
Chapter 9

Inference Rules

In this chapter, several representative topics are discussed to show the
difference between the inference rules of NARS and those in other
theories.

9.1 Deduction

Deduction is the type of inference that has been studied most thor-
oughly. However, there are still problems when the knowledge and re-
sources of the system are insufficient. Here the reference class problem
is discussed as an example.

9.1.1 Deduction with reference classes

How do we predict whether an individual has a certain property, if
direct observation is impossible? A useful method is to look for a “ref-
erence class.” The class should include the individual as an instance,
and we should know something about how often the instances of the
class have the desired property, or whether its typical instances have it.
Then, the prediction can be done by letting the instance “inherit” the
information from the class.

In reasoning under uncertainty, there are (at least) two groups
of approaches that use this type of inference: non-monotonic logics
[Touretzky, 1986], and probabilistic reasoning systems [Pearl, 1988].
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In non-monotonic logics, if the only relevant knowledge is “S is an
instance of R” and “Normally, R’s instances have the property Q,” a
defeasible conclusion is “S has the property Q.”

In probabilistic reasoning systems, under the subjective interpreta-
tion of probability, if the only relevant knowledge is “S is an instance
of R” and “The probability for R’s instances to have the property Q is
p,” a plausible conclusion would be “The probability for S to have the
property Q is p.”

Now a problem appears: if S belongs to two classes R1 and R2

at the same time, and the two classes lead to different predictions
about whether (or how probable) S has the property Q, what con-
clusion can we reach? In different contexts, the problem is referred to
as “multiple inheritance problem,” “multiple extension problem,” or
“reference class problem.” [Grosof, 1990, Kyburg, 1983, Neufeld, 1989,
Pearl, 1988, Poole, 1985, Reichenbach, 1949, Touretzky, 1986].

Though the above theories treat the problem differently, they have
something in common: None of them suggest a general solution to the
problem, though they agree on a special case: if R2 is a (proper) subset
of R1, R2 is the correct reference class to be used.

Let us see two examples.

1. “Since Clyde is a royal elephant, and royal elephants are not gray,
Clyde is not gray. On the other hand, we could argue that Clyde
is a royal elephant, royal elephants are elephants, and elephants
are gray, so Clyde is gray. Apparently there is a contradiction
here. But intuitively we feel that Clyde is not gray, even though
he is an elephant, because he is a special type of elephant: a royal
elephant.” [Touretzky, 1986].

2. “If you know the survival rate for 40-year old American male to
be 0.990, and also that the survival rate for 40-year old American
male white-collar workers to be 0.995, then, other things being
equal, it is the latter that should constrain your beliefs and en-
ter your utility calculations concerning the particular 40 year old
male white-collar worker John Smith.” [Kyburg, 1983].

Let us call this principle “specificity priority principle.” It looks
quite reasonable, and it is not hard to find many examples to show that
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we do apply such a principle in common sense reasoning. However, the
following questions are still open:

1. Why is the principle correct? Can it be justified by more basic
postulates?

2. Beside specificity, what are the “other things” that influence the
priority of a reference class?

3. When neither reference class is more specific than the other, what
should be done?

For the first question, Reichenbach made it a matter of definition by
“regarding the individual case as the limit of classes becoming gradually
narrower and narrower” [Reichenbach, 1949]; Pearl said it is because
“the influence of the remote ancestors is summarized by the direct
parents.” [Pearl, 1988].

For the second question, Reichenbach said we need to have com-
plete statistical knowledge on the reference class, that is, the prob-
ability for R to be Q should be supported by good statistical data
[Reichenbach, 1949]. In non-monotonic logics, this corresponds to suffi-
cient evidence which can determine what properties a normal instance
of the class has.

For the third question, few words are said, except Reichenbach’s
suggestion to “look for a larger number of cases in the narrowest com-
mon class at your disposal.” [Reichenbach, 1949]

9.1.2 A thought experiment

Let us reconstruct Kyburg’s example in the following way: Imaging
that you are working for a life insurance company, and you need to
predict whether John Smith can live to 40. You have John’s personal
information, and for some special reasons (such as you just woke up
from a 200-year-long sleep or you are actually an extraterrestrial spy),
you have no background knowledge about the survival rates at 40 for
various groups of people. Fortunately, you have access to personal files
of some Americans, who are alive or died in recent years, and you decide
to make the prediction by the “reference class method” defined above.
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At first, knowing that John is a male, you begin to build the first
reference class R1 by picking up some files randomly. R1 consists of
two subsets: P1 includes the positive evidence for John’s survival, that
is, American males who are more than 40 years old (including those
who are already deceased), and N1 includes the negative evidence, that
is, those who died before 40. You should keep in mind that American
males who are alive and younger than 40 (including John himself) are
neither positive evidence nor negative evidence for the prediction, so
they do not belong to R1.

If you weight everyone equally (and why wouldn’t you?), your pre-
diction should be determined by the relative size of P1 and N1. Let us
say |P1| > |N1|. Therefore you predict that John Smith can live to 40.

After returning the files, you have a new idea: why not consider the
fact that John is, among other things, a white-collar worker? So you
build another reference class R2 similarly. Let us assume, unfortunately,
this time you find that |P2| < |N2|. Here you meet the reference class
problem: to see John as a “male” and a “male white-collar worker” will
lead to different predictions.

If we apply the specificity priority principle here, the result should be
dominated by R2, since “male white-collar worker” is a proper subset of
“male.” However, it is easy to find a situation to show that sometimes
the result is counter-intuitive. If you have looked through 1000 files,
and all of them are males and live to 40, and after that you find 1 male
white-collar worker who died at 35, will you predict that John will die
before 40? It seems very unlikely.

