
Chapter 3

The Core Logic

The logic implemented in NARS is called Non-Axiomatic Logic, here-
forth NAL. The formal language used in NARS is called Narsese.

In the following, both Narsese and NAL will be defined layer by
layer, each of which adds new grammar rules and inference rules into
the system. Overall, there will be eight layers, and the language used
in NAL-n is Narsese-n (n = 1, ..., 8).

In this chapter, the simplest non-axiomatic logic, NAL-1, is defined.
Narsese-1 is a simple language, in which each statement consists of two
atomic terms, linked by an inheritance relation. NAL-1 has inference
rules defined on this language.

To provide a proper semantics for this logic, an idealized version of
the logic, NAL-0, is introduced first. This logic is not non-axiomatic,
but will be used as part of the meta-language of NAL. Set theory and
first-order predicate logic are also used as parts of the meta-language
of NAL.

3.1 NAL-0: binary inheritance

NAL-0 is a simple binary deductive logic1. It is not actually “non-
axiomatic,” but we need it to define the semantics of NAL.

1It was formerly called Inheritance Logic in [Wang, 1994b, Wang, 1995a].

49

50 Chapter 3

3.1.1 Language: term and inheritance

NAL-0, like all members of the NAL family, is a “term logic.” This
type of logic is different from predicate logics, because of its usage of
categorical sentences and syllogistic inference rules [Bocheński, 1970,
Copi, 1982, Englebretsen, 1996]. Therefore, it is also called “categorical
logic” or “syllogistic logic.”2

First, let us define the smallest unit of Narsese, “term.”

Definition 1 A term, in the simplest form, is a string of letters in an
alphabet. In such a form, it is also called an atomic term.

The default alphabet in this book is the alphabet of English plus dig-
its 0 to 9, and most terms we use as examples are common English
words, such as “bird”, “animal”, and “water” (we also allow hyphen-
ated terms). It is easy for NAL to use words in another natural language
(such as Chinese) as terms, because the following design does not de-
pend on the choice of the alphabet or characters.

Later in this book, we will see that a term is the name of a concept
in NARS. The above definition only gives the simplest form of terms,
and more complicated forms will be introduced later.

Definition 2 The inheritance relation, “→”, is a relation from one
term to another term, and defined by being reflexive and transitive. An
inheritance statement consists of two terms related by the inheritance
relation. In the inheritance statement “S → P”, S is the subject term
and P is the predicate term.

In a statement, the two terms can be the same.
According to this definition, for any term X, “X → X” is always

true (reflexivity). Also, if “X → Y ” and “Y → Z” are true, so is
“X → Z” (transitivity). On the other hand, if there is a relation de-
fined among terms, which is both reflexive and transitive, and has no
additional property, then it is the same as the inheritance relation de-
fined in NAL.

2A detailed comparison between predicate logics and term logics will be given in
Chapter 10.

The Core Logic 51

The inheritance relation is neither symmetric nor anti-symmetric.
That is, for different X and Y , given “X → Y ”, whether “Y → X” is
also true cannot be determined.

NAL is a “term logic,” partially because its sentences are “categori-
cal,” with a “subject-copula-predicate” format. The inheritance relation
is a kind of “copula,” and intuitively, it indicates that S is a special-
ization of P , and P is a generalization of S. It roughly corresponds to
“S is a kind of P” in English. For example, “apple → fruit” says that
“Apple is a kind of fruit.”

The inheritance relation defined above is closely related to many
well-known relations, such as “belongs to” (in Aristotle’s syllogisms),
“subset” (in set theory), “IS-A” (in semantic networks) [Brachman,
1983], “inheritance assertion” (in inheritance systems [Touretzky,
1986]), and “inheritance” in object-oriented programming (such as
“extends” in Java).

What makes the inheritance relation in NAL different from the other
relations are:

1. It is a relation between two terms (not between sets, classes, or
concepts).

2. The relation is defined completely (no more, no less) by the two
properties, reflexivity and transitivity.

Now we use the above notions to define the corresponding version
of Narsese.

Definition 3 Narsese-0 is a formal language whose sentences are in-
heritance statements.

Therefore, the grammar of Narsese-0 is given in Table 3.1.

3.1.2 Semantics: truth and meaning

Now let us establish a semantics for Narsese-0, by defining the notions
of “truth” and “meaning” in the language.

For a reasoning system implementing the logic NAL-0, the language
Narsese-0 is used for both internal knowledge representation and exter-
nal communication. The initial knowledge of the system, obtained from
the environment, is defined as its “experience.”

52 Chapter 3

<sentence> ::= <statement>
<statement> ::= <term><copula><term>

<copula> ::= →
<term> ::= <word>
<word> : a string in a given alphabet

Table 3.1: The Grammar of Narsese-0

Definition 4 The system’s experience, K, is a non-empty and finite
set of sentences in Narsese-0. In each statement in K, the subject term
and the predicate term are different.

For example, we can have K = {apple → fruit, fruit → plant}. As
a set, K has no duplicated elements, and there is no order among its
elements.

Definition 5 Given experience K, the system’s beliefs, K∗, is the tran-
sitive closure of K, excluding statements whose subject and predicate are
the same term.

Therefore, K∗ is also a non-empty and finite set of sentences in Narsese-
0, which includes K, as well as the sentences derived from K accord-
ing to the transitivity of the inheritance relation. For the above K,
K∗ = {apple → fruit, fruit → plant, apple → plant}. K∗ can be
generated from K in finite steps using an ordinary closure-generating
algorithm.

In NARS, the words “belief” and “knowledge” are usually treated
as exchangeable with each other.3 Therefore, K∗ can also be called
the knowledge base of the system (as in some previous publications on
NARS).

Now we can define the “truth value” of a statement and the “mean-
ing” of a term, with respect to a given K.

Definition 6 The truth value of a statement in NAL-0 is either true
or false. Given experience K, the truth value of a statement is true if
it is in K∗, or has the form of T → T , otherwise it is false.

3A justification of this decision will be given in Section 7.4.1.

The Core Logic 53

Therefore we have two types of truth in NAL-0: empirical and literal
(or call them synthetic and analytic, respectively). The former is “true
according to experience,” and the latter is “true by definition.” Given
the above definitions, truth in these two categories have no overlap.

In the following, we will call true statements “positive knowledge,”
and false statements “negative knowledge.” All analytic truths are pos-
itive knowledge (and all of them fall into the pattern “T → T”).
Synthetic knowledge may be positive or negative. In NAL-0, nega-
tive knowledge are implicitly represented: they are not sentences in
Narsese-0, but propositions in its meta-language. The amount of posi-
tive knowledge, (i.e., number of beliefs in K∗) increases monotonically
with the increase of the experience K, but that is not the case for nega-
tive knowledge, which is implicitly defined by the former as “statements
that not known to be true.”

Therefore, here “true” is “derivable from experience,” or “have the
relation”; while “false” is “haven’t found the relation,” but not “have
an anti-relation.” NAL-0 accepts the “closed world” assumption, where
“lack known relation” is treated as “no relation.” It is necessary here,
because if truth value is a summary of experience, then “having an
unknown truth value” makes no sense.

For a term T that does not appear in K, all statements having T
in them are false, except “T → T .” For example, given the above expe-
rience K, “orange → fruit” is false. Though “¬(orange → fruit)” is
not a valid sentence of Narsese-0, it is a valid proposition in the meta-
language of NAL-0 (by taking statements of NAL-0 as propositions in
propositional logic).

To clarify how a particular term T is related to other terms accord-
ing to the experience of the system, the extension and intension of T
are defined as the sets of its known specializations and generalizations,
respectively:

Definition 7 Given experience K, let the set of all terms appearing
in K to be the vocabulary of the system, VK. Then, the extension of a
term T is the set of terms TE = {x |x ∈ VK ∧ x → T}. The intension
of T is the set of terms T I = {x |x ∈ VK ∧ T → x}.
Obviously, both TE and T I are determined with respect to K, so they
can also be written as TE

K and T I
K . In the following, the simpler notions

are used, with the experience K implicitly assumed.

54 Chapter 3

Since “extension” and “intension” are defined in a symmetric way
in NAL, for any result about one of them, there is a dual result about
the other. Each belief of the system reveals part of the intension for
the subject term and part of the extension for the predicate term. For
example, “apple → fruit” indicates that “apple” is in the extension of
“fruit,” and “fruit” is in the intension of “apple.”

Theorem 1 For any term T ∈ VK, T ∈ (TE ∩ T I). If T is not in VK,
TE = T I = {}, though “T → T” is still true.

Since all the theorems in this book are easy to prove, I will leave
the detailed proofs to the interested reader, and only explain their im-
plications.

The above theorem states that any given term in VK has a non-
empty extension and a non-empty intension — both of them contain
at least the term itself.

