
shed boundaries are functional (i.e., noninteractive). External relationships of such 
functional units can be studied only on the basis of the physical concept of inter-
action (Wechselwirkung in German). 

In our terminology, an ecosystem is a noninteractive unit of a landscape (Pittroff 
and Pedersen 2005). The observed behavior of such units, however, appears as an 
anomaly in terms of hydrological transport models. It has not been possible to ex-
plain (uniquely reconstruct) runoff data by physical models (i.e., distributed hydro-
logical models). Algorithmic simulation models are typically overparameterized with 
respect to the observed runoff data. The ‘true’ internal transport mechanisms needed 
to perform typical transport models cannot be identified directly from data. Within 
the algorithmic modeling approach, these difficulties are discussed in terms of the 
broad heterogeneity of hydrological catchments and the technical limitations of 
proper sampling. 

To summarize, at the lower and upper cutoff scale of life, the modeling ap-
proaches based on  algorithmic (simulation) models have, to our knowledge, not yet 
led to a ‘living reconstruction’ or a nontrivial prediction. There is a widely accepted 
explanation of these difficulties: Living entities and ecosystems appear to be (too) 
complex. However, empirical modeling of a runoff signal hardly involves more than 
two or three parameters (Jakeman and Hornberger 1993). This appears as an anomaly 
for algorithmic simulation models. Why does the complex system provide us with 
simple responses that turn out to be of particular interest for human utilization? We 
shall turn to the second modeling paradigm (interactive models) to seek more consis-
tent answers to these questions.  

We have suggested considering life as an irreducible interactive phenomenon. In 
order to extend this proposal to the ecosystem scale, we have to generalize the primi-
tives used in the above ecosystem definition: Fluxes across the boundary will be gen-
eralized to streams. 

STREAMS AND FLUXES

The basic mathematical notion used here for describing the boundaries of an ecosys-
tem with an abiotic environment is a (data) stream.8 A stream is a potentially infinite 
ordered (time) series of instances of discrete events – in our case, we are interested in 
abiotic events at the boundary of an ecosystem. With this application in mind, 
streams consist of transport events of extensive variables (matter, energy). Our primary 
example is water transport. Hence, we are seeking boundaries that are related to precipi-
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tation and runoff. These data streams can be described in a continuous or a discrete 
way; the latter being the canonical choice for digital computers. Also, measurements 
that have to respect the finite sensitivity of the instruments are inevitably discrete. 
The typical dimension will be that of a flux across a boundary, that is, mass per time 
and area.  

It looks as if this is only a change of wording, because streams appear to be 
closely related to the flux concept. However, this terminology is implicated in the 
direction of evaluation. In hydrology, the relationships governing the input and out-
put of water for catchments are usually described in terms of matter and energy 
fluxes that can be observed, and the theoretical framework taken from physics relates 
them to potentials and forces (gradients of potentials) that are not directly observable, 
but represent the states of the system. These relations are formulated as conservation 
laws, with mass budgets as the paradigmatic example. Local transport equations are 
obtained (such as Darcy’s Law or Fick’s Law) from the conservation laws using 
variational calculus. It is important, however, that the concept of flux as observed 
and transport as modeled quantity are formally independent if conservation is not 
given, as is often the case in nonequilibrium situations (e.g., for rainfall, sedimenta-
tion, or chemical weathering).  

Streams are a more straightforward abstraction starting from the observed input 
and output of the ecosystem. Their definition refers to the temporal order among the 
recorded events and the fact that events can only be produced in an ‘online manner,’ 
analogue to that of infinite data types in computation (Gumm 2003). They imply an 
irreducible diachronic aspect and are therefore retrieved from the memory of an ob-
server rather than being just (synchronic) observations of a state. In the algorithmic 
approach (Figure 1), states are accessible through observation and imply behavior 
(here fluxes) by their changes. Therefore, fluxes, when abstracted as a form of behav-
ior, are derived from state changes. This relation becomes reversed under the notion 
of streams. Documented streams as memorized from past behavior (say a runoff re-
cord) imply corresponding internal states (mostly inaccessible to observation). 
Hence, in this perspective, the states are derived and evaluated from the memorized 
streams. As long as the stream is noninteractive, the difference between the two ap-
proaches is one of perspective only. 

The usual conception of fluxes and forces is that they have a deeply rooted trans-
lational invariance in time built into them. This is of utmost importance both theo-
retically as well as culturally in physics: Nonrepeatable experiments and thus nonre-
producible results are inacceptable and ignored in the scientific community. We pro-
pose that this worldview is impossible for ecosystems. History dependence and the 
implied uniqueness of each such system are crucial. Unlike observations from purely 
state-based, memoryless systems that can be reproduced, lost records about streams 
cannot be substituted in principle. This is reflected by the high value of long-term 
records in some of the environmental (hydrology) and most of the ecological sci-
ences (Kratz et al. 2003). These facts make the abstraction as streams the more ‘natu-
ral’ for runoff from ecosystems. 

We regard the definition and delineation of ecosystems based on the notion of 
streams as also being the more fundamental one. It allows us to address and to deal 
with simplicities in ecosystem behavior much more straightforwardly, rather than 
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obscure such simple aspects by using elements of complexity theory from the begin-
ning. Simplicity and universal features in runoff data may, in this view, be regarded 
as signatures of internal interaction. There is by definition no interaction in abiotic 
streams across ecosystem boundaries. The simplicity of runoff data lies in the fact 
that choices may produce simple patterns after they are made, but that this does not 
include the ability to predict them (Hauhs et al. 2005).  

Whereas streams can be rigorously formalized by coalgebraic notions (see, e.g., 
Rutten 2000) as primitives of a theoretical approach, fluxes appear in the canonical 
algebraic approach as secondary (derived) quantities.9 The direction of formalization 
becomes reversed in this respect as well: Traditionally, one starts with symmetries in 
the underlying dynamics (of states) and calculates the resulting order in fluxes, and 
this then has to be validated from observations. Here, we argue for a data-driven ap-
proach in which the order and properties of documented streams are used to reach 
conclusions on the properties of the underlying interactive process. This approach is 
unusual for natural sciences but quite common in computer science and engineering; 
a number of theorems are available for inferences about existence and uniqueness in 
models. 

Interactivity is not a new mechanism that can be constructed (syntactically) by 
adding additional features to an algorithmic machine. In an algorithmic universe in 
which interaction does not exist, it cannot be generated de novo. However, in a uni-
verse of discourse in which we allow for interaction, it can be expressed and demon-
strated in the form of interactive computing. 

INTERACTIVE STREAMS

The next distinction about streams is whether or not they are generated interactively 
by the system(s) from which they originate. That is, it concerns the way in which the 
order in their basic events is implemented: by the action of one system alone or by 
alternating actions of a system and its environment. The above examples of abiotic 
streams occurring in the environment of ecosystems and many more such as short-
wave radiation, transpiration by vegetation, weathering, or precipitation of secondary 
minerals in rooting zones are all instances of noninteractive streams. The widespread 
use of such terms in ecosystem research reflects the fact that these noninteractive 
streams can be recorded much more easily than interactive streams.  

One may illustrate this situation with chess playing: In the preparations for a 
chess game, one can either try to reduce the (seemingly?) interactive situation to a 
noninteractive one (e.g., find a winning strategy, i.e., solve the game algorithmically, 
read out the complete chess-related memory content of the opponent10). Otherwise, 
one has to cope with the consequences of interaction (i.e., prepare for the game by 
training and updating ones own memory with relevant content; increase the ability to 
evaluate a board rather than predicting it). One promising strategy to be considered is 
to reduce the interactivity of the game to a minimum by making the opponent’s be-
havior more predictable. This ideal is implied in the frequently heard advice to nov-
ice players “always play the board, not the opponent.” 

We want to grasp the large gap between scientific and empirical models of eco-
systems through this analogy: In the natural sciences, by using one of the two  
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definitions/approaches below, an exo-observer (natural scientist) currently has to 
avoid interactivity completely if she or he wants to achieve understanding and pre-
diction. Ecosystem managers, however, inevitably have to cope with interaction 
when they want to sustain a service function. Thus, they will get little help from state 
models when trying to do so. Even worse, any managerial expertise acquired in the 
form of heuristics has only a dubious scientific status under the prevailing modeling 
concept that should be replaced later by some proper understanding of processes and 
is thus often dismissed by ecosystem researchers (Bocking 2004).  

There is no easy classification of whether a data stream across an interface is in-
teractive or noninteractive. Furthermore, such a classification may change with time 
and technical progress. The a priori classification of ecosystems into the complexity 
realm (placing them exclusively under dynamic systems theory) narrows the range of 
possible models. In addition, it may even narrow the model classes considered to a 
set of unsolvable tasks. Interactivity may turn out to be an illusion when one ulti-
mately acquires the ‘true’ dynamic representation of an ecosystem, but we do not 
care as long as interactive simulations are closer to the nature of the managerial prob-
lem than models based on dynamic systems theory. 

WHAT IS AN ECOSYSTEM IN NATURAL SCIENCES?

Geosciences 

Ecosystems can be delineated spatially on the basis of noninteractive streams at their 
boundaries. An ecosystem in the perspective of geosciences has to fulfil two condi-
tions: 

The smallest region whose boundaries can be characterized completely by nonin-
teractive streams. 
The volume included by this boundary contains some systems that are classified 
independently11 as being alive (by unbounded behavioral features such as being 
able to adapt, evolve, or reproduce). 

No further conditions for the internal aspects are imposed.  
This first definition imposes the existence of an upper cutoff scale for any bio-

logical interaction. This definition has proven useful when investigating the relation-
ship of biotic responses to changes in streams at the boundaries within a larger geo-
chemical and geophysical context, as in ‘biogeology’ or ‘biogeochemistry.’ It is (im-
plicitly) widely used in monitoring ecosystem response in the context of environ-
mental changes such as deposition of air pollutants or eutrophication.  

Biosciences

The second definition aims at avoiding interaction by heading for the lower cutoff 
scale of life. An ecosystem can be defined secondly on the basis of the noninteractive 
components. These are components without any persistent states. Their state is a 
function of external forces alone. An ecosystem in the perspective of biosciences is: 

the largest aggregation of noninteractive components  
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that maintains across its outer boundary unbounded interaction as an irreducible 
aspect of its behavioral repertoire with the environment  
while using genes as persistent states for maintaining interaction. 

No further conditions for the character of the interactive potential are specified here 
other than that this type of ecosystem appears as a carrier of some unbounded inter-
actions. This may include phenomena such as an ability to evolve new behavior 
through (open-ended) evolution. The character of models applied to such ecosystems 
is in most cases direct (i.e., trying to predict functional output or structural change 
from given input and initial conditions). The technical challenge in direct modeling is 
the combinatorial explosion resulting from an iterated combination of the basic (non-
interactive) building blocks. In general, such models produce too much data. Their 
outcome is difficult to evaluate algorithmically. Hence, modelers end up with a se-
vere selection problem that is insufficiently covered by the available data set. Living 
systems appear as structurally too complex.  

A number of biological terms can be made more precise when considering life as 
an instance of interaction: A multicellular organism emerges through a coordinated 
bounded interaction among locally connected cells (Minelli 2004). A species extends 
the notion of bounded (ritualized) interaction beyond an organism to an interbreeding 
population. The bounded set of interactions among organisms that potentially leads 
to reproduction defines a species. The interaction with members of other species re-
mains unbounded. This general relationship among species is characterized as open-
ended coevolution – used here as our primary example of an unbounded interaction. 
Hence, the notion of ecosystems in biosciences addresses the difference between 
bounded versus unbounded interaction, whereas the notion of ecosystems in geo-
sciences addresses the difference between unbounded and ‘amnesic’ interaction (i.e., 
noninteraction across functional boundaries). 

A reproducing population of biological agents is thus a group of agents using 
DNA as a hidden persistent state. No agent outside this group is able to access this 
memory in any other way than by observing their phenotype (behavior/structure) or 
interacting with such phenotypes.12 The fact that the meaning of the persistent states 
is hidden from external observers and can only become expressed interactively (with 
a responsive environment) is the reason for the necessity of the genotype/phenotype 
distinction in biology. This distinction sets biology apart from other natural sciences, 
especially in terms of models (Rosen 1991). We regard it as a primary signature of 
interaction. 

The geoscience approach is usually chosen when one studies the functional and 
spatial embedment of living systems into an abiotic environment: Where does life 
occur, under which conditions? The bioscience approach is usually chosen when one 
studies the emergence of living behavior: How did it first arise from its nonliving 
constituents? 

WHAT IS A MANAGED ECOSYSTEM?

We have defined life as an (unbounded) interaction in which the persistence of states 
is related to genes. The interactive modeling paradigm is accompanied by a typical 
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perspective: An agent typically finds itself embedded within an interactive network 
and views interfaces across which interaction occurs from their ‘inside.’ An interact-
ing agent may look back at realized interactions documented in its accessible mem-
ory. The role of an interactive simulation is to carry a bounded (and possibly com-
plete) representation of the choices that have been reproducible within this interac-
tion. Then, proper actual choices can be judged by the agent against the choices made 
during the training phase and their corresponding outcomes in the memorized past. 

Memory may exist at an individual or collective level depending on accessibility. 
One could define the ‘self-model’ of the agent by individually accessible memory 
and the identity of a culture by collectively accessible memory, though this is beyond 
the scope of this paper. Here, we are only interested in a small subset of collective 
memories: those addressing the realized interactions with ecosystems. By definition 
(see above), the interaction of humans with co-species can only occur within the bi-
otic realm of an ecosystem (disregarding the position of its spatial boundaries to their 
abiotic environment).  

Humans evolved from biotic interactions with co-species. Such interaction was 
initially unbounded and symmetrical as in any coevolution. With the first human cul-
ture, a new form of persistence (besides the persistent states of the genome) and, 
hence, a new form of memory emerged. Co-species were excluded from this human 
cultural memory and interaction. Hence interaction of humans with co-species be-
came asymmetrical and bounded for the latter from then onward: Humans domesti-
cated other species. Domestication can be viewed as a finite set of intervening op-
tions by which further evolution in one species can be stopped or directed by another 
one. Unlike coevolution, it constitutes an asymmetrical relationship among species. 
The future survival of domesticated species became dependent on human culture.  

The role of humans is unique in being almost the only species that is able to do-
mesticate other species and make their survival dependent on cultural transmission. 
Note that the two definitions introduced above referred to the unbounded features of 
life (open evolvability). The existence of domesticated species (and related ecosys-
tems) allows us to introduce another, third notion of an ecosystem that refers to 
bounded interaction. In the case that one succeeds in establishing an ecosystem in 
which a domesticated species becomes a dominating population (e.g., a field of 
wheat, or pasture with a herd of cattle), the concept of bounded interaction transfers 
to the ecosystem. Choice options open for the domesticated species are culturally 
constrained to a finite set that is exhaustively known to the domesticating human cul-
ture. Ecosystem management becomes a mixture of functional and interactive rela-
tionships between humans and the system hosting domesticated species. Abiotic 
streams across ecosystem boundaries, as defined above, are examples in which the 
functional relationship is appropriate: for example, watering or supplying additional 
nutrients to an ecosystem. The selection of individuals for breeding is an example in 
which a bounded interactive relationship holds.  

Experts in farming, pasture, forestry, and so forth use the term ecosystem in this 
third type of meaning. It is the system that they can interactively force into a stan-
dardized overall function (Bocking 2004). This interaction is bounded; it can be rep-
resented in a tradition and can be applied in a sustainable manner. That is why it can 
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be embedded into an external overall function for the civilization of which it is a part: 
providing timber, fiber, food, and so forth for the society. 

The dilemma of the two scientific notions above for an ecosystem is a methodo-
logical one. As long as observers remain ‘exo-’ with respect to the observed system, 
they will encounter instances of unbounded interaction that occur within it. We con-
jecture that these phenomena (and the corresponding states) can neither be identified 
by inverse modeling (geosciences) nor can they be generated de novo by direct mod-
eling (biosciences). The rigorous scientist, who strives to study untouched or only 
experimentally conditioned ecosystems, may not be able to get rid of internal un-
bounded interaction. This feature will limit and intervene in any predictive modeling 
attempt. If interaction is taken seriously, the difficulties discussed above appear as a 
signature of a principal limit rather than as technical difficulties to be overcome by 
refinements in measurements or more comprehensive modeling attempts. 

Successful managers of an ecosystem are able to interactively prevent unbounded 
choice within the system occurring. If they can demonstrate reproducibility, they 
have achieved the ultimate management condition: sustainable ecosystem manage-
ment. The ‘price’ that has to be paid for this, however, is that managers are inevitably 
participatory endo-observers for some interactions. Their observations and memories 
are by no means objective. Here, (interactive) simulation may be a decisive new 
technology that helps to document, investigate, and disseminate such expert knowl-
edge beyond the idiosyncracies of its origins. The flight simulator example can in 
this respect be extended into ecosystem management (Hauhs et al. 2003). 

A model comprehensively representing a bounded interaction may serve at the 
same time as the carrier of norms for proper intervention. It may become a basis for 
the evaluation of new instances of interactions in a similar manner as a minimal (ex-
planatory) model may be the basis of predictions in the algorithmic paradigm. If a 
chess computer can represent and handle anything (bounded) that might happen in 
chess, it may also direct a novice to proper moves; if a flight simulator includes any-
thing (bounded) that can happen to the pilot of a specific plane, it can be used for 
training. If a forest growth simulator includes what has happened in a particular type 
of forest, it can be used to train thinning operations. In real-world situations, function 
and interaction may thus occur in a nested manner making them difficult to separate. 
Ecosystem utilization is an example in which a bounded interaction can be delegated 
to experts such that the whole system serves a function such as providing food. Note 
that the embedding relationship between interactive and functional aspects can also 
occur in a reversed manner. A musical instrument or a lasso (Ingold 1994) are both 
examples in which a functional tool with complete physical (algorithmic) description 
can be used by experts to serve an interaction. It can also only be learned interac-
tively. 

In interactive computing, simulations do not provide an explanation of what has 
happened; they do not represent the ‘natural laws’ governing the true dynamics as in 
the case of algorithmic models. However, they represent the past choices that may 
reoccur in a bounded interaction and may hence represent social norms in an inter-
subjective and novel way. This makes it possible to evaluate rare and decisive situa-
tions in a systematic way (e.g., in chess, the aviation industry or forestry). 
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Table 1.  Limits of the two modeling paradigms and how they are related to prominent simu-
lation tasks in science, engineering, and ecosystem research

Algorithmic models  Interactive models 

Accomplished tasks  

Many examples in phys-
ics

Reconstructing plant 
structure (L-Grammar) 

Chess computer  

Flight simulator for pilots 

Current limit Weather prediction 

Flight simulator for
foresters

Assessment of empirical 
models (e.g., in hydrol-
ogy) 

Out of reach for techni-
cal reasons 

Assessment of empirical 
models  

Predicting forest growth 
under climate change 

Open-ended evolution  

Flight simulator for nature 
conservationists 

Out of reach in principle Nothing of practical rele-
vance? 

Predicting forest growth 
under climate change 

Open-ended evolution 

‘Flight simulator for God’ 

The new model type may lead to a very different perception of where to expect 
technical and fundamental limits (Figure 1; Table 1). Some problems such as predict-
ing an ecosystem response under an altered climate, appeared to be complex but 
solvable in principle under the algorithmic modeling paradigm: These will be reclas-
sified in the new paradigm, and may become unsolvable in principle. Despite the 
disappointment that such a result may mean for ongoing research projects (e.g., cli-
mate change), in the long term, we consider it a step forward. If a situation is truly 
interactive in the sense we have used the term here, there is no way to substitute for 
missing experiences from an open interaction (e.g., if a type of choice or behavior 
has not occurred yet). This is due to a variant of the combinatorial explosion men-
tioned already: the mismatch between genotypic potential and actual phenotypic ex-
pression. Only an almost negligible fraction of the former can be realized within the 
lifetime of an organism, an ecosystem, or even a whole species.13 On the other hand, 
other problems such as assessing empirical knowledge and expertise in ecosystem 
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management appeared as similarly complex under the old paradigm. Under the new 
paradigm, these problems may now be within the reach of modern IT.    

A different case is nature conservation, a problem that, even with today’s IT, may 
remain technically too hard for interactive simulation models (see Table 1). In these 
cases, the goal is to keep an ecosystem-wide set of species, of growth potential, or its 
biodiversity. We still do not know whether this is a management task that can be or-
ganized as in forestry or agriculture, or a goal of a different character (e.g., in terms 
of ethical values). If it becomes a management task, then any reproducible measure 
of success has to be based on bounded interaction with technical norms. In other 
words, successfully managed ecosystems will, under the goal of nature conservation, 
ultimately become domesticated by halting open-ended evolution. If not, the result of 
any protective action cannot be judged by its results, but rather by its intentions. In-
tent, however, is not an operational criterion for unbounded interactions among dif-
ferent species.  

Ecosystems not touched by humans (if there are any), natura naturans, cannot be 
represented by a bounded interactive simulation. Modeling and evaluating their be-
havior remains elusive under the second modeling paradigm.14 The anomaly men-
tioned in the introduction between what should be and what appears to be possible 
with respect to ecosystem management is thus resolved. The addition of human goals 
and proper interventions is what makes the modeling problem tractable for natura 
naturata under the new interactive paradigm, whereas human interference has been 
considered as a disturbance rendering modeling even more difficult under the tradi-
tional algorithmic simulation approach. 

CONCLUSIONS

Up to now, most simulation models developed in the social and biological sciences 
still use the algorithmic modeling paradigm. Technically, such models do not leave 
the realm of dynamic systems theory. These approaches abstract from any interactive 
aspects of the modeled system. The results are ambivalent and leave ecological (and, 
as far as we can see, also social) modeling in a dilemma: The models still do not yet 
deliver contra-intuitive predictions relevant for management. However, these models 
are very useful when used as communication tools for arguing about the cases stud-
ied (Bousquet and Le Page 2004). A model developed for prediction under dynamic 
systems theory becomes a communication tool when it fails to predict blindly and is 
thus calibrated to observations. For this purpose of communicating and documenting 
existing experiences, however, more efficient, interactive simulation tools are avail-
able today. As long as various forms of interaction are not defined and studied more 
rigorously, simulation models may focus on the wrong aspects of ecosystems. While 
we may still fail to predict ecosystems, we miss a chance of improving their evalua-
tion by experts.  

The interactive modeling paradigm provides us with a different and new way of 
representing human knowledge. It may become recognized as a dual form of the tra-
ditional approach. The proliferation of artificial objects resulting from functional and 
industrial production interested philosophers in the nineteenth century. Today’s increase 
in interactive simulations of artificial (choice) behavior is facilitating communication 
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and sets current technology changes against this historical background of facilitating 
production. (Interactive) simulation attracts the attention of philosophers of science 
as documented by this book. 

Interaction cannot be created de novo in a computer. However, if it is a useful 
concept, with a promising potential to become a formal rigorous one, some of its ex-
isting bounded forms can be transferred to a computer. It allows us to abstract from 
and to deal with a human perspective toward valuation and choice from an endo-
perspective. This time, it is not an abstraction with respect to observation (and spatial 
perspective) as in Renaissance times, but has a memory and a temporal perspective. 
It may provide areas of professional expertise in ecosystem management with an in-
tersubjective way of documenting and communicating knowledge about bounded 
sets and the proper order of decisions in certain interactive situations.  

In a more general sense, a better understanding of simulation technologies and 
especially interactive ones may acquire a role comparable with the mastering of per-
spective in arts. For visual perception, the invention of perspective became a histori-
cal stepping stone for the ‘cognitive enlightenment’ and subsequently modern science. 
Today’s interactive simulation is about to acquire the technical potential for rehabili-
tating memory (alongside vision) as a similarly reliable source of intersubjective 
knowledge. In some restricted areas such as chess or flight simulation, it has become 
a carrier of norms and is already used routinely for training to expert levels. If this 
approach can be extended to the human relationship with ecosystems, it may trigger a 
corresponding ‘normative enlightenment.’ 

We have argued above that under this modeling paradigm, it becomes easy and 
straightforward  to define the key notions of ecosystem research and modeling. In 
addition, it allows us to discuss technical and principal limits, and this seems to give 
a simple explanation of past successes and failures in ecological modeling. It is at 
least a complementary approach to the same systems from a distinctively different 
perspective, and exploits knowledge on them that was dismissed all too quickly in 
the traditional approach. 

Taken together, this seems to be sufficient reason for the distinction introduced 
above and especially interactive simulation to be taken more seriously by philoso-
phers of science as well. Which modeling tools will yield better results in ecology 
and ecosystem research will, of course, depend on empirical testing. 

*University of Bayreuth, Germany  
**Norwegian Institute for Forest Research, Ås, Norway

NOTES

1 “The central concept of Newtonian mechanics, from which all others flow as corollaries or collaterals, 
is the concept of state, …” (Rosen 1991). 

2 If ecosystems are viewed under dynamic systems theory, one could ask instead: … despite continued 
human interference. However, the search for dynamic models assessing the stability of ecosystems is 
an old and still controversial field, which we shall not go into here (McCann 2000).  
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3 We use the notion of  ‘skill’ in the same sense as Ingold (2000). 
4 Nature conservation may be regarded as an exception. There the management goal is often to sustain 

an ongoing interaction with ‘nature’ (see last section). 
5 The presence of noise is unrelated to interactivity. Noise does not make choices by definition. 
6 Representations are often modified with the effect that a model is largely simplified or extended be-

yond its ‘grounding in reality.’ In the first case, the model seeks the most concise representation of a 
state; in the second, the most comprehensive representation of a choice. 

7 However, not every computer has to be an algorithmic machine. There may be aspects in the heuristics 
of IT engineering that have not yet been properly formalized. Interactive computing can be considered 
as an example; it is economically important, but not all aspects of it have been given a formal ground-
ing (see Introduction of Turi [1996]). 

8 As used in the computer sciences, particularly in coalgebraic approaches to computational structures. 
9 We tried a formalization of fluxes as boundary-determining objects for ecosystems earlier (Hauhs and 

Lange 1996). However, this does not lead to any fundamental and concise notion as is possible for 
streams in coalgebra. 

10 Try this only if it is a computer! 
11 The logic relationships among the attributes usually used to define life remain unclear (Ruiz-Mirazo et 

al. 2004). 
12 There may be observations of the genotype, but since the mapping from genotype to phenotype is an 

interactive one, this mapping cannot be identified by observations alone (but requires an interactive 
approach itself). This leads to the conjecture that the proteomic research program must fail on principal 
grounds similar to the alchemistic program, that is, failure due to choosing a wrong model category 
(and hence ignoring limits). 

13 With the possible exception of unicellular organisms. 
14 Whereas explaining their behavior under the first paradigm only appeared to be very difficult. 
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DON IHDE

MODELS, MODELS EVERYWHERE

The newest technological toy, the ‘computer,’ has given us a complexity machine 
with which ever higher degrees of complex phenomena can be computed, manipu-
lated, and produced in a variety of imaging forms: charts, graphs, simulations, and 
images. Indeed, it may be or be becoming the twenty-first century’s epistemology 
engine. 

I call an epistemology engine, some technology which then is used to model the 
process of knowledge production. Previously I have argued that the camera obscura
precisely served that role in early modern philosophy. It was explicitly used as a 
model of knowledge by both René Descartes in the Dioptrics, and even more explic-
itly by John Locke in the Essay on Human Understanding. While I shall not retrace 
that analysis here, I tried to show how the subject/object; external/internal; and 
knowledge as representational all follow from the way the camera obscura worked 
according to seventeenth century understanding. Whether or not one should ever take 
a technological model for knowledge production or human understanding aside, I 
have tried to show that the camera model is now outdated since it no longer models 
the kind of practices which produce contemporary styles of knowledge. 

By very late modernity, a few philosophers have partially identified computation 
devices and processes as such an epistemology engine, but no one to my knowledge 
has done so with as much positivity as Descartes and Locke did with the earlier toy. 
Hilary Putnam has flirted with the idea that the computer serves this role today, and a 
loose fit borders on more than the metaphorical amongst ‘computational models of 
mind’ analytic philosophers. These philosophers do think that there is more than a 
brain-computer metaphor, as indicated by the wide use of “brains-in-vats” by Daniel
Dennett in his Brainstorms (1978). But this engine has not yet stuck as fully as the 
‘theatre of the mind’ camera. 

So, before deciding how suggestive computational devices may be for epistemol-
ogy, let us look at some of the main features which the ‘computer’ as a complexity 
device can do: 
• First, computation can perform massive computations at speed; calculations 

which would take hundreds of mathematicians decades of time, can now be done 
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in manageable, finite periods of time. As a speedy calculation device, able to han-
dle very complex calculations, computation gives us a new amplification of one 
human capacity never before possible. 

• Moreover, the computations possible can deal with many multi-variables, which, 
in turn, can then be graphed. In turn, modeling via graph frequently reveals un-
suspected patterns – for example, a multi-variable graphing process some years 
ago was applied to the levels of lead in the atmosphere, correlated with human ac-
tivities from antiquity to the present. The result is one which clearly depicts the 
role of homogenic activity upon atmospheric phenomena.  

• Better still, computer modeling can move from data-to-image-to-data.  By using 
algorithms, one can produce images which are ‘readable’ at a glance, or, one can 
reduce images to data for analytic purposes. Peter Galison’s Image and Logic 
(1997) showed how this capacity in physics simulations, tended to give the edge 
to imaging processes in late twentieth century physics. The Brookhaven National 
Laboratory, in producing a poster advertising its heavy ion accelerator, shows 
both data-graph (logic) and simulation image (image) detectors. 

Figure 1.  Atmospheric Lead Content. (Reprinted with permission from Shotyk et al.,
Science 281: 1635–1640, 11 September 1998. Copyright 1998 AAAS.) 
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Figure 2.  Relativistic Heavy Ion Collider Detectors

• The data-image reversibility has also allowed for modeling of long term proc-
esses not previously manageable. My colleagues, Pat Grim and Gary Mar, in The 
Philosophical Computer (1998), were able to model semantic paradoxes in three-
dimensional projections in such a way that interesting differences were shown to 
obtain between different types of paradoxes. 

Figure 3.  Strange attractor semantic paradox. (Permission by Patrick Grim.) 

• One result of this – contrary to what is sometimes thought of as a computational 
move toward ‘disembodiment’ – is a return of critical interpretive activity to the 
humanly perceivable through images. Images produced by computations thus 
produce what can be seen at a glance, thus engaging the visual gestalt capacities 
of embodied humans. 
Those of us familiar with the models which such processes produce recognize 

that images are, in effect, mediations. Here, I shall concentrate upon the imaging 
processes employed in models, but with a particular concern. Early modern episte-
mology was an epistemology centered in representations. In their simplest forms, 
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representations were what I call isomorphic images, that is, images which are ‘like’ 
that to which the images refer. The actual optical model, employed by both Descartes 
and Locke, was the camera obscura, for which the images – which stood for the im-
pressions or sensations in the mind – to be ‘true’ had to be isomorphic. 

Figure 4.  Sixteenth century camera obscura 

Thus, the imaged Sun projected upon the back wall of the camera is ‘like’ the ex-
ternal Sun in shape, configuration, and so forth. Except it is not! The imaged Sun is 
flat or two-dimensioned; it is inverted or upside down; and in any actual camera ob-
scura, does not even approximate the intensity of light of the external Sun. In short, 
the camera obscura radically transforms the Sun into the imaged Sun. Similarly, in a 
later modification of the camera, that is the nineteenth century photographic camera, 
the process of producing the image is one which ‘fixes’ the image of the Sun, yet 
another transformation. 

Now, so long as that which is imaged is available both to direct perception and 
the mediated perception provided by the image, one can compare Sun with imaged 
Sun. And, when this is done, one can also see that in definite and limited senses, the 
imaged Sun has certain advantages because of the technological transformation en-
tailed. Looking at either an obscura or photographic Sun will not make you blind! 
You can also return again and again to the image to take notice of features perhaps 
not noted at first glance. (But you can also take account of features which make the 
imaged Sun different from the perceived Sun: size, two-dimensionality, stasis, etc.)  
But note, all this is possible only if one has the comparative capacity to differentiate 
between the image and the object imaged.

With contemporary imaging of the sort for interest here, that comparative capac-
ity simply does not exist. I shall take as my example what I call ‘whole earth meas-
urements’ or simulations related to global warming. Here are some recent such simu-
lations produced as images of the whole earth. 

In a strict sense, these are not ‘images’ in the previous sense of simple, isomor-
phic depictions of a perceptible object. Rather, these are graphic depictions of phe-
nomena which could not and cannot be perceived from an embodied and situated 
perspective, not even one from a satellite perspective. The schema which is depicted 
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is a ‘whole earth’ projection, reduced to a single image. It is also depicted with a 
color convention, in the original, using ‘false color’ to map intensities – and unless 
one is privy to this convention, it is not even possible to know what is being depicted. 
In this case it is ocean levels, not, for example, heat ranges which could also be so 
mapped. It also incorporates an older convention, with the arctic circle at the top; the 
antarctic at the bottom (a convention which reversed older conventions). In short, this 
is not really a ‘picture’ or what we might ordinarily think of as an ‘image.’ It is much 
more like a ‘map’ in a special sense. 

It does have vestigial isomorphic features, one is familiar with the very high per-
spective which produces continental shapes (illustration from satellite view of the 
earth). These could be seen were one on the space station, but here are reduced to a 
flat projection with its built in distortions, and including a 360 degree sweep. All of 
this and much more is built into this model. Yet, to the informed perceiver-‘reader’ 
of this depiction, all of this is available at a glance for an ‘aha’ recognition – “so 
that’s how much the oceans have risen!” But, however seen or read, one cannot sim-
ply compare the ‘knowledge’ produced by the model with ‘reality’ since one has 
never had the ‘reality’ of the whole global view! 

Figure 5.  Simulations related to global warming 
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Let us complicate the scene a little more by introducing dynamics. We can get in-
creasingly sophisticated results about ‘real’ earth history by making more and more 
things ‘speak’ or give us measurements from the past. Greenland ice cores, subject to 
ion analysis, can take us back several tens of thousands of years; the same for Ant-
arctic cores. Ocean bottom sediments can also reveal patterns which yield ancient 
temperatures. Put all these together and one gets a piecemeal mapping, not as ‘coher-
ent’ as our ‘image’ has it, but perhaps in each piece a bit of accuracy. But, strictly 
speaking, there remains no way to compare ‘real’ earth history and the simulated 
‘history.’ Yet, this language continues to pervade much discussion – and much objec-
tion to the simulator’s claims. This is, however, to assume that simulations are in 
some sense ‘representations.’ I do not think they are, although I allow that the vestig-
ial isomorphism suggested by the way the ‘scientific’ image is presented tempts one 
to believe that. Rather, I do not think contemporary science imaging is either a ‘pic-
ture’ or a ‘text,’ although it probably does have map-like features. These, in turn, 
presume skills of interpretation which map readers must have learned. 

The map is never the territory. Borges’ fictional Chinese Emperor who needed a 
paper larger than the territory in order to map the territory is one such absurdity 
noted. Rather, imaging in the context of simulation and modeling is more analogous 
to a critical, interpretive instrument, through which we see and read. Insofar as a 
simulation ‘images,’ it does not do so on the basis of any copies or isomorphic repre-
sentations since it is nothing like either the optical lens systems of microscopes or 
telescopes, nor of a camera obscura and the progeny therefrom. There is no original 
from which to copy. Yet the end result is image-like; it is a gestalted pattern which is 
recognizable, although it is a constructed image.

I want now to examine a few features of what is really a relatively new critical-
interpretive instrument. The literature about the uses of models and simulations re-
mains rife with representationalist language. “How closely does the model match the 
real?” But, we don’t have the real separately to tell if there is a match or not. Rather, 
in one sense, it is the instrument, the model, which gives us the ‘real.’ Or, at best, if 
we have a ‘real’ record of some sub-pattern, perhaps then we can say the model does 
match a sub-pattern. What we are after, however, is a depiction of a lot of composite 
features which we may have separately. It strikes me that what we have is an analog 
to the learning of tool use familiar in much earlier science. As Andrew Pickering 
points out, there is a lot of tuning and skill to attain before the instrument becomes as 
transparent as it can be (Pickering 1995). And, we have to learn how to distinguish 
‘real phenomena’ from ‘instrumental artifacts.’ Double images, ‘auras’ or ‘halos’ 
frequently bugged early telescopy in analogy to many model ‘artifacts’ in simula-
tions. 