Does this mean that the specificity priority principle is wrong? Of
course not. Sample size is obviously one of the “other things” that in-
fluence the priority of a reference class. One sample is far from enough
to tell us about how a “typical” or “normal” instance looks like, or to
support a statistical assertion on the instances. In such a case, the prin-
ciple is inapplicable, since there is another relevant difference between
the two reference classes, beside their specificities.

If you have to make predictions in such an environment, what will
you do? Let us consider a simple psychological experiment. Assuming
R1 includes positive evidence only (that is, R1 = P1; no male is found
to have died before 40), but R2 includes negative evidence only (that
is, R2 = N2, no male white-collar worker is found to be alive at 40).
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Even before really carrying out such an experiment on human subjects,
I am confident to make the following prediction: If |P1| is fixed at a big
number (say 1000), and |N2| is increased one by one, starting from 1,
the predictions made by subjects will be positive before |N2| reaching
a certain point, and negative after reaching that point. That critical
point may vary from person to person, but is always smaller than |P1|.

The “sample size effect” can also be used to answer the following
question: If a more specific reference class is always better, why do not
we simply use the most specific reference class, defined by all available
properties of John Smith? The reason is simple: in most situations such
a class is empty — nobody is similar to John to such an extent. With
more and more properties used to define a reference class, the extension
of the class becomes narrower and narrower. As a result, fewer and fewer
samples can be found to support or discredit our prediction. From this
point of view, specificity is not preferred.

Previously, I talked about the reference classes R1 and R2, as if they
are accurately defined. Obviously this is a simplification. Though we
can ignore the boundary cases for “male,” the fuzziness in “white-collar
worker” cannot be neglected so easily. As argued by fuzzy set theory
[Zadeh, 1965] and prototype theory [Rosch, 1973], whether an instance
belongs to a concept is usually a matter of degree. This membership
function is also related to the current issue: if John can be referred to
as a “white-collar worker,” but not a typical one, the influence of R2

will be reduced.
From the above analysis, we can see that the previous solutions from

non-monotonic logic and probability theory ignored several important
factors when handling deduction with reference classes.

9.1.3 The NARS solution

Now Let us see how NARS treats the reference class problem.
Putting the previous example into Narsese, the premises are:

J1 : {S} → R1 <f1, c1 >
J2 : {S} → R2 <f2, c2 >
J3 : (#x → R1) ⇒ (#x → Q) <f3, c3 >
J4 : (#x → R2) ⇒ (¬(#x → Q)) <f4, c4 >
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Since John shares one property with R1 (“male”) and two properties
with R2 (“male” and “white-collar worker”), we have w1 = w+

1 = 1 and
w2 = w+

2 = 2. It follows that (assuming k = 1) f1 = f2 = 1, c1 = 1/2,
and c2 = 2/3. Under the assumption that R1 consists of 1000 positive
samples, we have f3 = 1 and c3 = 1000/1001. Let us say that R2

includes negative samples only, but leaves the number of samples, n,
as a variable, to see how it affects the final evaluation of {S} → Q.
Therefore, we have f4 = 1 and c4 = n/(n + 1).

Applying the deduction rule, from J1, J3 and J2, J4, respectively, we
get

J5 : {S} → Q <1, c1c3 >
J6 : {S} → Q <0, c2c4 >

Since the knowledge that “John is male” is used to evaluate both J1

and J2, and they are used in the derivation of J5 and J6, respectively,
the evidence for J5 and J6 is correlated. Therefore, they cannot be
merged by the revision rule. Instead, the choice rule is applied to pick
the judgment that has a higher confidence as the conclusion. Which
reference class will win the competition?

By solving the inequality c1c3 > c2c4 (that is, (1/2)×(1000/1001) >
(2/3) × (n/(n + 1))), we can see that

1. When 0 < n < 3, R1 is selected. The specificity priority of R2 is
undermined by the fact that the sample size of R2 is too small.

2. When n ≥ 3, R2 is selected. The specificity priority can be es-
tablished even by a pretty small sample size: with |R1| = 1000
and |R2| = 3, the prediction is still determined by R2 due to its
specificity.

If John is not a typical white-collar worker (i.e., f2 < 1), R2’s con-
fidence is smaller than c2c4, so it may need a bigger n for R2 to be
dominant.

Therefore, when NARS is selecting a reference class, several factors
are balanced against one another, including specificity, typicality, sam-
ple size, and so on. It provides a generalization of the specificity priority
principle, by taking more relevant factors into consideration.

NARS’ approach is more general than the specificity priority prin-
ciple in another way. The including of reference classes is only a special
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case for two judgments to be based on correlated evidence. It follows
that the specific priority principle is a special case of NARS’ choice
rule.

How about competing reference classes that do not involve corre-
lated evidence? Let us say in the previous examples, R1 is still for
“male,” but R2 is changed for “smoker and white-collar worker.” If the
deduced judgments J5 and J6 are not based on correlated evidence in
some other ways, the two judgments will be combined by the revision
rule of NARS. Other things being equal, R2 has a higher priority, since
it matches better with John’s properties. However, in this case a higher
priority only means a higher weight in determining the frequency of the
conclusion. The judgment from the other reference class is not ignored.
In this situation, the reference class competing is solved not by choosing
one of them, but by combining the two.

Let us see how NARS treats the “Nixon Diamond” discussed in the
study of non-monotonic logics [Touretzky, 1984]. This example assumes
we know that Nixon is a Quaker, and Quakers are pacifists. We also
know that Nixon is a Republican, and Republicans are not pacifists.
From the above knowledge alone, should we predict Nixon to be a
pacifist or not? Putting into the previous framework, in this problem we
have “Nixon” as S, “Quaker” as R1, “Republican” as R2, and “Pacifist”
as Q. By deduction, two conflicting judgments J5 (“Nixon is a pacifist”)
and J6 (“Nixon is not a pacifist”) can be derived as in the previous
example.

