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PSEUDORANDOM SEQUENCES

Alev Topuzoğlu and Arne Winterhof

1. Introduction
Sequences, which are generated by deterministic algorithms so as to simulate

truly random sequences are said to be pseudorandom (PR). A pseudorandom
sequence in the unit interval [0, 1) is called a sequence of pseudorandom num-
bers (PRNs). In particular, for a prime p we represent the elements of the finite
field Fp of p elements by the set {0, 1, ..., p − 1}, and arrive at a sequence of
PRNs, say (yn), through a sequence (xn) over Fp satisfying yn = xn/p. The
sequence (xn) in this case is usually called a pseudorandom number generator.

Our main aim here is to elucidate the motivation for constructing PR se-
quences with some specific properties that foster their use in cryptography and
in quasi-Monte Carlo methods. Our exposition focuses on some particular
measures of “randomness” with respect to which “good” sequences have been
constructed recently by the use of geometric methods. Some of these construc-
tions are given in Chapter 2 of this book.

We also illustrate some typical methods that are used in the classical analysis
of randomness of PRNs and briefly describe some recent approaches in order to
familiarise the reader with basic notions and problems in this area of research.
An extensive list of references is provided for the interested reader.

Various quality measures for randomness of PR sequences are in use. One
should note here that the hierarchy among them varies according to the type
of problem where PR sequences are needed. For example, if one wishes to
employ a quasi-Monte Carlo method to approximate π by choosing N pairs
(xn, xn+1) ∈ [0, 1)2, n = 0, 1, . . . , N−1, of PRNs, counting the numberK of
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pairs (xn, xn+1) in the unit circle and taking π ≈ 4K/N , one should make sure
that the PRNs in use are “distributed uniformly” in the unit square. On the other
hand “unpredictability” is often the most desirable property for cryptographic
applications, as it is described in Chapter 2, Section 3.

This chapter is structured as follows. We start with an outline of some basic
facts regarding “linear complexity” and “linear complexity profile”, which are
potent measures of unpredictability (or, at least of predictability). Results on
lower bounds for linear complexity and linear complexity profile for various PR
sequences of wide interest are given in Section 2.1. We consider explicit and re-
cursive nonlinear generators, in particular a new class of PR sequences, defined
via Dickson polynomials and Rédei functions, and a generalisation of the well
known inversive generator. Section 2.1 also deals with Legendre sequences and
their variants, and the elliptic curve generators which have attracted consider-
able attention recently. In Section 2.2, we describe other measures related to
linear complexity, with particular emphasis on the lattice test. In Sections 3
and 4 we turn our attention to measures of distribution; in particular we fo-
cus on autocorrelation and related concepts for binary sequences in Section 3.
This may provide further background for Section 3 of Chapter 2. We conclude
with Section 4 where we concentrate on discrepancy as a measure for uni-
form distribution of PRNs. Some recent results are presented which illustrate
the well known relation of discrepancy to exponential sums. The significance
of recent geometric constructions of low-discrepancy point sets is described.
With the intention of keeping this chapter concise, we present primarily short
or elementary proofs which are sufficiently indicative of some standard tools.

In the sequel we shall be concerned with PR sequences over a finite field Fq

of q = pr elements with a positive integer r and a prime p. Note that a
sequence (yn) of PRNs in the unit interval can be obtained from a sequence
(ξn) over Fq by yn = (kr +kr−1p+ . . .+k1p

r−1)/q if ξn = k1β1 + . . .+krβr

for some fixed ordered basis {β1, . . . , βr} of Fq over Fp. A sequence over F2 is
called a bit sequence. We shall restrict ourselves to (purely) periodic sequences,
i.e., to those (ξn) satisfying ξn+t = ξn for some positive integer t, for all n ≥ 0.

We should note here that the term “pseudorandom number generator” is
commonly used in the literature on pseudorandom sequences. In particular for
sequences over Fp (identified with Zp = {0, 1, ..., p− 1}) or the ring Zm, one
refers to congruential generators. The “generator” here is sometimes used to
mean the “(recurrence) relation” producing the sequence over Fp (or Zm), which
in return gives rise to a PRN in the unit interval. In this Chapter we generally
use the expression PR sequences. However the term congruential generator (or
generator) will also appear when referring to some specific sequences over Fp

(or Fq), that are widely known as such.
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2. Linear Complexity and Linear Complexity Profile
Linear complexity and linear complexity profile are defined in Chapter 2.

We restate their definitions here for the convenience of the reader.
Let us first recall that a sequence (sn)n≥0 of elements of a ring R is called

a (homogeneous) linear recurring sequence of order k if there exist elements
a0, a1, . . . , ak−1 in R, satisfying the linear recurrence of order k over R;

sn+k = ak−1sn+k−1 + ak−2sn+k−2 + . . .+ a0sn, n = 0, 1, . . .

Now let (sn) be a sequence over a ring R. One can associate to it a non-
decreasing sequence L(sn, N) of non-negative integers as follows:

The linear complexity profile of a sequence (sn) over the ring R is the se-
quence L(sn, N), N ≥ 1, where its N th term is defined to be the smallest L
such that a linear recurrence of order L over R can generate the first N terms
of (sn).

We use the convention that L(sn, N) = 0 if the first N elements of (sn) are
all zero and L(sn, N) = N if the first N − 1 elements of (sn) are zero and
sN−1 �= 0.

The value
L(sn) = sup

N≥1
L(sn, N)

is called the linear complexity of the sequence (sn). For the linear complexity
of any periodic sequence of period t one easily verifies that

L(sn) = L(sn, 2t) ≤ t.

Linear complexity and linear complexity profile of a given sequence (as well
as the linear recurrence defining it) can be determined by using the well known
Berlekamp-Massey algorithm (see e.g. [35]). The algorithm is efficient for
sequences with low linear complexity and hence such sequences can easily be
predicted. One typical example is the so-called “linear generator”

sn+1 = asn + b, (2.1)

for a, b ∈ Fp, a �= 0, with L(sn) ≤ 2. Faster algorithms are known for
sequences of particular periods [26, 78, 79]. PR sequences with low linear
complexity are shown to be unsuitable also for some applications using quasi-
Monte Carlo methods (see [53, 55, 59]).

The expected values of linear complexity and linear complexity profile show
that a “random” sequence should have L(sn, N) to be close to min{N/2, t}
for all N ≥ 1, see Chapter 2.

Two types of problems concerning linear complexity and linear complexity
profile are of interest. One would like to construct sequences with high linear
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complexity (and possibly with other favourable properties). Chapter 2 illus-
trates such constructions. One would also like to find lower bounds for widely
used PR sequences in order to judge whether it is reasonable to use them for
cryptographic purposes. The present section focuses on this problem.

2.1 Lower Bounds for Linear Complexity and Linear
Complexity Profile

Explicit Nonlinear Pseudorandom Sequences

It is possible to express linear complexity in connection with various invari-
ants of the PR sequences at hand. The linear complexity profile of a sequence,
for instance, can be determined utilising its generating function as described in
Chapter 2.

