
Chapter 5

Higher-Order Inference

The NAL built so far is “first-order,” in the sense that statements are
relations among terms, but a statement cannot be treated as a term. In
“higher-order inference,” a statement can be treated as a term, therefore
there are statements on statements, as well as inference on this kind of
higher-order statements. In NAL, though it is possible to further divide
higher-order statements into second-order, third-order, and so on, such
a distinction is not practically useful. Therefore, they will be covered
together under the same notion of “higher-order statements.” In this
chapter, NAL will be extended, step by step, to include various types
of higher-order statements, as well as the inference on them.

5.1 NAL-5: statements as terms

In NAL-5, new grammar and inference rules are introduced, so that the
system can treat a statement as a term.

5.1.1 Higher-order statements

First, the new grammar rules of Narsese-5 are listed in Table 5.1. In
NAL-5 a statement can be used as a term (so it can be involved in var-
ious inheritance and ordinary relations). Some ordinary relations, such
as “believe,” “say,” “know,” and so on, take a statement as an argu-
ment. For example, “John knows that whale is a kind of mammal” is

115

116 Chapter 5

<term> ::= (<statement>)
<statement> ::= <term>

| (¬ <statement>)
| (∧ <statement><statement>+)
| (∨ <statement><statement>+)

<copula> ::= ⇒ | ⇔

Table 5.1: The New Grammar Rules of Narsese-5

represented in Narsese as “({John}×{whale → mammal}) → know,”
where the subject term is a product containing a statement.

On the other hand, a term can also be used as a statement (that
corresponds to the name of a statement, such as “Newton’s first law”).
However, it does not mean that there is no difference between term and
statement. In NAL, a statement has both meaning and truth value, but
a non-statement term only has meaning (without truth value).

Compound statements can be formed using statement operators
negation (“¬”), conjunction (“∧”), and disjunction (“∨”), whose mean-
ings are intuitively similar to those in propositional logic.1 As usual,
conjunction and disjunction can be used both in the prefix format and
the infix format.

Finally, two new copulas, implication (“⇒”) and equivalence (“⇔”),
are defined between statements. Intuitively, they correspond to “if” and
“if-and-only-if,” respectively. They are “higher-order relations” because
they are only defined between two statements.

Please note that in general “⇒” and “⇔” are different from “⊃”
and “≡,” though their intuitive meanings are similar. The former two
belong to the object language (Narsese), while the latter two belong
to the meta-language of Narsese (propositional calculus). The two new
copulas in NAL have different status from the three statement operators

1In this book, though the same symbols are used for the statement operators
in Narsese and the logical connectives in the meta-language of NAL (as defined in
propositional calculus), they should be distinguishable by context.

Higher-Order Inference 117

mentioned above, whereas in propositional calculus the five correspond-
ing notions have the same status as truth-value operators.2

5.1.2 Implication and inheritance

First, the implication relation is defined by valid inference in NAL.

Definition 34 If S1 and S2 are statements, “S1 ⇒ S2” is true (i.e.,
has truth value < 1, 1>) if and only if from “S1 < 1, 1>” alone NAL
can derive “S2 <1, 1>.”

The derivation in the above definition can consists of any (finite) num-
ber (0, 1, 2, ..., n) of inference steps.

Theorem 34 The implication relation, “⇒,” is a reflexive and tran-
sitive relation from one statement to another statement.

Since the above theorem of implication is parallel to the definition of
inheritance (in NAL-0), higher-order inference in NAL can be defined
as partially isomorphic to first-order inference. The correspondences are
listed in Table 5.2.

first-order inference higher-order inference
inheritance implication
similarity equivalence
subject antecedent
predicate consequent
extension sufficient condition
intension necessary condition
extensional intersection conjunction
intensional intersection disjunction

Table 5.2: The Isomorphism Between First-Order and Higher-Order

The definitions of the new notions in Table 5.2 are in the following.

Definition 35 An implication statement consists of two statements
related by the implication relation. In implication statement “A ⇒ C,”
A is the antecedent, and C is the consequent.

2This difference will be discussed in detail in subsection 9.4.1.

118 Chapter 5

Definition 36 Given experience K, the sufficient conditions of a state-
ment T is the set of statements T S = {x |x ∈ VK ∧ x ⇒ T}; the neces-
sary conditions of T is the set of statements TN = {x |x ∈ VK ∧ T ⇒
x}.

Definition 37 For an implication statement “A ⇒ C,” its evidence
are statements in AS and CN . Among them, statements in (AS ∩ CS)
and (CN ∩ AN) are positive evidence, while statements in (AS − CS)
and (CN − AN) are negative evidence.

Definition 38 The equivalence relation is a symmetric implication re-
lation. That is, “A ⇔ B” is defined to mean “(A ⇒ B) ∧ (B ⇒ A).”

The amounts of evidence and the truth value for a higher-order
statement are defined in the same way from evidence as for first-order
statements.

Now the meaning of a statement includes not only its extension and
intension, but also its sufficient and necessary conditions.

Please note that the truth value of an implication (or equivalent)
statement do not depend on all its inheritance (or similarity) relations
with other terms. Two statements can be fully equivalent (i.e., “P ⇔
Q” has a frequency = 1), but still have different meanings (i.e., “P ↔
Q” has a frequency < 1). On the other hand, if two statements have
the same meaning, they should also have the same truth value.

Definition 39 When S1 and S2 are different statements, their con-
junction, (S1 ∧ S2), is a compound statement defined by

(∀x)((x ⇒ (S1 ∧ S2)) ≡ ((x ⇒ S1) ∧ (x ⇒ S2))).

Their disjunction, (S1 ∨ S2), is a compound statement defined by

(∀x)(((S1 ∨ S2) ⇒ x) ≡ ((S1 ⇒ x) ∧ (S2 ⇒ x))).

The above two statement operators are symmetric, and can be extended
to take more than two arguments.

Because of this isomorphism, there is an isomorphic inference rule
in NAL-5 for the following rules defined previously:

Higher-Order Inference 119

• The NAL-1 rules for choice, revision, deduction, abduction, in-
duction, exemplification, and conversion.

• The NAL-2 rules for revision, comparison, analogy, conversion,
and deduction.

• The NAL-3 rules for the processing of intersections.

The term operators for (extensional/intensional) set, product, and
(extensional/intensional) image are not involved in the isomorphism be-
tween first-order and higher-order terms. They treat higher-order terms
just like first-order terms, and there is no special rule added.

To treat conditional statements (implications) and categorical state-
ments (inheritances) in a similar way is not a new idea. The following
opinion can be traced back to Leibniz: “Conditionals are categorical
by virtue of the fact that the relationship between an antecedent and
a consequent is exactly that the relationship between a subject and
a predicate, namely, containment” [Englebretsen, 1981]. In predicate
calculus, categorical statements are translated into conditional state-
ments. What makes NAL different is that it does not treat the two
as the same, but as isomorphic to each other. Consequently, the cor-
responding inference rules have different forms and meanings, though
using the same truth-value function.

5.1.3 Implication as conditional statement

Besides the above isomorphism, higher-order inference and first-order
inference in NAL can be directly related to each other, by extending the
identity between an implication statement (S1 ⇒ S2) and an inference
process (from S1 to S2) to actual judgments.