Since we can assume the un-correlation of evidence of the judgments
(R1 and R2 have no known relation), J5 and J6 will be combined by the
revision rule, and the result depends on the truth value of the premises.

1. If f1 = f2, c1 = c2, f3 = 1 − f4, and c3 = c4, for the conclu-
sion we will get f = 0.5. That is, when the positive evidence and
the negative evidence exactly balance with each other, the sys-
tem is indifferent between a positive prediction and a negative
prediction.

2. If c1 > c2, and the other conditions as in (1), we will get f >
0.5. That is, when Nixon shares more property with Quaker, the
system will put more weight on the conclusions suggested by the
evidence about Quaker.
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3. If f3 > 1 − f4 or c3 > c4, and the other conditions as in (1), we
will get f > 0.5. That is, when we have stronger statistical data
about Quaker, the system will put more weight on the conclusions
suggested by the evidence about Quaker, too.

In any situation, what NARS does is to combine the evidence from
both sources. Even if “Quaker” is given a higher priority, the evidence
provided by “Republican” still has its effect on the result. On the other
hand, this kind of conflict does not always (though sometimes it does)
cause complete indifference or ambiguity, as it does in non-monotonic
logics [Touretzky, 1986].

In summary, compared with non-monotonic logics and probability
theory, the processing of the reference class problem in NARS has the
following characteristics:

1. While still following the specificity priority principle, several fac-
tors, such as sample size and degree of membership, are taken into
account to quantitatively determine the priority of a reference
class, and all the factors are projected into a common dimension,
that is, the amount of evidence.

2. The specificity priority principle has been generalized into a “con-
fidence priority principle,” which will pick a judgment with the
highest confidence among the competing ones, supported by cor-
related evidence. As discussed above, specificity is one way to get
a high confidence, while the inclusion relation between reference
classes causes evidence correlation.

3. When conflicting judgments come from different sources, the revi-
sion rule is applied to combine them by summarizing the evidence.
This operation is not directly available in non-monotonic logics
and probability theory.

Why cannot similar things be done in non-monotonic logics and
probability theory? One of the major reasons is that the confidence (or
equivalently, amount of evidence) measurement cannot be easily intro-
duced there. From the view point of NARS, the confidence of all the
default rules (in non-monotonic logics) and probability assignments (in
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probability theory) is 1, that is, they cannot be revised by accommo-
dating its current evaluation to new evidence.

Therefore, the reference class problem provides another piece of ev-
idence for the previous criticism on non-monotonic logic (Section 8.1)
and probabilistic logic (Section 8.3), as general solutions to the reason-
ing under uncertainty problem.

9.2 Induction

Induction is a major topic in this book, because it has been called “the
glory of science and the scandal of philosophy,” as well as because the
basic ideas of NARS to a large extent were formed during my study on
the problem of induction.

9.2.1 The problem of induction

The term “induction” is usually used to denote the inference that de-
rives general knowledge from specific knowledge. There are some people
who call all non-deductive inferences “induction,” but in this way the
category includes too many heterogeneous instances to be studied fruit-
fully.

There are three major academic traditions in the study of induction.
The philosophical/logical study concentrates on the formalization and
justification of induction; the psychological study concentrates on the
description and explanation of induction in the human mind; and the
computational study concentrates on the implementation of induction
in computer systems.

Though Aristotle mentioned induction as the method by which gen-
eral primary premises can be obtained, he did not develop a theory
for this type of inference, as he did for deduction. It was Bacon who
for the first time proposed a systematical inductive method, with the
hope that it could provide a general methodology for empirical science
[Cohen, 1989]. However, such an approach was seriously challenged by
Hume, who argued that the inferences that extend past experience to
future situations cannot have a logical justification [Hume, 1748]. After
Hume, most philosophical and logical work on induction are about the
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justification of the process. The mainstream approach is to use proba-
bility theory, with the hope that though inductive conclusions cannot
be absolutely true, they can have certain probabilities [Carnap, 1950].

In recent years, the study of induction has been enriched by AI
researchers. With computer systems as tools and platforms, different
formalizations and algorithms are proposed and tested. In terms of the
formal language used, we can further divide the existing approaches in
this domain into three “families.”

The first family uses propositional logic and probability theory. Let
us say that S is a proposition space and P is a probability distribution
function on it. Induction is defined in this situation as the operation
of determining P (H|E), where H is a hypothesis and E is available
evidence, and both belong to S. The inference — or more precisely,
calculation — is carried out according to probability theory in general,
and Bayes’ theorem in particular. This family is the mainstream of the
philosophical and logical tradition of induction study [Keynes, 1921,
Carnap, 1950, Good, 1983], and it has been inherited by the Bayesian
school in AI [Korb, 1995, Pearl, 1988].

The second family uses first-order predicate logic. Let us say that K
is the background knowledge of the system, and E is available evidence
(both K and E are sets of proposition). Induction is defined in this
situation as the operation of finding a proposition H that implies E
and is also consistent with K. Because the inference from H and K to
E is deduction, induction thus defined, as the inference from E and K
to H, is often referred to as “reverse deduction.” This family is very
influential in machine learning [Michalski, 1993].