In case of a q-periodic sequence (ξn) over Fq, linear complexity is related
to the degree of the polynomial g ∈ Fq[X] representing the sequence (ξn). We
recall that the polynomial g can be uniquely determined as follows: Consider a
fixed ordered basis {β1, . . . , βr} of Fq over Fp, and for n = n1 + n2p+ . . .+
nrp

r−1 with 0 ≤ nk < p, 1 ≤ k ≤ r, order the elements of Fq as

ζn = n1β1 + n2β2 + . . .+ nrβr.

Then g is the polynomial which satisfies deg g ≤ q − 1 and

ξn = g(ζn), 0 ≤ n ≤ q − 1. (2.2)

When deg g ≥ 2, q = p (and β1 = 1) these sequences are called explicit
nonlinear congruential generators and we have

L(ξn) = deg g + 1 (2.3)

(for a proof, see Blackburn et al [5, Theorem 8]). For a prime power q they
are named explicit nonlinear digital generators. In general (2.3) is not valid
for r ≥ 2. Meidl and Winterhof [47] showed however that the following
inequalities hold:

(deg(g) + 1 + p− q)q
p
≤ L(ξn) ≤ (deg(g) + 1)

p

q
+ q − p.

For lower bounds on the linear complexity profile of (ξn) see Meidl and Win-
terhof [48].

A similar relation is valid for t-periodic sequences over Fq where t divides
q − 1. For a t-periodic sequence (ωn) one considers the unique polynomial
f ∈ Fq[x] of degree at most t− 1, satisfying

ωn = f(γn), n ≥ 0,
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for an element γ ∈ Fq of order t. In this case, L(ωn) is equal to the number of
nonzero coefficients of f (see [35]). Lower bounds for the linear complexity
profile in some special cases are given by Meidl and Winterhof in [49]. For a
general study of sequences with arbitrary periods see Massey and Serconek [42].

The following sequences exhibit a particularly nice behaviour with respect to
the linear complexity profile. The explicit inversive congruential generator (zn)
was introduced by Eichenauer-Herrmann in [19]. The sequence (zn) in this case
is produced by the relation

zn = (an+ b)p−2, n = 0, . . . , p− 1, zn+p = zn, n ≥ 0, (2.4)

with a, b ∈ Fp, a �= 0, and p ≥ 5. It is shown in [48] that

L(zn, N) ≥






(N − 1)/3, 1 ≤ N ≤ (3p− 7)/2,
N − p+ 2, (3p− 5)/2 ≤ N ≤ 2p− 3,
p− 1, N ≥ 2p− 2.

(2.5)

We provide the proof of a slightly weaker result.

Theorem 2.1. Let (zn) be as in (2.4), then

L(zn, N) ≥ min
{
N − 1

3
,
p− 1

2

}

, N ≥ 1.

Proof. Suppose (zn) satisfies a linear recurrence relation of length L,

zn+L = cL−1zn+L−1 + . . .+ c0zn, 0 ≤ n ≤ N − L− 1, (2.6)

with c0, . . . , cL−1 ∈ Fp. We may assume L ≤ p− 1. Put

CL(N) = {n; 0 ≤ n ≤ min{N − L, p} − 1, a(n+ l) + b �= 0, 0 ≤ l ≤ L}

Note that #CL(N) ≥ min{p,N − L} − (L+ 1).

For n ∈ CL(N) the recurrence (2.6) is equivalent to

(a(n+ L) + b)−1 = cL−1(a(n+ L− 1) + b)−1 + . . .+ c0(an+ b)−1.

Multiplication with
L∏

j=0

(a(n+ j) + b)

yields
L−1∏

j=0

(a(n+ j) + b) =
L−1∑

l=0

cl

L∏

j=0
j �=l

(a(n+ j) + b)
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for all n ∈ CL(N). Hence the polynomial

F (X) = −
L−1∏

j=0

(a(X + j) + b) +
L−1∑

l=0

cl

L∏

j=0
j �=l

(a(X + j) + b)

is of degree at most L and has at least min{p,N −L}− (L+ 1) zeros. On the
other hand

F (−a−1b− L) = −aL
L−1∏

j=0

(j − L) �= 0,

hence F (X) is not the zero polynomial and we get

L ≥ deg(F ) ≥ min{p,N − L} − (L+ 1),

which implies the desired result.

Analogues of (2.5) for digital inversive generators, i.e., for r ≥ 2, are also
given in [48]. For t-periodic inversive generators, where t is a divisor of q− 1,
see [49].

We mention one more explicit nonlinear generator, namely the quadratic
exponential generator, introduced by Gutierrez et al [32]. Given an element
ϑ ∈ F

∗
q we consider the sequence (qn) where

qn = ϑn2
, n = 0, 1, . . . .

The lower bound

L(qn, N) ≥ min {N, t}
2

, N ≥ 1,

is obtained in [32]. Here t is at least τ/2 where τ is the multiplicative order
of ϑ.

Recursive Nonlinear Pseudorandom Sequences

Given a polynomial f(X) ∈ Fp[X] of degree d ≥ 2, the nonlinear con-
gruential pseudorandom number generator (un) is defined by the recurrence
relation

un+1 = f(un), n ≥ 0, (2.7)

with some initial value u0 ∈ Fp. Obviously, the sequence (un) is eventually
periodic with some period t ≤ p. As usual, we assume it to be purely periodic.

The following lower bound on the linear complexity profile of a nonlinear
congruential generator is given in [32].
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Theorem 2.2. Let (un) be as in (2.7), where f(X) ∈ Fp[X] is of degree d ≥ 2,
then

L(un, N) ≥ min {logd(N − �logdN�), logd t} , N ≥ 1.

Proof. Let us consider the following sequence of polynomials over Fp:

F0(X) = X, Fi(X) = Fi−1(f(X)), i = 1, 2, . . . .

It is clear that deg(Fi) = di for every i = 1, 2, . . . . Moreover un+j = Fj(un)
for any integers n, j ≥ 0. Put L = L(un, N) so that we have

un+L =
L−1∑

l=0

clun+l, 0 ≤ n ≤ N − L− 1,

for some c0, . . . , cL−1 ∈ Fp. Therefore the polynomial

F (X) = −FL(X) +
L−1∑

l=0

clFl(X)

has degree dL and at least min {N − L, t} zeros. Thus dL ≥ min {N − L, t}.
Since otherwise the result is trivial, we may suppose L ≤ �logdN� and get
dL ≥ min {N − �logdN�, t}, which yields the assertion.

For some special classes of polynomials much better results are available,
see [30, 32, 65]. For instance, in case of the largest possible period t = p we
have

L(un, N) ≥ min{N − p+ 1, p/d}, N ≥ 1.

The inversive (congruential) generator (yn) defined by

yn+1 = ayp−2
n + b =

{
ay−1

n + b if yn �= 0,
b otherwise,

n ≥ 0, (2.8)

with a, b, y0 ∈ Fp, a �= 0, has linear complexity profile

L(yn, N) ≥ min
{
N − 1

3
,
t− 1

2

}

, N ≥ 1. (2.9)

This sequence, introduced by Eichenauer and Lehn [18], has succeeded in
drawing significant attention due to some of its enchanting properties. In terms
of the linear complexity profile the lower bound (2.9) shows that the inversive
generator is almost optimal. This aspect will be reconsidered in Section 2.2.
The sequence (yn) attains the largest possible period t = p if, for instance,
X2−aX−b is a primitive polynomial over Fp. See Flahive and Niederreiter [21]
for a refinement of this result.