By definition, in NAL a judgment “S < f, c >” indicates that
“The degree of belief the system has on statement S, according to
available evidence, is measured by truth value < f, c >.” Now if we
assume that the available evidence currently used on the evaluation of
S can be written as a compound statement E, then the same meaning
can be represented by “E ⇒ S < f, c >,” that is, “The degree of
belief the system has on statement ‘If E is true, then S is true’ is
measured by truth value < f, c >.” In this way, a statement S is

120 Chapter 5

equivalently transformed into an implication statement “E ⇒ S” (“If
the available evidence is true, then S is true”). This transformation is
justified according to the semantics of NAL.

This transformation is a conceptual one, not an actual one in the
sense that there is a statement used by NAL corresponding to the above
E. This conceptual transformation is used to justify inference rules. We
can add this implicit conditions into the premises, so as to change the
premise combinations into the ones for which we already have inference
rules. Finally, we remove the implicit condition from the conclusion.
Table 5.3 contains several rules obtained in this way.

premises add condition conclusion drop condition
M ⇒ P, M M ⇒ P, E ⇒ M E ⇒ P P <Fded >
P ⇒ M, M P ⇒ M, E ⇒ M E ⇒ P P <Fabd >
M ⇔ P, M M ⇔ P, E ⇒ M E ⇒ P P <F ′

ana >

Table 5.3: The Conditional Syllogistic Rules (1)

Similarly, when the two premises can be seen as derived from the
same evidence, it can be used as the common virtual condition of the
two, and some conclusions can be derived accordingly, as in Table 5.4.

premises add condition conclusion drop condition
P, M E ⇒ P, E ⇒ M M ⇒ P M ⇒ P <Find >
P, M E ⇒ P, E ⇒ M M ⇔ P M ⇔ P <Fcom >
P, M E ⇒ P, E ⇒ M E ⇒ (P ∧ M) P ∧ M <Fint >
P, M E ⇒ P, E ⇒ M E ⇒ (P ∨ M) P ∨ M <Funi >

Table 5.4: The Composition Rules of NAL-5

The truth-value functions in Table 5.3 and Table 5.4. are those
defined in NAL-1 to NAL-3. For practical purpose, we can ignore the
two columns in the middle, and treat the rules as directly go from the
first column (premises) to the last column (conclusions).

Higher-Order Inference 121

Now we have three groups of syllogistic rules (deduction, abduction,
and induction), one defined on the inheritance relation (in NAL-1),
one on the implication relation (in the previous subsection), and one
on a mixture of the two (above). In the three groups, each type of
inference (deduction, abduction, or induction) has a different form, but
uses the same truth-value function. The last group is similar to how the
three types of inference are defined in extended propositional calculus
[Flach and Kakas, 2000], except that in NAL the statements have truth
values attached to indicate their evidential support.

Also according to the semantical interpretation of implication, we
have

(M ⇒ ((∧ A1 · · ·Am) ⇒ C)) ≡ ((∧ MA1 · · ·Am) ⇒ C)

that is, a conditional statement of a conditional statement is equivalent
to a conditional statement with a conjuncted condition. This is similar
to what is called “exportation” in propositional logic [Copi, 1982]. This
equivalence give us the rules in Table 5.5.

{(∧ MA1 · · ·Am) ⇒ C, M} � (∧ A1 · · ·Am) ⇒ C <Fded >
{(∧ MA1 · · ·Am) ⇒ C, (∧ A1 · · ·Am) ⇒ C} � M <Fabd >
{(∧ A1 · · ·Am) ⇒ C, M} � (∧ MA1 · · ·Am) ⇒ C <Find >

Table 5.5: The Conditional Syllogistic Rules (2)

The truth values of the premises are omitted in the rules. As before,
the induction rule is applied only when the two premises are based on
the same evidence.

These rules can be seen as generalizations of the previous table
where m = 0.3 Table 5.6 gives further extension of these rules.

In each group of the syllogistic rules, abduction and induction can
be obtained from deduction by switching a (different) premise and the
conclusion, so they are “reversed deduction” in a sense.

With the help of the isomorphism and the implicit condition tech-
nique, we also get the following implications in NAL-5 among state-
ments.

3So C is (∧ A1 · · ·Am) ⇒ C, and M ⇒ C is (∧ MA1 · · ·Am) ⇒ C.

122 Chapter 5

{(∧ MA1 · · ·Am) ⇒ C, A0 ⇒ M} � (∧ A0A1 · · ·Am) ⇒ C <Fded >
{(∧ MA1 · · ·Am) ⇒ C, (∧ A0A1 · · ·Am) ⇒ C} � A0 ⇒ M <Fabd >
{(∧ A0A1 · · ·Am) ⇒ C, A0 ⇒ M} � (∧ MA1 · · ·Am) ⇒ C <Find >

Table 5.6: The Conditional Syllogistic Rules (3)

Theorem 35

(S1 ∧ S2) ⊃ S1

S1 ⊃ (S1 ∨ S2)

Now we can also turn the (meta-level) implications in NAL theorems
into inference rules. Since a meta-level implication theorem “A ⊃ C”
corresponds to inference from statement A to statement C, it can be
treated as an implication statement in Narsese “A ⇒ C < 1, 1 >,”
which can be used with “A < f, c >” to get “C < f, fc >,” using the
deduction rule. Similarly, each meta-level implication theorem “A ⊃ C”
can also be used with “C < f, c >” to get “A < f, c/(c + k) >” as
a special kind of abduction. Isomorphically, theorems in the form of
inheritance statements can also be used in this way.

The above inference has some restrictions. For example, “S1 ⇒
(S1 ∨S2) <1, 1>” is a theorem, and it is fine to use it and a judgment
of S1 to derives a judgment of (S1 ∨ S2) by deduction, where S2 can
be any term. However, this result should not be used with the theorem
again to derive a judgment of S2 by abduction, otherwise for any two
arbitrary statements, from the truth value of one, the truth value of
the other can be derived (though with a low confidence).

The equivalence statements in theorems and definitions are easier
to be converted into inference rules: “S1 ≡ S2” corresponds to rules
{S1} � S2 and {S2} � S1, where the truth value of the conclusion is
the same as the premise. The same result can be obtained by treating
the inference as a special case of analogy with “S1 ⇔ S2 < 1, 1 >.”
Isomorphically, theorems in the form of similarity statements can also
be used in this way.

Higher-Order Inference 123

5.1.4 Negation

Since the negation operator in NAL-5 takes one argument, it is not
directly isomorphic to the (extensional/intensional) difference operators
defined in NAL-3. Instead, it is defined as the following:

Definition 40 If S is a statement, its negation, (¬S), is a compound
statement defined by switching the positive and negative evidence of S.

The definition also gives us the negation rule, defined in Table 5.7.

{S <f0, c0 >} � (¬S) <Fneg >

Table 5.7: The Negation Rule

The negation rule use the following truth-value function:

Fneg : f = 1 − f0, c = c0

We still have the following theorems as in propositional logic:

Theorem 36 (¬(¬S)) ≡ S

Theorem 37 (S1 ⇔ S2) ≡ ((¬S1) ⇔ (¬S2))

However, the Law of Contrapositive in propositional logic [Copi, 1982]
(i.e., the equivalence between “S1 ⇒ S2” and “(¬S2) ⇒ (¬S1)”) is no
longer true in NAL.