The third family uses term logic. Though Aristotle discussed induc-
tion briefly in his work [Aristotle, 1989], it was Peirce who first defined
different types of inference in term logic, roughly in the following man-
ner [Peirce, 1931]:

deduction induction abduction

M → P M → P P → M
S → M M → S S → M
———— ———— ————
S → P S → P S → P
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One interesting fact is that though Peirce’s distinction of deduction,
induction, and abduction is widely accepted, his formalization in term
logic is seldom followed. Instead, the above definition is rephrased
within the frame of predicate logic [Michalski, 1993]. We will see the
subtle difference between these two formalizations later.

Obviously, NARS belongs to the term-logic family. Now let us see
how NARS answers the questions about the aspects of induction.

9.2.2 To represent inductive conclusions

As mentioned previously, NARS represents all knowledge, including
inductive conclusions, in Narsese. The simplest sentence has the form
of “S → P ,” with a truth value attached, which is determined according
to the past experience of the system.

To decide truth according to the available evidence or according
to a set of axioms is fundamentally different. In the former situation,
no decision is final in the sense that it cannot be revised by future
evidence. Each piece of evidence contributes, to a certain extent, to the
evaluation of truth value. Therefore, truth value is always a matter of
degree in a system like NARS.

This opinion is against a well-known conclusion proposed by Pop-
per. He claimed that there is an asymmetry between verifiability and
falsifiability — “a positive decision can only temporarily support the
theory, for subsequent negative decisions may always overthrow it”
[Popper, 1959].

The crucial point here is: what is the content of a general statement,
or, in Popper’s words, a theory?

According to my opinion, “Ravens are black” is a general statement,
for which a black raven is a piece of positive (affirmative) evidence,
and a non-black (e.g., white) raven is a piece of negative (rejective)
evidence — the former verify an inheritance relation “raven → [black]”
to a certain extent, while the latter falsify it, also to a certain extent.
When we say that “All ravens are black,” it means that according to
our experience, the inheritance relation between the two terms only
has positive evidence, but no negative evidence. In this case, the truth
value of the statement is still a matter of degree, though the frequency
value happens to be at its maximum, 1.
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What Popper referred to as theory are universal statements. Ac-
cordingly, when we say “All ravens are black,” we mean that all ravens
in the whole universe, known or unknown, are black. Such a statement
can only be true or false, and there is no middle ground (if we ignore
the fuzziness of the terms). We know the statement is false as soon as
we find a non-black raven, but we need to exhaust all ravens in the
universe to know it is true.

Such a formalization of inductive conclusions is shared by the Ba-
conian tradition of induction [Cohen, 1989]. According to an approach
proposed by Cohen, induction is a sequence of tests with increasing
complexity, and the (Baconian) probability of a hypothesis indicates
how many tests the hypothesis passed in the process.

If we accept the above definition of scientific theory, all conclusions
of Popper and Cohen follow logically. However, why should we accept
the definition? As a matter of fact, many empirical scientific theories
have counterexamples, and we do not throw them away [Kuhn, 1970].
It is even more obvious when we consider our common-sense knowledge.
A general statement like “Ravens are black” works well as our guide of
life, even when we know that it has counterexamples. Such a statement
can be applied to predict new situations, though its truth value is deter-
mined by past experience. We do hope to establish theories that have
no known counterexamples, but it does not mean that theories with
known counterexamples cannot be used for various practical purposes.
Only in mathematics, where truth values are determined according to
fixed axioms, do universal statements become available.

The above argument also serves as a criticism to the AI induction
projects within the framework of binary logic [Korb, 1995]. To define
induction as “finding a pattern to fit all data” makes it a luxury that
can only be enjoyed in a laboratory. Though such an approach can pro-
duce research results, these results are hardly applicable to practical
situations. Also, this over-idealization makes the process fundamen-
tally different from the generalizations happening in the human mind.
It is not even appropriate to justify this approach as “a preliminary
step toward more complex studies,” because when giving up the idea
that “an inductive conclusion can be falsified once for all,” the situa-
tion will become so different that the previous results are hardly useful
at all.
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Because in NARS truth values are determined by available evidence,
we need to first precisely define what is counted as evidence and how
evidence is quantitatively measured.

Though it is natural to say that a black raven is a piece of posi-
tive evidence for “Ravens are black,” and a white raven is its negative
evidence, Hempel points out that such a treatment leads to counter-
intuitive results [Hempel, 1943]. If “Ravens are black” is formulated
as (∀x)(Raven(x) → Black(x)), a green shirt will also be counted as
a piece of positive evidence for the sentence, because it confirms the
“logically equivalent” sentence (∀x)(¬Black(x) → ¬Raven(x)) (“Non-
black things are non-ravens”). Such a result is highly counterintuitive,
and may cause many problems (for example, a green shirt is also a
piece of positive evidence for “Ravens are white,” for exactly the same
reason).

Here I will not discuss the various solutions proposed for this para-
dox. It is enough to say that almost all of those attempts are still within
the framework of predicate logic, whereas in the following we can see
that the problem does not appear in term logics like NARS.

As we already know, in Narsese “Ravens are black” can be repre-
sented as “(#x → raven) ⇒ (#x → [black]).” For this statement,
“black ravens” are positive evidence, “non-black ravens” are negative
evidence, and “non-ravens” are not directly relevant (according to the
definition of evidence for implication statements in Chapter 5). On
the other hand, “Non-black things are non-ravens” can be represented
in Narsese as “(¬(#x → [black])) ⇒ (¬(#x → raven)).” For it, “non-
black non-raven” are positive evidence, “non-black ravens” are negative
evidence, and “black things” are not directly relevant.

