
Chapter 4

First-Order Inference

In this chapter, three new layers of the logic, NAL-2, NAL-3, and NAL-
4, will be defined, which introduce terms with internal structures and
variants of the inheritance relation into NAL. Consequently, the ex-
pressive and inferential power of the logic will be increased, step by
step. At the end of the chapter, we will get a complete First-Order
Non-Axiomatic Logic.

4.1 Compound terms

In NAL-1, each term is “atomic,” and named by a word, which is simply
a unique identifier without internal structure. Obviously, Narsese-1 can
only express simple statements.

To represent more complicated experience, “compound terms” are
needed.

Definition 16 A compound term (op c1 · · · cn) is a term formed
by one or more terms c1, · · · , cn, called its component(s), with a term
operator, op. The order of the components usually matters.

Sometimes we prefer the “infix” format of a compound term, that
is, to write (op c1 · · · cn) as (c1 op · · · op cn). When introducing
term operators with two or more components in the following, usually
they are only defined with two components, and the general case (for
both the above prefix representation and the infix representation) is
translated into the two-component case by the following definition.
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Definition 17 If c1 · · · cn (n > 2) are terms and op is a term operator
defined as taking two arguments, both compound terms (op c1 · · · cn)
and (c1 op · · · op cn) are defined recursively as (op (op c1 · · · cn−1) cn).

In NAL, the term operators are predefined as part of the grammar
of Narsese, with determined (experience-independent) meaning. The
meaning of a compound term has two parts, a literal part and an em-
pirical part, where the former is determined by its definition and other
literal truths about the term, while the latter comes from the system’s
experience when the compound term is used as a whole. In NAL, though
empirical statements are all uncertain (i.e., with frequency in [0, 1] and
confidence in (0, 1)), literal truths remain binary, so their truth values
are omitted in the following description.

To indicate the syntactic complexity of a compound term, a notion
of “level” is recursively defined as the following.

Definition 18 Each term in NAL is on a certain level according to its
syntactical complexity. If a term is atomic, then it is on level 1. If a
term is a compound, then it is one level higher than the highest level of
its components.

Defined in this way, “level” is a syntactic concept, and it has nothing
to do with semantics. Terms of different levels can have inheritance
relations between each other.

All compound terms can be used by the inference rules defined in
NAL-1. When doing so, their internal structures are ignored. In the
following, three extensions of NAL-1 are defined, layer by layer, each of
which processes some special types of compound term.

4.2 NAL-2: sets and variants

of inheritance

NAL-1 is extended into NAL-2 by introducing new copulas to enrich
the system’s expressing capacity, so as to move Narsese closer to natural
languages.

The copula in a term logic intuitively corresponds to the “to be” in
English. However, even such a rough mapping cannot be simply estab-
lished, because as a copula, “to be” has multiple usages, for example:
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type: “Birds are animals.”

element: “Tweety is a bird.”

attribute: “Ravens are black.”

identification: “The morning star is Venus.”

The inheritance relation defined in NAL-1 can be used for the first case,
but not for the others directly, though it is closely related to them. To
introduce these new relations into NAL, the grammar, semantics, and
inference rules all need to be extended.

4.2.1 Similarity

A symmetric inheritance relation similarity is written as “↔.”

Definition 19 The similarity statement “S ↔ P” is defined by two
inheritance statements as S ↔ P ≡ (S → P ) ∧ (P → S).

Therefore, the similarity relation is reflexive, symmetric, and transitive.
It follows that an inheritance relation between two terms is implied

by a similarity relation between them.

Theorem 4 (S ↔ P ) ⊃ (S → P )

Here “⊃” is the implication operator defined in propositional logic.
The expressions in the theorem are not statements in Narsese, but in
its meta-language.

Two terms related by the similarity relation are in both the exten-
sion and the intension of each other. Here the extension and intension
of a term are defined as before, that is, by the “→” relation, not the
new “↔” relation.

Theorem 5 (S ↔ P ) ≡ (S ∈ (PE ∩ P I)) ≡ (P ∈ (SE ∩ SI))

Theorem 6 (S ↔ P ) ≡ (SE = PE) ≡ (SI = P I)
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That is, “S ↔ P” means “S and P have the same meaning.” Or, we
can say that the two terms are identical.

Two compounds terms are identical if they have the same term
operator, and their corresponding components are identical pair by pair.
Especially, if each of them has exactly one component, then the above
“if” becomes “if and only if.”

