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Preface

This volume contains a large fraction of the papers presented at a symposium on
Computational Approaches to Disperse Multiphase Flow, sponsored by the Interna-
tional Union of Theoretical and Applied Mechanics and generously supported by the
Office of Basic Energy Sciences of the US Department of Energy. The symposium,
which attracted about 90 participants from fifteen different countries, was held at Ar-
gonne National Laboratory on October 4–7, 2004. There were 48 oral presentations
and an additional 17 poster papers.

Together with experiment and theory, computation has been for a long time an in-
tegral component of multiphase flow research. A striking feature common to most pa-
pers presented at the symposium was the power, maturity and sophistication reached
by this approach.

A few papers conclusively demonstrate that, for some problems, computing is the
only means by which key physical phenomena can be elucidated. A prime example
is the analysis of Leonardo’s paradox, i.e., the instability of the rectilinear path of
an ascending bubble. The explanation of the phenomenon rests on computations in
which the bubble shape is constrained to remain spheroidal with a varying eccent-
ricity – not a situation amenable to experiment, but a key step in understanding the
physics. Another case in point is the study of the detailed action of surfactants at the
surface of a rising bubble. While the general physical mechanism at work has been
known for some time, this is the first visualization of the microphysical processes
acting at the bubble surface and their impact on the local flow field.

It is also interesting to realize that computation may be the key to interpreting
experimental results. A striking example is offered by the study of the sudden ex-
posure of a liquid drop to an incident Mach-3 flow. High-speed video recordings of
experiments present an extremely complex interaction of shocks and drop deform-
ation which it would be next to impossible to unravel without simulation results,
themselves rendered possible by very sophisticated numerics.

New algorithms and new problems begin to leave their mark. The progress of
lattice-Boltzmann methods was demonstrated by many papers in which they are used
for modeling over a range of scales, from single particles to suspensions and fluid-
ized beds. Several papers described new methods to simulate thousands of extended
particles in Navier–Stokes flows, simulations which could hardly have been imagined
just a few years ago. At the other end, molecular dynamics proves useful to elucidate
phenomena, such as contact line motion and metastable nano-bubbles, which have
eluded a full understanding for decades. Interesting problems and methods also arise

ix



x Preface

at the intermediate scale, between micro and macro, a good example being the direct
numerical simulation of the Brownian motion of particles.

Many of the papers contained in this volume address more traditional topics in
computational multi-phase flow in which research continues apace: point-particle
models in turbulence, both DNS and LES, stochastic methods, free-surface flows
treated with diffuse- or sharp-interface algorithms. While this type of studies has
been ongoing for some years, progress is still rapid at the level of both algorithms
and physical understanding.

A special lecture, which unfortunately could not be included in this volume, was
given by Gad Hetsroni. His presentation ranged from some historical notes on boil-
ing, dating back to the Bible and Homer, to reflections on scientific progress in boil-
ing research, to recent statistics on papers published in the International Journal of
Multiphase Flow. The opening lecture, which could not be included here either, was
given by John Hinch, who discussed of the scaling of velocity fluctuations induced
by sedimenting particles. The closing lecture, included in this volume, was given by
Daniel Joseph, who presented numerical results on particle migration in Poiseuille
flows. He also gave a personal summary of the current status of high-end scientific
computating in multiphase flow as presented at the symposium and conclued on a
high note as to the bright future for Computational Multiphase Flow.

The symposium made two points abundantly clear. In the first place, computa-
tional multiphase flow suscitates a strong interest in the fluid mechanics community
– a heartening corollary being the high quality of much of the work in this field.
Secondly, it was extremely gratifying – and perhaps even somewhat surprising –
to gain such a palpable appreciation of the maturity of the field, its impressive de-
velopments, and the level of complexity and detail that progress in hardware and
algorithms currently permit. It is hard to imagine that an external observer coming
to the meeting with misgivings about the usefulness of computing would have left
nurturing the same doubts.

Together with the enhanced appreciation of the role of computing, it is wise to
always keep firmly in mind the other two legs of progress in science – theory and
experiment. This is all the more true in multiphase flow in which we are still faced by
problems of such magnitude and complexity that it would be unrealistic to imagine
solving by computing alone.

In conclusion, we wish to express our gratitude to the International Union of
Theoretical and Applied Mechanics for sponsoring this symposium, and to Dr.
Timothy Fitzsimmons, Materials Sciences and Engineering Division, Office of Basic
Energy Sciences, US Department of Energy, for the Department’s generous support.1

Urbana and Baltimore S. Balachandar
November 2005 A. Prosperetti

1 The preparation of this volume has been supported in part by the ASCI Center for the
Simulation of Advanced Rockets through DOE subcontract B341494 (S.B.), and by NSF
grant CTS-0210044 (A.P.).



PART I

POINT PARTICLE APPROACH



An Updated Classification Map of Particle-Laden
Turbulent Flows

Said Elghobashi

Department of Mechanical and Aerospace Engineering, University of California,
Irvine, CA 92697, USA

1 Introduction

The classification map of particle-laden turbulent flows shown in Figure 1, originally
proposed by Elghobashi [4] and slightly modified by Elghobashi [5], was based on
the experimental and direct numerical simulation (DNS) data available at the time.
However, recent DNS results of particle-laden isotropic turbulence [8] now provide
sufficient details to update a small region in the map. The purpose of this short paper
is to describe the updated map.

It should be noted that the map covers a wide-range of particle-laden turbulent
flow regimes, most of which are not fully understood at present. The statements made
by Elghobashi [5] about the challenges facing the attempts of numerically predicting
particle-laden turbulent flows are still valid today. Thus, it is expected that the map
will be further updated when new reliable data become available.

2 Description of the original map

Figure 1 shows the classification map of Elghobashi [5]. The quantities appearing on
the dimensionless coordinates are defined below.

φ : volume fraction of particles, φ = NVp/V

N : total number of particles in the flow

Vp : volume of a single particle

V : total volume occupied by particles and fluid

d : diameter of particle

τp : particle response time = ρpd
2/(18ρf ν) for Stokes flow, and

τk : Kolmogorov time scale = (ν/ε)1/2

In the above definitions, ρ is the material density and the subscripts p and f denote
respectively the particle and carrier fluid. ν is the kinematic viscosity of the fluid, and

3
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S. Elghobashi

Fig. 1. Classification map of particle-laden turbulent flows.

ε is the dissipation rate of turbulence kinetic energy. For very small values of φ (≤
10−6), the particles have negligible effect on turbulence, and the interaction between
the particles and turbulence is termed as one-way coupling. This means that particle
dispersion depends on the state of turbulence but due to the negligible concentration
of the particles in this regime, the momentum exchange between the particles and the
turbulence has an insignificant effect on the flow. In the second regime, 10−6 < φ ≤
10−3, the momentum exchange between the particles and turbulence is large enough
to alter the turbulence structure. This interaction is called two-way coupling. Now, in
this regime and for a given value of φ, there are two zones (A and B), depending
on the ratio τp/τk , where the transition from A to B occurs at about τp/τk = 10.
In zone A, the particle Reynolds number, Rp is ≤ 1, but within the range 0.01 ≤
(τp/τk) ≤ 10 and for a fixed φ, our recent DNS results [8] show that the effects of
the particles on the turbulence vary significantly as a function of (τp/τk), as depicted
in Figure 2 and discussed later. In zone B, as τp increases (e.g. by increasing the
particle diameter) for the same φ, the particle Reynolds number increases, and at
values of Rp ≥ 400, vortex shedding takes place resulting in enhanced production
of turbulence energy. In the third regime, because of the increased particle loading,
φ > 10−3 , flows are referred to as dense suspensions. Here, in addition to the two-
way coupling between the particles and turbulence, particle/particle collision takes
place, hence the term four-way coupling. As φ approaches 1, we obtain a granular
flow in which there is no fluid.

4



An Updated Classification Map of Particle-Laden Turbulent Flows

Fig. 2. Classification map of particle-laden turbulent flows. Details of Zone A.

Table 1. Flow parameters (dimensionless) at initial time (t = 0), injection time (t = 1), and
for case A at time t = 5.

t u0 ε l λ η Rel Reλ l/η τk τl

0.0 0.0503 7.4×10−4 0.0684 0.0345 0.00202 150 75 33.8 0.177 1.36
1.0 0.0436 9.8×10−4 0.0685 0.0259 0.00188 129 49 36.4 0.154 1.57
5.0 0.0233 2.0×10−4 0.0891 0.0305 0.00280 90 31 31.9 0.338 3.83

The line separating the two-way and four-way coupling regimes is inclined to
indicate the tendency of particle-particle collision to take place at higher values of
τp/τk , thus transforming the two-way to four-way coupling regime even for φ <

10−3.
The dispersion of particles and their preferential accumulation in unconfined

homogeneous turbulent flows with one-way coupling are reasonably understood
[1, 6–8]. On the other hand, flows in the two-way or four-way coupling regimes
are still challenging and require more reliable, detailed experimental and numerical
studies to improve their understanding.

We restrict the present discussion to isothermal incompressible flows without
phase changes (e.g. vaporization) or chemical reaction. Also, the effects of particle-
particle or particle-wall collisions are not considered here.

5
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Table 2. Particle properties (dimensionless) at injection time (t = 1) with φ = 10−3 and
φm = 1.0 (for ρp/ρ = 1000).

Case τp τp/τl τp/τk d d/ l d/η d (µm) Mc Mr/Mc Rep,max vt /u
∗
0

A – – – – – – – – 0 –
B 0.0154 0.0098 0.1 0.80×10−4 0.00117 0.043 30 80 × 106 46.7 0.11 0.0
C 0.0385 0.0245 0.25 1.26×10−4 0.00185 0.067 47 80 × 106 11.8 0.31 0.0
D 0.1540 0.0979 1.0 2.53×10−4 0.00369 0.134 94 80 × 106 1.5 1.34 0.0
E 0.7700 0.4895 5.0 5.66×10−4 0.00825 0.300 211 10.6 × 106 1.0 5.33 0.0
F 0.0385 0.0245 0.25 1.26×10−4 0.00185 0.067 47 80 × 106 11.8 0.32 0.25

3 Recent DNS results of particle-laden isotropic turbulence

Ferrante and Elghobashi [8] performed DNS of particle-laden isotropic turbulence
with higher resolution (Reλ = 75) and a considerably larger number (80 million) of
particles in comparison to the previous DNS studies [2, 3, 7, 10, 11]. We studied six
cases to understand how particles with different inertia, τp, modify the decay rate
of isotropic turbulence in both zero- and finite-gravity conditions. The Lagrangian
equation of particle motion included only the forces due to Stokes drag and buoyancy.
The fluid velocity at the particle location was computed via a fourth-order accurate
three-dimensional Hermite cubic interpolation polynomial. The flow parameters are
shown in Table 1, and the particle properties are shown in Table 2. These two tables,
which are copied from [8], include more information than required for the present
paper. The definitions of the additional quantities therein are available in [8] and thus
will not be repeated here. Case A represents the particle-free flow, whereas cases B-E
represent particle-laden flows with different inertia particles in zero gravity, and case
F represents the particle-laden flow in finite gravity. It is important to note that all five
cases (B-F) of particle-laden turbulence have the same volume fraction of particles,
φ = 10−3, and the same mass loading ratio φm = 1.0 (for ρp/ρ = 1000), and
thus the differences between the resulting modifications of turbulence in these cases
are only due to the different values of (τp/τk). We changed the particle diameter
for each case to obtain a different ratio (τp/τk) of the particle response time to the
Kolmogorov time scale at the injection time, e.g. τp/τk = 0.1 in case B, and τp/τk =
5.0 in case E. The effects of gravity are studied in case F where τp/τk = 0.25 (as in
case C) and vt /u∗0 = 0.25, where vt is the terminal velocity (vt = g τp) of the particle
and u∗0 is the rms velocity of the surrounding fluid at the injection time, and gravity
is in the negative x3 direction. However, the non-zero gravity effects are not included
in the map since that would require a third axis for the ratio (vt /u∗0), rendering the
current two-dimensional map three-dimensional. At present, the experimental and
numerical data necessary for that extension are not available.

More details about the governing equations and numerical solution method are
given in [8].

6



An Updated Classification Map of Particle-Laden Turbulent Flows

Fig. 3. Time development of the turbulence kinetic energy.

4 Time evolution of turbulence kinetic energy

Figure 3 shows the temporal evolution of the turbulence kinetic energy
(TKE)normalized by its initial value, E(t)/E0, for the zero gravity cases (A-E). The
microparticles (case B), with τp/τk < 0.25, initially (1 < t ≤ 2.1), reduce the decay
rate of TKE resulting in TKE being larger than that of case A at all times, whereas
particles with higher inertia (critical particles, case D, and large particles, case E),
τp/τk > 0.25, initially enhance the TKE decay rate considerably resulting in TKE
being smaller than that of case A at all times. Figure 3 also shows that particles with
τp/τk = 0.25 (case C) keep TKE nearly identical to that of case A at all times, with
a percentage difference smaller than 0.6%. Thus we name the particles in case C
‘ghost’ particles, since their effects on the turbulence cannot be detected by TKE’s
temporal behavior, E(t). However, as we will discuss later (Figure 4), these ‘ghost’
particles do modify the spectrum E(κ) of TKE. Figure 3 shows that at time t = 5,
in comparison to TKE in case A, TKE in case B is larger by more than 5%; TKE in
case C is nearly identical; TKE in case D is smaller by about 13%, and TKE in case
E is smaller by about 30%.

The effects of gravity on the time evolution of TKE are described in [8].

4.1 Energy spectrum

Figure 4 shows the three-dimensional energy spectra E(κ) for the five cases A-E at
time t = 5. Microparticles (case B) increaseE(κ) relative to case A at wavenumbers
κ ≥ 12, and reduce E(κ) relative to case A for κ < 12, such that

∫
E(κ)dκ ≡ TKE

7
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Fig. 4. Three-dimensional spatial spectrum of energy E(κ) at t = 5.0.

in case B is larger than in case A as shown in Figure 3. For ‘ghost’ particles (case C),
although E(t) is nearly identical to that of case A at all times (Figure 3), it is clear in
Figure 4 that the energy spectrum in case C differs from that in case A such that its
integral, TKE, is nearly identical to that of case A. Figure 4 shows that ghost particles
reduce E(κ) relative to that of case A for κ < 15 and increase it above that of A for
κ ≥ 15 . Critical particles (case D) increase E(κ) above that of case A for κ ≥ 27
and reduce it for smaller wavenumbers. In this case (D) the modulation of E(κ) is
such that its integral, TKE, is smaller than in case A (Figure 3). Large particles (case
E) contribute to a faster decay of TKE by reducing the energy content at almost
all wavenumbers, except for κ > 87 where a slight increase of E(κ) occurs. The
physical mechanisms responsible for the above observations are discussed in detail
in [8] and thus will not be repeated here. Only a brief description of the different
cases relevant to the map is given below.

4.2 Microparticles (τp/τk � 1)

Microparticles (case B) behave almost like flow tracers because their response time,
τp, is much smaller than the Kolmogorov time scale, τk , but since their material
density, ρp, is much higher than that of the carrier fluid, ρ, they cause the fluid
to behave like a ‘heavy gas’ [9]. Our DNS results [8] show that the microparticles
increase both TKE and ε relative to their values in single-phase flows.

8
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4.3 Critical particles (τp/τk ≈ 1)

We label the particles in case D (τp/τk = 1) ‘critical’ particles because of their
property of maximum preferential accumulation in comparison to other particles.
The main characteristic of these critical particles is that they are ejected from the
cores of the smallest vortical structures (of a size nearly equal to the Kolmogorov
length scale) and remain orbiting around their peripheries, leaving these structures
free of particles. Since these structures are subjected to the largest strain rates, they
control the viscous dissipation rate, ε, of TKE. Consequently, the dissipation rate,
ε, in this case is nearly identical to the single-phase case A. However, due to their
significant inertia, the critical particles’ two-way coupling force reduces TKE relative
to that of case A.

4.4 ‘Ghost’ particles (0.1 < τp/τk < 0.5)

It is clear from Figure 3 and the above discussion that in comparison to the particle-
free flow (case A), microparticles (case B, τp/τk = 0.1) reduce the decay rate of
TKE, and critical particles (case D, τp/τk = 1.0) enhance that rate. These two op-
posing effects in cases B and D lead us to search for particles which have a ‘neut-
ral’ effect on that decay rate. More specifically, we searched for particles whose
τp is in the range 0.1 < τp/τk < 1.0 and which maintain the decay rate of TKE
as that of the particle-free flow (case A). Our DNS results show that particles with
τp/τk = 0.25 (case C) satisfy this condition at all times, as shown in Figure 3. As
mentioned above, these particles are ‘ghost’ particles because their presence in the
flow cannot be detected by examining only the temporal development of TKE. It is
important to emphasize that the value of τp/τk = 0.25 is not universal but depends
on Reλ0 , φm and the magnitude of the gravitational acceleration (zero in our case).
However, the significance of this finding is that dispersed particles are capable of
modifying the turbulence energy spectrum (Figure 4) in such a unique way that the
amount of energy gained by the turbulence at high wave numbers balances exactly
the amount of energy lost at low wave numbers, with the net result of retaining the
integral of the spectrum equal to that of the particle-free flow at all times (Figure 3).