142 Pseudorandom Sequences

The power generator (pn), defined as

pn+1 = pe
n, n ≥ 0,

with some integer e ≥ 2 and initial value 0 �= p0 ∈ Fp satisfies

L(pn, N) ≥ min
{

N2

4(p− 1)
,
t2

p− 1

}

, N ≥ 1.

Results about the period length of (pn) can be found in Friedlander et al [23, 24].
The family of Dickson polynomials De(X, a) ∈ Fp[X] is defined by the

recurrence relation

De(X, a) = XDe−1(X, a)− aDe−2(X, a), e = 2, 3, . . . ,

with initial values D0(X, a) = 2, D1(X, a) = X, where a ∈ Fp. Obviously,
the degree of De is e. It is easy to see that De(X, 0) = Xe, e ≥ 2, which
corresponds to the case of the power generator. In the special case that a = 1
the lower bound

L(un, N) ≥ min{N2, 4t2}
16(p+ 1)

− (p+ 1)1/2, N ≥ 1,

for a new class of nonlinear congruential generators where f(X) = De(X, 1)
is proven by Aly and Winterhof [1]. Here t is a divisor of p− 1 or p+ 1.

Another class of nonlinear congruential pseudorandom number generators,
where f(X) is a Rédei function, is analysed by Meidl and Winterhof [52].
Suppose that

r(X) = X2 − αX − β ∈ Fp[X]

is an irreducible quadratic polynomial with the two different roots ξ and ζ = ξp

in Fp2 . We consider the polynomials ge(X) and he(X) ∈ Fp[X], which are
uniquely defined by the equation

(X + ξ)e = ge(X) + he(X)ξ.

The Rédei function fe(X) of degree e is then given by

fe(X) =
ge(X)
he(X)

.

The function fe(X) is a permutation of Fp if and only if gcd(e, p+1) = 1, see
Nöbauer [63]. For further background on Rédei functions we refer to [41, 63].
We consider generators (rn) defined by

rn+1 = fe(rn), n ≥ 0,
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with a Rédei permutation fe(X) and some initial element u0 ∈ Fp. The se-
quence (rn) is periodic with period t, where t is a divisor of ϕ(p + 1) and ϕ
is the Euler ϕ-function. As any mapping over Fp, the Rédei permutation can
be uniquely represented by a polynomial of degree at most p− 1 and therefore
the sequence (rn) belongs to the class of nonlinear congruential pseudoran-
dom number generators (2.7). In [52] the following lower bound on the linear
complexity profile of the sequence (rn) is obtained:

L(rn, N) ≥ min{N2, 4t2}
20(p+ 1)3/2

, N ≥ 2,

provided that t ≥ 2.
The linear complexity profile of pseudorandom number generators over Fp,

defined by a recurrence relation of order m ≥ 1 is studied in Topuzoğlu and
Winterhof [71];

un+1 = f(un, un−1, . . . , un−m+1), n = m− 1,m, . . . . (2.10)

Here initial valuesu0, . . . , um−1 are in Fp andf ∈ Fp(X1, . . . , Xm) is a rational
function in m variables over Fp. The sequence (2.10) eventually becomes
periodic with least period t ≤ pm. The fact that t can actually attain the
value pm gains nonlinear generators of higher orders a particular interest. In
case of a polynomial f , lower bounds for the linear complexity and linear
complexity profile of higher order generators are given in [71].

A particular rational function f in (2.10) gives rise to a generalisation of the
inversive generator (2.8), as described below. Let (xn) be the sequence over
Fp, defined by the linear recurrence relation of order m+ 1;

xn+1 = a0xn + a1xn−1 + . . .+ amxn−m, n ≥ m,

with a0, a1, . . . , am ∈ Fp and initial values x0, . . . , xm ∈ Fp. An increasing
function N(n) is defined by

N(0) = min{n ≥ 0 : xn �= 0},
N(n) = min{l ≥ N(n− 1) + 1 : xl �= 0},

and the nonlinear generator (zn) is produced by

zn = xN(n)+1x
−1
N(n), n ≥ 0

(see Eichenauer et.al. [17]). It is easy to see that (zn) satisfies

zn+1 = f(zn, . . . , zn−m+1), n ≥ m− 1,

whenever zn · · · zn−m+1 �= 0 for the rational function

f(X1, . . . , Xm) = a0 + a1X
−1
1 + a2X

−1
1 X−1

2 + . . .+ amX
−1
1 X−1

2 · · ·X−1
m .
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A sufficient condition for (zn) to attain the maximal period length pm is
given in [17]. It is shown in [71] that the linear complexity profile L(zn, N) of
(zn) with the least period pm satisfies

L(zn, N) ≥ min
(⌈p−m

m+ 1

⌉
pm−1 + 1, N − pm + 1

)

, N ≥ 1.

This result is in accordance with (2.9), i.e., the case m = 1.

Legendre Sequence and Related Bit Sequences

Let p > 2 be a prime. The Legendre-sequence (ln) is defined by

ln =

{
1,
(

n
p

)
= −1,

0, otherwise,
n ≥ 0,

where
(

·
p

)
is the Legendre-symbol. Obviously, (ln) is p-periodic. Results on

the linear complexity of (ln) can be found in [13, 73]. We give the proof here
since the method is illustrative.

Theorem 2.3. The linear complexity of the Legendre sequence is

L(ln) =






(p− 1)/2, p ≡ 1 mod 8,
p, p ≡ 3 mod 8,

p− 1, p ≡ 5 mod 8,
(p+ 1)/2, p ≡ 7 mod 8.

Proof. We start with the well known relation

L(ln) = p− deg(gcd(S(X), Xp − 1))

where

S(X) =
p−1∑

n=0

lnX
n,

(see for example [66, Lemma 8.2.1]), i.e., in order to determine the linear
complexity it is sufficient to count the number of common zeros of S(X) and
Xp − 1 in the splitting field F of Xp − 1 over F2. Let 1 �= β ∈ F be a root of

Xp − 1. For q with
(

q
p

)
= 1 we have

S(βq) =
p−1∑

n=0

lnβ
nq =

∑

(
n
p

)
=−1

βnq =
∑

(
n
p

)
=−1

βn = S(β)
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and for m with
(

m
p

)
= −1,

S(βm) =
∑

(
n
p

)
=−1

βnm =
∑

(
n
p

)
=1

βn

=
p−1∑

n=1

(1 + ln)βn =
βp − β
β − 1

+ S(β) = 1 + S(β).

Moreover, we have S(β) ∈ F2 if and only if S(β)2 = S(β2) = S(β), i.e.,(
2
p

)
= 1 which is equivalent to p ≡ ±1 mod 8. Next we have

S(1) =
∑

(
n
p

)
=−1

1 =
p− 1

2
=
{

0 if p ≡ 1 mod 4,
1 if p ≡ 3 mod 4.