Definition 20 The meaning of two compound terms are related in the
following way:

((c1 ↔ d1) ∧ · · · ∧ (cn ↔ dn)) ⊃ ((op c1 · · · cn) ↔ (op d1 · · · dn))

(c ↔ d) ≡ ((op c) ↔ (op d))

To extend the relation to the situations of “incomplete similarity,”
the evidence of a similarity relation is defined like the evidence of an
inheritance relation. For similarity statement “S ↔ P ,” its positive
evidence is in (SE ∩ PE) and (P I ∩ SI), and its negative evidence is in
(SE −PE), (PE −SE), (P I −SI), and (SI −P I). In this way, in general
“similarity” is a matter of degree, measured by a truth value (defined
in NAL-1, as a function of the amount of evidence). In the following, I
reserve the word “identical” for the special situation where a similarity
statement has truth value <1, 1>.

Corresponding to the syllogistic rules in NAL-1, in NAL-2 there
are three combinations of inheritance and similarity, corresponding to
comparison, analogy, and another form of deduction, respectively, as
indicated by the names of truth-value functions in Table 4.1. To make
the table (as well as the following inference tables) simpler, the truth
values of the premises are omitted.

J2 \ J1 M → P P → M M ↔ P

S → M S ↔ P < Fcom > S → P < F ′
ana >

M → S S ↔ P < Fcom > P → S < F ′
ana >

S ↔ M S → P < Fana > P → S < Fana > S ↔ P < Fdd2 >

Table 4.1: The Syllogistic Rules of NAL-2
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In the inference table, F ′
x indicate the truth-value function obtained

by exchanging < f1, c1 > and < f2, c2 > in function Fx, where x is
the indicator of the inference rule (such as ana for analogy, abd for
abduction, and ind for induction). Such a function is needed for every
inference rule whose truth-value function is not symmetric with respect
to the two premises.

In NARS, comparison refers to the inference rule by which a simi-
larity judgment is obtained by comparing the inheritance relations of
two terms to a third term. It is easy to see that the situation here is like
the cases of abduction and induction, except that now the conclusion
is symmetric. Using the same procedure as in NAL-1, we first build
Boolean functions among the variables as the following:

w = and(or(f1, f2), c1, c2), w+ = and(f1, c1, f2, c2)

which lead to the truth-value function

Fcom : f =
f1f2

f1 + f2 − f1f2

, c =
c1c2(f1 + f2 − f1f2)

c1c2(f1 + f2 − f1f2) + k

When f1 = f2 = 0, we define f to be 0 for the sake of continuity.
From an inheritance judgment J1 and a similarity judgment J2, NAL

does a certain type of analogy by replacing a term in J1 by a similar term
provided by J2. The situation here is quite similar to that of deduction
as defined in NAL-1. The difference is, when the similarity judgment
goes to extreme to become an identity judgment, the conclusion should
have the truth-value of the inheritance judgment. Therefore, the confi-
dence should depend more on f2 and c2, and not on f1 anymore. Under
this consideration NAL uses the following truth-value function:

Fana : f = f1f2, c = c1f
2
2 c2

2

If the two premises are both similarity relations, the inference here
is based on the transitivity of the similarity relation. It can be treated
as deduction going in both directions. However, in this case, if one sim-
ilarity judgment goes to extreme to become an identity judgment, the
conclusion should have the truth-value of the other similarity judgment.
Therefore, the following truth-value function is used:

Fdd2 : f = f1f2, c = c1c2(f1 + f2 − f1f2)
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The above two truth-value functions are introduced as variants of
the deduction function, rather than obtained by directly analyzing the
truth-value relationship between the premises and the conclusion.

4.2.2 Sets, instance and property

With the inheritance relation defined in NAL-0, terms can form an in-
heritance hierarchy, with respect to their level of generality/specificity.

• If “T1 → T2” is true, and “T2 → T1” is false, then T1 is more
specific than T2, and T2 is more general than T1.

• If both “T1 → T2” and “T2 → T1” are true (that is, “T1 ↔
T2” is true), then T1 and T2 are on the same level of general-
ity/specificity.

• If both “T1 → T2” and “T2 → T1” are false, then T1 and T2 cannot
be compared with respect to generality/specificity.

For various purposes, we often need to define the boundary of such
a hierarchy, by treating certain terms as at the most specific or the
most general level. In NAL-2, two kinds of such compound terms, “ex-
tensional set” and “intensional set,” are introduced.

Definition 21 If T is a term, the extensional set with T as the only
component, {T}, is also a term, and its meaning is defined by

(∀x)((x → {T}) ≡ (x ↔ {T})).