Comparing the two statements, we see that, in the terminology of
NARS, they have the same negative evidence, but different positive ev-
idence (as discussed in Section 5.1.4). In a binary logic, the truth value
of a statement only indicates whether there is any negative evidence,
so these two statements have the same truth value, or are “equivalent.”
In a logic where truth value is determined by both positive and nega-
tive evidence, they may have different truth values, and are no longer
equivalent.

Therefore, what Hempel’s paradox reveals is that “equivalent state-
ments” in a binary logic do not necessarily have the same truth value
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when the system is extended into a multi-valued logic. This problem
does not appear in NARS, because here the evidence for “Ravens are
black” and “Non-black things are non-ravens” are different (therefore
they usually have different truth values). In NARS, the existence of a
green shirt is not directly relevant to whether ravens are black, just as
our intuition tells us.

9.2.3 To generate inductive conclusions

The induction rule defined in Section 3.3.4 has the following form:

{M → P <f1, c1 >, M → S <f2, c2 >} � S → P <f1,
f2c1c2

f2c1c2 + k
>

This section explains why the rule is defined in this way.
To show how the rule works on a concrete example, let us to back to

the example used in Section 3.3.6, and let P be “swimmer,” and S be
“bird.” To see if the rule makes intuitive sense, let us at first consider
the following special situations.

1. When f1 = c1 = f2 = c2 = 1, M is a piece of (idealized) positive
evidence for the conclusion. According to the previous definitions,
in this case we have w+ = w = 1 for the conclusion — that is,
f = 1, c = 1/(1 + k). For the “Birds are swimmers” example,
here M is a swimmer bird, such as a swan.

2. When f1 = 0, c1 = f2 = c2 = 1, M is a piece of (idealized)
negative evidence for the conclusion. According to the previous
definitions, in this case we have w− = w = 1 for the conclusion
— that is, f = 0, c = 1/(1 + k). For the “Birds are swimmers”
example, here M is a non-swimmer bird, such as a robin.

3. When f2 = 0, M is not an instance of S. In this case, no matter
it is an instance of P or not, it provides no evidence for the
conclusion, therefore w = 0, c = 0, and f is undefined. For
the “Birds are swimmers” example, here M is not a bird (but a
dolphin, for example).

4. When c1 or c2 is 0, one of the premises gets no evidential support,
so the conclusion gets no evidential support either. That means
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w = 0, c = 0. For the “Birds are swimmers” example, here either
whether M is a bird or whether M is swimmer is completely
unknown.

From these boundary conditions of the truth value function for in-
duction, if all the variables take boolean values (either 0 or 1), we get
f = f1 and w = and(f2, c2, c1), here and is the Boolean conjunction of
the arguments.

To generalize the Boolean function into real numbers, and is re-
placed by multiplication, and that gives us w = f2c2c1. Using the equa-
tion c = w/(w + k), finally we get the truth-value function used in the
induction rule.

Because in NARS the truth value indicates the relation between a
statement and available evidence, induction is “ampliative” in the sense
that its conclusions are more general than its premises, but it is also
“summative” in the sense that the conclusions claim no more support
than they actually get from the premises. Therefore the traditional
distinction between these two types of induction does not apply here
[Cohen, 1989, Popper, 1959] in its original form.

On the other hand, the distinction between “truth-preserving” and
“ampliative” inferences appears in a different form. In NARS, the confi-
dence of deductive conclusions have a upper bound of 1, and we already
know that the upper bound for induction is 1/(1 + k), which is smaller
than 1. If all premises are absolutely certain, so are their deductive
conclusions, but this does not hold for their inductive conclusions.

It needs to be stressed again that the truth value of the conclusion
indicates the support provided by the evidence, rather than whether
the statement corresponds to a fact in the outside world. An adaptive
system behaves according to its beliefs, not because they guarantee
success (which is impossible, as Hume argued), but because it has to
rely on its experience to survive, even though the experience may be
biased or outdated — this is what “adaptation” means.

In summary, my solution to Hume’s problem is to justify induction
(and all other inference rules) according to an experience-grounded se-
mantics and the notion of adaptation.
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9.2.4 To conduct inductive inference

Another feature that distinguishes the induction rule of NARS from
other induction systems is that the rule is able to generate and evaluate
an inductive conclusion at the same time.

Traditionally, the generating and evaluating of inductive conclu-
sions (or hypotheses) are treated as two separated processes. The most
well-known arguments on this issue were provided by Carnap and
Popper, though they hold opposing opinions on induction in general
[Carnap, 1950, Popper, 1959]. The consensus is that from given evi-
dence, there is no effective procedure to generate all the hypotheses
supported by the evidence, therefore the discovery of a hypothesis is a
psychological process, which contains an “irrational element” or “cre-
ative intuition.” On the contrary, the evaluation of a given hypothesis,
according to given evidence, is a logical process, following a well-defined
algorithm.

The above opinion is in fact implicitly based on the specific language
in which the inductive process is formalized. In probability theory, there
is no way to get a unique hypothesis H from given evidence E for the
purpose of induction, because for every proposition X in the proposition
space, P (X|E) can be calculated, at least in principle. In first-order
predicate logic, there are usually many hypotheses H that imply the
given evidence E, and also are consistent with background knowledge
K. In both cases, some heuristics can be used to pick up an inductive
conclusion that has some desired properties (simplicity, for instance),
but these heuristics are not derived from the definition of the induction
rule [Mitchell, 1980, Haussler, 1988].

In term logic, the situation is different. Here premises of an induc-
tive inference must be a pair of judgments that share a common sub-
ject, and the premises uniquely determine an inductive conclusion. (Of
course, there is also a symmetric inductive conclusion if we exchange
the order of the premises.) Therefore, in NARS we do not need an “ir-
rational element” or domain-dependent heuristics, and the discovery of
a hypothesis, in the current sense, also follows logic.