Let Q and N denote the sets of quadratic residues and nonresidues modulo
p, respectively. If p ≡ ±1 mod 8 then we have one of the following two
cases: Either S(βq) = S(βm) + 1 = 0 for all q ∈ Q and m ∈ N , or
S(βm) = S(βq) + 1 = 0 for all q ∈ Q and m ∈ N . Now the assertion is clear
since |Q| = |N | = (p− 1)/2.

The profile can be estimated by using bounds on incomplete sums of Legen-
dre symbols. The proof below essentially follows that of [66, Theorem 9.2].

Theorem 2.4. The linear complexity profile of the Legendre sequence satisfies

L(ln, N) >
min{N, p}

1 + p1/2(1 + log p)
− 1, N ≥ 1.

Proof. Since L(ln, N) ≥ L(ln, p) for N > p we may assume N ≤ p. As
usual, put L = L(ln, N) so that

ln+L = cL−1ln+L−1 + . . .+ c0ln, 0 ≤ n ≤ N − L− 1,

for some c0, . . . , cL−1 ∈ F2. Since (−1)ln =
(

n
p

)
, 1 ≤ n ≤ p−1, with cL = 1

we have

1 = (−1)
∑L

j=0 cj ln+j =

(∏L
j=0(n+ j)cj

p

)

, 1 ≤ n ≤ N − L− 1,

and thus

N − L− 1 =
N−L−1∑

n=1

(∏L
j=0(n+ j)cj

p

)

.
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The following bound for the right hand side of this equation
∣
∣
∣
∣
∣

N−L−1∑

n=1

(∏L
j=0(n+ j)cj

p

)∣
∣
∣
∣
∣
< (L+ 1)p1/2(1 + log p) (2.11)

yields
N − (L+ 1) < (L+ 1)p1/2(1 + log p)

from which the assertion follows. The bound (2.11) can be proved as follows:
For an integer k ≥ 2 put ek(x) = exp(2πix/k). The relations below can be
found in [74];

k−1∑

a=0

ek(au) =
{

0, u �≡ 0 mod k,
k, u ≡ 0 mod k, (2.12)

k−1∑

a=1

∣
∣
∣
∣
∣

K−1∑

x=0

ek(ax)

∣
∣
∣
∣
∣
≤ k log k, 1 ≤ K ≤ k. (2.13)

The Weil bound, which we present in the following form (see [64, Theorems 2C
and 2G]),

∣
∣
∣
∣
∣

p−1∑

a=0

χ(f(a))ep(ax)

∣
∣
∣
∣
∣
≤
{
p1/2 deg f, 1 ≤ x < p,

p1/2(deg f − 1), x = 0,
(2.14)

where χ denotes a nontrivial multiplicative character of Fp and f ∈ Fp[X],
enables us to handle the complete hybrid character sum below. Application of
Vinogradov’s method (see [70]) with (2.12) and

f(X) =
L∏

j=0

(X + j)cj

gives

∣
∣
∣
∣
∣

N−L−1∑

n=1

(
f(n)
p

)∣∣
∣
∣
∣

=
1
p

∣
∣
∣
∣
∣
∣

∑

x∈Fp

∑

m∈Fp

(
f(m)
p

)N−L−1∑

n=1

ep(x(n−m))

∣
∣
∣
∣
∣
∣

≤ 1
p

∑

x∈Fp

∣
∣
∣
∣
∣
∣

∑

m∈Fp

(
f(m)ep(−xm)

p

)
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

N−L−1∑

n=1

ep(xn))

∣
∣
∣
∣
∣

< (L+ 1)p1/2(1 + log p),

where we used that f is not a square (since cL = 1) to apply (2.14) in the case
x = 0.
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For similar sequences, that are defined by the use of the quadratic character
of arbitrary finite fields and the study of their linear complexity profiles, see [39,
46, 76].

Let γ be a primitive element and η be the quadratic character of the finite
field Fq of odd characteristic. The Sidelnikov sequence (σn) is defined by

σn =
{

1, if η(γn + 1) = −1,
0, otherwise,

n ≥ 0.

In many cases one is able to determine the linear complexity L(σn) over F2

exactly, see Meidl and Winterhof [51]. For example, if (q − 1)/2 is an odd
prime such that 2 is a primitive root modulo (q − 1)/2, then (sn) attains the
largest possible linear complexity L(σn) = q−1. Moreover we have the lower
bound, see [51],

L(σn, N) = Ω
(

min{N, q}
q1/2 log q

)

, N ≥ 1.

The linear complexity over Fp of this sequence has been estimated in Garaev et
al [27] by using bounds of character sums with middle binomial coefficients.
For small values of p the linear complexity can be evaluated explicitly.

Let p and q be two distinct odd primes. Put

Q = {q, 2q, . . . , (p− 1)q}, Q0 = Q ∪ {0},

and

P = {p, 2p, . . . , (q − 1)p}.

The pq-periodic sequence (tn) over F2, defined by

tn =






0, if (n mod pq) ∈ Q0,
1, if (n mod pq) ∈ P,(
1−
(

n
p

)(
n
q

))
/2, otherwise

is called the two-prime generator (or generalised cyclotomic sequence of order
2) (see [10], and [13, Chapter 8.2]). Under the restriction gcd(p−1, q−1) = 2
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it satisfies

L(tn) =






pq − 1, p ≡ 1 mod 8 and q ≡ 3 mod 8
or p ≡ 5 mod 8 and q ≡ 7 mod 8,

(p− 1)q, p ≡ 7 mod 8 and q ≡ 3 mod 8
or p ≡ 3 mod 8 and q ≡ 7 mod 8,

pq − p− q + 1, p ≡ 7 mod 8 and q ≡ 5 mod 8
or p ≡ 3 mod 8 and q ≡ 1 mod 8,

(pq + p+ q − 3)/2, p ≡ 1 mod 8 and q ≡ 7 mod 8
or p ≡ 5 mod 8 and q ≡ 3 mod 8,

(p− 1)(q − 1)/2, p ≡ 7 mod 8 and q ≡ 1 mod 8
or p ≡ 3 mod 8 and q ≡ 5 mod 8,

(p− 1)(q + 1)/2, p ≡ 7 mod 8 and q ≡ 7 mod 8
or p ≡ 3 mod 8 and q ≡ 3 mod 8.

In the most important case when |p− q| is small we have a lower bound on the
linear complexity profile of order of magnitude

O(N1/2(pq)−1/4 log−1/2(pq))

for 2 ≤ N < pq.

Elliptic Curve Generators

We recall some definitions and basic facts about elliptic curves (see [37] or
Chapter 5).