Definition 8 Given experience K, the meaning of a term T consists
of its extension and intension.

Therefore, the meaning of a term is its relation with other terms, ac-
cording to the experience of the system. A term T is “meaningless”
to the system, if TE = T I = {} (that is, it has never got into the
experience of the system), otherwise it is “meaningful.” The larger the
extension and intension of a term are, the “richer” its meaning is.

Theorem 2 If both S and P are in VK, then (S → P) ≡ (SE ⊆ PE) ≡
(P I ⊆ SI).

Here “≡” is the “if and only if” in propositional logic. This theorem
says that “S → P” is true if and only if the extension of S is fully
contained in the extension of P , and also if and only if the intension
of P is fully contained in the intension of S. In other words, the state-
ment “There is an inheritance relation from S to P” is equivalent to
both “P inherits the extension of S” and “S inherits the intension
of P .” This is the reason that “→” is called an “inheritance” rela-
tion. Here I change the intuitive meaning of the word “inheritance” to

The Core Logic 55

indicate the situation where the two terms get different things from
each other.

If “S → P” is false, it means that the inheritance is incomplete —
either (SE −PE) or (P I −SI) is not empty. However, it does not mean
that S and P share no extension or intension.

Theorem 3 (SE = PE) ≡ (SI = P I).

That is, the extensions of S and P precisely coincide if and only if their
intensions precisely coincide. This means that in NAL-0 the extension
and intension of a term are mutually determined. Consequently, one of
the two uniquely determines the meaning of a term.

NAL-0 is a logic that from given experience determines the truth
values of statements and meaning of terms, and this is what I call
“experience-grounded semantics.” I will come back to this topic again
and again in this book.

3.1.3 Inference: rules and properties

As we can see from the above definitions, NAL-0 only has one inference
rule, justified by the transitivity of the inheritance relation. As given
in Table 3.2, this rule takes two statements as premises, and derive one
statement as conclusion. This rule can be used to exhaust all beliefs
according to a given experience.

J2 \ J1 M → P P → M

S → M S → P
M → S P → S

Table 3.2: The Inference Rule of NAL-0

There is also a “matching rule” in the system, which derives no new
belief, but matches questions to answers.

Definition 9 For different terms S and P , a question that can be an-
swered with NAL-0 has one of the following three forms: (1) S → P?,

56 Chapter 3

(2) S → ?, and (3) ? → P . An empirical truth S → P is an answer
to any of the three. If no such an answer can be found in K∗, “NO” is
answered.

The first form asks for an evaluation of a given statement, while
the other two ask for a selection of a term with a given relation with
another term.

If there are more than one answers to (2) and (3), any of them
is equally good. Literal truth “T → T” is a trivial answer to such a
question, so it is not allowed.

The matching rule is shown in Table 3.3.

J \Q S → P? S → ? ? → P

S → P S → P S → P S → P

Table 3.3: The Matching Rule of NAL-0

In NAL-0 the user cannot ask the system “What is not T?,” because
any term not appearing in K may become a (trivial) answer for this
question.4

NAL-0 is consistent (since negative knowledge is implicitly repre-
sented), sound (since all derived statements are true), complete (since
all truths are either literal, or in K∗), and decidable (since K∗ can be
generated in finite steps from a given K, and it can also be searched
in finite time). Because in NAL-0 the time-space cost of inference is
ignored, we do not need to worry about how the sentences are stored,
and how the premises are chosen in each inference step.

NAL-0 is a term logic, with categorical statements, experience-
grounded semantics, and syllogistic inference rules. However, it is not
really a “non-axiomatic” logic, because it ignores the assumption of
insufficient knowledge and resources. Though NAL-0 looks simple (and
even trivial) by itself, its importance in defining the NAL family will
be shown by the following sections.

4In NAL, there is a way to ask “What instances of S are not instances of P?,”
and it will be introduced in the next chapter.

The Core Logic 57

3.2 The language of NAL-1

As mentioned in the previous chapter, a central issue in NARS is to
treat “truth” as a matter of degree. For that purpose, we first define
the concept of “evidence,” then define “truth value” as a function of
available evidence.

What is defined in Narsese-0 can be called “complete inheritance”
(of extension/intension), and it can be naturally extended to the situ-
ation of “incomplete inheritance,” and the concept of evidence will be
introduced in the process.

3.2.1 Evidence and its measurement

As shown by a previous theorem, an inheritance statement is equivalent
to a statement about the inclusion of extension (or intension) between
two terms. Furthermore, such an inclusion can be seen as a summary of
a set of inheritance statements. Based on this observation, “evidence”
of an inheritance statement is defined as the following.

Definition 10 For an inheritance statement “S → P ,” its evidence
are terms in SE and P I . Among them, terms in (SE∩PE) and (P I∩SI)
are positive evidence, and terms in (SE−PE) and (P I−SI) are negative
evidence.

Here the related extensions and intensions are sets of terms, and “∩”
and “−” are the “intersection” and “difference” of sets, respectively, as
defined in set theory.

Concretely, for a statement “S → P” and a term M , if both “M →
S” and “M → P” are true, it is positive evidence for the statement;
if “M → S” is true but “M → P” is false, it is negative evidence.
Symmetrically, if both “P → M” and “S → M” are true, it is positive
evidence for the statement; if “P → M” is true but “S → M” is false,
it is negative evidence.

Evidence is defined in this way, because as far as a term in positive
evidence is concerned, the inheritance statement is correct; as far as
a term in negative evidence is concerned, the inheritance statement is
incorrect.

58 Chapter 3

According to this definition, what counts as a piece of evidence is
a term, not a statement. However, whether a given term M is positive
or negative evidence for the statement “S → P” is determined by two
statements, one between M and S, and another between M and P .

Now we can rephrase the definition of truth value in NAL-0 in terms
of “evidence”: “S → P” is true in NAL-0 if and only if according to the
experience of the system, there is no negative evidence for the statement
(that is, all available evidence is positive).

When a system has to answer questions with insufficient knowledge
and resources, to only indicate whether there is (positive or negative)
evidence is usually too rough as a summary of experience. When a
statement has both positive and negative evidence, the system often
needs to balance them, and takes into account the influence of future
evidence. To do this, it is not enough to qualitatively indicate the exis-
tence of a certain type of evidence — we need to quantitatively measure
evidence. For an adaptive system, though past experience is never suf-
ficient to accurately predict future situations, the amount of evidence
does matter for the system’s decision, and the beliefs based on more
evidence should be preferred.

Since according to the previous definition, terms in the extension or
intension of a given term are equally weighted, the amount of evidence
can be simply measured by the size of the corresponding set.

Definition 11 For “S → P ,” the amount of positive, negative, and
total evidence is, respectively,

w+ = |SE ∩ PE| + |P I ∩ SI |
w− = |SE − PE| + |P I − SI |
w = w+ + w−

= |SE| + |P I |

For example, an observed black raven is a piece of positive evidence
for “Raven is a kind of black-thing” (w = w+ = 1), and an observed
non-black raven is a piece of negative evidence for it (w = w− = 1).
Here we assume the observations have no uncertainty.

Amount of evidence captures the idea that an inheritance state-
ment can be seen as a summary of some other inheritance statements.

The Core Logic 59

An important feature of the above definition of evidence is that the
“extensional factor” and the “intensional factor” are merged. From the
amounts of evidence of a statement alone, there is no way to tell how
much of it comes from extensional comparison or intensional compari-
son of the two terms. I will explain why this is desired later.

3.2.2 Truth value: frequency and confidence

Because all the operations in the system are based on available evi-
dence, w+ and w− contain all the information about the uncertainty of
the statement, as far as the current discussion is concerned. However,
when represented in this way, the information is inconvenient for cer-
tain purposes, especially when we talk about beliefs where uncertainty
is not obtained by directly counting evidence.

When comparing competing beliefs and deriving new conclusions,
we usually prefer relative measurements to absolute measurements, be-
cause the evidence of a premise usually cannot be directly used as
evidence for the conclusion. Also, it is often more convenient for the
measurements to take values from a finite interval, while the amount of
evidence has no upper bound. This point will become more clear later.

In principle, all intervals of real number can be mapped into the
interval [0, 1], and this interval corresponds to notions like “ratio,”
“proportion,” or “percentage,” which are naturally used to represent
“approximation” and “discount” in our daily life. Also, [0, 1] is a nat-
ural extension of the binary truth values, traditionally represented as
{0, 1}. For these reasons, I use it for the uncertainty measurements in
NARS.

A natural relative measurement for uncertainty is the frequency, or
proportion, of positive evidence among all available evidence. In NAL,
the “frequency” of a statement is defined as

f = w+/w

If the system has observed 100 ravens, and 90 of them are black, but
the other 10 are not, the system sets f = 0.9 for “Raven is a kind of
black thing.” When w = 0 (and therefore w+ = 0), f is defined to
be 0.5.