4.5 Large particles (τp/τk > 1)

Large particles (case E) here denote particles whose response time, τp, is larger
than the Kolmogorov time scale, τk . Because of their large τp, large particles do
not respond to the velocity fluctuations of the surrounding fluid as quickly as mi-
croparticles do but rather ‘escape’ from their initial surrounding fluid, ‘crossing’ the
trajectories of the fluid points [6, 12]. Whereas microparticles remain ‘trapped’ in
the vortical structures of their initial surrounding fluid, large particles are ‘ejected’
from these structures. The net result is the reduction of E(κ) in case E at nearly all
wave numbers relative to case A (Figure 4), thus reducing both TKE and ε relative
to the single-phase flow.

9
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5 The updated map

The results discussed above provide new information about the behavior of the turbu-
lence kinetic energy (TKE) and its dissipation rate (ε) in Zone A of the classification
map in Figure 1. Figure 2 shows the new details of Zone A in the updated map which
includes three regions:

• Microparticles (τp/τk ≤ 0.1) cause both TKE and its dissipation rate, ε, to be
larger than in the single-phase flow.

• Ghost particles (0.1 < τp/τk < 0.5) modify the energy spectrum E(κ) in a way
such that TKE is unchanged but ε is larger than that of the single-phase flow.

• Critical particles (τp/τk ≈ 1) reduce TKE but keep ε unchanged relative the
single-phase flow.

• Large particles (τp/τk > 1) reduce both TKE and ε relative to their values in the
single-phase flow.
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Abstract. Large-Eddy Simulation (LES) and Discrete Particle Simulation (DPS) are used to
highlight effects of fluid-particle and particle-particle interactions on dispersed-phase trans-
port in fully-developed turbulent channel flow. A range of particle Stokes numbers in the
simulations are considered that lead to strong changes in particle response. In the absence of
inter-particle collisions, the calculations illustrate the characteristic build-up of particles in the
near-wall region. While mean shear in the carrier and dispersed phase velocities is an import-
ant effect in wall-bounded flows, LES/DPS results show that the particle velocity fluctuations
in the wall-normal direction are controlled primarily by the drag force and in equilibrium with
the corresponding components of the fluid-particle velocity correlation. Inter-particle colli-
sions provide a redistribution mechanism that reduces the strong anisotropy of the particle ve-
locity fluctuations and substantially elevates cross-stream transport. Spatial properties of the
particle velocity field are examined using two-point correlations. The correlation functions
are discontinuous at the origin and are consistent with a partitioning of the particle velocity by
inertia into a spatially-correlated contribution and random component that is not correlated in
space. Perspectives and implications of these findings are also discussed.

1 Introduction and overview

Turbulent flows laden with dense particles or droplets occur in a large number of
engineering and environmental systems. Examples include coal combustors, chem-
ical reactors, semiconductor processing devices, pneumatic transport and processing
systems, and atmospheric dispersion of pollutants. The flows within these systems
are complex due to the presence of a wide range of turbulent scales in the continuum,
in addition to the dispersed particulate phase.

The presence of a dispersed phase of heavy particles introduces several new para-
meters over those used to characterize single-phase turbulent flows. The relevant
timescales, for example, include the particle response time, the inter-particle colli-
sion time, and for wall-bounded flows a timescale that could be used to characterize
particle-wall collisions. The values of these timescales compared to the appropriate
fluid flow timescales has generally been thought to indicate the relative importance
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of a given effect. The complexity of gas-solid turbulent flows, however, limits the
utility of simple scaling arguments that might be applied to predict the dominance of
a particular phenomena in a new flow regime.

The complex features of multi-phase flows in general and particle-laden flows in
particular motivates the application of numerical simulations that enable detailed
investigation. Further, for the practical applications in which these flows are en-
countered statistical models that require substantial empirical input will continue
to form the basis for engineering prediction. This further motivates numerical simu-
lation strategies that can be used not only to study fundamental processes but also to
supply results for evaluation of engineering turbulence models.

The focus of the present contribution is on the application of computations to
study dispersed-phase transport in wall-bounded turbulent shear flows. The main
objective is to highlight specific aspects of fluid-particle and particle-particle inter-
actions that illustrate the complex features of dispersed-phase motion in gas-solid
flows. The computational approach is based on Large-Eddy Simulation (LES) of
fully-developed turbulent channel flow for the gas and Discrete Particle Simulation
(DPS) of the dispersed phase. Following an overview of the simulations, single-point
statistical measures of the particle motion are presented. Spatial characteristics from
recent investigations of the particle velocity field are then summarized. The paper is
concluded with a summary and perspectives developed from these studies.

2 Approach

2.1 Particle equation of motion

The computations consider dilute gas-solid flows for which the dispersed-phase
volume fraction αp = npmp/ρp, is negligible where np is the particle number
density, mp the particle mass, and ρp the particle density. The particle diameter dp
is small compared to the smallest turbulent length scales of the undisturbed fluid
flow, though owing to the large particle density ρp relative to the fluid value ρf , the
particle response time is large compared to the Kolmogorov timescale of the undis-
turbed flow.

The effect of particle momentum exchange on properties of the fluid flow are
neglected and the volume force induced by the surrounding fluid flow on the particles
reduces to the drag. The equation of motion for a single particle is written as

dvp,i

dt
= −3

4

ρf

ρp

CD

dp
|vr |vr,i , (1)

where vp,i is the ith component of the particle velocity and vr,i is the particle relative
velocity,

vr,i = vp,i − ũf,i , CD = 24

Rep
(1 + 0.15Re0.687

p ) , Rep = |vr |dp
νf

, (2)
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where νf is the molecular viscosity of the fluid and ũf,i is the undisturbed fluid ve-
locity at the location of the particle. As shown in (2), the correlation for the drag
coefficient from Schiller and Nauman [5] is introduced to extend the Reynolds num-
ber range of the drag force.

2.2 LES and DPS of turbulent channel flow

The fully-developed particle-laden turbulent flow between plane, parallel walls is
predicted using Large-Eddy Simulation (LES) for the carrier phase and Discrete
Particle Simulation for the dispersed phase. The Reynolds number based on the fric-
tion velocity uτ and channel halfwidth δ is Reτ = 180. The dimensions of the chan-
nel are 4πδ in the streamwise (x or x1), 4πδ/3 in the spanwise (z or x3), and 2δ in
the wall-normal (y or x2) directions. Periodic boundary conditions are applied to the
dependent variables in the streamwise and spanwise dimensions and no-slip bound-
ary conditions to the fluid velocity at the channel walls. The subgrid stress arising
from the filtering of the Navier–Stokes equations is closed using an eddy viscosity
model.

The equations governing the fluid flow are solved using a fractional step method
on a staggered mesh comprised of 643 cells. Spatial derivatives are approximated
using second-order accurate central differences. The grid spacing is uniform in the x
and z directions with the corresponding grid spacings in wall units �x+ = 35 and
�z+ = 12, respectively. The wall-normal mesh is clustered near the solid surfaces
and stretched away from the wall using a hyperbolic tangent function. The discretized
system is advanced in time using an implicit/explicit scheme (Crank–Nicholson and
second-order Adams–Bashforth).

The fluid flow is not influenced by momentum exchange with the particles and the
(undisturbed) fluid velocity ũf,i required in (1) is the value interpolated to the particle
position that is computed in the LES, representing the spatially-filtered (volume aver-
aged) solution of the Navier–Stokes equations. The neglect of turbulence modulation
is a strong assumption though not incompatible with the present approach of using
the simulations to isolate effects.

The influence of subgrid-scale transport on particle motion is not considered,
which should be a reasonable assumption given the filtering by particle inertia of
the smaller-scale, high-frequency components of the subgrid fluid velocity (e.g., see
[10]). However, the neglect of subgrid transport restricts the parameter range of the
current calculations to moderate Reynolds numbers for which there is a relatively
weak effect of the unresolved motions on the resolved scales. In other regimes such
as very small particle response times, the errors introduced by transporting the partic-
ulate phase by a filtered fluid velocity should be significant and will require models
of the subgrid velocities on particle motion. In boundary layers, subgrid modeling
of the fluid velocities viewed by the particles will depend on, among other factors,
the distance from the wall and for small Stokes numbers be important to problems of
particle deposition and wall collisions.

Statistics are presented for three particle Stokes numbers, St = τps/(δ/uτ ),
where τps is the Stokes relaxation timescale of the particle. For all simulations
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Table 1. Particle parameters for turbulent channel flow, Reτ = 180. The particle diameter
for each case is one viscous unit, d+p = 1. The Stokes time constant in viscous units, τ+ps =
τpsReτ where τps is the Stokes response time.

ρp/ρf 527 2106 8424
St 0.1625 0.65 2.60
τ+ps 29 117 468

(a) (b)

Fig. 1. Mean number density for St = 0.1625, St = 0.65, and St = 2.60; (a) without inter-
particle collisions, (b) including particle-particle collisions.

the particle diameter was specified as one viscous unit and therefore the variation
in the Stokes number is achieved via a variation in the density ratio, as summar-
ized in Table 1. The particle response times are chosen so that the lightest particles
(St = 0.1625) follow reasonably well the scales of carrier-phase motion resolved in
the LES while the particles with St = 2.60 are the most sluggish in their response to
the turbulent fluid velocity fluctuations.

Properties of the dispersed phase are obtained by following the trajectories of
1 × 105 particles, corresponding to an average number density of 950 particles per
unit volume, equivalent to a dispersed-phase volume fraction of 8.5×10−5. A particle
is assumed to contact the smooth channel walls when its center is one radius from the
wall. Elastic rebound is imposed for particles colliding with the wall. For computa-
tions that account for inter-particle collisions, binary, elastic collisions are assumed
between particles. The algorithm for collision detection is described in [8].

3 Results

3.1 Single-point statistics

Shown in Figure 1 are profiles of the mean number density, cases without inter-
particle collisions illustrated in Figure 1a and including particle-particle collisions
in Figure 1b. The flows without inter-particle collisions exhibit an accumulation of
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(a) (b)

Fig. 2. Wall-normal components of the fluid-particle (Rfp,22, shown by lines) and particle
(Rp,22, shown by symbols) velocity correlations; (a) without inter-particle collisions, (b) in-
cluding particle-particle collisions. , ◦ St = 2.60; , � St = 0.65; ,

St = 0.1625.

particles in the near-wall region, a well-known effect observed in many previous
computations that do not include inter-particle collisions (e.g., see [4, 6, 7]). Changes
in wall-normal (“radial”) transport across the channel induced by inter-particle col-
lisions leads to a more uniform number density profile, as shown in Figure 1b. For
the smallest Stokes number St = 0.1625, the number density peaks near the wall,
as observed in the profile without inter-particle collisions, though is less pronounced
compared to the non-colliding case. Increases in the Stokes number lessen the non-
uniformity in the distribution and Figure 1b shows that the number density profile is
nearly uniform for St = 2.60.

Shown in Figure 2 are profiles of the wall-normal components of the particle
kinetic stress Rp,22 = 〈v′p,2v′p,2〉p where 〈·〉p indicates an average over the dis-
persed phase. Also plotted are the corresponding components of the fluid-particle
velocity correlation, Rfp,22 = 〈̃u′f,2v′p,2〉p . For the flows without inter-particle col-
lisions depicted in Figure 2a, the particle kinetic stress and fluid-particle correlation
are nearly equal. This equivalence in the flows without collisions reflects the fact
that the particle velocity fluctuations in the wall-normal direction (and spanwise dir-
ection, not shown) are controlled by the drag force and in local equilibrium with the
turbulent fluid flow.

The effect of inter-particle collisions is to re-distribute the particle velocity vari-
ance amongst the three velocity components. In wall-bounded flows the anisotropy
of the particle velocity fluctuations in the near-wall region can be very large, espe-
cially in flows without inter-particle collisions (e.g., see [9]). Consequently, substan-
tial effects are observed in Figure 2b in the near-wall region with large increases in
the wall-normal kinetic stress, Rp,22, compared to the simulations that do not in-
clude particle-particle collisions. Further, Figure 2b also shows that the equilibrium
between the particle fluctuations and fluid-particle correlation that is observed in
the flows without inter-particle collisions is disrupted, i.e., Rp,22 and Rfp,22 are no
longer equal.
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(a) (b)

Fig. 3. Turbulent transport of the wall-normal particle velocity variance by the wall-normal
particle velocity, 〈v′

p,2v
′
p,2v

′
p,2〉p . The solid line in both frames is the corresponding com-

ponent of the fluid velocity triple correlation; (a) without inter-particle collisions, (b) including
particle-particle collisions.

Figure 3 displays the profiles of the wall-normal turbulent transport of the
wall-normal particle velocity variance, 〈v′p,2v′p,2v′p,2〉p. The wall-normal gradient
of 〈v′p,2v′p,2v′p,2〉p appears in the transport equation for the wall-normal velocity
variance and therefore the behavior of the triple correlation provides insight into
the changes observed in the particle velocity fluctuations. Figure 3a shows that in
the absence of inter-particle collisions, the triple velocity correlations are not large
and, consequently, effects of turbulent transport are weak (which is also consistent
with the relatively good agreement between Rp,22 and Rfp,22 discussed above). Fig-
ure 3b shows that in flows which include inter-particle collisions, turbulent transport
of the wall-normal velocity variance is substantially increased over that observed in
flows without particle-particle collisions. Thus, the elevated levels in the wall-normal
particle velocity variance from the near-wall region are transported by the fluctuat-
ing particle velocity to the core region of the channel. Similar features were also
observed by Caraman et al. [1] in experimental measurements of particle-laden pipe
flow.

3.2 Spatial properties of the particle velocity field

The results summarized above highlight aspects of dispersed-phase transport that are
efficiently studied using numerical simulation techniques such as Large-Eddy Sim-
ulation and Discrete Particle Simulation. The statistics highlighted in the previous
sections are single-point measures and are useful for understanding the effects of
fluid-particle and particle-particle interactions on dispersed-phase transport. Addi-
tional measures for assessing dispersed-properties require information at more than
a single point in the flow. Of particular interest to the present effort is the spatial
structure of the particle velocity field.

For decreasing Stokes numbers, particle motion follows more closely that of the
underlying carrier flow. While that notion is intuitive, also important to recognize
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Fig. 4. Fluid and particle velocity vectors in a portion of the centerplane of turbulent channel
flow. Fluid velocity vectors shown in blue, particle velocity streaks for St = 0.65 shown in red
and for St = 2.60 in black.

is that neighboring particle velocities will be correlated in space through the inter-
actions with the same local fluid flow. This effect is illustrated in Figure 4 which
shows fluid and particle velocity vectors for St = 0.65 and St = 2.60 in a por-
tion of the centerplane of the channel flow calculations described previously. For the
lower Stokes number the particle velocities follow somewhat closely the fluid vec-
tors and also exhibit, at least visually, a correlation in space. In contrast, for larger-
inertia particles, neighboring particle velocities should become uncorrelated since
these particles maintain stronger connection (memory) to their interactions with very
distant, and independent, turbulent eddies. This effect is also somewhat apparent for
St = 2.60 for which Figure 4 shows that the velocities of neighboring particles ap-
pear less correlated spatially than for St = 0.65 and the fluid. Of particular interest is
the impact of the structural features indicated by Figure 4 on the spatial correlation
of the particle velocity field.

Spatial correlations of the streamwise particle velocity with separations in the
streamwise and spanwise directions are shown in Figures 5a and 5b, respectively, for
St = 0.65. The correlations are in the plane y+ = 90 and from simulations without
inter-particle collisions. The correlations shown in Figure 5 are normalized (to unity)
by the corresponding single-particle velocity variance in the plane.

The general behavior of the spatial correlations is similar to the simulations of
particle-laden isotropic turbulence reported by Fevrier et al. [2] and measurements
in turbulent channel flow reported by Khalitov and Longmire [3]. Figure 5 shows
that the correlations for the lightest particles, St = 0.1625, are the closest to those
of the turbulent fluid flow, consistent with the low-inertia particles being the most
responsive to the local fluid velocity. For larger Stokes number the spatial correla-
tions exhibit greater departures from those of the carrier phase. As also observed by
Fevrier et al. [2] and Khalitov and Longmire [3], the correlations are discontinuous at
the origin. Fevrier et al. [2] have shown that this feature is consistent with a partition-
ing of the velocity by particle inertia into a component that is spatially-correlated and
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(a) (b)

Fig. 5. Streamwise (in (a)) and spanwise (in (b)) correlation functions of the streamwise ve-
locity in the plane y+ = 90. Normalization is by the single-particle streamwise velocity vari-
ance in the corresponding plane. Correlations shown from simulations without inter-particle
collisions. fluid; St = 0.1625; � St = 0.65; ◦ St = 2.60.

another component that is random and uncorrelated in space. The spatial correlations
show that the relative contribution of the random-uncorrelated velocity accounts for
a larger fraction of the particle fluctuating motion for increasing Stokes number.