Let p > 3 be a prime and E be an elliptic curve over Fp of the form

Y 2 = X3 + aX + b

where the coefficients a, b are in Fp and 4a3 + 27b2 �= 0. The set E(Fp) of all
Fp -rational points onE forms an abelian group where we denote addition by⊕.
The point O at infinity is the zero element of E(Fp). We recall the Hasse-Weil
bound

|#E(Fp)− p− 1| ≤ 2p1/2,

where #E(Fp) is the number of Fp-rational points, including O. For a given
initial value W0 ∈ E(Fp), a fixed point G ∈ E(Fp) of order t and a rational
function f ∈ Fp(E) the elliptic curve congruential generator (with respect
to f ) is defined by wn = f(Wn), n ≥ 0, where

Wn = G⊕Wn−1 = nG⊕W0, n ≥ 1.

Obviously, (wn) is t-periodic. See [3, 34] and references therein for results on
the properties of elliptic curve generators. For example, choosing the function
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f(x, y) = x, the work of Hess and Shparlinski [34] gives the following lower
bound for the linear complexity profile:

L(wn, N) ≥ min{N/3, t/2}, N ≥ 2.

Here we present an elementary proof of a slightly weaker result. Let x(Q)
denote the first coordinate x of the point Q = (x, y) ∈ E.
Theorem 2.5. Let (wn) be the t-periodic sequence defined by

wn = x(nG), 1 ≤ n ≤ t− 1, (2.15)

with some w0 ∈ Fp and G ∈ E of order t. Then we have

L(wn, N) ≥ min{N, t/2} − 3
4

, N ≥ 2.

Proof. We may assume N ≤ t/2 and L(wn, N) < t/2. Put nG = (xn, yn),
1 ≤ n ≤ t − 1. Note that xk = xm if and only if k = m or k = t − m,
1 ≤ k ≤ t− 1, and yk = 0 if and only if t is even and k = t/2. Put cL = −1
and assume that

L∑

l=0

clwn+l = 0, L+ 1 ≤ n ≤ N − L− 1,

or equivalently

L∑

l=0

clwt−n−l = 0, L+ 1 ≤ n ≤ N − L− 1.

Hence,

L∑

l=0

cl
wn+l + wt−n−l

2
= 0, L+ 1 ≤ n ≤ N − L− 1.

By the addition formulas for points on elliptic curves we have

xn+l =
(
yn − yl

xn − xl

)2

− (xn + xl)

=
xlx

2
n + (x2

l + a)xn + axl + 2b− 2ylyn

(xn − xl)2
, l + 1 ≤ n ≤ t− l − 1,

where we used y2
n = x3

n + axn + b. Similarly we get

xt−n−l =
xlx

2
n + (x2

l + a)xn + axl + 2b+ 2ylyn

(xn − xl)2
, l + 1 ≤ n ≤ t− l − 1,
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and hence

xn+l + xt−n−l

2
=
xlx

2
n + (x2

l + a)xn + axl + 2b
(xn − xl)2

, l + 1 ≤ n ≤ t− l − 1.

So we get

L∑

l=0

cl
xlx

2
n + (x2

l + a)xn + axl + 2b
(xn − xl)2

= 0, L+ 1 ≤ n ≤ N − L− 1.

Clearing denominators we get

L∑

l=0

cl(xlx
2
n+(x2

l +a)xn+axl+2b)
L∏

j=0
j �=l

(xn−xj)2 = 0, L+1 ≤ n ≤ N−L−1.

So the polynomial

F (X) =
L∑

l=0

cl(xlX
2 + (x2

l + a)X + axl + 2b)
L∏

j=0
j �=l

(X − xj)2

of degree at most 2(L+ 1) has at least N − 2L− 1 different zeros. Moreover,
we have

F (xL) = −2(x3
L + axL + b)

L−1∏

j=0

(xL − xj)2 = −2y2
L

L−1∏

j=0

(xL − xj)2 �= 0.

Hence we get 2(L+ 1) ≥ N − 2L− 1 and the result follows.

2.2 Related Measures

Lattice Test

In order to study the structural properties of a given periodic sequence (sn)
over Fq, it is natural to consider the subspacesL(sn, s) of F

s
q for s ≥ 1, spanned

by the vectors sn − s0, n = 1, 2, . . . where

sn = (sn, sn+1, . . . , sn+s−1), n = 0, 1, . . . .

We recall that (sn) is said to pass the s-dimensional lattice test for some
integer s ≥ 1, if L(sn, s) = F

s
q. It is obvious for example that the linear

generator (2.1) can pass the s-dimensional lattice test at most for s = 1. On
the other hand for q = p, the nonlinear generator (2.2) passes the test for all
s ≤ deg g (see [53]). However this test is well known to be unreliable since
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sequences, which pass the lattice test for large dimensions, yet having bad
statistical properties are known [53].

Accordingly the notion of lattice profile is introduced by Dorfer and Winter-
hof [16]. For given s ≥ 1 andN ≥ 2 we say that (sn) passes the s-dimensional
N -lattice test if the subspace spanned by the vectors sn − s0, 1 ≤ n ≤ N − s,
is F

s
q. The largest s for which (sn) passes the s-dimensional N -lattice test is

called the lattice profile at N , and is denoted by S(sn, N).
The lattice profile is closely related to the linear complexity profile, as the

following result in [16] shows:
We have either

S(sn, N) = min{L(sn, N), N + 1− L(sn, N)}

or

S(sn, N) = min{L(sn, N), N + 1− L(sn, N)} − 1.

The results of Dorfer et al [15] on the expected value of the lattice profile show
that a “random” sequence should have S(sn, N) to be close to min{N/2, t}.

k-Error Linear Complexity

We have remarked that a cryptographically strong sequence necessarily has
a high linear complexity. It is also clear that the linear complexity of such a
sequence should not decrease significantly when a small number of its terms
are altered. The error linear complexity is introduced in connection with this
observation [14, 69].

Let (sn) be a sequence over Fq, with period t. The k-error linear complex-
ity Lk(sn) of (sn) is defined as

Lk(sn) = min
(yn)

L(yn),

where the minimum is taken over all t-periodic sequences (yn) over Fq, for
which the Hamming distance of the vectors (s0, . . . , st−1) and (y0, . . . , yt−1)
is at most k.

One problem of interest here is to determine the minimum value k, for which
Lk(sn) < L(sn). This problem is tackled by Meidl [44], in case (sn) is a bit
sequence with period length pn, where p is an odd prime and 2 is a primitive
root modulo p2. Meidl [44] also describes an algorithm to determine the k-error
linear complexity that is based on an algorithm of [79]. Stronger results for
pn-periodic sequences over Fp have been recently obtained in Meidl [45].

Here we give the proof of the following recent result on the k-error linear
complexity over Fp of Legendre sequences, obtained by Aly and Winterhof
in [2].
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Theorem 2.6. Let Lk(ln) denote the k-error linear complexity over Fp of the
Legendre sequence (ln). Then,

Lk(ln) =






p, k = 0,
(p+ 1)/2, 1 ≤ k ≤ (p− 3)/2,

0, k ≥ (p− 1)/2.

Proof. Put

g1(X) =
1
2

(
Xp−1 −X(p−1)/2

)
and g2(X) =

1
2

(
1−X(p−1)/2

)
.

Since ln = g1(n) for n ≥ 0 we get that the Legendre sequence (ln) over Fp

has linear complexity L(ln) = p by (2.3).
Consider now the p-periodic sequence (l′n) defined by l′n = g2(n), n ≥ 0.