That is, a compound term with such a form is like a set defined by a
sole element. The compound therefore has a special property: all terms
in the extension of {T} must be identical to it, and no term can be
more specific than it (though it is possible for some terms to be more
specific than T ).

Theorem 7 For any term T, {T}E ⊆ {T}I .

On the other hand, {T}I is not necessarily included in {T}E.
To name a term like this means to treat its extension as including

an individual. In a natural language, T often corresponds to a proper
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name, and {T} corresponds to a category with a single instance indi-
cated by that proper name. For example, “Tweety is a bird” can be
represented as “{Tweety} → bird” (but not “Tweety → bird,” which
means “Tweety is a kind of bird”).

An instance relation, “◦→,” is another way to represent the same
information.

Definition 22 The instance statement “S ◦→ P” is defined by the
inheritance statement “{S} → P .”

So “Tweety is a bird” can also be represented as “Tweety ◦→ bird.”
The intuitive meaning of “◦→” is similar to the membership relation

(“∈”) in set theory, but in NAL this relation is no longer primary or
necessary (since it is defined by other notions).1

Theorem 8 ((S ◦→ M) ∧ (M → P )) ⊃ (S ◦→ P ).

However, “S → M” and “M ◦→ P” does not imply “S ◦→ P .”

Theorem 9 (S ◦→ {P}) ≡ (S ↔ P ).

“T ◦→ {T}” follows as a special case. On the other hand, the statement
“T ◦→ T” is not a literal truth, though may be an empirical one.

According to the duality between extension and intension, we can
define another special compound term and the corresponding copula.

Definition 23 If T is a term, the intensional set with T as the only
component, [T ], is also a term, and its meaning is defined by

(∀x)(([T ] → x) ≡ ([T ] ↔ x)).

That is, a compound term with such a form is like a set defined by a sole
attribute. The compound therefore has a special property: all terms in
the intension of [T ] must be identical to it, and no term can be more
general than it (though it is possible for some terms to be more general
than T ).

Theorem 10 For any term T, [T ]I ⊆ [T ]E.

On the other hand, [T ]E is not necessarily included in [T ]I .

1This issue will be discussed in detail in subsection 10.1.3.
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To name a term like this means to treat its intension as having an
attribute. In a natural language, T often corresponds to an adjective,
and [T ] corresponds to a category with that adjective as the defin-
ing property. For example, “Ravens are black” can be represented as
“raven → [black]” (but not “raven → black”).

A property relation, “→◦,” is another way to represent the same
information.

Definition 24 The property statement “S →◦ P” is defined by the
inheritance statement “S → [P ].”

So “Ravens are black” can also be represented as “raven →◦ black.”
This relation can be used when we characterize terms by a set of

primary properties. It can also be directly used in inference.

Theorem 11 (S → M) ∧ (M →◦ P ) ⊃ (S →◦ P ).

However, “S →◦ M” and “M → P” does not imply “S →◦ P .”

Theorem 12 ([S] →◦ P ) ≡ (S ↔ P ).

“[T ] →◦ T” follows as a special case. On the other hand, the statement
“T →◦ T” is not a literal truth, though may be an empirical one.

An instance-property relation, “ ◦→◦ ,” is defined by combining
“ ◦→” and “→◦ .”

Definition 25 The instance-property statement “S ◦→◦ P” is defined
by the inheritance statement “{S} → [P ].”

Intuitively, it states that an instance S has a property P . This relation
is not really necessary, and it is just a way to simplify a statement.

So “Tweety is yellow” can also be represented as “Tweety ◦→◦
yellow” (but not “Tweety →◦ yellow,” “Tweety ◦→ yellow,” or
“Tweety → yellow”).

Theorem 13 (S ◦→◦ P ) ≡ ({S} →◦ P ) ≡ (S ◦→ [P ])
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<copula> ::= ↔ | ◦→ | →◦ | ◦→◦
<term> ::= {<term>} | [<term>]

Table 4.2: The New Grammar Rules of Narsese-2

S ↔ P {S} ↔ {P}
S ↔ P [S] ↔ [P ]

S → {P} S ↔ {P}
[S] → P [S] ↔ P
S ◦→ P {S} → P
S →◦ P S → [P ]
S ◦→◦ P {S} → [P ]

Table 4.3: The Equivalence Rules of NAL-2

4.2.3 NAL-2 summary

In summary, while all the grammar rules of Narsese-1 are still valid in
NAL-2, there are additional grammar rules of Narsese-2, as listed in
Table 4.2.