60 Chapter 3

Although f is a natural and useful measurement, it is not enough for
our current purpose. Intuitively, we have the feeling that the uncertainty
evaluation f = 0.9 is uncertain itself. For a simple example, let us
consider the following two situations: (1) the system only knows 10
ravens, and 9 of them are black, and (2) the system knows 10000 ravens,
and 9000 of them are black. Though in both situations we have f = 0.9,
the first case is obviously “more uncertain” than the second. Because
here the uncertainty is about the statement “The frequency for ravens
to be black is 0.9,” we are facing a higher-order uncertainty, which is
the uncertainty of an evaluation about uncertainty.

As mentioned previously, in NARS the uncertainty in a statement
appears as the result of insufficient knowledge. Specially, the first-order
uncertainty, measured by frequency, is caused by known negative evi-
dence, and the higher-order uncertainty is caused by potential negative
evidence. For the second measurement, we are looking for a function of
w, call it c for confidence, that satisfies the following conditions:

1. Confidence c is a continuous and monotonically increasing func-
tion of w. (More evidence, higher confidence.)

2. When w = 0, c = 0. (Without any evidence, confidence is mini-
mum.)

3. When w goes to infinity, c converges to 1. (With infinite evidence,
confidence is maximum.)

There are infinite functions satisfying the above requirements, there-
fore we need more intuition to pick up a specific one.

Many functions with value range [0, 1] can be naturally interpreted
as a proportion of a certain amount in a total amount. Following this
path, when comparing available evidence to potential evidence, we
might want to define c as the ratio of “the amount of evidence the
system has obtained” to “the amount of evidence the system will ob-
tain.” Obviously, the first item is w, but for a system that is always open
to new evidence, the second item is infinity, therefore the ratio is al-
ways 0. When compared with an infinite “future,” the difference among
the various finite “past” cannot be perceived. Therefore, it makes little
sense to talk about an infinite future.

The Core Logic 61

However, it makes perfect sense to talk about the near future. What
the system needs to know, from the value of w, is how sensitive a fre-
quency will be to new evidence; then the system can use this informa-
tion to make a choice among competing beliefs. If we limit our attention
to a future of fixed horizon, we can represent the information in w in a
ratio form.

Let us introduce a positive number k, whose value can be metaphor-
ically thought of as the distance to the (temporal) horizon, in the sense
that k is the number of times we will still test the given inheritance
statement. With this new notion of “horizon,” measured by k, we can
define a new measurement — confidence, in terms of the amount of
total evidence w.

Now we get the relation between c and w in NAL:

c = w/(w + k)

where k is a positive parameter indicating the evidence to be collected
in the “near future.” Obviously, this function satisfies the three require-
ments listed previously.

In this way, the frequency and confidence of a statement are inde-
pendent of each other, in the sense that, from the value of one, the
other’s value cannot be determined, or even estimated or bounded (ex-
cept the trivial case where c = 0 implies f = 0.5).

For a specific system, k should remain fixed to make the system’s
behaviors consistent, but different systems can have different values
for k. In this book, the default value of k is 1 (and we will discuss the
choice of k later). Under such a definition, confidence indicates the ratio
of the current amount of evidence to the amount of evidence the system
will have after it gets new evidence with a unit amount. The more the
system already knows about a statement, the less the new evidence
will contribute (relatively), therefore the more confident, or the less
ignorant, the system is, on the given statement. When w = 1, c = 0.5,
and the new evidence will double the amount of available evidence;
When w = 999, c = 0.999, and the new evidence will have little effect
on the system’s belief.

Together, f and c form the truth value of a statement in NAL, and
they are defined by the amount of evidence.

62 Chapter 3

Definition 12 The truth value of a statement consists of a pair of
real numbers in [0, 1]. One of the two is called frequency, computed as
f = w+/w (or 0.5 if w = 0); the other is called confidence, computed
as c = w/(w + k), where k is a positive number.

From a given truth value, the amount of positive, negative, and
total evidence can be uniquely determined. Therefore, the “truth value”
representation of uncertainty is functionally equivalent to the “amount
of evidence” representation.5

3.2.3 Frequency interval

Interestingly, there is a third way to represent the uncertainty of a
statement in NAL: as an interval of the frequency of success.

Given the above definition of frequency, after the coming of evidence
of the amount k, the new f value will be in the interval

[w+/(w + k), (w+ + k)/(w + k)]

This is because the current frequency is w+/w, so in the “best” case,
when all evidence in the near future is positive, the new frequency will
be (w+ +k)/(w +k); in the “worst” case, when all evidence in the near
future is negative, the new frequency will be w+/(w + k).

Let us define this interval formally.

Definition 13 The lower frequency of a statement, l, is w+/(w + k);
the upper frequency of a statement, u, is (w+ + k)/(w + k). The fre-
quency interval of the statement is [l, u].

This measurement has certain intuitive aspects in common with
other interval-based approaches [Bonissone, 1987, Kyburg, 1988]. For
example, the ignorance about where the frequency will be (in the near
future) can be represented by the width of the interval, i = u−l. In NAL,
i happens to be 1 − c, so ignorance and confidence are complementary
to each other.

It is important to remember that in NAL the interval [l, u] indicates
the range in which the frequency will lie in the near future, rather than

5The relations between this representation and other representations of uncer-
tainty, such as probability and fuzziness, will be discussed in detail in Chapter 8.

The Core Logic 63

in the remote future beyond that. According to the definition of truth
value, with the coming of new evidence for a given statement, its con-
fidence value monotonically increases, and eventually converges to 1,
but its frequency may increase or decrease, and does not necessarily
converge at all. For this reason, the frequency interval cannot be inter-
preted as indicating where the frequency will eventually be.

The interval representation of uncertainty provides a mapping be-
tween the “accurate representation” and the “inaccurate representa-
tion” of uncertainty, because “inaccuracy” corresponds to willingness
to change a value within a certain range.

Within the system, it is necessary to keep an accurate represen-
tation of the uncertainty for statements, but it is often unnecessary
for communication purposes. To simplify communication, uncertainty
is often represented by a verbal label. In this situation, the truth value
corresponds to the relative ranking of the label in the label set.

If in a language there are only N words that can be used to specify
the uncertainty of a statement, and all numerical values are equally
possible, the most informative way to communicate is to evenly divide
the [0, 1] interval into N section: [0, 1/N], [1/N, 2/N], ..., [(N-1)/N, 1],
and use a label for each section.

For example, if the system has to use a language where “false,” “am-
bivalent” and “true” are the only valid words to specify truth value, and
it is allowed to say “I don’t know,” then the most reasonable approach
for input is to map the three words into [0, 1/3], [1/3, 2/3], and [2/3, 1],
respectively, and ignore all “I don’t know.” For output, all conclusions
whose confidence is lower than 1/3 become “I don’t know,” and for the
others, one of the three words is used, according to the section in which
the frequency of the conclusion falls.

A special situation of this is to use a single number, with its accu-
racy, to carry out both frequency and confidence information. In such a
situation, “The frequency of statement S is 0.9” is different from “The
frequency of statement S is 0.900” — though both give the same fre-
quency, they give different confidence value. In the former case, the
interval is [0.85, 0.95], so the confidence is 1 − (0.95 − 0.85) = 0.9. In
the latter case, the interval is [0.8995, 0.9005], so the confidence is
1 − (0.9005 − 0.8995) = 0.999.

64 Chapter 3

With the interval representation of uncertainty, NARS gains some
flexibility in its communication. Though within the system, every belief
is attached with numerical uncertainty measurement, in communica-
tions it is not necessary when accuracy is not required.

3.2.4 Relations among representations
of uncertainty

Now we have three functionally equivalent ways to represent the uncer-
tainty of a statement:

1. as a pair of amounts of evidence {w+, w}, where 0 ≤ w+ ≤ w
(they do not have to be integers);

2. as a truth-value <f, c>, where both f and c are real numbers in
[0, 1], independent of each other;

3. as a frequency interval [l, u], where 0 ≤ l ≤ u ≤ 1.

To avoid confusion, three types of brackets (“{},” “<>,” and “[]”) are
used in this book for the three forms of uncertainty, respectively. Again,
each of them is calculated with respect to certain part of the system’s
experience, which is implicitly assumed.

Formulas for inter-conversion among the three truth-value forms are
displayed in Table 3.4.

This table can be easily extended to include w− (the amount of
negative evidence) and i (degree of ignorance). In fact, any valid (not
inconsistent or redundant) assignments to any two of the eight measure-
ments (for example, setting w+ = 3.5 and i = 0.1, or setting f = 0.4
and l = 0.3) will uniquely determine the values of all the others. There-
fore, the three forms of uncertainty measurement can even be used in
a mixed manner.