When the truth values of S1 and S2 are determined according to
certain evidence E, the induction rule can be used to calculate the
truth value of “S1 ⇒ S2.” As a result, when both S1 and S2 are true,
it is positive evidence for “S1 ⇒ S2”; when S1 is true but S2 is false, it
is negative evidence (when S1 is false, it is not evidence).

Similarly, when both S1 and S2 are false, it is positive evidence for
“(¬S2) ⇒ (¬S1)” (because both ¬S1 and ¬S2 are true); when S2 is
false but S1 is true, it is negative evidence (when S2 is true, it is not
evidence).

124 Chapter 5

By comparing the above two cases, we can see that “S1 ⇒ S2” and
“(¬S2) ⇒ (¬S1)” have the same negative evidence (S1 true, S2 false),
but completely different positive evidence (“both true” for the former,
and “both false” for the latter). Therefore, to derive one statement from
the other, in NAL we use the contraposition rule defined in Table 5.8.

{S1 ⇒ S2 <f0, c0 >} � (¬S2) ⇒ (¬S1) <Fcnt >

Table 5.8: The Contraposition Rules of NAL-5

Since only negative evidence is passed from the premise to the con-
clusion, and the premise at most is counted as evidence with unit
amount, we have w = (1−f0)c0, and therefore the truth-value function
is:

Fcnt : f = 0, c = (1 − f0)c0/[(1 − f0)c0 + k]

To summarize, related to the traditional study of “conversion,” “ob-
version,” and “contraposition” [Copi, 1982], in NAL the corresponding
relations with evidence are in Table 5.9.

S1 ⇒ S2 S2 ⇒ S1

{S1 ∧ S2; S1 ∧ (¬S2)} {S1 ∧ S2; (¬S1) ∧ S2}
(¬S1) ⇒ (¬S2) (¬S2) ⇒ (¬S1)

{(¬S1) ∧ (¬S2); (¬S1) ∧ S2} {(¬S1) ∧ (¬S2); S1 ∧ (¬S2)}

Table 5.9: Negation and Evidence

In Table 5.9, there are four statements, each with its positive evi-
dence and negative evidence listed under it. There are three relations
among them:

conversion. The two statements in the same row become each other
by exchanging the subject and the predicate. They have the same
positive evidence, but different negative evidence.

Higher-Order Inference 125

obversion. The two statements in the same column become each other
by negating the subject and the predicate. They have different
positive and negative evidence.

contraposition. The two statements in the same diagonal line become
each other by exchanging and negating the subject and the predi-
cate. They have the same negative evidence, but different positive
evidence.

Given the above relations, in NAL there are rules for conversion
and contraposition, but not for obversion, since no evidence can be
passed from the premise to the conclusion. For the former two, only
one type of evidence is passed (positive in conversion and negative in
contraposition), so the frequency value of the conclusion is a constant
(1 in conversion and 0 in contraposition). In these two rules, at most a
single unit of evidence can be provided, so the conclusion has a lower
confidence value than the premise — this is the case, because in NAL,
the evidence of a premise is never directly taken as evidence (of the
same quality and quantity) of the conclusion, except in the revision
rule, where the premises and the conclusion are all about the same
statement.

By definition, the evidence of (¬(S1 ⇒ S2)) is obtained by switching
the positive and negative evidence of (S1 ⇒ S2), so it is {S1∧(¬S2); S1∧
S2}. Since it is nothing but the evidence of (S1 ⇒ (¬S2)), the two
statements are equivalent. This relation is not true if “⇒” is interpreted
as the material implication in propositional logic. It is also important to
notice that in NAL, unlike in propositional calculus, “A ⇒ C” is usually
different from “(¬A)∨C” in truth value.4 Similarly, for the equivalence
relation, there are two other equivalence rule. These equivalence rules
are listed in Table 5.10.

Other negation-related inference rules include the ones obtained
from the following implications (which are also true in propositional
logic):

4This issue is discussed in detail in subsection 9.4.1.

126 Chapter 5

¬(S1 ⇒ S2) S1 ⇒ (¬S2)
¬(S1 ⇔ S2) S1 ⇔ (¬S2)
¬(S1 ⇔ S2) (¬S1) ⇔ S2

Table 5.10: The Equivalence Rules of NAL-5

Theorem 38

(¬A) ⊃ (¬(A ∧ B))

(¬(A ∨ B)) ⊃ (¬A)

(A ∧ (¬(A ∧ B))) ⊃ (¬B)

((¬A) ∧ (A ∨ B)) ⊃ B

So far, we have seen three types of (statement level) negation.
For a statement “S → P” in NAL-0, its negation is implicitly rep-
resented, which is not a statement in Narsese-0, though we can talk
about “¬(S → P)” in its meta-language, where “¬” is used as in propo-
sitional logic. In NAL-5, a statement S is multi-valued (with truth value
<f, c>), and so is ¬S (with truth value <1 − f, c>), where “¬” is a
statement operator defined in Narsese-5, whose meaning is not exactly
the same as the one in predicate logic.

Finally, as described previously, “S → P” in NAL-0 becomes “S →
P < 1, 1 >” in NAL-1 (as well as in all of its extensions, including
NAL-5). However, when it is not true, its truth value < f, c > can be
anything except < 1, 1 >, and it is not necessarily the case specified
by the negation of the statement, which has truth value <0, 1>. This
issue is very important when encoding knowledge in Narsese. Usually,
by “S is not P ,” we mean that “There is negative evidence for S → P”
(i.e., “S → P < 0, c >,” where c < 1), but not that “All evidence for
S → P is negative” (i.e., “S → P <0, 1>”).

Higher-Order Inference 127

5.2 NAL-6: statements with variables

5.2.1 Variable terms

The terms we introduced so far are constant terms, in the sense that
at any given time, each of them is unique in the system, and has a
determined meaning; a variable term, on the other hand, may appears
in more than one statements in the system, each of them with its own
meaning.

In NARS, the meaning of a constant term is determined by its ex-
perienced relations with the other term in the whole system, while the
meaning of a variable term is locally determined by its relations with
other terms within the same statement. That means, if there are two
variable terms with the same name but not in the same statement,
they are not necessarily related to each other in meaning. On the con-
trary, occurrences of a constant term in different statements are always
bounded together.5

There are two types of variable terms in NAL: independent vari-
ables (similar to the universal variables in first-order predicate logic)
and dependent variables (similar to the existential variables and Skolem
functions in first-order predicate logic). The latter is a function of the
former. A dependent variable has a (maybe empty) independent vari-
able list in it to indicate its dependence. In Narsese, a variable term (of
either the above two types) is named by a word (or a number) preceded
by ‘#’.

Given AIKR, no statement in Narsese is made about all terms.
Whenever a statement is made about a group of terms, it is usually
possible to put them into the extension or intension of a given term,
then to make a statement about it. A dependent variable indicates a
single term under the given condition; an independent variable indicates
any term under the given condition.

5Since in NARS the meaning of a constant term may change over time, the
distinction between constant terms and variable terms is not whether the meaning
of a term changes or not. In the next chapter, we will see that a constant term in
Narsese is the name of a specific concept in NARS, while a variable term indicates
an unspecified concept.