In NARS, induction is unified with other types of inferences, in the
sense that the premises used by the induction rule may be generated by
the deduction (or abduction, and so on) rule, and that the conclusions
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of the induction rule may be used as premises by the other rules. In
particular, the revision rule may merge an inductive conclusion with a
deductive (or abductive, and so on) conclusion.

Therefore, though NARS has an induction rule, it is not an “in-
ductive logic,” in the sense that it solves problems by induction only.
An answer reported by NARS to the user is usually the cooperative
result of several rules in a multi-step inference process. Though there
are other “multi-strategy” inference models (which combine different
types of inference), using first-order predicate logic [Michalski, 1993],
attribute-value language [Giraud-Carrier and Martinez, 1995], or hy-
brid (symbolic-connectionist) representation [Sun, 1995], the term logic
model, proposed by Peirce and extended in NARS, puts different types
of inference in the same framework in a more natural, elegant, and
consistent manner.

From the above discussion, we see that conclusions in NARS are
based on different amounts of evidence, and, generally speaking, con-
clusions based on more evidence are preferred, because of their relative
stability. However, since NARS is designed to be an open system, future
evidence is always possible, therefore there is no way for the system to
get “complete evidence” for an inductive conclusion.

A reasonable retreat is to use all evidence known to the system —
the so-called “total evidence” [Carnap, 1950]. Unfortunately, this is also
impossible, because NARS has insufficient resource. The system has to
answer questions under a time pressure, which makes exhaustive search
in knowledge space not affordable.

Moreover, in NARS the time pressure is variable, depending to the
request of the user and the existence of other information-processing
tasks. In this situation, even a predetermined “satisfying threshold”
becomes inapplicable — such a threshold is sometimes too low and
sometimes too high.

As described in Chapter 6, the control mechanism used in NARS
is similar to an “anytime algorithm” [Dean and Boddy, 1988]. If the
system is asked to evaluate the truth value of a statement, it reports
the best conclusion (i.e., with the highest confidence) as soon as such
a conclusion is found, then continues to look for a better one, until
no resources are available for this task. In this way, from the user’s
point of view, the system may change its mind from time to time,
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when new evidence is taken into consideration. The system will never
say that “This is the final conclusion and I will stop working on the
problem.”

The above discussion is directly related to the “acceptance” problem
in inductive logic [Kyburg, 1994]. As put by Cohen, “what level of
support for a proposition, in the light of available evidence, justifies
belief in its truth or acceptance of it as being true?” [Cohen, 1989]. In
NARS, there is no such a thing as “accepted as being true.” Judgments
are true to different extents, and the system always follows the best-
supported conclusion (compared with its rivals), no matter what its
truth value is — the standard is relative and dynamic, not absolute
and static. In this way, an inductive conclusion also benefits from the
refutation of competing conclusions, which is stressed by the Baconian
tradition of induction [Cohen, 1989] — though its truth value may not
change in this process, its relative ranking becomes higher.

According to the definition given be Peirce, the difference among
deduction, abduction, and induction is the position of the shared term
in the two premises. This property of term logic makes it possible for
NARS to combine different types of inference in a “knowledge-driven”
manner. In each inference step, the system does not decide what rule
to use, then look for corresponding knowledge. Instead, it picks up a
task and a belief which share a term, and decides what rule to apply
according to the position of the shared term (as described in Chapter
6). In general, an inference process in NARS consists of many steps.
Each step carries out a certain type of inference, such as deduction,
abduction, induction, and so on. These steps are linked together in run-
time in a context-dependent manner, so the process does not follow a
predetermined algorithm.

Therefore, NARS is not an “inductive machine” which uses an
effective algorithm to generate inductive conclusions from given evi-
dence. Carnap’s argument against the possibility of this kind of ma-
chine [Carnap, 1950] is still valid. However, this argument does not
prevent us from building a computer system that can do induction.
The system does not have a general purpose induction algorithm, but
can solve problems under its knowledge and resource constraints, and
in the problem-solving activities there are inductive steps.
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9.3 Abduction

Since in NARS abduction and induction are duals of each other (be-
cause extension and intension are duals of each other), most of the
previous discussions on induction also apply to abduction. In the fol-
lowing, I will not repeat them, but focus on the special issues that
distinguish my approach toward abduction from the other approaches.

9.3.1 Two definitions of abduction

Approaches of defining abduction can be classified into two types: syl-
logistic and inferential. An inferential definition identifies abduction as
a type of inference process that carries out a certain cognitive function,
such as explanation or hypothesis generation, while a syllogistic def-
inition specifies it as a type of inference step with a specific pattern
[Flach and Kakas, 2000].

As defined in NAL-1 and NAL-5, in NAL the distinction among de-
duction, abduction, and induction is formally specified at the inference-
step level, according to the position of the shared term in the premises.
Such a formal definition makes discussions about them clear and
concrete.

To use a formal definition to distinguish various inference types does
not prevent us from attributing them with different cognitive functions.
Given the definition used in NAL, it is valid to say that among the three,
only deduction can produce conclusive results, while the other two only
produce tentative results. Both abduction and induction can be seen as
“reversed deduction,” and the former usually corresponds to explana-
tion, and the latter to generalization. These descriptions are similar to
the ones proposed as inferential definitions of the three types. However,
in NAL these descriptions are secondary, derived from the syllogistic
definition. This approach has the advantage of avoiding ambiguity and
oversimplification in the definition, and at the same time preserve the
intuitive meaning of the terms (i.e., deduction, abduction, and induc-
tion) associated with different types of inference.