Having several closely related forms and interpretations for uncer-
tainty has the following advantages:

1. It gives us a better understanding of what uncertainty of state-
ment really means in NARS, since we can explain it in different
ways. The mappings also give us interesting relations among the
various uncertainty measurements.

The Core Logic 65

to \ from {w+, w} <f, c> [l, u]

{w+, w} w+ = k fc
1−c

w+ = k l
u−l

w = k c
1−c

w = k 1−(u−l)
u−l

< f, c > f = w+

w
f = l

1−(u−l)

c = w
w+k

c = 1 − (u − l)

[l, u] l = w+

w+k
l = fc

u = w++k
w+k

u = 1 − c(1 − f)

Table 3.4: The Relations Among Forms of Truth-Value

2. It provides a user-friendly interface. If the environment of the
system consists of human users, the uncertainty of a statement
can be expressed in different ways, such as, “I’ve tested it w times,
and in w+ of them it was true,” or “Its past success frequency
was f , and the confidence was c,” or “I’m sure that its success
frequency will remain in the interval [l, u] in the near future.” We
can maintain a single form as the internal representation (in the
current implementation, it is the truth-value form), and, using the
mappings in the above table, translate it into/from the others in
the interface of the system when necessary.

3. It makes the designing of inference rules easier. For each rule,
there should be a function that calculates the truth value of the
conclusion from the truth values of the premises, with different
rules of course equipped with different functions. As we will see
in the following, for some rules it is easier to choose a function
if we directly deal with truth values, while for other rules we
may prefer to convert truth values into amounts of evidence, or
frequency intervals.

4. It facilitates the comparison between measurements in NARS
and the uncertainty measurements of various other approaches,
because different forms capture different intuitions about
uncertainty.6

6These comparisons will be left to Chapter 8.

66 Chapter 3

Given experience K (as a finite set of binary inheritance state-
ments), for an inheritance relation “S → P” derived from it, w is
always finite. Also, since the system has no need to keep statements for
which there is no evidence, w should be larger than 0. For uncertainty
represented in the other two forms, these translate into 0 < c < 1 and
l < u, u − l < 1, respectively.

Beyond the above normal values of uncertainty, there are two limit
cases useful for the interpretation of uncertainty and the design of in-
ference rules:

Null evidence: This is represented by w = 0, or c = 0, or u − l = 1,
and of course means that the system knows nothing at all about
the statement.

Full evidence: This is represented by w = ∞, or c = 1, or l = u.
It means that the system already knows everything about the
statement — no future modification of the uncertainty value is
possible.

Though the above values never appear in actual beliefs of the system,
they play important role in system design.

3.2.5 Narsese-1 and experience

Now let me summarize the grammar of Narsese-1 in Table 3.5. We
can see that it is similar to that of Narsese-0, except that a binary
“statement” plus its truth value becomes a multi-valued “judgment.”

In the interface of the system, the other two types of uncertainty
representation can also be used in place of the truth value of a judgment,
though within the system they will be translated to (from) truth value.
Also, truth values corresponding to “null evidence” and “full evidence”
are not allowed to appear in the interface (or within the system), though
they are used in the meta-language, as limit points, when the inference
rules are determined.

Now we can treat Narsese-0 (defined in Table 3.1) as a subset of
Narsese-1. In Narsese-1, “S → P < 1, 1 >” indicates that the inheri-
tance is complete (and negative evidence can be practically ignored),
so it is identical to “S → P” in Narsese-0.

The Core Logic 67

<sentence> ::= <judgment> | <question>
<judgment> ::= <statement><truth-value>
<question> ::= <statement>?

| ? <copula><term> | <term><copula>?
<statement> ::= <term><copula><term>

<copula> ::= →
<term> ::= <word>

<truth-value> : a pair of real number in[0, 1] × [0, 1]
<word> : a string in a given alphabet

Table 3.5: The Grammar of Narsese-1

In this way, the semantics of Narsese-1 is defined by a subset of the
language, Narsese-0. Given the experience of the system K in Narsese-
0, the binary inheritance language, the truth value of a judgment in
Narsese-1, with subject and predicate in VK , can be determined by
comparing the meaning of the two terms. All these judgments form the
beliefs of the system, K∗.

Similarly, we extend the concept of “meaning.” For a system whose
beliefs are represented in Narsese-1, the meaning of a term still consists
of the term’s extensional and intensional relations with other terms, as
in NAL-0. The only difference is that the definition of extension and
intension is modified as follows:

Definition 14 A judgment “S → P < f, c >” states that S is in the
extension of P and that P is in the intension of S, with the truth value
of the judgment specifying their degrees of membership.

Consequently, extensions and intensions in NAL-1 are no longer ordi-
nary sets with well-defined boundaries (as in NAL-0). They are similar
to fuzzy sets [Zadeh, 1965], because terms belong to them to different
degrees. What makes them different from fuzzy sets is how the “mem-
bership” is measured (in NAL, two numbers are used) and interpreted
(in NAL, it is experience-grounded).7

7This issue will be discussed in detail in Section 8.2.

68 Chapter 3

Given any set of statements of Narsese-0 as the experience of a NAL-
1 system, the truth values of judgments and the meanings of terms
can be determined. In this way, Narsese-0 is used as a meta-language
of Narsese-1. At the same time, the former is a subset of the latter.
Therefore, the experience-grounded semantics for Narsese is established
in a “bootstrapping” manner.

However, since NAL-1 is used with insufficient knowledge and re-
sources, its actual experience is a stream of sentences in Narsese-1, not
a set of statements in Narsese-0 (as the idealized experience used in the
above semantics).

There are several important differences between the “idealized ex-
perience” and the “actual experience” of the system.

• A judgment in the idealized experience has truth value <1, 1>,
while a judgment in the actual experience has truth value <f, c>,
where c is less than 1.

• The idealized experience is a set of sentences, which is available
altogether to the system at the beginning, while the actual experi-
ence is a stream of sentences, coming to the system one at a time.

• For a given statement, in the idealized experience each piece of ev-
idence is equally weighted, while in the actual experience, pieces
of evidence make different contributions to its truth value, de-
pending on several factors (to be described later).

• When defining the truth value of a judgment, the whole idealized
experience is considered, while when calculating the truth value
of a judgment, an inference rule only takes part of the actual
experience into account.

• The idealized experience is used at design time to define truth
value (of statements) and meaning (of terms), as well as to justify
the inference rules, while the actual experience is used at run time
by the inference rules to derive new statements (or terms) with
their truth value (or meaning), or to modify the existing ones.

For example, if the system has a belief “S → P < 0.75, 0.80 >,”
then from the relationship between the truth value and the amount of
evidence (and assuming k = 1), we get w = 4, w+ = 3. Therefore, the

The Core Logic 69

system believes the statement “S → P” to such an extent, as if it had
tested the statement 4 times in idealized situations (by checking com-
mon elements of the extensions or the intensions of the two terms), in
which the relation had been confirmed 3 times, and disproved 1 time.
This does not imply, of course, that the system actually got the truth
value by carrying out such tests — such absolute certainty can never
be obtained in real life. Indeed, the system may have checked the rela-
tion more than four times in less-than-ideal situations (i.e., with results
represented by judgments whose confidence values are less than 1), or
the conclusion may have been derived from other beliefs, or even di-
rectly provided by the environment. But no matter how the truth value
< 0.75, 0.80> is generated in practice (there are infinitely many ways
it could arise), it can always be understood in a unique way, as stated
above.

For any approach to extend a binary logic to a multi-valued logic,
there is always the question for the meaning of the numerical truth
value that need to be answered to make everything else meaningful,
while “numerical statements are meaningful insofar as they can be
translated, using the mapping conventions, into statements about the
original qualitative structure” [Krantz, 1991]. In other words, “ideal ex-
perience” is being used in NAL as an “ideal meter-stick” to measure
degrees of certainty. Like all measurements, though its unit is defined
in an idealized situation, it is not used only in idealized situations —
when we say that a cord is “3 meters long,” we do not mean that we
have compared it with three end-to-end meter-sticks.

Clearly, the actual experience of NARS is much more complex than
the ideal experience as defined in the semantics, but it does not pre-
vent us from saying that the truth value of a judgment summarizes its
evidential support, and that the meaning of a term is derived from its
experienced relations with other terms.

3.3 The inference rules of NAL-1

Now we can define inference rules for NAL-1, whose premises and con-
clusions are judgments of Narsese-1, and whose validity is justified ac-
cording to the experience-grounded semantics.