4 Summary and perspectives

The present computations show that there can be a substantial effect of inter-particle
collisions on dispersed phase transport. The simulations show that re-distribution
of the particle kinetic energy by particle-particle collisions substantially increases
wall-normal (“radial”) transport. With increases in the Stokes number, particle col-
lisions have an increasingly significant effect with wall-normal profiles of the mean
number density becoming more uniform across the channel. In the calculations that
include colliding particles, the equilibrium between the particle-particle and fluid-
particle velocity correlations is disrupted, with increases in the wall-normal particle
fluctuating velocities compared to the cases without colliding particles. In general,
the agreement (or lack of) between the particle velocity variance and corresponding
component of the fluid-particle correlation is a useful diagnostic that could be used
in many simulations of gas-solid flows to assess the characteristics of the particle
fluctuating motion and its equilibrium with the local turbulent fluid flow.

That inter-particle collisions can cause substantial changes in dispersed-phase
statistics even in relatively dilute regimes is consistent with the increase of the
particle concentration near the walls of the channel and the very strong anisotropy
of the particle velocity fluctuations in the near-wall region. The relatively larger con-
centration of particles near the wall ensures higher collision rates in the region where
the redistribution effect of inter-particle collisions will be strongest. Effects of two-
way coupling, neglected in the present study, might be expected to damp the smaller
scales of the fluid motion, which would result in an effectively larger particle Stokes
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number. If true, then effects of inter-particle collisions might become even more pro-
nounced.

Simulation techniques such as LES/DPS offer a useful tool that complements
modeling strategies that solve an averaged set of equations, e.g., as currently em-
ployed in most practical engineering applications, and fully-resolved simulations of
the flow around a few particles. Fully-resolved simulations can be, and currently are
by a few groups, used to study specific aspects of the details of fluid-particle and
particle-particle interactions. Such simulations should benefit LES/DPS approaches
by improving the empirical input inherent in such computations. Two examples are
the parameterization of particle dynamics, i.e., the forces acting on a particle, and
subgrid modeling treatments in regimes that include effects of turbulence modula-
tion. Formulation of more accurate force models for quantities such as drag, particle
rotation, shear-induced lift, etc., for use in LES/DPS approaches could conceivably
be proposed based on results from fully-resolved computations. Two-way coupling
requires accurate subgrid models that are capable of taking into account the distor-
tion of the fluid flow by the particles. Fully-resolved calculations of particle-laden
flows would yield a database that could be used to test modeling hypotheses.

A wider range of applications for LES/DPS methods will also be possible with
further improvements in subgrid models for the fluid. At the relatively low Reynolds
numbers considered these modeling errors are not significant. In other regimes, e.g.,
substantially higher Reynolds numbers, subgrid modeling of wall-bounded flows re-
mains one of the principle problems in LES. Improvements to subgrid modeling for
fluid flow prediction will obviously enhance the accuracy of two-phase flow predic-
tions using LES/DPS methods.

The correlations of the particle velocity fields in channel flow are consistent with
the particle velocity being comprised of a spatially correlated contribution and a ran-
dom component that is not correlated spatially. As discussed in [2], an important
consequence is that in the large-inertia limit, the particle velocity distribution cannot
be assumed to correspond to a spatially-continuous velocity field. The implications
of these findings, as well as those reported in [2] and [3], also impact Eulerian-based
prediction of dispersed two-phase flows using techniques that attempt to resolve the
spatially-variable and time-dependent motions of the particulate phase. Such simu-
lation strategies should recognize that only the spatially-correlated motions of the
particle velocity field are computed from a set of field equations, given the fact that
the random-uncorrelated particle velocity component is not differentiable. It is im-
portant, therefore, to account in Eulerian-based prediction for the influence of the
random component of the particle velocity on the correlated motions. The equations
governing the correlated part of the particle velocity are developed in [2].
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1 Introduction

It is by now well known that turbulence, contrary to traditionally held views, can
demix a suspension of particles, segregating the particles into regions of high strain
rate. The process depends upon the ratio of the particle response time to the timescale
of the turbulent structures in the flow (i.e. the Stokes number), the maximum segreg-
ation occurring when this ratio ∼1. There have been numerous simulations and PIV
based measurements that have demonstrated this phenomenon in various types of
flows from simple homogeneous turbulent flow to turbulent boundary layers [1]. In
this regard, there have been four major areas of study where segregation and de-
mixing have played a vital role: (a) the deposition of particles in turbulent boundary
layers [2]; (b) droplet/particle coalescence in clouds which controls droplet size and
distribution and eventual rain fall [3]; (c) particle agglomeration in turbulent bound-
ary layers which leads to the formation of ropes; (d) two-way coupling between the
dispersed and continuous phases and in particular the generation and dissipation of
turbulence [4].

The work described here is part of a long term program on the formulation of
a PDF approach for modelling dispersed flows [5] that will take account of these
important effects of turbulent structures in a statistical manner. So for instance in
a continuum description of the dispersed phase, we would be addressing the way
particle interactions with turbulent structures influence the constitutive relations of
the dispersed phase, two-way coupling between phases and agglomeration where the
effect of of segregation is the most influential. The particular focus of the current
work is on a PDF formulation for two particle dispersion and follows on from early
work in developing a PDF approach for single particle transport [7]. Of particular
importance in the statistical formulation of this approach was the compressibility of
the particle flows along a particle trajectory i.e. the local divergence of the underlying
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particle velocity field. It has already been shown by Maxey [6] that the enhancement
of gravitational settling�vs in homogeneous stationary turbulence due to the biasing
of the particle motion in the direction of gravity is formally given by

�vs = −
∫ t

0
〈u′(x, t)∇ · v(x, t | s)〉ds, (1)

where u′(x, t) is the carrier flow fluctuating velocity and ∇ · v(x, t | s) is the diver-
gence of the particle velocity field v(x, t) along a particle trajectory at time s which
passes through x at time t . The biasing of the particle trajectory is reflected in the
value of the compressibility though whether it represents a negative contribution or
+ve contributions depends upon the preferential sweeping of the trajectories them-
selves. We note that the result does not explicitly contain gravity and is a formal
result that applies to turbulence in general whether gravity is present or not. So it has
a finite value in inhomogeneous turbulence especially in near wall turbulence con-
tributing to the net drift velocity of particles towards the wall and at equilibrium to
the build up of concentration. It also contributes to the particle diffusion coefficient
so that in strictly inhomogeneous flows the formula is different from the well-known
Taylor formulation for homogeneous stationary turbulence.

The basis of this paper is to highlight the role played by simulation in the val-
idation of statistical models as e.g. PDF approach. In particular, I will illustrate by
way of example, the value of simple kinematic simulations (with structures) in con-
trast to the the more familiar role that DNS has played. Whilst DNS has played and
continues to play an important role in identifying turbulent structures and linking
them with particular mechanisms, the drawback is that whilst DNS represents low
Reynolds number real turbulence especially near wall turbulence, we have no real
control over the type of structure present in the flow, neither its density or scale: in
fact we have to identify the structures rather than control them. There is a clear need
for kinematic simulations of turbulence which can be easily implemented, contain-
ing structures which we can control and in turn use to replicate the influence of real
structures and scales of those in real turbulence. Such simple random flows can be
used to identify single effects which might otherwise go unnoticed in more complex
flows, their influence masked by other scales and other effects.

Such an example of a simple flow is that of a random array of counter rotating
vortices which I have used to examine and quantify the demixing process and which
in turn has revealed some important features that may well be present in real turbulent
flows [8]. In particular I will examine here the statistics of the compressibility or
more precisely ln(J (t)) where J (t) measures the fractional change in an elemental
volume of particles along a particle trajectory at time t . ln[J (t)] is related to the
compressibility ∇ · v(t) along a particle trajectory by the equation

d ln[J (t)]/dt = −∇ · v(t). (2)

22



Simulation of Particle Diffusion, Segregation, and Intermittency in Turbulent Flows

Fig. 1. Generation of instantaneous flow field: horizontal and vertical axes are scaled by a
factor L.

2 Diffusion in a simple homogeneous turbulent flow

2.1 Description of random flow field

We consider dispersion in a simple ihomogeneous turbulent flow field composed of
pairs of counter rotating vortices which are periodic in both the x-, y-directions with
the same periodicity. Each lattice cell (the basic periodic element) contains a pair
of counter-rotating vortices in both the x, y orthogonal directions and is constructed
from a linear symmetric straining flow field in the manner shown in Figure 1.

So starting from an initial symmetric straining flow pattern of width 2L in both
the x, y-directions (see Figure 1(a)), this pattern is repeated front to back in both the
x, y-directions with a strain rate S drawn from a uniform distribution [0, S0]. We note
that each quadrant of this straining rate pattern in Figure 1(a) is a quadrant of one of
the two pairs of counter-rotating vortices formed within the lattice cell in Figure 1(b).
As shown in Figure 2(a), the flow velocity ux in the x-direction has a linear saw-tooth
profile U(x), with a slope of constant magnitude S but with a change in sign across
the y-centre line of a vortex (the line running in the y-direction passing through the
centre of the vortex) where the maximum and minimum values ±SL/2 of U(x) are
located: across the x-centre line, ux changes to −U(x) as shown in Figure 2(b),
consistent with the change in direction of the streamlines shown in Figure 1(a). The
flow velocity uy in the y-direction at (x, y) is −U(y) to preserve continuity of flow
through out. This cellular flow pattern of counter-rotating vortices so formed, persists
for a fixed life-time selected from an exponential distribution with a decay time of
S−1

0 , at the end of which time, a fresh flow field is generated with new values of
the life-time and S and the origin of the pattern at the same time shifted by random
displacements in both the x and y-directions, drawn independently from a uniform
distribution [0, 2L]. This makes the average flow homogeneous with zero mean in
the x- and y-directions. The important feature of this randomized flow field is that
the equations of motion of an individual particle in both the x, y-directions are linear
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Fig. 2. (a) Flow in x-direction within vortex; (b) rms velocity in x-direction.

and independent of one another (other than through the maximum length of time a
particle can experience a particular value of the straining of the flow in either the x-
or y-directions before it changes sign). With respect to the centre (stagnation point)
of a symmetric straining flow pattern (see Figure 1(a)), the flow velocity within that
flow region is given by

ux = +Sx; uy = −Sy (−L ≤ x ≤ L, −L ≤ y ≤ L). (3)

The flow field so generated turns out to be homogeneous and stationary but not iso-
tropic. It has the interesting property that the Lagrangian fluid point rms velocity
(along its trajectory) is different from its value at a fixed point (Eulerian).

2.2 Solutions of particle equations of motion

Based on Stokes drag, the particle equation of motion is

ẍi + τ−1
p ẋi + (−1)i+1τ−1

p Sxi = 0 (4)

−L ≤ xi ≤ L (i = 1, 2)(x1 = x, x2 = y),

where xi is measured from a stagnation point. For convenience we normalize xi on
L and express the particle response time τp and strain rate S in units of S−1

0 so in
this case S is drawn from a uniform distribution ℘ [0, 1]. We note that when the
strain rate in the x, y-directions the x, y equations are those of a damped simple har-
monic oscillator and as a consequence there are two types of motion, namely heavily
damped for τpS < 0.25 and lightly damped for τpS > 0.25. In this case τp corre-

particle within these vortices. For heavily damped motion, a particle remains trapped
within a vortex but approaches the extremity (the stagnation region) in a manner
which decreases exponentially with time. On the other hand for lightly damped mo-
tion the particle can escape the vortex or overshoot into an adjacent vortex, though
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Fig. 3. Particle trajectories in counter-rotating vortices: (a) heavily damped τp = 0.1;
(b) lightly damped τp = 1.

in time it ends up in the stagnation region between the vortices. Both these types of
behaviour are illustrated in Figures 3(a) and (b) for particle response times τp = 0.1
(heavily damped) and τp = 1 (lightly damped). Figure 3 also shows the correspond-
ing values of components J11 and J22 of the the unit deformation tensor J given by
∂x(x0,t)/∂x0 where x0 is the position of the particle at some initial time say t = 0.
In this case we have set Jij (0) = δij . The equations of motion for Jij are obtained
from the particle equations of motion by partial differentiation wrt x0,i giving

J̈ij + τ−1
p J̇ij + (−1)i+1τ−1

p SJij = 0 (5)

for which we choose the initial conditions J̇ij = ∂ui/∂xj = (−1)i+1τ−1
p Sδij . This

means that together with the initial conditions on Jij that Jij (t) = 0 for i �= j and
that

J (t) = |J| = J11J22. (6)

Note that in this linear system the equation of motion for J (t) is the same as that for
xi and that the components of J are dependent on the position of the particle only
through the time at which the strain rate experienced by the particle changes sign.
Figures 3(a) and (b) show the corresponding values of J (t) along the heavily damped
and lightly damped (b) trajectories. In both cases the value of J approaches zero as
t → ∞. However in the lightly damped case J (t) passes through zero at intermedi-
ate times as the particle oscillates backwards and forwards across a stagnation line.
In so doing the value of J oscillates from +ve to −ve, with the corresponding ele-
mental volume rotating through 180◦ as it passes through zero volume. Each time
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J (t) passes through zero, the corresponding particle concentration becomes infinite
instantaneously. This raises the possibility that such events may occur in real turbu-
lent flows and that the process of particle dispersion could be a highly intermittent
process associated with large deviations in the particle concentrations.

2.3 Concentration and particle diffusion coefficients

Figure 4 shows the dispersion of particles released from a single point into the flow.
In particular Figures 4(a)–(c) show the positions of 105 particles after 100 time steps
from their release into a single realisation of the flow (a time step corresponding to
the lifetime of each flow pattern). Each particle was released from a single point with
a Gaussian distribution of velocities with an rms the same as the long term value
for the particles. The cases in Figures 4(a)–(c) refer to particles with normalized
response times (Stokes numbers) of τp = 0.1, 1.0 and 10 respectively. All three
cases show a segregation of particles being most marked for the case of τp = 1.
The role of particle response time here determines the degree to which particles can
segregate into the stagnation regions of the flow pattern as the pattern and hence
stagnation regions both shift in position from one time step to the next. This is most
effective for the case of τp = 1, but in all cases even with τp = 1 the segregation
does not align with the location of the stagnation lines at any instant of time. Even
so the pattern of segregation gets stringier as time progresses, the rate at which that
happens being greatest for τp 1 (τp = 1 for the three cases considered here).

In contrast Figure 4(d) shows the positions together with the corresponding con-
centration contours superimposed for a particle with τp = 1 released with the same
distribution of velocities as in the previous cases from the same position but in 105

Fig. 4. Dispersion of particles in random flow field: (a) τp = 0.1; (b) τp = 1;(c)τp = 10.
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Fig. 5. Long-time particle diffusion coefficients.

separate realisations of the flow. In this case there is no evidence of segregation –
the result being the superposition of all the concentration patterns in Figure 4(b)
uniformally shifted over a lattice spacing.

Figure 5 shows the values of the particle diffusion coefficient as a function of
time based on the displacements for the case in Figure 4(d). The long term values ex-
hibit no intermediate peaking of the particle diffusion coefficient as with the particle
segregation: the particle diffusion coefficient increases with increasing particle re-
sponse time reaching an asymptotic limit for very large response times which is
greater than that of the fluid point (passive scalar). This latter result is consistent
with an early analysis [11]and those of the simulation of particles in DNS homogen-
eous isotropic turbulence [12].

2.4 Statistics of the compressibility and deformation

In contrast to the values for the long term particle diffusion coefficient, Figure 6
shows the corresponding values of the quantity 1

2 t
−1〈ln |J (t)|〉 for the same particle

response time as in Figure 4. This quantity may be interpreted as the net time
averaged normal strain rate associated with each axis or more succinctly the net
Liapounov exponent of the particle flow. In all three cases of the particle response
time the values of these exponents reach a constant negative value consistent with
a steady average value of the compressibility in the long term (after many particle
relaxation times and flow integral time scales) (in the case of τp = 10 it is a very
small value not distinguishable from zero in Figure 6). However the most import-
ant feature is that the maximum value of the compressibility in these three cases is
for τp = 1 consistent with particle segregation behaviour shown in Figures 4(a)–
(c). The implication of the constant value of the compressibility is that in this simple
flow field (in which the particles are entirely transported by the underlying flow velo-
city) the accumulation of particle would continue indefinitely: this of course ignores
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Fig. 6. Net compression (Liapunov exponent) as a function of time and particle response time.