Though abduction defined in NAL usually can be interpreted as
“explanation,” to define “abduction” as “explanation” at the inference-
process level is a quite different decision. This is the case because what
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we called “explanation” in everyday thinking may include complex cog-
nitive processes where multiple types of inference are involved. There-
fore, to abstract such a process into a consistent and non-trivial pattern
is not an easy thing to do, if it is possible at all.

For the same reason, to define abduction as “inference toward the
best explanation” makes things even harder, because besides the deriva-
tion of explanations, this definition further requires evaluation of ex-
planations and comparison of competing candidates. In this process,
many other factors should be taken into account, such as simplicity,
surprisingness to the system, and relevance to the given context. If we
cover all of these issues under “abduction,” it becomes such a complex
process that few concrete conclusion can be made. Such a definition is
not wrong, but not very useful.

9.3.2 Multi-valued vs. binary

In the framework of binary logic, abduction is usually defined formally
as “reverse deduction” which starts from a given conclusion and back-
ground knowledge to find a premise that is consistent with the back-
ground knowledge, and derives the conclusion deductively.

Such a definition is logically sound, and can lead to fruitful results.
However, it ignores certain factors that are crucial for a system working
with insufficient knowledge and resources.

In empirical science and everyday life, we usually do not throw away
theories that have known counterexamples and inexplicable phenom-
ena. If we do that, there is hardly anything left. Since we usually have
insufficient knowledge in these domains, we have to live with imperfect
knowledge, because they are still far better than random guesses.

When selecting among competing explanations and hypothesis, mea-
surement of (positive and negative) evidence becomes necessary — if
no explanation is perfect, then the one with more positive evidence and
less negative evidence is preferred, which is what is measured by the
frequency defined in NAL. Since evidence may come from time to time,
incremental revision becomes inevitable, which requires the amount of
evidence to be represented in some way, and this is how the confidence
measurement becomes necessary.
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These measurements enrich our understanding of the inference rules.
In the truth-value functions, we can see that the fundamental differ-
ence between deductive inference and non-deductive (such as abductive
or inductive) inference is in the confidence (not the frequency) of the
conclusion. In deduction, if both premises are completely true, so is
the conclusion. However, in abduction and induction, the confidence
of the conclusion is much lower in this situation, meaning that the con-
clusion is tentative even when the premises are certain, and can be
revised by new evidence.

To ignore quantity of evidence means it will be hard for the system
to distinguish hypotheses that have a little of negative evidence from
those that have a lot. Even for a hypothesis for which only positive
evidence has been found, the amount of evidence still matters — a
hypothesis confirmed only once is quite different from a hypothesis
conformed a million times. For these reasons, to study abduction in
binary logic is not wrong, but not very useful. Unfortunately, it is still
the most common approach to the topic of “abduction” in the current
AI research.

9.4 Implication

This section addresses two topics in higher-order inference, both about
the implication relation.

9.4.1 Implication and relevance

A look at the grammar of Narsese reveals the origin of the intuition
behind the design: first-order NAL is closely related to set theory,1 and
higher-order NAL is closely related to propositional logic — both con-
tain logical constants for negation (“¬”), conjunction (“∧”), disjunction
(“∨”), implication (“⇒”), and equivalence (“⇔”).

Though the intuitive meanings of the above constants are simi-
lar in these two logic systems, there is a fundamental difference. In
propositional logic, all of the five logic constants are truth-functional
operators that form compound propositions, whose truth values are

1Their relation will be discussed in the next chapter.
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fully determined by those of their components. In NAL, on the con-
trary, the five constants belong to two different categories. The first
three are term operators that form compound (higher-order) terms;
the last two are (higher-order) relations (i.e., copulas), which are not
purely truth-functional. Consequently, when P and Q are both Narsese
statements, so do (P ⇒ Q) and ((¬P ) ∨ Q), but the latter two are no
longer equivalent to each other in NAL.

In propositional logic, P ⇒ Q is equivalent to (¬P ) ∨ Q. Though
this equivalence is useful for various purposes, it suffers from the well-
known “implication paradox,” which says that P ⇒ Q is true when P is
false (Q can be anything) or Q is true (P can be anything). Though log-
ically consistent with propositional logic, this result is highly counter-
intuitive, and it gives people a feeling that some important thing is
missing in the definition of implication in propositional logic — P and
Q should be somehow relevant to each other, which is assumed by the
“if ... then ...” structure in natural languages [Copi, 1982].

A whole branch of logic, relevant logic [Read, 1989], has been de-
veloped specially for this issue. I will not review that type of logic here,
but to mention a key property of it, that is, as far as I know, all the
works in that branch of logic are still within the framework of predicate
logic and propositional logic. On the other hand, in NAL, this problem
does not appear in the first place.

In NAL, implication, in its idealized form, is defined to be a reflex-
ive and transitive binary relation from one statement to another. In its
realistic form, it is multi-valued, with its truth value defined accord-
ing to available evidence. Here evidence is measured by comparing the
sufficient and necessary conditions of the two statements.

As a term logic using syllogistic rules, in NAL the two premises
of an inference step must share a common component, otherwise no
conclusion can be derived. Also, the conclusion shares terms with the
premises, respectively. As a result, the three must be related to one
another in their meanings, according to EGS — two terms are related in
their meanings as soon as they appear in the same belief of the system.

Specially, in the induction rule introduced in NAL-5, (P ⇒ Q) can
be derived from P and Q only if the two premises are based on the same
(implicitly represented) evidence. From an arbitrary pair of statements,
nothing will be derived — to know their truth values is not enough.
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Even when (P ⇒ Q) is derived from P and Q, its confidence is low,
because the rule is induction. Only when P and Q have been repeatedly
supported by the same evidence for many times (and the evidence is
different at each time), can (P ⇒ Q) then become more confident (by
merging the individual conclusions with the revision rule).