Return to my earlier whole earth chart: What the simulation image depicts is a 
very complex composite of multiple measurement instruments. Ocean buoys, satellite 
readings, deep sea probes, and a wide variety of separate measurements are tomo-
graphically combined to make the image shown. If one has enough variables, has 
tinkered well enough, then one hopes the image is ‘adequate.’ I previously claimed 
that this kind of image is more like a map than a picture. 
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Here is one recent map example which is also constructed and composite.  These 
are recent ocean bottom maps which drew from Cold War techniques originally pro-
duced for finding and/or hiding submarines.    
The construction process utilizes a series of different technologies: 
• Gross features come from averages of many satellite passes which image ocean 

surfaces, in turn analyzed via gravitational effects to show sea mounts and such;
• then, with multi-side scan radar, more detail emerges; 
• and, finally, where fine detail is needed, a photographic and optical scan can be 

made. 
But, once again, it is the tomographical capacity of computation which combines and 
constructs what in this case is the 3-d projection of ocean bottom map. This example, 
while showing the constructive and composite features, would for the previous ex-
ample be only one of an even wider set of variables.   

What I have been illustrating is not only a set of some of the most expensive ‘pic-
tures’ ever produced, but the way in which ‘models, models, everywhere’ is taking 
hold. Contemporary imaging is ‘constructed’ imaging. When compared with early 
artistic use of the camera obscura, for example, the tracing of the inverted image, 
while ‘active,’ was drawing-by-the-lines. Photography, as a later adaptation of the 
camera, was in a special sense ‘passive’ in that the chemical process did the ‘draw-
ing.’ Today’s constructed imaging retains an analogue to art processes, in that the 
result is well-planned, laid out with results in mind, and thus more active than the 
seeming ‘photo-realism’ of earlier forms of science imaging. 

Stony Brook University, New York, USA 

Figure 6.  Sea floor image 
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GÜNTER KÜPPERS AND JOHANNES LENHARD 

FROM HIERARCHICAL TO NETWORK-LIKE 
INTEGRATION: A REVOLUTION OF MODELING STYLE IN 

COMPUTER-SIMULATION 

INTRODUCTION 

In general, models in science are highly idealized and ignore most of the effects 
dominating reality. A prominent example is the theory of ideal fluids that neglects 
the effect of dissipation. Hence, strictly speaking, models in science are unrealistic. 
They represent an ideal world that is believed to lie behind the diversity of phenom-
ena in the real world. To obtain more realistic models – in our example, the theory of 
real fluids – additional effects (e.g., the viscosity of the fluid) have to be integrated 
into the basic model. An adequate choice of effects depends upon the purpose for 
which a model is built. For example, if one tries to understand the phenomenon of 
hydrodynamic convection patterns, because of the relevance of dissipation basic 
principles of thermodynamics must be added to the mechanical equations of hydro-
dynamics. In this case, integrating new effects into the basic model of ideal hydro-
dynamics is not a problem, because this takes place under the uniform paradigm of 
physics. Hence, the integration of new effects is based on reliable theoretical 
grounds. 

In most fields of practice, however, the process of applying science has to face 
serious problems: All kinds of effects must be taken into consideration in order to 
gain the relevant knowledge to tackle real-world problems. In this case, integration is 
no longer possible on the grounds of a common theoretical conception. Various sci-
entific disciplines may become involved, contributing heterogeneous models; ques-
tions of instrumentation and technology may arise; and there may well be problems 
of political regulation, social acceptance, and economic success. These problem areas 
have to be integrated into an overall strategy of knowledge production without a 
common theoretical ground and even without the leading role of science. This new 
form of integration may be called pragmatic integration, because it has to be success-
ful but by no means correct. Therefore, from the opposing perspective, this pragmatic 
integration can be seen as a fingerprint of application-dominated knowledge produc-
tion in different problem areas in society. 
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Pragmatic forms of integration challenge knowledge production in several fields. 
There are no general methods for making integration a success. Because of the lack 
of theoretical paradigms, it must be determined by technical or social constructions: 
as a kind of plumbing with respect to the methods and as a social networking with 
respect to its social practice. 

In the last decades, computer simulations have become established as a powerful 
instrument in science and technology for the theoretical solution of complex prob-
lems, especially the dynamics of complex systems. Simulation models – traditional 
ones like differential (difference) equations as well as phenomenological ones like 
agent-based models – are used as a kind of generative mechanism to imitate the dy-
namic of a complex system. For this reason, computer simulations are more than 
classic models in science. They are complex algorithms that open up the possibility 
of running theoretical models as computer programs on a computer in order to show 
the internal dynamic behavior of the models. 

Because, nowadays, computer simulations are used in different fields of practice, 
the problem of integrating different contexts of application is a current problem 
within simulation. What is a realistic simulation of a complex behavior? Is it, for in-
stance, realistic because it uses the basic equations of physics, or is it realistic be-
cause all important effects are integrated beyond the theoretical paradigms of these 
effects? And, if so, what are the important effects? Which ones may be neglected for 
the sake of simplicity, and which ones not? 

Many simulationists argue that the reality approach of simulations cannot be de-
cided on the basis of the quality of the underlying models. On the contrary, it must be 
decided on the basis of the quality of the result. In other words, a realistic simulation 
is a simulation that is believed to be realistic. This transition to a new approach to-
ward realism within computer simulation can be demonstrated in the case of climate 
research. Climate simulation models are, at present, the most complex ones, running 
only on the biggest computers in the world, involving also high levels of commit-
ment to climate policy. Because of their political context, these simulation models 
must be realistic and reliable at the same time. This need has fueled a revolution in 
modeling style – a transition from a hierarchical to a network-like integration of 
models.  

In the following pages, this revolution will be illustrated in two steps: We shall 
start with the development of hierarchical integration and the essential breakthroughs 
for the simulation method (1955 to mid-1990s) and then go on to analyze the shift 
toward a network-like architecture of simulations in climate research driven by the 
political demands for integration. 

SOLVING UNSOLVABLE PROBLEMS

The Simultaneous Birth of the Electronic Computer and the Simulation Method 

The development of both the electronic computer and the simulation method took 
place nearly simultaneously. The time and place of the latter’s birth can be located at 
the end of World War II in Los Alamos, with a couple of applied mathematicians 
working together in the Manhattan project acting as virtual parents. One of the 
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problems that turned out to be crucial for the development of the atomic bomb was 
the diffusion problem of neutrons. Although the physical principles had been known 
for a long time, the underlying equations proved impossible to solve. The electronic 
calculation machine developed at this time opened up new possibilities for the treat-
ment of such complex problems. However, to use the new electronic machine, new 
methods of dealing with mathematical problems had to be developed: the Monte 
Carlo method, modeling via cellular automata, as well as finite difference ap-
proaches. All these methods can be seen as an attempt not to solve a system of com-
plex mathematical equations but to imitate the dynamic encoded in the set of equa-
tions. These new approaches to complex problems constitute ways to use computer 
simulations as scientific instruments. The Polish mathematician Stanislaw Ulam 
played a key role in the invention of a couple of these methods – if one wants to 
mention a central figure in the invention, or construction, of simulation methods, he 
is the one.      

The Monte Carlo method may serve as an example. This method goes back to the 
joint effort of Stanislaw Ulam and John von Neumann when working together on the 
Manhattan project in Los Alamos. Monte Carlo may count as the first simulation 
method.1 Because the neutron diffusion problem was unsolvable by analytical meth-
ods and because a lot of experimental data were available on the scattering of indi-
vidual neutrons by atoms, they were looking for a method by which they could ob-
tain the behavior of a macroscopic neutron beam from these individual scattering 
events. Instead of calculating a solution of the basic equations, a statistical method 
was employed to imitate the behavior of diffusion. The following example will illus-
trate this approach. 

Imagine that you intend to determine the volume of a certain body via Monte 
Carlo. You can embed the body into a cube with a known volume. The surface of the 
body defines an analytical function whose integration would give the so-called primi-
tive. In many cases, this analytical approach is impossible, and the primitive cannot 
be calculated. The idea is to replace the (unknown) primitive by a ratio that can be 
determined ‘empirically,’ or quasi-empirically, by iterating computer runs. The com-
puter determines a point within the cube at random. If this point belongs to the body, 
the trial is said to be successful. By re-iterating this random choice, one can deter-
mine the unknown volume as the ratio of successful trials out of a large number of 
trials. In other words, the surface function is not integrated numerically. Instead, this 
process is imitated by a generative mechanism. 

During his work in the context of the Manhattan project, von Neumann tackled 
problems like the propagation of shock waves, another problem that could not be 
treated with analytical methods. This meant they could not be treated mathematically 
at all. The important point is that the relevant laws of hydrodynamics are very well 
known. They are expressed in a system of nonlinear partial differential equations 
(PDEs), whose solution determines essential properties of the behavior of the system 
under investigation. But to solve such a system of equations, one would have to find 
a set of analytical functions satisfying the set of differential equations that make up 
the integration in the technical mathematical sense. This is (in most cases) impossible 
for a set of complex nonlinear equations. Computer simulations changed the situation 
fundamentally – a new strategy for solving this problem had become available.  
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First, the set of PDEs is replaced by so-called finite difference equations (FDEs). 
Space and time are endowed with a grid structure reflecting the limited capabilities of 
a computer – it can only handle discrete objects. The FDEs are calculated at the grid 
points and evolve step by step over time. Just imagine a kind of approximation: If the 
grid becomes finer and finer, the FDEs will become identical with the PDEs – at the 
limit. The point, however, is that this holds only in principle. There is not only a limi-
tation of computer time, which does not allow infinite small grids, but also a problem 
of truncation errors, because the calculation within the grid is done recursively. It 
starts from an initial value, and in each time step, the computer calculates a new set 
of values for the variables at the grid from the former ones. Therefore, truncation 
errors may evolve in time and the calculation may become unstable. 

In general, this strategy of imitating the continuous dynamics of PDEs through a 
generative mechanism of FDEs makes it possible to treat complex systems, that is, 
systems in which a theoretical model of the dynamics is known, but the system is 
intractable for reasons of complexity. There is a wide range of applied problems that 
meet these requirements: The physical laws are well understood, but the interactions 
of different processes render the entire system ‘complex,’ that is, intractable. One 
cannot hope to achieve a solution of the PDEs with traditional mathematical means. 

Nevertheless, both the epistemological and the methodological status of simula-
tions are discussed controversially in the philosophy of science. The common view 
holds that simulations are more or less calculations that profit from the brute force of 
the computer. The computer is seen as ‘number cruncher.’ But there is also a heated 
discussion about the fundamentally new features that make simulation models and 
the important new class of models and simulations a new instrument of science.2 As 
mentioned above, from the very beginning, simulations were seen as a quasi-empir-
ical, experimental approach. “Broadly speaking, such methods will amount to con-
struction of statistical models of given physical situations and statistical experiments 
designed to evaluate the behavior of the physical quantities involved” (Ulam  
1952: 264). 

Whereas Ulam praised this as an inspiring source for mathematics, von Neu-
mann’s response was less enthusiastic. He considered the ‘experimental’ approach to 
be a kind of trick, not completely appropriate to the mathematical problems of fluid 
dynamics he was struggling with. But he was pragmatic enough to see that the simu-
lation method might open up a new access. And he suggested meteorology as an 
ideal case for the application of the FDE simulation strategy. 

Skepticism in Meteorology 

During the first half of the twentieth century, one rather speculative question in me-
teorology was which conditions and hypotheses would be sufficient to construct a 
model of the entire atmosphere that would be able to reproduce its behavior at least 
in a gross manner. Some achievements of the theory of the general circulation ex-
isted, but they pertained to very restricted parts such as to lateral diffusion (Rossby in 
the 1930s), or to the jet stream (Palmèn and Riehl in the 1940s). Which kinds of in-
teractions were responsible for the global behavior observed remained simply un-
known. The physics of hydrodynamics was well known and commonly accepted, but 
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their nonlinear behavior was completely unknown at that time. Furthermore, it was 
believed that the simple nonlinear equations could not describe the complex behavior 
of fluids. The reasons for both irregularities and regularities were seen in the infinite 
influences coming from the outside world. In short, the hypothetico-deductive 
method was not applicable, because there was no mathematical instrument available 
that would allow an investigation of hypotheses or models. Thus it was commonly 
held “that a consistent theory of the general circulation is out of reach” (Lewis  
1998: 42). 

Directly after the war, von Neumann set up a working group on meteorology at 
the Institute for Advanced Studies in Princeton, headed by Jule Charney. The goal 
was to model the fluid dynamics of the atmosphere and to treat the resulting system 
of PDEs with the newly developed FDE simulation method. “To von Neumann, me-
teorology was par excellence the applied branch of mathematics and physics that 
stood the most to gain from high-speed computation” (Charney, cited acc. to  
Arakawa 2000: 5). 

The design of the computer and that of the problems of meteorology would have 
to co-evolve, von Neumann suggested. Consequently, and already in 1946, he called 
a conference of meteorologists “to tell them about the general-purpose electronic 
computer he was building and to seek their advice and assistance in designing mete-
orological problems for its use” (Arakawa 2000: 5). 

The approach of employing computer simulations on the basis of hydrodynamics 
– that is, with known theoretical basis but unknown dynamic properties – was to be-
come the starting point for climate research as a modern discipline. 

The phenomena of global circulation in the atmosphere show an enormous com-
plexity – different processes interact in a highly nonlinear way. This is the reason 
why weather forecasts are impossible if one wants to make predictions that go be-
yond a critical period. Weather is, so to speak, a chaotic system. On the other hand, 
there are phenomena in the atmosphere’s dynamics that are regular for long periods 
of time. To give an example, the so-called surface westerlies, continuously blowing 
winds north of the equator, have been well-known for centuries and were used when 
crossing the Atlantic Ocean in sailing ships. This difference – stable global patterns 
on the one side and unstable chaotic behavior on the other side – represents a major 
characteristic of complex systems.3

A Breakthrough: The ‘First Experiment’ by Phillips 

A path-breaking success changed the skepticism concerning modeling the general 
circulation, and brought this project right into the center of a new scientific disci-
pline. In 1955, Norman Phillips, working at Princeton’s Institute for Advanced Stud-
ies, succeeded in his so-called first experiment in simulating the dynamics of the at-
mosphere, that is, in reproducing the patterns of wind and pressure in the entire at-
mosphere within a computer model (Phillips 1956).4 The development of a simula-
tion model of the general circulation of the atmosphere was celebrated as a major 
breakthrough. It surprised the experts, because it had been generally accepted that a 
theoretical modeling approach concentrating on the hydrodynamic equations would 
hardly be possible. Namely, it was believed that a model of a complex phenomenon 
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has to be more complex than the system to be analyzed. This first attempt to build a 
simulation model of the entire atmosphere was considered an ‘experiment.’ This un-
derlines how uncertain the success of this project was. At the same time, the concep-
tion of experiment expresses an important aspect for methodology: In simulations, 
scientists use their models like an experimental set-up. 

The simulation model of the ‘first experiment’ worked with a very coarse spatial 
discretization of the atmosphere. In the vertical direction, it exhibited only two lay-
ers, and horizontally each grid cell covered more than 200,000 km2. Phillips had to 
introduce the physical laws that govern the dynamics of the atmosphere. He used 
only six basic equations (PDEs), which, since then, have been called the ‘primitive 
equations.’ They are generally conceived of as the physical basis of climatology. 
These equations express well-known physics of hydrodynamics – the surprising thing 
was that only six PDEs were sufficient to reproduce the complex behavior, and Phil-
lips had the skill and luck to make an adequate choice. This physical basis had to be 
adapted to the grid. The construction of a discrete model is a typical task of simula-
tion modeling. The global and continuous equations of hydrodynamics had to be re-
formulated in order to calculate the evolution of the relevant variables in time – pres-
sure, temperature, wind speed – step by step at the grid nodes. 

In the first stage of the experiment, the initial state was an atmosphere at rest, 
with no differences in temperature or pressure, and no flow. In the second stage of 
the experiment, the dynamics was started, that is, the radiation of the sun and the ro-
tation of the earth were added. The atmosphere settled down in a so-called steady 
state that corresponded to stable flow patterns. The tantalizing question was whether 
the model would be able to reproduce the global flow patterns of the real atmosphere, 
for instance, the surface westerlies. The result was positive – everyone was im-
pressed by the degree of correspondence. As mentioned above, the experts were 
skeptical about the possibility of a global (and not far too complicated) model, but 
the empirical success was convincing. The decisive criterion for success was the ade-
quate imitation of the phenomena, that is, the flow patterns. Because there was no 
knowledge about the outcome, Phillips’ attempt to use a specific set of equations can 
be understood as an experiment – an experiment on modeling the equations of mo-
tion within a computer. 

The continuous primitive equations of the atmosphere were by no means solved 
(that is, integrated in the strict technical sense) by Phillips’ simulation experiment. 
Instead, the phenomena of the atmosphere were imitated by the generative mecha-
nism of the discrete difference equations. The success of the imitation was judged 
solely by the correspondence between simulated and observed flow patterns. Hence, 
the validation of simulation results relies on a quasi-empirical strategy. 

The success of the simulation experiment was acknowledged immediately and 
was judged to constitute a theoretical breakthrough. In the same year, E. Eady, the 
leading theoretical meteorologist in England, formulated far-sightedly: “Numerical 
integrations of the kind Dr. Phillips has carried out give us a unique opportunity to 
study large-scale meteorology as an experimental science” (Eady 1956: 536).5

And indeed, this experimental approach via simulations played a major role in 
shaping the emerging discipline of climate research. A. Arakawa (2000) calls this the 
“epoch-making first phase” of climate simulation modeling.6 Experimental access to 
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the climate system is a key for climate science. Another example is a researcher who 
succeeded recently in showing that the Pacific Ocean can exert a considerable influ-
ence on the Gulf Stream in the Atlantic Ocean. He discovered this connection by 
numerical experiments and described his approach in an interview as follows: 

Q:  “You feed the model and then you wait and see what happens”?  

A:  “Yes, exactly. That is the case – without simulation I would never been able to obtain 
this result” (transcript from an interview7).

This is not the place to discuss further developments in climate simulation (see, for 
more details, Küppers and Lenhard 2005). Simulations, of course, spread rapidly to 
very diverse fields. This development can be summarized by stating that science had 
acquired a new instrument – the simulation method provided a means of studying 
complex systems.8

HIERARCHICAL INTEGRATION AND THE POLITICAL CONTEXT OF APPLICATION

The Centralized Model of Atmosphere: The Unidirectional Forces of Science 
 and Politics 

The ‘epoch-making first phase’ (Arakawa) assigned a key role to the general circula-
tion models (GCMs). In the 1960s, the next stage began, the ‘magnificent second 
phase’ in which climate science evolved as a normal scientific research program, 
centered around the GCMs and concentrated mainly in a couple of research centers in 
the United States.9 Already in 1960 the Geophysical Fluid Dynamics Laboratory
(GFDL), which belongs to a section of the US Department of Commerce, was 
founded in Princeton to follow up on this approach. This was the first institution with 
the official task of simulating in climate research. Other typical institutions are the 
National Center for Atmospheric Research at Boulder, Colorado, also founded in 
1960, or NASA’s Goddard Institute. The scientific agenda consisted in refining the 
GCMs, implementing lattices with higher resolutions, and integrating more subproc-
esses connected to atmospheric dynamics. In short, the GCMs have been growing 
more or less continuously for about thirty years. 

The GCMs form a class of huge simulation models that run on high-speed super-
computers. This requires a considerable effort in funding, although climate research, 
having started as a part of meteorology, used to enjoy only limited visibility as a sci-
entific discipline. About twenty years ago, circumstances changed almost com-
pletely. The climate system became a subject of hot political debate. The so-called 
greenhouse effect was discovered and was discussed controversially right from the 
start. Perspectives on the climate system switched radically. Once seen as a stable 
system, its potential instabilities and changes now became the topic of discussion and 
investigation. 

The field of climate research became one of the most prominent scientific fields 
in the media. At the same time, funding rose enormously. Climate research was ex-
pected to answer – and was in part defined by that demand – the following questions 
of utmost public, scientific, and political interest: 
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Is there actually a change in the climatic system, or are we observing only ran-
dom fluctuations; that is, can we detect climatic change? 
And if there is a change, are we humans a cause of it; is it an anthopogenic 
change? That is, can we attribute the change to a cause? 

Some countries decided that they needed research institutes to tackle these questions. 
Germany, for instance, founded the Max Planck Institute for Meteorology. This insti-
tute was built around a GCM (in part imported from the United States, then rapidly 
developed further) and followed more or less the example of the US institutions men-
tioned above.10 GCMs occupied a central role in the scientific enterprise, and this 
role was assured and fostered by political demands. The goal was to predict the cli-
mate system’s future state. To be applicable in a political context, such predictions 
need a high degree of reliability and certainty. The high status of the physical laws 
that constituted the nucleus of GCMs met this political requirement perfectly. 

Besides the scientific efforts, there were remarkable, perhaps unprecedented, 
global institutional efforts. A joint venture of science and policy was undertaken. The 
UN and the World Meteorological Organization founded the Intergovernmental 
Panel on Climatic Change, IPCC, a global institution with the official task of deliv-
ering an assessment of detection and attribution. Every four to five years, the IPCC 
publishes an Assessment Report, a voluminous compilation of the current state of 
scientific knowledge. A great number of climate researchers worldwide are involved 
in this IPCC process. The central tools for analysis and prediction are the GCMs 
building the backbone of the IPCC’s assessment reports. The statements derived 
from these models serve as a basis for political negotiations and decisions such as the 
Kyoto protocol.11

There is a strong demand for integration for political reasons as well: As is well 
known, climate change as a political issue instantly attracted opposing parties. Leav-
ing aside considerations about political aims, it is obvious that the reliability of 
knowledge about the climate system became a prominent problem. And that amounts 
to questions on the validity of the simulation models: Are they really realistic? Are 
there important subprocesses that have not yet been taken into account? Could these 
influence predictions of the future development of the climate system? 

The policymakers’ demand for reliable data on the development of the climate 
system fostered the efforts to integrate all kinds of effects that were believed to influ-
ence the dynamics of the atmosphere. This integration was driven by attempts to 
make the model more realistic. This was important for climate research as well as 
climate policy. 

Figure 1 should visualize the situation as it is commonly viewed by the commu-
nity: “basically, it is all physics” (interview), and consequently, the primitive equa-
tions of the atmospheric GCM constitute the nucleus – governed by the equations of 
fluid dynamics. This situation is also reflected in the ‘architecture’ of the research 
institutions of climate science. Mostly, they are rooted in physics; for example, the 
GFDL even bears fluid dynamics in its name. Until recently, the directors were 
physicists as well. 
More and more subprocesses have become attached to the core, that is, are being in-
tegrated into the simulation model. Ideally, no essential parts or processes should be  
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Figure 1.  The physics-based atmospheric dynamics at the center. An increasing number of 
subprocesses are additionally becoming integrated 

left out. Integrating aerosols into the GCMs might be seen as a typical success. These 
gave the models a ‘cooling-by-pollution’ effect that improved the match with ob-
served temperature patterns. 

Far along this line of ‘densifying integration,’ lies the great achievement of cli-
mate modeling in the 1990s: the coupling of atmospheric GCMs and those of oceans 
(see Figure 2). Both simulation models are centered around hydrodynamic codes – 
atmosphere and oceans are fluids in physical perspective. This coupling induced no 
fundamental change in architecture, because physics maintained its position as the 
theoretical nucleus. The coupled GCMs (CGCMs) once again produce a centralized 
architecture, now with two centers, resulting in a kind of twin-star image: 

A great technical effort was required to couple the two most voluminous simula-
tion models. CGCMs also provided an enriched basis for statistical analyses. The 
results of CGCM simulations led to a majority opinion that a change of climate can 
be diagnosed. Moreover, it was a celebrated claim that now, with CGCMs, it became 
possible to distinguish the so-called ‘fingerprint’ of human impact. 

 

 

Figure 2.  Architecture of coupled atmosphere-ocean generated circulation models (CGCM) 
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An Episode of Science and Policy: The FA Controversy 

While the coupled GCMs were celebrated as a milestone on the road toward a realis-
tic model of the climate system, they gave rise to a heated controversy. The claim to 
be able to accomplish a more and more comprehensive simulation of the climate sys-
tem, a simulation drawing on an objective basis of laws of physics, was surely one of 
the central claims of climate research. For the first time, it became possible to couple 
atmosphere and oceans. Each system takes the role of a boundary condition for the 
other. Both systems were calibrated separately to show a steady state similar to the 
observed phenomena. And now, as the systems became coupled one to the other, the 
researchers introduced a mechanism to enable interchange while simultaneously 
guaranteeing that the coupled system would not drift into a new, unrealistic state. In 
short, this so-called Flux Adjustment (FA) was an ‘artificial’ mechanism intended to 
keep the GCMs from leaving their precalibrated (realistic) region.  

In some sense, the worst case occurred: In Science, one of the most widely read 
and influential journals, the coupled models were denounced as relying on a “fudge 
factor” (Kerr 1994). Critics asserted that this flux adjustment was an ‘artificial’ 
mechanism without any ‘real’ counterpart and had been introduced merely to pro-
duce the desired results. The coupled models were expected to provide a new and 
superior integrated basis for predictions, but the criticism of FA challenged this 
claim. If the results of climate research were not based on ‘realistic’ models and did 
not rely on objective laws of physics, would that not question the entire scientific-
political enterprise? 

The media echo was controversial. The spectrum ranged from ‘a blatant scandal’ 
to ‘only a storm in a teacup.’ Even scientific experts saw things rather differently. 
We conducted several interviews that also raised this issue. The statements of the 
scientists ranged from an uncomfortable feeling, because FA was of an artificial na-
ture, across the claim that FA was only a preliminary technique and that the models 
will be really realistic in five years, to the opinion that FA was fully legitimate and 
comparable to techniques common in simulation modeling.12

The heated discussion was accompanied by a critical assessment of the reach of 
models in general, noteworthy also in Science (see Oreskes et al. 1994; see, for a re-
ply defending the modeling approach, Norton and Suppe 2001). None of the sides in 
this controversy will be taken here. The point is that the incriminated strategy of ‘ar-
tificial’ tools like FA is widely used in simulation modeling and, what is more, be-
longs to the methodological core of that approach.13

Consider, for instance, parameterization in which a complicated mechanism like 
cloud dynamics is replaced by one or a few parameters that are easier to handle. One 
could easily extend the criticism against FA to cover parameterization techniques as 
well – techniques nearly ubiquitous in complex simulation models. Second, the FA 
affair brings to the fore the hybrid nature of climate research: It is a scientific and 
political project carried out under the scrutiny of public media. There is a certain ten-
sion in the political application of simulation results. Whereas there is no way of 
treating climatic changes without simulation models, the methodology of simulations 
seems to cause some tensions with demands for ‘realistic’ models. 
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The hybrid scientific-political nature makes it difficult to separate political and 
scientific motives. The development of ‘stars’ and ongoing integration up to the 
twin-star architecture of coupled GCMs can be interpreted in two ways: according to 
political and according to scientific motives. Hence, the forces of science and policy 
point in the same direction in this case and result in an ongoing integration. The next 
section will argue that a fundamental restructuring of the model architecture is pres-
ently taking place. 

CHANGING THE PARADIGM OF INTEGRATION

From Stars to Networks 

The effort to achieve ever greater integration strengthened the star architecture. The 
emergence of twin stars, that is, coupled atmosphere-ocean models is commonly 
conceived as a first-rank scientific achievement in the field. Arakawa argues that the 
‘third phase’ of simulation models, that is, integrated modeling, started with this suc-
cessful coupling. 

Up to this point, it is hard to distinguish whether evolution is driven by inner-
scientific momentum or induced by political demand. However, the scientific re-
search program of refining and integrating GCMs based on the physics of fluid dy-
namics has now come to the end of its rope. The paradigm of the centralized model 
reaches its limiting factors when the processes that are to be integrated have no rela-
tion to the theoretical framework. Some leading research institutions are already re-
sponding to this by switching to a new architecture of climate simulation models. 
This new architecture does not deal with integration as an adaptation of additional 
parts to the dynamic center of GCMs. In fact, one can observe a profound shift in the 
modeling architecture of simulations in climate science. Roughly speaking, the new 
approach is to develop models of different, theoretically incompatible fields inde-
pendently and then to couple them to one another on a merely technical basis of 
simulation. In this way, it aims at an integration of a variety of models from physics, 
biology, chemistry, and even economics.14 Their dynamics can hardly be connected 
to physics, and therefore the whole architectonic paradigm of a centralized structure 
seems to be ill-suited for the task of enforced integration. The new architectonic 
paradigm can be described as a network or grid (see Figure 3). 

The most important feature of the new net architecture is that there is no longer 
one theoretical nucleus. The new nucleus is built by a (virtually theory-free) simula-
tion coupler that is linking the various models. Coupling takes place in a simulation-
technical sense (see Winsberg, this volume, who nicely captures the coupling of het-
erogeneous models as a ‘handshake’ between them). Each of them has its own theo-
retical nucleus, thus the net shows symmetry between the models. 
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The National Center for Atmospheric Research (NCAR) has been among the first 
to implement the new architecture, their program being to realize ‘NCAR as an inte-
grator.’15 The central part of that plan is formed by the so-called Community Climate 
System Model (CCSM) that integrates different simulation models via a hub. 

In this organizational structure (Figure 4), a coupler unit controls the exchange of 
parameter values between independent and exchangeable models. This modeling 
approach is in clear contrast to earlier attempts at integrating submodels around the 
center of a physically based GCM. 

Thus, the task is no longer to build one all-encompassing model – ideally the
right model. Instead, researchers construct a model by coupling together different 
modules that were developed on their own. The coupled network normally presents a 

Figure 4.  Architecture of NCAR climate simulation modeling 

Figure 3.  Simulation coupler in the ‘void center’ integrating various models 
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[…] based on a framework that divides the complete climate system into component 
models connected by a coupler. Individual components – ocean, atmosphere, land, and 
sea-ice – can be exchanged for alternate models, thus allowing different configurations 
appropriate for different applications (CCSM 2004). 

The shift from a centralized ‘star’ to a net architecture is being rated very highly in 
methodological terms. In interviews, it has been called a ‘revolution in modeling 
style’:

I think actually it’s symptomatic worldwide, […] we had a modeling framework that we 
have been using for quite some time, but in the last four, five years we are really pretty 
much throwing it out the window. We have redone our entire modeling framework from 
scratch, […] building a proper framework to allow interaction between different physical 
and biological components, also taking advantage of advances in computer technology to 
allow the system to be more flexible (transcript from interview). 

This amounts to saying goodbye to the fundamental leading role of physics in cli-
mate research. In climate change analysis, the physics of fluid dynamics takes at best 
a position as primus inter pares. Under the perspective of ongoing integration, the 
whole climate system, including all biological, environmental, economic, and other 
components, is regarded as one system. And for this reason, the model architecture 
can constitute a paradigm for simulations. The analyzed change from hierarchical to 
network-like integration, which also took place in a social and disciplinary sense, 
presents a profound paradigm shift – a revolution in modeling style. 

CONCLUSION

The foregoing argumentation is oriented toward the case of climate research and the 
simulation models it employs. It is intended as a contribution to the nuances of the 
development and the history of the simulation method. Can one draw conclusions 
beyond that? Are the observations made here also valid in a more general sense? And 
if so, in what respect? We shall raise three points that conclude our account while 
also posing new questions: 

1. First, the result of the revolution in modeling style can be called pragmatic inte-
gration without theoretical background. This allows the integration of theoreti-
cally incompatible models. Even models that are distributed, that is, located in 
different computers can be integrated by this approach. Recently, we can also 
observe a movement toward so-called ‘distributed computing’ in somewhat dif-
ferent, although closely related, respects. One important development in this di-
rection is computational grids, that is, clusters of computers that are connected 
but do not execute a central ‘program’ but contribute their pieces independently. 
Thus, a huge amount of computational force – but also tons of data that are only 
available at widely distributed places – can be gathered, and science is making 
serious efforts to use this kind of resource to manufacture an instrument for the 
investigation of complex problems that are currently out of reach. Very diverse 

mixture of fully fledged and very basic modules. By replacing some of them, the 
network can be adjusted to different research questions. The NCAR emphasizes the 
flexibility of the new net architecture. Figure 4 is explained with the words: 
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projects are conducted ‘on the grid’ such as climate forecast (connecting more 
than 25,000 PCs) or pharmaceutical drug development. Those efforts can be 
summarized under the title ‘e-science.’ For instance, in 2004, Germany started a 
research initiative called d-grid to investigate under what conditions a grid archi-
tecture can be used effectively. Again, the conditions are of diverse nature: com-
putational, legal, institutional, and many more. As may be obvious, simulation 
on the grid promises to be one of the major benefits of computational grids. The 
impact of the new grid architecture has yet to be determined. 

2. Second, the simulation architecture indicates a strong application-oriented influ-
ence. This results from the need for unifying integration. However, this integra-
tion is not achieved in the sense of a unifying theory, but in a pragmatic sense of 
tinkering the different autonomous models together. “Modeling is a kind of en-
gineering work. We have the components, but they do not fit. And then, we are 
knocking, or tinkering, them together such that it works” (transcript from inter-
view, see endnote 7).  
This kind of ‘tinkering’ may be recognized as a quite general feature of science 
that is under strong pressure from applications, or even dominated by them. Usu-
ally, applied problems do not occur at the rare spots that are neatly covered by 
scientific theories. The lack of a general and common theoretical framework has 
to be compensated. Whereas hydrodynamic systems are theoretically well under-
stood, when confronted with the real world, they pose complex problems that 
curtail the range of the theory very strongly. And, moreover, the questions often 
transcend the theoretical framework – as was observed in the case of the climate 
system in which science is removing the theoretical nucleus to one of the nodes 
of a network. This network is connected computationally by a simulation cou-
pler, but theoretically unconnected! There seem to be a plethora of examples in 
which applied sciences are driven to pragmatic integrations when confronted 
with the lack of a “rock-bottom of theory” (see Carrier 2004). In the physics of 
nuclear fusion, for example, the laws have been well known for decades, but the 
construction of a concrete fusion reactor poses problems that cannot be solved by 
that theory. Another example, from economics, is so-called innovation networks 
that should integrate different parts of knowledge on a purely pragmatic level to 
enable the development of a new product (see, e.g., Pyka and Küppers 2002). 
Theoretical integration is not the goal. On the contrary, these networks aim at an 
effective exchange of bits of knowledge, although a common theoretical frame-
work does not exist. In sum, tinkering can be considered to be a ‘fingerprint’ of 
science dominated by applications. 

3. Third, we have argued that a fundamental change, or even a revolution, in mod-
eling style occurred as a change in the architecture of simulation models. That 
architecture may function like a paradigm is due to the fact that simulations are 
by no means purely theoretical entities. Simulations are different from calcula-
tions or algorithms – they work with concrete implementations. Effective im-
plementations limit the possible range of simulations in a pragmatic sense – they 
have to run on certain machines in reasonable time. Hence, simulations are tech-
nologies that have to be investigated on the basis of their application in scientific 
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practice (see Humphreys 2004 and the introduction to this book).  
This aspect characterizes simulations as scientific instruments. Not only do simu-
lations call for appropriate new mathematics to deal with computational issues, 
but the scientific instrument of simulation and applied problems (think of climate 
prediction) are also intimately related and interact. In the case of the climate sys-
tem investigated here, the ‘pressure’ for integration originated from the applied 
context; and, at the same time, the task of integration was embodied in the 
model’s architecture. In sum, simulations are mathematical instruments with a 
material basis. 

Let us conclude with a last consideration: Until now, the guiding line in our argu-
mentation has been computer simulation and especially computer simulation in cli-
mate research. However, points of a more general relevance beyond computer simu-
lation are involved, namely, the role of theory and of scientific disciplines and net-
works. In all cases in which complexity sets limits to analytical solutions, scientific 
theory is becoming less important and partly replaced by practical ad hoc strategies 
in knowledge production. Whereas the empirical basis is simply too weak to back 
such a general claim, something is definitely going on in the relation between sci-
ence, theory, and applications. One reason for this dynamics is the increasing com-
plexity of science and technology. For example, the idealizations that could still be 
made in linear regimes are no longer possible in the nonlinear regimes that many 
questions and problems demand. But this is only one side of the coin. Although theo-
ries may not be predictable and even calculable in the strict sense, they play an im-
portant role in finding strategies for practical solutions to a broad variety of prob-
lems.  