Beside the syllogistic rules in Table 4.1, the previous definitions give
the equivalence rules of NAL-2 in Table 4.3, where the two statements
in the same row can replace each other. That is, a judgment with one
statement can derive another judgment with the other statement, with
the same truth value.

Since each new copula is defined in terms of the inheritance relation
“→,” its semantics and relevant inference rules can be derived from
those in NAL-1.

Please note that the extension and intension of a term are still
defined by the inheritance relation, not by the new relations derived
from it. Therefore,

• “S ◦→ P” says that the extension of P include {S} (not S) as an
element;
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• “S →◦ P” says that the intension of S include [P ] (not P ) as an
element.

To simplify the implementation of the system, relations “ ◦→,”
“→◦ ,” and “ ◦→◦ ” are only used in the input/output interface,
and within the system they are translated into “→.” Therefore we do
not really need to introduce inference rules for them. The same thing
cannot be done to “↔.” Though the “↔” relation is defined in terms of
the “→” relation, the system usually cannot translate a “↔” judgment
into an equivalent “→” judgment. Therefore, NAL-2 uses five copula in
its interface language, but only keep two of them (“→” and “↔”) in its
internal representation, without losing any expressive and inferential
power.

As an example of inference in NAL-2, we start with the following
judgments:

(1) Tweety ◦→ bird <1, 0.9>
(2) Tweety ◦→◦ yellow <1, 0.9>
(3) Tweety ↔ Birdie <1, 0.9>

Using the equivalence rules, they derive the following judgments,
respectively:

(4) {Tweety} → bird <1, 0.9>
(5) {Tweety} → [yellow] <1, 0.9>
(6) {Tweety} ↔ {Birdie} <1, 0.9>

From (4) and (5), by induction the system derives

(7) bird → [yellow] <1, 0.45>

From (4) and (6), by analogy the system derives

(8) {Birdie} → bird <1, 0.73>

which can be displayed as

(9) Birdie ◦→ bird <1, 0.73>

4.3 NAL-3: intersections and differences

In NAL-3, compound terms are composed by combining the extension
or intension of existing terms in certain way.
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4.3.1 Intersections

Definition 26 Given terms T1 and T2, their extensional intersection,
(T1 ∩ T2), is a compound term defined by

(∀x)((x → (T1 ∩ T2)) ≡ ((x → T1) ∧ (x → T2))).

From right to left, the equivalence expression defines the extension of
the compound, i.e., “(x → T1)∧(x → T2)” implies “x → (T1∩T2)”; from
left to right, it defines the intension of the compound, i.e., “(T1∩T2) →
(T1 ∩ T2)” implies “(T1 ∩ T2) → T1” and “(T1 ∩ T2) → T2.”

As an example, “Ravens are black birds” can be represented as
“raven → ([black] ∩ bird),” where the predicate term is an extensional
intersection of the term [black] and the term bird.

Theorem 14

(T1 ∩ T2)
E = TE

1 ∩ TE
2 , (T1 ∩ T2)

I = T I
1 ∪ T I

2

In the above expressions, the “∩” sign is used in two different senses.
On the right-side of the first expression, it indicates the ordinary inter-
section of sets, but on the left-side of the two expressions, it is the new
intersection operator of terms. Though these two senses are intuitively
similar, they are not the same, because the term operator is related to
both the extension and the intension of a term.

As the common extension of the two terms, the compound term
(T1∩T2) inherits properties of both T1 and T2. That is why its intension
is the union of the intensions of its two components.

The above definition and theorem specify the literal meaning of
the compound terms, which is formed when a compound is built from
its components. Later, the meaning of the compound may become
more or less different, as the result of new experience and inference
activity.2

The intensional intersection of terms is defined symmetrically.

Definition 27 Given terms T1 and T2, their intensional intersection,
(T1 ∪ T2), is a compound term defined by

(∀x)(((T1 ∪ T2) → x) ≡ ((T1 → x) ∧ (T2 → x))).

2This issue is discussed in detail in subsection 11.1.5.
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From right to left, the equivalence expression defines the intension of
the compound, i.e., “(T1 → x)∧(T2 → x)” implies “(T1∪T2) → x”; from
left to right, it defines the extension of the compound, i.e., “(T1∪T2) →
(T1 ∪ T2)” implies “T1 → (T1 ∪ T2)” and “T2 → (T1 ∪ T2).”

Intuitively, the intensional intersection of two terms is defined by
the common properties of the terms.