128 Chapter 5

In Narsese, variable terms can only appear in special positions. An
independent variable always appears in both sides of an implication or
equivalence relation, as extension or intension of two terms. A depen-
dent variable always appear in two components of a conjunction, also
as extension or intension of two terms. Therefore, the following are the
simplest statements with variable terms.

(#x → S) ⇒ (#x → P) (#x() → S) ∧ (#x() → P)
(S → #x) ⇒ (P → #x) (S → #x()) ∧ (P → #x())

In this way, the scope of a variable is the statement in which it ap-
pears. The name of a variable is arbitrary, as far as it is unique in the
statement. In statements with multiple variables, each of them uses a
different name, therefore its scope does not need to be explicitly speci-
fied — it is the smallest statement that contains all occurrences of the
variable.

As in predicate logic, the scope of a variable can be embedded in
that of another one. For example, in Narsese the following situations
can be represented:

• ((#x → key) ∧ (#y → lock)) ⇒ ((#x × #y) → open)
[“Every key can open every lock.”]

• (#x() → key) ∧ ((#y → lock) ⇒ ((#x() × #y) → open))
[“There is a key that can open every lock.”]

• (#x → key) ⇒ ((#y(#x) → lock) ∧ ((#x × #y(#x)) → open))
[“Every key can open a lock.”]

• (#x() → key) ∧ (#y() → lock) ∧ ((#x() × #y()) → open)
[“There is a key that can open a lock.”]

Since an inheritance relation is identical to two subclass relations
of the extension and intension of the two terms, independent variables
becomes implicit in first-order NAL. Using the variable terms intro-
duced above, we can see that “S → P” is equivalent to “((#x → S) ⇒
(#x → P)) ∧ ((P → #y) ⇒ (S → #y)).” It roughly means “For any
term x in the extension of term S, it is also in the extension of term P ;
for any term y in the intension of term P , it is also in the intension of
term S.”

Higher-Order Inference 129

Variable terms become necessary when the extension or intension
of a term needs to be specified separately, as well as when complicated
relations among terms need to be described. For example, “(#x →
S) ⇒ (#x → P)” and “(P → #y) ⇒ (S → #y)” have different evi-
dence, and can be separately maintained to represent pure extensional
or intensional relations between terms.

The independent variables in NAL are different from the universal
variables in first-order predicate logic in that the former are restricted
by their relations with other terms in the statement. For example, in
“(#x → S) ⇒ (#x → P),” the independent variable ‘#x’ only repre-
sents terms in the extensions of S, but not the ones that are not there.
On the contrary, in a predicate logic proposition “(∀x)(S(x) ⊃ P (x)),”
the universal variable x can represent every individual in the domain.
Roughly speaking, the former says “Every instance of S is also an in-
stance of P ,” while the latter says “For everything in the domain, if it
is an instance of S, then it is also an instance of P .” The meaning of
the two sentences are not exactly the same, though related.6

5.2.2 Inference with variable terms

Since an independent variable represents a unspecified term (under a
certain condition), it can be replaced by a specific term (satisfying the
condition) without changing the truth value of a judgment. Technically
speaking, an independent variable can be substituted by another (vari-
able or constant) term that has the same relation by unification (as
defined in predicate logic), and then a conclusion can be derived. Some
variable elimination rules are listed in Table 5.11.

{(#x → S) ⇒ (#x → P), M → S} � M → P <Fded >
{(#x → S) ⇒ (#x → P), M → P} � M → S <Fabd >
{(#x → S) ⇔ (#x → P), M → S} � M → P <F ′

ana >

Table 5.11: Sample Independent-Variable Elimination Rules

6I will say much more about the difference between NAL and first-order predicate
logic in Chapter 9 and 10.

130 Chapter 5

Such a rule can be seen as a substitution (with #x replaced by M)
followed by an inference defined in Table 5.3. The same technique can
be applied to the other higher-order inference rules to use premises with
variables.

The reverse of variable elimination rules introduces independent
variables into conclusions, as listed in Table 5.12. These rules are justi-
fied in the same way as the rules in NAL-1 and NAL-2, except that here
the “extensional inheritance” and “intensional inheritance” between S
and P are separated, due to the using of a variable term.

{M → P, M → S} � (#x → S) ⇒ (#x → P) <Find >
{M → P, M → S} � (#x → S) ⇔ (#x → P) <Fcom >

Table 5.12: Sample Independent-Variable Introduction Rules

The rule in Table 5.13 introduce dependent variables into conjunc-
tions. Here the conclusion states the existence of an anonymous term
that is in the extension of both S and P .

{M → P, M → S} � (#x() → P) ∧ (#x() → S) <Fexi >

Table 5.13: Sample Dependent-Variable Introduction Rule

This inference can only produce positive conclusion, and the conclu-
sion reaches maximum confidence when both premises are absolutely
true. Therefore, the truth-value function is the following:

Fexi : f = 1, c = and(f1, c1, f2, c2)

The reverse of the rule in Table 5.13 can be seen as a special type
of unification to match a dependent variable with a constant, as given
in Table 5.14. The truth-value function of the abduction rule is used
here, because the conclusion gets evidence only when the first premise
is positive, in which case term M is compared to the anonymous term

Higher-Order Inference 131

#x(). Under the condition of M → S, if (#x() → P) ∧ (#x() → S),
then M → P looks more likely, otherwise less likely.

{M → S, (#x() → P) ∧ (#x() → S)} � M → P <Fabd >

Table 5.14: Sample Dependent-Variable Elimination Rule

The rules in Table 5.13 and Table 5.14 are only about the extension
of S and P . Similarly, there are rules that only process the intension of
the terms involved. As required before, in NAL a dependent variable is
only introduced into a conjunction, and an independent variable into
both sides of an implication or equivalence.

Variables can be introduced into statements where other variables
exist. When an independent variable is introduced, the existing depen-
dent variables become its function, until it is unified with a constant.
The rules for multiple variables in Table 5.15 can be extended to han-
dle more than two variables. Please note that here the four conclusions
correspond to the four sentences in the previous “lock-key” example. It
shows that NAL has rules to produce all meaningful combinations of
variable terms.

The revision rule is also extended to unify variable terms. For exam-
ple, statements (#x → S) ⇒ (#x → P) and (#y → S) ⇒ (#y → P)
can be merged together.

{(#x → P) ⇒ (M → (⊥ R #x �)), M → S}
� ((#y → S) ∧ (#x → P)) ⇒ (#y → (⊥ R #x �)) <Find >
{(#x → P) ⇒ (M → (⊥ R #x �)), M → S}

� (#y() → S) ∧ ((#x → P) ⇒ (#y() → (⊥ R #x �))) <Fexi >
{(#x() → P) ∧ (M → (⊥ R #x() �)), M → S}

� ((#y → S) ⇒ ((#x(#y) → P) ∧ (#y → (⊥ R #x(#y) �))) <Find >
{(#x() → P) ∧ (M → (⊥ R #x() �)), M → S}

� (#y() → S) ∧ (#x() → P) ∧ (#y() → (⊥ R #x() �)) <Fexi >

Table 5.15: Sample Multi-Variable Introduction Rules

132 Chapter 5

5.2.3 Hypothetical inference

As described above, a variable term is a special term which can be used
as a symbol of other terms. By “symbol,” it is meant that the meaning
of a variable term is not fully grounded on the experience of the system,
until it is “bounded” to a (non-variable) term. The same symbol can be
used to stand for different terms in different statements. It is similar to
pronouns in natural languages, such as “it,” “that,” or “everything.”

