
Chapter 2

A New Approach Toward AI

In this book, a new approach toward AI will be presented. This chapter
first informally introduces the basic ideas.

2.1 To define AI

As described in the previous chapter, different schools of AI research
are based on different working definitions of “intelligence.” Therefore,
I start by clarifying my definition, which encapsulates the goal of the
research.

2.1.1 Information System

The working definition of intelligence, no matter what it is, should
distinguish one type of system from another type of system. More con-
cretely, here I want to distinguish one type of information system from
another type.

The concept “information,” like “intelligence,” is also a concept used
differently by different people. In this book, this concept is used to set
the “platform” or “background” for the discussion on intelligence, so
I only state my working definition for it, that is, what I mean by it,
without a detailed discussion about why it is better than alternative
definitions.
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An information system, or information-processing system, is a sys-
tem whose internal activities and interactions with its environment can
be described abstractly — that is, without specifying the concrete entity
and process (hardware) that carries out the activities and interactions.

Usually, such a system has certain tasks (also called goals) to carry
out, given by the environment or generated by the system itself. To do
this, the system takes various actions (also called operations), guided
by its knowledge (also called beliefs) about how the actions and the
tasks are related. Any internal activity costs the system some resources,
especially, processing time and memory space.

The environment of such a system may be the physical world (if the
system has sensorimotor capability), or other information-processing
systems (human or computer). In either case, the interactions are spec-
ified by the experiences (or stimuli) and the behaviors (or responses) of
the system, which can be described as streams of input and output in-
formation, respectively. For the system, recognizable patterns of input
and producible patterns of output constitute its interface language.

According to this definition, all human beings and computer sys-
tems, as well as many animals and automatic control systems, can be
described as information systems.

To call a system an “information system” means to describe the
system at an abstract level, and many low-level details will be omitted
from the description. A computer server is an information system to a
remote user, who does not care about its size, color, and weight. How-
ever, to a worker who is moving the server from one room to another, it
is no longer suitable to treat it as an information system. If you throw
a ball to a friend as a prearranged signal for something, your action is
information transformation, and where the ball goes does not matter.
However, it would be silly to call the ball-throwing “information trans-
formation” in a baseball game — it is not wrong, but contributes little
to our understanding of the game.

Even if a entity or process cannot be treated as an information
system, it often can be “modeled” or “simulated” in an information
system. It means that the system can be described at an abstract level,
and another system can be built that has the same high-level descrip-
tion, which contains essential features of the system to be modeled,
though these two systems are completely different at a lower level. For
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example, a hurricane can be modeled in a computer, so that its move-
ment can be predicted. However, “being a kind of movement of air” is a
defining property of hurricane, which is not in the computer simulation.
In this sense, a model is not the entity or process to be modeled, and
they are only similar at a high level of description.

However, if the entity or process being modeled is such a system that
all of its major properties are shown at the “information-processing”
level, then we no longer call the above procedure “modeling” or “simu-
lating,” but call it “reproducing,” “replicating,” or “implementing.” For
example, arithmetic calculation are manipulations of symbolic entities
and relations. Whether it is done by stones, abacus, or pen and paper
usually has little importance to the result. When such a process is car-
ried out by a computer, we do not say that the arithmetic calculation
is “simulated” in the computer — unlike a hurricane, the calculation
in a computer is genuine.

Sensitive readers would have realized why I start the discussion
about AI with information system. Actually, to ask “To what extent can
intelligence be produced by a computer?” is the same as to ask “To what
extent can intelligence be described as information processing?” and the
latter question will be answered by this book, using the information-
processing terminology introduced above.

2.1.2 A working definition of intelligence

Following the preparation of the previous subsection, I propose here a
working definition of intelligence:

Intelligence is the capability of an information system to
adapt to its environment while operating with insufficient
knowledge and resources.