The same holds for the organization of knowledge production. The example of 
computer simulation, especially in the case of climate models, shows a transition 
from disciplinary organization of knowledge production to a transdisciplinary form 
of organization. There is no argument that this transition is caused by the simulation 
as such – it may be due to complexity. The integration of all kinds of competencies, 
abilities, and knowledge bases in different fields of modern industrial research and 
development is a very common observation and shows the same network architec-
ture. However, this does not imply the demise of disciplines. 
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NOTES

1 Richtmyer and von Neumann 1947, based on contributions by Ulam, and Metropolis and Ulam 
1949 count as founding documents of the Monte Carlo method. See also the compilation of Ulam’s 
papers 1990 and the accounts of Galison 1996, 1997, and Fox Keller 2003. 

2 See, for example, Humphreys 1991; Rohrlich 1991; and Fox Keller 2003 who stress the important 
role of a new kind of experiments. For a more detailed epistemological account of simulation as 
‘imitation of complex dynamics by a suitable generative mechanism’ adhering to the second view 
and discussing the common view critically, see Küppers and Lenhard 2003 and 2004. 

3 This is what in other contexts is called self-organization; see, for more details, Küppers 2002. 
4 For more details of the experiment, see Lewis 1998; for a broader history of ideas on modeling the 

general circulation of the atmosphere, see Lorenz 1967. 
5 The use of the word “integration” is an indicator of the strong belief in the calculation paradigm. 
6 For a history of climate research using simulation models, see Edwards 2000. 
7 The interviews were performed within a research project conducted by G. Küppers, J. Lenhard, and 

H. Lücking. The project (2001 until 2004) addressed the epistemic characterization of simulations, 
and included interviews with researchers at a couple of climate science centers in Germany and the 
United States. It was part of the research group Science in Transition at the IWT, Bielefeld, funded 
by the Volkswagen Foundation. 

8 The experimental approach to complex systems of PDEs is only one particular instance. The simu-
lation method has shed its skin several times, see Fox Keller 2003, or Schweber and Waechter 
2000. 

9 The hegemonial role of GCMs in climate research is commonly acknowledged. It is discussed 
critically in Shackley 1998 et al.; see, also, the dispute between Demeritt (2001a, 2001b) and 
Schneider (2001). 

10 For an ‘evolutionary tree’ of GCMs, see Edwards 2000. 
11 The IPCC process and its character as a hybrid science-policy enterprise have been analyzed exten-

sively in the literature. It is not possible to give an overview here. The anthology of Miller and Ed-
wards (2001) gives an impression of the science studies approach to climate science and is highly 
recommended. 

12 A comparison of the impact of this discussion on different modeling centers is given in Krück and 
Borchers 1999. 

13 In modeling terms, the FA is equivalent to ‘Arakawa’s trick.’ For an epistemological investigation 
and a characterization of simulations as imitations of complex dynamics using artificial mecha-
nisms, see Winsberg 2003; Küppers and Lenhard 2006. See Petersen 2000 for an emphasis on a 
simulation-oriented philosophy of climate research. 

14 For an account of the intimate relation between the simulation method and (inter-)disciplinary 
structure, see Lenhard et al.  2006. 

15 Documented in the web: http://www.ccsm.ucar.edu/models/ 
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MARCEL BOUMANS

THE DIFFERENCE BETWEEN ANSWERING A ‘WHY’ QUESTION
AND ANSWERING A ‘HOW MUCH’ QUESTION

But scientific accuracy requires of us that we should in no wise confuse the simple and 
homely figure, as it is presented to us by nature, with the gay garment which we use to 
clothe it. Of our own free will we can make no change whatever in the form of the one, 
but cut and colour of the other we can choose as we please (Hertz [1893] 1962: 28). 

INTRODUCTION

Generally, simulations are carried out to answer specific questions. The assessment 
of the reliability of an answer depends on the kind of question investigated. The an-
swer to a ‘why’ question is an explanation (van Fraassen 1988: 138). The premises of 
an explanation have to include invariant relationships (Woodward 2000), and thus 
the reliability of such an answer depends on whether the domain of invariance of the 
relevant relationships covers the domain of the question. The answer to a ‘how 
much’ question is a measurement. A measurement is reliable when it is an output of a 
calibrated measuring instrument. Calibration is defined in metrology as a  

“set of operations that establish, under specified conditions, the relationship between 
values of quantities indicated by a measuring instrument or measuring system, or values 
represented by a material measure or a reference material, and the corresponding values 
realized by standards” (IVM 1993: 48).  

The idea of a standard is that it is often based upon naturally occurring phenomena 
when these possess the required degree of stability. These stable phenomena need not 
necessarily be invariant relationships but could also be stable facts. An example of 
this approach to base standards on a set of proper invariants is the way in which the 
international metric organizations aim to link the base units of the International Sys-
tem of Units (meter, kilogram, second, etc.) to the real world through the fundamen-
tal constants of physics (velocity of light, Avogadro constant, etc.) that are supposed 
to be universal and unchanging. 

The simulations discussed in this chapter are research activities carried out with 
and on mathematical models. Therefore, depending on the kind of questions to be 
answered, a model should fulfill different requirements. The chapter starts with Hertz 
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who distinguished three kinds of requirement: consistency, correctness, and appro-
priateness. Correctness refers to the requirement that the model should contain equa-
tions that are representations of the laws of the phenomena to be investigated. In 
modern terminology, models that fulfill this requirement of correctness are called 
white-box models. In economics, this requirement of correctness led to the construc-
tion of models that were as large and detailed as possible. Simulations carried out on 
these white-box models showed that the output displayed similar characteristics to 
those of the phenomenon being studied, which gave a strong support to this kind of 
modeling. It will be shown in this chapter, however, that this requirement of correct-
ness is not requisite for answering ‘how much’ questions. Therefore, the ways mod-
els are built to produce reliable results differ for both kinds of question. In econom-
ics, the approach to build white-box models is the so-called Cowles Commission 
program that dominated econometrics till the 1980s. Doubts whether the obtained 
model equations are invariant with respect to policy interventions, worded most ex-
pressly by Robert Lucas, led to alternative programs of which Lucas’s was most in-
fluential. In this so-called general-equilibrium approach, a ‘good’ model is not neces-
sarily a correct one, but should provide ‘imitations’ that pass a Turing test. In 
Kydland and Prescott’s implementation of Lucas’ program, models came to be con-
sidered as measuring instruments, which entails that Turing testing is interpreted as a 
kind of calibration. It will be shown that calibration is understood to mean that mod-
els should be gray boxes; that is, they are constructed and assessed according to a 
system engineering approach of assembling black boxes whose output displays the 
desired operating characteristics. 

This chapter will show that the economic literature on the use of models for simu-
lation purposes reveals a shift in the importance of the requirement of ‘correctness,’ 
namely, a shift from an approach in which correctness is the most dominant require-
ment to an approach in which this requirement has fully disappeared. However, in 
this shift from white-box modeling to gray-box modeling, the requirement of appro-
priateness remained crucial.  

HERTZ’S MODEL REQUIREMENTS

The tradition of modeling in empirical economics is rooted in the work of James 
Clark Maxwell, in particular, his ideas about the use of analogies: “that partial simi-
larity between the laws of one science and those of another which makes each of 
them illustrate the other” (Maxwell [1855] 1965: 156). In other words, to the extent 
that two physical systems obey laws with the same mathematical form, the behavior 
of one system can be understood by studying the behavior of the other, better known, 
system. Moreover, this can be done without formulating any hypothesis about the 
real nature of the system under investigation. 

Heinrich Hertz recognized the value of the concept of formal analogy in trying to 
understand the essential features of the natural world. For Hertz, representations of 
mechanical phenomena could only be understood in the sense of Maxwell’s dynam-
ical analogies, which is obvious from his definition of a ‘dynamical model’ in his 
Principles of Mechanics Presented in a New Form:
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A material system is said to be a dynamical model of a second system when the connec-
tions of the first can be expressed by such coordinates as to satisfy the following condi-
tions: (1) That the number of coordinates of the first system is equal to the number of the 
second. (2) That with a suitable arrangement of the coordinates for both systems the 
same equations of condition exist. (3) That by this arrangement of the coordinates the 
expression for the magnitude of a displacement agrees in both systems (Hertz [1899] 
1956: 175). 

From this definition, Hertz inferred that: “In order to determine beforehand the 
course of the natural motion of a material system, it is sufficient to have a model of 
that system. The model may be much simpler than the system whose motion it repre-
sents” (p. 176).  

While the ‘model’ was still considered as something material, its relation to the 
system of inquiry should be the same as the relation of the images (Bilder) we make 
of the system to the system itself; namely, that the consequents of the representation, 
whether material (model) or immaterial (image), must be the representation of the 
consequents. However, this relationship between representation and system under 
investigation would allow for many different representations. Hertz, therefore, for-
mulated three requirements a representation should fulfill. First, a representation 
should be “(logically) permissible,” that is, it should not contradict the principles of 
logic. Second, permissible representations should be “correct,” that is, the essential 
relations of the representation must not contradict the system relations. Third, of two 
correct and permissible representations of the same system, one should choose the 
most “appropriate.” A representation is more appropriate when it is more distinct, 
that is, when it contains more of the essential relations of the system; and when it is 
simpler, that is, when it contains a smaller number of superfluous or empty relations. 
Hertz explicitly noted that empty relations cannot be altogether avoided: “They enter 
into the images because they are simply images, – images produced by our mind and 
necessarily affected by the characteristics of its mode of portrayal” (Hertz [1899] 
1956: 2). 

In short, the three requirements that a representation of a phenomenon should ful-
fill are: (1) logical consistency; (2) ‘correctness,’ that there is correspondence be-
tween the relations of the representation and those of the phenomenon; and (3) ‘ap-
propriateness,’ that it contains the essential characteristics of the phenomenon (dis-
tinctness) as simply as possible. Hertz considered the last requirement as most prob-
lematic:  

We cannot decide without ambiguity whether an image is appropriate or not; as to this 
differences of opinion may arise. One image may be more suitable for one purpose, an-
other for another; only by gradually testing many images can we finally succeed in ob-
taining the most appropriate (Hertz [1899] 1956: 3).  

Appropriateness will appear as the crucial requirement for any satisfactory model 
building process. Every model is necessarily a simplified picture of a phenomenon 
under investigation, but this simplification should be such that the picture remains 
appropriate.
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AIM FOR CORRECTNESS

To fulfill the requirement of correctness, one should take care that the model is a rep-
resentation of the relevant laws. One of the central themes of Trygve Haavelmo’s 
(1944) seminal paper The Probability Approach in Econometrics was a discussion of 
the problem how to uncover these laws outside a laboratory. This problem, labeled 
by him as the problem of autonomy, was worded as the problem of “judging the de-
gree of persistence over time of relations between economic variables,” or, more 
generally speaking, “whether or not we might hope to find elements of invariance in 
economic life, upon which to establish permanent ‘laws’” (Haavelmo 1944: 13). The 
problem of autonomy results from the fact that real economic phenomena cannot be 
“artificially isolated from ‘other influences’” (Haavelmo 1944: 14). We have to deal 
with passive observations, and these are “influenced by a great many factors not ac-
counted for in theory; in other words, the difficulties of fulfilling the condition ‘other 
things being equal’” (Haavelmo 1944: 18). 

To explore the problem of autonomy, consider the following more concrete prob-
lem. Let y denote an economic variable, the observed values of which may be con-
sidered as results of planned economic decisions taken by individuals, firms, and so 
forth. And let us start from the assumption that the variable y is influenced by a num-
ber of causal factors, x1, x2, … . 

Our hope in economic theory and research is that it may be possible to establish constant 
and relatively simple relations between dependent variables, y (of the type described 
above), and a relatively small number of independent variables, x. In other words, we 
hope that, for each variable, y, to be ‘explained’, there is a relatively small number of ex-
plaining factors the variations of which are practically decisive in determining the varia-
tions of y (Haavelmo 1944: 22–23). 

Let the behavior of y be determined by a function F:

y = F(x1, x2), … (1) 

Then, the way in which the factors xi might influence y can be represented by the 
following equation: 

y = F(x1, x2, …) = F1 x1 + F2 x2 + … (2) 

The deltas, , indicate a change in magnitude. The terms Fi indicate how much y will 
proportionally change due to a change in magnitude of factor xi. Haavelmo distin-
guished between two different notions of influence, namely, potential influence and 
factual influence. When Fi differs significantly from zero, then factor xi has ‘potential 
influence.’ The combination Fi xi indicates the magnitude of the ‘factual influence’ 
of a factor xi upon y.

According to Haavelmo, the distinction between potential and factual influence 
was fundamental. 

For, if we are trying to explain a certain observable variable, y, by a system of causal fac-
tors, there is, in general, no limit to the number of such factors that might have a  
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potential influence upon y. But Nature may limit the number of factors that have a non-
negligible factual influence to a relatively small number (Haavelmo 1944: 24). 

Thus, the relationship y = F(x1, …, xn) explains the actual observed values of y, pro-
vided that the factual influence of all the unspecified factors together were very small 
compared with the factual influence of the specified factors x1, …, xn. However, “our 
greatest difficulty in economic research” does not lie in establishing simple relations, 
but rather in the fact the empirically found relations, derived from observation over 
certain time intervals, are “still simpler than we expect them to be from theory, so 
that we are thereby led to throw away elements of a theory that would be sufficient to 
explain apparent ‘breaks in structure’ later” (Haavelmo 1944: 26). The problem is 
that it is not possible to identify the reason why the factual influence of a factor, say 
xn+1, is negligible, that is, Fn+1 xn+1  0. We cannot distinguish whether its potential 
influence is very small, Fn+1  0, or whether the factual variation of this factor over 
the period under consideration was too small, xn+1  0. We would simply like to 
‘throw away’ the factors whose influence was not observed because their potential 
influence was negligible to start with. At the same time, we want to retain factors 
whose influence was not observed only because they varied so much less that their 
potential influence was veiled. 

Haavelmo’s design rules for econometrics were considered to be an alternative to 
the experimental methods of science (Morgan 1990: 262). However, although re-
searchers at the Cowles Commission1 adopted Haavelmo’s ‘blueprint’ for economet-
rics (Morgan 1990: 251), they scrapped the term ‘autonomy’ because it was believed 
that the model relations were invariant. The reason for believing this was that 
Haavelmo had pointed out the possibility that the empirically found relationships 
may be simpler than theory would suggest. This problem could be avoided by build-
ing models that were as comprehensive as possible, based on a priori theoretical 
specifications. The Cowles Commission view was that to understand a particular as-
pect of economic behavior, it is necessary to have a system of descriptive equations. 
These equations should contain relevant observable variables, be of a known form 
(preferably linear), and have estimable coefficients. However, “little attention was 
given to how to choose the variables and the form of the equations; it was thought 
that economic theory would provide this information in each case” (Christ 1994: 33). 

SIMULATION ON CORRECT MODELS

The Cowles Commission’s solution to the problem of autonomy was to build more 
and more comprehensive models. The idea was to build in as many potential influ-
ences as possible. In the 1940s, Lawrence Klein was commissioned to build Cowles 
Commission type models of the United States. The program’s aim was to build in-
creasingly comprehensive models to improve their predictability so that they could 
be used as reliable instruments for economic policy. Irma and Frank Adelman’s 
(1959) computer simulation of the Klein-Goldberger (1955) model of the United 
States economy – at that time the most advanced macroeconometric model – showed 
that this model, when shocked by disturbances, could generate cycles with the same 
characteristics as those of the United States economy. Indeed, the Klein-Goldberger 
model cycles were remarkably similar to those described as being characteristic of 
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the United States economy by the National Bureau of Economic Research (NBER). 
From this it was concluded that the Klein-Goldberger model was “not very far 
wrong” (Adelman and Adelman 1959: 621). 

The Klein-Goldberger model consisted of twenty-five difference equations with a 
corresponding number of endogenous variables; it was nonlinear in character and 
included lags up to the fifth order. The model had been applied to yearly projections 
of economic activity in the United States with some success, but its dynamic proper-
ties were only analyzed using highly simplified assumptions. The innovative element 
of the Adelmans’ research was that, rather than making simplifying assumptions, the 
complexity of the Klein-Goldberger model was left intact and the equations were 
programmed for an IBM 650 and simulated for one hundred annual periods. The rea-
son this work was not done earlier was that until then no technology was available to 
cope with such a task. 

Initially, Irma and Frank Adelman were interested in an endogenous explanation 
of the persistent business fluctuations so characteristic of Western capitalism. Exist-
ing theories led to the idea of either dampened or explosive cycles. To the Adelmans, 
exogenous shocks or externally imposed constraints seemed “rather artificial,” so 
they looked for a “more satisfactory mechanism for the internal generation of a per-
sistent cyclical process” (Adelman and Adelman 1959: 596). The purpose of their 
paper was to investigate whether the Klein-Goldberger model was a good candidate. 
The first step in their research was to run the program in the absence of additional 
external constraints and shocks. The exogenous variables were extrapolated by fitting 
a least-squares straight line to the postwar data. The result was that the variables in 
the Klein-Goldberger model grow almost linearly with time. Thus, the endogenous 
part of the model did not contain an explanation of the oscillatory process. Two con-
clusions could be drawn: Either the Klein-Goldberger model is ‘fundamentally in-
adequate,’ or, to the extent that the behavior of this system constitutes a valid qualita-
tive approximation to that of a modern capitalist society, the observed solution of the 
Klein-Goldberger equations implies the need to look elsewhere for the origin of 
business fluctuations. Under the latter assumptions, cyclical analysis would be lim-
ited to an investigation of the reaction of the economic system to various perturba-
tions. And, since the Klein-Goldberger model does present a more or less detailed 
description of the interactions among the various sectors of the economy, it could be 
utilized in the examination of the mechanism of response to shocks. Random shocks 
superimposed on the extrapolated values of the exogenous quantities and random 
shocks introduced into each nondefinitional model equation induced cycles with 
three- to four-year periods and amplitudes that were “reasonably realistic.” 

That the amplitudes and the periods of the oscillations observed in this model 
were “roughly the same as those which are found in practice” (Adelman and Adel-
man 1959: 611) was seen by the Adelmans as “merely a necessary condition for an 
adequate simulation of the cyclical fluctuations of a real industrial economy” (Adel-
man and Adelman 1959: 611). The question now was whether the shocked model 
could produce business cycles in the ‘technical’ sense: 

[I]f a business cycle analyst were asked whether or not the results of a shocked Klein-
Goldberger computation could reasonably represent a United States-type economy, how 
would he respond? To answer these questions we shall apply to the data techniques 
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developed by the National Bureau of Economic Research (NBER) for the analysis of 
business cycles (Adelman and Adelman 1959: 612). 

A comparison between the characteristics of the cycles generated by the shocked 
model and the characteristics summarized in the NBER publications of Burns and 
Mitchell (1946) and Mitchell (1951) was considered to be “quite a stringent test of 
the validity of the model” by the Adelmans (Adelman and Adelman 1959: 612). 

The striking result was that when random shocks of a “realistic order of magni-
tude” are superimposed on the Klein-Goldberger model equations, the characteristics 
of the resulting cyclical fluctuations appeared to be similar to those observed in the 
United States economy: 

The average duration of a cycle, the mean length of the expansion and contraction 
phases, and the degree of clustering of individual peaks and troughs around reference 
dates all agree with the corresponding data for the United States economy. Furthermore, 
the lead-lag relationships of the endogenous variables included in the model and the in-
dices of conformity of the specific series to the overall business cycle also resemble 
closely the analogous features of our society (Adelman and Adelman 1959: 629). 

The Adelmans concluded that “it is not unreasonable to suggest that the gross charac-
teristics of the interactions among the real variables described in the Klein-
Goldberger equations may represent good approximations to the behavioral relation-
ships in a practical economy” (Adelman and Adelman 1959: 620). 

Irma Adelman wrote for the International Encyclopedia of the Social Sciences the 
second part of the entry simulation, namely, on Simulation of Economic Processes.2
She defined simulation as follows: 

‘Simulation’ of an economic system means the performance of experiments upon an ana-
logue of the economic system and the drawing of inferences concerning the properties of 
the economic system from the behavior of its analogue. The analogue is an idealization 
of a generally more complex real system, the essential properties of which are retained in 
the analogue (Adelman 1968: 268). 

In other words, a good simulation should be performed on an analogue that serves as 
an appropriate model. She noted, however, that the connotation of simulation among 
economists is much more restricted: “The term ‘simulation’ has been generally re-
served for processes using a physical or mathematical analogue and requiring a mod-
ern high-speed digital or analogue computer for the execution of the experiments” 
(Adelman 1968: 268–269). 

Adelman observed three major sources for the use of simulation techniques in 
economics. First, both theory and casual observation suggest that an adequate de-
scription of the dynamic behavior of an economy must involve complex patterns of 
time dependencies, nonlinearities, and intricate interrelationships among the many 
variables governing the evolution of economic activity through time. Simulation 
techniques permit the use of more realistic analogues to describe real economic sys-
tems. 

The second source for the use of simulation arises from the need of social scien-
tists to find morally acceptable and scientifically adequate substitutes for the physical 
scientist’s controlled experiments. To the extent that the analogue used in the simula-
tion represents the relevant properties of the economic system under study, results of 
experimentation with the analogue can be used instead of those that would have been 
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obtained with analogous experiments with the real economy. Since a simulation 
study can approximate the economy’s behavior and structure quite closely, simula-
tion experiments can, at least in principle, lead to conditional predictions of great 
operational significance. 

Finally, the mathematical flexibility of simulation permits the use of this tool to 
gain insights into many phenomena whose intrinsic nature is still in no way obvious. 
It is often possible, for example, to formulate a very detailed quantitative description 
of a particular process before its essential nature is sufficiently well understood to 
permit the degree of stylization required for a useful theoretical analysis. Studies on 
the sensitivity of the results to various changes in assumptions can then be used to 
disentangle the important from the unimportant features of the problem. 

She concluded her entry with the remark that “the usefulness of the technique will 
depend crucially, however, upon the validity of the representation of the system to be 
simulated and upon the quality of the compromise between realism and tractability” 
(Adelman 1968: 273). Hence, in her account of the three sources for simulations in 
economics, she apparently prefers that the models are correct representations of an 
economy. But her concluding remark emphasizes that appropriateness, as the “qual-
ity of the compromise between realism and tractability,” is just as crucial. 

ROBERT LUCAS’ PROGRAM

To Robert Lucas, the Adelmans’ achievement signaled a new standard for what it 
means to understand business cycles: “One exhibits understanding of business cycles 
by constructing a model in the most literal sense: a fully articulated artificial econ-
omy which behaves through time so as to imitate closely the time series behavior of 
actual economics”(Lucas 1977: 11). To see that the Adelmans’ test works as a strin-
gent test, Lucas understood that the facts that are to be reproduced should be a list of 
characteristics providing as much detail as possible. He found these detailed facts in 
Friedman and Schwartz’s Monetary History (1963), Mitchell (1951), and Burns and 
Mitchell (1946). However, Lucas paraphrased the Adelmans’ question above as fol-
lows: 

The Adelmans posed, in a precise way, the question of whether an observer armed with 
the methods of Burns and Mitchell (1946) could distinguish between a collection of eco-
nomic series generated artificially by a computer programmed to follow the Klein-
Goldberger equations and the analogous series generated by an actual economy (Lucas 
1977: 11). 

This paraphrasing is important because the characteristics test of the Adelmans is 
thereby reinterpreted as a Turing test. This test was originally described by Turing 
(1950) as an ‘imitation game’ to investigate the question “Can machines think?” To-
day, a Turing test is generally described as follows: Reports based on output of the 
quantitative model and on measurements of the real system are presented to a team of 
experts. When they are not able to distinguish between the model output and the sys-
tem output, the model is said to be valid (see, e.g., van Daalen, Thissen, and Ver-
braeck 1999). As one can see, the test is in principle the same as the Adelmans’ test: 
An observer (interrogator or expert) has to decide whether a distinction can be made 
between a computer output and output from the ‘real’ world. 
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The enormous advantage of Turing’s approach to artificial intelligence is that it 
freed scientists from building replicas of the human mind to achieve machine think-
ing that meets the standard of human intelligence. In the same way, the characteris-
tics test of the Adelmans freed macroeconometricians from having to build “detailed, 
quantitatively accurate replicas of the actual economy” (Lucas 1977: 12). Turing test-
ing legitimized Lucas to work with very simple (and therefore unrealistic) models. 
Lucas’s approach was not to aim at models as ‘accurate descriptive representations of 
reality’:

[I]nsistence on the ‘realism’ of an economic model subverts its potential usefulness in 
thinking about reality. Any model that is well enough articulated to give clear answers to 
the questions we put to it will necessarily be artificial, abstract, patently ‘unreal’ (Lucas 
1980: 696). 

Lucas argues for the use of ‘as-if p’ assumptions, where p is an analogue system, 
with the same ‘superficial’ features as the system under study. Lucas said, 

I think it is exactly this superficiality that gives economics much of the power that it has: 
its ability to predict human behavior without knowing very much about the make up and 
lives of the people whose behavior we are trying to understand (Lucas 1987: 241). 

According to Lucas, the model assumptions need not be assertions about the world: 
A ‘theory’ is not a collection of assertions about the behavior of the actual economy but 
rather an explicit set of instructions for building a parallel or analogue system – a me-
chanical, imitation economy. A ‘good’ model, from this point of view, will not be ex-
actly more ‘real’ than a poor one, but will provide better imitations. Of course, what one 
means by a ‘better imitation’ will depend on the particular questions to which one wishes 
answers (Lucas 1980: 697). 

In the ‘equilibrium business-cycle program’ dominated by Lucas’s instructions, it 
became standard practice to run an experiment with an artificial economy: 

One of the functions of theoretical economics is to provide fully articulated, artificial 
economic systems that can serve as laboratories in which policies that would be prohibi-
tively expensive to experiment with in actual economies can be tested out at much lower 
cost (Lucas 1980: 696). 

For his views on ‘superficiality’, Lucas, on several occasions, acknowledges the in-
fluence of Herbert Simon’s 1969 publication The Sciences of the Artificial (Lucas 
1980: 697; 1987: 241; see also Klamer 1984: 47). In following up this reference, 
Hoover (1995a) shows that Simon (1969) provided the materials that could be used 
to construct a methodological foundation for calibration (the choice of the model 
parameters to guarantee that the model precisely mimics some characteristics; see 
Hoover 1995a: 25). 

The central object of Simon’s account is an artifact, which he defines as: 
a meeting point – an ‘interface’ in today’s terms – between an ‘inner’ environment, the 
substance and organization of the artifact itself, and an ‘outer’ environment, the sur-
roundings in which it operates. If the inner environment is appropriate to the outer envi-
ronment, or vice versa, the artifact will serve its intended purpose (Simon 1969: 7). 

The advantage of factoring an artificial system into goals, outer environment, and 
inner environment is “that we can often predict behavior from knowledge of the sys-
tem’s goals and its outer environment, with only minimal assumptions about the  
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inner environment” (Simon 1969: 8). It appears that different inner environments 
accomplish identical goals in similar outer environments, such as weight-driven 
clocks and spring-driven clocks. A second advantage is that, in many cases, whether 
a particular system will achieve a particular goal depends on only a few characteris-
tics of the outer environment, and not on the detail of that environment. So, we 
“might look toward a science of the artificial that would depend on the relative sim-
plicity of the interface as its primary source of abstraction and generality” (Simon 
1969: 9). Thus, as Hoover rightly observes: “Simon’s views reinforce Lucas’s dis-
cussion of models. A model is useful only if it foregoes descriptive realism and se-
lects limited features of reality to reproduce” (Hoover 1995a: 35). 

However, this does not mean that we can take any inner environment as long as 
the model succeeds in reproducing the selected features. In Lucas’s view, the ability 
of models to imitate actual behavior in the way tested by the Adelmans is a neces-
sary, but not sufficient, condition to use these kinds of macroeconometric models for 
policy evaluation. Policy evaluation requires “invariance of the structure of the 
model under policy variations” (Lucas 1977: 12). The underlying idea, known as the 
Lucas Critique, is that estimated parameters that were previously regarded as ‘struc-
tural’ in econometric analyses of economic policy actually depend on the economic 
policy pursued during the estimation period. Hence, the parameters may change with 
shifts in the policy regime (Lucas 1976). Therefore, the inner environment is only 
relatively independent from the outer environment: 

The independence of the inner and outer environments is not something which is true of 
arbitrary models; rather it must be built into models. While it may be enough in hostile 
environments for models to reproduce key features of the outer environment ‘as if’ real-
ity was described by their inner environments, it is not enough if they can do this only in 
benign environments. […] Simon’s notion of the artifacts helps Lucas’s both rejecting 
realism in the sense of full articulation and at the same time, insisting that only through 
carefully constructing the model from invariants – tastes and technology, in Lucas’s 
usual phrase – can the model secure the benefits of a useful abstraction and generality 
(Hoover 1995a: 36). 

CALIBRATED MODELS

Kydland and Prescott’s (1982) paradigmatic new-classical equilibrium, real-
business-cycle paper is generally acknowledged as the first application of calibration 
in economics. Kydland and Prescott (1982) introduced calibration to macroeconom-
ics as a means of reducing “dramatically” the number of free parameters of their 
business-cycle model (Kydland and Prescott 1982: 1361). In a special symposium: 
‘Computational Experiments in Macroeconomics’ in the Journal of Economic  

Lucas’s 1976 paper is perhaps the most influential and most cited paper in macro-
economics (Hoover 1995b), and it contributed to the decline in popularity of the 
Cowles Commission approach. The Lucas Critique was an implicit call for a new 
research program. This alternative to the Cowles Commission program involved 
formulating and estimating macroeconometric models with parameters that are in-
variant under policy variations and can thus be used to evaluate alternative policies. 
The only parameters Lucas “hopes” to be invariant under policy changes are the pa-
rameters describing “tastes and technology” (Lucas 1977: 12; 1981: 11–12). 
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Perspectives (1996), Kydland and Prescott explicated the ‘tool’ they used in their 
(1982) Time to Build paper. Their ‘experiment’ was an implementation of Lucas’ 
‘equilibrium business-cycle program’ by running a simulation experiment with an 
artificial economy. 

According to Kydland and Prescott (1991: 169; 1996: 70–75), any economic 
computational experiment involves five major steps: (1) Pose a Question: The pur-
pose of a computational experiment is to derive a quantitative answer to some well-
posed question. (2) Use Well-Tested Theory: Needed is a theory that has been tested 
through use and found to provide reliable answers to a class of questions. A theory is 
not a set of assertions about the actual economy, rather, following Lucas (1980), de-
fined as an explicit set of instructions for building a mechanical imitation system to 
answer a question. (3) Construct a Model Economy: An abstraction can be judged 
only relative to some given question. The features of a given model may be appropri-
ate for some question (or class of questions) but not for others. (4) Calibrate the 
Model Economy: In a sense, model economies, like thermometers, are measuring 
devices. Generally, some economic questions have known answers, and the model 
should give an approximately correct answer to them if we are to have any confi-
dence in the answer given to the question with unknown answer. Thus, data are used 
to calibrate the model economy so that it mimics the world as closely as possible 
along a limited but clearly specified number of dimensions. (5) Run the Experiment.

Kydland and Prescott’s specific kind of assessment is similar to Lucas’ idea of 
testing, although he did not call it calibration. It was argued above that Lucas’ idea of 
testing is similar to a Turing test. To have the confidence that a computer is intelli-
gent, it should give known answers to familiar questions. To test models as “useful 
imitations of reality,” we should subject them to shocks “for which we are fairly cer-
tain how actual economies, or parts of economies, would react. The more dimensions 
on which the model mimics the answer actual economies give to simple questions, 
the more we trust its answer to harder questions” (Lucas 1980: 696–697). This kind 
of testing is similar to calibration as defined by Franklin (1997: 31): “the use of a 
surrogate signal to standardize an instrument. If an apparatus reproduces known phe-
nomena, then we legitimately strengthen our belief that the apparatus is working 
properly and that the experimental results produced with that apparatus are reliable.” 

The ‘harder question’ Kydland and Prescott wanted their model to answer was 
“What is the quantitative nature of fluctuations induced by technology shocks?” 
(Kydland and Prescott 1996: 71). And the answer to this question was that “the 
model economy displays business cycle fluctuations 70 percent as large as did the 
U.S. economy” (Kydland and Prescott 1996: 74). In other words, the answer is sup-
posed to be a measurement result carried out with a calibrated instrument. 

But what are the economic questions for which we have known answers?  Or, 
what are the standard facts with which the model is calibrated? The answer is given 
most explicitly by Cooley and Prescott (1995). They describe calibration as a selec-
tion of the parameter values for the model economy so that it mimics the actual 
economy on dimensions associated with long-term growth by setting these values 
equal to certain “more or less constant” ratios. These ratios were the so-called “styl-
ized facts” of economic growth, “striking empirical regularities both over time and 
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across countries,” the “benchmarks of the theory of economic growth” (Cooley and 
Prescott 1995: 3): 

1. Real output grows at a more or less constant rate. 
2. The stock of real capital grows at a more or less constant rate greater than the 

rate of growth of the labor input. 
3. The growth rates of real output and the stock of capital tend to be about the 

same. 
4. The rate of profit on capital has a horizontal trend. 
5. The rate of growth of output per capita varies greatly from one country to an-

other. 
6. Economies with a high share of profits in income tend to have a high ratio of in-

vestment to output. (Cooley and Prescott 1995: 3). 
Only the first four ‘facts’ were used. The last two emphasize the differences between 
countries or economies and are thus not general enough. 

The research explicitly aimed at answering ‘how-much’ questions and certainly 
no ‘why’ questions: “In our business cycle studies, we do not try to fit or explain 
anything. […] theory is a set of instructions for constructing a model to measure 
something” (Kydland and Prescott 1997: 210–211). 

The business cycle models are considered as stochastic versions of neoclassical 
growth theory. The standard framework that has been used to study business cycles is 
the neoclassical growth model with labor-leisure choice (see King, Plosser, and Re-
belo 1988; Cooley and Prescott 1995; Cooley 1997). In this artificial world, each 
household has an endowment of time, each period of which it must divide between 
leisure and work. The households in this economy supply capital kt and labor ht to 
firms that have access to a technology described by the function F(kt, ht). Aggregate 
output is determined by the production function 

),( tt
z

t hkFey t  (3) 

where zt is a random productivity parameter. It is assumed that zt evolves according 
to the following process: 

zt+1 = zt + t (4) 

where t is distributed normally, with zero mean and standard deviation . This pro-
ductivity shock is the (only) source of the business cycle. It is assumed that the capi-
tal stock depreciates at the rate , and that consumers add to the stock of capital by 
investing some amount of the real output each period. Investment in period t, xt, pro-
duces productive capital in period t+1, so that the accounting relation for the aggre-
gate capital stock is: 

 (1+ )(1+ )kt+1 = (1- )kt + xt (5) 



‘WHY’ QUESTION OR ‘HOW-MUCH’ QUESTION 119

where  denotes the rate of population growth and  denotes the long-term real 
growth rate, which is assumed to be constant according to the first stylized fact. 

Households choose consumption ct and hours of work ht at each date to maximize 
the expected discounted value of utility, given their expectations over future prices: 

})1,()1({max
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tt

hxc
hcuE      0 <  < 1 (6) 

subject to sequences of budget constraints: ct + xt yt.
Taking account of the stylized facts of growth (see above) leads to the following 

parametric classes. The third and fourth stylized fact, combined with a stylized fact 
(not listed above) that the ratio of labor income to total income also has a horizontal 
trend, imply a so-called Cobb-Douglas production function, which has the form: 

1),( tttt hkhkF . (7) 

Certain features of the specification of preferences are also tied to growth facts: Per 
capita leisure is approximately constant and real wages have increased steadily. 
Taken together, these two growth facts imply that the elasticity of substitution be-
tween consumption and leisure (1 - h) should be near unity, which implies a Cobb-
Douglas kind of function for the composite commodity: c1- (1 - h) , where  is the 
share parameter for leisure in the composite commodity. A second stylized fact used 
to arrive at an expression of the utility function is that the elasticity of substitution 
between the composite commodity of consumption and leisure is constant and equal 
to 1/ : As a result, these two stylized facts imply the following parametric class of 
preferences:   

1
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Because the parameter  is ‘difficult to calibrate,’ it is assumed to be one, so that the 
parametric class is further restricted to: 

u(ct, 1-ht) = (1- )log ct +  log (1-ht). (9) 

Table 1.  Parameter values

Technology Preferences (‘Tastes’) 

0.40 0.012 0.95 0.007 0.0156 0.987 1 0.64 0.012 
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Then, the parameters are given values based on using all kinds of statistics (e.g., 
NIPA) and assumptions (values that are based only on assumption are bold faced, see 
Table 1). 