Variable terms give NARS the capability of using the same term to
indicate different concepts, or with different “interpretation.” This is
needed in hypothetical inference.

For example, conditional statement

((({#x} × {#y(#x, #z)}) → parent) ∧ (({#y(#x, #z)}
×{#z}) → brother)) ⇒ (({#x} × {#z}) → uncle)

can be seen as a “rule” by which the system derives “({Mary} ×
{Tom}) → uncle” (“Tom is the uncle of Mary”) from “({Mary} ×
{Joe}) → parent” (“Joe is the parent of Mary”) and “({Joe} ×
{Tom}) → brother” (“Tom is the brother of Joe”). However, accu-
rately speaking, the inference rule used is the deduction rule, with the
above “rule” (the conditional statement) as a premise.

In this way, what is usually called a “rule” in rule-based systems is
formalized in NARS in two different levels. Conceptually, a rule indi-
cates that a certain statement can be derived from certain other state-
ment(s). In NARS, a small set of such rules are actually formalized as
procedural inference rules, which are part of the logic. The other “rules”
are formalized as implication and equivalence statements, which, when
used with the above deduction rule, will effectively work as an inference
rule. The former group includes rules defined on the built-in logical re-
lations (inheritance, similarity, implication, and equivalence), while the
latter group includes “rules” on the other acquired “ordinary” relations
(such as parent, brother, and neutralization).

Consequently, NAL can be used as a meta-logic of an arbitrary logic,
by representing the rules of that logic as NARS implication/equivalence
statements. For example, we can “emulate” first-order predicate logic
(FOPL) in NARS in this way. When implemented in a computer sys-
tem, such an emulation will surely be more complicated and less effi-

Higher-Order Inference 133

cient than a direct implementation of FOPL, but at the same time, it
does have the benefit of allowing the system to reason “at the outside”
of FOPL. For example, non-deductive inference (induction, abduction,
analogy, ...) is invalid within FOPL, though it clearly plays an impor-
tant role when a human mind uses a logic like FOPL. We often first
reason outside the system to get a hypothesis, then inside the system
to prove or disprove it.

The above description can be extended from FOPL to other formal
or mathematical theory. NARS can embed them as subsystems, and
do inference inside and outside, so that the system’s empirical experi-
ence becomes relevant even when an abstract mathematical theory is
thought about.

Another issue related to this is the idea of “local axiomization.” As
repeatedly mentioned before, the key assumption of NARS is that the
system works with insufficient knowledge and resources, so that every
judgment is only certain to a degree, and for empirical knowledge, con-
fidence never reaches its maximum value 1, that is, it is always revis-
able. On the other hand, there are analytic statements, whose truth
values are independent to the experience of the system, and is a mat-
ter of definition. A mathematical (or other formal) theory consists of
a set of analytic statements as axioms, and a set of rules (which can
be represented as NARS implications). Consequently, though NARS
is non-axiomatic with respect to its empirical knowledge, it can con-
tain axiomatic subsystems. When the system works “within” such a
subsystem, no uncertainty is allowed.

How do these two parts interact with each other? It is similar to how
the human mind uses mathematics and formal logics to solve practical
problems. It contains several steps:

1. For a given task T , the relevant empirical knowledge is collected
into a knowledge base K.

2. A formal theory F is selected to solve T given K.

3. An interpretation I is build, which maps T and K into T ′ and
K ′, which are questions and statements in F .

4. A solution S′ is found in F for T ′, according to K ′.

134 Chapter 5

5. A solution S is obtained for T from S ′, under the interpretation
I.

In this process, usually only Step 4 is within an axiomatic system. As
a result, to apply a mathematical theory to a practical problem does
not give the conclusion the status of a mathematical theorem, and the
process is highly biased by the experience of the system. The interpre-
tation I in the above serves the same purpose as variable substitution,
by which abstract terms in the formal theory are mapped into concrete
terms in the domain. In this sense, all abstract terms are variable terms
discussed in this section.

5.3 NAL-7: temporal statements

So far, the truth values of statements in NAL are determined by tak-
ing all past experience as relevant. However, sometimes we are only
interested in the truth value of a statement at a given time. For these
situations, NAL-7 introduces time into statements.

5.3.1 Time and events

In NAL, an “event” is defined as a statement whose truth value holds in
a certain period of time. As a result, its truth value is time dependent,
and the system can describe its temporal relation with other events.

Accurately speaking, almost all empirical statements are time de-
pendent, and few statements are about relations holding forever. How-
ever, for practical purposes, it is not always necessary to take the time
attribute of a statement into consideration. Therefore, whether a state-
ment should be treated as an event may change from context to context,
and events are just statements whose time attributes are specified. On
the contrary, the time interval of a “non-event” statement is unspeci-
fied, except that it includes the current moment.

In NAL, time is represented indirectly, through events and their
temporal relations. Intuitively, an event happens in a time interval, and
temporal inference rules can be defined on these intervals [Allen, 1984].
However, in NAL each event is represented by a term, whose corre-
sponding time interval is not necessarily specified. In this way, NAL

Higher-Order Inference 135

assumes less information. When the duration of an event is irrelevant,
it can also be treated as a point in the stream of time.

In NAL, the temporal order between two events E1 and E2 can be
one of the following three cases:

• E1 happens before E2 happens,

• E1 happens after E2 happens,

• E1 happens when E2 happens.

This design is consistent with the observation that among human lan-
guages, there are three universal temporal primitives: “before,” “after,”
and “when” [Wierzbicka, 1996]. Obviously, the first two cases corre-
spond to the opposite directions of the same temporal relation. There-
fore, the primitive temporal relations in NAL are:

“before”: which is irreflexive, antisymmetric, and transitive;

“when”: which is reflexive, symmetric, and transitive.

They correspond to the before and equal relation discussed in [Allen,
1984], respectively.

If the temporal relation between two events is more complicated
than these three cases, it is always possible to divide an event into
subevents, then describe their temporal relations in detail. For example,
we can treat “when E1 starts” and “when E1 ends” as separate events.
This representation covers all kinds of temporal relations between two
events, including the ones discussed in the previous studies of temporal
inference: meets, overlap, during, starts, and finishes [Allen, 1984]. In
NAL, these temporal relations (and others) are represented not as logic
constants, but as “ordinary relations” (discussed in NAL-4). Similarly,
we can introduce a term “duration.” If the system knows that “(t1 ×
t2) → duration”, as well as that “(t1 × t2)” and event E happen at the
same time, it understands that E begins at time t1, and ends at time
t2. Unlike in interval-based temporal logics, in NAL terms like t1 and
t2 are events themselves (though their durations are usually omitted),
not accurate measurement of absolute time.

If an absolute time is used to represent the temporal property of an
event, then that time can be treated as a special event, and these two
events are described as happening at the same time.

136 Chapter 5

5.3.2 Temporal operators and relations

Instead of directly using the above two temporal relations between
events by themselves, in NAL they are used in combination with certain
other logic constants.