Here the meanings of “information system,” “environment,” “knowl-
edge,” and “resources” have been clarified previously. However, the
two major components of the definition: “adaptation” and “insufficient
knowledge and resources” remain to be explained.

In terms of behavior change, we can distinguish three types of
systems:
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Instinctive system: The behaviors of the system remains the same,
and do not change over time.

Erratic system: The behaviors of the system change, but not as a
function of its experience.

Adaptive system: The behaviors of the system change according to
its experience. It attempts to improve its performance in carrying
out the tasks, under the assumption that its future experience will
be similar to its past experience.

On the other hand, we can roughly distinguish three kinds of envi-
ronment, in terms of its interaction with a system in it:

Constant environment: The environment is deterministic, and the
results of system behaviors never change. In this kind of environ-
ment, the best way to carry out a task is by an instinctive system
specially built for the task. An adaptive system may be able to
learn the behavior, but it is less efficient.

Random environment: The environment is completely unpredictable.
In this situation, all systems are equally bad in the long run.

Stable environment: The environment may change, though not ran-
domly, and the results of system behaviors are usually predictable,
but with exceptions from time to time. Adaptive systems work
better in this kind of environment, so long as its adaptation-rate is
not too slow compared to the speed of change in the environment.

In this sense, an adaptive system is not necessarily better than a
non-adaptive system. Actually, if a problem can be handled without
adaptation (i.e., can be solved “mechanically”), it is better to do it
that way. Adaptation is needed only when there is no predetermined
solution available.

Just being “adaptive” is not enough for being “intelligent.” A com-
plex system can be called “adaptive” only because a few parameters
in it can be tuned by itself according to its experience. Intelligence re-
quires more than that, and this is why I have another component in
the working definition of intelligence.
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Insufficient knowledge and resources means that the system works
under the following restrictions:

Finite: The information-processing capability of the system’s hard-
ware is fixed.

Real-time: All tasks have time constraints attached to them.

Open: No constraint is put on the content of the experience that the
system may have, as long as they are representable in the interface
language.

Not all information-processing systems take the insufficiency of knowl-
edge and resources into full consideration. Non-adaptive systems, for
instance, simply ignore new knowledge in their interactions with their
environment. As for artificial adaptive systems, most of them are not
finite, real-time, and open, in the following senses:

1. Though all concrete systems are finite, many theoretical models
(for example, Turing Machine) neglect the fact that the require-
ments for processor time and/or memory space may go beyond
the supply capability of the system [Hopcroft and Ullman, 1979].

2. Most current AI systems do not consider time constraint at run
time. Most real-time systems can handle time constraint only if
they are essentially deadlines [Strosnider and Paul, 1994].

3. In most systems, various explicit or implicit constraints are
imposed on what a system can experience. For example, only
questions that can be answered by retrieval and deduction from
current knowledge are acceptable, new knowledge cannot conflict
with previous knowledge, and so on.

Many computer systems are designed under the assumption that their
knowledge and resources, though limited or bounded, are nevertheless
sufficient to fulfill the tasks that they will be called upon to handle.
When facing a situation where this assumption fails, such a system
simply panics, and asks for external intervention, usually from a human
manager of the system.
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For a system to work under the Assumption of Insufficient Knowl-
edge and Resources, hereforth known as AIKR, it should have mecha-
nisms to handle the following situations:

A processor is required when all processors are occupied;

A piece of memory is required when all memory is already
full;

A task comes up when the system is busy with something
else;

A task comes up with a time constraint, so exhaustive process-
ing is not affordable;

New knowledge conflicts with previous knowledge;

A question is presented for which no sure answer can be
deduced from available knowledge;

etc.

For traditional computing systems, these situations usually either
require human intervention, or simply cause the system to reject the
task or knowledge involved. However, for a system designed under
AIKR, these are normal situations, and should be managed smoothly
by the system itself.