Fig. 7. Evolution of the distribution of lnJ (t) for τp = 1.

the absence of molecular or Brownian diffusion but nevertheless suggests that the
concentration will be extremely high before Brownian diffusion can counteract the
accumulation process.

Figure 7 shows the distribution of ln |J (t)| for τp = 1 and how it evolves with
time. For large times the distribution is very close to Gaussian with a mean which is
−ve and ∝ time as is also the a variance

σ 2 = 〈( ln |J | − 〈ln |J |〉)2〉 = 2Dt, (7)

so that the dispersion of ln |J | may be accurately described by a Gaussian convection
diffusion process

∂P

∂t
+ c

∂P

∂φ
= D

∂2P

∂φ2 , (8)

28



Simulation of Particle Diffusion, Segregation, and Intermittency in Turbulent Flows

where φ = ln |J | and P(φ) the pdf for the occurrence of φ and c = (d/dt) ln J .

3 Summary and conclusions

The way particles interact with turbulent structures, particularly in regions of high
vorticity and strain rate, has been simulated in a simple incompressible random flow
of counter rotating vortices which has a periodic persistent structure for a fixed time
interval period of time but is randomly shifted from one time interval to the next. A
particular focus of the simulation has been the statistical properties of ln |J (t)| along
a particle trajectory at time t ,where J (t) is the fraction value of an elemental volume
of particles compared to its initial value. The compressibility of the the particle ve-
locity field ∇ · v(t)is related to ln |J (t)| by Equation (2). Depending on the particle
response time, the particle motion is identical to that of a lightly or heavily damped
harmonic oscillator. For a lightly damped flow the particles overshoot the stagna-
tion lines and pass into the neighbouring vortices. In so doing the value J (t) passes
through zero and the concentration instantaneously becomes infinite. The possibil-
ity of this occurring in real turbulent flows and with it occurrence of intermittency
in the fluctuations of the particle concentration was mentioned. Particles released
into a single realisation of the flow field segregated without alignment with the in-
stantaneous flow pattern, the maximum segregation occurring for particle response
time (Stokes number) ∼1. Noticeably the segregation progresses without reaching
any state of equilibrium and would continue indefinitely for all particles response
times, the particle response time being responsible for the rate at which the segrega-
tion occurs. This pattern of behaviour was also revealed in the plot of 1

2 t
−1〈ln |J (t)|〉

versus time t which approaches a constant −ve value as t → ∞, corresponding to
a compression rather than a dilation. The statistics of ln J (t) revealed a Gaussian
convection diffusion process in the limit of t → ∞. for the particle response times
of τp = 0.1, 1, 10 considered.

It is clear that the type of flow field considered both in the Eulerian and Lag-
rangian simulations exhibits the maximum degree of segregation, compressibility
intermittency. Ways of controlling the compressibility would be to introduce free
vortices into the flow which on their own would introduce a dilatation and so reduce
the compressibility/segregation: regions of isolated strain rate would have the reverse
effect. The possibility exists of creating a more turbulent like flow filed by introdu-
cing admixtures of counter-rotating vortices, free strain regions and and vortices.

The obvious next step in this program of work is to consider whether such fea-
tures exist in real turbulent flows.
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Abstract. A stochastic representation of fluid turbulence has been developed to study the
behavior of very dilute suspensions of solid spheres in a turbulent flow. Particular emphasis is
given to the understanding of deposition in an idealized annular pattern. The accuracy of the
stochastic method was checked by comparing with calculations done in a DNS at Reτ = 150.
The striking aspect of the study is that calculations of the dimensionless deposition constant
in a horizontal channel are presented for V+

T = 0 to 3.0, Reτ = 590 and τ+p = 0 to 20,000.

For some runs it was necessary to use computation times of t+ = 2 × 108 in order to insure
that a fully-developed condition was realized. Such an extensive study would not be possible
if the turbulence was represented by a DNS.

1 Description of stochastic method

Considerable progress has been made in understanding particle dispersion and de-
position by studying the behavior of spherical particles in a DNS of turbulent flow.
However, this approach has limitations in that it is impractical to use in studying a
wide range of variables, large Reynolds numbers and large times. This prompted our
examination of a stochastic method which uses a modified Langevin equation to rep-
resent the fluid turbulence seen by a particle. This paper evaluates this approach and
demonstrates its usefulness by considering an idealized model of the dispersed flow
that exists in an annular pattern. Large density ratios, ρp/ρf , are assumed. Lift forces
are neglected. The suspension is considered to be dilute enough that particle-particle
interactions and feedback can be ignored.

A point source of solid spheres is described by the equations

dxi

dt
= Vi, (1)

dVi

dt
= −3ρfCD

4dpρp
|V − U | (Vi − Ui)+ gi, (2)

where Ui is a component of the fluid velocity and Vi is a component of the particle
velocity and CD is the drag coefficient. In all of the calculations a fully-developed
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flow in a channel is assumed so that U1(x2) is the mean velocity profile of the fluid,
where x2 is the coordinate perpendicular to the wall, x3 is in the spanwise direction
and x1 is in the flow direction. A modified Langevin equation is used to represent the
fluid velocity fluctuations

d

(
ui

σi

)
= − ui

σiτi
dt + dµi + dµ′

i , (3)

where σi(x2) is the Eulerian root-mean-square of the velocity fluctuations and τi(x2)

is a Lagrangian time constant. The forcing function is assumed to be Gaussian [5].
The mean drift and variances are given as

dµi =
∂

(
u2ui

σi

)
∂x2

dt, (4)

dµ′
idµ

′
j = uiuj

σiσj

(
1

τi
+ 1

τj

)
dt. (5)

The mean velocity profile of the fluid, U 1(x2), and all of the parameters in Equa-
tions (1–4) except τi are given from Eulerian measurements in a DNS.

For the case of a point source of fluid particles

dxi

dt
= Ui (6)

with ui given by Equation (3). By considering a uniform distribution of instantaneous
point sources of fluid particles, it can be shown that Equations (3–5) satisfy the well-
mixedness condition defined by Thomson [9]. Calculations [5] for the Lagrangian
correlation coefficients of point sources of fluid particles originating at different x2
in a DNS at Reτ = 150, 300 were used to specify τi(x2). Equations (3–5) do not
capture the small scale turbulence in that they give Lagrangian correlation coeffi-
cients that vary as exp(−t/τi). Therefore, the model is accurate in representing the
correlation only in an integral sense. Comparisons of the model with DNS studies
of the dispersion of fluid particles originating from point sources in the fluid yiel-
ded good, but not exact, agreement. The model was tested further by carrying out
calculations of the dispersion of heat markers from wall sources [6]. This was done
by adding random displacements to Equation (6) in order to capture the effects of
molecular diffusion. Temperature profiles and heat transfer coefficients agree with
Eulerian DNS calculations and with calculations in a DNS which uses Lagrangian
methods.

Original plans about using Equations (3–5) to represent fluid turbulence seen by
a dispersing particle was to adjust the time constants in the Langevin equation to
take account of the inability of the particles to follow the fluid turbulence exactly.
This was explored by comparing calculations with studies of the behavior of point
sources of solid spheres in a channel flow [4, 7]. It was found that the time scales
determined from studies of dispersion of fluid particles could be used for τ2 and τ3.
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Fig. 1. Idealized annular flow.

The time scale τ1 for fluid particles was too large by a factor of about 1.5. However,
calculations with the stochastic model were found to be insensitive to the choice of
τ1 so no systematic attempts were made to adjust it.

2 Idealized “annular flow”

In the annular regime, observed for gas-liquid flow in a pipe, part of the liquid flow
along the wall as an annular film and part as drops entrained in gas flows. Drops are
injected into the gas flow by unstable waves on the film. Under fully-developed con-
ditions, atomization is balanced by the deposition of drops entrained in the turbulent
gas [10]. The idealized model of an annular flow which we have explored considers a
horizontal channel for which the bottom and top walls are arrays of sources (see Fig-
ure 1). Drops are represented by solid spherical particles. The atomization process
is modeled by injecting the particles from x2 = dp/2 with a velocity of (15, 1, 0)
v∗ and a rate per unit area of RAb and from x2 = 2H − dp/2 with a velocity of
(15,−1, 0) v∗ and a rate per unit area of RAt , where v∗ is the friction velocity and H
is the half-height of the channel. The particles are removed from the field when they
hit a wall. The ratio of the strengths of the sources at the two boundaries is adjusted
so that at long times a fully-developed condition is reached for which the rates of at-
omization and deposition are equal and the net flux in the x2-direction is zero [1, 7].
In the calculation of a fully-developed concentration field the sources are assumed to
be uniformly distributed on the wall.

The theoretical problem is to represent the behavior of a single instantaneous
source. Particles from these sources eventually deposit on the two walls, so that at
large enough times none remain in the field. Under fully-developed conditions the
concentration at a given x2 has contributions from sources that have been in the
field for different lengths of time. The main contribution of this work was to reveal
physical mechanisms which control deposition and mixing.

3 Concentration profiles

Figure 2 presents concentration profiles resulting from an instantaneous source loc-
ated on the bottom wall. The + superscript indicates that a quantity has been made di-
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Fig. 2. Distribution of particles from a source located on the bottom wall (τ+p = 20, V+
T

=
0.11, d+p = 0.368, Reτ = 150).

mensionless using the friction velocity and the kinematic viscosity. Particles injected
into the flow at t+ = 0 move away from the wall. Eventually they mix with the fluid
turbulence and are dispersed in both the plus and minus x2-directions. Both gravity
and turbulence bring particles back to the bottom wall where they are removed from
the field. The solid curves and dashed curves, respectively, represent calculations
in which the fluid turbulence is represented by a DNS and by a stochastic model.
Good agreement is noted. The calculations in Figure 2 were done for τ+p = 20, a

dimensionless free-fall velocity of V +
T = 0.11, a particle size of d+p = 0.368 and a

Reynolds number of Reτ = 150.
Fully-developed concentration profiles, for which the rate of injection equals the

rate of deposition, such as shown in Figure 3, were calculated with the stochastic
method for Reτ = 590 by adding the contributions from a number of sources. The
influence of gravity on the symmetry is clearly seen.

Particles deposit on the bottom wall with a range of velocities, V +
d . The dis-

tribution functions calculated for the case of V+
T = 0 are shown in Figure 4. The

solid line represents the average of the fluid velocity fluctuations at a location of one
particle radius from the wall. The curves for τ+p ≤ 3 represent situations for which
the particles accumulate close to the wall and eventually deposit in response to local
fluid velocity fluctuations. For τ+p ≥ 10 deposition is governed by particle velocit-
ies characteristic of particle (or fluid) velocity fluctuations outside the viscous wall
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Fig. 3. Concentration profiles for τ+p = 10.

Fig. 4. Probability density functions of the depositing particles for V+
T

= 0.

Fig. 5. Probability density functions of the depositing particles for V+
T = 0.014.

layer. The picture emerges that particles become detached from the fluid turbulence
and move in free-flight to the wall.

Figure 5 shows the distribution functions for V +
T = 0.014. A maximum is noted

at V+
d

∼= V +
T . This suggests that particles accumulating near the wall are carried to

the wall by gravitational settling. Thus the rate of deposition can be enhanced for
very small gravitational effects.

A deposition constant can be defined as
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Fig. 6. Deposition constants defined with the bulk concentrations for V+
T = 0.

Fig. 7. Deposition constants defined with the bulk concentrations for V+
T

�= 0.

RD = RDb + RDt

2
= kDBCB, (7)

where CB is the average concentration over the channel cross section. Calculations
of kDB for gi = 0 are given in Figure 6. These are for V +

T = 0, ρp/ρf = 1000
and are representative of what would be found for a vertical flow. The calculations
shown in Figure 6 represent a range of τ+p = 1–20,000. They were done for diffusion

times as large as t+ = 2 × 108. The calculations demonstrate the transition amongst
four mechanisms for deposition: Brownian motion, turbulent diffusion, free-flight,
and unidirectional trajectories.

Figure 7 shows the influence of the g2 component of gravity. A range of terminal
velocities of V +

T = 0–3.2 are covered for τ+p = 3, 5, 10, 20, 40. The enhancement

of deposition with increasing V +
T is clearly seen. This occurs both because of an in-

crease in the deposition velocity at the bottom wall and because of the development
of asymmetries in the concentration profiles. Transitions to an asymmetric config-
uration (V+

T = 0.01), to an annular pattern for which particles reach the top wall
(g+ = 0.012) and to a saltation regime are clearly defined.
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Fig. 8. Test of theories of turbophoretic velocity (V+
T

= 0).

4 Calculation of concentration profiles

The fully-developed concentration fields considered in these calculations provide a
simple system with which to evaluate the Boussinesq model, that is commonly used.
The flux of particles in the x2-direction is zero at all x2 so that

C V 2 + cv2 = 0, (8)

V 2 = Vtp − τpg. (9)

This simply represents a balance amongst gravitational settling, turbophoresis and
Reynolds transport, −v2c.

Young and Hanratty [11] and Young and Leeming [12] have shown that the tur-
bophoretic velocity can be given as

Vtp = −τp dV2

dt
. (10)

This was evaluated directly in the calculations. An example is given in Figure 8 for
τ+pS = 5 and V+

T = 0. Thus all of the terms in Equations (8, 9), with the exception
of −v2c, could be evaluated.

The Boussinesq approximation represents the turbulent mixing as

−v2c = ε
dC

dx2
, (11)

where ε is a turbulent diffusivity. The integration of Equation (8) gives

d lnC

dx2
= V 2

ε
. (12)

This relation works in the center of the channel for large VT . Then

V 2 ∼= −VT (13)

and
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ε ∼ Hv∗. (14)

In general, calculated concentration profiles can be used to evaluate the variation
of ε with x2. The results are not reasonable. For example in the case of VT = 0
negative values of ε are obtained.

Clearly, turbulent mixing is controlled by large scale motions which are not
captured by a linear diffusion mechanism.

5 Concluding remarks

Particles accumulate in the viscous-sublayer due to turbophoresis. We show that the
turbophoretic velocity can be obtained by evaluating dV2/dt .

Several regimes for kD are defined: (1) Turbulent diffusion of particles that
accumulate close to the wall. The presence of gravity greatly affects the importance
of this mechanism. (2) Free flight deposition. This mechanism is understood but a
mathematical theory is not available. For annular flows free-flights start from outside

the viscous wall layer and kD ∼ (v2
2)

1/2 at x+2 = 40. (3) An annular flow regime
can be defined if particles ejected from the bottom wall can reach the top wall. (4) A
saltation regime is defined when the effect of fluid turbulence can be neglected. Two
behaviors can be defined. In one of these particles do not reach the top wall. When
particles reach the top wall a direct impaction mechanism is defined for annular
flow. Under these circumstances the deposition velocity can be approximately equal
to the injection velocity.
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Many experiments have shown that small particles uniformly dispersed in a turbulent
gas flow can cause substantial attenuation of the turbulence at volume loadings as
small as 10−4. Very small particles closely follow the turbulent motions and therefore
have no effect on the turbulence. The superposed wakes of randomly moving large
particles create substantial turbulence augmentation. In an intermediate particle size
range, the particles respond sluggishly to the turbulent motions thereby damping
energy containing eddies. Extensive review of the experimental literature showed
that the largest observed turbulence attenuation occurs for cases where the particle
diameter is of the same order as the turbulence Kolmogorov scale, and the Stokes
number based on the Kolmogorov time scale is around 50. Since this parameter range
includes important natural and technological flow fields, it is important to develop
models capable of predicting turbulence attenuation over a range of flow and particle
parameters.

Model-free simulation requires resolving the Navier–Stokes equations over the
entire flow domain, including accounting for the boundary conditions on the surface
of each of thousands to millions of particles. Such simulations of particle/turbulence
interactions have been done, but only for simplified single-particle systems [1, 3].
Burton and Eaton [3] showed that accurate (<1% error) prediction of the force ap-
plied by the fluid onto the particle requires around 1 million grid points in a local
spherical grid of diameter Dgrid = 25dp where dp is the particle diameter. Full res-
olution of a many particle system is well beyond current computer resources, so a
model is needed that will accurately reflect the effect of an individual particle on the
turbulence using a much coarser grid resolution.

A commonly applied model is the point-force coupling model first used by
Squires and Eaton [9]. Improvements to this model have been proposed by Lon-
holt et al. [5] and Sundaram and Collins [10], however all such models implicitly
assume that the particles are much smaller than both the Kolmogorov scale and
the grid spacing [2]. A realistic example is instructive at this point. We consider
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the particle-laden channel flow studied by Paris and Eaton [7]. The air channel was
40 mm wide, operated at a Reynolds number Ubulkh/ν = 13,800, and had a center-
line Kolmogorov scale of 170 microns. A 20% mass loading ratio (φ = 0.2) of 150
micron diameter glass beads (0.00008 volume fraction) produced strong turbulence
attenuation. The average interparticle spacing was approximately 2.9 mm, compar-
able to the 3 mm Taylor microscale. The particle Stokes number based on the center-
line Kolmogorov time scale was about 50 and the average particle Reynolds number
was approximately 19. While this is just a single case, the parameters are typical of
flows producing strong turbulence attenuation.