First, “E1 happens before E2 happens” and “E1 happens when E2

happens” both assumes “E1 and E2 happen (at some time),” which
is “E1 ∧ E2” plus temporal information. Therefore, we can treat the
two temporal relations as variants of the statement operator “con-
junction” (“∧”) — “sequential conjunction” (“,”) and “parallel con-
junction” (“;”). Consequently, “(E1, E2)” means “E1 happens before
E2 happens,” and “(E1; E2)” means “E1 happens when E2 happens.”
Obviously, “(E2; E1)” is the same as “(E1; E2),” but “(E1, E2)” and
“(E2, E1)” are usually different. As before, these operators can take
more than two arguments. These two operators allow Narsese to rep-
resent complicated events by dividing them into sub-events recursively,
then specifying temporal relations among them.

Compared to the two “temporal conjunctions,” the original conjunc-
tion “E1∧E2” can be seen as with a default temporal information that
both E1 and E2 hold at the same time, that is, “(E1; E2),” therefore
the operator “;” is redundant. The other two statement operators, “∨”
and “¬,” have no temporal variant.

On the other hand, there are the temporal variants of implication
and equivalence. For an implication statement “S ⇒ T” between events
S and T , three different temporal relations can be distinguished:

1. If S happens before T happens, the statement is called “predictive
implication,” and is rewritten as “S /⇒ T ,” where S is called a
sufficient precondition of T , and T a necessary postcondition of S.

2. If S happens after T happens, the statement is called “retrospec-
tive implication,” and is rewritten as “S \⇒ T ,” where S is called
a sufficient postcondition of T , and T a necessary precondition of
S.

3. If S happens when T happens, the statement is called “concurrent
implication,” and is rewritten as “S |⇒ T ,” where S is called a
sufficient co-condition of T , and T a necessary co-condition of S.

Higher-Order Inference 137

Similarly, three “temporal equivalence” (predictive, retrospective,
and concurrent) relations are defined. “S /⇔ T” (or equivalently, “T \⇔
S”) means that S is an equivalent precondition of T , and T an equivalent
postcondition of S. “S |⇔ T” means that S and T are equivalent co-
conditions of each other. To simplify the language, “T \⇔ S” is always
represented as “S /⇔ T ,” so the copula “ \⇔” is not actually included in
the grammar of Narsese. Furthermore, since by default “⇒” and “⇔”
assumes the pair of events connected by them happen at the same time
(i.e., the current time), the relations “|⇒” and “|⇔” are redundant, and
need not be actually implemented.

Adjectives like “past,” “current,” and “future” indicate temporal
relations between events and “now,” taken as a special event. When
“now” is omitted in a statement, the temporal relations become tempo-
ral operators called “tense.” The “current” tense is the implicit default,
while the “past” and “future” tenses must be explicitly specified. For
a statement S, “S happened” and “S will happen” are represented in
Narsese as “\⇒ S” and “/⇒ S,” respectively.

5.3.3 Temporal inference

The inference rules introduced in NAL-7 are variants of the rules defined
in NAL-5 and NAL-6. The only additional function of these rules is to
keep the available temporal information.

As an example, the following is a deduction rule introduced in
NAL-5,

{(∧ MA1 · · ·Am) ⇒ C, A0 ⇒ M} � (∧ A0A1 · · ·Am) ⇒ C <Fded >

Now it has a variant in NAL-7, as listed in Table 5.16.
Since the logical factor and the temporal factor are independent of

each other in the rules, these variants can be obtained by considering
the two factors separately, then combining them in the conclusion.

{(M, A1, · · · , Am) /⇒ C, A0 /⇒ M} � (A0, A1, · · · , Am) /⇒ C <Fded >

Table 5.16: Sample Temporal Inference Rule

138 Chapter 5

Before temporal information is introduced, in NARS whenever there
are two judgments containing the same statement, it will be taken to
mean different evidence about the same relation, and revision will be
attempted. With temporal information, however, there is another pos-
sible interpretation, that is, as update, that is, as caused by a change in
the environment. In this operation, the new judgment does not merge
with the old one, but “pushes it into the past,” by adding a “past
tense” on it, so as to turn it into a different statement. Update usually
causes chain reactions, that is, other updates in derived conclusions, as
revision does.

In general, inference rules on tense can be derived from ordinary
temporal inference rules, by first adding the term “now” into the pre-
mises (so as to turn the tense operators into temporal relations), and
finally removing the “now” from the conclusions (so as to turn the
temporal relations back into tenses). This procedure is similar to the
usage of “virtual condition” (which turns an arbitrary statement into
an implication) in NAL-5.

Clearly, inference on temporal implication relations can be used to
predict the future and to explain the past. However, they are not the
same as what we call “causal relation.” We can think of the latter as a
special case of the former, with additional requirements attached to the
concept of “cause,” which are highly context-dependent. That is why in
NARS the above temporal implication/equivalence relations are defined
as part of the logic, and with fixed meaning, while “cause” is left to be
an empirically built relation, which will be learned and changed by the
system according to experience and context. Even though, the basic
capability of what we usually call “causal inference” is already in the
system.7

5.4 NAL-8: procedural statements

In NAL-8 procedural interpretation is applied to events to represent
operations of the system itself. Consequently, declarative knowledge
and procedural knowledge are unified in NAL.

7This issue will be discussed in detail in subsection 9.4.2.

Higher-Order Inference 139

5.4.1 Operations and procedural inference

In NARS, operation is a special kind of event, which can be carried out
by the system itself. Therefore it is system dependent: the operations
of a system will be observed as events by other systems.

While relations and events are declarative knowledge, operations are
procedural knowledge, in the sense that the meaning of an operation is
not only revealed by what it says, but also by what it does.

Statement “(× {A} {B} {C}) → R” intuitively corresponds to
“There is a relation R among (individuals) A, B, and C.” If R is an
event, it becomes “An event R happens among A, B, and C.” If R is
an operation, it becomes “To carry out R among A, B, and C.” To be
consistent with the other part of NAL, for the last case in the following
we can also use the format “(R,A,B,C),” so that it is just a compound
term defined in NAL, with an operator followed by an argument list.

An operation usually distinguishes input and output among its argu-
ments. When an operation is described abstractly, its input arguments
are typically independent variables, and its output are dependent vari-
ables. For instance, operation “(plus, #x, #y, #z(#x, #y))” represents
“x plus y is z,” where x and y are independent variables (input), and
z is a dependent variable (output, as a function of x and y).

The knowledge about operations are usually represented as (tem-
poral or not) implication/equivalence statements, which indicates the
conditions, causes, and effects of each operation.

For the above example, if statement “(× {A} {B} {C}) → sum”
represents “The sum of A and B is C,” then the following statements
describe the necessary postconditions (i.e., effects) of the operations
plus and minus:

(plus, #x, #y, #z(#x, #y)) /⇒ ((× {#x} {#y} {#z(#x, #y)})
→ sum)

(minus, #x, #y, #z(#x, #y)) /⇒ ((× {#y} {#z(#x, #y)} {#x})
→ sum)

Here we see that the same logical relation (such as “sum”) may cor-
respond to multiple operations (such as “plus” and “minus”) with
different input/output partition among its arguments.