The two main components in the working definition, adaptation and
insufficient knowledge and resources, are related to each other. An adap-
tive system must have some insufficiency in its knowledge and resources,
for otherwise it would never need to change at all. On the other hand,
without adaptation, a system may have insufficient knowledge and re-
sources, but make no attempt to improve its capability. Such a system
acts, for all intents and purposes, as if its knowledge and resources were
sufficient.

According to the above definition, intelligence is indeed a “highly
developed form of mental adaptation” [Piaget, 1960]. This assertion is
consistent with the usages of the two words in natural language: we
are willing to call many animals, computer systems, and automatic
control systems “adaptive,” but not “intelligent,” because the latter
has a higher standard than the former.
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When defining intelligence, many authors ignore the complementary
question: what is unintelligent? If everything is intelligent, then this
concept is empty. If every computer system is intelligent, it is better
to stay within the theory of computation. Even if we agree that intel-
ligence, like almost all properties, is a matter of degree, we still need
criteria to indicate what makes a system more intelligent than another.
An unintelligent system is not necessarily incapable or gives only wrong
results. Actually, most ordinary computer systems and many animals
can do something that human beings cannot. However, these abilities
do not earn the title “intelligent” for them. What is missing in these
capable-but-unintelligent systems?

According to the working definition of intelligence introduced pre-
viously, an unintelligent system is one that does not adapt to its envi-
ronment. Especially, in artificial systems, an unintelligent system is one
that is designed under the assumption that it only works on problems
for which the system has sufficient knowledge and resources.

An intelligent system is not always “better” than an unintelligent
system for practical purposes. Actually, it is the contrary: when a prob-
lem can be solved by both of them, the unintelligent system is usually
better, because it guarantees a correct solution. As Hofstadter said,
for tasks like adding two numbers, a “reliable but mindless” system is
better than an “intelligent but fallible” system [Hofstadter, 1979].

2.1.3 Comparison with other definitions

According to the classification of AI schools in the previous chapter,
the above working definition of intelligence belongs to the attempts
that treat intelligence as being defined by some underlying principles.

Furthermore, it is an attempt to attack the whole AI problem, rather
than part of it. Therefore we can also classify it as an “AGI,” using
the term introduced in the previous chapter. Personally, however, I
would rather stay with the term “AI,” because to me, “intelligence”
is a domain-independent capability, so it is redundant to say “general
intelligence.” However, since many other people do not use the term
in this way, I do not mind to use AGI or similar terms to stress the
“general purpose” nature of the related systems.
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How is my working definition of intelligence different from the others
discussed in the previous chapter?

• In the following chapters, I will show that a system developed
on such a foundation has many cognitive functions, but they are
better thought of as emergent phenomena than as well-defined
tools used by the system.

• By learning from its experience, the system potentially can ac-
quire the capability to solve hard problems — actually, “hard”
problems are exactly those for which the system has insufficient
knowledge and resources. However, this capability is not built
into the system, and thus, without proper training, no capability
is guaranteed, and acquired capability can even be lost.

• Because the human mind also follows the above principles, such
a system can be expected to behave similarly to human beings,
but the similarity would exist at a more abstract level than that
of concrete behavior. Due to the fundamental difference between
human experience and the experience of an AI system, the sys-
tem will not accurately reproduce masses of psychological data or
guarantee to pass a Turing Test.

• Although the internal structure of the system has some properties
in common with a description of the human mind at a certain
level, it is not an attempt to simulate a biological neural network
or the brain as a whole.