BUILDING OF INCORRECT BUT APPROPRIATE MODELS

Model building in the general-equilibrium program can be characterized by what 
Orcutt (1960) in one of the first accounts of simulations in economics called the 
building-block approach. 

Extensive testing of individual pieces must be carried out before the pieces are assem-
bled, and even after they have been assembled, it frequently may be necessary to modify 
some pieces. Also in finding and in eliminating the errors in a large and complex com-
puter program it is important to be able to do it piece by piece. And even after it is as-
sembled, it frequently may be desirable to alter a particular operating characteristic, or 
parameter, or the initial composition of components and their status variables. For these 
reasons it is highly useful to take the individual components of a model as building 
blocks and construct them and the over-all model so that they are like the fully plugable 
components of a modern piece of electronic equipment (Orcutt 1960: 901–902). 

In current systems engineering, this approach is better known as modular design. 
A module is a self-contained component with a standard interface to their components 
within a system. Modular design simplifies final assembly because there are fewer mod-
ules than subcomponents and because standard interfaces typically are designed for ease 
of fit. Each module can be tested prior to assembly and, in the field, repairs can be made 
by replacing defective modules. Custom systems can be realized by different combina-
tions of standard components; existing systems can be upgraded with improved modules; 
and new systems can be realized by new combinations of existing and improved modules 
(White 1999: 475). 

In the general equilibrium literature (see, e.g., the two standard survey volumes Coo-
ley 1995 and Stokey and Lucas with Prescott 1989), two modules are always part of 
the models: a Cobb-Douglas production function (Equation [7]) and the utility func-
tion defined by Equation (9). They already incorporate a list of required stylized 
growth facts and need only to be slightly adapted to meet the wishes of the customer. 

As a result of this systems-engineering model building approach, the assessment 
of this kind of model will differ from the way, for example, models are built à la 
Cowles Commission cookbooks. In systems engineering, model testing is carried out 
by validation. Validity of a model is seen as ‘usefulness with respect to some pur-
pose.’ In a paper on model validation in system dynamics, Barlas (1996) notes that 
for an exploration of the notion validation, it is crucial to make a distinction between 
white-box models and black-box models. In black-box models, what matters is the 
output behavior of the model: “The model is assessed to be valid if its output 
matches the ‘real’ output within some specified range of accuracy, without any ques-
tioning of the validity of the individual relationships that exists in the model” (Barlas 
1996: 185). White-box models, in contrast, are statements on how real systems actu-
ally operate in some aspects. Generating an accurate output behavior is not sufficient 
for model validity; the validity of the internal structure of the model is crucial too. A 
white-box model must not only reproduce the behavior of a real system, “but also 
explain how the behavior is generated” (Barlas 1996: 185–186).  
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Barlas 1996 discussed three stages of model validation: direct structural tests, 
structure-oriented behavior tests, and behavior pattern tests. For white-box models, 
all three stages are equally important; for black-box models, only the last stage mat-
ters. In his paper, Barlas emphasizes the special importance of structure-oriented be-
havior tests:  

These are strong behavior tests that can provide information on potential structure flaws. 
Since structure-oriented behavior tests combine the strength of structural orientation with 
the advantage of being quantifiable, they seem to be the most promising direction for re-
search on model validation (Barlas 1996: 184). 

It is, however, striking to see that the information provided by these tests does not 
give any direct access to the structure (Barlas 1996: 191), in contrast to the direct 
structure tests. The structure-oriented behavior tests listed in Barlas’ paper are similar 
to the characteristics tests as carried out by the Adelmans, and include the Turing 
test.

Though Barlas emphasizes that structure-oriented behavior tests are designed to 
evaluate the validity of the model structure, his usage of the notion of structure needs 
some further qualification. The way in which he describes and discusses these tests 
shows that his notion of structure is not limited to correct descriptions of real sys-
tems; it also includes other kinds of arrangements. Structure-oriented behavior tests 
are also ‘strong’ for the validation of modular-designed models, and, for these mod-
els, the term structure refers to the way the modules are assembled. These models – 
in line with the labeling of the other two types of model – could be called gray-box 
models and should pass the structure-oriented behavior tests and behavior pattern 
tests.

Structure-oriented behavior tests cannot be used to distinguish between arrange-
ments. To use Simon’s example, these tests are not appropriate to distinguish 
whether the time is indicated by a weight-driven clock or spring-driven clock. King 
and Plosser (1994) conducted an Adelmans’ test on a standard neoclassical real busi-
ness cycle model, explored in King, Plosser, and Rebelo (1988) and discussed above 
in the previous section. It appeared that this model passed the Adelmans’ test, a result 
which King and Plosser found “uncomfortable”: 

While no one has claimed that the Adelmans’ test or the one we have conducted here 
represent particularly powerful tests of a model, it is somewhat troubling to us that two 
models as different as the Klein-Goldberger model and a neoclassical real business cycle 
model are both able to pass this ‘test’ (King and Plosser 1994: 436). 

To resolve this ‘tension,’ they mentioned two options. The first option is to admit 
that the NBER stylized facts “have not been complete or thorough enough to help us 
distinguish among competing hypotheses.” If ‘hypothesis’ means ‘structure,’ I do 
agree. However, the second option is rather surprising:  

Macroeconomists must face the possibility that tests of the sort we conduct here are not 
only not powerful, but much of what we think we know about economic fluctuations as 
organized by Burns and Mitchell may be an artifact of their procedures (King and 
Plosser 1994: 437).  
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Though I can sympathize with their worry that some of the stylized facts might be 
more stylized than factual, the reason why they arrive at this worry seems (at least to 
me) unjustified. 

CONCLUSIONS

To answer ‘why’ questions, we need correct, that is, white-box models, but for 
‘what-is-the-effect-of’ or ‘how-much’ questions, we could use gray-box models or 
even black-box models. Gray-box models are assemblies of modules; these are black 
boxes with standard interface. As a result, these different kinds of models differ in 
the ways they are assessed. Tests are questions regarding a model to which we al-
ready know the answers. If the model reproduces these answers, the model can le-
gitimately be considered appropriate. The validation of appropriateness is purpose-
related. A corollary of this view is that tests and the type of questions a model is de-
signed to answer should belong to the same category. 

Gray-box models are ‘validated’ by the kinds of test that in the general-
equilibrium literature all fall under the general heading of ‘calibration,’ with this be-
ing defined generally enough to cover all tests that Barlas (1996) called “structure-
oriented behavior tests.” To trust the results of a simulation to ‘what-is-the-effect-of’ 
or ‘how-much’ questions, the models that are run should be calibrated and need not 
be causally descriptive or, in other words, be correct. 

Models that are built primarily for forecasting purposes belong to the category of 
black-box models. Therefore, it suffices for these models that they are tested only for 
their predictive power, which is a smaller subset of ‘what-is-the-effect-of’ or ‘how-
much’ questions. 

University of Amsterdam, Amsterdam, The Netherlands 

NOTES

1 The Cowles Commission for Research in Economics was set up in 1932 and funded by Alfred Cowles 
specifically to undertake econometric research. The journal Econometrica, in which Haavelmo’s paper 
appeared, was run from the Commission. The Cowles Commission’s econometric approach developed 
in the 1940s and 1950s became the standard approach now found in econometric textbooks. 

2 The first part, Individual Behavior was written by Allen Newell and Herbert A. Simon; and the third 
part, Political Processes, by Charles F. Hermann. 
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ERIKA MATTILA

STRUGGLE BETWEEN SPECIFICITY AND GENERALITY:
HOW DO INFECTIOUS DISEASE MODELS BECOME A 

SIMULATION PLATFORM?

INTRODUCTION

Promoting and protecting public health is the major task of the National Public 
Health Institute (KTL) in Finland. Its primary goal is to control epidemic infectious 
diseases nationally. The best known methods that impact on us all are the immuniza-
tions we receive since early childhood. Yet, how can the effects of these interven-
tions1 be followed and examined on a population level? Clinical studies may not be 
appropriate for assessing the effectiveness of medical interventions or the spread of 
epidemic infections for ethical, structural, or financial reasons. To overcome these 
restrictions, a research group of mathematicians, computer scientists, and infectious 
disease specialists2 decided to study and develop appropriate models and computer 
simulations. In this article, based on an empirical case study,3 I shall show how this 
group of modelers first built a family of Haemophilus models and then, based on the 
expertise gained during this process, worked hard to turn these models into a simula-
tion-based research tool for more general use in public health work.  

During a ten-year-long multidisciplinary modeling project, the initial research 
goal, to develop a general research tool for the public health administration, could not 
be addressed directly. Instead, the researchers studied different aspects of infectious 
disease modeling by building the family of Hib models. To be precise, the modelers 
focused initially on studying the spread and transmission of Haemophilus influenzae 
type b (Hib) bacteria within, for instance, a family or a daycare group, in other words, 
in a small, closed population. This helped them to study simple modeling techniques. 
Later, when a junior epidemiologist joined the research group, the focus shifted to-
ward more sophisticated epidemiological problems such as evaluating the effective-
ness of immunizations. Haemophilus influenzae type b bacteria can cause life-
threatening diseases such as meningitis or septicaemia. These diseases are rare in the 
Western countries due to the ongoing immunization programs.4 The research group 
built altogether ten Hib models, which I call the family of Hib models. Each single 
Hib model was an answer to a specific research question, and researchers applied the 
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novel results when tackling new research problems. However, the modeling work 
was not an example of a process that progressed straightforwardly. The modelers 
returned to the mathematical and statistical solutions and developed them further to 
address, for instance, the dynamics of Hib immunity in every detail. In a way, each 
Hib model functioned as a ‘storage space’ for the questions studied. Due to this func-
tion, I have identified two kinds of element5 within each single Hib model: those car-
rying mathematical and statistical solutions and those describing the modeled phe-
nomenon. These elements are not stable, ready-made building blocks; on the con-
trary, they were ‘moulded’6 and modified in order to address the questions under 
scrutiny. This practice, studying a clearly specified question within a model by creat-
ing mathematical solutions (such as algorithms) to answer it, is called tailoring by 
the modelers themselves. All the members in the family of Hib models shared this 
trait – they were specifically built to address (i.e., tailored to fit) certain epidemiol-
ogical questions.  

During the final years of the modeling project, the researchers built a population 
simulation model that differed from the earlier Hib models. The population simula-
tion model consisted of three parts: a demographic model (covering the structure7 of 
the Finnish population), a Hib transmission model (including the contact-site struc-
ture), and an immunity model (consisting of the immunizations and their effects). 
Due to its three-part structure, it was possible to follow different factors such as dura-
tion of immunity, carriage of infection, and immunization effects on an individual 
level and relate the findings to the population level. This means that the model en-
ables you to follow, for instance, what happens if a five-year-old boy gets the infec-
tion and how likely it is that he will infect his family members and children in his 
day-care group, and combine these questions with the changes in immunity levels of 
these populations (so-called herd immunity8) revealing possible risks for those who 
have not been immunized. Whereas these issues had been studied only partially 
within the family of Hib models, the population simulation model now provided the 
possibility to follow all these factors simultaneously. The modelers accomplished 
this by programming a simulation program with a command-line interface, called 
Simulator. The Simulator was used in explaining these processes and calculating 
predictions. The modelers underlined that within the Simulator, it was possible to 
explain certain aspects of the phenomenon (such as the proper immunity rate to reach 
the herd immunity) while simultaneously calculating possible predictive scenarios 
(such as what happens if a certain proportion of the population refuses to follow the 
immunization programs). This seems to require both openness toward the structure of 
the population simulation model and stability and accessibility from the program 
running the simulations. By following Boumans’ typology (this volume) on black-
box, white-box, and gray-box models, it appears to me that the model and its simula-
tion program were designed to function simultaneously both as a ‘white-box’ and a 
‘black-box’ model.9 The openness and transparency of the model’s structure may 
have prevented its closure, that is, its transformation into a black-boxed, general re-
search tool.

Despite the success of this population simulation model and its simulation pro-
gram, the modelers failed to attain their initial aim: to produce a general, simulation-
based research tool that epidemiologists in public health work could use as a closed 
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or ‘black-boxed,’ easy-to-use tool. My analysis will focus on this issue: Why does 
the Simulator fail to function as a general tool, a simulation platform? I call this gen-
eral research tool, inspired by Keating and Cambrosio’s (2000; 2003) concept of a 
biomedical platform, a simulation platform. Keating and Cambrosio consider the 
biomedical platform as a combination of techniques, reagents, skills, and constituent 
entities. In a sense, a platform is a context that brings together the modelers’ know-
how and skills with the research materials such as data, algorithms, and computa-
tional capacity. The initial idea was to use the simulation platform to estimate the 
cost-effectiveness of vaccination schedules in developing countries. To do this, it 
would have to be possible for the user to easily change the population context and the 
modeled pathogen10 on the simulation platform. But this was not the case: The com-
mand-line interface required advanced programming skills and the modelers were 
unable to program a graphical user interface. I shall argue that the step from the 
specificity to the generality was frustrated.11 On the one hand, the challenge of orga-
nizing interdisciplinary12 research may serve as an explanation for this. Did the re-
searchers involved in the modeling work manage to cross the disciplinary bounda-
ries? As Star and Griesemer (1989: 387) aptly emphasized, scientific work is hetero-
geneous and its “central tension is between divergent viewpoints and the simultane-
ous need for generalizable findings.” Could this tension, manifested in the boundary 
work,13 have nurtured the disagreements represented in the failure to reach the initial 
goal? On the other hand, the lack of resources (such as limited computational capac-
ity and expertise in programming) and the uncertainty concerning the usefulness of 
the simulation platform may have prevented the modelers from taking the final step 
from the specific, tailor-made models toward the general simulation platform. 

The structure of this chapter is as follows. First, I shall analyze the life span14 of 
the family of Hib models and examine the specificity of their elements. I shall com-
bine the story of programming the Simulator (and its different versions) with the life 
span of Hib models to show why it was important to develop the model and its simu-
lation program simultaneously. This also offers us insight into the role of disciplinary 
tensions in modeling work. Second, I shall study how the elements were moulded, 
combined in novel ways, or modified to function as parts of the population simula-
tion model. I shall analyze the modeling practices, such as bargaining over the pa-
rameter values, in order to describe how the modelers struggled to make the Simula-
tor function properly. Finally, I shall discuss what problems the modelers faced, and 
why this led them to fail in their efforts to turn the tailor-made models into a simula-
tion platform. 

THE MISMATCH BETWEEN THE TAILOR-MADE MODELS AND THE SIMULATOR

The original idea when developing modeling and simulation methods was to over-
come some common constraints of epidemiological study. Large-scale follow-up 
studies are usually restricted for ethical, financial, and structural reasons. Ethical re-
strictions refer to the research questions that cannot be studied without causing harm 
to the part of population under scrutiny. Financial and structural constraints are faced 
in the demanding processes of gathering data. For instance, to take a specimen in 
order to identify a potential carrier of an infection may be difficult and expensive if 
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serological tests15 are not available. But these were not the only reasons for develop-
ing computer models as part of the ‘research equipment’ for public health work. The 
need to construct predictive scenarios, explain how quickly an infection is able to 
spread within a population, or study ‘hypothetical’ cases, such as simulating whether 
a pathogen is likely to become extinct in a population, were a further underlying mo-
tivation for making the effort to program the simulation tool. Simulation as a method 
of study could also help to overcome the scarcity of data available from developing 
countries. Health organizations, such as WHO, are committed to counseling work to 
improve health care in those countries. Planning cost-efficient vaccination programs 
is part of their work. The production of reliable plans requires, for instance, studies 
on estimating the correct timing of booster vaccinations to ensure that the proposed 
programs will lead to sufficient immunity in the population. 

In order to understand the difficulties in attaining this level of generality, I shall 
first analyze the simultaneous processes of building the Hib models and program-
ming the simulation tool. This exemplifies the reasons for the mismatch between 
these models and the tool. Second, I shall analyze the modeling work16 to reveal the 
tensions appearing on the practical level and hampering the development of the gen-
eral research tool. Some clarifications of the terms I use are required: The family of 
Hib models refers to the same set of models I describe as tailor-made models. Hib 
models cover the epidemiological status of the models, and tailor-made addresses 
them as a specific group of models built in a particular way. The simulation tool is a 
computer program called a Simulator17 by the researchers.18 Four versions, which I 
call A, B,19 C1, and C2, were programmed during the modeling project. Versions A 
and C1 were made by affiliated junior programmers who were not full-time research-
ers in the group. Version C2 was programmed by the mathematician and computer 
scientist of the group and utilized the code from C1. However, what is the simulation 
platform? By simulation platform, I refer to the general research tool that was also 
the main goal of the project. It was meant to facilitate epidemiological research by 
overcoming the restrictions discussed earlier, but was not fully accomplished. The 
following summary (Table 1) introduces the different actors involved in the model-
ing work, their background, and skills. 

The tailor-made models are characterized by their structural transparency and 
openness. These traits remind us of the ‘white-box models’ introduced by Boumans 
(this volume) to clarify the processes of model validation. Instead of addressing the 
validity issue, I shall apply his descriptions of ‘white-box,’ ‘black-box,’ and ‘gray-
box’ models. By white-box, he refers to models providing statements on ‘how real 
systems actually operate in some aspects.’ In black-box models, only the ‘output be-
havior’ produced by the model is important. Gray-box models are modular-design 
models in which each module is a self-contained component that can be tested sepa-
rately. I interpret white-box models as representations of the modeled phenomena, 
whereas black-box models cover the ways in which they produce the output behav-
ior. Gray-box models appear to be in the middle ground, they capture the behavior of 
the real systems like the white-boxes, but close certain parts into modules like black-
boxes. I shall return the these three types of models in the discussion. 
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Table 1.  The groups of actors and their roles in the modeling work, their disciplinary
background, and their goals 

Role in the  
division of labor* 

Disciplinary and 
organizational  
affiliation

Skills and field of 
expertise 

Goals in  
modeling 

Senior infectious 
disease special-
ists at National 
Public Health In-
stitute (KTL)

Hib epidemiology, 
vaccine studies, 
public health work 

To develop a tool 
for clinical use; 
advanced studies 
in epidemiology 

Researchers 
PhD student in 
medicine at KTL

Studies in public 
health and infec-
tious diseases 

PhD in public 
health science, 
expertise in epi-
demiology 

Professor of Bi-
ometry at Univer-
sity of Helsinki 

Expertise in 
mathematical 
modeling, esp. 
Bayesian prob-
ability theory, 
background in 
mathematics and 
statistics

To develop and 
apply mathemati-
cal and statistical 
modeling methods 
to health sciences 

PhD students** in
Mathematics and 
Statistics

Master’s degree in 
applied mathe-
matics

PhD in biometry, 
expertise in 
mathematical 
modeling 

Modelers 

Professor of Com-
puter Science at 
Helsinki University 
of Technology 
(HUT)

Expertise in artifi-
cial life modeling 
and developing 
simulation tech-
niques 

To apply simula-
tion techniques in 
a new context 

Programmers 
Master’s students 
of engineering at 
HUT

Majoring in com-
puter science, 
specializing in 
programming 

To program the 
simulation tool 

*This table represents researchers, modelers, and programmers as separate groups for the sake of 
analytical clarity. However, these roles overlapped (the mathematician participated in the program-
ming and modelers certainly were researching the applicability of modeling methods in epidemiologi-
cal questions). 
**One of them continued his work as a postdoctoral researcher in the project.
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How can we identify transparency and openness in the models? An examination 
of both the mathematical and statistical solutions and the elements describing the 
modeled phenomena shows how they were built upon each other. The difficulties 
faced indicate that the models and their elements may have been structurally misrep-
resented in the Simulator. As an example of the evolving model’s elements, I intro-
duce the first published model, nicknamed the Good-night kiss model. This model 
studied how Haemophilus bacteria were transmitted within a closed population, 
namely a family. Its nickname originated from the presupposition that the pathogen 
was transmitted among family members in good-night kisses. The Good-night kiss 
model was a starting point for developing mathematical, especially probabilistic 
modeling methods. These methods,20 which took into account the typical traits of the 
modeled phenomena such as bacterial behavior, functioned as an element in the 
model and helped modelers to treat the problem of ‘missing data.’ Because the data 
used in the models were gathered for different purposes in the 1980s, certain parame-
ters needed in the modeling were not available. The Good-night kiss model obliged 
the researchers to familiarize themselves with the specific traits of pathogen trans-
mission: how the individual’s status changed between susceptible, carrier, and in-
fected. These changes had been represented in epidemiological studies by an SIS 
model,21 which is a simple pattern studied and developed as one element in the 
Good-night kiss model. Hence, the Good-night kiss model was a single transmission 
model for examining how the bacteria were transmitted in a small population. It pro-
vided the elementary structure similar to all tailor-made models consisting of ele-
ments carrying mathematical and statistical solutions and describing the structure and 
behavior of the phenomena.22

While working on that model, the first version (A) of the Simulator was program-
med with a graphical user interface. Visuality was an important component in artifi-
cial life modeling, and this was part of the expertise brought into the project by the 
computer scientist. The programming of version A happened on the threshold of the 
era of personal computers with user-friendly interfaces (running on Microsoft Win-
dows operating system), which explains why the graphical user interface was actual-
ly an achievement. Another reason for user-friendliness was that the Simulator was 
intended for use outside the research group by professionals with varying computa-
tional skills. Therefore, these factors promoted its usability, but did not support its 
functionality. By usability, I refer to the easy access to the program despite the level 
of programming skills (or lack of them). Functionality means that the intended func-
tions are well-represented in the Simulator. These functions should, for instance, 
mimic the structure of the models. In other words, the Simulator is not a fully in-
dependent, separate program; it has or should have particular ties with the models 
studied. 

When designing the Simulator (A), the main emphasis was to reach some stage of 
generality – in a way, to ‘go beyond the model.’ However, the way in which this 
should have been achieved was not specified, nor was the relation to the Good-night 
kiss model discussed. Only the usability was emphasized, because the Simulator was 
intended to become ‘a tool for clinical use’ outside the original research group. This 
meant that the program had to be as easy-to-use as possible, so that, for instance, if 
an epidemic outbreak is located in a day-care group or a military garrison, the general 
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practitioners providing the health care could run the simulations and estimate the 
number of infected and the spread of infection. Despite its ‘easy-to-use’ graphical 
interface, the Simulator was not used. These broader applications could not be per-
formed with the program, because it did not precisely represent even the simple 
Good-night kiss model (or any other epidemiological model). The program was 
merely an ‘empty box,’ an exercise in simulation method and not a well-functioning 
research tool. The main importance of programming it along with the modeling work 
was to show that programming such a tool was possible, that it could apply the 
graphical user environment to reach the user-friendly interface, and, most impor-
tantly, that the modelers were not forced to use any of the available ready-made 
computer-based program packages.23 Even though version A failed to function as 
intended, it did have symbolic value in strengthening the simulation approach among 
the researchers. The initiative to develop a tool for clinical use had its ‘protorepresen-
tation’ in this exercise. Unfortunately, the modelers could not rely on the simulated 
results, because of its failure to properly represent an infectious disease model.          

The modeling work continued, and the probabilistic models developed were ex-
tended to resolve more complicated research problems in epidemiology. The popula-
tion structure and transmission mechanism studied in the Good-night kiss model 
were expanded to cover the actual size of the population and represent its age distri-
bution. Whereas the transmission in the early models considered only Hib, different 
pathogens, so-called cross-reactive bacteria,24 were incorporated into the models in 
the later phase. The SIS structure as a simple epidemiological model was extended to 
cover immunity level and effectiveness of Haemophilus vaccines. This extension 
also examined the correct timing and amount of booster vaccinations. Extending the 
elements reveals their mutual interaction. The probabilistic solutions were required in 
order to reach the detailed level of epidemiological questions. This extension of the 
models did not yet result in the programming of a well-functioning simulator. 
‘Moulding’ the elements in the course of modeling to function as desired was sup-
ported by the transparent and open structure – that the models were white-box ones. 
In other words, the modelers were able to return to the solutions ‘stored’ in the ele-
ments of the models and tailor them to answer new questions. 

However, the openness and transparency of the tailor-made models did not ex-
tend to the Simulator. To address this difficulty, I shall now discuss reasons leading 
to the mismatch. The first version, A, remained an ‘empty box’ without serious ap-
plications. The programming of the third version, C1, took place after knowledge on 
the dynamics of immunity, spread of infection, contact structure of the population, 
and vaccination effects had been accumulated by building the tailor-made models. 
This version was designed to mimic these pieces of information without restrictions. 
It was programmed in C++ language with a Finnish commentary and run on a UNIX-
based operation system. The programming task was delegated to three engineering 
students. The program was designed to incorporate the different elements into its 
structure so that new information could be generated by running the simulations. The 
idea was, once again, to reach the level of generality in order to make extensive pre-
dictions on the population under scrutiny. The usability was disregarded in the pro-
gramming work, and the Simulator had a command-line interface. This was neces-
sary, because the graphical user interface would have been far too much work for the 
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junior programmers within the given time frame. Yet, this decision also limited the 
usability of the simulation tool within the research group as well. Only those who 
had been programming it were able to use it. The epidemiologists, who did not have 
advanced skills in programming, became dependent on the programmers and their 
schedules when running the simulations to obtain results. 

Although this version of the Simulator seemed to ‘fit’ the models, this did not 
happen. Because the programmers were not familiar with the previously built mod-
els, they did not share the accumulated know-how ‘stored’ in the models.25 This re-
sulted in a discrepancy between the tailor-made models and the Simulator, which 
only mimicked the structure of the models without a sense of how it should function 
as a general simulation tool based on them. This discrepancy can be reflected in 
terms of a division of labor: The Simulators A and C1 were programmed by affili-
ated, but not full members of the research group. The programmers had followed the 
modeling work for only a limited time period, and they did not have background 
education in epidemiology or related subjects. They had a focused task: to produce 
the simulation program, whereas the researchers were committed to the long-term 
modeling studies, which included cross-disciplinary studies on modeling methods 
and epidemiology. It seems that one reason for the mismatching lies in this division 
of labor. The Simulator, in order to function as originally intended, would have re-
quired rather extensive knowledge of the models built. This was not attained in such 
a short-term programming task. Separating the programming from the modeling ac-
tivities may have caused the failure. Another reason for this lies in the nature of the 
Hib models.  

As I have shown, these models were indeed tailored. The questions addressed 
were specified and their scope was limited. This specificity was well-reflected in the 
problems of programming the Simulator. The programmers were incapable of sepa-
rating the elements of the tailor-made models and upgrading them in the Simulator to 
the required level of generality. Some of its features, like the population structure 
with average divorce rates, provided too detailed information that was not necessary 
for modeling purposes. However, the elements developed in the models provided 
generalizable know-how despite their specificity. This know-how and expert skills 
could be exploited when the modelers began to work on the population simulation 
model examined in the following.  

APPROACHING THE SIMULATION PLATFORM

The mismatch was finally overcome when the researchers built the population simu-
lation model and programmed the fourth version of the Simulator C2 themselves. 
This population simulation model differed from the previously built models through 
its three-part structure. The demographic model, the transmission model, and the 
immunity model were its inseparable parts, built by ‘moulding’ the elements of the 
tailor-made models. This complex structure was addressed in the Simulator C2. This 
program was a revised version of C1, utilizing most of the program code and apply-
ing the same command-line interface. It was debugged and reprogrammed to mimic 
all three parts of the population simulation model. The very same goal of achieving a 
general research tool reemerged, although the graphical interface was left aside. The 
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idea was to reach the level of generality by extending the elements of the tailor-made 
models, combining them into the three-part structure of the population simulation 
model, and translating the model into the simulation program, thus upgrading the 
modeling work into the world of simulations. This was motivated by a desire to study 
‘what if’-type questions, because answering these questions by making inferences 
directly from existing data usually means that the possible harm has already hap-
pened on the population level. These future-oriented questions and predictive scenar-
ios concerning the correct timing of booster vaccinations, or the mechanisms and 
changes in herd immunity, were proposed because the very idea of the modeling was 
to stay ‘one step ahead’ and to simulate the possible solutions beforehand. In prac-
tice, this required reestimating and changing the parameters of the population simula-
tion model in order to obtain decent answers. In other words, this was clearly a de-
scription of conducting research on the simulation platform. As introduced, the simu-
lation platform, in its comprehensive meaning, is a context that brings together both 
modeler’s know-how and research materials, and these were present in the simulation 
practices. But this story does not have a ‘happy ending.’ Next, I shall examine the 
practice of reestimating the parameters, which will problematize whether the simula-
tion platform was accomplished or not. 

What kind of process was the estimation of parameters? The computer, which is 
dependent on the modelers’ input of values, functions by calculating the results and 
comparing them with the actual values. The idea that the computer tries to use the 
parameter values that make the model’s behavior look very much like your reality 
that you have observed raises a problem if the reality observed is ‘missing.’ In other 
words, the problem emerged, because only some of the parameter values estimated 
could have been transferred from the previously built models to the population simu-
lation model as such, whereas others were only to be estimated in this model. The 
estimation was eventually accomplished by searching for the best combination of 
parameters to achieve the optimal fit with the observed data. This practice did not 
follow the Bayesian estimation of parameters, which had been applied in the previ-
ous tailor-made models. The tension between the different approaches to parameter 
estimation led the researchers to ‘bargain’26 for the ‘correct’ parameter values. Dur-
ing the ‘bargaining,’ the researchers revised the previous models, given that they 
could have applied the results as parameter values. They also referred to the current 
literature as a possible source for estimating the correct values. In the end, given 
these considerations and previously gained know-how and expertise on Hib epidemi-
ology, they agreed on an estimation of correct values.  

The estimation of parameters was only one example disclosing the hidden dis-
agreement over the possible modeling method (Bayesian inference or simulation 
techniques). This disagreement may have functioned as one obstacle to accomplish-
ing the simulation platform. The choice of modeling method was actually a choice 
between specificity and generality. The Bayesian inference supported the question-
specific approach and allowed tailoring the models to fit the data by providing tools 
to tackle their uncertainty. In contrast, the data specificity was, to some extent, indif-
ferent to the simulation techniques, because the general aim was to generate new 
data through simulations. 
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The question of usability raises another aspect of the difficulty in accomplishing 
the general research tool. The usability was discarded in the programming of the 
Simulator C2, because the modelers did not have the time27 to program the graphical 
interface or the resources to hire someone to do it for them. Their aim was to use the 
program initially just in the research group, and perhaps modify it later for broader 
distribution. Therefore, it still had a command-line interface, and advanced pro-
gramming skills were required to use it. It was not the easy-to-use, stable platform to 
be used by modelers, researchers, or epidemiologist outside this research group as 
originally intended. The instability resulted partly from the re-programming of the 
previous version. The researchers were unable to fully debug the code due to the lim-
ited time resources. They evaluated the results and accepted the ‘anomalies’ occur-
ring in the simulated population.28 Its applicability was also restricted to the current 
(Finnish) population structure and modeled pathogen, Hib. Therefore, the basic func-
tions of a simulation platform, such as to easily define parameter values to represent 
different pathogens, different populations, and different vaccination programs, were 
not attained. Some of the researchers argued that the models translated into the Simu-
lator were ‘knitted’ too tightly with each other and that functioning as a platform 
would have required a loose, separable structure. Others opposed this view and em-
phasized that the three-part structure of the model underlying the Simulation plat-
form was loose enough to allow these changes. Clearly, a closure was not achieved. 

On the epistemic level, the initial tensions, partially arising from the different ap-
proaches to modeling work, prevented the researchers from acknowledging the 
achievement of the Simulator. Some regarded it as a failure, and thought that the 
question-specific modeling was, in the end, the more accurate way to examine the 
epidemiological issues. This was reflected in questions regarding whether the gener-
alizability in the form of simulation platform was in any way desirable. Is tailoring a 
more appropriate and efficient way to analyze infectious disease dynamics? In con-
trast, other researchers regarded the simulation tool as the most important step taken 
and supported the idea that it should be developed further, re-programmed, and stabi-
lized. They saw it as a potential research tool, as a simulation platform (or, at least, 
its initial stage). The questions addressing the ambiguity between specificity and 
generality actually reveal the tension between the open and closed structure of the 
models, the white-box versus the black-box models. It seems to me that the level of 
generality required in the simulation platform could not have been reached, because 
the modeling practice was heavily restrained by tailoring the models. While keeping 
the structure of the models transparent, ‘moulding’ their elements taught the model-
ers to examine specific questions and build reliable models to answer them. How-
ever, this was not enough to reach the general level of a simulation platform, which 
would have required closing and ‘black-boxing’ certain elements in the course of 
modeling. 

CONCLUDING REMARKS

What were the obstacles to reaching the simulation platform? As the analysis shows, 
the hindrances have a dual origin. First, they lie in the specialized division of labor 
and the variation in the skills and expertise of the researchers involved in the modeling 
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task. Second, the inappropriate techniques applied when programming the Simulator, 
and the Simulator’s incapability to represent the models adequately prevented the 
achievement of the general research tool, the simulation platform. 

The specialized division of labor was determined by the disciplinary expertise 
and skills of the researchers. This need not present an unsurmountable problem. As 
Küppers and Lenhard’s case study (this book) on climate research has shown, cou-
pling, or even tinkering, together models from different disciplines is possible. In 
such a case, however, the architecture deserves high priority right from the begin-
ning. Hence, one can assume that the task of integration has been underestimated in 
the Hib case. This was apparent when the programming was delegated to junior en-
gineering students as a clearly focused task. They were not capable of crossing the 
disciplinary boundaries and absorbing the accumulated knowledge gained through 
the modeling, and this resulted in the mismatch between the models and the simula-
tion tool. Furthermore, divergent, discipline-informed viewpoints were lurking be-
hind the technical decisions on how to fit the models with the simulation tool. This 
tension was well documented in the bargaining for the correct parameter values, and 
it reminds us of the invisible boundaries to be found in interdisciplinary research. 

Generally speaking, the programming of the simulation platform can be seen as 
the development of a new architecture. It is a similar process to Küppers and Len-
hard’s (this volume) description of ‘pragmatic integration,’ which means integration 
of theoretically incompatible models in a ‘sense of tinkering different autonomous 
models together.’29 If regarded as a form of ‘pragmatic integration,’ the platform ar-
chitecture functions as a research tool to mimic, for instance, the patterns of bacterial 
behavior. Its origin in the tailor-made models instead of simulation techniques pre-
vented its transformation into a more general, independently applicable method of 
computation. 

In Boumans’ terminology, the tailor-made models provided a niche of white 
boxes with their open and transparent structure. The platform, in order to function as 
desired, would have required black-boxing to some extent. This may also be sug-
gested by Winsberg’s account (this book) of how models perform a ‘handshake,’ 
even though their dynamics are not mutually consistent. In the end, the questions 
concerning the appropriate approach remain unanswered. Could this inability to 
reach closure actually imply that neither method was the most suitable one? It seems 
to me that, in its current form, the platform remains in the middle30 between the 
specificity of the tailoring and the intended generality of simulating. To fulfil the 
requirements of functionality and usability, certain parts of the platform should have 
been fixed and simplified, perhaps by following the modularity of Boumans’s gray-
box models. However, by remaining in the middle position, the platform succeeds in 
offering some promise of a new approach to the study of complex phenomena. 



ERIKA MATTILA136 

ACKNOWLEDGMENTS 

I would like to thank the researchers at the National Public Health Institute, the Uni-
versity of Helsinki, and the Helsinki University of Technology for their support to-
ward my study. I am grateful for the reviewers and editors, especially Dr. Terry 
Shinn, for their valuable comments and insights on this article. I wish to thank Pro-
fessor Reijo Miettinen and Professor Mary Morgan for their comments on previous 
versions. Funding from the project Changing University Research and Creative Re-
search Environments (No. 49789) provided by the Academy of Finland, from the 
Finnish Post-Graduate School for Science and Technology Studies, and Nature of 
Evidence: How Well Do ‘Facts’ Travel, Leverhulme Trust/Economic and Social Re-
search Council project at Economic History Department, London School of Econom-
ics and Political Science is acknowledged. Part of the research was conducted by the 
author during 2004-2005 when she was a Research Scholar at the Department of 
Economic History at the London School of Economics and Political Science, funded 
by a grant from the Academy of Finland and the Helsingin Sanomat Centennial 
Foundation.  