The point-force model is routinely added into direct numerical simulation codes
adapted from single-phase applications. Direct simulation of turbulence requires a
grid resolution on the order of the Kolmogorov scale, comparable to the particle
diameter in the above example. Implementation of the point force model on such a
grid cannot resolve the local flow distortions around the particle and therefore cannot
capture the extra viscous dissipation associated with the particle motion. Neverthe-
less, many believe that such a model will still capture the effects of particles on the
energy-containing eddies. Segura (2004) performed a well-resolved large-eddy sim-
ulation of the Paris and Eaton experiment using the point-force coupling model. The
simulation used second order staggered grid discretization and second-order time ad-
vancement. A stretched mesh normal to the channel walls was used with 16 nodes
below y+ = 30 and 1 node below y+ = 1. The baseline single-phase flow and the
particle motions for light loading cases were accurately predicted by the code. Turbu-
lence statistics calculated using only the resolved motions agreed closely with both
the experimental data of Paris and Eaton and with DNS results of Moser et al. [6].
This indicates that the simulation had near-DNS resolution. However, the turbulence
attenuation was grossly underpredicted as shown in Figure 1. Segura increased the
particle-loading by a factor of ten producing good agreement with the data across the
full profile.

It is important to understand why point-force coupled simulations underpredict
turbulence attenuation. One issue is that the particle drag and lift are underpredicted
by typical Lagrangian tracking models because the models do not account for the
effects of small scale turbulence. Secondly, most models relate the particle drag to
the undisturbed fluid velocity. However, the undisturbed velocity is not available in
a two-way coupled simulation. The failure to capture the high levels of local dissip-
ation around the particles is probably the biggest failing of the point-force method.
Burton and Eaton [4] compared the viscous dissipation from a fully resolved simu-
lation to that calculated using the point-force approximation with a grid resolution
equal to the particle diameter. The viscous dissipation in a local region around the
particle was underpredicted by as much as 50%. Rather than dissipating the energy
associated with the particle motions, the point force scheme transfers much of that
energy to different scales.

New modeling approaches are needed that will reproduce the correct statistical
distribution of individual particle effects on turbulence and the overall changes to the
turbulence. One possibility is to represent the extra dissipation that occurs at sub-grid
scales using an effective “particle-field sub-grid scale viscosity”. It is likely that this
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Fig. 1. Streamwise turbulence intensity in fully developed channel flow. Experiment Paris and
Eaton [7], LES Segura [8].

would be a function of the local particle Reynolds number, the small-scale turbulence
properties, and the grid resolution. The values can be estimated by developing a lib-
rary of well-resolved simulations of particles in turbulent flows. The strong viscous
dissipation is confined to a region within about 5 particle diameters of the particle
center. Since the interparticle separation is often much larger than 5 diameters, we
expect that the sub-grid scale viscosity field will vary in both time and space depend-
ing on the particle motions. Such a model potentially could mimic both the small and
large-scale effects of particles on turbulence.
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1 Introduction

Small-size impurities such as dust or droplets suspended in turbulent incompressible
flows typically have a finite size and a mass density larger than the carrier fluid.
They cannot be described as simple passive tracers, that is point-like particles with
negligible mass advected by the fluid; an accurate model for their motion must take
into account inertia effects. These inertial particles generally interact with the fluid
through a viscous Stokes drag and thus their motion typically lags behind that of
passive tracers. The dynamics of the latter is governed by a conservative dynamical
system when the carrier flow is incompressible (because volume is conserved), but
inertial particles have dissipative dynamics. While an initially uniform distribution of
tracers remains uniform at any later time, the spatial distribution of inertial particles
develops strong inhomogeneities.

Such a phenomenon of preferential concentration refers to the presence of re-
gions with either extremely high or low concentrations. Their characterization plays
an essential role in natural and industrial phenomena. Instances are optimization of
combustion processes in the design of Diesel engines [1], the growth of rain drops
in sub-tropical clouds [2], the formation of the planets in the Solar system [3], co-
existence between several species of plankton [4], etc. For such applications it is
recognized that a key problem is the prediction of the collision or reaction rates and
their associated typical time scales. The time scales obtained using diffusion theory
exceed by one or several orders of magnitude those observed in experiments or nu-
merical simulations. A full understanding of particle clustering and, in particular, of
the fine structures appearing in the mass distribution is crucial for identifying and
quantifying the mechanisms responsible for this drastic reduction in time scales.

We propose here an original approach leading to a systematic description of iner-
tial particles clustering. This approach is in part inspired by recent breakthroughs in
the study of passive scalar advection by turbulent flows, using Lagrangian techniques
[5]. Preferential concentrations can be interpreted as the convergence of particle tra-
jectories onto certain dynamically evolving sets in the position–velocity phase space
called attractors. Use of dissipative dynamical systems tools and, in particular, of
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methods borrowed from the study of random dynamics, allows a rather complete
characterization of particle distribution.

We focus on very diluted suspensions where collisions, particle-to-particle hy-
drodynamical interactions and retroaction of the particles on the fluid can be ignored.
When the particle radius a is much smaller than the Kolmogorov dissipation scale
η and when the Reynolds number based on the particle size and its relative velocity
to the fluid is sufficiently small, the dynamics of the particles is described by the
standard model of Maxey and Riley [6]. The forces exerted on the particles are then
buoyancy, the Stokes viscous drag, the added mass effect and the Basset–Boussinesq
history force. The goal here is to study a simple model for the dynamics able to cap-
ture qualitatively most aspects of inertial particle dynamics. We hence consider very
heavy particles whose trajectories are solutions of the Newton equation

Ẍ = − 1

τp
[Ẋ − u(X, t)], (1)

where u is a prescribed fluid velocity field and where we have neglected the effects of
gravity. The response time τp, frequently referred to as the Stokes time, is defined as
τp = (2ρpa2)/(9ρf ν), where the particle-fluid mass density ratio ρp/ρf is assumed
to be very large; ν is the kinematic viscosity of the fluid. One usually introduces the
Stokes number St = τp/τη, defined by non-dimensionalizing the response time by
the smallest characteristic time of the turbulent fluid flow, i.e. the eddy turnover time
associated to the Kolmogorov scale τη = ε−1/2ν1/2.

2 Local dynamics and Lyapunov exponents

The temporal evolution of the separation δR(t) between two infinitesimally close
trajectories is given by the linearized (tangent) system

¨δR = 1

τp
σ (t) δR − 1

τp
˙δR , (2)

where σ (t) denotes the strain matrix of the carrier flow along a reference trajectory:
σij (t) ≡ ∂jui(X(t), t). This second-order equation needs to be studied in the full
position-velocity phase space of dimension 2 × d where d is the dimension of the
physical space. Infinitesimal distances, surfaces, volumes. . . of the phase space are
expanded or contracted exponentially in time by the linearized dynamics (2). One
usually introduces the stretching rates µ1(t) ≥ · · · ≥ µ2d(t) as the instantaneous
exponential rates, µ1 measuring the growth of distances between two neighboring
trajectories, µ1 + µ2 that of areas defined by three trajectories, etc. The sum of
the 2d stretching rates controls the time evolution of 2d-dimensional phase-space
volumes. When the fluid flow is incompressible (i.e. ∇ · u = 0), it is easily shown
that µ1 +· · ·+µ2d = −d/τp < 0, meaning that all phase-space volumes are subject
to a uniform exponential contraction by the dynamics.

The long-time behavior of the local dynamics is dominated by the almost-
sure convergence of the stretching rates to the classical Lyapunov exponents λj =
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limt→∞ µj(t). Under some ergodicity hypothesis on the dynamics, the Lyapunov
exponents are independent of both the realization of the random carrier flow and
of the peculiar trajectory X(t) around which the linearized dynamics is considered.
The Lyapunov exponents are linked to many fundamental features of the dynamics.
For instance, when the largest Lyapunov exponent λ1 is negative, the stability of the
linearized system is ensured and all the trajectories are converging together, thereby
leading to a somewhat degenerate statistical steady state in which all the mass is
concentrated in discrete time-dependent points in phase space.

3 Fractal clustering

When λ1 is positive, the dynamics is said to be chaotic and the long-time evolution
has richer features characterized by the attraction of all particle trajectories to com-
plex dynamical structures. Clearly convergence to such attractors cannot be detected
by considering a single trajectory but requires to have a global approach of the dy-
namics and to study the phase-space flow defined by (1). For this we consider the
phase-space density of particles f (x, v, t) which evolves according to

∂tf +∇x · (f v)+ 1

τp
∇v · [f (u(x, t))− v)] = 0 , (3)

with f (x, v, 0) being the position-velocity joint distribution of particles at the initial
time. Note that f is not averaged with respect to the fluid flow realizations but it
can be interpreted as the probability (or mass) density to have at time t a particle
at position x with velocity v for a given realization of u. When the fluid flow is
statistically stationary, f converges at large times to a singular density with support
on a (dynamically evolving) fractal set, the attractor.

Focusing on positions while ignoring velocities leads to consider the physical-
space density

ρ(x, t) =
∫

f (x, v, t) ddv . (4)

In the statistical equilibrium reached at large times, this integration over velocities
amounts to project the attractor from the 2d-dimensional phase space onto the d-
dimensional space of particle positions. A standard result on fractal sets ensures that,
when the fractal dimension D of the attractor is less than the dimension of the projec-
tion space (here, d), the projection of the fractal is itself a fractal set with dimension
D . If however D > d , the projection has dimension d . As a consequence, according
to the dimension of the phase-space attractor, the physical space density ρ will have
or not a fractal support.

This is illustrated numerically by considering inertial particles suspended in a
two-dimensional random incompressible flow. The velocity field u is generated as
the superposition of few Fourier modes (here eight) which are independent Gaussian
random processes with finite correlation time τf and with variances such as to ensure
statistical isotropy. The Stokes number is here defined as St = τp/τf . This flow was
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Fig. 1. Snapshot of the position of 105 heavy particles in a two-dimensional synthetic flow.
Right: St = 10−2, value below the threshold for which fractal clustering is observed. Left:
St = 1 above the threshold; here particles fill the whole domain.

chosen mainly to mimic dissipative range dynamics. The particle trajectories are then
integrated using a fourth-order Runge–Kutta scheme. Figure 1 shows snapshots of
the position of N = 105 particles in the statistical steady state reached at large times
for two different values of the Stokes number illustrating the two possible regimes
mentioned above. When the Stokes number is sufficiently small, the particles con-
centrate on a dynamically evolving fractal set. At large Stokes numbers, the particles
distribute also inhomogeneously but they fill the whole domain. Similar simulations
were made in three dimensions leading to the same qualitative observation when
considering two-dimensional cuts.

The presence of a threshold in Stokes number can be observed in a more quantit-
ative fashion. The convergence to an attractor can be seen as the result of a compet-
ition between stretching and folding effects that occur during the chaotic motion of
the particles. The properties of the attractor, and in particular its fractal dimension,
thus depend on the stretching rates of the dynamics. The positive µj ’s are respons-
ible for stretching in their associated eigendirections, while the negative rates give
contraction and hence folding. This picture lead Kaplan and Yorke [7] to propose an
estimate of the dimension of the attractor in terms of the Lyapunov dimension

DKY ≡ J − (λ1 + · · · + λJ )/λJ+1 , (5)

where J is such that λ1 + · · · + λJ ≥ 0 and λ1 + · · · + λJ+1 < 0. This non-random
number can be interpreted heuristically as the dimension of phase-space objects that
keep a constant volume during time evolution. It was actually shown in [8] that the
Lyapunov dimension is equal to the information dimension associated to the steady-
state phase-space density of particles and, as we shall see in Section 4, is thus related
to the small-scale properties of the mass distribution of inertial particles.

The Lyapunov dimension is particularly convenient for estimating numerically
fractal dimensions since it does not require box-counting. The Lyapunov exponents
can indeed be computed using very efficient and fast-converging methods [10]. This
was exploited for particles suspended in the random flow described above to confirm
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Fig. 2a. Lyapunov dimension as a func-
tion of St for d = 2 (circles) and d = 3
(squares) in a synthetic flow (see text). In-
set: same in log-log coordinates. Note the
quadratic behavior as St → 0 predicted in
[9].

Fig. 2b. Scaling exponents ξp of the mo-
ments of mass as a function of p for four
different values of St. The dashed line rep-
resents the exponents of a uniform distribu-
tion.

the presence of a threshold in Stokes number for the concentration of particle on
fractal sets [11]. Figure 2a represents the Lyapunov dimension DKY as a function of
the Stokes number in two and three dimensions. The particle positions form fractal
clusters when DKY < d . The threshold corresponds to the value of St such that
DKY = d . For the random flow considered here, it occurs at St ≈ 0.2 for d = 2 and
St ≈ 0.3 for d = 3.

Note finally that there is a maximum of clustering (minimum of the dimension)
for St ≈ 0.09 when d = 2 and St ≈ 0.13 when d = 3. These values of the Stokes
number are clearly flow-dependent and can hardly be compared to observations stem-
ming from direct numerical simulations of Navier–Stokes turbulence where the max-
imal clustering is observed for St order unity [12].

4 Scaling properties of the mass distribution

Once we know that particles form fractal clusters, the next step is to understand the
statistical properties of the mass distribution, what is generally referred to as the
multifractal properties of the attractor. The relevant quantity is the so-called quasi-
Lagrangian coarse-grained mass

m(r, t) =
∫
|y|<r

ρ(y − X(t), t) ddy , (6)

that is the mass of particles in a ball of radius r centered on a given particle trajectory
X(t). In the large-time statistical equilibrium, the moments of m(r, t) are expected
to behave algebraically at small ball radii, i.e.
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〈mp(r, t)〉 ∼ rξp when r → 0 . (7)

The scaling exponents ξp’s are related to the multifractal spectrum of dimensions
[13, 14] (see also [15]) by Dp = ξp−1/(p − 1); D0 denotes the Hausdorff dimen-
sion of the attractor, D1 the information dimension, D2 the correlation dimension,
etc. Note that for situations close to that of inertial particles as for instance tracers
advected by compressible flows, the scaling exponents ξp can be expressed in terms
of the joint probability density function of the stretching rates µj ’s introduced in the
previous section [16].

The exponents ξp were computed numerically in [17] for the synthetic two-
dimensional flow. They are shown in Figure 2b as a function of their order p and
for various Stokes numbers. Already when St = 10−4 deviations from a uniform
distribution are observed, a quantitative sign of preferential concentration. The non-
linear behavior of ξp as a function of p is a signature of multifractality of the particle
spatial distribution.

It was checked numerically that the information dimension D1, obtained as the
slope of p �→ ξp at p = 0, is equal to the Lyapunov dimension DKY as shown in [8].
This implies that for almost every realization of the fluid velocity field and for almost
every time, the coarse-grained mass around a particle trajectory has the asymptotic
scaling

lnm(r, t)

ln r
→ DKY as r → 0 . (8)

The scaling behavior (7) of the moments of mass which was observed numerically
implies that for small but finite r the mass deviates from this limiting form. More
precisely, the stationary distribution of the fluctuating finite scaling exponents h ≡
(lnm(r, t))/(ln r) takes the large deviation form

P (h, r) ∝ rd−D(h) , (9)

where D(h) is a convex rate function with a maximum equal to d attained for h =
D1 = DKY. This function can be seen as the dimension of the set on which the mass
m scales as rh and is frequently referred to as the multifractal spectrum. D(h) is
related to the scaling exponents ξp by a simple Legendre transform: ξp = infh(ph+
d −D(h)). The small-radii behavior (9) was confirmed by numerical experiments in
random flows (see [17]).

5 Ghost collisions

We now focus on the enhancement of collision rates induced by particle inertia.
The minimal model (1) for particle dynamics allows for a systematic study which
will help us to identify the main physical mechanisms leading to this effect. A step
in this direction has been taken in [9] for very strong viscous drag, i.e. St � 1.
The dynamics can then be approximated by that of simple tracers advected by an
effective flow with a small compressible component [18]. Extending this approach to
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Fig. 3. Snapshot of the position of particles in phase space (a) for St = 3.8 10−4 and (b) for
St = 0.38. To represent positions in a four-dimensional space, the modulus of particle velocit-
ies is showed on the z axis.

larger values of St requires to take into account the full position-velocity phase-space
dynamics. To tackle collisions we make use of a ghost-particle approximation [19],
which amounts to record collision events but to let particles overlap. This approach
allows to consider statistical stationarity and to use a Lagrangian approach.