To be sure, what has been proposed in my definition is not entirely
new to the AI community. Few would deny that adaptation, or learn-
ing, is important for intelligence (though many people are still working
on “AI” projects that have no learning capability — to them, learn-
ing is something that can be added into the picture at a later time).
Moreover, “insufficient knowledge and resources” is the focus of many
subfields of AI, such as heuristic search, reasoning under uncertainty,
real-time planning, and machine learning. Besides the various types of
“rationality” listed in the previous chapter, similar attitudes toward
intelligence can be found in the following quotations:
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Medin and Ross: Much of intelligent behavior can be under-
stood in terms of strategies for coping with too little infor-
mation and too many possibilities. [Medin and Ross, 1992]

Michalski: By “intelligence,” we mean a set of capabilities
that let a system with limited resources (energy, time, and
memory) operate under limited input information (incomp-
lete, uncertain, inconsistent, or incorrect). [Hearst and Hirsh,
2000]

Given all that has already been said, what is new in my approach?
As far as the working definition is concerned, this approach is new in
the following aspects:

1. An explicit and unambiguous definition of intelligence as “adap-
tation under insufficient knowledge and resources.”

2. A further clarification of the phrase “with insufficient knowledge
and resources” as meaning finite, real-time, and open.

3. The design of all formal and computational aspects of an AGI
project keeping the two previous definitions foremost in mind.

Though many AI systems are designed according to some kind of
“bounded rationality”, and assume some restrictions in knowledge and
resources, few of them can be said to be based on AIKR. We will
see detailed analysis on this topic in Part III, where my approach is
compared with other approaches.

2.2 Intelligent reasoning systems

As stated in the previous chapter, a typical AI project consists of an
informal theory, a formal model, and a computer implementation. The
previous working definition belongs to the theory level. Now let us see
how to use it to choose a proper formal language to build a model.

2.2.1 Different traditions in formalization

Formalization means, in the current context, the process of describing
the status and activities of a system in a formal (artificial, symbolized)
language.
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In the current AI research, there are different traditions of formal-
ization. The major ones are the following:

Dynamic system: In this tradition, the state of a system at a given
time is specified by the values of a fixed set of attributes. Intu-
itively, it corresponds to a point in a multi-dimensional space,
where each dimension corresponds to an attribute, and the coor-
dinate of the point on that dimension corresponds to the system’s
value on the attribute. In this representation, the change of state
(caused either by the system itself or by an outside factor) is a
trajectory line in the space, indicating how one state follows an-
other. The regularity of the system is represented by equations
that describe the possible trajectory lines. AI inherits this type
of formalization from dynamics, system theory, and cybernetics,
and uses it in pattern recognition systems, connectionist models,
and so on.

Reasoning system: In this tradition, the state of a system at a given
time is specified by a set of sentences in a formal language. Each
sentence represents a belief of the system, or a piece of knowledge
about the environment. The change of state can either be caused
by the system’s inference activity (i.e., using a fixed set of rules to
derive new sentences from existing ones), or by its communication
activity (i.e., the input and output of the sentences). The regu-
larity of the system is represented by the set of inference rules. AI
inherits this type of formalization from mathematical logic, and
uses it in various types of “knowledge-based systems.”

Computing system: In this tradition, the state of a system at a given
time is specified by a data structure, in which individual data
items are organized together. The change of state is caused by
the execution of a program, which modifies the data structure,
and produces certain side effects. The regularity of the system
is specified by algorithms, which are abstract representation of
the programs. AI inherits this type of formalization from com-
puter science, and uses it in searching, learning, and many other
techniques.
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All the three traditions are very powerful, and in principle they can
emulate one another, in the sense that a virtual machine specified in
one tradition can be implemented by another virtual machine specified
in a different tradition. In this sense, they have equivalent expressive
and processing capacity. It is also possible to build a hybrid system, in
which multiple formalization traditions are integrated.

However, for a given problem, one tradition may be more natural,
convenient, and efficient than the others. Therefore they are not always
equivalent under practical considerations for a given problem.

I choose to formalize my working definition of intelligence in the
framework of a reasoning system, mainly based on the following con-
siderations:

• It is a general-purpose system. Working in such a framework keeps
us from being bothered by domain-specific properties, and also
prevents us from cheating by using domain-specific tricks.

• It uses a rich formal language, especially compared to the “lan-
guage” used in multi-dimensional space, where a huge number
of dimensions are needed to represent a moderately complicated
situation.