Note that
g1(n) = g2(n), 1 ≤ n ≤ p− 1,

and

Lk(ln) ≤ L(l′n) =
p+ 1

2
, k ≥ 1.

Assume now that 1 ≤ k ≤ (p − 3)/2. Let (sn) be any sequence obtained
from (ln) by changing at most (p − 3)/2 elements. Suppose that g is the
polynomial in Fp[x] of degree at most p−1, which represents the sequence (sn),
i.e., sn = g(n), n ≥ 0.

It is obvious that the sequences (sn) and (l′n) coincide for at least p − 1 −
k ≥ (p + 1)/2 elements in a period. Hence, the polynomial g(X) − g2(X)
has at least (p + 1)/2 zeros, which implies that either g(X) = g2(X) or
deg g ≥ (p+ 1)/2. Therefore Lk(ln) = L(l′n) = (p+ 1)/2.

Finally we remark that Lk(ln) = 0 for k ≥ (p − 1)/2, since we have
exactly (p − 1)/2 nonzero elements in a period of (ln) and the zero sequence
of linear complexity 0 can be obtained by (p− 1)/2 changes.

Aly and Winterhof also give a lower bound for the k-error linear complexity
over Fp of Sidelnikov sequences in the same paper ,

Lk(σn) ≥ min
((

p+ 1
2

)r

− 1,
q − 1
k + 1

−
(
p+ 1

2

)r

+ 1
)

.

For k ≥ (q−1)/2 we haveLk(σn) = 0. The 1-error linear complexity over Fp

L1(σn) =
(
p+ 1

2

)r

− 1, q > 3.

of Sidelnikov sequences has recently be determined by Eun et al. in [20] to be
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Other Measures Related to Linear Complexity

The Kolmogorov complexity of a binary sequence is, roughly speaking, the
length of the shortest computer program that generates the sequence. The re-
lationship between linear complexity and Kolmogorov complexity was studied
in [4, 75].

We recall that the nonlinear complexity profile NLm(sn, N) of an infinite
sequence (sn) over Fq is the function, which is defined for every integerN ≥ 2,
as the smallest k such that a polynomial recurrence relation

sn+k = Ψ(sn+k−1, . . . , sn), 0 ≤ n ≤ N − k − 1,

with a polynomial Ψ(λ1, . . . , λk) over Fq of total degree at most m can gen-
erate the first N terms of (sn). Note that generally speaking NL1(sn, N) �=
L(sn, N) because in the definition of L(sn, N) one can use only homogeneous
linear polynomials. Obviously, we have

L(sn, N) ≥ NL1(sn, N) ≥ NL2(sn, N) ≥ . . . .

See [32] for the presentation of results on the linear complexity profile of non-
linear, inversive and quadratic exponential generators in a more general form,
namely in terms of lower bounds on the nonlinear complexity profile.

Linear Complexity and Predictability

It is clear that sequences with low linear complexity have to be avoided
for cryptographic applications. One should note that sequences which show
favourable behaviour with respect to linear complexity and related quality mea-
sures should also be used with care. Rigorous results, demonstrating this fact,
have been recently obtained by Blackburn et al [6, 7], which we briefly describe
below.

As we have remarked earlier, the inversive generator (2.8) stands out as a
sequence with almost best possible linear complexity. Nevertheless it turns out
that it is polynomial time predictable if sufficiently many bits of its consecutive
terms are known, except for some very limited special cases.

Recall that the inversive generator (yn) is defined as

yn+1 = ayp−2
n + b =

{
ay−1

n + b if yn �= 0,
b otherwise,

n ≥ 0,

with a, b, y0 ∈ Fp (regarded as integers in {0, 1, . . . , p− 1}), a �= 0.
The elements a, b and y0 are assumed to be the secret key in the cryptographic

setting. Since it is easy to recover the secret key in case several consecutive terms
of the sequence are known, it is assumed that only the most significant bits of
them are revealed. When approximationsx0, x1, x2, x3 to yn, yn+1, yn+2, yn+3

are known for some n, [6] shows that a, b, yn, . . . , yn+3 can be recovered in
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polynomial (in log p) time, if the approximations are sufficiently good and a
small set of values of a, b is excluded.

It is shown in [7] that the knowledge of b, and approximations x0, x1, x2 to
yn, yn+1, yn+2 is sufficient to recovera and the consecutive termsyn, yn+1, yn+2,
in polynomial time, provided that the approximations are good enough and the
initial value y0 is not in a certain small set. Although the assumption that b
is public is not realistic in the cryptographic setting, it is not unlikely that the
result can be extended to the case when b is unknown (see [7]).

References to the earlier work on the predictability of linear congruential
generators can also be found in [6, 7]. A weaker attack is discussed in Klap-
per [36], where the idea is to decrease the linear complexity of a given sequence
by considering it over a ring which is different from the ring where the sequence
is naturally defined (and its high linear complexity is guaranteed). The result
in Shparlinski and Winterhof [67] shows that this approach has very limited
chance to succeed.

3. Autocorrelation and Related Distribution Measures for
Binary Sequences

3.1 Autocorrelation
One would expect that a periodic random sequence and a shift of it would

have a low correlation. Autocorrelation measures the similarity between a
sequence (sn) of period t and its shifts by k positions, for 1 ≤ k ≤ t− 1.

The (periodic) autocorrelation of a t-periodic binary sequence (sn) is the
function defined by

A(sn, k) =
t−1∑

n=0

(−1)sn+k+sn , 1 ≤ k ≤ t− 1.

Note that Section 3 of Chapter 2 is concerned with the correlation of two
sequences (sn) and (tn).

Obviously a low autocorrelation is a desirable feature for pseudorandom
sequences that are used in cryptographic systems. Local randomness of periodic
sequences is also of importance cryptographically, since only small parts of the
period are used for the generation of stream ciphers.

The aperiodic autocorrelation reflects local randomness and is defined by

AA(sn, k, u, v) =
v∑

n=u

(−1)sn+k+sn , 1 ≤ k ≤ t− 1, 0 ≤ u < v ≤ p− 1.
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For the Legendre sequences, for example, A(ln, k) can be immediately de-
rived from the well-known formula, see e.g. [35],

p−1∑

n=0

(
n

p

)(
n+ k

p

)

= −1, 1 ≤ k ≤ p− 1,

and the following bound on the aperiodic autocorrelation of Legendre sequences
follows immediately from (2.11).

Theorem 3.1. The (aperiodic) autocorrelation of the Legendre sequence sat-
isfies

A(ln, k) =
(
k

p

)(
1 + (−1)(p−1)/2

)
− 1, 1 ≤ k ≤ p− 1,

|AA(ln, k, u, v)| ≤ 2p1/2(1+ log p)+2, 1 ≤ k ≤ p− 1, 0 ≤ u ≤ v ≤ p− 1.

For bounds on the aperiodic autocorrelation of extended Legendre sequences
see [50]. For the aperiodic autocorrelation of Sidelnikov sequences and two-
prime generators see [68] and [10], respectively.