In NAL, (P ⇒ Q) and ((¬P )∨Q) are no longer equivalent, but still
related to each other. Especially, they have the same negative evidence
(that is, when P is true and Q is false). Here the situation is exactly the
same as the one revealed by the previous analysis on the “confirmation
paradox,” that is, since in binary logic a truth value only indicates the
existence of negative evidence, statements with exactly the same scope
of negative evidence are treated as equivalent. In multi-valued logic
with EGS, however, these statements may have different truth values
if they have different positive evidence. In NAL, two statements are
equivalent if they have the same scope and amount of both positive
evidence and negative evidence.

Now we can see that, in this sense, both “confirmation paradox”
and “implication paradox” are problems of binary predicate logics with
MTS, but not problems of logic in general. To properly capture the
intuitive meaning of concepts like “confirmation,” “implication,” and
so on, we need a multi-valued term logic with an experience-grounded
semantics.

9.4.2 Implication and causation

Causal inference is a very important cognitive function, and it has
attracted researchers from AI [Pearl, 2000], psychology [Cheng, 1997],
and philosophy [Sosa and Tooley, 1993].

What differs NAL from the other approaches in causal inference is:
though NAL also attempts to capture all aspects of causal inference, it
does not treat “causal inference,” as well as the related concepts like
“causal relation” and “causation,” as logical constants, in the sense that
there are inference rules especially responsible for causal inference.

Unlike the Bayesian interpretation of causal inference [Pearl, 2000]
(in which causal relation is formalized by conditional probability), in
NAL causal inference is carried out by formal inference rules on a for-
mal language. Even in this framework, how to define “causal relation”
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is still a controversy. Logically speaking, it has been defined as suffi-
cient condition, necessary condition, sufficient-and-necessary condition,
or even something more complicated, by different people [Copi, 1982,
Sosa and Tooley, 1993]. In practical applications, there are debates on
the “cause” of all kinds of events in every newspapers everyday.

In my opinion, this situation indicates that “causation” is a concept
we use to organize our experience, and especially for the prediction of
the future [Anderson, 1990]. Since in different domains predictions are
made in different ways, the meaning of this concept is context depen-
dent. For this reason, we should not expect a physicist, a biologist,
an economist, and a historian to agree on the accurate definition of
“cause.”

Even when this is the situation, it is still possible to provide a com-
mon logical foundation for all the different usage of the concept “causa-
tion” (and the related concepts). In NAL, causal inference, or prediction
in general, is seen as consisting of two basic aspects, a logical one and
a temporal one. The logical factor is represented by the implication re-
lation (and its variant, the equivalence relation), which indicates when
a statement can be derived from another one. The temporal factor is
represented by the temporal orders introduced in NAL-7. According to
the common usage of the term, a “cause” of an event E should be a
precondition of it, though it depends on the context whether it is a
sufficient one, a necessary one, an equivalent one, or even something
more complicated.

In this way, the NAL logical constants provide the “greatest com-
mon factor” of all kinds of causal relations, which are treated in NARS
as “ordinary relations” (as defined in Section 4.4), with meanings
learned from the experience of the system. They can include additional
considerations on causation, such as the distinctions between “causa-
tion” and “covariation,” between “causes” and “enabling conditions,”
and so on [Cheng, 1997, Sosa and Tooley, 1993], though none of these
considerations are included in the logical constants of NAL.

In general, a question with the form of “? ⇒ Q” is a task looking
for an explanation of statement Q, and a question with the form of
“P ⇒ ?” is a task looking for a consequence of statement P . Causal
explanation and causal consequence are just special cases of the above
general higher-order inference tasks. As described before, both tasks,
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as well as yes/no question “(P ⇒ Q) ?,” can be answered by a judg-
ment “P ⇒ Q < f, c >.” If there are multiple candidate answers, the
choice rule is used to pick the best one. If the question is not about
the implication relation in general, but about a special causal rela-
tion “cause,” then the questions will be like “? ◦→ (⊥ cause � Q),”
“? ◦→ (⊥ cause P �),” and “((P × Q) ◦→ cause) ?,” respectively, and
the answer will depend on the current meaning of “cause.”

Like the other statements, an implication statement can be de-
rived in more than one way. For example, when a causal judgment
“P ⇒ Q < f, c >” is derived by induction, it may correspond to a
causal hypothesis obtained from observed regularity; when it is derived
by deduction, it may correspond to a causal hypothesis obtained ac-
cording to an underlying mechanism; when it is derived by abduction,
it may correspond to a causal hypothesis obtained through an explana-
tion. If there is more than one way to support a hypothesis, it will get
a higher confidence value after the revision rule merges evidences from
different sources, though none of the sources are absolutely necessary
for the conclusion to be confident. The same is true for temporal impli-
cation/equivalence relations, and the various causal relations obtained
in experience. Therefore, in NARS there is no separate rule set for
“causal inference” — all inference rules may contribute to the selection
and evaluation of various “causes” and “effects.”

As an answer to Hume’s question on the validity of causal induction
[Hume, 1748], in NARS causal inference is a way for the system to or-
ganize its experience, rather than a way to find “natural causal laws.”
The truth value of such a conclusion measures its available evidential
support, not its distance to the “objective truth” — even if the sys-
tem gets such a truth, it cannot confirm the case, given its insufficient
knowledge and resources. Under AIKR, all causal beliefs in the system
may be revised by future evidence, and none of them fully specifies the
causes or consequences of any event. Nevertheless, the causal beliefs
still serve a crucial role in the adaptation process of the system.