• Since the activities of a reasoning system consists of inference
steps, it allows a natural combination of the rigidness (i.e., justi-
fiability) of each individual step and the flexibility (i.e., context-
dependency) of the inference processes, especially compared to
the algorithm-governed processes, where the linkage from one step
to the next is fixed, and the process usually cannot stop in the
middle.

• Compared with cognitive activities like low-level perception and
motor control, reasoning is at a more abstract level, and is one
of the cognitive skills that collectively make human beings so
qualitatively different from other animals.

• As will be displayed by this book, the notion of “reasoning” can
be extended to cover many cognitive functions, including learning,
searching, categorizing, planning, decision making, and so on.
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• Most research on reasoning systems is carried out within a school
based on assumptions directly opposed to AIKR. By “fighting in
the backyard of the rival,” we can see more clearly what kinds of
effects the new ideas have.

In summary, I believe that an intelligent reasoning system provides a
suitable framework for the study of intelligence, though being a reason-
ing system is neither necessary nor sufficient for being intelligent. Here
I will not justify the above claims, but leave that task to the end of the
book, after the whole formal model is described and discussed.

2.2.2 Reasoning systems and logics

An automatic (computerized) reasoning system is an information-
processing system that consists of the following major (conceptual)
components:

1. a language, defined by a formal grammar, for the (external) com-
munication between the system and its environment, and for the
(internal) knowledge representation within the system;1

2. a semantics of the language that provides the principles to de-
termine the meanings of the words and the truth values of the
sentences in the language;

3. a set of inference rules that is defined formally, and can be used
to match questions with knowledge, to infer conclusions from
premises, to derive sub-tasks from tasks, and so on;

4. a memory that systematically stores tasks, beliefs, and so on, as
well as provides a work place for inferences;

5. a control mechanism that is responsible for resource management,
including to choose premises and inference rules in each inference
step, and to allocate memory space.

1It is possible to have the two functions be accomplished by two different lan-
guages, with a translation mechanism in between.
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The first three components are usually referred to as a logic, or the
logical part of the reasoning system, and the last two as the control part
of the system.

Before showing how an intelligent reasoning system is designed, let
us first see its opposite — that is, a reasoning system designed under the
assumption that its knowledge and resources are sufficient to answer
the questions asked by its environment (so no adaptation is needed).
By definition, such a system has the following properties:

1. No new knowledge is necessary. All the system needs to know
to answer the questions is already there at the very beginning,
expressed by a set of axioms.

2. The axioms are true, and will remain true, in the sense that they
correspond to the actual situation of the environment.

3. The system answers questions by applying a set of formal rules
to the axioms. The rules are sound and complete (with respect to
the valid questions), therefore they guarantee correct answers for
all questions.

4. The memory of the system is so big that all axioms and interme-
diate results can always be stored within it, and so effective that
any content can be retrieved faithfully whenever needed.

5. There is an algorithm that can carry out any required inference
in finite time, and it runs so fast that it can satisfy all time re-
quirements attached to the questions.

This is the type of system dreamed of by Leibniz, Boole, Hilbert,
and many others. It is usually referred to as a “decidable axiomatic
system.” The attempt to build such systems has dominated the study
of logic for a century, and has strongly influenced the research of AI.
Many researchers believe that such a system can serve as a model of
human thinking.

However, if intelligence is defined as “to adapt under insufficient
knowledge and resources,” what we want is the contrary, in some sense,
to an axiomatic system, though it is still formalized or symbolized in a
technical sense. That is why Non-Axiomatic Reasoning System, NARS
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for short, is chosen as the name for the intelligent reasoning system to
be introduced in this book.

2.3 Major design issues of NARS

Before going into detailed formal descriptions of NARS in the chapters
of Part II, this section provides an informal introduction to the major
design issues of the system. For each topic, the problem is summarized
first, then the solution provided in NARS is briefly described. Full dis-
cussions and comparisons with other approaches will be given in Part
III of the book, because the NARS solutions to many problems are
provided by multiple components of the system.