NOTES

1 Immunizations are medical interventions. 
2 They have a background in medicine with specializations in epidemiology and public health. 
3 The data were collected during 2001–2004 in collaboration with a research group studying the mathe-

matical modeling of infectious diseases. The dataset consists of ethnographic observations during the 
research group meetings, interviews with the key actors, researchers’ scientific publications, and ar-
chived documents. 

4 In Finland, for example, children have been immunized since mid-1980s. 
5 By the concept of element, I refer to the building blocks of models. It is close to Boumans’ (1999) 

notion of the ingredients of models. 
6 Boumans’ (1999) terminology. 
7 Population structure includes typical family size and the age distribution of the population. 
8 Herd immunity means that if the recommended immunizations take place in a population, those who 

cannot be immunized (due to a chronic illness or pregnancy) are also protected. 
9 Boumans (this volume) discusses the relation between the questions studied within different types of 

the models and the problem of the models’ validity. He argues that black-box models, which are usu-
ally forecasting models, are evaluated on the basis of their output. White-box models are validated by 
examining both models’ inner structure and output; they are normally used in answering why-
questions. ‘How much-’ and ‘what is the effect of-’questions are answered in gray-box models. 

10 Both bacteria and viruses are pathogens. 
11 The dynamics of specificity and generality in simulations are discussed by Küppers, Lenhard, and 

Shinn (introduction to this volume) and Johnson (this volume). 
12 I have studied the characteristics of interdisciplinary modeling in Mattila (2005). 
13 The concept of boundary work (and the broader discussion on boundary crossing, boundary objects, 

etc.) has a long tradition in the social sciences. Originally, the analysis focusing on the boundaries in 
science was presented in Gieryn (1983) and Star and Griesemer (1989). Klein (e.g., 1996) has devel-
oped the concepts in her study of the organization of interdisciplinary research. By boundary work, 
Gieryn (1983: 792) refers to the professionalization of science, which has resulted in ideological  
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demarcations of disciplines, specialities, or theoretical orientations. This is seen in the ambiguous, 
flexible, historically changing, and sometimes disputed boundaries of science. 

14 Daston (1999) provides an inspiring starting point for analyzing the life span of research objects. van 
den Bogaard (1999) has applied a similar approach in relation to economic models. 

15 This is the case with Hib. The only way to identify the infection is to take a specimen from the human 
nasopharynx. 

16 To be understood in a broad sense covering also the programming of the Simulator. 
17 Although it does not function as any kind of training program like a flight simulator. 
18 The research group of five mathematicians, one computer scientist and one epidemiologist (altogether 

seven researchers) remained almost unchanged throughout the ten-year research project. The minor 
changes are not relevant in this story.  

19 The version B is of no interest here, because it was programmed by a visiting researcher and not used 
by the modelers. 

20 The modelers specialized in Bayesian inference, which is a statistical paradigm for estimating un-
known (model) parameters in terms of their probability distribution as a function of the observed data 
(Leino 2003: 7). 

21 S-I-S (Susceptible-Infective-Susceptible) is a model used for describing recurrent infections (Leino 
2003:7). 

22 These elements are analyzed in detail in Mattila (2005). 
23 For instance, Guala (2002) has discussed how computer-based modeling packages are used in research. 
24 These are pathogens that influence humans and thus strengthen their immunity indirectly.  
25 The modelers underlined that one important function of the models was that they offered ‘storage 

space’ for the know-how gained during modeling. 
26 The ‘bargain’ took place in email discussions between two meetings in spring 2002.  
27 The time shortage was tied to the practical goal of the project: to finish a PhD study in medicine during 

the funding period. 
28 One anomaly was called ‘Jesus child,’ because during the simulation run, one child aged 2000 years 

was regularly born in the simulated population. 
29 This reminds us also of Winsberg’s (this volume) account of multiscale methods used in nanoscale 

modeling, which aim at coupling together different levels of description in a seamless model by finding 
the appropriate handshaking algorithms.

30 The middle position also has implications for the validity of the simulation platform. Openness and 
transparency of white-box models actually implies that their validity should be examined in terms of 
both their inner structure and output. In the case of our platform, the validity of the results should be 
examined in a similar way. This issue calls for a further study..
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ERIC WINSBERG 

HANDSHAKING YOUR WAY TO THE TOP: SIMULATION AT THE 
NANOSCALE* 

INTRODUCTION 

All the pundits, prognosticators, and policymakers agree: Research into the science 
and technology of the nanoscale is going to be one of the hot scientific topics of the 
twenty-first century. According to the web page of the National Nanotechnology Ini-
tiative, moreover, this should make nanotechnology and nanoscience ‘of great inter-
est to philosophers.’ Admittedly, the kind of philosophy being imagined by the au-
thors of the web page initiative is most likely something like the nanotechnological 
analogue of bio-ethics – not the kind of philosophy typically practiced by the current 
professional community of philosophers of science. But what about us?  

Should we philosophers of science, those of us who are interested in methodo-
logical, epistemological, and metaphysical issues in the sciences, be paying any at-
tention to developments in nanoscale research? Undoubtedly, it is too early to tell for 
sure. But arguably, the right prima facie intuition to have is that we should. After all, 
major developments in the history of the philosophy of science have always been 
driven by major developments in the sciences. It is true that, historically, most of 
those scientific developments have involved revolutionary changes at the level of 
fundamental theory (especially, of course, the revolutionary changes in physics at the 
beginning of the twentieth century.) It is also true that nanoscience is unlikely to 
bring about innovations in fundamental theory. But, surely, there is no reason to 
think that new experimental methods, new research technologies, or innovative ways 
of solving a new set of problems within existing theory could not have a similar im-
pact on philosophy. And it is not altogether unlikely that some of the major accom-
plishments in the physical sciences to come in the near future will have as much to 
do with modeling complex phenomena within existing theories as they do with de-
veloping novel fundamental theories. 

So far, none of this is meant to be an argument, but simply an impressionistically 
motivated suggestion that nanoscience might be something of philosophical interest.  

© 2006 Springer. 
139–151. J. Lenhard, G. Küppers, and T. Shinn (eds.), Simulation: Pragmatic Construction of Reality,

(*Reprinted with permission from E. Winsberg “Handshaking Your Way to the Top: Simulation at the Nanoscale” 
(enlarged version), Philosophy of Science, PSA 2004; to appear. Copyright 2006 by University of Chicago Press.) 
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The project of this chapter is to look and see, and to try to give a more informed 
answer. Because of my past work, the place that I am inclined to do that looking is in 
aspects of model-building, especially the methods of computer simulation that are 
employed in nanoscience. What I find is that it does indeed look as if there are good 
prospects for philosophers of science to learn novel lessons, especially about the rela-
tions between different theories, and between theories and their models, by paying 
attention to developments in simulation at the nanoscale. 

To begin: What exactly is ‘nanoscale science?’ No precise definition is possible. 
But, intuitively, it is the study of phenomena and the construction of devices at a 
novel scale of description: somewhere between the strictly atomic and the macro-
scopic levels. Theoretical methods in nanoscience, therefore, often have to draw on 
theoretical resources from more than one level of description. 

Take, for example, the field of nanomechanics. ‘Nanomechanics’ is the study of 
solid-state materials that are too large to be manageably described at the atomic level 
and too small to be studied using the laws of continuum mechanics. As it turns out, 
one of the methods of studying these nanosized samples of solid-state materials is to 
simulate them (i.e., study them with the tools of computer simulation) using hybrid 
models constructed out of theories from a variety of levels (Nakano et al. 2001). As 
such, they create models that bear interestingly novel relationships to their theoretical 
ancestors. So, a close look at simulation methods in the nanosciences could offer 
novel insights into the kinds of relationship that exist between different theories (at 
different levels of description) and between theories and their models. 

If we are looking for an example of a simulation model likely to stimulate those 
sorts of insights, we need look no further than so-called ‘parallel multiscale’ (or 
sometimes ‘concurrent coupling of length scales,’ CLS) methods of simulation. 
These methods were developed by a group of researchers interested in studying the 
mechanical properties of intermediate-sized solid-state materials (how they react to 
stress, strain, and temperature). The particular case that I shall detail below, devel-
oped by Farid Abraham and a group of his colleagues, is a pioneering example of this 
method.1 What makes the modeling technique ‘multiscale’ is that it couples together 
the effects described by three different levels of description: quantum mechanics, 
molecular dynamics, and continuum mechanics.  

MULTISCALE MODELING  

Modelers of nanoscale solids need to use these multiscale methods – the coupling 
together of different levels of description – because each individual theoretical 
framework is inadequate on its own at the scale in question. The traditional theoreti-
cal framework for studying the mechanical behavior of solids is continuum mechanics 
(CM). CM provides a good description of the mechanics of macroscopic solids close 
to equilibrium. But the theory breaks down under certain conditions. CM, particu-
larly the flavor of CM that is most computationally tractable – linear elastic theory – 
is no good when the dynamics of the system are too far from equilibrium. This is 
because linear elastic theory assumes that materials are homogeneous even at the 
smallest scales, when, in fact, we know this is far from the truth. It is an idealization. 
When modeling large samples of material, this idealization works, because the sample 
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is large enough so that one can effectively average over the inhomogeneities. Linear 
elastic theory is in effect a statistical theory. But as we get below the micron scale, 
the fine-grained structure begins to matter more. When the solid of interest becomes 
smaller than approximately one micron in diameter, this ‘averaging’ fails to be ade-
quate. Small local variations from mean structure, such as material decohesions – an 
actual tearing of the material – and thermal fluctuations, begin to play a significant 
role in the system. In sum, CM cannot be the sole theoretical foundation of ‘nano-
mechanics’ – it is inadequate for studying solids smaller than one micrometer in size 
(Rudd and Broughton 2000). 

The ideal theoretical framework for studying the dynamics of solids far from 
equilibrium is classical molecular dynamics (MD). This is the level at which thermal 
fluctuations and material decohesions are most naturally described. But computa-
tional issues constrain MD simulations to about 107-108 molecules. In linear dimen-
sions, this corresponds to a constraint of only about fifty nanometers. 

So MD methods are too computationally expensive, and CM methods are insuffi-
ciently accurate, for studying solids that are on the order of one micron in diameter. 
On the other hand, parts of the solid in which the far-from-equilibrium dynamics take 
place are usually confined to regions small enough for MD methods. So the idea be-
hind multiscale methods is that a division of labor might be possible – use MD to 
model the regions where the real action is, and use CM for the surrounding regions 
where things remain close enough to equilibrium for CM to be effective. 

There is a further complication. When cracks propagate through a solid, it in-
volves the breaking of chemical bonds. But the breaking of bonds involves the fun-
damental electronic structure of atomic interaction. So methods from MD (which use 
a classical model of the energetic interaction between atoms) are unreliable right near 
the tip of a propagating crack. Building a good model of bond breaking in crack 
propagation requires a quantum mechanical (QM) approach. Of course, QM model-
ing methods are orders of magnitude more computationally expensive than MD. In 
practice, these modeling methods cannot model more than two hundred and fifty at-
oms at a time. 

The upshot is that it takes three separate theoretical frameworks to model the me-
chanics of crack propagation in solid structures on the order of one micron in size. 
Multiscale models couple together the three theories by dividing the material to be 
simulated into three roughly concentric spatial regions. At the center is a very small 
region of atoms surrounding a crack tip, modeled by the methods of computational 
QM. In this region, bonds are broken and distorted as the crack tip propagates 
through the solid. Surrounding this small region is a larger region of atoms modeled 
by classical MD. In that region, material dislocations evolve and move, and thermal 
fluctuations play an important role in the dynamics. The far-from-equilibrium dy-
namics of the MD region is driven by the energetics of the breaking bonds in the in-
ner region. In the outer region, elastic energy in dissipated smoothly and close to 
equilibrium on length scales that are well modeled by the linear-elastic, continuum 
dynamical domain. In turn, it is the stresses and strains applied on the longest scales 
that drive the propagation of the cracks on the shortest scales (see Figure 1).  

It is the interactions between the effects on these different scales that lead stu-
dents of these phenomena to describe them as “inherently multiscale” (Broughton et al. 
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1999: 2391).  What they mean by this is that there is significant feedback between 
the three regions. All of these effects, each one of which is best understood at its own 
unique scale of description, are strongly coupled together. Since all of these effects 
interact simultaneously, it means that all three of the different modeling regions have 
to be coupled together and modeled simultaneously. The fact that three different 
theories at three different levels of description need to be employed makes the mod-
els ‘multiscale.’ The fact that these different regions interact simultaneously, that 
they are strongly coupled together, means that the models have to be ‘parallel  
multiscale.’  

An instructive way to think about the meaning of the phrase ‘parallel multiscale’ 
is to compare two different ways of going about integrating different scales of de-
scription into one simulation. The first more traditional method is what Abraham’s 
group, in keeping with their computational background, label ‘serial multiscale.’ The 
idea of serial multiscale is to choose a region, simulate it at the lower level of de-
scription, summarize the results into a set of parameters digestible by the higher level 
description, and then pass those results up to a simulation of the higher level. 

Figure 1.  Spatial decomposition into three separate domains. The material is divided into 
three regions of interest. The yellow region (labeled ‘TB’) is modeled with the ‘Tight 
Binding’ algorithm derived from quantum mechanics. The blue region is modeled using 
classical molecular dynamics, and the outer, orange region is modeled using a finite ele-
ment method based on continuum mechanics. (Reprinted with permission from Broughton 
et al. (1999). Copyright 2006, American Physical Society.) 
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But serial multiscale methods will not be effective when the different scales are 
strongly coupled together: 

There is a large class of problems for which the physics is inherently multiscale; that is, 
the different scales interact strongly to produce the observed behavior. It is necessary to 
know what is happening simultaneously in each region since one is strongly coupled to 
another (Broughton et al. 1999: 2391). 

What seems to be required for simulating an inherently multiscale problem is an ap-
proach that simulates each region simultaneously, at its appropriate level of descrip-
tion, and then allows each modeling domain to continuously pass relevant informa-
tion back and forth between regions – in effect, a model that seamlessly combines all 
three theoretical approaches. Sticking to language borrowed from computer science, 
Abraham’s group refers to this method as ‘parallel multiscale’ modeling. They also 
refer to it as the ‘concurrent coupling of length scales.’ What allows the integration 
of the three theories to be seamless is that they overlap at the boundary between the 
pairs of regions. These boundary regions are where the different regions ‘shake 
hands’ with each other. The regions are called the ‘handshaking regions’ and they are 
governed by ‘handshaking algorithms.’ We shall see how this works in more detail in 
the next section. 

The use of these handshaking algorithms is one of the things that make these par-
allel multiscale models interesting. Parallel multiscale modeling, in particular, ap-
pears to be a new way to think about the relationship between different levels of de-
scription in physics and chemistry. Typically, after all, we tend to think about rela-
tionships between levels of description in mereological terms: A higher level of de-
scription relates to a lower level of description more or less in the way that the enti-
ties discussed in the higher level are made up out of the entities found in the lower 
level. That kind of relationship, one grounded in mereology, accords well with the 
relationship that different levels of models bear to each other in what the Abraham 
group label serial multiscale modeling. But parallel multiscale models appear to be a 
different way of structuring the relationship between different levels of description in 
physics and chemistry.  

I would like to offer a little bit more detail about how these models are put to-
gether, and, in particular, to say a bit more about how the handshaking algorithms 
work—in effect, to illustrate how one seamless model can integrate more than one 
level of description. To do this, though, I have to first of all say a bit more about how 
each separate modeling level works. I turn to that in the next section. 

THREE THEORETICAL APPROACHES 

Continuum Mechanics (Linear Elastic Theory) 

The basic theoretical background for the model of the largest scale regions is linear 
elastic theory, which relates, in linear fashion, stress – a measure of the quantity of 
force on a point in the solid – with strain – a measure of the degree to which the solid 
is deformed from equilibrium at a point. Linear elastic theory, combined with a set of 
experimentally determined parameters for the specific material under study, enables 
you to calculate the potential energy stored in a solid as a function of its local  
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deformations. Since linear elastic theory is continuous, in order for it to be used in a 
computational model, it has to discretized. This is done using a ‘finite element’ 
method. This technique involves a ‘mesh’ made up of points that effectively tile the 
entire modeling region with tetrahedra. The size of each tetrahedron can vary across 
the material being simulated according to how much detail is needed in that area (see 
the bottom of Figure 2.a). Each mesh point is associated with a certain amount of 
displacement—the strain field. At each time step, the total energy of the system is 
calculated by ‘integrating’ over each tetrahedron. The gradient of this energy func-
tion is used to calculate the acceleration of each grid point, which is, in turn, used to 
calculate its position for the next time step. And so on. 

 

 
Figure 2:  Handshaking. a) (left) To handshake between FE and MD, the size of the FE grid is 

gradually brought into line with the spacing of the molecules in the MD region.  
b) (right) When the molecules and mesh points line up, the combined Hamiltonian can be 
calculated. The dotted lines represent energy values calculated using the MD algorithm. The 
gray lines represent values calculated using the FE algorithm. The two values are then av-
eraged to come up with the energy of interaction between the two regions. (Reprinted with 
permission from Abraham et al. (1998). Copyright 2006, American Institute of Physics.) 

Molecular Dynamics  

In the medium-scale regions, the basic theoretical background is a classical theory of 
interatomic forces. The model begins with a lattice of atoms. The forces between the 
atoms come from a classical potential energy function for silicon proposed by Still-
inger and Weber (Stillinger and Weber 1985). The Stillinger-Weber potential is 
much like the Leonard-Jones potential in that its primary component comes from the 
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energetic interaction of nearest neighbor pairs. But the Stillinger-Weber potential 
also adds a component to the energy function from every triplet of atoms, propor-
tional to the degree to which the angle formed by each triplet deviates from its equi-
librium value. Just as in the finite element case, forces are derived from the gradient 
of the energy function, which are, in turn, used to update the position of each atom at 
each time step. 

Quantum Mechanics 

The very smallest regions of the solid are modeled as a set of atoms whose energetic 
interaction is governed, not by classical forces, but by a quantum Hamiltonian. The 
quantum mechanical model they use is based on a semi-empirical method from com-
putation quantum chemistry known as the ‘Tight-Binding’ method. It begins with the 
Born-Oppenheimer approximation. This approximation separates electron motion 
and nuclear motion and treats the nuclei as basically fixed particles as far the elec-
tronic part of the problem is concerned. The next approximation is to treat each elec-
tron as basically separate from the others, and confined to its own orbital. The semi-
empirical part of the method is to use empirical values for the matrix elements in the 
Hamiltonian of these orbitals. For example, the model system that Abraham’s group 
has focused on is solid-state silicon. So, the values used for the matrix elements come 
from a standard reference table for silicon – derived from experiment. Once again, as 
soon as a Hamiltonian can be written down for the whole system, the motions of the 
nuclei can be calculated from step to step. 

HANDSHAKING BETWEEN THEORIES 

Clearly, these three different modeling methods embody mutually inconsistent 
frameworks. They each offer fundamentally different descriptions of matter, and they 
each offer fundamentally different mathematical functions describing the energetic 
interactions among the entities they describe. “The overarching theme is that a single 
Hamiltonian is defined for the entire system” (Broughton et al. 1999: 2393). 
The key to building a single coherent model out of these three regions is to find the 
right handshaking algorithm to pass the information about what is going on in one 
region that will affect a neighboring region into that neighbor. One of the difficulties 
that beset earlier attempts to exchange information between different regions in mul-
tiscale models was that they failed, badly, to conserve energy. The key to Abraham’s 
success in avoiding this problem is that his group constructs their handshaking algo-
rithms in such as way as to define a single expression for energy for the whole sys-
tem. The expression is a function of the positions of the various ‘entities’ in their 
respective domains, whether they be mesh elements, classical atoms, or the atomic 
nuclei in the quantum mechanical region.  

The best way to think of Abraham’s handshaking algorithms then, is as an ex-
pression that defines the energetic interactions between, for example, the matter in 
the continuum dynamical region with the matter in the molecular dynamical regions. 
But this is a strange idea indeed – to define the energetic interactions between re-
gions – since the salient property possessed by the matter in one region is a (strain) 
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field value, whereas the other is the position of a constituent particle, and, in the 
third, it is an electron cloud configuration. To understand how this is possible, we 
have to simply look at the details in each case. 

Handshaking Between CM and MD 

To understand the CM/MD handshaking algorithm, first envision a plane separating 
the two regions. Next, recall that in the finite element method of simulating linear 
elastic theory, the material to be simulated is covered in a mesh that divides it up into 
tetrahedral regions. One of the original strengths of the finite element method is that 
the finite element mesh can be varied in size to suit the simulation’s needs, allowing 
the simulationists to vary how fine or coarse the computational grid is at different 
locations. When the finite element method is being used in a multiscale model, this 
feature of the FE mesh becomes especially useful. The first step in defining the hand-
shake region is to ensure that as you approach the plane separating the two domains 
from the FE side, the mesh elements of the FE domain are made to coincide with the 
atoms of the ME domain. (Farther away from the plane, the mesh will typically get 
much coarser.)The next step is to calculate the energy of the ‘handshake region.’ This 
is the region between the last mesh point on one side and the first atom on the other. 
The technique that Abraham’s group use is essentially to calculate this energy twice 
– once from the perspective of FE, and once from the perspective of MD – and then 
average the two. Doing the first of these involves pretending that the first row of at-
oms are actually mesh elements; doing the second involves the opposite – pretending 
that the last row of mesh element are atoms (see Figure 2). 

Suppose, for example, that there is an atom on the MD side of the border. It looks 
over the border and sees a mesh point. For the purpose of the handshaking algorithm, 
we treat that mesh point as an atom, calculate the energetic interaction according to 
the Stillinger-Weber potential, and we divide it by two (remember, we are going to 
be averaging together the two energetics). We do this for every atom/mesh-point pair 
that spans the border. Since the Stillinger-Weber potential also involves triples, we 
do the same thing for every triple that spans the border (again dividing by two). This 
is one half of the ‘handshaking Hamiltonian.’ The other half comes from the contin-
uum dynamics’ energetics.  Whenever a mesh point on the CM side of the border 
looks over and sees an atom, it pretends that atom is a mesh point. Thus, from that 
imaginary point of view, there are complete tetrahedra that span the border (some of 
whose vertices are mesh points that are ‘really’ atoms.) Treating the position of that 
atom as a mesh-point position, the algorithm can calculate the strain in that tetrahe-
dron, and integrate over the energy stored in the tetrahedron. Again, because we are 
averaging together two Hamiltonians, we divide that energy by two.  

We now have a seamless expression for the energy stored in the entire region 
made up of both the continuous solid and the classical atoms. The gradient of this 
energy function dictates how both the atoms and the mesh points will move from step 
to step. In this way, the happenings in the CM region are automatically communi-
cated to the molecular dynamics region, and vice versa. 
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Handshaking Between MD and QM 

The general approach for the handshaking algorithm between the quantum region and 
the molecular dynamics region is similar: The idea is to create a single Hamiltonian 
that seamlessly spans the union of the two regions. But, in this case, there is an added 
complication. The difficulty is that the tight-binding algorithm does not calculate the 
energy locally. That is, it does not apportion a value for the energy for each intera-
tomic bond; it calculates energy on a global basis. Thus, there is no straightforward 
way for the handshaking algorithm between the quantum and MD region to calculate 
an isolated quantum mechanical value for the energetic interaction between an out-
ermost quantum atom and a neighboring innermost MD atom. But it needs to do this 
in order to average it with the MD value for that energy.  

The solution that Abraham and his group have developed to this problem is to 
employ a trick that allows the algorithm to localize that QM value for the energy. 
The trick is to employ the convention that at the edge of the QM region, each ‘dan-
gling bond’ is ‘tied off’ with an artificial univalent atom. To do this, each atom loca-
tion that lies at the edge of the QM region is assigned an atom with a hybrid set of 
electronic properties. In the case of silicon, what is needed is something like a silicon 
atom with one valence electron. These atoms, called ‘silogens,’ have some of the 
properties of silicon and some of the properties of hydrogen. They produce a bonding 
energy with other silicon atoms that is equal to the usual Si-Si bond energy, but they 
are univalent like a hydrogen atom. This is made possible by the fact that the method 
is semi-empirical, and so fictitious values for matrix elements can simply be assigned 
at will. This makes it such that the silogen atoms do not interact energetically with 
their silogen neighbors, which means that the algorithm can localize their quantum 
mechanical energetic contributions. Finally, once the problem of localization is 
solved, the algorithm can assign an energy between atoms that span the threshold 
between regions that is the average of the Stillinger-Weber potential and the energy 
from the Hamiltonian in the tight-binding approximation. Again, this creates a seam-
less expression for energy. 

THREE QUESTIONS 

In the sequel, I shall suggest that there are features of these multiscale models – with 
their integration of different levels of dscription, their ‘handshaking algorithms,’ and 
their silogens – that appear on their face to be at odds with some basic philosophical 
intuitions about the relationships between different theories and between theories and 
their models. But before I begin to draw any philosophical conclusions, I think it is 
important to note that this area of research – nanomechanics in general and these 
multiscale methods in particular – is in its relative infancy. And while Abraham and 
his group have had some success with their models, researchers in these areas are still 
facing important challenges. It is probably too early to say whether or not this par-
ticular method of simulation will turn out, in the great scheme of things, to be the 
right way to go about predicting and representing the behavior of ‘intermediate-
sized’ samples of solid-state materials. Hence, it is probably also too early to be 
drawing conclusions, methodological or otherwise, from these sorts of examples.  
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On the other hand, it might not be too early to start thinking about what kinds of 
basic philosophical intuition about science are likely to come under pressure – or to 
be informed in novel ways – if and when these scientific domains mature. So we 
might, at this stage, try to pinpoint some basic philosophical questions; questions 
whose answers are likely to be influenced by this kind of work. In other words, what 
I want to do here is simply to offer some ideas about what kinds of question philoso-
phers are likely to be able to shed light on, prospectively, if they keep an eye on what 
is going on in nanoscale modeling and simulation – especially with regard to multi-
scale metods – and to provide a sneak preview of what we might discover as the field 
progresses. Here are three such questions: 

(1) What relationships are possible between levels of description? 

One issue receiving perennial attention from philosophers of science has been that of 
the relationship between different levels of description. Traditionally, the focus of 
this inquiry has been debate about whether or not, and to what extent or in what re-
spect, laws or theories at higher levels of description are reducible to those at a lower 
level.  

Underlying all of this debate, I believe, has been a common intuition: The basis 
for understanding interlevel interaction – to the extent that it is possible – is just ap-
plied mereology. In other words, to the extent that the literature in philosophy of sci-
ence about levels of description has focused on whether and how one level is reduci-
ble to another, it has implicitly assumed that the only interesting possible relation-
ships are logical ones –that is, intertheoretic relationships that flow logically from the 
mereological relationships between the entities posited in the two levels.2 

But if methods that are anything like those described above become accepted as 
successful in nanoscale modeling, that intuition is likely to come under pressure. The 
reason is that so-called ‘parallel’ multiscale modeling methods are forced to develop 
relationships between the different levels that are perhaps suggested, but certainly not 
logically detemined, by their mereology. Rather, developing the appropriate relation-
ships, in Abraham’s words, “requires physical insight.” 

What this suggests is that there can be a substantial physics of interlevel interac-
tion; a physics that is guided, but by no means determined, by either the theories at 
each level or the mereology of their respective entities. Indeed, whether or not the 
relationships employed by Abrahan and his group will turn out to be the correct ones 
is an empirical/physical question and not a logical/mereological one. 

(2) How important is the consistency of a set of laws?  

This is an issue that has begun to receive attention only recently, particularly in the 
work of Mathias Frisch (2004). Using classical electrodynamics (CED) as an exam-
ple, Frisch has challenged a common philosophical intuition about scientific theories: 
that the internal consistency of their laws is a necessary condition that all successful 
theories have to satisfy. I want to make a similar point here. In this case, the example 
of multiscale modeling seems to put pressure on a closely related, if somewhat 
weaker, intuition: that an inconsistent set of laws can have no models. 
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In a formal setting, this claim is obviously true; indeed, it is true by definition. 
But rarely in scientific practice do we actually deal with models that have a clear 
formal relationship to the laws that inspire them. Most likely, the intuition that incon-
sistent laws cannot produce a coherent model in everyday scientific practice rests as 
much on pragmatic considerations as it does on the analogy to formal systems: How, 
in practice, could mutually conflicting sets of laws guide the construction of a coher-
ent and successful model? 

We can start by looking at what we learn from Frisch. In CED, the strategy is 
usually to keep the inconsistent subsets of the theory properly segregated for a given 
model. 

The Maxwell-Lorentz equations can be used to treat two types of problem. We can ap-
peal to the Maxwell equations to determine the fields associated with a given charge and 
current distribution; or we can use the Lorentz force law to calculate the motion of a 
charged particle in a given external electromagnetic field (Frisch 2004: 529). 

In other words, in most models of CED, each respective model draws from only one 
of the two mutually inconsistent ‘sides’ of the theory. This technique works for most 
applications, but there are exceptions in which the method fails. Models of synchro-
tron radiation, for example, necessarily involve both mutually inconsistent parts of 
the theory.  

There are problems, in other words, that require us to calculate the field from the 
charges, as well as to calculate the motion of the charges from the fields. But the so-
lution method, even in the synchrotron case as Frisch describes it, is still a form of 
segregation. The segregation is temporal. You break the problem up into time steps: 
In one time step, the Lorentz equations are used; in the next, the Maxwell equations; 
and so on.  

A form of segregation is employed in multiscale modeling as well, but it is forced 
to break down at the boundaries. Each of the three theoretical approaches is confined 
to its own spatial region of the system. But the fact that there are significant simulta-
neous and back-and-forth interactions between the physics in each of these regions 
means that the strategy of segregation cannot be entirely effective. Parallel multis-
cale methods require the modeler to apply, in the handshaking region, two different 
sets of laws. The laws in Abraham’s model, moreover, are each pair-wisely inconsis-
tent. They offer conflicting descriptions of matter and conflicting accounts of the 
energetic interactions between the constituents of that matter. But the construction of 
the model in the handshaking regions is guided by both members of the pair. When 
you include the handshaking regions, parallel multiscale models are – all at once – 
models of an inconsistent set of laws 

The methods developed by these researchers for overcoming these inconsisten-
cies (the handshaking algorithms) may or may not turn out to be too crude to provide 
a reliable modeling approach. But by paying close attention to developments in the 
field of nanoscale modeling, a field in which the models are almost certainly going to 
be required to involve hybrids of classical, quantum, and continuum mechanics, phi-
losophers are likely to learn a great deal about how inconsistencies are managed. In 
the process, we shall be forced to develop richer accounts of the relationships be-
tween theories and their models – richer accounts, in any case, than the one sug-
gested by the analogy to formal systems.  
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(3) How do models differ from ideal descriptions? 
(What role can falsehoods play in model building?) 

It has been widely recognized that many successful scientific models do not represent 
exactly. A simple example: The model of a simple harmonic oscillator can quite suc-
cessfully predict the behavior of many real physical systems, but it provides at best 
only an approximately accurate representation of those systems. Nevertheless, many 
philosophers hold to the intuition that successful models differ from ideal descrip-
tions primarily in that they include idealizations and approximations. Ronald Lay-
mon has made this intuition more precise with the idea of “piecewise improvability” 
(Laymon 1985). The idea is that while many empirically successful models deviate 
from ideal description, a small improvement in the model (i.e., a move that brings it 
closer to an ideal description) should always result in a small improvement in its em-
pirical accuracy.  

But what about the inclusion of ‘silogens’ in multiscale models of silicon? Here, 
piecewise improvability seems to fail. If we make the model ‘more realistic’ by put-
ting in more accurate values for the matrix elements at the periphery of the QM re-
gion, then the resulting calculation of the energetic interactions in the handshake re-
gion will become less accurate, not more accurate, and the overall simulation will fail 
to represent accurately at all. The lesson of this and other examples is that models 
can sometimes successfully make use not only of approximations and idealizations 
but also outright ‘falsifications.’ False assumptions, it appears, can be systematically 
successful.3 Nanoscale models, particularly simulation models, are likely to put pres-
sure on the philosophical intuition that success and reliability always come from 
truth. 
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NOTES 

 1 Good review literature on parallel multiscale simulation methods for nanomechanics can be found in 
Abraham et al. 1998; Broughton et al. 1999; and Rudd and Broughton 2000.  

 2 An important exception is the recent work of Robert Batterman (2002). 
 3 

 For other examples of ‘falsifications,’ as well as for a discussion of their implications for scientific 
realism, fundamentalism, and the status of ‘reliability’ as a viable semantic notion, see Winsberg 
(forthcoming). 
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MARTINA MERZ

LOCATING THE DRY LAB ON THE LAB MAP

Virtual laboratory, digital laboratory, dry lab – notions such as these frequently be-
come associated with computer simulation be it in popular accounts or in the dis-
course of practitioners. The notions seem to suggest that computers and simulation 
applications constitute research environments in their own right, allowing one to per-
form computer experiments and endowing one with the potential to replace tradi-
tional laboratory settings. The images carry connotations about the kind of work in-
volved and the work settings in which scientists and their objects of investigation 
relate to each other. The present chapter takes up these ideas with the understanding 
that they prompt important questions for philosophers, historians, and social scien-
tists of simulation practice. The chapter is an attempt to come to grips with some of 
these questions by exploring the association between simulation and the laboratory.

A first hypothesis that one may associate with the image of a dry lab posits that 
simulation (and modeling more generally) is like experimental work in allowing sci-
entists to explore processes, manipulate structures, and tinker with parameters and 
conditions. Science studies authors such as Dowling (1999), Keller (2003), Morgan 
(2003), and Sismondo (1999) have argued that this practice is indeed typical of simu-
lation and modeling. While to associate simulation with experiment in such a way 
brings out the methodological features of simulation practice, to view simulation as 
constituting a laboratory of its own raises additional questions and hypotheses that 
have received little attention in the literature as yet. What then comes into view are 
issues to do with the simulation laboratory’s relation to its boundaries and to objects 
and practices ‘outside’ the lab, which also brings up the issue of the laboratory’s 
autonomy. The perspective raises the question how, to what extent, and to what ef-
fect simulation activities either become disconnected from other scientific practices 
or remain associated with them.1 This article’s central thesis asserts that to adequate-
ly conceptualize simulation one has to address not only the disembedded nature of 
simulation but also the dynamic interplay of the disembedding and reembedding
moves that determine how and to which epistemic means simulation is employed. 

In what sense then can – or should – computer simulation be interpreted as con-
stituting a laboratory? To explore this issue, I shall draw on laboratory concepts that 
have developed in the social studies of science (next section). The chapter argues that 

© 2006 Springer. 
155–172. J. Lenhard, G. Küppers, and T. Shinn (eds.), Simulation: Pragmatic Construction of Reality,

CHAPTER 10



MARTINA MERZ156 

different laboratory notions allow one to reveal different features of simulation work, 
each concept defining a distinct frame for the analysis of computer simulation prac-
tice. This approach results in a multilevel account of simulation practice that will be 
unraveled by discussing a specific case: computer simulation in particle physics. I 
conducted the ethnographic study on which this analysis is based over a period of 
approximately ten years at CERN, the European Laboratory for Particle Physics in 
Geneva (Switzerland). Particle physics provides a particularly interesting case due to 
the great significance, the extensive application, and the multiple roles that simula-
tion assumes in this research area (see also Merz 1999). 

The present account of simulation practice operates on several levels. To provide 
a readable narrative, the levels cannot be disentangled entirely. They will be pre-
sented alongside one another with an effort to render them explicit throughout the 
text. After introducing the reader to the case study of particle physics, two laboratory 
concepts will guide the discussion on simulation practice, each presented in a special 
section. The levels of analysis concern, first of all, these two perspectives: the con-
figuration of objects and the local intertwining of simulation with other practice. Fur-
thermore, simulation and other practices are interlaced in time, which brings to the 
fore a temporal dimension that is of particular importance in the case of particle 
physics. Finally, besides providing a close reading of the epistemic practice of simu-
lation, the chapter pursues a reflexive aim. It raises the question in what sense ac-
counts of scientific practice rely on the underlying conceptual frameworks. In a way, 
then, this chapter performs an experiment, its experimental target being the extended 
case study of simulation at CERN. 