Theorem 15

(T1 ∪ T2)
I = T I

1 ∩ T I
2 , (T1 ∪ T2)

E = TE
1 ∪ TE

2

Now we can see that the duality of extension and intension in NAL
corresponds to the duality of intersection and union in set theory —
intensional intersection corresponds to extensional union, and exten-
sional intersection corresponds to intensional union.3

From the definitions, it is obvious that both intersections are sym-
metric to their components:

Theorem 16

(T1 ∩ T2) ↔ (T2 ∩ T1)
(T1 ∪ T2) ↔ (T2 ∪ T1)

The relation between the compounds to their components is cap-
tured by the following theorem:

Theorem 17

(T1 ∩ T2) → T1

T1 → (T1 ∪ T2)

Both operators can be extended to take more than two arguments.
Since “∩” and “∪” are both associative and symmetric, the order of
their components does not matter. A special situation for these two
operators is when the components are the same.

3Some people may think that it is more natural to call (T1 ∪ T2) “extensional
union” than “intensional intersection,” because the symbol used for the term opera-
tor is the union operator in set theory. I do it the other way to stress its relation with
the extensional intersection, as well as with the “difference” terms to be introduced
in the following.
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Theorem 18

(T ∪ T ) ↔ T
(T ∩ T ) ↔ T

The following implications are derived from the definition of the
compound terms.

Theorem 19

T1 → M ∧ ¬((T1 ∪ T2) → M) ⊃ ¬(T2 → M)
¬(T1 → M) ∧ (T1 ∩ T2) → M ⊃ T2 → M

M → T1 ∧ ¬(M → (T1 ∩ T2)) ⊃ ¬(M → T2)
¬(M → T1) ∧ M → (T1 ∪ T2) ⊃ M → T2

These implications will be turned into inference rules in the next chap-
ter, which can be used to “decompose” a compound term to get con-
clusions about its components.

The two intersection operators keep inheritance and similarity rela-
tions between terms:

Theorem 20

S → P ⊃ (S ∪ M) → (P ∪ M)
S → P ⊃ (S ∩ M) → (P ∩ M)
S ↔ P ⊃ (S ∪ M) ↔ (P ∪ M)
S ↔ P ⊃ (S ∩ M) ↔ (P ∩ M)

In these propositions, M can be any term in VK . The same is assumed
for the implications introduced later.

If a term is taken as a set, then all the above theorems can be
proved in set theory. However, in NAL even if sets can be defined (as
in NAL-2), not all terms are sets, and the above theorems should not
be understood as equivalent to their counterparts in set theory, but as
(partially) isomorphic to them.

4.3.2 Differences

The above two compound terms are defined by restricting the extension
or intension of a term with an additional positive statement. In the
following we do the same thing, but with a negative statement.
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Definition 28 If T1 and T2 are different terms, their extensional dif-
ference, (T1 − T2), is a compound term defined by

(∀x)((x → (T1 − T2)) ≡ ((x → T1) ∧ ¬(x → T2))).

From right to left, the equivalence expression defines the extension of
the compound, i.e., “(x → T1) ∧ ¬(x → T2)” implies “x → (T1 − T2)”;
from left to right, it defines the intension of the compound, i.e., “(T1 −
T2) → (T1 − T2)” implies “(T1 − T2) → T1” and “¬((T1 ∩ T2) → T2).”

Given this definition, “Penguins are birds that cannot fly” can be
represented as “penguin → (bird−[flying]),” where the predicate term
is a extensional difference of the term bird and the term [flying].

Obviously, (T2−T1) can also be defined, but it will be different from
(T1 − T2).

Theorem 21

(T1 − T2)
E = TE

1 − TE
2 , (T1 − T2)

I = T I
1

Intuitively, (T1−T2) is (T1∩ (non-T2)), where (non-T2) is a term whose
extension includes all terms in VK that are not in the extension of
T2. However, the intension of this term is empty, because such a de-
finition specifies no common (affirmatively specified) property for the
terms in its extension. Since no additional property can be assigned
to the compound, the intension of (T1 − T2) is the same as that of
T1. For the same reason, in Narsese there is no term defined as the
negation of another term, though we can talk about (non-T ) in the
meta-language.4

Symmetrically, intensional differences can be defined.

Definition 29 If T1 and T2 are different terms, their intensional dif-
ference, (T1 � T2), is a compound term defined by

(∀x)(((T1 � T2) → x) ≡ ((T1 → x) ∧ ¬(T2 → x))).