140 Chapter 5

The (sufficient or necessary) preconditions of operations can be simi-
larly specified. For example, to carry out (divide, #x, #y, #z(#x, #y)),
#y cannot be zero, and this necessary precondition can be represented
as

(divide, #x, #y, #z(#x, #y)) \⇒ ¬(#y ↔ 0)

More examples of operational knowledge are in the following list:

• “(({#x} × {#y}) → r1) /⇒ (op1, #x, #y)” indicates that a
sufficient precondition for the operation “op1” to be performed
in two arguments is that there is a relation “r1” between the two.

• “(op1, #x, #y) \⇒ (({#x} × {#y}) → r2)” indicates that a
necessary precondition for the operation “op1” to be performed
in two arguments is that there is a relation “r2” between the two.

• “(op1, #x, #y) /⇒ (({#x} × {#y}) → r3)” indicates that a nec-
essary postcondition of the operation “op1” is that there will be
a relation “r3” between its two arguments.

• “((({#x} × {#y}) → r4), (op2, #y, #z)) /⇒ (({#x} × {#z}) →
r5)” indicates that after event “({#x} × {#y}) → r4” happens,
executing “(op2, #y, #z)” will cause the event “({#x}×{#z}) →
r5” to happen.

• “((op3, #x, #y), (op4, #x, #y), (op4, #x, #y)) ⇔ (op6, #x, #y)”
indicates that executing “op6” on two arguments is equivalent to
the sequential execution of “op3,” “op4,” and “op5” on them.

What is expressed in these examples is quite similar to what is
achieved by logic programming, except that in NARS the logic is fun-
damentally different from first-order predicate logic, and each statement
has a truth value attached to indicate its uncertainty.

Under AIKR, in NARS the preconditions (restrictions) and postcon-
ditions (consequences) of an operation are never exhaustively specified.
Instead, the system’s beliefs on operations only reflect its (limited)
experience on them. It is quite possible that certain conditions or
consequences, though they exist, never become known to the system.
Designed in this way, NARS takes a unusual position toward the

Higher-Order Inference 141

well-known Frame Problem [McCarthy and Hayes, 1969], by accepting
it as an inevitable consequence of AIKR.8

NARS will be implemented with certain primitive operations (both
internally-oriented and externally-oriented) exposed to the inference
engine, and they can be used as components to build compound op-
erations. Both primitive and compound operations can be called from
the inference engine. The system has beliefs, either built-in initially or
acquired through experience, about these operations.

Not all operations in such a system are involved in reasoning in
this way. NARS has a mixture of deliberative and automatic processes.
The former consists of the system operations visible to the inference
engine, but the latter is invisible. To make an operation exposed to the
inference engine in this way usually makes its execution more flexible,
but at the same time decreases the efficiency, and introduces various
kinds of risks caused by the uncertainty in inference.

If an operation is accessible to the inference engine, it will be named
by a Narsese term, and so will its (input and output) arguments (some
of them may be variable terms). The system’s beliefs about the op-
eration will be represented by (temporal) implication and equivalence
statements, as shown previously. Furthermore, inference on these state-
ments will incrementally reveal its preconditions and postconditions, as
well as its relation with other operations.

Since operations are just events under a procedural interpretation,
the inference rules of NAL-8 are the same as NAL-7. The compound
operations formed in the inference process correspond to “skills” (pro-
cedures) learned by the system. For example, initially the system may
only have beliefs about operations “op1,” “op2,” and “op3” in isola-
tion. By inference, the system will form beliefs on what may happen
if the three are executed in a sequence — that may achieve a more

8Of course, it does not mean to do nothing at all about it. For a given operation,
in NARS there are usually many judgments about its conditions and consequences.
In the long run, however, only some of them will be kept, while most of the others
will be forgot. For example, if a judgment omits an important condition, it will
lead to many failures, and become useless; if a judgment mentions too many condi-
tions, which are usually true, it will become unnecessarily complicated, and lost in
resource competition to the simpler-but-equally-effective ones. The situation about
consequence is similar. This issue will become more clear in Chapter 6, 11, and 12.

142 Chapter 5

complicated consequence. Of course, due to the insufficiency of knowl-
edge and resources, these derived beliefs may conflict with new evidence
and get revised. Even so, after a while, the system will learn various
skills, which are compound operations for which the system has beliefs.
This process is similar to the “chunking” process in Soar [Newell, 1990],
though in NARS it follows a very different logic.

5.4.2 Goals and desire values

In NAL-1, two types of sentences are defined: judgment and question,
where the former is a statement with a truth value, and the latter is a
statement whose truth value should be determined by the system. In
NAL-8, the third type of sentence, goal, is introduced.

In Narsese, a goal has a format similar to a question, that is, it is a
statement without a truth value attached, and may contain variables to
be instantiated. However, their semantics are different. While a question
asks the system to evaluate the truth value of the statement (and maybe
find constant terms for the variables) by inference only, a goal asks the
system to carry out some operations to make the statement true — of
course, given the inevitable uncertainty in the consequence, it actually
means “to make it as close to truth as possible.”

NARS usually has multiple goals, and they may conflict with one
another, in the sense that the achieving of a goal makes another one
harder to be achieved. Therefore, the system must from time to time
make decisions about whether to pursue various goals or whether to
take various operations.

Since the conflicting goals may not be directly related to each other,
we cannot expect the system to have explicit knowledge about how to
handle every possible conflict. Instead, a common solution in the study
of decision making is to define a “degree of desire,” or desire value, on
goals, so that every pair of goals is comparable.

Under AIKR, in NARS we cannot take the desire value of a goal
as a known constant, as in most decision-making theories. Instead, it
is something that the system needs to find out by inference. Since the
desire value of a goal G is determined according to the system’s expe-
rience, the truth value of statement is used to represent this degree of
desire. To do that, a virtual statement D is introduced for the “desired

Higher-Order Inference 143

state.” Like the virtual statement E used for “all evidence” in NAL-5
or the virtual event “now” for tense definition in NAL-7, D does not
appear within the system, but is used in the meta-theory to design
related rules.

With the help of D, the desire value of a goal G is defined as the
truth value of statement “G ⇒ D,” that is, the degree that the desired
state is implied by the achieving of this goal.

In this way, the desire-value functions can be derived from the truth-
value functions. For example, if goal G has desire value d, and the
system believes that G can be achieved by operation A (with truth value
t), then the system has premises “G ⇒ D <d>” and “A ⇒ G <t>.”
From them, by deduction the system gets “A ⇒ D < Fded >,” which
means that A becomes a derived goal, with a desire value obtained by
using the deduction truth function with d and t as arguments. After
dropping the virtual statement D, in the system we get a rule that
derives a potential goal A (with a desire value) from a goal G (with a
desire value) and a belief “A ⇒ G” (with a truth value).9

Now we can attach a desire value to every statement in the system,
because it may become a goal in the future, if it is not already a goal.
This value shows the system’s “attitude” about the situation in which
the statement is true.10

5.4.3 Goal-related inference

When there is no operation that can directly achieve a given goal, the
system will do inference to indirectly achieve it. In NAL-1, we have seen
how backward inference is used to derive questions. For all the rules
introduced in NAL-2 to NAL-7, the same isomorphism holds between
forward and backward inference, so all the rules defined in them can
also be used to derive questions. A similar situation happens to goals.

9This treatment is directly related to the previous philosophical discussion on
“desire as belief” [Lewis, 1988]. However, in NARS, a desire is not reduced into a
belief. In the system, a belief on statement S and a desire for S to be true are clearly
distinguished from, though also closely related to, each other.