CONCEPTS OF THE LABORATORY

The science-as-practice approach of the new sociology of science has developed 
laboratory concepts that are productive for the present exploration of simulation. I 
distinguish two complementary characterizations of the laboratory, which have both 
been elaborated by the same set of authors and represent different focal points and 
targets of argumentation. 

Laboratory as a Site of Locally Embedded Practice 

The first perspective views laboratory research as being inextricably tied to the lo-
cales in which knowledge is produced (see for an overview, e.g., Lynch 1997: chap. 
3). The laboratory is seen as a repository of competencies, tools, and resources that 
the scientists draw upon. Scientists exploit the contingencies of local contexts with 
respect to the equipment and research facilities at hand, the interactional circum-
stances, the conventions embodied in laboratories, the combined expertise gathered 
in a research team, and the organizational setting in which it is embedded. Scientists 
employ a whole repertoire of improvisations and tentative solutions, different forms 
of tinkering and embodied skills, as well as different techniques of persuasion and 
negotiation. As a consequence, the research problems are locally constituted, as are 
the research objects, the tools, and the way in which scientists handle and assemble 
all these elements. Out of this seemingly messy set of things and actions, scientists 
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“produce order” (Latour and Woolgar 1979), which points to the constructive nature 
of scientific work. In this perspective, knowledge production is closely associated 
with the laboratory as a site of locally embedded practice. 

Laboratory as a Site of Object Reconfiguration 

A second perspective identifies the laboratory with a lieu in which objects (and sub-
ject-object relations) are reconfigured and acted upon in specific ways. As the para-
mount site of knowledge production in modern science, the lab symbolizes and sub-
stantiates the power and success of science. Bruno Latour and Karin Knorr-Cetina, 
among others, maintain convincingly that this power relies on specific forms of ob-
ject work that are performed in – and are constitutive of – the laboratory. 

Bruno Latour (1983)2 argues that scientists gain strength in the laboratory by in-
verting the hierarchy of forces according to their research interests. They do this by 
reversing the scale of phenomena in the laboratory, making some objects bigger and 
others smaller. For example, organisms are isolated and cultivated in a suitable mi-
lieu, which allows them to grow exponentially and become visible to the scientist’s 
eye. As a consequence, scientists are enabled to do things in the lab that are not fea-
sible outside where the existing scales are unmanageable. The variation of scales al-
lows scientists also to multiply experiments at reduced cost, which turns the labora-
tory into a learning environment, “a technological device to gain strength by multi-
plying mistakes” (Latour 1983). 

Karin Knorr-Cetina (1992) similarly argues that the laboratory is “an enhanced 
environment” (Knorr-Cetina 1992: 116). She identifies the mechanism that brings 
this about as the reconfiguration of subject-object relations to the scientists’ advan-
tage, which can be viewed as a generalized notion of Latour’s scale reversal. In the 
laboratory, scientists reshape the phenomena of investigation in order to control their 
temporal and spatial accessibility and to render them fit for experimentation. Lab 
objects can be duplicated, standardized, and are amenable to a full sequence of ex-
periments. In addition, social relations are also reconfigured and aligned with the 
specific requirements of the objects in the lab. For example, collaborations are forged 
to confront the object world optimally, with the form and size of collaborations dif-
fering widely across fields. To summarize this perspective: According to the cited 
literature by Latour and Knorr-Cetina, knowledge production is closely associated 
with a specific mode of relations between the scientists and their objects that charac-
terize the laboratory. 

Both perspectives on the laboratory – the local practice variant and the object recon-
figuration variant – can be applied productively to a discussion of simulation prac-
tice. The remainder of this chapter will first introduce the case study of particle physics. 
It will then draw out the specific features of simulation by focusing on each perspec-
tive consecutively. Each perspective gives rise to an account with its own legitimacy 
and logic, emphasizing important elements of simulation practice while downplaying 
others. 
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PARTICLE PHYSICS AND SIMULATION

Over the last decades, computer simulation has become a central strategy for the 
conduct of experiments in high-energy physics. Physicists explain the indispensabil-
ity of extended simulation work by referring to the specificities of the physics proc-
esses (i.e., the statistical nature of the events and the detection process) and the ex-
periments’ complexity. The dynamics of ever more powerful beam energies that re-
quire large-scale technologies and result in increasingly strong data fluxes also char-
acterize the accelerator experiments at CERN, the European Laboratory for Particle 
Physics. Consider the case of the Large Hadron Collider (LHC), which was approved 
by CERN’s Council in 1995 and is currently under construction. Its two proton 
beams will be ready for collision in 2007, enabling physicists to investigate particle 
properties that have been inaccessible to experiment before. Physicists expect that the 
LHC will allow them to tackle some of the central unsolved questions of the Stan-
dard Model (e.g., related to the Higgs mechanism, supersymmetry, antimatter). Cen-
terpiece of the LHC is its accelerator ring of 27 km circumference that will use su-
perconducting magnets to keep the proton beams on track. The LHC aims at provid-
ing the highest energy of accelerators and the most intense beams worldwide. 

Collaborations, Detectors, and Simulation 

Physicists will perform measurements at different sites along the accelerator ring. At 
present, five experimental ‘collaborations’ (ATLAS, CMS, etc.) are installing their 
measuring devices: the particle detectors. A collaboration is defined by and ‘built 
around’ a particular detector. It is responsible for planning, designing, and building 
the device and, once the experiment is up and running, for taking and analyzing the 
data it provides. Physicists at CERN refer to the collaborations also simply as ‘the 
experiments.’ The particle detectors have the size of multistory buildings. They are 
made up of several layers (the different detector systems), which, like a set of Rus-
sian dolls, are arranged around the collision point. From the innermost to the outer-
most layer, the particles traverse the tracking chamber, the electromagnetic calorime-
ter, the hadron calorimeter, and, finally, the muon chamber. Each layer measures dif-
ferent properties of the passing particles, such as particle type, electrical charge, or 
momentum. The different particles can be identified as each leaves a specific ‘signa-
ture’ in the various detector layers. Electrons and protons, for example, leave a trace 
in both the tracking chamber and the electromagnetic calorimeter whereas neutrons 
do not. They, for their part, are detected by the energy they deposit in the hadron 
calorimeter. 

The full lifecycle of the current collider experiments, which encompasses several 
phases, will extend over fifteen to twenty years.3 The corresponding collaborations 
are of considerable size: ATLAS, one of the LHC collaborations, involves more than 
2,000 members from thirty-four countries. The engaged competencies comprise tra-
ditional skills of the experimenter (e.g., design of instruments, manipulation of appa-
ratus, data analysis, and interpretation) but also include expertise in areas as diverse 
as management and licensing, electronics and information technology, theoretical 
particle physics and solid state physics, material sciences and mathematics, and so 
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forth. The collaboration members are sorted into different organizational units, which 
loosely correspond to what the physicists call different ‘communities’ (see also 
Knorr-Cetina 1995). These units or communities are dedicated on the one hand to the 
aforementioned detector systems (such as the electromagnetic calorimeter) and on 
the other hand to coordination tasks of concern to the experiment’s overall operation 
(such as physics coordination, computing coordination, or electronics coordination). 
With respect to this structure, simulation is a transversal practice: Simulation work 
is performed by members of different communities and in different organizational 
units; it becomes coordinated across units; and it assists in coordinating and synchro-
nizing other type of work throughout different communities.4 Three types of commu-
nity are of particular interest to the present account: the ‘phenomenologists,’ the 
‘physics community,’ and the ‘detector communities.’ 

The phenomenologists are not part of an experiment’s collaboration. They rather 
form a subgroup of theoretical particle physicists. Theorists and experimentalists 
constitute separate scientific communities that evolve in distinct organizational struc-
tures. Each has its own research agendas, career patterns, and publication practices. 
Compared with other theoretical particle physicists (e.g., mathematical physicists), 
the phenomenologists interact and cooperate more closely with experimental physi-
cists. They explore model extensions in correspondence with the feasibility of ex-
perimental studies, they develop simulation programs that will be used by experi-
mentalists later on, they perform simulation studies whose results are of interest to 
experiment, and so forth. 

Among the members of a collaboration, simulation work features importantly 
both in the ‘physics community’ and in the different ‘detector communities.’ The 
physics community is responsible for all aspects of physics analysis, which varies 
throughout the different phases of an experiment: It specifies the physics priorities of 
an experiment, guides the optimization procedure for the apparatus to assure that the 
physics goals can be addressed by the experiment, develops strategies to analyze the 
data, and, once the experiment is running, performs the data analysis. Simulation is 
an indispensable instrument to address each one of these tasks. In the different 
phases, the physics community interacts intensely with phenomenologists on the one 
hand and with the different detector communities on the other hand.  

The detector communities, each dedicated to one of the detector systems, are in 
charge of developing and constructing the different detector systems. In close inter-
action with the physics community, they have to assure that the detector systems will 
meet the requirements that follow from the physics priorities. The systems may be 
broken down into further subunits that correspond to subdetectors. For example, the 
inner detector is made up of the pixel detector, the semiconductor tracker, and a tran-
sition radiation tracker. The detector communities are responsible for the apparatus 
during its entire lifetime: starting with the design and proceeding to the construction, 
the maintenance, and finally the working of the respective detector systems. A cen-
tral task of these endeavors is to reach an understanding of the detector and its oper-
ating mode that is as complete and as accurate as possible. Simulation strongly sup-
ports detector design work; it is employed for understanding the performance of the 
detector systems and the complete detector. Simulation expertise and other types of 
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expertise go hand in hand and are coordinated closely to accomplish the tasks of the 
detector communities. 

Finally, the computing community should be at least mentioned. It provides the 
information technology infrastructure that sustains the other communities’ respective 
simulation work. It deals with computer platforms, builds releases, and ensures that 
the computing efforts throughout the collaboration can be coordinated and synchro-
nized.

Simulating Events and Detector Performance 

Simulation is employed to mimic the processes of production and detection of ele-
mentary particles as they are thought to occur in a ‘real’ experiment, with separate 
computer programs assuming the roles of collider and of detector (see Figure 1). Par-
ticle physicists label experiments, data, and so forth as ‘real’ in contrast to their 
‘simulated’ counterparts. 

An event generator – like a collider – brings particle pairs into collision, a proc-
ess in the course of which a plethora of new particles (up to several thousand in the 
case of the LHC) is created. The program produces collisions one by one, as in the 
‘real’ experiment. Each collision is called an ‘event.’ The program generates many 
events in a single computational session; all are produced with the same initial pa-
rameters (e.g., the beam energy). What makes each event unique is the final output: 
the listing of the produced particles, their properties, and their ‘history’ (i.e., informa-
tion about the ‘mother particles’ from which they emerged). The events are different 
because the laws of quantum physics are probabilistic. The main event generators 
have been constructed and are maintained by phenomenologists. 

Figure 1.  How to produce simulated and ‘real’ data 
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A detector simulation program accounts for the working of a particle detector 
with its different detector systems. The experiments at CERN and most other particle 
physics experiments worldwide use the GEANT program package for this purpose. 
Designed originally for application in high-energy physics (HEP) experiments, it is 
now also applied in research fields outside of HEP, for example, in medical and bio-
logical sciences, radioprotection, and astronautics. GEANT simulates the passage of 
elementary particles through matter. The program describes the ‘tracking’ of particles 
(i.e., their transport) through an experimental setup in order to simulate the detector 
response. It also provides for the graphical representation of the experimental setup 
and the resulting particle trajectories. Since GEANT is a very general framework, it 
needs to be adapted to an experiment’s specific detector. For this purpose, its design 
and setup are described by members of the detector communities as a structure of 
geometrical volumes, each volume being characterized by how the incoming parti-
cles interact with the detector material. As output, the detector simulation program 
produces particle trajectories and the response of the detectors. 

When coupling the two simulation programs by feeding the output of the event 
generator into the detector simulation program as its input, the entire event chain – 
production of elementary particles, collision, detection of the emerging particles – 
can be modeled in the computer. The output of the simulation runs consists of the 
‘simulated data.’ Simulated data and ‘real data’ are indistinguishable in their form: 
The detector simulation program provides output in a format that is identical to that 
of the experimental data acquisition system. This is a prerequisite for simulation be-
ing able to mirror (parallel, substitute, etc.) the real experiment. In the phase of data 
analysis, for example, the identity of the data formats allows both sets of data to be 
passed through the same ‘reconstruction program’ that then enables the comparisons 
in the process of physics analysis. 

Simulated data are produced and processed in dedicated simulation studies 
throughout all phases of the experiment. The simulation activities are highly varied, 
be it in their radius of application, their social organization, their epistemic function, 
the problems they address, or the consequences of their results (see also Merz 1999). 
Some of this rich texture will be exposed in the next two sections. The aforemen-
tioned perspective on the laboratory as identified with the idea of object reconfigura-
tion will feature first. 

SIMULATION AS OBJECT RECONFIGURATION

In the wake of the cited work by Latour and Knorr-Cetina, science studies scholars 
have argued that the reconfiguration of objects in the laboratory can assume different 
forms. Whereas object reconfiguration in the lab typically modifies the objects’ ‘ma-
terial’ shape, the concept can also be extended to ‘immaterial’ forms of reconfigura-
tion. Karin Knorr-Cetina (1999: 27) provides an example from astronomy. She con-
siders the digitized recordings of astronomical phenomena that are transferred to 
computer terminals where they can be processed independently from the temporal 
and spatial constraints of a field science. In a related sense, the notion of object re-
configuration can be extended to the case of computer simulation. Phenomena that 
are numerically and mathematically configured (or modeled) become amenable to 
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experimentation by way of simulation studies. Experimenting with numerically con-
figured phenomena requires an adequately furnished environment: It relies on the 
availability of appropriate computer models (event generators, detector simulation 
programs) as well as on a set of competencies, tools, and infrastructure needed to 
bring simulation studies to a satisfactory conclusion. In a way, the computer appears 
as a functional equivalent to the workbenches of a traditional laboratory science. In 
this sense, simulation studies can be viewed as being performed in a digital labora-
tory. Simulation allows scientists to represent, shape, and experiment on natural, 
technical, or formal processes and phenomena such as natural systems or research 
apparatus. Simulation studies enable scientists to mimic complex object environ-
ments, and to model and analyze the respective dynamic evolutions. Scientists ex-
ploit these options in multiple ways, for example, by exploring new spaces of action 
and probing their limitations. How they go about this work will be illustrated and 
analyzed in the following by focusing successively and in chronological order on the 
different phases of particle physics experiments (see Table 1). 

Exploring Accelerators 

Simulation is relevant in a first, explorative phase of a collider experiment in which 
the ‘discovery potential’ of a projected accelerator is tested. In this phase, physicists 
perform simulation studies to investigate which physics processes will occur as a 
result of a projected accelerator’s particle collisions – the accelerator being character-
ized by the envisaged particle type, the particle’s collision energy, and the beam in-
tensities. In the words of simulation expert Johan,5 simulation serves at this stage “to 
estimate the feasibility of an intended physics study.” The event generators stand in 

Table 1.  Simulation in the life of an experiment

Chronology Aim of simulation studies Simulation laboratory 

Before decision to 
build new machine: 

– explore accelerator  
potential 

– develop analysis  
strategies

simulating (possible)  
accelerators

After approval of 
new machine: 

– design and optimize  
detector

– revise analysis strategies 

simulating (possible)  
detectors

Experiment is  
running (expected 
2007): 

– analyze experimental data, 
explore theoretical models 

Data analysis lab 

joint and parallel processing 
of simulated and real data 
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authoritatively for the – as yet unbuilt – accelerator. The simulation studies constitute 
a ‘dry lab’ in which the potential of a future machine to deliver interesting physics 
processes is tested. Simulation studies have the advantage of allowing physicists to 
systematically vary and control the machine’s parameters in utmost flexibility and to 
probe for the consequences of the different parameter selections. Event generator 
expert Paolo asserts: “Event generators are used to do all of the preliminary work that 
eventually leads to the decision of building a machine.” In this phase, the event gen-
erator substitutes for the accelerator. The responsibility for these simulation studies 
lies primarily with the ‘phenomenologists’ who are engaged in simulation work in a 
variety of ways. They employ simulation to obtain information on measurable quan-
tities (i.e., the physical properties accessible by experiment) from abstract theories. 
They perform simulation studies to investigate the theoretical models that underlie 
the simulation programs. The ‘authors’ (i.e., producers) of event generators – and the 
event generators themselves – also act as ‘go-betweens’ linking theory and experi-
ment, and they mediate between the two epistemic and social realms (see Merz 1999, 
2002 and footnote 1). 

Devising Analysis Strategies 

Once a specific accelerator layout has been judged appropriate for investigating a 
new type of physics event of particular interest (e.g., a Higgs-particle decaying into 
two gammas), analysis strategies need to be devised.6 Devising analysis strategies 
consists in looking for clever ways to separate the ‘signal’ from the ‘background.’ 
Experimentalists denote as ‘background’ all those unwanted processes within which 
they need to uncover the events of interest: the ‘signal.’ The background needs to be 
fought and overcome (Knorr-Cetina 1999: 123–127). Exploring ways to ‘beat it 
down’ consists in searching for “observables that are optimally discriminating be-
tween the signal and the background” (Johan). Such strategies rely on theoretical 
reasoning, and they are tested for their effectiveness by feeding them into simulation 
studies. This type of simulation work thus serves to promote theoretical understand-
ing and is performed by members of the physics community: the experts in data 
analysis.

Firmly embedded in the social life of a collaboration, experts in data analysis use 
simulation as an indispensable instrument of physics analysis. Their more general 
aim is to process data in such a way that the result can be compared directly with the 
predictions that follow from theoretical models and assumptions. The experts in 
physics analysis participate in a range of physics-simulation working groups, the so-
called ‘physics performance groups,’ each of which is dedicated to a different class 
of physics events (e.g., Higgs bosons, supersymmetry, B-physics, top physics). The 
Higgs working group, for example, studies the different decay channels of the – as 
yet undiscovered – Higgs particle with important decay channels being Higgs to 
gamma-gamma, Higgs to Z-gamma, and Higgs to four leptons. A considerable num-
ber of detailed simulation studies is needed to prepare for the Higgs searches in the 
(future) actual experiment, and this requires all relevant signatures and various phys-
ics scenarios to be taken into account. Physicists base their studies on the ‘Standard 
Model’ as well as on as yet experimentally unsupported extensions of it, such as the 
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‘Minimal Supersymmetric Standard Model.’ The underlying theoretical framework 
enters the simulation studies through the choice of a specific event generator whose 
output is fed into the detector simulation program.  

The simulation studies contribute to a better understanding of how evidence for 
the existence (or inexistence) of the Higgs particle can be extracted from the data. In 
this phase of the experiment, data analysts work exclusively with simulated data. 
Their studies are considered as an indispensable preparation for the analysis of future 
‘real’ data. At this stage, event generators are typically employed without coupling 
them to a detector simulation program. The reason is that both (accelerator and 
analysis strategies) are probed independently from the detection mechanisms, which 
will feature next. 

Designing Detectors 

In a subsequent phase, the design and the layout of the particle detector are of central 
concern – and simulation studies are devoted to this task. A detector simulation pro-
gram propagates particles through a (simulated) apparatus to study the apparatus’ 
detection capacity. Physicists scrutinize the detector requirements with the aim of 
optimizing the design features. What is at stake here is the detector’s capacity to be 
sensitive to the physics events of interest. Experimentalists want to know “how to 
optimize our detectors in such a way that we could find what we already know today 
to be interesting physics like, for instance, Higgs going to gamma gamma” (Johan). 
Different actors in the collaboration negotiate and balance the detector specifications 
while taking conflicting interests into account. These are not only physics priorities, 
but also financial and technical constraints. The decisions on design options are taken 
on the basis of simulation studies. Simulation plays an essential role as a bargaining 
tool: It enables scientists to flexibly reconsider a variety of design features with the 
possibility of isolating specific features. It constitutes an enhanced environment that 
allows physicists to zoom in on contested areas of the detector and test out a variety 
of potential solutions to problems with the design. In this process, the detector simu-
lation program stands in for the experimental setup of the projected detector systems. 
The details of the detector design are fixed step by step according to the outcomes of 
simulation studies. 

This simulation work is performed by members of the detector communities who 
contribute centrally to the conduct of experiment. Each detector community has its 
own simulation experts. They assume different tasks in different phases of the ex-
periment in line with the research program of the community. In an early phase of 
designing a detector system, simulation is used, for example, to test out new ideas. 
Physicist Pat recalls: 

You can use simulation to test an idea in advance and in fact I have done one particular, 
rather large project. […] Our barrel silicon tracker is laid out very conventionally. It’s 
just a cylinder with a bunch of flat wafers put around it. But then these people came 
along from one university and they had a very different idea about how these wafers 
could be set out, and they thought it was a wonderful idea really. It looked a little funny 
when you just looked at the drawings on paper. Just looking at it on paper, you’d say 
that’s not going to work. And their claim was, we think it will work and we want to 
prove it to you by simulating it and running some tracks through it. Okay, now this  
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design was only in their heads and on the paper. But I helped them code it in GEANT and 
whether they proved that it was better or not doesn’t matter [here], but the point is that 
we made a simulation of an idea that hadn’t been built (Pat, interview). 

After a considerable stretch of time and highly complex negotiation processes within 
and between the different communities of a collaboration (which this chapter cannot 
discuss for reasons of space), the collaboration takes its decision on the detection 
mechanisms and the detailed detector layout based on the results of simulation stud-
ies. At this stage, the aforementioned analysis strategies need to be re-evaluated in 
relation to the fixed detector specifications. The physics performance groups come to 
the fore again, and now base their studies on a combined application of event genera-
tors and the full detector simulation program, which represents the detector as it will 
be built.  

At this point, the simulated detector layout is stripped of its potential to be 
adapted to ever new design ideas: it becomes ‘frozen’ and is declared a central and 
centering instrument of the collaboration. In large-scale ‘productions,’ which are or-
ganized and supervised by the computing community of the collaboration, a great 
number of events is produced by extended runs of the official detector simulation 
program. These data are saved on tape and are rendered accessible to the physics 
analysis community for detailed analysis. 

Running the Experiment 

Once the detector has been built and the experiment is running – a stage which (at the 
time of writing this article) lies in the future of the LHC experiments – simulation no 
longer needs to stand in for either accelerator or detector as in all previous phases. 
Again, simulation does not lose its prime importance because new challenges and 
requirements are to be met. Simulation now provides a parallel set of data for com-
parison with experimental data. On the basis of this comparison, physicists can de-
cide whether the experimental results agree with the theoretical predictions. For this 
reason, computer simulation also remains a central instrument in the phase in which 
the observed data are analyzed and interpreted. 

At the end of this chronological itinerary through the phases of an experiment, the 
underlying perspective on simulation as object reconfiguration can be assessed: The 
account of the importance and role of simulation throughout different experimental 
phases may seduce the reader into believing that simulation studies might fully sub-
stitute for material exploration until the moment that the ‘real’ collider and detectors 
are constructed. The account presents the fiction of a (materially) disembedded prac-
tice. The simulation laboratory seems to be completely decoupled from the material 
world of ‘traditional’ experimentation. Simulation has indeed developed as a distin-
guished and distinguishable field of expertise in particle physics. In accordance with 
the increasing specialization that characterizes the social organization of collabora-
tions in particle physics, a tendency to disembed simulation activities entirely from 
other forms of epistemic practice can be observed. Yet, the conceptual frame that 
perceives simulation as a particularly successful form of object reconfiguration is at 
the same time erroneously partial, fragmentary, and fraught with hidden assumptions. 
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It presents the public imagery of simulation as a valid substitute for (material, con-
crete) experimental practice, which, in its most radical form, may question the sheer 
raison d’être of concrete experimental practice. Simulation seems to replace in silico
the rich texture of experimentation. It comes as no surprise that such an account 
leaves out important aspects of simulation practice. The next section will switch per-
spective and provide a glimpse of an alternative account. 

SIMULATION AS LOCAL PRACTICE

If, in contrast, the laboratory is identified with the multiple instances of local prac-
tice, the embedded character of simulation work comes to the fore. In this case, atten-
tion is drawn to simulation together with the entire social and material context in 
which it is embedded and which brings it about. Such a ‘wide-angle’ approach ren-
ders visible the social and technical infrastructure that is needed for performing simu-
lation studies; the epistemic and social entanglement of simulation activities with 
other endeavors in experimental physics, theoretical physics, or other fields of prac-
tice; the relations, rankings, and hierarchies of different data types; and so forth. As a 
result, what seemed to mark the boundaries of simulation in the first account (see 
previous section) constitutes the irreducible context of simulation in the second. De-
pending on the perspective chosen to address simulation work, activities disappear 
from view in one case to appear as indispensable elements for the pursuit of simula-
tion in another. 

Consider the relation between simulation and material practice or ‘real data.’ In 
Table 1, which exhibits the different phases of an experiment with the corresponding 
roles of simulation, real data seem to show up only in the very last stage: once the 
full experiment is running and producing data. In an important sense, this view is 
unjustifiably reductionist. This is illustrated in the following by discussing the case 
of prototyping and test beams that engages the different detector communities. 

When physicists develop ideas for detector techniques and devise concepts for its 
design, its setup, and the principal detection mechanisms on which the final detectors 
are to be based, simulation is not their only epistemic strategy. The following ac-
count fills in the blind spot and focuses on activities that remained concealed when 
discussing detector design under the perspective of object reconfiguration. Other re-
search sites are set up in parallel and interact with simulation studies in interesting 
ways. In particular, this work involves physicists who construct and experiment with 
detector prototypes – in the sense of material artifacts. Prototypes are employed to 
test detection mechanisms by maximally reducing the complexity and compositeness 
of the envisaged full detector: Prototypes are miniaturized and simplified versions of 
the full detector. For example, a prototype may be made up of one module of (what is 
later on to become) one of the detector systems. 

Physicists place detector prototypes in a test setup and expose them to test beams 
‘to understand how exactly the detector is behaving.’ Test-beam studies constitute 
model and miniature versions of an (entire) experiment. In many cases, physicists 
propose to use technologies for the new detectors that are not well understood yet, be 
it that new detector technologies are being explored, or be it that traditional ones are 
to be employed at considerably higher beam energies than before. For this reason, 
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physicists need to investigate how a (projected) detector will translate physics proc-
esses into an electronic signal and measure the detector’s resolution. This is done by 
building prototypes and placing them in test beams. This work is also accompanied 
by simulation studies. Yet, compared with the cases discussed earlier in which simu-
lation work seemed to precede and substitute for ‘real’ experimentation, there is an 
important difference. In the case of prototype studies, simulation and hardware work 
are highly interdependent and complementary forms of knowledge production. The 
real data produced in prototype experiments are indispensable elements for rendering 
the simulations of the future detector adequate and thus useful, while simulation 
studies provide important input for furthering the understanding of the detection 
mechanisms. 

In the phase in which the prototype is probed in test beams, simulation and hard-
ware work are performed in close cooperation and alignment within a detector com-
munity. A unit of ten to fifteen (and sometimes more) scientists is responsible for 
simulating, constructing, and testing the prototype embedded in the wider context of 
a detector system community. A simulation expert writes a dedicated simulation pro-
gram that models the behavior of the prototype detector. Hardware physicists work 
on the ‘real’ counterpart in the experiment, probing the detection capacity of a proto-
type with different particle beams in test beams. A comparison of simulated and test-
beam data provides the basis for interpretive work, which is performed in close co-
operation between the simulation expert and the corresponding hardware physicists. 
The epistemic gain of this twofold endeavor results from a reciprocal approximation: 
The models that underlie the simulation make it possible to improve the understand-
ing of the detection mechanism; parameters are extracted from the real data and are 
then fitted to the simulation program that, as a result, will become ‘more realistic.’ 
Successful cooperation requires that physicists establish a common ground of under-
standing. This is facilitated, both socially and epistemically, by the fact that many of 
these software physicists have gained experience with hardware work, occasionally 
even ‘taking shifts’ and participating at the test beams. 

The learning effects produced in this research environment concern both forms of 
expertise: simulation and hardware physics. The effects become visible when consid-
ering the combined simulation-test beam work. In the following, l shall single out a 
few examples of the knowledge that is produced in prototype studies and that pro-
vides significant input for the full detector simulation programs needed in later stages 
of the experiment.  

Geometrical features: Detectors as realized in material form will never fully 
match the design drawings on which their construction was based. One reason is 
that service parts (such as cooling pipes or wires) were given inadequate consid-
eration in the drawings. Experimentation on a prototype allows physicists to ob-
tain a more realistic representation of the geometrical features of the actual de-
tector parts. 
External conditions: Testing for external conditions such as the sensitivity of the 
detector to temperature, humidity, or atmospheric pressure will allow physicists 
to understand how the signal fluctuates in response to these conditions that can 
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never be controlled fully in the experiment and therefore need to be accounted 
for numerically. 
Adaptation of heterogeneous detector parts: Prototype studies will allow physi-
cists to better understand how the detector parts of different material interact 
with each other. Whereas, in first approximation, these parts are modeled in a 
modular way as if they were independent pieces, the prototype studies provide 
knowledge on how to correct for this approximation. 
Electronic noise: Every detector produces electronic noise whose origin cannot 
be understood in detail. Prototype studies address this problem empirically. They 
measure the levels of electronic noise and enable physicists to subtract it later on 
from the obtained signals. 
Signal shape: The shape of the signal varies from one detector to another. Know-
ledge about the signal shape is an important ingredient of simulation programs. 
It is required for reconstructing the physics processes underlying the measure-
ments.  

The acquired knowledge is included in the simulation programs in the form of new 
models (i.e., as new pieces of active code) or of parameters that allow one to tune and 
to fine-tune the different model components. The case of prototype studies evokes an 
alternative reading to the earlier account of simulation as constitutive of an autono-
mous digital laboratory. It suggests that simulation studies do not simply precede 
experiment. Instead, one observes a twofold dynamic:  

When focusing on a particular temporal phase, especially the phase in which pro-
totype studies take place, one observes the reciprocal embedding of simulation prac-
tice and hardware practice. Both feed into one another and should be considered as 
central elements of local practice.  

When considering instead the entire lifetime of an experiment, the meso-level of 
scientific practice comes into view: Different stages of experimental practice are ‘in-
tercalated’7 with simulation activities acting as a glue – a linkage tool that memo-
rizes, transports, and, in a way, translates knowledge from studies of different proto-
types to studies of the full detector systems. The simulation programs also incorpo-
rate and integrate knowledge that has been produced at different sites and organiza-
tional units of the collaboration, and they make it available to the collaboration as a 
whole. The characteristics rely on the fact that simulation work and (other forms of) 
experimental practice are continuously aligned and paralleled.  

These very important features become visible only when considering the full 
spectrum of local practice as can be observed within the wider frame of the experi-
ment. When singling out simulation as if it were to constitute a lab of its own, the 
second account of simulation practice in particle physics experiments remains invisi-
ble. The above observations thus raise doubt about the possibility of discussing simu-
lation as a distinct and decoupled epistemic activity. Nicos, a physicist in the ATLAS 
collaboration, provides a pertinent illustration of this observation. 

The simulation, of course, you can put some things inside as you understand them but if 
you don’t have data to compare, then the real crucial test and the criterion for physics is 
the data. Data decide. I mean, the data are correct. This is the statement always. Data are 
always correct. (MM: if you have them.) Yes, if you have them, if you have them,  
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definitely. But okay, even now, ATLAS does not have the data now, but inside the simu-
lations you definitely need to simulate the behavior of your chambers or of your silicon 
detectors or of your calorimeters, etc. So you need to go let’s say to a test beam to under-
stand about noise, what happens, I mean, to understand how exactly your detector is be-
having. […] You can make calculations, definitely by hand, back of the envelope calcula-
tions, but the things that finally show you a more realistic behavior of your final detector 
are the test beams. So you put part of your detector in the test beam before building the 
detector and taking the various parameters of the things you are putting finally in the 
Monte Carlo (Nicos, interview). 

Nicos’ statement that “data are always correct” introduces the ‘real’ apparatus as an 
anchor and a reference point for all experimental practice, be it simulation-based or 
not. Yet, his statement is programmatic as much as descriptive. He also uses it to 
counter a tendency to ‘disembed’ simulation, which not only follows from the seduc-
tive potential of simulation, but also from the extended temporal phases of the ex-
periment, the high degree of specialization, and the highly differentiated bodies of 
practice.

CONCLUSIONS

This chapter has explored the association between simulation and two notions of 
laboratory. A first perspective, which emphasizes object reconfiguration, allows one 
to draw out the power and success of simulation in all phases of particle physics ex-
periments. This success is due to the quasi-autonomous nature of simulation studies 
that follow their own logic throughout extended phases. The notion of ‘scale rever-
sal’ (Latour 1983) accounts for the relative ease with which simulation studies are 
duplicated, repeated, and varied and for the reduced time scales and costs compared 
to the case in which the design of apparatus would have to be based on physical 
models (such as prototypes) and theoretical reasoning alone. In this reading, simula-
tion is closely associated with the practice of disembedding. Reconfiguration – the 
transformation of objects as they occur ‘in nature’ into the objects worked on in labo-
ratories – involves a form of disembedding. Reconfigured objects are easier to deal 
with, and it is possible to extract results from them in ways that advantage the scien-
tist precisely because they have been partly disembedded from their natural environ-
ments. While this perspective is productive for analyzing important advantages of 
simulation, it also has its limitations. At least for the case of particle physics, the no-
tion of a simulation laboratory in this first sense overemphasizes the potential to de-
couple the site of experimentation in silico from other sites of scientific practice.  

This is where the second perspective, which zooms in on the broader array of lo-
cally embedded practices, provides an alternative. Instead of singling out simulation 
as a distinct instance of practice, it takes into consideration the complex web of inter-
twined practices. The prototype studies discussed above provide an example. From 
this angle, the disembedded practice of simulation (as sketched in the first account) 
appears as a mode accompanied by other modes that cover the embedding (or reem-
bedding) tendencies of simulation work. The second perspective on the laboratory 
thus serves as a corrective and allows one to fill in the gaps created by an idealized 
account of simulation. In the case of particle physics, the scientists never forget the 
necessity to reembed simulated data for the purpose of the experiment. This may be 
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explained by the fact that simulation will eventually be disciplined and needs to 
prove itself at the latest when real data start to flow. Consequences are, if not imme-
diate, never far ahead. Perhaps this explains why the disembedding tendencies of 
simulation tend to be controlled and are kept in closely observed bounds. However, it 
is an open question whether the game of embedding and disembedding tendencies of 
simulation follows similar rhythms and patterns in other scientific domains as well. 
This calls for a comparative investigation of problem areas and their simulation cul-
tures in this respect. 

The material discussed here also draws attention to the importance of analyzing 
simulation practice according to its temporal dynamic, which addresses the third 
level of analysis mentioned in the introduction. In particle physics, the quasi-
autonomous working of a digital laboratory constitutes only one phase in the life of 
an experiment – it is preceded, framed, paralleled, and succeeded by other phases. 
This observation suggests that one should work with a combined framework that 
renders fruitful both perspectives on the laboratory: to consider simulation intermit-
tently as following a logic of reconfiguration and a logic of locally intertwined het-
erogeneous practice. This includes an attention to the disembedding as well as the
(re-)embedding movements of object work. Applying a combined framework of this 
sort to the study of simulation practice allows one to unravel the multilayered struc-
ture that simulation displays and that accounts for its power and versatility. Particle 
physics is a particularly interesting case because it exploits simulation’s rich poten-
tial in all its dimensions. 

Finally, the observation that attention should also be given to the reembedding 
movements of object work raises a more general issue. One might actually wonder 
whether the laboratory studies of STS have dealt sufficiently with the question of 
how laboratory results become transferred across the boundaries of the lab into other 
areas of science or society (see Merz 2006). This involves questions such as the one 
about the strategies that ensure that results elaborated in a laboratory can be trans-
ferred successfully (as concerns their epistemic and social dimensions) to other 
realms. In the case of simulation in particle physics, managing the applicability of its 
results to the conduct of experiments is of utmost importance. While particle physi-
cists in general will agree with this diagnosis, a separate culture of simulation is de-
veloping that might, at times, lose this insight from view.  

ACKNOWLEDGMENTS

For helpful comments I thank Erika Mattila, Martin Meister, and the volume’s three 
editors. I am grateful to the physicists for their patience and interest. 