2.3.1 Validity and rationality

A central issue of NARS is: when a system has to work with insufficient
knowledge and resources, what is the criteria of validity or rational-
ity? This problem is obviously related to Hume’s problem of induction
[Hume, 1748] — if the future is different from the past, how can we
predict the former by the latter?

This issue needs to be addressed, because the aim of NARS is to
provide a normative model for intelligence in general, not a descriptive
model of human intelligence. It means that what the system does should
be “the right thing to do,” that is, can be justified against certain simple
and intuitively attractive principles of validity or rationality.

In traditional logic, a “valid” or “sound” inference rule is one that
never derives a false conclusion (that is, it will be contradicted by
the future experience of the system) from true premises [Copi, 1982].
However, such a standard cannot be applied to a system that has to
work under AIKR, since by definition, such a system has no way to
guarantee the infallibility of its conclusions. On the other hand, it does
not mean that every conclusion is equally valid.

As discussed previously, since intelligence is a special kind of adap-
tation, and in an adaptive system the behavior is determined by the
assumption that the future experience will be similar to the past ex-
perience, in NARS a “valid conclusion” is one that is most consistent
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with the evidence in the past experience, and a “valid inference rule” is
one whose conclusions are supported by the evidence provided by the
premises used to derive them.

Furthermore, restricted by insufficient resources, NARS cannot ex-
haustively check every possible conclusion to find the best conclusion
for every given task. Instead, it has to settle down with the best it can
find with available resources.

In this sense, NARS can also be called an “adaptive reasoning sys-
tem,” whose central principle of rationality is “to predict the (unknown)
future according to the (experienced) past, and to satisfy the (poten-
tially infinite) resource request with the (actually finite) resources sup-
ply.”

The following components are designed according to this principle.

2.3.2 Semantics

As was stated earlier, semantics studies how the items in a language
are related to the environment in which the language is used.

Model-theoretic semantics is the dominant theory in the semantics
of formal languages. For a language L, a model M consists of the rel-
evant part of some domain described in another language ML, and an
interpretation I that maps the items in L onto the objects in the domain
(labeled by words in ML). ML is referred to as a “meta-language,”
which can be either a natural language, like English, or another formal
language.

Given the above components, the meaning of a term in L is defined
as its image in M under I, and whether a sentence in L is true is
determined by whether it is mapped by I onto a “state of affairs” that
holds in M. For a reasoning system, valid inference rules are those that
always derive true conclusions from true premises.

With insufficient knowledge and resources, what relates the lan-
guage L, used by a system R, to the environment is not a model, but
the system’s experience. For a reasoning system like NARS, the experi-
ence of the system is a stream of sentences in L, provided by a human
user or another computer.

In such a situation, the basic semantic notions of “meaning” and
“truth” still make sense. The system may treat terms and sentences
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in L, not solely according to their syntax (shape), but in addition taking
into account their relations to the environment, according to the sys-
tem’s experience. Therefore, What we need is an experience-grounded
semantics.

Under AIKR, NARS should not (and cannot) use “true” and “false”
as the only truth values of sentences. To handle conflicts in experience
properly, we need to determine what counts as positive evidence in
support of a sentence, and what counts as negative evidence against it,
and in addition we need some way to measure the amount of evidence
in terms of some fixed unit. In this way, a truth value will simply be a
numerical summary of available evidence.

Similarly, the meaning of a term (or word) is defined by the role
it plays in the experience of the system, that is, by its relations with
other terms, according to the experience of the system.

As was mentioned above, “experience” in NARS is represented in
L, too. Therefore, in L the truth value of a sentence, or the meaning
of a word, is defined by a set of sentences, also in L, with their own
truth values and meanings — which seems to have led us into a circular
definition or an infinite regress.