To estimate the binary collision rate between particles with the same Stokes num-
ber St, the relevant quantity is the approaching rate κ(r, t), defined as the flux of
particles at a distance r from a reference particle that are approaching it. This rate
can be interpreted as an average velocity difference weighted by the probability that
the two particles are at a distance r . Trivial correlations between these two quantities
simplify the estimation of κ . Clearly, the probability density that the two particles are
at a small distance r has a power-law behavior with exponent D2−1 = ξ1−1. In the
asymptotics St � 1, the velocity difference between particles trivially depends on
their separation since the Stokes drag is very strong and the particle velocity is close
to that of the fluid. We hence have κ(r, t) ∼ rD2 . When St � 1, the particle inertia is
so large that the motion is almost ballistic. The velocity difference is then essentially
independent of the separation. The approaching rate thus behaves as κ(r, t) ∼ rD2−1.

For intermediate Stokes numbers, κ behaves as a power-law with an exponent γ
that cannot be trivially related to D2. This is due to a balance between two compet-
ing effects in phase space: folding of the attractor in the v-direction and its relaxation
toward the surface defined by the instantaneous fluid velocity at a rate given by the
Stokes time. For St = 0 this happens infinitely fast, preventing folding and thus the
presence of positions where the particle velocity field is multi-valued (see Figure 3a).
As the Stokes number increases the probability of finding particles at the same posi-
tion with different velocities becomes larger (see Figure 3b). Such points correspond
to self-intersections of the attractor once projected in position space; this is a phase-
space interpretation of what is known as the sling effect [9]. The dependence on St
of the two exponents D2 and γ is illustrated in Figure 4a for suspensions in a two-
dimensional synthetic flow. The two asymptotics of small and large Stokes numbers
are confirmed.
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The collision rate Q(a) between particles with the same size a is given by the
approaching rate computed at a distance r = 2a. For small particle radii, this leads
to Q(a) = κ(2a) ∝ (2a)γ (St) where the Stokes number itself depends on the ra-
dius: St ∝ a2. This approach leads to an estimate of Q(a) (details are given in [21]).
Results of numerical simulations in a synthetic flow are shown in Figure 4b. In order
to quantify the importance of particle inertia, we represented the ratio between the
measured kernel and that obtained using the Saffman–Turner approach [20] where
particles are assumed to be simple tracers. To disentangle the effects of clustering
and of density-velocity correlations, the kernel obtained when the velocity differ-
ence is assumed to behave linearly with the separation is also shown. The two curves
coincide at very small radii a (i.e. small Stokes numbers): in this regime, the en-
hancement of collision rates is mainly due to clustering effects and there are no
large velocity differences between particles. Discrepancies between the two curves
appear rather soon and tend to a constant as the Stokes number increase. It is clear
from Figure 4b that preferential concentration alone is responsible of an increase of
roughly one order of magnitude in the collision rate of inertial particles compared
to that of tracers. However, the measured values of the kernel differ markedly from
those obtained when only clustering effects are considered. Therefore, away from
the two asymptotics of small and large particle inertia, it is crucial not to consider as
independent the effects of clustering and enhanced relative velocity.

This approach can be extended to binary collisions between particles with dif-
ferent Stokes numbers. The pair dynamics is then characterized by the presence of a
critical separation r� ∝ |St1−St2|. Below it, the two motions are essentially uncorrel-
ated. Correlations due to the fact that particles are suspended in the same flow show
up for length scales above r�. The origin of this characteristic length is understood
in terms of the pair-separation dynamics, which is dominated by the Stokes differ-
ence for r < r� (the accelerative mechanism), and by the fluid velocity (the shear
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mechanism) when r > r�. This crossover length separates in two distinct regimes
the scale dependence of both the probability distribution of particle separations and
their rate of approach. This has consequences on estimations of the collision rates
that are detailed in [21].

6 Concluding remarks

We have shown that the dynamics of inertial particles in smooth flows is character-
ized at small scales by the convergence of their trajectories to dynamically-evolving
attractors. Such sets are generally fractal leading to a particle mass distribution with
multifractal properties. This behavior is illustrated by numerical experiments in ran-
dom time-correlated flows that mimic the dynamics of turbulent flows at scales be-
low the Kolmogorov length scale. Recent numerical experiments in fully developed
turbulent flows (see [22]) show that this picture is rather robust and that the ran-
dom flows considered here catches the qualitative features and the main physical
mechanisms present in particles dynamics. An important consequence of the fractal
clustering of inertial particles is that there exists no scale for particle concentrations
within the dissipative range. This may in particular lead to some difficulties in the
design of sub-grid models for the numerical integration of particle suspensions.

An important open issue concerns clustering at inertial-range scales, where the
velocity field is not differentiable. Experiments indeed show that preferential con-
centration appears also at those scales [23]. Non-trivial clustering properties have
been observed numerically also in the inverse-cascade range of two-dimensional tur-
bulent flows, namely the formation of holes in the distribution of particles [24]. It is
important to remark that clustering at the inertial scales may influence the probability
for two particles to arrive below the dissipative scale and thus the collision rates. In
the inertial range the dynamics of the fluid is close to Kolmogorov 1941 theory and,
as a consequence, tracers separate according to the celebrated Richardson’s t3/2 law.
For inertial particles, one needs to understand the competition between this algebraic
separation and clustering due to dissipative dynamics. In this direction, it may be
useful to further extend to inertial particles recent models and techniques developed
in the framework of passive scalars (for a recent review, see [5]).
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Abstract. Turbulent dispersed flows over boundary layers are crucial in a number of indus-
trial and environmental applications. In most applications, the key information is the spatial
distribution of inertial particles, which is known to be highly non-homogeneous and may ex-
hibit a complex pattern driven by the structures of the turbulent flow field. Theoretical and
experimental evidence shows that fluid motions in turbulent boundary layers are intermittent
and have a strongly organized and coherent nature represented by the large scale structures.
These structures control the transport of the dispersed species in such a way that the over-
all distribution will resemble not at all those given by methods in which these motions are
ignored.

In this paper, we study from a statistical viewpoint turbulence modulation produced by
different-size dispersed particles and we examine how near-wall particle concentration is mod-
ified due to the action of particles themselves in modulating turbulence. The physical mech-
anisms and the statistics proposed are based on Direct Numerical Simulation (DNS) of turbu-
lence and Lagrangian particle tracking, considering a two-way coupling between particles and
fluid.

1 Introduction

In a number of environmental and industrial problems involving turbulent dispersed
flows, the information on particle distribution is a crucial issue. In particular, the
relevant information sought is the local concentration of particles which controls
all relevant exchange mechanisms (e.g. momentum exchange, reaction and depos-
ition rates, mass transfer, evaporation and so on). Accurate three-dimensional, time-
dependent simulations together with precise experiments are required to gain phys-
ical insights on the effect of the flow on particles distribution and of particles on the
flow field. The simplest computational approach to investigate on dispersed flows
is to consider particles as passive species under the one-way coupling assumption,
which is valid for dilute flows characterized by volume fraction �V < 10−3 and
mass fraction �M < 10−3 [1, 2].

Simulations performed under dilute flow conditions have shown that turbulent
flow fields in general are of a strongly organized and coherent nature represented
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by large scale structures. These structures, because of their coherence and persist-
ence, have a significant influence on the transport of dispersed particles. Specifically,
coherent structures generate preferentially directed, non-random motion of particles
leading to non-uniform concentration and to long-term accumulation. The local ef-
fect of coherent flow structures on particles is related to their mutual interaction
which, in turn, is modulated by inertia [3–5] and their action is not captured by en-
gineering models [6–8].

Preferential accumulation of particles induced by turbulent coherent structures
has been examined previously in a number of theoretical and experimental works
[3–5, 9–11]. In the case of homogeneous turbulence [3–5, 11], the particle concen-
tration field will be characterized by local particle accumulation in low-vorticity,
high-strain regions. In the case of non-homogeneous turbulence [9, 10], the local in-
teraction between particles and turbulence structures produces a remarkably macro-
scopic behavior leading to long-term particle accumulation in specific flow regions
within the viscous sublayer [12–14]. When particles segregate in specific flow re-
gions, the dilute flow assumption is no longer valid locally. In particular, if particles
are heavy (solid/liquid in gas), their overall volume may be negligible, yet the mo-
mentum coupling with the fluid may be such to induce significant modifications in
the flow field [2, 15–17]. These effects will modify flow transport properties which
eventually will change particle distribution. This may be of fundamental significance
in applications as particle abatement, flow reactors and control of momentum, heat
and mass fluxes at a wall.

In this paper, we examine from a statistical viewpoint the two-way interaction
between particles and fluid in non-homogeneous turbulence. In particular, we aim
at studying turbulence modifications due to particles having different inertia when
gravity is neglected.

2 Methodology

The balance equations governing the turbulent channel flow are (in dimensionless
form):

∂ui

∂xi
= 0, (1)

∂ui

∂t
= −uj ∂ui

∂xj
+ 1

Reτ

∂2ui

∂xj 2 − ∂p

∂xi
+ δ1,i + f̃2w, (2)

where ui is the ith component of the velocity vector, p is the fluctuating kinematic
pressure, δ1,i is the mean pressure gradient driving the flow, Reτ is the shear Reyn-
olds number, while f̃2w is an equivalent body force accounting for the action of the
dispersed particles onto the fluid (f̃2w = 0 for simulations run under the one-way
coupling assumption). For a generic volume of fluid �p containing a particle, the
action-reaction law imposes that:∫

�p

f̃2w(x) d� = −ff l, (3)
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where ff l is the force exerted on the particles by the fluid. The term f̃2w can be
obtained by adding the contributions of each particle:

f̃2w =
np∑
p=1

(fk2w)p, (4)

where np is the number of particles. With the point-source approximation [15, 18],
f2w(x) = −ff l δ(x − xp), where δ(x) is the Dirac’s delta function.

Equations (1) and (2) are solved using pseudo-spectral Direct Numerical Simu-
lation (DNS); details of the numerical method can be found elsewhere [19].

Particle motion is described by a set of ordinary differential equations for particle
velocity and position. For particles much heavier than the fluid (ρp/ρ � 1, where
ρp is particle density and ρ is fluid density), the only significant forces are Stokes
drag and buoyancy, whereas Basset force can be neglected being an order of mag-
nitude smaller [20]. Since the present contribution represents the first step taken at
our laboratory towards the study of turbulence modulation by particles in boundary
layers, several other simplifications have been made. The idea is to improve fun-
damental understanding on this topic starting with the most simplified simulation
setting and dealing with a manageable set of parameters. To this aim, the effects of
gravity and shear-induced lift in the equations of particle motion have been neglected.
Also, inter-particle collisions are not taken into account at the current stage of our
simulations. Following [21], this simplification is reasonable when the mean inter-
particle spacing, L/D, in the near-wall region is O(10). For the range of volume
fractions considered in this work, L/D is still in the range 6 ÷ 7 even when con-
centration levels become 50 times larger than their initial value. Of course, the mean
spacing between neighbouring particles will decrease as simulations continue and
concentration levels become higher. When this spacing will become smaller than a
given threshold, than the effect of inter-particle collisions will be no longer negli-
gible.

With the above simplifications the following Lagrangian equation for the particle
velocity is obtained [22]:

dv
dt

= −3

4

CD

dp

(
ρ

ρp

)
|v − u|(v − u), (5)

where v and u are the particle and fluid velocity vectors, dp is particle diameter. The
drag coefficient CD is given by:

CD = 24

Rep
(1 + 0.15Re0.687

p ), (6)

where the particle Reynolds number is equal to Rep = dp|v − u|/ν, ν being fluid
kinematic viscosity. Correction for CD is necessary since Rep does not necessarily
remain small, in particular for depositing particles.
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3 Numerical simulations

The flow into which particles are introduced is a turbulent Poiseuille channel flow of
air assumed incompressible and Newtonian. The reference geometry consists of two
infinite flat parallel walls: the origin of the coordinate system is located at the center
of the channel and the x-, y- and z-axes point in the streamwise, spanwise and wall-
normal directions respectively. Periodic boundary conditions are imposed on the fluid
velocity field in x and y, no-slip boundary conditions are imposed at the walls. All
variables are normalized by the wall shear velocity uτ , the fluid kinematic viscosity ν
and the half channel heighth. The shear velocity is defined as uτ = (τw/ρ)

1/2, where
τw is the mean shear stress at the wall. Calculations are performed on a computational
domain of 1885×942×300 wall units in x, y and z discretized with 128×128×129
nodes. The shear Reynolds number is Reτ = uτh/ν = 150. The time step used is
�t+ = 0.045 in wall time units.

A Lagrangian particle tracking code coupled with the DNS code was developed
to calculate particles paths in the flow field. The code interpolates fluid velocities at
Eulerian grid nodes onto the particle position by means of 6th order Lagrangian poly-
nomials, and integrates the equations of particle motion forward in time by means of
a 4th order Runge–Kutta scheme. Four sets of 105 particles were considered, charac-
terized by different values of the relaxation time, defined as τp = ρpd

2
p/18µ, where

µ is the fluid dynamic viscosity. Particle relaxation time is made dimensionless using
wall variables and the Stokes number for each particle set is obtained. In this work,
we considered τ+p = St = 1, 5 and 25, as shown in Table 1 which summarizes all
relevant simulation parameters.

At the beginning of the simulation, particles are distributed homogeneously over
the computational domain and their initial velocity is set equal to that of the fluid
at particle position. Also, particles are assumed to be pointwise, rigid and spherical.
Periodic boundary conditions are imposed on particles in both streamwise and span-
wise directions, elastic reflection is applied when the particle centre is at a distance
less than dp/2 from the wall. Elastic reflection was chosen since it is the most conser-
vative assumption when studying the particle prefential concentration in a turbulent
boundary layer. Interparticle collisions are neglected.

Table 1. Parameters relative to the simulation of particle dispersion. The superscript + identi-
fies dimensionless variables: particle relaxation time τ+p (equivalent to particle Stokes number

St), particle density ρ+p , particle diameter d+p and particle settling velocity v+sett. �V and �M

represent the average volume fraction and the average mass fraction of the particles, respect-
ively.

τ+p (=St) d+p ρ+p v+sett �V �M np �T+
p

1.0 0.153 769.23 0.0942 3.52 · 10−7 2.71 · 10−4 105 1080
5.0 0.342 769.23 0.4710 3.93 · 10−6 3.02 · 10−3 105 1080

25.0 0.765 769.23 2.3350 4.40 · 10−5 3.38 · 10−2 105 1080
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4 Results

4.1 Flow field modification by particles

Object of this paper is to study the modification of turbulence due to the two-way in-
teraction between fluid and particles having different inertia in the absence of gravity.
In this section, we will compare results obtained from two-way coupling simulations
with available results from previous one-way coupling simulations [23], in which
particles are not allowed to influence the fluid motion (f̃2w = 0 in Equation (2)).
Similar studies have been performed previously for the case of homogeneous iso-
tropic turbulence [20, 24].

The effect of particles with different inertia on the streamwise component 〈u+x 〉
of the mean fluid velocity is shown in Figure 1a, where lines refer to benchmark
one-way coupling simulations and symbols refer to two-way coupling simulations
accounting for particle feedback on turbulence. We do not show the spanwise and
the wall-normal components of the mean fluid velocity since they exhibit the expec-
ted behavior and do not add to the discussion. Velocity profiles, averaged in both
space (over the streamwise and spanwise directions) and time (over a time span of
1080 t+) and normalized by the shear velocity uτ of the particle-free flow, deviate
only slightly, if not negligibly, from each other. Deviations correspond to reductions
of the channel flowrate no larger than 0.4% with respect to one-way coupling sim-
ulations. A careful examination of Figure 1a indicates that velocity profiles com-
puted under two-way coupling conditions are slightly shifted towards higher values
in the buffer region (5 < z+ < 30) and towards smaller values in the outer region
(z+ > 30).

Though small, more noticeable differences are observed for turbulence intensities
(RMS of fluid velocity fluctuations). Streamwise, spanwise and wall-normal turbu-
lence intensities are shown in Figures 1b, 1c and 1d, respectively. As in Figure 1a,
lines refer to one-way coupling simulations whereas symbols refer to two-way coup-
ling simulations. It appears that particles do not affect much turbulence intensities in
the outer flow. However, for both the spanwise component (〈u′y,rms

+〉 in Figure 1c),

and the wall-normal component (〈u′z,rms
+〉 in Figure 1d) and regardless of particle

size, particles do substantially increase turbulence intensities at the wall, particularly
in the region where profiles develop a peak. Conversely a slight decrease in the RMS
along the streamwise direction (〈u′x,rms

+〉, Figure 1b) is observed in correspondence
of the maximum values.

The modifications in the RMS is likely to cause a modification in heat and mass
transfer since the wall-normal velocity fluctuations are responsible for transport pro-
cesses at the wall.