70 Chapter 3

3.3.1 Revision rule

In NAL, revision indicates the inference step in which evidence from
different sources is combined. For example, assuming the system’s pre-
vious uncertainty for “Ravens are black” is <9/10, 10/11> (we know
that it corresponds to “10 ravens observed, and 9 of them are black”
when k = 1), now a new judgment comes, which is “Ravens are black
< 3/4, 4/5 >” (so it corresponds to “4 ravens are observed, and 3 of
them are black”). If the system can determine that no evidence is re-
peatedly counted in the two sources, then the uncertainty of the revised
judgment should be < 6/7, 14/15 > (corresponding to “14 ravens ob-
served, and 12 of them are black”).

Formally, the revision rule is defined in Table 3.6, where S can be
any statement. The two premises may be conflicting to each other (when
the two frequency values are very different), though this is not neces-
sarily the case. Conflicting or not, the information in the two should be
summarized into the conclusion.

J2 \ J1 S <f1, c1 >

S <f2, c2 > S < Frev >

Table 3.6: The Revision Rule

Since in this case the evidence of either premise is also evidence for
the conclusion, and there is no overlapping evidence between the two
premises, we have

w+ = w+
1 + w+

2 , w = w1 + w2

Then, according to the relationship between truth value and amount of
evidence, we get the truth-value function for the revision rule:

Frev : f = f1c1(1−c2)+f2c2(1−c1)
c1(1−c2)+c2(1−c1)

, c = c1(1−c2)+c2(1−c1)
c1(1−c2)+c2(1−c1)+(1−c1)(1−c2)

This function has the following properties:

• The order of the premises does not matter.

The Core Logic 71

• As a weighted average of f1 and f2, f is usually a “compromise” of
them, and is closer to the one that is supported by more evidence.

• The value of c is never smaller than either c1 or c2, that is, the
conclusion is supported by no less evidence than either premise.

• If c1 = 0 and c2 > 0, then f = f2 and c = c2, that is, a judgment
supported by null evidence cannot revise another judgment.

• If c1 = 1 and c2 < 1, then f = f1 and c = c1, that is, a judg-
ment supported by full evidence cannot be modified by empirical
evidence.

Because actual confidence values are always in (0, 1), the last two cases
do not actually appear at run time, but serve as limit situations. Also
because of this reason, it does not matter for the above function has
undefined value when c1 = c2 = 0 and c1 = c2 = 1.

This definition is compatible with our intuition about evidence and
revision — revision is nothing but to reevaluate the uncertainty of a
statement by taking new evidence into account. Revision is not up-
dating, where old evidence is thrown away.8 A high w means that the
system already has much evidence for the statement, therefore its con-
fidence is high and its ignorance is low, and consequently the judgment
is relatively insensitive to new evidence. All these properties are in-
dependent to the decisions on how w is divided into w+ and w−, as
well as to how they are actually measured (so these decisions may
change from situation to situation without invalidating the revision
rule).

What happens in revision is similar to what Keynes said: “As the
relevant evidence at our disposal increases, the magnitude of the prob-
ability of the argument may either decrease or increase, according as
the new knowledge strengthens the unfavorable or the favorable ev-
idence; but something seems to have increased in either case — we
have a more substantial basis upon which to rest our conclusion.”
[Keynes, 1921].

It needs to be clarified that here “revision” refers to the opera-
tion by which the system summarize two (maybe conflicting) beliefs.

8This issue will be discussed with more details in Section 8.3.1.

72 Chapter 3

In this operation the conclusion always has a higher confidence. How-
ever, generally speaking, in NARS it is possible for the system to lose
its confidence in a belief. This can be caused by the “forgetting” or
“explaining away” of previously available evidence. This issue will be
discussed later, after other relevant components of NARS are intro-
duced.

Now the remaining issue in revision is how to recognize and handle
the “overlapping evidence” situation. For that, we need to record, for
each judgment, the fragments of experience its truth value is based on.

Definition 15 If J is an input judgment that appears in the system’s
experience, with a unique serial number N , it is based on the fragment
of experience {N}. If J is derived from premises J1, · · · , Jn, which are
based on the fragments of experience K1, · · · , Kn, respectively, then J
is based on fragment K1 ∪ · · · ∪ Kn.

The serial numbers will be generated by the program that imple-
ments NAL. If the same judgment appears twice in the system’s expe-
rience, each occurrence will have its own serial number, and the two
occurrences will later be treated as different pieces of evidence. On the
contrary, if one occurrence produces multiple copies in the system, they
will all have the same serial number, and be treated as the same piece
of evidence.

The system is designed in this way, because for an adaptive system,
what really matters is to predict whether a given statement will be
true next time. For someone who lives on a small island with a black
swan, “Swan is black” should have a higher frequency than “Swan is
white” — though the person has the knowledge that most swans in the
world are white, “black swan” appears more often in his/her personal
experience. Of course, we do not want to count the same observation
more than once, but different observations of the same swan should be
treated as multiple pieces of evidence. Therefore, accurately speaking,
in NARS the truth value attached to “Swan is black” is not about how
many swans (in the world) are black, but about how often a black swan
(in the system’s experience) is encountered.

If judgments J1 and J2 are based on fragments of experience K1

and K2, respectively, and K1 and K2, as sets of serial numbers, have

The Core Logic 73

no common elements, then the evidence supporting the two judgments
do not overlap with each other (that is, no piece of evidence is used to
calculate the truth values of both premises). If the two judgments are
about the same statement, then they can be used by the revision rule
as premises to derive a (summarized) conclusion.

With insufficient resources, NARS cannot maintain a complete record
of the supporting experience for each judgment, because it may ask for
time and space that the system cannot afford. Therefore the “overlapping-
evidence recognition problem” cannot be completely solved by a system
with insufficient resources.

Obviously, this limitation holds also for human beings: we could not
possibly remember all evidence that supports each judgment we make.
Nevertheless, NARS needs to be able to handle this problem somehow,
which is not limited to revision only; otherwise, as Pearl points out, “a
cycle would be created where any slight evidence in favor of A would
be amplified via B and fed back to A, quickly turning into a stronger
confirmation (of A and B), with no apparent factual justification.”
[Pearl, 1988].

The NARS strategy for dealing with this problem is to record only
a constant-sized fragment of the experience supporting each judgment,
and to use such fragments to determine approximately whether two
judgments are based on overlapping evidence. As mentioned above,
each input judgment is automatically assigned a unique serial number
when accepted by the system. In each inference step, the conclusion is
assigned a list of serial numbers constructed by interleaving its parents’
(the premises’) serial-number lists, and then truncating that list at a
certain length.

For example, suppose the maximum length for serial-number lists is
4. In this case, if two judgments have a parent or grandparent judgment
in common, their serial-number lists will overlap. Now the revision rule
is applied only if the two premises’ serial-number lists have no common
elements, meaning that they are related, if at all, more than two “gen-
erations” ago. This mechanism is only an approximation to the perfect
solution to the problem, of course.

Though not perfect, it is a reasonable solution when resources are
insufficient, and “reasonable solutions” are exactly what we expect from
a non-axiomatic system. It is also similar to the strategy of the human

74 Chapter 3

mind, since we usually have impressions about where our judgments
come from, but such impressions are far from complete and accurate.
Also, there is no guarantee that we never repeatedly using the same
evidence to adjust our degree of belief.

3.3.2 Choice rule

What should NARS do when two conflicting judgments S < f1, c1 >
and S <f2, c2 > are based on overlapping evidence?

Ideally, we would like to record the precise contribution of each input
judgment, and then to subtract the amount of the overlapping evidence
from the truth value of the conclusion, so that nothing is counted more
than once. Unfortunately, this is impossible, because the experience
recorded for each judgment is incomplete, as has just been explained.
Furthermore, to find out the contribution of a given input judgment
to the overall conclusion is very difficult, and simply impossible given
incomplete records.

Nevertheless, NARS needs to be able to handle this situation. For
example, the two conflicting judgments may be candidate answers to
an evaluative question. If it is impossible to combine them, then NARS
needs to make a choice between the two. In the current situation, the
choice rule is very simple: the judgment having a higher confidence
(no matter what its frequency is) is taken as the better answer, the idea
being that if an adaptive system must make a choice between conflicting
judgments, the one based on more experience has higher priority.

To make a choice between two competing answers for a selective
question is more complicated. Let us say that the system is asked the
selective question “S → ?,” meaning that it should come up with a
term T that is a “typical element” in the intension of S (not S itself,
of course). Ideally, the best answer would be provided by a judgment
“S → T <1, 1>.” But of course this is impossible, because confidence
can never reach 1 in NARS. Therefore, we have to settle for the best
answer the system can find under the constraints of available knowledge
and resources.

Suppose the competing answers are “S → T1 <f1, c1 >” and “S →
T2 < f2, c2 >.” Which one would be better? Let us consider some
special cases first:

The Core Logic 75

1. When c1 = c2, the two answers are supported by the same amount
of evidence. For example, both come from statistical data of 100
samples. Obviously, the answer with the higher frequency is pre-
ferred, since that statement has more positive evidence than the
other.