From right to left, the equivalence expression defines the intension of the
compound, i.e., “(T1 → x)∧¬(T2 → x)” implies “(T1 �T2) → x”; from
left to right, it defines the extension of the compound, i.e., “(T1�T2) →
(T1 � T2)” implies “T1 → (T1 � T2)” and “¬(T2 → (T1 � T2)).”

4Though in Narsese there is no negated term, there are negated statements,
which will be defined in the next chapter.
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Theorem 22

(T1 � T2)
I = T I

1 − T I
2 , (T1 � T2)

E = TE
1

Intuitively, intensional difference is used to relax the requirement of a
category by removing some positive properties. As a result, the original
instances remains.

The relation between the difference compounds to their first com-
ponent is captured by the following theorem:

Theorem 23

(T1 − T2) → T1

T1 → (T1 � T2)

The relation between the difference compounds to their second com-
ponent is captured by the following theorem:

Theorem 24

M → (T1 − T2) ⊃ ¬(M → T2)
(T1 � T2) → M ⊃ ¬(T2 → M)

Please notice the difference between the above two theorems: while in
the former the result can be used to address both the extension and
the intension of the compound, in the latter it is only about one of the
two aspects.

Unlike the intersection operators, the difference operators cannot
take more than two arguments, though we can still use both prefix
and infix formats to represent them, so as to be consistent with other
compound terms. Also, neither (T − T ) nor (T � T ) is a valid term.

According to the literal meaning of the compound terms, there are
the following implications involving extensional/intensional differences:

Theorem 25

T1 → M ∧ ¬((T1 � T2) → M) ⊃ T2 → M
¬(T1 → M) ∧ ¬((T2 � T1) → M) ⊃ ¬(T2 → M)

M → T1 ∧ ¬(M → (T1 − T2)) ⊃ M → T2

¬(M → T1) ∧ ¬(M → (T2 − T1)) ⊃ ¬(M → T2)
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The two difference operators keep inheritance and similarity rela-
tions between terms, though may reverse the direction of the relation:

Theorem 26

S → P ⊃ (S − M) → (P − M)
S → P ⊃ (M − P ) → (M − S)
S → P ⊃ (S � M) → (P � M)
S → P ⊃ (M � P ) → (M � S)
S ↔ P ⊃ (S − M) ↔ (P − M)
S ↔ P ⊃ (M − P ) ↔ (M − S)
S ↔ P ⊃ (S � M) ↔ (P � M)
S ↔ P ⊃ (M � P ) ↔ (M � S)

4.3.3 Compound sets

To apply the set-theoretic operators defined above to the sets defined
in NAL-2, we get the following definitions:

Definition 30 If t1, · · · , tn (n ≥ 2) are different terms, a compound
extensional set {t1, · · · , tn} is defined as (∪ {t1} · · · {tn}); a com-
pound intensional set [t1, · · · , tn] is defined as (∩ [t1] · · · [tn]).

In this way, extensional sets and intensional sets can both have multiple
components. Intuitively, the former defines a term by enumerating its
instances, and the latter by enumerating its properties. Again, the order
of the components does not matter.

Now we can see that a set is a kind of compound term, whose
internal structure fully specifies its extension (for an extensional set)
or intension (for an intensional set), in the sense of identical terms. For
example, for “{x} → {t1, t2, t3}” to be true, x must be identical to t1,
t2, or t3.

These compound sets satisfy the following identity relations (where
t1, t2, t3 are different terms).
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Theorem 27

({t1, t2} ∪ {t2, t3}) ↔ {t1, t2, t3}
({t1, t2} ∩ {t2, t3}) ↔ {t2}
({t1, t2} − {t2, t3}) ↔ {t1}

([t1, t2] ∩ [t2, t3]) ↔ [t1, t2, t3]
([t1, t2] ∪ [t2, t3]) ↔ [t2]
([t1, t2] � [t2, t3]) ↔ [t1]

These relations can be extended to sets with more (or less) than two
components. These results are similar to the ones in set theory, though
in NAL not all terms can be treated as sets.

4.3.4 NAL-3 summary

The additional grammar rules of Narsese-3 are listed in Table 4.4.

<term> ::= {<term>+} | [<term>+]
| (∩ <term><term>+) | (∪ <term><term>+)
| (− <term><term>) | (� <term><term>)

Table 4.4: The New Grammar Rules of Narsese-3

The previous grammar rule for extensional set and intensional set
becomes a special case of the new rule. For sets with multiple compo-
nents, “,” can be used to separate them. For an intersection or difference
term, an “infix” format can also be used, as mentioned in the previous
section.