The Reynolds stress profiles, shown in Figure 2 for one-way coupling (line) and
two-way coupling simulations (symbols), do show modifications due to particles
outside the viscous wall region. The effect of particles is noticeable in the buffer
layer, where the Reynolds stress increases. The Reynolds stress in the very-near-wall
region (z+ < 5 roughly) does not exhibit significant changes.
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Fig. 1. Mean and RMS fluid velocity profiles for one-way coupling (lines) and two-way
coupling (symbols).

4.2 Influence of flow field modification on particle statistics

The issue addressed in this section is: how turbulence modulation by particles influ-
ences the distribution of the particles? We will try to answer this question by compar-
ing results on particle statistics obtained from simulations with and without particle
feedback on turbulence.

Figure 3 shows the streamwise (〈v+x 〉) and the wall-normal (〈v+z 〉) components
of the mean particle velocity for one-way coupling (solid line with empty circles)
and two-way coupling (black circles) simulations. Figures 3a and 3b are relative to
τ+p = 1 particles, Figures 3c and 3d are relative to τ+p = 5 particles, Figures 3e and
3f are relative to τ+p = 25 particles. Modifications to the mean streamwise velocity
are pretty small: profiles shown in Figures 3a, 3c and 3e overlap almost perfectly
regardless of particle size, and only slight deviations can be observed for the larger
particles two-way coupled with the fluid.

More noticeable (and meaningful) differences are observed for the wall-normal
velocity, shown in Figures 3b, 3d and 3f. Under the one-way coupling assump-
tion, profiles of particle wall-normal velocity develop a peak in the buffer layer,
which increases monotonically with particle inertia. Correspondingly, particle wall-
normal turbophoretic accumulation increases with particle inertia. A two-way coup-
ling between particles and fluid appears to modify the shape of the profiles from
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Fig. 2. Reynolds stress for one-way coupling (lines) and two-way coupling (symbols).

a quantitative (though not qualitative) viewpoint by shifting them towards smaller
values for τ+p = 1 and 25 and towards larger values for τ+p = 5.

Results on second-order moments for the particle velocity field (not shown)
provide evidence that RMS velocity fluctuations are not much affected by the two-
way coupling in the outer region and slightly increase near the wall. The behavior
qualitatively resembles that of the fluid flow field (see Figure 1).

Figure 4 shows the time evolution of particle concentration profiles along the
wall-normal direction, for τ+p = 1 particles (Figure 4a), τ+p = 5 particles (Figure 4b)
and τ+p = 25 particles (Figure 4c), respectively. Lines with empty symbols refer to
one-way coupling simulations, whereas black symbols refer to two-way coupling
simulations. Profiles are averaged in space (along the streamwise and spanwise dir-
ections), smoothed by time-averaging over spans of 360 time units and normalized
with respect to the initial uniform concentration. It is apparent that particle interac-
tions with turbulence act to decrease the near-wall peak of concentration. This be-
havior is in agreement with the decrease of particle drift velocity in the wall-normal
direction previously observed in Figures 3b and 3f for τ+p = 1 and 25, respectively.
Surprisingly, this is not the case for τ+p = 5 for which, despite of a larger wall-
ward wall-normal velocity, the peaks of accumulation are also reduced with two-way
coupling. This effect is more evident for the smaller particles (τ+p = 1, Figure 4a)
and increases monotonically with particle inertia.

5 Concluding remarks

This paper addresses the issue of particle concentration in a fully developed turbulent
boundary layer with specific reference to the influence of particle inertial response
to the underlying flow field under one-way and two-way coupling assumptions.

Statistical analysis of particle and fluid velocity fields computed from numerical
simulations run under dilute flow conditions provides evidence of the crucial effect of
inertia in determining particle drift toward the wall and particle sampling of specific
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Fig. 3. Streamwise (〈v+x 〉) and wall-normal (〈v+z 〉) components of mean particle velocity for
one-way coupling (solid line with empty circles) and two-way coupling (black circles). (a)
and (b) τ+p = 1, (c) and (d) τ+p = 5, (e) and (f) τ+p = 25.

flow regions: as a consequence, particles accumulate in the near-wall region, this
trend being enhanced by increasing particle inertia.

When particles segregate in specific flow regions, the effect of the dispersed
phase on turbulence is no longer negligible and the dilute flow assumption is not
valid locally. Simulations with a two-way coupling between particles and fluid were
performed to investigate on turbulence modifications due to dispersion and segrega-
tion of particles with different inertia in the flow. For the particle sizes investigated in
this work, turbulence modulation by particles appears rather small. This may be due
to the small volume fraction occupied by the particles and to the fact that only the
effect of the drag force was considered in the balance equation of particle motion.
However, it was possible to observe that particle accumulation in the near-wall re-
gion is overestimated when the feedback of the dispersed phase onto the flow field is
neglected. More detailed studies, focusing also on particle wall fluxes, are currently
underway and will be addressed in forthcoming papers.

Further development of this work will be the analysis of additional effects on
the mechanisms by which particles modulate turbulence. As mentioned in the paper,
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Fig. 4. Time evolution of particle concentration profiles along the wall-normal direction for
one-way coupling (lines with empty symbols) and two-way coupling (black symbols) simula-
tions. (a) τ+p = 1, (b) τ+p = 5, (c) τ+p = 25.

several potentially important effects (for instance lift, gravity, particle rotation, inter-
particle collisions) have been neglected for the time being. Yet, we are aware of the
importance of such effects in real two-phase systems and our future efforts will be
devoted to their inclusion in the simulation setting. Another important issue is the
effect of the particle time-scale on turbulence modulation. This effect can be easily
singled out by varying particle size for fixed mass and volume fractions.
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Abstract. Several Continuous Random Walk (CRW) models were constructed to predict tur-
bulent particle diffusion based only on mean Eulerian fluid statistics. The particles were in-
jected near the wall (y+ = 4) of a turbulent boundary layer that is strongly anisotropic and
inhomogeneous near the wall. To assess the performance of the models for wide range of
particle inertias (Stokes numbers), the CRW results were compared to particle diffusion stat-
istics gathered from a Direct Numerical Simulation (DNS). The results showed that accurate
simulation required a modified (non-dimensionalized) Markov chain for the large gradients
in turbulence based on fluid-tracer simulations. For finite-inertia particles, a modified drift
correction for the Markov chain (developed herein to account for Stokes number effects) was
critical to avoiding non-physical particle collection in low-turbulence regions. In both cases,
inclusion of anisotropy in the turbulent kinetic energy was found to be important, but the
influence of off-diagonal terms was found to be weak.

1 Introduction

Simulating particle diffusion due to turbulence is important to many engineering
systems. A common approach is to utilize the time-averaged velocity (uf ) and tur-
bulence properties (k, ε) from a Reynolds–Averaged Navier–Stokes (RANS) solu-
tion along with a Continuous Random Walk (CRW)model to simulate the instant-
aneous fluid fluctuation velocities (u′f ) seen by the particles in a Lagrangian frame.
By tracking a large number of particles, mean particle statistical information is then
obtained. This approach can also be used to model the sub-grid stress fluctuations
for Large Eddy Simulations [1]. A key issue in using a Markov chain is that inhomo-
geneous turbulent flow can lead to a non-physical numerical diffusion of particles
if the inhomogeneity is not included in the stochastic model. Several CRW studies
have sought to take into account the inhomogeneous drift correction based on tracer
(zero-inertia) particles. MacInnes and Bracco [2] investigated the performance of a
CRW model, similar to the one of Legg and Raupach [3], in 2-D inhomogeneous
turbulent flows of a turbulent mixing layer and an axisymmetric jet, and determined
that a drift correction of
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δu′f1
= τ�

{
1 − exp

(−�t
τ�

)}
∂

∂xj
(u′fku

′
f1
)δijkl (1)

should be included in the Markov chain, where τ� is the integral turbulent time-sale,
u′fku

′
f1

is the Reynolds stress tensor, δijkl is the Kronecker delta tensor, u′f1
is the

instantaneous fluid velocity fluctuation, and �t is the time step. This can also be
approximated to first-order as [4]

δu′fi = �t

(
Du′fi
Dt

)
= �t

(
u′fj

∂u′fi
∂xj

)
, (2)

Without this drift correction, errors of up to 500% for the tracer particle number con-
centration were found (while inclusion reduced the error to around 10%). Iliopoulos
and Hanratty [5] utilized a normalized Langevin equation as the basis for a Markov
chain in their analysis of near-wall fluid-tracer diffusion to avoid errors arising due to
large turbulence gradients. For a single, uncorrelated velocity perturbation this gives

u′f (t +�t) = u′f (t) exp

(−�t
τL

)
σ(t +�t)

σ(t)

+
{

1 − exp

(−2�t

τL

)}1/2

σ(t +�t)ξ(t). (3)

This was shown to work well for low inertia particles in a turbulent channel flow,
where particle response times were small compared to the fluid time-scale. However,
no previous studies (to the authors’ knowledge) have derived the drift correction for
finite-inertia particles, and it is often assumed that the drift correction is independent
of Stokes number (= τp/τ�, where τp is the particle response time and τ� is the fluid
time-scale). In this study, we aim to fulfill this need in the simulation technology by
evaluating this new CRW method with DNS-derived statistics of particle diffusion
data (thereby eliminating any issues associated with turbulence modeling).

2 Methodology

2.1 DNS solution and RANS-like statistics

The continuous phase solution for the turbulent boundary layer was obtained from
DNS of the incompressible Navier–Stokes equations, assuming the particle concen-
tration is dilute (does not effect the carrier phase) and negligible particle-particle
interactions (a one-way coupled multiphase flow). The DNS code was developed by
Spalart and Watmuff [6] to simulate a three-dimensional, spatially developing turbu-
lent boundary layer with zero-streamwise pressure gradient. The Reynolds number
for the present study is 4500 (Reδ = ρf U∞δ/µf , where δ is the boundary layer
thickness U∞ is the free-stream velocity, and µf and ρf are the fluid viscosity and
density). Grid-independent results were obtained for a domain discretized by 256
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Fig. 1. DNS statistics at the particle injection plane: (a) mean velocity profile, (b) turbulent
auto-correlation profiles.

nodes in the stream direction, 96 in the span direction, and 55 in the transverse direc-
tion for a total of 1,351,680 nodes in the three-dimensional mesh. Spatial evolution
aspects and time integration details are given by Bocksell [7] and Dorgan [8].

From the DNS flow, Eulerian time and spanwise averaged statistics of the fluid
properties near the injection location are shown in Figure 1. The transverse profiles
of the mean velocity (in wall units) are shown in Figure 1a. For the mean velocity
profile, there is evidence of the viscous sublayer below y+ ≈ 20, transition to a log-
arithmic curve is seen by y+ ≈ 50, and a boundary layer edge is located at roughly
y+ ≈ 270 (i.e. Reτ = 270, where Reδ is the Reynolds number based on δ and uτ ).
The conventional “law of the wall” curves are included for the purpose of comparing
the data to high Reynolds number boundary layers. The turbulent velocity fluctu-
ations (normalized by u2

τ ) are shown in Figure 1b where the peak values for v′f,rms
are similar in magnitude to experimental results of Klebanov [9] at Reτ = 2800,
though at somewhat larger y+ locations. These Eulerian statistics, along with the
full Reynolds-stress tensor and the turbulent dissipation (ε), were used to construct a
typical RANS-like turbulent boundary layer flow solution [7]. Also noted by Bock-
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Table 1. Particle conditions for the DNS particle simulations.

Stδ 〈St�〉 St+ �t/τp �t/τ+
10−4 7.8 × 10−4 0.027 6.6 × 10−2 0.57
10−3 7.8 × 10−3 0.27 6.6 × 10−3 0.57
10−2 8.3 × 10−2 2.7 6.6 × 10−4 0.57
0.1 1.2 27 6.6 × 10−5 0.57
1 13.9 270 6.6 × 10−6 0.57

sell [7], the Lagrangian turbulent time and length scales (τ� and �) in a boundary
layer are not approximated well by the free-shear flow assumption and instead de-
pend on distance from the wall (y+). Therefore, the DNS was also utilized to obtain
the Lagrangian values of τ� and � using fluid tracer statistics as functions of dis-
tance from the wall (which compared well with the estimates of Kallio and Reeks
[10]).

3 Particle equation of motion

The particle equation of motion for both the DNS and CRW simulations is

mp

dupi
dt

= 3πµf dp(ufi − upi )+mpgi, (4)

where mp is the particle mass, dp is the particle diameter, upi is the particle velocity
vector, and gi is the gravity vector. This equation assumes spherical solid particles
with a Stokesian drag and a particle density that is much greater than the fluid
density so that other forces (lift, stress gradient, and Basset history) are negligible.
The equation of motion was integrated using a modified version of the exponential-
Lagrangian method first described by Barton [11] and later generalized and improved
by Bocksell [7]. This method is an Adams–Bashforth multistep integration scheme,
implemented in a predictor-corrector fashion that is second-order accurate in time.

For each set of test conditions, roughly 100,000 particles (for each test condition)
are injected over a range of times and spanwise positions at y+ = 4 with an elastic
reflection imposed at y+ = 1 for all downstream wall interactions. The time step
used for the DNS (both fluid and particle simulations) was constant for all cases and
appears in Table 1 in various non-dimensional forms. The following definitions are
used for the test conditions: the particle integral-scale Stokes number (St� = τp/τ�);
the wall-based Stokes number is the ratio of the particle relaxation time to the wall
based time scale (St+ = τpρf u

2
τ /µf ); the outer Stokes number is the ratio of the

particle relaxation time to the outer time scale (St = τpU∞/δ; the drift parameter
is the ratio of particle terminal velocity (Vterm = gτp) to the root-mean-square of
the fluid fluctuation velocities (γ = Vterm/u

′
f,rms); and the particle Reynolds num-

ber based on the particle terminal velocity (Rep,term = ρf dpVterm/µf ). In order to
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understand how inertia influences particle diffusion in a boundary layer, five differ-
ent particle inertias (Table 1) were selected with outer Stokes number varying from
Stδ = 10−4 to Stδ = 1, all at a constant γ of 10−2 (with Vterm directed away from the
wall). The low value of γ ensures that the terminal velocity is small compared to the
fluid velocity fluctuations so that inertia and turbulent diffusion effects dominate the
particle dispersion (as opposed to gravity). By recording the observed integral fluid
Lagrangian time scale (τ�) along the particle path, an average local integral-scale
Stokes number was obtained, 〈St�〉 = τp/〈τ�〉, for each class of particles and these
values also appear in Table 1. Details of the particle dispersion physics are given in
Dorgan [8].

4 Investigated CRW methods

One of the main goals of this research is to evaluate the performance of the CRW
model with regard to the amount of turbulence information available. Conventional
and normalized Markov chains are described here for three different types of simu-
lations: (1) isotropic turbulence, (2) anisotropic turbulence but no Reynolds stresses,
and (3) anisotropic turbulence and including the Reynolds stresses. For consistency,
the time-scale treatment, the velocity fluctuation treatment, and the incremental drift
correction treatment were all identical in terms of the level of turbulence information
resulting in three types of CRW simulations to evaluate the importance of the aniso-
tropy. These three simulation types are summarized in Table 2 and defined in detail
by Bocksell [7].

For a boundary layer, the only non-zero cross-correlation is the u–v cross correl-
ation so the conventional Markov chain for the “full” simulations is⎡⎣u(t +�t)

v(t +�t)

w(t +�t)

⎤⎦ =
⎡⎣ ku 0 0

0 kv 0
0 0 kw

⎤⎦⎡⎣u(t)v(t)

w(t)

⎤⎦

+
⎡⎣σu

√
1 − k2

u

0 σv
√

1 − k2
v 0

0 0 σw
√

1 − k2
w

⎤⎦⎡⎣√
1 − b2 b 0

0 1 0
0 0 1

⎤⎦⎡⎣ ξuξv
ξw

⎤⎦ , (5)

ku = exp

(−�t
τLu

)
, kv = exp

(−�t
τLv

)
, kw = exp

(−�t
τLw

)

Table 2. Summary of types of CRW simulations.