2. When f1 = f2 = 1, all available evidence is positive. Now the
answer with the higher confidence is preferred, since it is more
strongly confirmed by experience.

3. When f1 = f2 = 0, all available evidence is negative. Now the an-
swer with the lower confidence is preferred, since it is less strongly
refuted by the experience. Of course such an answer is still a bad
one because of its negative nature, but it may be the best (the
least negative) answer the system can find for the question.

From these special cases, we can see that to set up a general rule
to make a choice among competing judgments, we need somehow to
combine the two numbers in a truth value into a single measurement.
The current situation is different from the previous one. “S → T1

<f1, c1 >” and “S → T2 <f2, c2 >” do not conflict with each other —
they have different contents — but they compete for being the “best
supported intensional relation of S.”

In NARS, an expectation measurement, e, is defined on every judg-
ment for this purpose. Different from truth value (which is used to
record past experience), expectation is used to predict future experi-
ence. “e = 1” means that the system is absolutely sure that the state-
ment will always be confirmed by future experience; “e = 0” means it
will always be refuted; and “e = 0.5” means the system considers it
equally likely to encounter a piece of positive or a negative evidence.

To calculate e from <f, c>, we can see that under the assumption
that the system makes extrapolations from its (past) experience, it
would be natural to use f as e’s “first-order approximation.” However,
such a maximum-likelihood estimate is not good enough when c is small
[Good, 1965]. For example, if a hypothesis has been tested only once,
it would not make sense to set one’s expectation to 1 (if the test was a
success) or to 0 (if the test was a failure).

76 Chapter 3

Intuitively, e should be more “conservative” (i.e., closer to 0.5, the
“no-preference point”) than f , to reflect the fact that the future may
be different from the past. Here is where the confidence c affects e
— the more evidence the system has accumulated, the more confident
the system is (indicated by a larger c) that its predicted frequency e
should be close to its experienced frequency f . Therefore, it is natural
to define

Fexp : e = c(f − 0.5) + 0.5.

In particular, when c = 1 (full evidence), e = f ; when c = 0 (null
evidence), e = 0.5. Alternatively, this equation can be rewritten as
c = (e − 0.5)/(f − 0.5) (when f
= 0.5), showing that c indicates the
ratio of e’s and f ’s distances to 0.5.

To express the definition of e in the other two forms of uncertainty
leads to interesting results.

When the uncertainty is represented as a frequency interval, from
the inter-conversion formulas in Table 3.4, we get

e = (l + u)/2

Thus e is precisely the expectation of the future frequency — that is,
the midpoint of the interval in which the frequency will lie, in the near
future.

When the uncertainty is represented as amounts of evidence, from
the mappings in Table 3.4 we get

e = (w+ + k/2)/(w + k)

which is a continuum (i.e., a family) of functions with k as a parameter.
This formula turns out to be closely related to what has been called
the “beta-form based continuum” (with positive and negative evidence
weighted equally) [Good, 1965], and the “λ-continuum” (with the “log-
ical factor,” or prior probability, being 1/2) [Carnap, 1952]. Though in-
terpreted differently, the three continuum share the same formula and
make identical predictions. All three continua have Laplace’s law of suc-
cession as a special case (when k = 2), where the probability of success
on the next trial is estimated by the formula (w+ + 1)/(w + 2).

The Core Logic 77

Now we can see how the choice of the parameter k can influence the
behavior of a system. Let us compare a system A1 with k = 1 and a
system A2 with k = 10. The problem is to make a choice between two
competing answers “S → P1 {w+

1 , w1}” and “S → P2 {w+
2 , w2}” (where

the truth values are represented as weights of evidence). It is easy to
see that when w1 = w2 or w+

1 /w1 = w+
2 /w2, the two systems make the

same choice. It is only when a system needs to make a choice between a
higher f and a higher c that the value of k will matter. For example, let
us suppose that w+

1 = w1 = 2, w+
2 = 5, and w2 = 6. In this situation,

in A1, e1 = (2 + 0.5)/(2 + 1) ≈ 0.83, e2 = (5 + 0.5)/(6 + 1) ≈ 0.79, and
thus A1 will choose the first answer (since all of its evidence is positive);
in A2, e1 = (2 + 5)/(2 + 10) ≈ 0.58, e2 = (5 + 5)/(6 + 10) ≈ 0.63, and
thus A2 will choose the second answer (since it is more fully tested, and
its frequency is not much lower than that of the other alternative).

Therefore, k is one of the “personality parameters” of the system,
in the sense that it indicates a certain systematic preference or bias, for
which there is no “optimal value” in general. The larger k is, the more
“conservative” the system is, in the sense that the system always makes
smaller adjustments when e is reevaluated according to new evidence,
than a system having a smaller value of k. This parameter was called
the “flattening constant” by Good ([Good, 1965], where he also tried
to estimate its value according to certain factors that are beyond our
current consideration), and was interpreted by him as a way to choose a
prior probability distribution. The same parameter was interpreted by
Carnap as the “relative weight” of the “logical factor” [Carnap, 1952].

In summary, the choice rule is formally defined in Table 3.7, where
S1 <f1, c1 > and S2 <f2, c2 > are two competing answers to a ques-
tion, and S < Fcho > is the chosen one. When S1 and S2 are the same
statement, the one with a higher confidence value is chosen, otherwise
the one with a higher expectation value is chosen.

J2 \ J1 S1 <f1, c1 >

S2 <f2, c2 > S < Fcho >

Table 3.7: The Choice Rule

78 Chapter 3

3.3.3 Truth-value functions in general

A typical inference rule in NAL has the following format:

{premise1 <f1, c1 >, premise2 <f2, c2 >} � conclusion <f, c>

and a truth-value function calculates < f, c > from < f1, c1 > and
< f2, c2 >. Alternatively, it can be put into a table (as we have seen
previous) where each row and column corresponds to a premise.

The previously defined revision rule is the only inference rule in
NAL whose premises and conclusion contain the same statement. Con-
sequently, the evidence of the premises can be directly treated as ev-
idence of the conclusion, and the conclusion, based on accumulated
evidence, has a higher confidence value than the premises.

In the other inference rules, the premises and the conclusion are
judgments about different statements, so each of them has its own ev-
idence space, and the evidence of a premise cannot be directly used
as evidence of the conclusion. Even if a premise and a conclusion have
overlapping evidence spaces, evidence in the premise will be counted
less in the conclusion. This is the case because according to the seman-
tics of NAL, “amount of evidence” actually measures evidence that
directly supports the statement. When indirect evidence is recognized,
it is turned into direct evidence with a reduced amount (and the detail
differs from rule to rule). Consequently, in every inference rules in NAL,
except revision, the conclusion always has a lower confidence value than
the premises.

I have introduced several uncertainty measurements, and most of
them take values from the [0, 1] interval. Even the amount of evidence,
which is not defined with this range in general, corresponds to this
interval when it is limited to a piece of evidence within a unit amount.
Since they cannot be easily interpreted as “probability” as defined in
probability theory and statistics, we cannot directly apply an existing
theory to guide their calculation in the truth-value functions attached
to various inference rules.9

The approach used in NARS is to see the values in [0, 1] as extended
Boolean values, 0 and 1, and to handle their calculation by extending
the Boolean operators, namely “not,” “and,” and “or.”

9Arguments for this conclusion will be provided in Chapter 8.

The Core Logic 79

The extended “and ” and “or ” are often called Triangular norm
(T-norm) and Triangular conorm (T-conorm), respectively. They are
functions defined on real numbers in [0, 1], being commutative and
associative, and monotonic in each variable. T-norm has boundary
conditions satisfying the truth tables of the Boolean operator “and,”
and T-conorm those of “or.” [Bonissone and Decker, 1986, Dubois and
Prade, 1982, Schweizer and Sklar, 1983].

In this book, these two functions are directly written as and(x1, x2)
and or(x1, x2). Because each is commutative and associative, they can
be extended to take an arbitrary number of arguments:

and(x1, . . . , xn) = and(and(x1, . . . , xn−1), xn),

or(x1, . . . , xn) = or(or(x1, . . . , xn−1), xn).

The usage of T-norm and T-conorm in NARS is different from that
in other approaches [Bonissone and Decker, 1986, Dubois and Prade,
1982], where they are only used to determine the degree of certainty
of the conjunction and disjunction of two propositions, respectively.
In NARS, the T-norm function y = and(x1, . . . , xn) is used when a
quantity y is conjunctively determined by two or more other quantities
x1, . . . , xn — that is, y = 1 if and only if x1 = · · · = xn = 1, and y = 0
if and only if x1 = 0 or . . . or xn = 0; similarly, the T-conorm function
y = or(x1, . . . , xn) is used when a quantity y is disjunctively determined
by two or more other quantities x1, . . . , xn — that is, y = 1 if and only
if x1 = 1 or . . . or xn = 1, and y = 0 if and only if x0 = · · · = xn = 0.
These functions are not directly about the conjunction or disjunction
of Narsese statements.10

Intuitively, a variable y is conjunctively determined by variables x1,
. . ., xn when all the x’s are its necessary factors, or numerically, if y is
never bigger than any of them. Similarly, y is disjunctively determined
by x1, . . . , xn when all the x’s are its sufficient factors, or numerically, it
is never smaller than any of them. In this way, T-norm and T-conorm
are applied in situations where a quantity is determined by several
factors, where we wish the boundary condition to be satisfied, and
where no one factor is more important than any of the others.