Related to the new compound terms, the most important inference
rules introduced in NAL-3 are those that combine two inheritance state-
ments into a new one with a compound term as subject or predicate.
These rules are listed in Table 4.5, which are applied only when T1 and
T2 are different, and do not have each other as component.
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J2 \ J1 M → T1 T1 → M

T2 → M (T1 ∪ T2) → M <Fint >
(T1 ∩ T2) → M <Funi >
(T1 � T2) → M <Fdif >

M → T2 M → (T1 ∩ T2) <Fint >
M → (T1 ∪ T2) <Funi >
M → (T1 − T2) <Fdif >

Table 4.5: The Composition Rules of NAL-3

The truth-value functions in Table 4.5 are defined as the following:

Fint : f = and(f1, f2)
c = or(and(not(f1), c1), and(not(f2), c2)) + and(f1, f2, c1, c2)

Funi : f = or(f1, f2)
c = or(and(f1, c1), and(f2, c2)) + and(not(f1), not(f2), c1, c2)

Fdif : f = and(f1, not(f2))
c = or(and(not(f1), c1), and(f2, c2)) + and(f1, not(f2), c1, c2)

To understand the above functions, let us look at the extensional
cases, where the two premises have a common subject.

The frequency functions directly come from the definitions of the
compounds: “M → (T1 ∩ T2)” if “M → T1” and “M → T2”; “M →
(T1 ∪ T2)” if “M → T1” or “M → T2”; “M → (T1 − T2)” if “M → T1”
but not “M → T2”.

The confidence functions are determined by listing the various cases
where the conclusion gets full evidence (in idealized situations). For ex-
ample, for “M → (T1∩T2),” it happens when one premise is absolutely
false, or when both premises have full evidence. The other confidence
functions can be obtained similarly.

The intensional cases are completely symmetric to the extensional
ones, so the same set of truth functions is used, though for the (exten-
sional and intensional) intersections, the functions are switched.
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As an example, given the following judgments,

(1) {Tweety} → bird <1, 0.9>
(2) {Tweety} → [yellow] <1, 0.9>
(3) {Tweety} → canary <1, 0.9>

from (1) and (2) the system composes a compound term “([yellow] ∩
bird)” (“yellow bird”), with “{Tweety}” in its extension:

(4) {Tweety} → ([yellow] ∩ bird) <1, 0.81>

Then, from (3) and (4) by induction the following judgment is derived:

(5) canary → ([yellow] ∩ bird) <1, 0.41>

In the last step, the compound terms involved are treated just like
atomic terms.

4.4 NAL-4: products, images,

and ordinary relations

One common criticism to Aristotle’s Syllogism, or to term logic in gen-
eral, is that it cannot represent and process a relation that is not a
copula [Bocheński, 1970]. In NAL-4, these relations are handled with
the help of certain types of compound terms, using an idea borrowed
from set theory.

4.4.1 Ordinary relations and products

In NAL-4, “ordinary relations” indicates the relations among terms
that are not the inheritance relation or its variants (such as similar-
ity, instance, property, and instance-property). These relations may be
not reflexive, not transitive, not merely reflexive and transitive, or not
defined on all terms. The copulas are defined in the meta-language
of NAL, with fixed (built-in) meaning to the system. In contrary, the
ordinary relations are described in Narsese, with experience-grounded
meaning.



110 Chapter 4

Definition 31 For two terms T1 and T2, their product (T1 × T2) is a
compound term defined by

((S1 × S2) → (P1 × P2)) ≡ ((S1 → P1) ∧ (S2 → P2)).

This definition can be extended as before to allow more than two
components in a product. Also, the “prefix” format can be used for
products.

Unlike the term operators introduced in NAL-3, the product oper-
ator allows the components to be the same. That is, (T × T ) is a valid
compound term. (T1 × T2) and (T2 × T1) are usually different, and so
are (T1 × (T2 × T3)) and ((T1 × T2) × T3).

Theorem 28

(S → P ) ≡ ((M × S) → (M × P )) ≡ ((S × M) → (P × M))

(S ↔ P ) ≡ ((M × S) ↔ (M × P )) ≡ ((S × M) ↔ (P × M))

Theorem 29

((S1 × S2) ↔ (P1 × P2)) ≡ ((S1 ↔ P1) ∧ (S2 ↔ P2))

That is, two products are identical if and only if and only if their
corresponding components are identical.