The way out of this seeming circularity in NARS is “bootstrapping.”
In the following, I will first define a very simple subset of the language,
with its semantics. Then, I will use it to define the semantics of the
whole language.

As a result, the truth value of statements in NARS uniformly rep-
resents several types of uncertainty, such as randomness, fuzziness, and
ignorance. The semantics specifies how to understand sentences in the
language, and provides justifications for the inference rules.

2.3.3 Grammar and inference rules

When presenting NARS, I take a path that is opposite to the usually
accepted one. Instead of first defining a language formally, then attach-
ing a semantics to it, I analyze the desired semantics first (guided by
my working definition of intelligence), then analyze the language that
can support such a semantics. The advantage of such an approach is
argued in [Ellis, 1993].

From the previous discussion, we can see that what NARS needs
is a language in which the meaning of a term is represented by its
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relation with other terms, and the truth value of a sentence is de-
termined by available evidence. For these purposes, the concept of
(positive or negative) evidence should be naturally introduced into
the language. Unfortunately, the most popular formal language used
in First-Order Predicate Logic does not satisfy the requirement, as
revealed by the “Confirmation Paradox” [Hempel, 1943].2 A traditional
rival to predicate logic is known as term logic. Such logics, exemplified
by Aristotle’s Syllogistic, have the following features: [Bocheński, 1970,
Englebretsen, 1981]

1. A typical sentence is categorical, which consists of a subject term
and a predicate term, related by a copula intuitively interpreted
as “to be.”

2. A typical inference rule is syllogistic, which takes two sentences
that share a common term as premises, and from them derives a
conclusion formed by the other two terms.

Traditional term logic has been criticized for its poor expressive
power. In NARS, this problem is solved by introducing various types
of compound terms into the language, to represent sets, intersections,
differences, products, images, statements, and so on.

The inference rules in this extended term logic carry out inheritance-
based inference. Basically, each of them indicates how to use one item
as another one, according to the experience of the system. Different
rules correspond to different combinations of premises, and use different
truth-value functions to calculate the truth values of the conclusions
from those of the premises, justified according to the semantics of the
system.

The inference rules in NARS uniformly carry out choice, revision,
deduction, abduction, induction, exemplification, comparison, analogy,
compound term composition and decomposition, and so on.

2.3.4 Inference control

Under AIKR, NARS cannot guarantee to process every task perfectly
— with insufficient knowledge, the best way to carry out a task is

2This issue will be discussed in detail in Section 9.2.2.
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unknown; with insufficient resources, the system cannot exhaustively
try all possibilities.

Since NARS still needs to do its best in this situation, its solution
is to let the items and activities in the system compete for the limited
resources. Again, the validity of the resource allocation policy is justified
according to the past experience of the system (rather than its future
experience), and the aim is to satisfy the goals of the system as much
as possible.

In the system, different data items (task, belief, or concept) have
different priority values attached, according to which the system’s re-
sources are distributed. These values are determined according to the
past experience of the system, and are adjusted according to the change
of situation.

A special data structure is developed to implement a probabilistic
priority queue with a limited storage. Using it, each access to an item
takes roughly a constant time, and the accessibility of an item depends
on its priority value. When no space is left, items with low priority will
be removed.

The memory of the system contains a collection of concepts, each
of which is identified by a term. Within the concept, all the tasks and
beliefs (i.e., pieces of knowledge) that have the term as subject or pred-
icate are collected together.

The running of NARS consists of individual inference steps. In each
step, a concept is selected probabilistically (according to its priority),
then within the concept a task and a belief are selected (also proba-
bilistically), and the applicable inference rules take the task and the
belief as premises to derive new tasks and beliefs, which are added into
the memory.

The system runs continuously, and interacts with its environment all
the time, without stopping at the beginning and ending of each task.
The processing of a task is interwoven with the processing of other
existing tasks, so as to give the system a dynamic and context-sensitive
character.