10In Chapter 5, we will see that they are still used for the conjunctions and
disjunctions of statements. They are just not merely used in that situation.

80 Chapter 3

There are an infinite number of ways of numerically satisfying the
prescribed conditions on T-norm and T-conorm. For our purpose, it
is desired for them to be continuous and strictly increasing, so that
any upward (downward) change in any argument will cause an upward
(downward) change in the function value. In [Schweizer and Sklar, 1983]
it is proved that all functions satisfying the above conditions are iso-
morphic to (i.e., can be represented as a monotonic transform of) the
“probabilistic” operators:

and(x, y) = xy; or(x, y) = x + y − xy.

It is also shown in [Bonissone and Decker, 1986] that only a small fi-
nite subset of the infinite set of possible T-norms and T-conorms will
produce significantly different results, if we limit our concern to the
“finest level of distinction among different quantifications of uncer-
tainty.” Among those representative operators in the small subset, the
above pair is the only continuous and strict T-norm and T-conorm.
These results show that the above T-norm and T-conorm have not
been chosen arbitrarily for NARS; although in principle there are other
pairs satisfying our requirements, they are usually more complex, and
are not significantly different from the above pair.

The above choice is also justifiable in another way. We call quanti-
ties mutually independent of each other, when given the values of any
of them, the remaining ones cannot be determined, or even bounded
approximately. This type of mutual independence among arguments
is assumed by the probabilistic operators, but not by other repre-
sentative operators, such as the “min/max” pair used in fuzzy logic
[Bonissone and Decker, 1986].

Obviously, to use the probabilistic operators when the mutual in-
dependence does not hold (e.g., x = y or x = not(y)) leads to counter-
intuitive results. In the following, the T-norm and T-conorm are only
used when the “mutual independence” condition is satisfied. As far as
the two premises are not based on overlapping evidence, f1, c1, f2, and
c2 satisfy this requirement, because given the values of any three of
them, the value of the last one cannot be determined, or even bounded.

It should be mentioned that though the T-norm and T-conorm used
in NARS share intuition and mathematical forms with probabilistic for-
mula, they should not been understood as and(x, y) = P (x and y) and

The Core Logic 81

or(x, y) = P (x or y), simply because x and y are usually not random
variables with probability distribution function P .

As usual, the “not” operator on the extended Boolean variable is
defined as

not(x) = 1 − x

In NAL, the truth-value function for most of the inference rules
(with the previously defined revision and choice as exceptions) are built
by the following steps:

1. To treat all the uncertainty values involved as Boolean variables
whose value are either 0 or 1. According to the definition of these
uncertainty measurements and the semantics of Narsese, the un-
certainty values of the conclusion is determined for each combi-
nation of those of the premises.

2. To represent the uncertainty values of the conclusion as Boolean
expressions of the the uncertainty values of the premises that
satisfy the above boundary conditions. Usually there are infinitely
many functions that satisfy the restriction, and the ones accepted
are those that are simple and have natural interpretations.

3. To replace the and, or, and not operator in the Boolean function
by the T-norm (and(x, y) = x∗ y), T-conorm (or(x, y) = 1− (1−
x)(1− y)), and Negation (not(x) = 1−x) functions, respectively,
so as to get a general function on [0, 1].

4. To rewrite the uncertainty functions as truth-value functions (if
they are not already in that form), according to the relationship
between truth value and the other uncertainty measurements.

These are the conceptual steps of the design procedure. When truth-
value functions are introduced in the following descriptions, the first two
steps are often merged, and the last step is often taken implicitly. Since
the result of the above Step 2 may be not unique, the above approach
of building truth-value functions is not a mathematical proof of the
function obtained, and with the progress of the research, the functions
have been modified in different versions of NARS in the past, and it may
still happen in the future, if negative evidence for the design of these

82 Chapter 3

functions is found. As everything else in this theory, these functions are
just “the best we can get according to available evidence.”

3.3.4 Syllogistic rules

In term logics, when two judgments share exactly one common term,
they can be used as premises in an inference rule that derives an in-
heritance relation between the other two (unshared) terms. Altogether,
there are four possible combinations of premises and conclusions, corre-
sponding to the four figures of Aristotle’s Syllogisms [Aristotle, 1989],
three of which are also discussed by Peirce [Peirce, 1931]. They are
listed in Table 3.8.

J2 \ J1 M → P <f1, c1 > P → M <f1, c1 >

S → M <f2, c2 > S → P < Fded > S → P < Fabd >
M → S <f2, c2 > S → P < Find > S → P < Fexe >

Table 3.8: The Syllogistic Rules of NAL-1

The four rules in the table are explained in the following:

1. {M → P <f1, c1 >, S → M <f2, c2 >} � S → P <f, c>
This rule corresponds to Aristotle’s first figure and Peirce’s de-
duction.

2. {P → M <f1, c1 >, S → M <f2, c2 >} � S → P <f, c>
This rule corresponds to Aristotle’s second figure and Peirce’s
abduction (and he also called it hypothesis).

3. {M → P <f1, c1 >, M → S <f2, c2 >} � S → P <f, c>
This rule corresponds to Aristotle’s third figure and Peirce’s in-
duction.

4. {P → M <f1, c1 >, M → S <f2, c2 >} � S → P <f, c>
This rule corresponds to the fourth figure of Aristotle’s Syllogistic
[Bocheński, 1970].

The Core Logic 83

In NAL, the first three rules are named using Peirce’s words. The fourth
rule is called exemplification. The truth-value functions in the table are
named by three letters after the corresponding rule. They are built
according to the general procedure introduced previously.

Obviously, each pair of premises also derives a judgment “P → S,”
whose truth value can be determined by one of the four functions.

The deduction rule in NAL-1 extends the “rule of transitivity” in
NAL-0. For the frequency of the conclusion, f , it is 1 if and only if both
premises have frequency 1. As for the confidence of the conclusion,
c, it reaches 1 only when both premises have truth values < 1, 1 >.
Therefore, the Boolean function we get for deduction is

f = and(f1, f2), c = and(f1, c1, f2, c2)

which leads to truth-value function

Fded : f = f1f2, c = f1c1f2c2

The deduction rule is symmetric to the premises, that is, their order
does not matter.

In NARS, abduction is the inference that, from a shared element
M of the intensions of S and P , determines the truth value of “S →
P ,” and induction is the inference that, from a shared element M of
the extensions of S and P , determines the truth value of “S → P .”
Therefore, derived from the duality of extension and intension, we have
a duality of abduction and induction in NAL.

In both cases, the premises provide a piece of positive evidence with
a unit amount if and only if both of them have truth-value < 1, 1 >,
which can be represented as Boolean function

w+ = and(f1, c1, f2, c2)

For the total amount of evidence, in abduction we get

w = and(f1, c1, c2)

and in induction we get

w = and(c1, f2, c2)

84 Chapter 3

Please note that in the above representation we are mixing two forms
of uncertainty measurement: in the premises, the truth values are used,
while in the conclusion, the amounts of (positive/total) evidence are
used. Also, in these two rules, the two premises play different roles, and
their order matters.

After rewriting the result as truth-value functions, for abduction,
it is

Fabd : f = f2, c = f1c1c2/(f1c1c2 + k)

and for induction, it is

Find : f = f1, c = c1f2c2/(c1f2c2 + k)

In the process of designing truth-value function for induction (and
abduction), a crucial point is to see that when the premises are {M → P,
M → S}, it is the term M (as a whole) that is taken as evidence, and
the amount of evidence it can provide is less than 1. A mistake easy
to make here is to think of M as a set of evidences for “S → P ,” and
think of the number of instances in M as the amount of evidence of
the conclusion. That interpretation is inconsistent with the semantics
of Narsese.

In term logics, “conversion” is an inference from a single premise to
a conclusion by interchanging the subject and predicate terms of the
premise [Bocheński, 1970]. Now we can see conversion, defined in Table
3.9, as a special case of abduction by taking “P → S < f0, c0 >” and
“S → S <1, 1>” (a tautology) as premises, and “S → P <f, c>” as
conclusion.