University of Lausanne, Switzerland, and Eidgenössische Materialprüfungs- und 
Forschungsanstalt, EMPA, St. Gallen, Switzerland  



LOCATING THE DRY LAB ON THE LAB MAP 171

NOTES

1 A loosely related perspective on modeling and simulation addresses the issue of ‘mediation,’ consider-
ing models and simulations as intermediaries between theory and experiment and analyzing their shift-
ing positions in this spectrum (see Galison 1997; Morgan and Morrison 1999; Winsberg 1999). 

2  For a thoughtful account challenging Latour’s claim that laboratories (in all cases) “raise the world,” 
see Scott (1991). 

3 The material presented in this chapter stems from participant observation of one of the LHC collabora-
tions in a preparatory phase in which the detector was being designed and constructed. Insight into the 
role of simulation in other experimental phases was obtained by interviewing physicists working on 
other experiments such as those at the electron-positron collider LEP. The observed scientists include 
theorists, experimentalists, and computer scientists – all of whom are involved with simulation work at 
CERN.

4 This level of analysis, although pervading the chapter, has to remain implicit for lack of space. It con-
cerns the power of simulation to integrate heterogeneous practices within a collaboration and through-
out different phases of an experiment (for a first analysis, see Merz 2005). 

5 The scientists’ names have been replaced with pseudonyms.  
6 In fact, the different phases are not as neatly separated as may appear. Studies often start before the 

first phase has been concluded, resulting in a partial overlap of consecutive experimental phases. 
7 Galison (1997: chap. 9) introduces the concept of intercalation to describe a slightly different dynamics 

of theory-experiment-instrumentation relations. 
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ARTHUR C. PETERSEN

SIMULATION UNCERTAINTY AND THE CHALLENGE OF
POSTNORMAL SCIENCE

INTRODUCTION

On January 20, 1999, Hans de Kwaadsteniet, a senior statistician at the Netherlands 
National Institute for Public Health and the Environment (Rijksinstituut voor Volks-
gezondheid en Milieu, RIVM), made news in the Netherlands. After years of trying 
to convince his superiors that the environmental assessment branch1 of the institute 
leaned too much toward computer simulation at the expense of measurements, he 
went public with this criticism by publishing an article on the op-ed page of the na-
tional newspaper Trouw (de Kwaadsteniet 1999). His article was supplemented with 
an interview that resulted in the headline “Environmental Institute Lies and De-
ceives” on the newspaper’s front page. His specific claim was that the RIVM was 
suggesting an excessive accuracy for environmental figures published yearly in its 
State of the Environment report. According to him, too many model results were in-
cluded that had not been compared rigorously with observational data – mostly be-
cause of the lack of sufficiently detailed data to do the necessary comparisons. He 
pointed out that living in an “imaginary world” was dangerous. He thought that if the 
institute spent more time and energy on testing and developing computer-simulation 
models in a way that were to make more use of existing and newly performed obser-
vations, it would become more careful in the way it presented its results to policy 
makers. De Kwaadsteniet identified the deceiving speed, clarity, and internal consis-
tency of the computer-simulation approach as the main causes of the claimed bias 
toward computer simulation at RIVM. 

The institute responded immediately to the publication by suspending de Kwaad-
steniet from his job and stating in an official reaction that a significant fraction of its 
environmental research budget was spent on observations, that no policy recommen-
dations were given when uncertainties were too large, and that the uncertainties were 
not left out of the State of the Environment reports on purpose. The institute prom-
ised to publish information on the uncertainties in next editions. In a later reaction, 
the institute’s Director of the Environment, Klaas van Egmond (1999), argued that 
simulation models must be viewed as “condensed knowledge” and that they are  
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indispensable in environmental assessment, since, without them, it would be impos-
sible to determine cause-effect relationships between sources and effects of pollution. 
Thus, models give meaning to measurement results. And they are needed in envi-
ronmental policy making. Furthermore, he observed that policy makers often are con-
fronted with incomplete knowledge, and that the institute regards it as its task to report 
on the current state of affairs in the environment, including the uncertainties in-
volved. He gave the example that it will take many more years before climate research 
reaches the ‘ultimate truth’ about what is happening to the climate. However, on the 
basis of currently available knowledge and its uncertainties, politicians have to de-
cide whether to take measures now already. Finally, the Director added that the most 
important conclusions contained in the summaries for policy makers of the State of 
the Environment reports are carefully crafted, taking all relevant uncertainties into 
account.

Soon after the publication by de Kwaadsteniet, an intense and long-lasting media 
debate ensued in the Netherlands.2 The affair reached the floor of the Dutch Parlia-
ment within a matter of days. Facing Parliament, the Minister of the Environment, 
Jan Pronk, defended the integrity of the institute. In return for an agreement to organ-
ize more regular external reviews of its environmental assessment activities and im-
prove its communication of uncertainty, the Minister granted the institute additional 
funding for its monitoring activities. 

The episode of de Kwaadsteniet’s questioning of the role of scientific simulation 
in politics is by no means unique in the world. Controversies like that in the Nether-
lands surface regularly in many countries. In such discussions, general questions 
arise about the role of simulation in science as well as its role in policy making. The 
latter question constitutes the subject of this chapter. It focuses particularly on the re-
liability of simulation for political uses.  

Since World War II, computational approaches in science have emerged and ex-
panded – not in isolation, but often in strong contact with experimental and observa-
tional fields in the natural sciences, and aided by developments in mathematics and 
computer science.3 Outside science as well, simulations have become important tools 
in, for instance, providing scientific advice to policy makers.4 In highly politicized 
cases, such as climate change, methodological questions about what constitutes 
‘good’ or ‘sound’ science, often left implicit in scientific practices, are brought into 
the open. The characteristics of ‘sound’ science on which policies can be based are 
contested in political forums. Typically, the issue of the reliability of computer simu-
lation plays an important role in these debates. The state of affairs in which there are 
high political stakes in conjunction with high systems uncertainty has given rise to 
normative appeals for systematically dealing with uncertainty in scientific policy ad-
vicing. Funtowicz and Ravetz’s (1991) proposal for a “post-normal science” prob-
lem-solving strategy constitutes a prominent example. 

This chapter first discusses the use of scientific simulation for policy. Subse-
quently, after treating general issues related to the science–policy interface and the 
challenge of postnormal science, it presents a case study on simulating climate 
change along with a new methodology for assessing and communicating uncertainty 
in science-for-policy developed by RIVM and external uncertainty experts in  
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response to the media affair. Finally, it outlines the implications of this new method-
ology for managing the use of simulation in science-for-policy. 

SIMULATION UNCERTAINTY IN SCIENCE-FOR-POLICY

Scientific simulation models are not just used within science. The results of scien-
tific simulation models are frequently employed in public policy making as well.5
How important it is to assess computer-simulation uncertainty, as part of the process 
of providing scientific advice to policy makers and politicians, depends on the ques-
tions asked of science. In cases in which policy makers ask questions “which cannot 
be answered by science” (Weinberg 1972) – that is, even though the questions are 
scientifically formulated, the uncertainties are too large to answer those questions 
unequivocally – it is typical that many different answers can be produced by apply-
ing different simulation models to the policy issue. In this chapter, it is argued that, in 
such cases, computer-simulation uncertainty must be assessed thoroughly – and that 
this must be done in a way that is appropriate to the decision-making context. 

Similar arguments were developed by the philosophers of science Silvio Funto-
wicz and Jerry Ravetz (e.g., 1990, 1991, 1993). The aim of Funtowicz and Ravetz’s 
work is to improve the decision-making process by introducing into the policy-
advisory process appropriate information about the uncertainty and quality of the un-
derlying science (“science providing advice to policy” can be called “science-for-
policy” in short). In the Prologue to their book, this aim is set in the following con-
text: 

There is a long tradition in public affairs which assumes that solutions to policy issues 
should, and can, be determined by ‘the facts’ expressed in quantitative form. But such 
quantitative information, either as particular inputs to decision-making or as general pur-
pose statistics, is itself becoming increasingly problematic and afflicted by severe uncer-
tainty. Previously it was assumed that Science provided ‘hard facts’ in numerical form, 
in contrast to the ‘soft’, interest-driven, value-laden determinants of politics. Now, policy 
makers increasingly need to make ‘hard’ decisions, choosing between conflicting op-
tions, using scientific information that is irremediably ‘soft’ (Funtowicz and Ravetz 
1990: 1). 

In Funtowicz and Ravetz’s analysis, the stated “softness” of the scientific informa-
tion relates mainly to their claim that for many pressing policy problems, we cannot 
draw on the reliable knowledge that can be gained from experiments, but instead 
must use much less reliable knowledge from simulation. Even though one cannot 
make the general statement that all simulations are less reliable than laboratory ex-
periments, nor that simulations are in all respects untestable, the question of the reli-
ability of simulation is indeed pressing for the particular cases discussed by Fun-
towicz and Ravetz – that is, very complicated and complex environmental issues.  

Especially in simulation studies of the future, we must recognize our ignorance 
about the complex systems under study. Verification and validation of these com-
puter models is impossible, and confirmation is inherently partial. Furthermore, since 
models are products made by scientists, we must always be aware of the possible 
presence of personal, institutional, or ideological dimensions – their potential ‘value-
ladenness.’ Knowledge claims based on simulation should be tailored to be insensi-
tive to artifactual aspects of models and precise about real effects (Norton and Suppe 
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2001: 84). In order to be able to tailor these claims to such requirements, simulation-
ists must, on the one hand, do much practical work to determine the sensitivity of 
their model results to all sources of uncertainty. It is often not feasible, however, to 
establish the reliability of a simulation in quantitative terms. Therefore, one has to 
also assess the reliability of a model in a qualitative manner, for which a thorough 
review of the model is usually helpful. But even then, the quality of the simulation is 
only established according to the scientific community’s methodological standards. 
Finally, the scientists must think about remaining uncertainties that have not been es-
timated (yet) and determine what they can say about them. All these steps require a 
substantial amount of work. Since policy makers are usually not able to judge the re-
liability of scientific simulation-model outcomes themselves, scientific policy advis-
ers must carefully assess the reliability of their simulations and be aware of the un-
certainties in the presentation of their conclusions.6

Simulation models of ecological systems, for example, although they may give an 
impression of the scope of behavioral possibilities of such systems and, as such, may 
contribute reasons for taking policy measures, cannot predict the future states of 
these open and unpredictable systems. If modeling assumptions were made in a more 
transparent manner, and if, in concrete problem contexts, all relevant policy actors 
were involved in the framing of the models (what questions to address, where to lo-
cate the system boundaries, etc.), the choice of the models, and the evaluation of the 
models, then 

[m]odelling could … contribute to the organization of knowledge, e.g. it could catalyze 
mutual learning processes and it could contribute to the integration of scientific and non-
scientific knowledge and of exo- en endo-perspectives [perspectives from respectively 
outside or within the system studied] (Haag and Kaupenjohann 2001: 57). 

This is proposed as an ideal situation. Current practice is far from this ideal, how-
ever. Leaving aside the question of whether the ideal can ever be reached, we can ob-
serve that simulation uncertainties do not often get the airing they may well deserve. 
Sometimes, policy makers, politicians, and other actors do not see a need to dwell on 
the uncertainties and treat them explicitly. Policy decisions are just taken without be-
ing explicit about the level of uncertainty of the risk involved. A concrete example 
from the area of international environmental policy making is the formation of the 
Mediterranean Action Plan (Med Plan), a regional environmental cooperation for 
dealing with the issue of marine pollution in the Mediterranean that arose in the 
1970s. The uncertainty in this example is related to uncertainties in ecotoxicological 
simulations. The main scientists and policy makers involved in the Med Plan “shared 
an abiding belief in ecological principles and were committed to preserving the 
physical environment, which they thought was threatened by pollution” (Haas 1990: 
74–75). These ecological principles were partly derived from theoretical ecological 
computer simulations used to study the behavior of complex ecological systems. 
These simulations are relatively unreliable. This did not seem to hinder the main pol-
icy actors. The uncertainties in ecological computer simulations were dealt with only 
implicitly, not explicitly, by the actors involved in the Med Plan and remained at an 
unreflective level while decisions were being taken. Increased transparency about 
simulation uncertainties need not have changed the same policy outcomes, but would 
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have made the decisions more robust against these uncertainties. An explicit precau-
tionary approach could have been used, for instance.  

Recently, however, national and international governmental bodies have under-
gone a reflective transition in their attitudes toward scientific uncertainty. At the end 
of the 1980s, when environmental policy makers were faced with significant scien-
tific uncertainties surrounding large-scale and high-impact environmental problems 
such as biodiversity loss and climate change, they started referring more and more 
often to the “precautionary principle,” for instance. Loosely formulated, the principle 
states that if there is evidence that a certain activity may be harmful to humans or the 
environment, that activity should be abandoned. The principle provides politicians 
with the possibility to install measures even when uncertainty still exists about a 
problem.7

Thus, scientific simulation models are often used in providing policy advice, and 
they typically have significant uncertainties attached to them. In practice, it turns out 
that many experts still find it difficult to deal with these uncertainties when providing 
their policy advice. Within their own disciplines, they typically do not learn the skills 
needed to deal adequately with these uncertainties when providing advice (van Asselt 
and Petersen 2003: 144–145). There is clearly a need for including these issues in 
core academic curricula. 

THE CHALLENGE OF POSTNORMAL SCIENCE

Many social scientists who have studied the relationship between science and deci-
sion making have concluded that these two activities cannot be separated neatly in 
practice. One way to phrase this conclusion is the following: “Natural knowledge and 
political order are co-produced through a common social project that shores up the 
legitimacy of each” (Jasanoff and Wynne 1998: 16). An example may serve to illus-
trate this point. 

A much-discussed, though exceptional, coproduction of natural knowledge and 
political order is the ongoing assessment process conducted by the Intergovernmental 
Panel on Climate Change (IPCC), which receives questions from and feeds back into 
the United Nations Framework Convention on Climate Change. Due to widely publi-
cized warnings from scientists in the 1980s, the public in Western democracies be-
came interested in the risks involved in an enhanced greenhouse effect induced by 
anthropogenic emissions of CO2 leading to a human-induced global warming – and 
its associated effects, such as sea-level rise. The attribution of climate change to hu-
man influences and the projections of climate change into the future have made 
heavy use of climate simulations. Since the societal changes implied by the different 
solutions proposed for solving the global warming problem are quite drastic, one of 
the first steps politicians took to address the problem was to ask scientists to regu-
larly assess the state of climate science as well as the possibilities for adaptation to 
climate change and mitigation of the problem by reducing anthropogenic greenhouse 
gas (mostly CO2) emissions. This led to the establishment of the IPCC in 1988.8 The 
advisory process involving the IPCC is regarded by many social scientists as being a 
‘co-production’ of, on the one hand, our knowledge about the climate system and, on 
the other hand, the international political order: 
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The IPCC’s efforts to provide usable knowledge resonated with the belief of sponsoring 
policy organizations that climate change is a manageable problem within the framework 
of existing institutions and cultures (Jasanoff and Wynne 1998: 37). 

Already earlier in the 1980s, before the IPCC was established, the special chal-
lenges facing experts under conditions of potential alignment of scientific and politi-
cal views became evident in the area of risk assessment. Recognizing that the interac-
tions between science and policy making on risks were often unproductive in cases in 
which the decision stakes and system uncertainty are very high, Funtowicz and 
Ravetz proposed to distinguish a new type of risk assessment called “total-
environmental assessment” (Funtowicz and Ravetz 1985: 228). This is a form of risk 
assessment in which the “total environment” – that is, the complete context – of a 
risk issue is taken into account. This kind of risk assessment is appropriate for cases 
with high decision stakes and system uncertainty.9 In very polarized settings, the 
least one can hope for, according to Funtowicz and Ravetz (1985: 229), is a “consen-
sus over salient areas of debate.” 

According to Funtowicz and Ravetz, structural changes in the direction of en-
hanced participation are needed in order to democratize scientific advisory proceed-
ings. For this reason, they have generalized their original normative view on risk as-
sessment into a sweeping normative statement on the future of science-for-policy: 

Now global environmental issues present new tasks for science; instead of discovery and 
application of facts, the new fundamental achievements for science must be in meeting 
these challenges. … In this essay, we make the first articulation of a new scientific 
method, which does not pretend to be either value-free or ethically neutral. The product 
of such a method, applied to this new enterprise, is what we call ‘post-normal science’ 
(Funtowicz and Ravetz 1991: 138). 

When Funtowicz and Ravetz first wrote about “risk assessment,” they subse-
quently generalized their analysis to “problem-solving strategies.” The problem-
solving strategy of “postnormal science” (or ‘second-order science’) corresponds to 
the “total-environmental” type of risk assessment discussed above (Funtowicz and 
Ravetz 1991: 137, 144–145).10

Whether or not one agrees with Functowicz and Ravetz’s statement that “science” 
as a whole has to tackle the “new tasks,” whoever takes up the challenge has the re-
sponsibility to conscientiously (a) assess the issues, which may involve building very 
complicated computer simulations; (b) assess the uncertainties; and (c) communicate 
the policy-relevant findings of both these assessment activities. 

ASSESSING AND COMMUNICATING SIMULATION UNCERTAINTY IN 
SCIENCE-FOR-POLICY

How should we deal with the challenge that postnormal science poses to the use of 
computer simulation in policy making? Let us take a look at a specific example, that 

The alignment of scientific and political views seems to be a common feature of en-
vironmental assessment (see, e.g., Haas 1990 for a similar analysis of science and 
policy involved in the Med Plan). From these and other examples, one may conclude 
that the knowledge used in scientific assessments for policy purposes, often largely 
based on computer simulations, is potentially ‘value-laden.’ 
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of climate simulation and climate policy. Climate simulations play an important role 
in climate science. These simulations involve mathematical models that are imple-
mented on computers and imitate processes in the climate system. Like the history of 
numerical weather prediction, the history of climate science is strongly related to the 
history of the computer. There are two main reasons why simulation is so important 
in climate science. First, computers removed an actual barrier in meteorological prac-
tice: They greatly enhanced the speed with which calculations could be done. The 
calculations in climate simulations cannot be done practically without the use of 
computers. Second, simulation is an important ingredient of climate science, because 
real experiments with the climate as a whole are impossible. If we want to manipu-
late climate ‘experimentally,’ we need to perform such manipulations on a digital 
representation of the climate system. 

It must be borne in mind here that climate science is an observational science in 
which the scientific activities encompass much more than performing computer 
simulations. In fact, climate observations are of pivotal importance – also for cli-
mate-simulation practice. From climate observations, the world’s climate scientists 
have concluded that it is very likely that the earth’s climate has changed over the last 
100 years. In 2001, the Third Assessment Report of the Intergovernmental Panel on 
Climate Change (IPCC) concluded that the global average surface temperature has 
increased by 0.6 ± 0.2°C (95% confidence range) over this period (IPCC 2001: 2). 
The uncertainty is expressed here as a range of temperature change (from 0.4 to 
0.8°C) together with the probability that the real value lies within this range (that is, 
95%). For the Northern Hemisphere, it is considered likely (a judgmental estimate of 
confidence that there is a 66 to 90% chance) that current temperatures are higher than 
historic temperatures over the last millennium (IPCC 2001: 2). 

Alongside temperature, precipitation is also a component of climate. It is consid-
ered very likely that precipitation has increased by 5 to 10% during the twentieth 
century over most mid- and high latitudes of the Northern Hemisphere continents 
(IPCC 2001: 4). Furthermore, in the mid- and high latitudes of the Northern Hemi-
sphere it is likely, according to the climate experts, that there has been a 2 to 4% in-
crease in the frequency of heavy precipitation events over the latter half of the twen-
tieth century (IPCC 2001: 4). Also such extreme events are typically included in the 
description of climate. 

The above statements about observed climate change have been obtained without 
the use of climate simulations. This means that the sources of uncertainty are of a dif-
ferent kind to those encountered in simulation practice. For example, for global aver-
age surface temperature, the sources of uncertainty on the 100-year timescale are lo-
cated in data and (statistical) model assumptions made in data processing: “data gaps, 
random instrumental errors and uncertainties, uncertainties in bias corrections in the 
ocean surface temperature data and also in adjustments for urbanisation over the 
land” (IPCC 2001: 3). For the Northern Hemisphere temperature on the 1,000-year 
timescale, the sparseness of ‘proxy’ data11 is the main source of uncertainty (IPCC 
2001: 3), besides the unreliability of proxies for determining local temperatures in 
the past. 

It is not possible, however, to deduce the causes of the observed changes in cli-
mate directly from the observations. When climate scientists want to attribute climate 



ARTHUR C. PETERSEN180 

changes to causes or make future projections, they need to make use of climate simu-
lations. One of the most important conclusions of the IPCC (2001) is that “most of 
the observed warming over the last 50 years is likely [between 66 and 90% chance] 
to have been due to the increase in greenhouse gas concentrations” (IPCC 2001: 10). 
In order to arrive at this conclusion, climate simulations have been performed as a 
substitute for experiments. This function of simulation is crucial in climate science, 
because there is only one historical manifestation of the system under study. Real (in 
the sense of controlled and reproducible) experiments on the scale of the whole cli-
mate system are impossible. 

The roles of climate simulation in climate science are manifold. Furthermore, 
climate models of varying levels of concreteness exist and are valued differently by 
different groups of climate scientists. On the one hand, we find relatively simple cli-
mate models that do not require huge computational resources but can be used for 
genuine climate-scientific research. On the other hand, we encounter very compre-
hensive climate models that demand high-end supercomputers in order to be able to 
work with them. For this latter category of climate models, computing power is cur-
rently a bottleneck. This situation will remain unchanged for at least the next decade 
(the demand for computational power will keep growing faster than what can be de-
livered). The IPCC reports have taken a pragmatic stance in this matter and acknowl-
edge that both comprehensive and simple models have important roles to play in cli-
mate science (see, also, Petersen 2000). The observed plurality at the methodological 
level is correlated with a plurality of aims and goals held by climate-simulation prac-
titioners in their scientific practice. The social context of climate-simulation practice 
has a significant influence on this practice. Thus, in evaluating climate simulations, 
the potential value-ladenness of choices should not be overlooked. 

Even though all climate models contain ad hoc ‘parameterizations’ and can be 
criticized methodologically for that reason, climate scientists generally feel confident 
about using these models for climate-change studies. However, the IPCC lacks a 
methodology for uncertainty assessment and a typology of uncertainty that can be 
used to assess uncertainties more systematically. The challenge to postnormal science 
is for the IPCC to become even more rigorous and transparent in its treatment of un-
certainty. 

The MNP faces a similar challenge. In the year 2000, the MNP identified the lack 
of systematic treatment of uncertainty in the area of environmental policy making as 
one of the causes of the media affair reported at the beginning of this chapter. In or-
der to help environmental assessors to deal with uncertainty and frame policy prob-
lems in a more appropriate way, the Netherlands Environmental Assessment Agency 
(Milieu- en Natuurplanbureau, MNP), then part of RIVM, together with Utrecht 
University and an international team of uncertainty experts, developed the RIVM/
MNP Guidance for Uncertainty Assessment and Communication (Petersen et al. 
2003; Janssen et al. 2003; van der Sluijs et al. 2003; van der Sluijs et al. 2004).  

The RIVM/MNP Guidance for Uncertainty Assessment and Communication
(www.mnp.nl/guidance) offers assistance to employees of the Netherlands Environ-
mental Assessment Agency in mapping and communicating uncertainties in envi-
ronmental assessments.12 It was judged that the Guidance should facilitate dealing 
with uncertainties throughout the whole environmental assessment process and not 
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be limited to applying ready-made tools for uncertainty analysis and communication, 
because choices are made in all parts of environmental assessments that influence the 
way uncertainties are dealt with. The way in which the perspectives of other scien-
tists and stakeholders are treated is particularly crucial when assessing relatively un-
structured policy problems.  

The Guidance identifies six parts of environmental assessments that have an im-
pact on the way uncertainties are dealt with. These parts are: 

1. problem framing; 
2. involvement of stakeholders (i.e., all those involved in or affected by a policy 

problem including experts); 
3. selection of indicators representing the policy problem; 
4. appraisal of the knowledge base; 
5. mapping and assessment of relevant uncertainties; 
6. reporting of the uncertainty information. 

A focused effort to analyze and communicate uncertainty is usually made in parts 5 
and 6. However, the choices and judgments made in the other four parts are also of 
high importance for dealing with uncertainty.  

The Guidance is not set up as a protocol. Instead, it aspires to stimulate reflection 
on the choices made in different parts of environmental assessments, in order to 
make them more conscious and produce a better way of dealing with uncertainties. 
Aside from stimulating reflection during the execution of environmental assessments, 
the Guidance is intended to signal in a timely way which bottlenecks might occur 
when dealing with uncertainties (and what additional effort should perhaps be made 
in the field of uncertainty assessment). The Guidance offers advice on the selection 
of methods and tools for adequately estimating uncertainties in the given context and 
communicating them to scientific researchers, the ‘clients’ (usually ministries), other 
actors in the policy process, and the broader public. The group of envisaged users of 
the Guidance comprises a large fraction of the employees of the Netherlands Envi-
ronmental Assessment Agency (among others, those who fulfill the roles of project 
leader, project-team member, researcher, or policy adviser).  

The Guidance can be used in different phases of a project (at the beginning, dur-
ing, after). At the beginning of a project, it can play an important role in designing 
and elaborating the way uncertainty will be dealt with during the project. During a 
project, the Guidance can be of assistance in performing the uncertainty assessment 
and communicating the results. After a project, it can be of use in reviewing and 
evaluating the project. 

The most important function of the instrument is to make the practitioners reflect 
on the importance of uncertainties and on the way they should communicate these 
uncertainties to stakeholders (including policy makers). Table 1 shows the uncertainty 
typology used in the Guidance.13 The Guidance typology is presented as a matrix. 
This ‘uncertainty matrix’ is based on five dimensions of uncertainty. In the Guidance, 
it is used as an instrument for generating an overview of where one expects the most 
important (policy-relevant) uncertainties to be located (the first dimension), and how 
these can be further characterized in terms of four other uncertainty dimensions.  
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Using the matrix can serve as a first step toward a more elaborate uncertainty as-
sessment in which the size of uncertainties and their impact on the policy-relevant 
conclusions is assessed explicitly.15 For further details about the Guidance, the reader 
is referred to the Guidance website and publications. 

This typology of simulation uncertainty can be applied fruitfully in the analysis of 
climate-simulation uncertainty, as is shown for the simulation-related sources of un-
certainty in climate-change attribution studies by Petersen (in preparation). By apply-
ing the typology, it becomes immediately obvious that only part of the uncertainty 
can be expressed statistically. Additional qualitative judgments on the methodologi-
cal quality of the climate-simulation models (qualification of the knowledge base) are 
needed – and indeed played an important role in the production of the IPCC (2001) 
report. Since the vocabulary needed to explicitly distinguish between the two uncer-
tainty sorts of statistical uncertainty (“inexactness” in the vocabulary of Funtowicz 
and Ravetz 1990) and qualification of the knowledge base (methodological “unreli-
ability” according to Funtowicz and Ravetz 1990) was not available to the lead au-
thors, the influence of their qualitative judgments on reaching their final conclusion 
remained largely invisible to outsiders. 

Since the Guidance was released in December 2002, it has become part of the 
agency’s system of quality assurance for all projects including those making heavy 
use of simulations. Through teaching courses, an increasing proportion of scientific 
advisers have become acquainted with the new methodology. Specific tools for un-

Table 1.  Uncertainty matrix14
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certainty assessment that are presented in the Guidance have demonstrated their use-
fulness for prioritizing research activities in simulation modeling, for instance, the 
research on the global energy simulation model TIMER (van der Sluijs et al. 2002). 

Even though the Guidance is only an instrument for reflection, a change in simu-
lation practice can be observed within the agency in the sense that modeling choices 
are made more reflectively and reports pay more attention to uncertainties. It remains 
to be seen whether the institute has become less vulnerable to media affairs such as 
the one caused by de Kwaadsteniet, but my contention is that the answer will be posi-
tive. 

CONCLUSION

The facts that science and policy cannot be separated neatly and that experts provide 
policy advice under conditions of high political stakes and high system uncertainty 
pose a severe challenge to those expert advisers who use scientific simulation models 
that have significant uncertainties attached to them. From their own disciplines, ex-
perts typically do not gain the necessary skills to adequately deal with these uncer-
tainties when providing their advice. By making systematic use of an instrument such 
as the RIVM/MNP Guidance on Uncertainty Assessment and Communication, ex-
perts are better able to meet the challenge of the postnormal science problem-solving 
strategy.

Netherlands Environmental Assessment Agency (MNP), Bilthoven, The Netherlands

NOTES

1 Over the years, this branch has become an independent part of the RIVM: The Netherlands Environ-
mental Assessment Agency (Milieu- en Natuurplanureau, MNP). 

2 See, for more information about this debate, van Asselt (2000) and van der Sluijs (2002). 
3 Computer simulation as a scientific approach is not limited to the natural sciences, however. Simulation 

is gaining ever more prominence in, for example, psychology, sociology, political science, and econom-
ics. The recent rise in the amount of work on simulation in these fields may be partly related to the wide 
applicability of the concept of ‘complex systems’ (see Casti 1997, who provides a popularized account 
of the use of simulation to study complex systems in the natural and social sciences). Many simulations 
in both the natural and social sciences share system-theoretical concepts. 

4 Other examples of the use of simulation techniques outside science are flight simulators for training pi-
lots and simulations used in technology development as tools to design and ‘test’ new technologies, be 
they in automobile design (simulations of aerodynamics or crashes) or nuclear weapons design (simula-
tion of stockpile safety or explosions). 

5 Not all scientific simulation models find their application in policy making. This chapter only deals with 
those models that do. 

6 Obviously, there is also a more general need to provide insight into the uncertainties involved in policy 
advice, and not just in the case of scientific computer simulation. Whereas the main emphasis of this 
chapter is on simulation-model uncertainty, the general discussion on the science–policy interface and 
assessing uncertainty in science-for-policy does not just apply to scientific simulation. 
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7 Many references can be given to literature on the precautionary principle. Petersen and van der Zwaan 
(2003) offer a concise introduction to the principle and how it relates to the responsibility of scientific 
advisers to communicate about uncertainties. 

8 The IPCC consists of three working groups. Currently, Working Group I deals with the (natural) scien-
tific basis of climate change; Working Group II addresses issues of impacts, adaptation, and vulnerabil-
ity; and Working Group III assesses mitigation options. The analysis presented in this chapter focuses 
on Working Group I. 

9 These two variables are not totally independent, in the sense that the recognition of system uncertainty 
is typically enhanced if the decision stakes are high (see Jasanoff and Wynne 1998: 12). 

10 The other two types of problem-solving strategies are applied science (low systems uncertainty and/or 
low decision stakes) and professional consultancy (medium-level systems uncertainty and/or medium-
level decision stakes) (e.g., Funtowicz and Ravetz 1991, 1993). 

11 ‘Proxies’ such as tree rings, corals, ice cores, and historical records are “interpreted, using physical and 
biophysical principles, to represent some combination of climate-related variations back in time” (IPCC 
2001: 795). 

12 Only some elements of the Guidance are specific to environmental assessment, however. With only 
some minor changes, the Guidance can be used in any science-for-policy activity. Furthermore, al-
though a strong emphasis is placed on assessing simulation uncertainty, the methodology encompasses 
all sources of information used in science-for-policy. 

13 This uncertainty typology is based partly on a paper by Walker et al. (2003). That paper was the result 
of a process involving some of the uncertainty experts who also participated in developing the Guid-
ance. In Walker et al. (2003), uncertainty is classified according to three dimensions: its ‘location’ 
(where it occurs), its ‘level’ (where uncertainty manifests itself on the gradual spectrum between deter-
ministic knowledge and total ignorance), and its ‘nature’ (whether uncertainty primarily stems from 
knowledge imperfection or is a direct consequence of inherent variability). Janssen et al. (2003) have 
extended this typology by adding two additional dimensions (represented by two columns on the right-
hand side of the uncertainty matrix) denoted ‘qualification of knowledge base’ and ‘value-ladenness of 
choices.’ In order to make the uncertainty matrix more widely applicable than in model-based decision 
support studies, two location categories have been added, namely ‘expert judgment’ and ‘data.’ 

14

 This is done by directly linking the different cells in the matrix to a list of uncertainty-assessment tools 
(van der Sluijs et al. 2004). 
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TERRY SHINN 

WHEN IS SIMULATION A RESEARCH TECHNOLOGY? 
PRACTICES, MARKETS, AND LINGUA FRANCA 

The practices of simulation are highly diverse: In a given domain, and for a single 
problem, practices are frequently multiple, different from one another, divergent, and 
more than occasionally contradictory. In view of such acute plurality, how is one to 
grasp the sense of ‘simulation’? While the number and scope of practices embedded 
in simulation and the magnitude and heterogeneity of the simulation market are syn-
onymous with fragmentation, does fragmentation necessarily prescribe the operation 
of the simulation community, and if not, what might be the form and function of a 
said community? Is it reasonable to speak in terms of simulation as a system, and if 
so, on what grounds? This chapter explores this and related issues. It examines trans-
verse features of simulation that serve as operators of cohesion, which cohesion con-
stitutes a prerequisite for the stabilization of a social/cognitive system. The canvas 
presented here will include historical, organizational, professional, and epistemologi-
cal components. The context of the emergence of the C++ general-purpose, multi-
paradigm, object-oriented simulation language will be explored. It will be suggested 
that the intellectual and social dynamics of C++ strongly reflect key features of ge-
neric instrumentation and research technologies, and that, by virtue of this corre-
spondence, it is reasonable to think of the practices, structures, and market of simula-
tion in terms of a transverse research technology system.   

FOUNDATIONS 

Many of the cognitive, organizational, and institutional elements constitutive of con-
temporary simulation were introduced before 1960. With a few notable exceptions, 
such as visualization techniques and virtual reality, what has happened since is an 
extension of that early orientation. Recent change has largely occurred within the 
confines of the historical mold and logic that initially formed today’s huge and di-
verse domain of simulation thought and action. 

Questions of simulation emerged for the first time in Germany in the 1920s when 
H. Roeder took out a patent for devices intended for use in training pilots of submers-
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ibles, balloons, and airplanes. The simulators were designed to represent changes of 
altitude in three planes of movement, to register commands initiated by pilot trainees, 
and to readjust altitude correspondingly. The project came to naught, but the effort is 
important. It connects simulation to the emergence, development, and currency of 
new forms of technological artifacts. It is an extension of a historically novel form of 
technical design, materials, and activities. From the outset, simulation was connected 
to aviation, issues of complex motion, equations that describe complex flows and 
interactions, and the extension and adoption of new varieties of skills (sometimes 
entailing new training programs). Finally, the simulation trainers project of the 1920s 
established important parameters that underpin thinking and action in most simula-
tion ventures: 1) representations of multidimensional environments, 2) interaction 
between elements figuring in the representation (sometimes including human opera-
tors), 3) emphasis on TIME, that often comprises a key dimension beyond the three 
axes of freedom in space (particularly in virtual reality), 4) testing, and 5) validation. 

However, it was not until the 1940s that Roeder’s intuition that the components 
of simulation, aviation, and training comprise an integrated unit became a reality, and 
when it occurred, it was not in Germany but instead in the United Kingdom and 
United States. This gap corresponds to a massive growth of a simulation market in 
the shape of war-driven demand for expanding numbers of increasingly advanced 
combat aircraft, for attendant pilots, and for quick efficient training. It similarly cor-
responds to the design, construction, and spread of simulation-relevant technology 
such as ‘fast’ analogue calculating devices, capable of coping with elementary fluid 
flow equations and their translation into simulation dynamics and mechanical outputs 
adapted to an aircraft control environment. This evolution proved crucial: Today’s 
faster, better, and generalized simulations rely entirely on digitalized calculations! 
The historical multifront technological advances of the 1930s and 1940s in electron-
ics and calculation provided the mental and material conditions fundamental to simu-
lation. The centrality of technology to simulation cannot be overestimated. Simula-
tion is the technology of technology, of science, and of industrial operations and be-
yond. In its role as the technology of technologies, simulation represents the most 
reflexive form of analysis/action yet known to humanity, and broadly practiced in 
society.