3.2 Related Distribution Measures

Higher Order Correlation

In Mauduit and Sárközy [43] the correlation measure of order k of a binary
sequence (sn) is introduced as

Ck(sn) = max
M,D

∣
∣
∣
∣
∣

M∑

n=1

(−1)sn+d1 · · · (−1)sn+dk

∣
∣
∣
∣
∣
, k ≥ 1,

where the maximum is taken over all D = (d1, d2, . . . , dk) with non-negative
integers d1 < d2 < . . . < dk and M such that M − 1 + dk ≤ T − 1.
C2(sn) is obviously bounded by the maximal absolute value of the aperiodic
autocorrelation of (sn). It is also shown in [43] that the Legendre sequence has
small correlation measure up to rather high orders.

The following family of pseudorandom binary sequences is introduced in
Gyarmati [33]: Let p be an odd prime and g be a primitive root modulo p.
Denote by ind n the discrete logarithm of n to the base g, i.e., ind n = j if
n = gj with 1 ≤ j ≤ p− 1. Let f(X) be a polynomial of degree k modulo p.
Then the finite sequence (en) is defined by

en =
{

1 if 1 ≤ ind f(n) ≤ (p− 1)/2,
−1 if (p+ 1)/2 ≤ ind f(n) ≤ p− 1 or p | f(n), 1 ≤ n ≤ p− 1.
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The correlation measure of the sequence (en) is also analysed in [33].
The sequence (kn) of signs of Kloosterman sums is defined as follows;

kn =

{
1 if

∑p−1
j=1 exp(2πi(j + nj−1)/p) > 0,

−1 if
∑p−1

j=1 exp(2πi(j + nj−1)/p) < 0,
1 ≤ n ≤ p− 1,

where j−1 is the inverse of j modulo p. Bounds on the correlation measure of
order k of (kn) are given in Fouvry et al [22].

Recently Brandstätter and Winterhof [12] have shown that the linear com-
plexity profile of a given t-periodic sequence can be estimated in terms of its
correlation measure;

L(sn, N) ≥ N − max
1≤k≤L(sn,N)+1

Ck(sn), 2 ≤ N ≤ t− 1.

Hence, a lower bound on L(sn, N) can be obtained whenever an appropriate
bound on maxCk(sn) is known. The proof is similar to that of Theorem 2.4.

Nonlinearity

Each binary sequence (sn) of period t over the field F2 can naturally be
associated with a Boolean function B. More precisely, we define an integer m
by 2m ≤ t < 2m+1 and denote by Bm the set of m-bit integers

Bm = {n ∈ Z : 0 ≤ n ≤ 2m − 1}.

We do not distinguish between m-bit integers n ∈ Bm and their binary ex-
pansion. So Bm can be considered as the m-dimensional Boolean cube Bm =
{0, 1}m. The Boolean function B : Bm → F2 associated to the sequence (sn)
is given by

B(n) = sn, n ∈ Bm. (3.1)

For n, r ∈ Bm, 〈n, r〉 denotes the inner product of n and r considered as
binary vectors. That is

〈n, r〉 = n1r1 + . . .+ nmrm,

where n = (n1, . . . , nm) and r = (r1, . . . , rm) are the binary representations
of n and r.

The Fourier coefficients of a Boolean functionB : Bm → {0, 1} are defined
as

B̂(r) = 2−m
∑

n∈Bm

(−1)B(n)+〈n,r〉, r ∈ Bm,

and the nonlinearity NL(B) is defined as

NL(B) = 2m−1 − 2m−1 max
r∈Bm

∣
∣
∣B̂(r)

∣
∣
∣ .
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The nonlinearity corresponds to the smallest possible Hamming distance be-
tween the vector of values ofB and the vector of values of a linear function inm
variables over F2. For the cryptographic significance of this notion see [11] and
references therein. In particular, a high nonlinearity is necessary for achieving
confusion and avoiding differential attacks.

In Brandstätter and Winterhof [11] the nonlinearity of the Boolean func-
tion B, defined by (3.1) is estimated in terms of the correlation measure of
order 2 of the sequence (sn). It is shown that

NL(B) > 2m−1(1− 81/42−m/4C2(sn)1/4).

This result can be applied to any binary sequence for which a bound on the
correlation measure of order 2 or the aperiodic autocorrelation is known. For
example, consider the Boolean function

B(n) =






0 if
(

n
p

)
= 1 or n = 0,

1 if
(

n
p

)
= −1,

0 ≤ n ≤ 2m − 1,

corresponding to the Legendre sequence, where 2m ≤ p < 2m+1. The bound

NL(B) = 2m−1(1 +O(2−m/8m1/4))

follows immediately from [66, Theorem 10.1] or [43].
Note that the Legendre sequence describes the least significant bit of the

discrete logarithm. An analogue result on the nonlinearity of the Boolean
function corresponding to the sequence of least significant bits of the discrete
logarithm in the finite field F2r ¨

4. Discrepancy and Uniform Distribution
A quantitative measure of uniformity of distribution of a sequence, the so-

called discrepancy has a long history. Originated from a classical problem in
Diophantine approximations, namely distribution of fractional parts of integer
multiples of an irrational in the unit interval, this concept has found applications
in various areas like combinatorics, probability theory, mathematical finance,
to name a few. It is apparent that it can be used in the analysis of PR sequences;
it also emerges as a valuable tool in quasi-Monte Carlo methods where the
so-called quasi-random sequences are often utilised.

LetP be a point set (finite sequence) x0,x1, . . . ,xN−1 ∈ [0, 1)s with s ≥ 1.

The discrepancy D(s)
N of P is defined as

D
(s)
N (P ) = D

(s)
N (x0,x1, . . . ,xN−1) = sup

J

∣
∣
∣
∣
AN (J)
N

− V (J)
∣
∣
∣
∣ ,

is given in Brandstatter et al. [9].
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where the supremum is taken over all subboxes J ⊆ [0, 1)s, AN (J) is the
number of points x0,x1, . . . ,xN−1 in J and V (J) is the volume of J . We put

DN (P ) = D
(1)
N (P ). For an infinite sequence (sn) ∈ [0, 1)s, the discrepancy

of (sn) is defined as

D
(s)
N (sn) = D

(s)
N (s0, s1, . . . , sN−1).

It is evident from the well-known Erdős-Turán inequality, (4.1) below, that
the main tool in estimating discrepancy is the use of bounds on exponential
sums. Let P be a point set x0, x1, . . . , xN−1 in [0, 1). There exists an absolute
constant C such that for any integer H ≥ 1,

DN (P ) < C

(
1
H

+
1
N

H∑

h=1

1
h
|SN (h)|

)

, (4.1)

where SN (h) =
∑N−1

n=0 exp (2πihxn).
For the case s ≥ 2 the generalised version of (4.1), namely the Erdős-Turán-

Koksma inequality is used.
The law of the iterated logarithm asserts that the order of magnitude of

discrepancy ofN points in [0, 1)s should be aroundN−1/2(log logN)1/2. Ac-
cordingly, as a measure of randomness of a PRN sequence, one investigates the
discrepancy of s-tuples of consecutive terms.