Using Fabd, we obtain the truth-value functions for the conversion
rule

Fcnv : f = 1, c = f0c0/(f0c0 + k)

{S → P <f0, c0 >} � P → S < Fcnv >

Table 3.9: The Conversion Rules of NAL-1

The Core Logic 85

We could also derive this same result by seeing conversion as a special
case of induction with “P → P < 1, 1 >” and “P → S < f0, c0 >” as
premises.

Similarly we can get the truth-value functions for exemplification.
This rule takes the same premises as the deduction rule, but in its con-
clusion the most general term in the premises, P , becomes the subject,
while the most specific term in the premises, S, becomes the predi-
cate. As in the case of the conversion rule, no negative evidence for the
conclusion can be collected in this way, and

w = w+ = and(f1, c1, f2, c2)

Therefore the truth-value function is

Fexe : f = 1, c = f1c1f2c2/(f1c1f2c2 + k)

As mentioned above, from “M → P < f1, c1 >” and “M → S
<f2, c2 >,” NARS can directly get “S → P <f1, c1f2c2/(c1f2c2 + k)>”
by induction. Now there is also an indirect way to derive “S → P” from
the same premises: via conversion, the second premise yields “S → M
<1, c2f2/(c2f2 +k)>”; then, deductively combining this judgment with
the first premise, NARS arrives at the conclusion “S → P
<f1, f1c1f2c2/(c2f2 + k)>.” Compared with the direct result, this in-
direct conclusion has the same frequency value, but a lower confidence
value. Similarly, abduction can be replaced by conversion-then-
deduction, and exemplification by conversion-then-deduction or deduc-
tion-then-conversion, but all of them give lower confidence values,
compared to the ones produced by the above rules.

These results show that each application of a syllogistic rule in
NARS will cause some information loss (while preserving other infor-
mation, of course), and therefore direct conclusions will always be more
confident. On the other hand, the fact that exactly the same frequency
value is arrived at by following different inference pathways shows that
the truth-value functions defined above have not been coined individ-
ually in ad hoc ways, but are closely related to each other, since all
of them are based on the same semantic interpretation of the truth
value.

86 Chapter 3

In general, from the same set of premises, different sequences of in-
ference steps may assign different truth values to the same statement.
According to the experience-grounded semantics, the truth value as-
signed to a statement reflects the evidence collected in a certain way,
as specified by the rule used in this step of inference. Therefore, it is
normal if different paths lead to different judgments. As far as each step
is justified according to the semantics, all the judgments are valid, and
the system usually just chooses the most confident one.

By comparing the inference rules of NAL-1, we can get the following
conclusions:

• Both frequency and confidence contribute to inference, but in
different ways.

• Revision is the only rule where the confidence of the conclusion
may be higher than those of the premises.

• The confidence of a syllogistic conclusion is never higher than
the confidence of either premise, that is, confidence “declines” in
syllogistic inference.

• In general, confidence declines much slower in deduction than in
induction and abduction.11 In deduction, if both premises have a
confidence value of 1, the conclusion may also have a confidence
value of 1. In induction and abduction, however, the confidence
of the conclusion has an upper bound 1/(1 + k), far less than 1.
So, by saying that “Induction and abduction are more uncertain
when compared with deduction,” what is referred to is not the
“first-order uncertainty,” f (inductive and abductive conclusions
can have a frequency of 1 when all available evidence is positive),
but the “higher-order uncertainty,” c.

Here we can see another function of the personality parameter k:
to indicate the relative confidence of abductive/inductive conclusions.

11This conclusion does not apply to situations where the confidence values of
the premises are all very low. However, the conclusions produced in those situation
usually have little impact on the system.

The Core Logic 87

Intuitively speaking, all intelligent systems (human and computer) need
to maintain a balance between the strictness of deduction and the tenta-
tiveness of induction and abduction. Comparatively speaking, a system
with a small k relies more on abduction and induction, while a system
with a large k relies more on deduction. There is no single “optimal
value” for such a parameter, at least for our current discussions.

3.3.5 Backward inference

The inference rules introduced before (except the choice rule) are for
forward inference, since each of them takes a pair of judgments as
premises (except the conversion rule, which takes a single premise),
and derive a new judgment as conclusion. Backward inference, on the
other hand, happens when a judgment and a question are taken as
premises. We already discussed a special case of backward inference,
that is, the choice rule. This rule is used to decide whether a question
can be directly answered by a judgment, as well as to select an answer
among candidates.

Formally, the backward inference rules for questions are determined
by the following principle: A question Q and a judgment J will give
rise to a new question Q′ if and only if an answer for Q can be derived
from an answer for Q′ and J , by applying a forward inference rule.

For example, the system is asked to decide the truth value for
“goose → swimmer,” that is, whether a goose swims. The system
does not have a direct answer for it, but it has a belief “goose → bird
< 1, 0.9 >.” From the question and the belief, a backward inference
rule produces a derived question “bird → swimmer,” because from an
answer to this question and the belief, the system can derive an answer
to the original question by deduction.

Defined in this way, it is easy to get backward inference rules from
forward inference rules. For example, for a given forward-inference rule
table, first we take the conclusions in the table as questions (Q), one
premise (J2) as a judgment (J), and the other premise (J1, without
truth value) as the derived question. After renaming the terms and
rearranging the order, we get a backward-inference rule table, in which
some terms in the questions can be a “?,” indicating a query for terms
satisfying given condition.

88 Chapter 3

J \ Q M → P P → M

S → M S → P S → P
M → S S → P S → P

Table 3.10: The Backward Syllogistic Rules of NAL-1

For the forward syllogistic rules in Table 3.8, the corresponding
backward-inference rules are in Table 3.10.

This table turns out to be identical to Table 3.8, if the truth-value
functions and the question/judgment difference are ignored. This ele-
gant symmetry reveals an implicit property of the syllogistic rules of
NARS — that is, for any three judgments J1, J2, and J3, if J3 can be
derived from J1 and J2 by a syllogistic rule, then from J3 and J1 J ′

2

can be derived, which has the same statement as J2 (their truth values
may be different). Intuitively, the three inheritance relations constitute
a triangle from any two sides of which the third side can be derived.
Such a property does not give rise to infinite loops in the system, be-
cause if J3 is really derived from J1 and J2, it must share serial numbers
with each of the two, which prevents the system from taking J3 and J1

(or J2) as premises in further inferences.
In NAL-1, if a question cannot be directly answered by the choice

rule, backward inference is used to recursively “reduce” the question
into derived questions, until all of them have direct answers. Then these
answers, together with the judgments contributed in the previous back-
ward inference, will derive an answer to the original question by forward
inference.

3.3.6 NAL-1 summary

Now we have completed the description of a Non-Axiomatic Logic,
NAL-1, with its formal language, semantics, and inference rules. Let
me use an example to show what this logic can do.

To make the description simple, for the initial knowledge we give
frequency value 1 to positive judgments, frequency value 0 to negative

The Core Logic 89

judgments, and confidence value 0.9 to every judgment. At the begin-
ning, the following judgments are given to the system as experience:

(1) swan → bird <1, 0.9>
(2) swan → swimmer <1, 0.9>
(3) seagull → bird <1, 0.9>
(4) seagull → swimmer <1, 0.9>
(5) robin → bird <1, 0.9>
(6) robin → swimmer <0, 0.9>
(7) goose → bird <1, 0.9>
(8) dolphin → swimmer <1, 0.9>

With (1) and (2) as premises, the induction rule derives

(9) bird → swimmer <1, 0.45>

Similarly, from (3) and (4), by induction the system gets

(10) bird → swimmer <1, 0.45>

Since (9) and (10) are derived from distinct bodies of evidence, they
can be used as premises of the revision rule to get

(11) bird → swimmer <1, 0.62>

Given the symmetry of the premises, following the same path the sys-
tem can get another conclusion

(12) swimmer → bird <1, 0.62>

However, this symmetry does not apply to negative judgments. From
(5) and (6), by induction the system gets

(13) bird → swimmer <0, 0.45>

but its symmetric conclusion gets a confidence value 0. Again, applying
the revision rule to (11) and (13), the result is

(14) bird → swimmer <0.67, 0.71>

90 Chapter 3

Therefore, the inductive conclusions are just like statistical conclusions,
except that they are revised incrementally, under the influence of their
confidence values.

What makes NAL different from a purely statistical inference system
is that in it different types of inference are unified, and therefore the
conclusions are not statistical in the traditional sense anymore. From
(7) and (14), by deduction the system get

(14) goose → swimmer <0.67, 0.43>

but the conclusion does not mean that “Sixty-seven percent of geese
can swim.” Similarly, from (8) and (14), by abduction the system gets

(12) dolphin → bird <1, 0.3>

but the conclusion is not based on any observed dolphin which is also a
bird. Instead, the evidential support in the conclusion comes from the
experienced common property of the two terms.