In 1939, Professor L. Mueller, working at MIT, designed and built a fast analogue 
computer to study the longitudinal dynamics of aircraft motion. Mueller’s interest 
was in the solution of the set of aerodynamic equations and their simulation for de-
sign purposes. However, in a postscript to his paper, he mentioned that his simulator 
could be adapted to flight simulation pilot training. In 1941, an electronic analogue 
computer was developed at the TRE unit for the radar training program. The TRE 
group, originated at MIT during the war, combined advanced detection, electronics, 
and control systems coupled to fast calculators, mainly for military objectives. This 
device was based on the ideas of F. Williams, famous for his later contributions to 
digital computers, and used the velodyne – another TRE invention for integration. 
The first model of this computer had been developed by Dynatron Radio Ltd. in 
1941. 

The war years saw an increase in the companies involved in simulation as well as 
in hardware, accessory, and modeling technology. In 1945, a new system was introduced 
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by K.M. Uttle that incorporated force fields and visual inputs into flight trainers. In 
Britain, advanced longitudinal dynamics was added to the flight simulation repertory 
through the efforts of G.M. Hellings and the resulting electromechanical analogue 
computer. This computer and model was arguably sufficiently general and flexible to 
correspond to the flight characteristics of any aircraft then in operation. The simula-
tor boasted a pitch motion system that incorporated an endless moving belt. In the 
United States, the Special Devices Division of the Bureau of Aeronautics developed 
the Center for Naval Training Equipment. It supported the simulator activities of Bell 
Laboratories, which constructed the Navy’s PBM simulator that included a complete 
front fuselage, cockpit, accessories, and all instrumentation. The Link trainer was 
also developed during this period. In 1948, and during part of the 1950s, the Curtiss-
Wright aviation firm engaged in simulator design, The company produced a new line 
of servo devices and what was known as shadow graphics. General Electric entered 
the simulation race during the 1960s, developing digital systems for space-related 
operations. 

Work surrounding the atomic bomb constitutes a second current of simulation ac-
tivity. During the latter phase of bomb research, Los Alamos scientists and engineers 
set out to study the magnitude of their bomb’s explosive impact. At the time, nothing 
was known about nuclear blast extent. To determine this, scientists selected numer-
ous possibly relevant parameters, and assigned a huge variety of values to each. The 
number of permutations was astronomic. They engaged the newly emergent compu-
tational technology of computers becoming available at that time to calculate the 
likelihood of the selected parameters and to estimate the consequences of each. The 
resulting calculations indicated a statistical likelihood of bomb effects. The probabil-
ity-based technique of this project soon acquired the name Monte Carlo simulation,
presumably suggesting the probabilistic aspects of operations. It rapidly became cen-
tral to a sweep of simulation endeavors. On a different register, starting in the 1950s 
with scenarios based on ‘if-then’ logic, insurance companies used Monte Carlo simu-
lation to work out actuarials, and soon banks and investment firms were using it for 
investment and client advice. Monte Carlo simulation has similarly become the cor-
nerstone for much risk assessment research and public policy, and it is today a tech-
nique deployed by nuclear energy lobbies seeking to quiet public unease about nu-
clear hazard. The introduction of high-power individual computer technology has 
even further accelerated the generalization of this form of simulation (e.g., for calcu-
lating possible trends in the stock market).  

The initial organization of simulation technology was rooted in engineering prac-
tice and undertaken by engineers and not by scientists, scientific societies, or univer-
sities. One of the first simulation forums to be scheduled and the first simulation or-
ganization founded was venued in Europe, and not in the United States, where much 
of the early simulation work had been carried out. One explanation for this is that 
part of European postwar reindustrialization was free to build around new technol-
ogy, the older prewar production capacity and technology having been destroyed by 
bombing, battle, and sabotage. In 1955, a meeting was convened in Brussels at the 
Free University attended by researchers, managers, and observers of the simulation 
laboratories that existed at the time. Many of the laboratories were a by-product of 
the enormous simulation-related activities of World War II. Participation was  
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international, with delegates coming from most west European countries, the United 
States, and Japan. The conference decided there existed a need for a permanent 
means of communication between members of the emerging simulation community. 
Participants perceived that extant professional and scientific bodies were too restric-
tive in composition and outlook to include the diversity of backgrounds, skills, and 
interests that characterized the multidisciplinary, multisectoral, and multipractice 
new world of simulation. The result was the creation of the AICA (L’Association 
Internationale pour la Computation Analogue). Under the influence of technological 
and scientific innovation, the initial scope of the AICA expanded to include more 
mathematical analysis (particularly numerical operations), mathematical modeling, 
and digital technology. This body played a crucial role in the introduction of simula-
tion particularly into Europe. Its outstanding successes lay in the domains of chemi-
cal engineering, automatic system engineering, and later simulation-based design, 
specifically in the realm of mechanics. In 1976, the pioneering body took the name 
International Association for Mathematics and Computation for Simulation, to better 
reflect the broadening technology, uses, and markets of simulation. The original 
AICA was significant for the establishment of simulation, because it tried to coordi-
nate and combine the analytic practices developing in simulation, which, at the time, 
was still an outside cognitive corpus and set of practices as well as being socially 
nebulous.  

SIMULATION AT WORK – POST 1960 

Most post-1960s simulation activity has focused on engineering-related and indus-
try/service-oriented work, as measured by the focus of simulation societies and jour-
nals. John McLeod and Vincent Amico have been pillars of simulation in the United 
States since World War II. McLeod earned a BS in engineering at Tulane University, 
and has been associated with the universities of Chicago, Harvard, and MIT. He is an 
expert in the design and construction of automatic control systems (boasting two pat-
ents) in which simulation is the principal tool. He served in the US Navy’s Guidance 
Systems Simulation Laboratory for a decade, acquiring initial simulation-based de-
sign experience there. He then went to work for the Northrop Company, moving to 
General Dynamics between 1956 and 1963 – again in design. McLeod became an 
independent simulation researcher for a brief period during the 1960s when he de-
signed a heart-lung machine using principles of simulation-driven design techniques. 
He was an active consultant throughout his career.  

Amico earned a BS in engineering from New York University in 1941 and went 
on to study physics. From 1941 to 1945, he worked on the structural design of mis-
siles and aircraft at the Static Test Laboratory at Wright Field. After 1948, he worked 
as a civilian for the US Navy as product engineer for flight training equipment. In 
1969, Amico became Research Director of engineering of his design unit; and, in 
1979, he was appointed Research Director of the Navy’s entire flight training pro-
gram. Throughout, Amico based his endeavors on simulation development and simu-
lators. They comprised the mainstay of his career. Beginning in 1972, he taught at 
the computer department of the University of Southern California, specializing in 
simulation techniques.  
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McLeod and Amico figured importantly in the development and successes of the 
Society for Computer Simulation that became the United States major organization 
specializing in simulation publications, and to a lesser degree simulation conferences. 
Although the Society was set up in 1952, it remained a relatively small and obscure 
body until the late 1960s, when McLeod helped expand its activities, often assisted 
by Amico. McLeod turned this American organization into an international body; 
and under his careful guidance, the Society was rechristened the Society for Modeling 
and Simulation International. McLeod managed to connect the American simulation 
community to a broader simulation environment based in Great Britain, France, Hol-
land, Germany, Italy, Denmark China, Korea, and Japan. From the 1970s onward, 
simulator experts and users regularly participated in the annual meetings of the Soci-
ety for Modeling and Simulation International – the Summer Computer Simulation 
Conference that specializes in continuous event simulation.  

The Society for Modeling and Simulation operates a large, prestigious stable of 
simulation publications. It publishes Simulation – the society’s flagship review, and 
the most well-read and respected journal in the field. It also publishes Transactions 
for Modeling and Simulation, Simulation Magazine, and The Journal of Defence 
Modeling and Simulation: Applications, Methodology, and Technology (with the US 
Army and Simulation Office).  

However, it is not the Summer Computer Simulation Conference that constitutes 
the foremost venue for the exposition of new work in the field of simulation, but in-
stead the Winter Simulation Conference. Whereas the beginnings of the Winter 
Simulation Conference date back indirectly to a series of small simulation seminars 
held during the late 1940s, the organization was set up only in 1967. The initial meet-
ing was headed by H.J. Hixson (head of operations systems research analysis with 
the US Air Force logistics command and program director of the IBM SHARE users 
group)  and by J. Reipman (prominent user of the general purpose simulation system 
approach in the Nordon division of the United Aircraft Corporation and a leader in 
the IEEE). It differs from the Summer Computer Simulation Conference in several 
important respects. The latter deals with continuous simulation, whereas the Winter 
Conference specializes in discrete event simulation. Discrete event simulation effi-
ciently represents events in which time is a subordinate consideration. In contrast, 
continuous simulation, based on the solution of differential equations, unceasingly 
monitors time, but is less attentive to details of complex events. Continuous simula-
tion is used to model activities like continuous flow engineering and aircraft auto-
matic pilot systems. Manufacturing and services are modeled with discrete event 
simulations. However, as indicated by Küppers and Lenhard (this volume), a closer 
analysis reveals that matters are becoming increasingly complicated, because even 
continuous simulation relies on discrete models.  

Whereas the Summer Conference has rejected sponsorship by professional engi-
neering bodies, interest groups, and public agencies, the Winter Simulation Confer-
ence has multiplied such connections. The Association for Computing Machines, the 
IEEE, and IBM sponsored the initial meeting. An audience of 225 was expected, but 
interest ran so high that 401 attended. The proceedings were published by the IEEE
Transaction in a special issue in 1968 on systems science and cybernetics. 
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The second Winter Simulation Conference took place in December 1968: Its 
theme was Simulation Applications. In addition to the initial sponsors, this meeting 
also received backing from Simulations Council Inc. There were twenty-two ses-
sions, and eighty-eight papers were presented on a range of simulation applications. 
Statistical research, simulation computer language development, and simulation edu-
cation were included in the program. Attendance jumped to 856. A 356-page digest 
of conference papers was subsequently published. The 1969 Winter Simulation Con-
ference was sponsored by the American Institute of Industrial Engineers and the In-
stitute of Management Sciences/College on Simulation and Gaming. In 1971, the 
Operations Research Society of America also became a sponsor. That year, atten-
dance reached over 1,200 – the highest figure ever. 

In 1974, the tide turned: The number of participants fell sharply, as did financial 
support for the program. The future looked bleak for several years, until the National 
Bureau of Standards intervened, infusing organizational vigor, new ideas and pro-
jects, and fresh money. In the 1980s, the Winter Simulation Conference regained its 
former ascendancy and has maintained it ever since. But, why the collapse in the 
mid-1970s, and what structural considerations contributed to its newfound energy?  

Although the exact circumstances require further research, one can point to sev-
eral contributory factors: By the 1970s, there existed a plethora of simulation re-
search directions, projects, application niches, and implementations. The field had 
fragmented considerably. Functional sectors and individual firms were working out 
their specific simulation solutions. The initial flush of enthusiasm that fuels a new 
venture had begun to erode. Two key initiatives regalvanized the simulation venture. 
Intervention by the US National Bureau of Standards provided a measure of stability 
and coordination that was otherwise lacking. The Bureau pulled together divergent 
simulation movements. Second, new initiatives in programming language began to 
emerge. Introduction of a language like C++ (to be analyzed in detail below) helped 
the simulation community by providing a focus of technological, intellectual, and 
professional convergence.  

In sum and as indicated above, military-related programs lay at the center of the 
development of simulation work. This was facilitated by the introduction of fast digi-
tal computing power and by the swift broad spread of computers. Nevertheless, simu-
lation efforts had begun to thrive on the basis of predigital computation. Slow ana-
logue devices had already permitted simulation to successfully invade a growing 
range of military-related realms before advanced digital developments. Additionally, 
the vast majority of simulation endeavors occurred in the narrow engineer-
ing/technology sphere. 

STRUCTURING SIMULATION – THE BIRTH, EVOLUTION, AND ROLE 
OF  THE C++ GENERAL-PURPOSE, MULTI PARADIGM, OBJECT-ORIENTED 

PROGRAMMING LANGUAGE 

The pages that follow will document the centrality of the C++ computer language to 
the internal development and point to the diversification and growth of the simulation 
markets and community since the mid-1980s. It will be further suggested that C++ 
exhibits many of the key attributes of research technologies. Grounded on these twin 
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observations, I argue that simulation itself may usefully be perceived as a research 
technology rich in generic instrumentation that simultaneously provides a stable ker-
nel to the simulation domain and permits diversity, yet transversality, commensur-
ation, coherence, and cohesion.  

The C++ simulation-directed, general-purpose, object-oriented, multipurpose lan-
guage was developed between 1983 and 1985. The programming language’s author 
is Bjarne Stroustrup (1950), a brilliant, energetic, successful, and some would say 
charismatic, general-purpose language developer. Today, C++ is the most wide-
spread language in simulation. In 2003, estimates range between 1.3 and 3 million 
users. C++ is a generic technology, fathered, matured, and organized in an interstitial 
environment. The disembedding of its generic features and their reembedding in spe-
cific applications involves intermittent selective boundary crossings. It corresponds 
to a form of metrology. By virtue of this combination of characteristics, C++ consti-
tutes a research technology (Joerges and Shinn 2001; Shinn and Joerges 2002; Shinn 
and Ragouet 2005).  

Bjarne Stroustrup is currently the College of Engineering Professor at the Texas 
A&M University Department of Computer Science, and director of the Large-Scale 
Programming Research Department at AT&T Laboratories. He was born in Den-
mark, and did his undergraduate work at Aarhus University, taking a degree in 
mathematics and computer science, before moving to Cambridge University for his 
doctoral studies. His dissertation adviser was David Wheeler, a well-known pro-
grammer who contributed to the Illiac. The Illiac, built in 1952, based on von Neu-
mann architecture and located at the University of Illinois, was the United States’ 
most powerful university computer, even surpassing the capacity of the combined 
Bell Laboratory machines.  

Stroustrup studied at the Cambridge Computer Laboratory, conducting research 
on alternatives for the system software of distributed systems. He composed new 
software from existing systems and tested feasibility and efficiency using simulation 
techniques. On completing his doctorate in 1979, Stroustrup took a position in the 
computer science research center in Bell Laboratories at Murray Hill, New Jersey, 
where he undertook research alongside language specialists like Denis Ritchi, who 
had recently developed the programming language C. From 1979 to 1983, when 
Stroustrup set out to build a new language, he was involved in a range of Bell-related 
tasks. He was notably active in simulation research intended to improve distributed 
network system operations, and explored applications of this approach. In 1979, 
Stroustrup set out to analyze the Unix kernel to determine how it could be distributed 
over a network of computers connected by a local area network. He also worked on 
improving the low-level language C  (Stroustrup 1993).  

One way of describing C++ is that it contains many elements of C that have been 
enriched with Simula and an object-oriented perspective. Stroustrup often says that 
C++ is three languages in one: a C-like language (supporting low-level program-
ming), an Ada-like language (supporting abstract data-type techniques), and a 
Simula-like language (supporting object-oriented programming) (Stroustrup 1994: 
198). C++ is also organically connected to additional languages (Stroustrup 1994: 
198). Algora68 gives to C++ operator overloading and the capacity to declare vari-
ables anywhere in a block. BCPL allows comments. Simula gives organization. 
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Whereas one strength of C is its proximity to computational machines, via the intro-
duction of elements from Simula and from the object-oriented perspective, C++ con-
nects directly to material problems by analysis of language application. C’s logic 
connects with computational machinery, whereas C++’s logic retains this property 
and adds the property of smooth problem application logic. 

Stroustrup’s design emphasized three stable features – application, the generic 
concept of classes, and portability (the latter allowing cross-boundary flexibility and 
translanguage communication). Stroustrup has always been concerned with promot-
ing solutions to real problems (Stroustrup 1997a,b). While his Denmark training in 
mathematics was interesting and stimulating, it nevertheless left him uncomfortable, 
as he is committed to confronting problems. He often insists that his language in-
sights and successes result from thinking about programming with reference to per-
sonal problem-solving experience. He generalizes up from problems. C++ has been 
built to enable real and diverse users to better grasp their problems and treat them 
computationally. In this sense, the C++ language is application- and user-driven. 

Second, C++ was designed to operate in a framework of classes. Initially, C with 
classes was developed by Stroustrup to allow simulators to be built for research in 
network design being carried out by Sandy Fraser at Bell. Inclusion of the term ‘C’ in 
the name C++ indicates the extent of C’s parentage to C++. One frequently asked 
question is why C++ did not simply emerge as an evolution of C, rather than distinct 
from it, and as a powerful and eventually victorious competitor. Part of the answer is 
the centrality of classes in C++. While Stroustrup seriously tried to reconcile the im-
portation of classes into C, as witnessed by his construction of C with classes, the 
architecture of C limits the full expression of classes. This drove Stroustrup to further 
diverge from C, as he continued in his project to build a more useful programming 
language. The relationship between C and C++ is expressed in a phrase submitted by 
Stroustrup in a 1989 article As close to C as possible, but no closer (Koenig and 
Stroustrup 1989). 

According to Stroustrup, classes possess a multifold advantage (Venners 2003; 
Dolya 2003). Classes promote reasoning in terms of connections crucial to object-
oriented representations and work. C++ is not an object-based programming lan-
guage; it is an object-oriented code, which may be more restrictive. Classes help 
identify the similarities shared by elements. They facilitate computation between 
them. They furthermore allow passage from one part of a program to another with a 
minimum of difficulty, facilitating the work of programmers and users. Classes in a 
program reduce runtime, making computation efficient. In C++, the combination of 
classes and static checking helps alleviate the need for garbage collection, which 
constitutes an important economy in runtime and memory. Stroustrup also suggests 
that elegance is a desirable quality of a good language, and the use of classes pro-
motes elegance. But, above all, in C++, the true purpose of classes is that they pro-
vide a platform for clear reasoning about complex structures.  

Classes, in conjunction with other components like static checking, restrictive 
garbage collection, and multiple inheritance, constitute the generic feature of C++. 
The centrality of classes in C++, along with the role played by the object-oriented 
perspective, makes C++ ubiquitous in much simulation work.  
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While classes comprise the generic anchor of C++ that allows the general purpose 
code to be adapted and adopted by multiple applications, portability represents the 
format through which classes and other generic features of the language are vehicled. 
Portability was crucial to Stroustrup from the outset. He tried to design a language 
far more portable than C. Portability infers compatibility and flexibility. C++ is not a 
restrictive language, as it can easily be connected to a range of hardware and soft-
ware. It operates in innumerable environments – Unix, Windows, and Macintosh. 
C++ links conveniently to many application tools. It is thus embedded in a huge 
range of informatic products without restriction, whereas the architecture of other 
languages limits their partnering. C++ functions as a foundational language tool in-
side an ever extending variety of application-specific local tools. Most computer lan-
guages are written either by language designers for other designers or by users for a 
particular application; but this is not the case for C++, whose architecture integrates a 
breadth of perspectives and conveys a multitude of mechanisms felicitous to mobil-
ity. This drive for breadth echoes Stroustrup’s twin concerns for and experiences in 
concrete application practice and design involvement. 

Portability is the hallmark of boundary crossing. This feature permits the expres-
sion of classes in terms of genericity and class reembedding in diverse applications. 
Without C++’s portability, movement across boundaries would be rare or impossible. 
Portability spells ongoing communication between evolving C++ design and other-
wise isolated C++ niche users. Thanks to portability, C++ can thus stand as a generic 
language, as a language of application, and also as a reflexive transverse language 
that permits transapplication exchange.  

The break of C++ with C, and its subsequent promotion in 1984–85, proved both 
problematic and easy. Its possible competitors, Modula-2 and Ada among others, 
were often regarded as restrictive, entailing awkward problems, or simply did not 
find dynamic outlets on the United States market. The Bell Laboratory, where 
Stroustrup worked, had experimented with and contributed to numerous languages, 
and was thus not irreconcilably committed to any particular one. The research unit 
was big, leaving room for individual initiatives and maneuver. Furthermore, Dennis 
Ritchi, who also worked at Bell and, along with Kristen Nigaart, is one of the pio-
neers of C, never strongly opposed Stroustrup and his endeavors, which increasingly 
distanced C++ from C. The rapid successes of C++ also owes much to the expansion 
of the mini- and microcomputer market and to the growth in the number and range of 
applications. Foremost in these applications was simulation, to which C++ was per-
ceived as appropriate and congenial. The diffusion of C++ was also connected to 
keen interest in the new language among language designers and programmers. C++ 
required good compilers and libraries to ensure its spread and effectiveness in differ-
ent applications (Venners 2003), and much to even Stroustrup’s surprise, the compu-
tation community responded in record time to his proposed architecture with a num-
ber of world-class compilers.  

The number of C++ users rocketed. In 1984–85, the emergent language was 
largely restricted to the Bell Laboratory. In the months that followed, C++ was dis-
tributed in a preliminary version to selected universities and a few users (Stanford, 
University of California, Cal Tech, University of Wisconsin, MIT, Carnegie Mellon, 
University of Copenhagen, Rutherford Laboratory in Oxford, etc.). The response was 
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not what was expected. Rather than expanding, demand stagnated. The motive for 
this was unanticipated. Users loved the new language and wanted nothing better than 
to use it extensively: but its use in consulting and in public applications required the 
stabilization and standardization of the language, its public recognition, and the de-
velopment of adequate compiler architecture. Soon, however, the quick involvement 
of fresh C++ work, often originating outside of Bell Laboratories, allowed both the 
size and diversity of the C++ community to expand on an unforeseen scale. 

Table 1.  Growth in the size of the C++ community 

Date Estimated number of C++ users 

1979  1 

1980  16 

1981  38 

1982  85 

1983  87 

1984  135 

1985  500 

1986  2,000 

1987  4,000 

1988  15,000 

1989  50,000 

1990  150,000 

1991  400,000 

2002      1.300,000    

The following ventures indicate the range of activities associated with C++ in the 
decade since 1985: Animation, autonomous submersibles, billing systems, bowling 
alley control, circuit routing (telecom), CAD/CAM, chemical engineering process 
simulations, compilers, control panel software, cyclotron simulation and data proc-
essing, database systems, decision support systems, digital photography processing, 
digital signal processing, electronic mail, expert systems, factory automation, finan-
cial reporting, flight mission telemetry, foreign exchange dealing (banking), search 
software, hardware description, hospital records management, industrial robot con-
trol, instruction set simulation, interactive multimedia, magneto hydrodynamics, 
medical imaging, missile guidance, mortgage company management, network man-
agement and maintenance systems (telecom), network monitoring (telecom), operat-
ing systems (real-time, distributed, workstation, mainframe, ‘fully object-oriented’), 
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programming environments, superannuation, insurance, shock-wave physics simula-
tion, SLR camera software, switching software, test tools, transmissions systems 
(telecom), transport system fleet management, user interfaces, video games, and vir-
tual reality (Stroustrup 1994: 172). 

By the late 1980s and 1990s, C++ had become a major language among computer 
languages, or perhaps even the foremost. The C++ Journal appeared in 1991. Com-
puter Language, The Journal of Object-Oriented Programming, The C++ Users 
Journal, Journal of Object-Oriented Programming (JOOPS), and Dr. Dobbs Journal 
all ran regular articles on the C++ language. To this must be added the score of Inter-
net language publications that frequently feature C++ and present recent C++-related 
tools and implementations.  

C++ owes much to social factors. By the mid-1980s, the computer language and 
computer programming community had grown greatly. The consequence was two-
fold: First, numbers of young talented specialists could now loosen their ties with the 
big powerful computer firms that had earlier exercised considerable influence. Sec-
ond, conditions permitted some individuals to become independent free-lance pro-
grammers. In 1986–87, a movement of independent compilers developed. This was 
opportune for C++, whose evolution and diffusion required expanding beyond the 
walls of Bell laboratory, and the participation of many people and inputs from many 
quarters.  

The now famous Santa Fe compilers meeting was held in November 1987. This 
event marks a turning point for C++. Stroustrup anticipated an attendance of only a 
few dozen people in Santa Fe, but over 200 showed up! Papers were presented on 
C++ application, education, environment compatibility, and, strategically most cru-
cial, on compiler development. Building effective C++ compilers was essential to 
users, as they ease the work of application. For a compiler to be in step with the C++ 
generic/reembedding/boundary-crossing Stroustrup precepts, it must support many 
other operating languages. This meeting initiated the design, construction, and diffu-
sion of a spate of C++ inspired compilers and libraries – among others, the 1988 
Zortec compiler and the 1990 Borlan compiler. In 1991, Windows marketed its C++ 
compiler; and in 1992, IBM came out with its version of a C++ compiler. A C++ 
groundswell ensued. In 1988, the NIH helped sponsor a C++ meeting and began to 
acquire C++ programs, tools, and other application implementations. In 1988, the 
second C++ conference was held In Denver, and, since then, there have been C++ 
conferences on an almost yearly basis. 

During the 1980s, why did Bjarne Stroustrup push first to obtain the standardiza-
tion of C++ by ANSI (the American National Standards Institute) and then by ISO a 
decade later (ISO/IEC14882)? What does standardization signify for a code, and 
what form of work is involved? How does standardization impact on a language? 
What has the standardization of C++ meant to simulation?  

Before the standardization of C in the late 1980s, the language counted over 160 
dialects. In this instance, standardization neutralized fragmentation and imposed or-
der. The development of libraries and compilers can be used to hijack a language by 
locking in users. By standardization, a code becomes public and thus cannot be ap-
propriated. Stroustrup deplores the idea of a proprietary language, and above all de-
sired C++ to remain public. His design goal and subsequent strategy entailed that 
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C++ be an open pathway, not a closed system. He has often declared that C++ is for 
the average user as well as for the untypical user. It is for everyone! Finally, the 
documentation that necessarily accompanies standardization allows clarifications – 
clarifications in the work of design itself, design improvements, and clarification for 
users who want or need to know more about their code. Metrology thus fulfills the 
functions of stabilization, transparence, accessibility, and pedagogy. 

In the early 1990s, C++ was certified by the American National Standards Insti-
tute, the German Institute of Norms, and by the British Institute. This achievement 
culminated five years of effort. Stroustrup was motivated by numerous considera-
tions during his drive to win certification. Although the growing number of users 
approved and employed his language, general acceptance demands code homogeni-
zation and stabilization. This is necessary for a technology to be perceived as trans-
parent, transferable, and reliable. Stroustrup understood this. By all means, code de-
viance must be avoided and prohibited. Lock in of parts of the language also had to 
be prevented! Standardization of C++ at ANSI required several years. ANSI operates 
in conjunction with code designers, subsequent contributors, tool and implementation 
designers, firms that develop and market the tools, attorneys of said firms, independ-
ent code experts, and users from many sectors. Observers and freelancers are also 
implicated in the standardization process. Deliberations occur on two levels: Techni-
cal committees deal with issues of detail. A general body discusses questions of prin-
ciple, law, and policy. For C++, deliberations advanced relatively smoothly. At the 
end of the process, Stroustrup had given up nothing essential to his initial design 
plan.  

The ANSI and ISO procedures affected several important evolutions in C++. 
Templates were made central to the code. They were connected to libraries, and the 
template standard (TSL) resulted. Multiple inheritance also became a key feature. 
Stroustrup had earlier been weary of inheritance, but in the form that it was engi-
neered during standardization and combined with C++, he came to accept it and ap-
preciate its power. The next steps in modifying C++, states Stroustrup, will be its 
extension to distributive programming that will necessarily introduce threads (Dolya 
2003).  

The upshot of standardization is that C++ became even more general-purpose/ 
multiparadigm than before. C++’s compatibility with other codes was enhanced. It is 
a general user’s language, a specialty language, and a programmer’s code. It remains 
a language for high-level designers, as its openness and generic quality continue to 
make it interesting, challenging, and a turf still sufficiently malleable and open to 
correctly support future evolutions. 

THE INTERSTITIAL ENVIRONMENT

Genericity, reembedding, and boundary crossing are coupled to an interstitial envi-
ronment, and this environment figures centrally in the development of C++ practices 
and the simulation community. An interstitial arena emerges in the interspecies be-
tween established dominant organizations, such as the university, corporations or 
small technology-based firms, state technical services, the military, and so forth. 
While individuals who occupy the interstitial environment may work for a dominant 
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organization, they nevertheless frequently escape organizational control by move-
ment or by fostering arrangements that connect them to multiple organizations. Mul-
tiple connections increase resources and extend margins of maneuver. He who works 
for everyone is the bondsman of no one. In what ways has Bjarne Stroustrup and the 
design and evolution of C++ been affiliated with the interstitial environment?   

Today, Stroustrup divides his time between contacts with C++ users and markets, 
code design, education, and acquiring new language skills and experience (Doyla 
2003).  

Stroustrup’s experience is distributed, extending to pure and applied mathematics,  
language and program writing and use, and simulation. His endeavors bridge theory 
and application. Some of this output occurs in the framework of universities, state 
research or technical services (the NIH), private/semi-public services (ISO and 
ANTI), huge corporations (Bell and AT&T), and small technological companies 
(Silicongraphics). Concurrent and sequential employment is a rule. While once an 
employee of Bell Laboratories and still an active employee of AT&T Laboratory, 
Stroustrup has often simultaneously held other positions.  

The interstitial environment respects and maintains divisions of labor inside sci-
ence, inside technology, between science and technology, and between science and 
enterprise, while new important permutations are also invented continually (Joerges 
and Shinn 2001; Shinn and Joerges 2002; Shinn and Ragouet 2005). Stroustrup held 
to his C++ general-purpose, multiparadigm project. He used the relative autonomy 
provided by the interstitial environment to focus long-term attention on his objective. 
The interstitial arena is not an interest group, not a producer, and not a market. As 
often stressed by Stroustrup, his goal is steadfastly nonproprietary. He has no plan to 
encroach on the productions or operations of specific user/market niches. Consistent 
with this neutrality, the interstitial arena thus provides Stroustrup a platform for 
crossing the boundaries of innumerable organizations, markets, producers, and users, 
but without affecting the internal division of labor or infringing on their traditions, 
plans, or autonomy. He reembeds C++’s generic features into niche applications, and 
conversely uses the application experience of niches to design and enrich C++.  

C++ comprises a lingua franca: A lingua franca is the result of genericity, reem-
bedding, and boundary crossing. A generic technology like C++ contains one or sev-
eral fundamental instrumentation features, for example, an emphasis on classes in 
combination with abstraction, object orientation, and portability. When the generic 
technology moves into a particular market niche, several things occur. The generic 
features of the technology are reembedded in the local technical culture. In the case 
at hand, applications absorb certain selected features of C++ in accordance with 
short-term demand. Parts of C++ are reshaped in this process of adoption. Neverthe-
less, C++’s adaptation does not alter the fact that the generic characteristics of the 
base technology survive intact. The stamp of the generic base is permanently im-
printed on the local technical expression. The lingua franca arises out of this complex 
concatenation. For example, a specific library accompanies C++ into the separate 
applications of hydrodynamics research, auto piloting, and so forth. Nevertheless, the 
presence in C++ of a base code governing the organization of classes and logic of 
portability persists both in the piloting and science research extensions, and it is these 
stable, constant transverse features that enable users from both specialties to  
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communicate effectively about the language and about more substantive issues be-
yond their fields on a metalevel.    

The reembedded generic technology vehicles a particular metrology in the form 
of standards or units of measurement, a specific vocabulary, form of imagery, meth-
odology, or even a new paradigm. This residue is deposited in the local niche tech-
nology during reembedding. Although the product of reembeddings in diverse mar-
kets results in heterogeneous artifacts, the generic element remains uniform, a kind of 
technical fingerprint. However, C++ is expressed in the innumerable applications it 
serves; C++’s underlying signature persists. Through ‘assimilating’ the metrology, 
methods, vocabulary, or images of the hub generic instrument, niche practitioners 
come to share familiarity with, and competence in, a particular syntax and semantics. 
This common language becomes an integral feature of the practitioner’s niche lan-
guage. The language is associated with a set of local, efficient, robust practices. The 
technology, practices, and outcomes associated with the local techniques enjoy the 
status of ‘truth’ – in the sense of ‘practical truth.’ The lingua franca of C++ is the 
generic residue of the reembeddings of C++ in a multiplicity of fragmented market 
niches. It is that part of the C++ hub technology that transcends the transformations 
occurring during the process of adaptation and adoption. Since there persists a trans-
verse stable kernel used in the discourse of market practices, when practitioners who 
come from diverse economic or disciplinary sectors and have different functions (and 
come from different nations and have even different cultural horizons) meet, they can 
nevertheless communicate with reference to a technical field and generate intel-
ligibility. The common parlance available through this generic-driven lingua franca 
promotes cognitive, artifactual, and organizational transversality that somewhat neu-
tralizes the otherwise often disruptive effects of today’s rampant intellectual and so-
cial differentiation and fragmentation. Witness to the existence and efficiency of C++ 
as a lingua franca in simulation can be found in two venues. The annual Summer and 
Winter Simulation Conferences draw users from scores of applications. They com-
municate through C++ about C++, and also use the medium of C++ to communicate 
about their respective different and sometimes divergent simulation applications.  

By virtue of the fact that C++ represents a kind of research technology connected 
to many and diverse audiences and functions and highly amenable to transversality in 
the form of boundary crossing and commensuration, and by virtue of the fact that 
C++ constitutes a dominant code in simulation practice, one may reasonably estab-
lish the operation of a link between simulation practices and markets on the one 
hand, and research technology on the other. Simulation’s stability and strengths owes 
much to atributes drawn from research technology. Research technologies provide 
simulation (here demonstrated through analysis of C++) with open-ended techniques, 
representations, codes, and language that make it applicable in a miriad spheres, and 
it simultaneously offers a solid, self-referencing platform that gives definition, mean-
ing, and direction to the more general, overall, quasi-universal simulation enterprise.    

WHEN IS SIMULATION A RESEARCH TECHNOLOGY?

Simulation is a system whose architecture emphasizes three features: First, simula-
tion involves a remarkably large number of markets, and the number continues to 
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expand. Second, the particularities and demands of simulation niches are diverse and 
even divergent. Many markets require specific simulation practices, representations, 
robust results, and efficiency. Engineering demands predictability and information 
that promotes risk avoidance. Science counts on precision and understanding. These 
demands on simulation are very different. Third, traversing all markets and practices, 
there exists a kind of common denominator of expectations. Practitioners demand 
‘truth.’ The relevant form of truth might be described as ‘practical truth.’ Practical 
truth, as distinguished from the epistemological truth of philosophy, refers to de-
pendable matter-ground individual and group satisfaction based on perceived reliable 
material inputs and outcomes. What counts here as ‘satisfactory’ is connected both to 
individual experience and to the expectations and norms of society. Practical truth is 
hence simultaneously concretely personal and the fruit of collective routines. Upon 
determining that technical objects and protocols yield the anticipated result, practi-
tioners gradually come to equate a technical ensemble as ‘true’ to their understanding 
of the technical system’s properties and ensuing yield. Indeed, stable controlled tech-
nical ‘yield’ comprises the key facet of pragmatic truth.   

Heterogeneity of environment, form, and function are constitutive of the underly-
ing logic and action of simulation. In view of the extremes of heterogeneity, what 
gives the simulation system substance, stability, and continuity? Part of the answer 
lies in research technology.  

Several of the principal ingredients of research technology have been introduced 
in the above analysis: genericity, the interstitial environment, markets and technical 
niches, divisions of labor, relative autonomy, boundary crossing, reembedding, 
commensuration, practical truth, and lingua franca. Simulation is stretched between 
two imperatives: its multiple practices and markets; and the need to preserve a stable 
and standard kernel. Simulation necessitates unchanging standards in order to con-
vince users that outputs are effective and comparable, and to provide ground rules for 
internal community communication and the further development of simulation tech-
niques.  

An intellectual and organizational formula must be evolved capable of ensuring 
transversality across practices and markets while preserving technical and commu-
nity cohesion. Research technology contributes to this end. In the case of simulation, 
the emergence of a generic, general-purpose, multiparadigm code specifically de-
signed with objects in mind, like C++, provides a balance between centrifugal and 
centripetal action. Spawned along tenets of research technology, C++ has given 
simulation the power to expand into ever more applications and markets through im-
plementation tools (classes, portability, compilers, and standard template libraries). 
The ANSI and ISO standardization of the code has ensured uniformity and continu-
ity, urgently called for by clients. The standardization process has allowed simulation 
practitioners and design specialists to further work out generic foundations. Finally, 
simulation boasts an interstitial environment, witnessed in the complex cognitive and 
organizational trajectories of Bjarne Stroustrup, John McLeod, and Vincent Amico.   

GEMAS, Maison des Sciences de l’Homme, Paris, France 
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