Consider, for example, the inversive congruential PRNs, produced by (2.5),
with least period p. For a fixed dimension s ≥ 1, put

xn = (yn/p, yn+1/p, . . . , yn+s−1/p) ∈ [0, 1)s, n = 0, . . . , p− 1.

Depending on the parameters a, b ∈ Fp, and in particular on the average,

D
(s)
p (x0, . . . ,xp−1)has an order of magnitude betweenp−1/2 andp−1/2(log p)s

for every s ≥ 2. Similar favourable results are available, for instance, for non-
linear, quadratic exponential and elliptic curve generators.

As we have remarked earlier, only parts of the period of a PR sequence are
used in applications. Therefore bounds on the discrepancy of sequences in parts
of the period are of great interest.

The following theorem of Niederreiter and Shparlinski [57] gives an upper
bound for the discrepancy of nonlinear congruential PRNs for parts of the
period. We present a slightly imroved version.

Theorem 4.1. Let (un) be a nonlinear congruential generator (2.7) with pe-
riod t. For any positive integer r we have

DN (un/p) = O(N−1/(2r)p1/(2r)(log p)−1/2 log log p), 1 ≤ N ≤ t,

where the implied constant depends on r and the degree of f .
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Proof. First we prove that, for gcd(h, p) = 1,

SN (h) = O(N1−1/(2r)p1/(2r)(log p)−1/2), 1 ≤ N ≤ t. (4.2)

Select any h ∈ Z with gcd(h, p) = 1. It is obvious that for any integer k ≥ 0
we have ∣

∣
∣
∣
∣
SN (h)−

N−1∑

n=0

ep(un+k)

∣
∣
∣
∣
∣
≤ 2k.

Therefore, for any integer K ≥ 1,

K|SN (H)| ≤W +K(K − 1),

where

W =
N−1∑

n=0

∣
∣
∣
∣
∣

K−1∑

k=0

ep(un+k)

∣
∣
∣
∣
∣
.

We consider again the sequence of polynomials Fk(X) defined in the proof of
Theorem 2.2. By the Hölder inequality and using un+k = Fk(un) we obtain

W 2r ≤ N2r−1
N−1∑

n=0

∣
∣
∣
∣
∣

K−1∑

k=0

ep(Fk(un))

∣
∣
∣
∣
∣

2r

≤ N2r−1
∑

x∈Fp

∣
∣
∣
∣
∣

K−1∑

k=0

ep(Fk(x))

∣
∣
∣
∣
∣

2r

≤ N2r−1
K−1∑

k1,...,k2r

∣
∣
∣
∣
∣
∣

∑

x∈Fp

ep(F (x))

∣
∣
∣
∣
∣
∣
,

where F (X) = Fk1(X) + . . . + Fkr(X) − Fkr+1(X) − . . . − Fk2r(X). If
{k1, . . . , kr} = {kr+1, . . . , k2r}, then F (X) is constant and the inner sum is
trivially equal to p. There are at most r!Kr such sums. Otherwise we can
apply Weil’s bound to the inner sum using degF ≤ dK−1, to get the upper
bound dK−1p1/2 for at most K2r sums. Hence,

W 2r ≤ r!KrN2r−1p+ dK−1K2rN2r−1p1/2.

Choose

K =
⌈

0.4
log p
log d

⌉

.

Then it is easy to see that the first term dominates the second one and we
get (4.2) after simple calculations. Choosing

H =
⌈
N1/(2r)p−1/(2r)(log p)1/2

⌉
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in (4.1), we obtain the discrepancy bound.

Note that the known upper bounds obtained for full period are often the best
possible, as the corresponding lower bounds demonstrate (see [53]). However
for parts of the period, the bound in Theorem 4.1 is rather weak and improve-
ments are sought for. One should note on the other hand that the method used
in [57] for estimating SN (h), is the first to give nontrivial bounds for parts of
the period. This method also applies in case s ≥ 2.

As to bounds on discrepancy of some special nonlinear generators for parts of
the period, much better results can be obtained. For the inversive congruential
generators (yn) of period t, Niederreiter and Shparlinski showed in [58] that

DN (yn/p) = O(N−1/2p1/4 log p), 1 ≤ N ≤ t.

For an average discrepancy bound over all initial values of a fixed inversive
congruential generator see Niederreiter and Shparlinski [60].

Results about the distribution of the power generator follow from the bounds
of exponential sums in Friedlander and Shparlinski [25] and in Bourgain [8].
Exponential sums of nonlinear generators with Dickson polynomials have been
estimated in Gomez-Perez et al [28]. Discrepancy bounds for nonlinear con-
gruential generators of higher order can be found in [29, 31, 72].

For the distribution of explicit nonlinear generators see the series of pa-
pers [61, 62, 77]. In particular for the explicit inversive generator (2.4) we
have the discrepancy bound

DN (zn/p) = O(min{N−1/2p1/4 log p,N−1p1/2(log p)2}), 1 ≤ N ≤ p.

The order of magnitude of discrepancy of the PRNs produced by the elliptic
curve generator of period t with f(x, y) = x or f(x, y) = y is t−1p1/2 log p,
by Hess and Shparlinski [34]. This result can be easily extended to parts of the
period. We present the proof of the following special version.

Theorem 4.2. The sequence (wn) defined by (2.15), having period t satisfies

DN (wn/p) = O(t−1p1/2 log p log t), 1 ≤ N < t.

Proof. First we estimate the exponential sums

SN =
N−1∑

n=1

ep(wn) =
N−1∑

n=1

ep(x(nG)), 1 ≤ N < t.

Using the Vinogradov method again we get by (2.12)

|SN | ≤
1
t

t−1∑

a=0

∣
∣
∣
∣
∣

t−1∑

n=1

ep(x(nG))et(an)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

N−1∑

m=0

et(am)

∣
∣
∣
∣
∣
= O(p1/2 log t)
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by (2.13) and [38, Corollary 1]. The discrepancy bound follows from (4.1).

The distribution of an elliptic curve analogue of the power generator has been
analysed in Lange and Shparlinski [40].

We should remark that the linear congruential generator, unlike other gen-
erators we mentioned above, is distributed too evenly. In case a in (2.1) is a
primitive root mod p, b = 0 and s0 �= 0, the sequence has period length p− 1,
and for most choices of a,

D
(s)
p−1(sn/p) = O(p−1(log p)s(log log(p+ 1))).

Although such low-discrepancy sequences need to be avoided as PR se-
quences, they are needed for use in quasi-Monte Carlo methods (see [53]). The
study of irregularities of distribution suggests that for anyN -element point setP
and any sequence (sn) in [0, 1)s, s ≥ 1, the least order of magnitude ofD(s)

N (P )
and D(s)

N (sn) can be N−1(log n)s−1 and N−1(log n)s, respectively.
The construction of point sets and sequences with these least possible bounds

has been a challenging problem; both for theoretical interest and for applica-
tions. Recent results of Xing, Niederreiter and Özbudak show that geometric
methods are particularly fruitful for such constructions. We refer the reader to
the surveys by Niederreiter [54, 56] for an extensive description of this study,
illustrating yet another application of global function fields.
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