Theorem 30

{(x × y) |x ∈ TE
1 , y ∈ TE

2 } ⊆ (T1 × T2)
E

{(x × y) |x ∈ T I
1 , y ∈ T I

2 } ⊆ (T1 × T2)
I

The “⊆” cannot be replaced by “=” in the above theorem, because
(T1×T2)

E and (T1×T2)
I may contain other terms that are not products.

Definition 32 A relation is a term R such that there is a product P
satisfying “P → R” or “R → P”.

Therefore in NAL a relation is not a set, because it is not only defined
extensionally. A product is a relation (because “(T1×T2) → (T1×T2)”),
but a relation is not necessarily a product. In NAL, a relation can be
an atomic term.
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For example, “Acid and base neutralize each other” can be rep-
resented as “(acid × base) → neutralization,” and “Neutralization
happens between acid and base” can be represented as “neutralization →
(acid × base).”

4.4.2 Images

Given one component, the “image” operator identifies the other one in
the extension or intension of a given relation with two components.

Definition 33 For a relation R and a product (× T1 T2), the exten-
sional image operator, “⊥,” and intensional image operator, “�,” of
the relation on the product are defined as the following, respectively:

((× T1 T2) → R) ≡ (T1 → (⊥ R � T2))) ≡ (T2 → (⊥ R T1 �)))

(R → (× T1 T2)) ≡ ((� R � T2)) → T1) ≡ ((� R T1 �)) → T2)

where “�” is a special symbol indicating the location of T1 or T2 in the
product, and it can appear in any place, except the first (which is the
relation), in the component list. When it appears at the second place,
the image can also be written in infix format as (R⊥T2) or (R�T2)
(in other cases, only the prefix format is used).

For example, “Acid corrodes metal” can be equivalently represented
as “(× acid metal) → corrosion,” “acid → (⊥ corrosion � metal),”
and “metal → (⊥ corrosion acid �).”

The above definition can be extended to include products with more
than two components, where the image can only be written in the prefix
format.

In general, (R⊥T2) and (R�T2) are different, but there are situa-
tions where they are the same.

Theorem 31

T1 ↔ ((T1 × T2)⊥T2)

T1 ↔ ((T1 × T2)�T2)
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Intuitively, the above theorem shows that starting from a term, a “prod-
uct” followed by an “image” will go back to the same term. However,
if the order of the two operators is switched, the result is different:

Theorem 32

((R⊥T ) × T ) → R

R → ((R�T ) × T )

The “→” in the above theorem cannot be replaced by the “↔.”
An image operator can be applied to both sides of an inheritance re-

lation, though in the result, the subject and predicate may be switched:

Theorem 33

S → P ⊃ (S ⊥ M) → (P ⊥ M)
S → P ⊃ (S � M) → (P � M)
S → P ⊃ (M ⊥ P ) → (M ⊥ S)
S → P ⊃ (M � P ) → (M � S)

4.4.3 NAL-4 summary

In summary, NAL-4 introduces the new grammar rules in Table 4.6.

<term> ::= (× <term><term>+)
| (⊥ <term><term>∗ � <term>∗)
| (� <term><term>∗ � <term>∗)

Table 4.6: The New Grammar Rules of Narsese-4

There is no new inference rule directly defined in NAL-4, except the
equivalence rules in Table 4.7, given by the previous definitions.
The table does not include all variants of a rule obtained by chang-
ing the component list of the compound.

The following example shows the capability of NAL-4. Let’s start
with three judgments:

(1) vinegar → acid <1, 0.9>
(2) baking-soda → base <1, 0.9>
(3) (× vinegar baking-soda) → neutralization <1, 0.9>
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S → P (S × M) → (P × M)
S ↔ P (S × M) ↔ (P × M)

(× T1 T2) → R T1 → (⊥ R � T2)
R → (× T1 T2) (� R � T2) → T1)

Table 4.7: The Equivalence Rules of NAL-4

Then the following judgment can be derived as an equivalent form of
(3):

(4) vinegar → (⊥ neutralization � baking-soda) <1, 0.9>

From (1) and (4), by induction the system gets

(5) acid → (⊥ neutralization � baking-soda) <1, 0.45>

which can be equivalently transformed into

(6) baking-soda → (⊥ neutralization acid �) <1, 0.45>

From (2) and (6), by induction again:

(7) base → (⊥ neutralization acid �) <1, 0.29>

which can be rewritten as

(8) (× acid base) → neutralization <1, 0.29>

This example shows that though the inference rules of NAL are de-
fined on the inheritance relation and its variants, other relations (like
“neutralization”) can also be represented and processed properly.