10This desire value will eventually be attached to every term, to represent the
system’s “feeling” about it. If the term is not a statement, its desire value will be
determined by the beliefs in which it appears.

144 Chapter 5

When a goal G and a judgment J are taken as premises in an
inference step, the judgment may provide a direct solution to the goal,
if its truth value indicates that the goal has already been somehow
realized (so nothing needs to be done). Otherwise, a derived goal G′

can be produced, if and only if G can be derived from J and G′.
The backward inference on goals is related to planning. For a given

goal, the inference engine can find a group of operations, organized
by the “,” and “;” operators defined in NAL-7, that achieve the goal
(i.e., to make it true as the consequence of the execution of the oper-
ations). By executing the plan, and adjusting it when necessary, the
internal or external environment is changed to turn the goal into re-
ality. When repeatedly appearing groups of operations are memorized,
repeated planning is avoided, and the system learns a new skill.

The planning process in NARS is different from what is usually
called “planning” in AI, where the process starts with a goal and a set
of primitive operations. In NARS planning incrementally builds compli-
cated plans (i.e., procedural statements), and accumulates knowledge
about them. It is just in rare cases that the system starts from the
primitive operations, and goes all the way to achieve a complicated
plan.

If an operation A will contribute to the achieving of goal G1 but
makes goal G2 less likely to be achieved, the system will contains judg-
ments “A ⇒ G1 < f1, c1 >” and “A ⇒ G2 < f2, c2 >,” where f1 is
near 1, and f2 is near 0. When both G1 and G2 are desired (to different
degrees), the system will get two “A ⇒ D,” that is, the goal A gets
two desire values, obtained from different sources. Clearly, they should
be merged using the revision rule.

Since the above process may be repeated when other goals are taken
into consideration, after a while the desire value of a goal is usually
influenced by many other goals. The final decision of executing an op-
eration is made when the expectation of the desire value of the goal is
above a certain threshold, m (m > 0.5), which is a system parameter
(like the k defined in NAL-1). That is, the system only pursues goals
whose overall expected desire value is sufficiently high.

As we have seen, the decision making procedure in NARS is spec-
ified differently from the conventional decision-making research (such
as [Savage, 1954, Jeffrey, 1965]), in the following aspects:

Higher-Order Inference 145

• A goal is not a state, but a statement — under AIKR, in NARS
no statement (within a system) can completely describe a state
(of the environment).

• The desire value of a statement may change over time when new
information is taken into consideration.

• The likelihood of an operation to achieve a goal is not specified
as a probability, but as a truth value defined in NARS. In a truth
value, there are two independent factors: the frequency value is
similar to probability, and the confidence value is similar to the
“third dimension” in decision making (beside desirability and like-
lihood) suggested by Ellsberg, that is, “a quality depending on
the amount, type, reliability and ‘unanimity’ of information, and
giving rise to one’s degree of ‘confidence’ in an estimate of relative
likelihoods” [Ellsberg, 1961].

• The decision is on whether to pursue a goal, but not on which
goal is the best in a complete set of mutually-exclusive goals (or,
as a special case, operations) — under AIKR, such a set cannot
be obtained.

There are still similarities between this approach and traditional de-
cision theory. Both approaches let decisions be based on quantitative
comparison between alternatives, and in the measurement both the de-
gree of desire of a goal and the likelihood that the goal will be achieved
by an operation are involved.

Of course, the above discussion only provides the fundamentals of
decision making, and there are advanced issues to be addressed in the
future, such as the timing of operation execution and observation of
the result of operation.

An important point about NAL-8 is that since some of its state-
ments are actually system operations, the results of the inference process
are no longer fully expressible in Narsese. That is, in the previous lay-
ers of NAL, no matter what inference rules are used, both input and
output of the process are Narsese sentences, that is, the system does
nothing else but generate new sentences from given sentences. After
NAL-8 is implemented, this is no longer the case. Operations may have

146 Chapter 5

“side effects” that go beyond Narsese. As a simple example, if an op-
eration converts its sole argument from a Narsese term into an ASCII
string, then prints it out in the default printer, then it is something
that the inference engine can control, but some of its effects happen in
the physical world (e.g., as ink marks on a piece of paper). Similarly,
some operations may be triggered by physical signals, and as a result,
convert the signals into Narsese judgments. In this way, beside other
things, NAL-8 provides an interface between NARS (as an inference
engine) and various sensorimotor mechanisms.

5.4.4 NAL summary

Since NAL-8 is the last extension of the NAL system, now is the time
to summarize NAL, as defined from NAL-1 to NAL-8.

The complete grammar rules of Narsese are listed in Table 5.17.
There are some additional notes about the Narsese grammar:

• Confidence values 0 and 1 are used in the meta-language of Nars-
ese only, and cannot appear in actual sentences in the system.

• Many term operators can also be used in the “infix” form, that
is, between components.

The semantics of Narsese has been introduced for Narsese-1. The
later extensions of Narsese do not change the principle by which truth
value and meaning are defined for the language, but allow other types
of copula (beside inheritance) to be involved when determining the
truth values of statements, as well as when determining the meanings
of terms. Furthermore, the meanings of terms are also determined by
the compositional relations between compounds and components.

The inference rules of NAL has been introduced in the inference
tables in the previous chapters. However, these tables are by no means
complete, for the following reasons:

• Many compound-related rules have variants, by changing the num-
ber and location of the involved components. Only certain repre-
sentative cases of these rules are listed in the tables.

Higher-Order Inference 147

<sentence> ::= <judgment> | <question> | <goal>
<judgment> ::= <statement><truth-value>

<goal> ::= <statement><desire-value>
<question> ::= <statement>?

| ? <copula><term> | <term><copula>?
<statement> ::= <term> | (<term><copula><term>)

| (¬ <statement>)
| (∧ <statement><statement>+)
| (∨ <statement><statement>+)
| (, <statement><statement>+)
| (<word> <term>+)
| (<tense> <statement>)

<term> ::= <word> |(<statement>)| <variable>
| {<term>+} | [<term>+]
| (∩ <term><term>+) | (∪ <term><term>+)
| (− <term><term>) | (� <term><term>)
| (× <term><term>+)
| (⊥ <term><term>∗ � <term>∗)
| (� <term><term>∗ � <term>∗)

<variable> ::= # <word> | <variable> (<variable>∗)
<copula> ::= → | ↔ | ◦→ | →◦ | ◦→◦

| ⇒ | ⇔ | /⇒ | \⇒ | /⇔
<tense> ::= /⇒ | \⇒

<truth-value> : a pair of real number in [0, 1] × (0, 1)
<desire-value> : the same as <truth-value>

<word> : a string in a given alphabet

Table 5.17: The Complete Grammar of Narsese

• As explained in NAL-5, the meta-level implication relations be-
tween statements can be used as inference rules, which are not
listed in the inference tables.

• The inference rules of NAL-7 and NAL-8 have not been finalized.

Even so, these tables are quite comprehensive in representing the infer-
ence rules of NAL.

148 Chapter 5

As mentioned previously, a “logic” consists of a language, a seman-
tics, and a set of inference rules. Now we have seen these parts of NAL,
though we haven’t fully discussed the nature of this logic, or how to
implement it in a computer system. That is what the following chapters
will do.