Name Turbulence Type Time-scale Type
Isotropic uu = vv = ww = 2k/3, uv = 0 τLu = τLv = τLw
Diagonal uu �= vv �= ww, uv = 0 τLu �= τLv �= τLw
Full uu �= vv �= ww, uv �= 0 τLu �= τLv �= τLw
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b =
Ruv

[
1 − exp

(−�t
τLu

)
exp
(−�t
τLv

)]
[
1 − exp

(−2�t
τLu

)]1/2 [
1 − exp

(−2�t
τLv

)]1/2 , and Ruv = uv

σuσv
. (6)

The normalized Markov chain for the “full” simulations is

⎡⎣u(t +�t)

v(t +�t)

w(t +�t)

⎤⎦ =
⎡⎣ ku 0 0

0 kv 0
0 0 kw

⎤⎦
⎡⎢⎢⎢⎣

σ ∗
u (t+�t)
σu(t)

0 0

0 σ ∗
v (t+�t)
σv(t)

0

0 0 σ ∗
v (t+�t)
σw(t)

⎤⎥⎥⎥⎦
⎡⎣u(t)v(t)

w(t)

⎤⎦

+

⎡⎢⎢⎣
σ ∗
u (t +�t)

√
1 − k2

u 0 0

0 σ ∗
v (t +�t)

√
1 − k2

v 0

0 0 σ ∗
w(t +�t)

√
1 − k2

w

⎤⎥⎥⎦

×
⎡⎣√

1 − b2 b 0
0 1 0
0 0 1

⎤⎦⎡⎣ ξuξv
ξw

⎤⎦ , (7)

The main difference between the conventional Markov chain of (5) and the nor-
malized Markov chain of (7) is the ratio of the root-mean-square of the velocity
fluctuations from the previous time step and the next time step. Essentially this de-
correlates (in time) the velocity fluctuations along a particle path in regions where
gradients in the mean turbulence quantities are large (near the wall).

5 Particle drift correction for finite-inertia particles

As noted in the introduction, a drift correction for a finite mass particle for both
the conventional and normalized Markov chains has been developed in this study.
This is different than previous fluid-tracer drift corrections [2, 3, 5] since the total
differential of the fluid velocity fluctuation along a particle trajectory includes both
the fluid and particle velocities:

du′fi
dt

= ∂u′fi
∂t

+ upj

∂u′fi
∂xj

. (8)

Taking the Eulerian time-average results in

du′fi
dt

= upj

∂u′fi
∂xj

. (9)

The goal is to replace the right-hand-side correlation between the particle velocity
and fluid velocity fluctuation gradient with particle characteristics and Eulerian fluid

68



Stochastic Diffusion of Finite Inertia Particles in Non-Homogenous Turbulence

correlations. Starting from the particle equation of motion (4), introducing Reynolds
averaging, utilizing Laplace transforms, and then taking the limit as (as discussed by
Bocksell [7]) results in the “finite-inertia incremental drift correction” as

upj

∂u′fi
∂xj

= u′fj
∂u′fi
∂xj

(
1

1 + St�

)
. (10)

This finite-inertia drift correction tends to the proper fluid-tracer correction (2) as
the particle inertia becomes negligible (St� → 0) and it tends to zero as the particle
inertia becomes high (St� � 0). This latter limit is consistent with the eventual
elimination of the correlation between fluid and particle velocity fluctuations for very
large particles. Note that these limits would be observed even if a non-linear drag
coefficient were used such that (10) is expected to be at least qualitatively reasonable
at high particle Reynolds numbers.

The finite-inertia drift correction for the normalized Markov chain is similarly
obtained for the normalized Langevin equation as

upj
∂

∂xj

(
u′fk
σu1

)
δikl = u′fj

∂

∂xj

(
u′fk
σu1

)
δikl

(
1

1 + St�

)
. (11)

Thus, for both the conventional and normalized Markov chains, the factor used to
transform the particle-fluid correlation to fluid-fluid correlations, 1/(1 + St�), is
identical and the same limits occur.

When implementing the incremental drift correction for the CRW simulations,
the turbulence correlations for the drift correction are treated consistently for the total
Markov chain. For example, if the time and length scales for the CRW simulation are
assumed isotropic, then the turbulence correlations in the incremental drift correction
are also assumed isotropic (various forms of the tested CRW models are given in
Table 3).

6 CRW results

6.1 Transverse concentration profiles

To test the drift corrections, fluid-tracer particles (mp ≈ 0,Stδ ≈ 0) were injected
uniformly (with respect to mass flux) throughout the boundary layer (from y = 0 to
y > δ) and by conservation of mass, the concentration profile should remain uniform
as they move downstream (in an averaged sense). The results of the CRW simula-
tions of this type of tracer particle injection with isotropic turbulence and isotropic
time scale using the conventional Markov chain of (5) gave very poor results (as
expected) since no drift correction was applied [7]. Including the incremental drift
correction for the conventional, isotropic Markov chain substantially reduced but did
not eliminate the non-physical peaks of particle concentration in the near-wall of
the boundary layer as shown in Figure 2a. Note that the correct result is a uniform
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Table 3. Summary of the types of incremental drift velocities utilized for the CRW model.

Drift Type Markov Chain Increment Drift Formula

No Drift Conventional & δu′
fi

= 0
Normalized

Fluid-Tracer Conventional δu′
fi

= �t u′
fj

∂u′fi
∂xj

Finite-inertia Conventional δu′fi = �t u′fj
∂u′fi
∂xj

(
1

1+St

)
Fluid-Tracer Normalized δu′fi = �t u′fj

∂
∂xj

(
u′fk
σu1

)
δikl

Finite-inertia Normalized δu′fi = �t u′fj
∂
∂xj

(
u′fk
σu1

)
δikl

(
1

1+St

)

concentration as shown by the solid line, but there is a significant amount of wall-
peaking (C/C0 > 2.0). This case also yielded a high number of non-physical wall
collisions for the fluid-tracer particles (about 50 collisions for every 1000 particle
injected). Thus, there is an incorrect description of the CRW velocity perturbations
for tracer trajectories as particles approach the wall such that the fluctuation velo-
city seen by the tracer particle does not de-correlate as quickly as the real system
(a true fluid particle should never bounce). This situation can occur frequently with
the conventional Markov chain since a fluid particle approaching the wall can have
a negative (wall-ward) transverse velocity fluctuation whereby |v′f (t)| > τint/yp for
10 < y+ < 20. This problem is rectified by using the normalized Markov chain,
which is simply a transformation from inhomogeneous turbulence to homogenous
turbulence. Application of this normalized Markov chain yielded an order of mag-
nitude reduction in wall collisions. This improvement is also reflected in Figure 2b
which shows the concentration profiles and it can be seen that the CRW results are
close to the exact solution throughout the boundary layer. Because of this, all the
CRW simulations shown hereafter employ the normalized Markov chain (other res-
ults with the conventional Markov chain are given in [7]).

Figure 3 contains the results for particle simulations at the furthest downstream
collection plane, x/δ = 15, such that t � τ� for the two extremes in Stokes number
conditions (Stδ = 10−4 and Stδ = 1). In Figure 3a, the concentration profiles from
the diagonal and full Reynolds-stress CRW simulations for the near tracer particle
case (Stδ = 10−4) are quite close to the results from the DNS (the full Reynolds-
stress results are slightly better). However, the simulations utilizing the isotropic,
normalized Markov chain significantly under predict the particle diffusion in the
10 < y+ < 100 region. This is reasonable since the isotropic definition of the trans-
verse velocity fluctuations from the kinetic energy results in an over-estimate of the
actual v′f,rms values (Figure 1b) and thus causes the particles to diffuse faster away
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Fig. 2. Fluid-tracer particle concentration profiles for the turbulent boundary layer (injected
uniformly with respect to mass flux) at four downstream locations for the CRW model with:
(a) conventional fluid-tracer drift correction, (b) normalized fluid-tracer drift correction.

from the wall and reduce the near-wall concentration. These results indicate that the
anisotropy in a boundary layer should be included in the Markov chain to obtain
accurate near-wall results. Similarly, the Stδ = 10−4 and Stδ = 10−1 results show
[7] substantial improvement with an anisotropic turbulence model but the improve-
ment with adding the off-diagonal terms is slight. The results for particles with the
largest Stokes number (Stδ = 1) appear in Figure 3b and show the same trends.
Results for other streamwise locations for the full range of particle Stokes numbers
exhibited the same features [7] and also showed that the neglecting to use the finite
inertia drift correction developed here gave poor results for Stδ > 10−2 (this will be
demonstrated in the next paragraph).

In order to assess the mean particle trajectory movement normal to the wall,
Figure 4 shows a comparison of the particle velocity averaged along the particle
trajectory, 〈vp〉, normalized by Vterm, and plotted as a function of particle Stokes
number. Since 〈vp〉 is always greater than Vterm, the net movement away from the
wall is generally dominated by turbulent diffusion rather than gravitational settling.
This is especially true for the tracer-like particles (Stδ = 10−4) for which the velocity

71



E. Loth and T.L. Bocksell

Fig. 3. Particle concentration profiles from DNS and CRW simulations for finite-inertia incre-
mental drift correction at x/δ = 15 with (a) Stδ = 10−4 and (b) Stδ = 1.

ratio is nearly thirty. However, for the largest particles (St = 1) the mean transverse
velocity approaches Vterm. Movement away/toward the wall of Vterm would occur
for very large particles that are not immune to the effects of the fluid turbulence.
Figure 4a contains the results from the CRW simulations with the tracer-particle
drift correction and Figure 4b contains the CRW simulations with the finite-inertia
drift correction; both cases also compare the isotropic and anisotropic diagonal CRW
models. In general, the anisotropic effect is important at all Stokes numbers while
the isotropic model consistently over-predicts the mean transverse velocity. For the
anisotropic CRW simulations, the fluid-tracer drift correction is reasonable up to
Stδ = 10−2(St� = 0.083). However, for particles with Stδ = 10−1(St� = 1) and
larger, the finite-inertia drift correction is needed and gives good results.
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Abstract. Much research has been done on the motion of heavy particles in simple vortex
flows. In most of this work, particle motion is investigated under the influence of fixed vor-
tices. In the context of astrophysics, the motion of heavy particles in rotating two-dimensional
flows has been investigated; the rotation follows from the laws of Kepler. In the present paper,
the motion of heavy particles in potential vortex flow in a circular domain is investigated. The
vortex describes a circular trajectory due to the presence of the boundary, so that a steadily
rotating flow is obtained. In order to isolate the effect of particle inertia, only Stokes drag is
taken into account in the equation of motion. The numerical simulations are based on a one-
way coupling. They show that small heavy particles accumulate in an ellitpic region of the
flow, counterrotating with respect to the vortex. When the particle Stokes number exceeds a
threshold, depending on the vortex configuration, particles are expelled from the circular do-
main. A stability criterion for this particle accumulation is derived analytically. These results
are qualitatively comparable to those obtained by others in astrophysics.

1 Introduction

Gas-particle separators are used in some industrial processes. Their purpose is to
separate liquid droplets or small heavy particles from gas flows. In general the sep-
arators consist of a cylindrical tube containing a region of high vorticity. In some
applications this region of high vorticity has a helical shape. The goal of the present
research is to determine the influence of this coherent structure of vorticity on the
properties of heavy particle separation.

The configuration of a steady helical vortex filament in a cylindrical tube is
sketched in Figure 1. The three-dimensional (potential) velocity field for this situ-
ation was first derived by Alekseenko et al. [1]. The calculation of this velocity field
is far from trivial due to the torsion of the helical vortex filament.

If, however, the pitch of the helix is sufficiently large compared to the tube ra-
dius, the contribution due to the three-dimensionality of the helical vortex filament
can be neglected. In this limit, the velocity field reduces to a superposition of a con-
stant axial velocity and a time-dependent two-dimensional flow in the cross-sectional
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Fig. 1. Typical configuration of gas-liquid separator.

plane, moving with velocity U (see Figure 1). Here, we use this two-dimensional ap-
proximation. The two-dimensional flow is characterized by an eccentrically placed
point vortex in a circular domain. The vortex rotates at constant angular velocity due
to its self-induced motion.

The motion of heavy particles in dilute suspensions has received much attention
in the past two decades. Investigations (e.g. [5–7]), have reported the motion of small
heavy particles in elementary vortex flows. Most of them focussed on the motion of
particles near fixed vortices. The general conclusion is that heavy particles are ex-
pelled from regions of high vorticity and tend to accumulate in regions of high strain.
The particle segregation was shown to be highest for particles whose relaxation time
corresponds to a typical time scale of the flow [4]. This causes also the effect of
preferential concentration observed in turbulent flows [11].

The motion of heavy particles in two-dimensional rotating flows has been invest-
igated in the context of planet formation from the solar nebula [3, 10]. The solar
nebula is a collection of gas particles situated on a large disk, which rotates follow-
ing the laws of Kepler. The turbulent flow in the solar nebula is approximately two-
dimensional, so that large coherent vortex structures are likely to occur. Provenzale
[10] gives a good overview of the motion of heavy particles in a two-dimensional
flow field with a finite vorticity distribution. Chavanis [3] makes an analytical es-
timate of the time it takes to capture a heavy particle in an anticyclonic vortex, by
assuming the flow to be a superposition of a prescribed elliptic patch of uniform
vorticity and a steadily rotating Keplerian disk.

In this paper we investigate the motion of heavy particles in closed circular do-
mains containing a point vortex. The presence of the boundary gives rise naturally to
a steadily rotating flow field [9]. The focus in this paper will be on the accumulation
of particles in certain flow regions due to their inertia. In order to isolate the effect
of the particle inertia, the simulations are based on a one-way coupling. Gravity is
neglected, since it is typically a minor effect in industrial gas-liquid separators. A sta-
bility criterion for particle accumulation is derived for any steadily rotating flow field
which can be expressed in terms of a stream function. It is shown that the general
results correspond to those obtained by Chavanis [3], Provenzale [10] and others.

The paper is organized as follows. In Section 2 we present the dynamical equa-
tions governing the motion of a point vortex on a unit disk. Besides, we give the
equation of motion of passive tracers in such flow, and the equation of motion of
heavy particles. In Section 3 we present the numerical results of motion of heavy
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particles in a circular domain containing one vortex; analysis is used to explain the
results for the trajectories of heavy particles in such flows. Finally, a summary and
conclusions are given in Section 4.

2 Dynamical equations

The goal of the present research is to investigate the motion of heavy particles in
a flow of one vortex on a disk. The governing equations are related to the motion
of the point vortex under its self-induced velocity, to the motion of passive tracers
in the flow and to the motion of small heavy particles in such flows. The equations
governing these three types of motion are presented in this section.

2.1 Point vortex motion on a unit disk

Flows with N point vortices are singular solutions of the 2D Euler equations and can
be seen as a Hamiltonian system. If the velocity field is divergence-free (∇ · u =
0), the motion of passive tracers is governed by a stream function Ψ which plays
the role of a Hamiltonian. It is well-known [9] that the motion of point vortices is
Hamiltonian, too.

We consider the example of one point vortex on a disk. All variables are made
dimensionless by the vortex strength and the cylinder radius. The distance from the
vortex to the disk center is denoted by rv . In order to satisfy the boundary condition
(zero normal velocity on the circular boundary), a counter-rotating image vortex is
placed outside the domain, on a distance 1/rv ([9]).

The Hamiltonian, governing the motion of the vortex, becomes:

H = 1

4π
ln
[
1 − x2

v − y2
v

]
, (1)

so the motion of the vortex is:

ẋv = ∂H

∂yv
= 1

2π

( −yv
1 − x2

v − y2
v

)
, ẏv = − ∂H

∂xv
= 1

2π

(
xv

1 − x2
v − y2

v

)
. (2)

This shows that the vortex moves on a circle of constant radius
√
x2
v + y2

v = rv with
constant angular velocity. This angular velocity is here called θ̇v and is given by:

θ̇v = 1

2π

(
1

1 − r2
v

)
. (3)

2.2 Passive tracers in bounded vortex flow

The time-dependent stream function governing the motion of passive tracers reads:

Ψ (x, y, t) = − 1

4π
ln

(x − xv)
2 + (y − yv)

2(
x − (xv/r2

v )
)2 + (y − (yv/r2

v )
)2 . (4)
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Then, the velocity of passive tracers follows from:

U = ∂Ψ

∂y
, V = −∂Ψ

∂x
. (5)

The stream function can be simplified by applying the following coordinate trans-
form:

ξ(x, y, t) ≡ x cos θv + y sin θv,

η(x, y, t) ≡ −x sin θv + y cos θv.

This means that a reference frame is chosen that rotates with the vortex. In this frame,
we define:

Ψ (ξ(x, y, t), η(x, y, t)) ≡ Ψ (ξ(x, y, t), η(x, y, t), 0) = Ψ (x, y, t). (6)

Substituting the expression for Ψ and the coordinate transform into Equation (5)
yields:

U = sin θv
∂Ψ

∂ξ
+ cos θv

∂Ψ

∂η
, (7)

V = − cos θv
∂Ψ

∂ξ
+ sin θv

∂Ψ

∂η
. (8)

Besides, it is easily derived that the velocity in the co-rotating frame, denoted by
(υ, ν) satisfies:

υ = U cos θv + V sin θv + θ̇vη, (9)

ν = −U sin θv + V cos θv − θ̇vξ. (10)

In order to obtain a stream function Ψ̂ in the co-rotating frame such that:

υ = ∂Ψ̂

∂η
, ν = −∂Ψ̂

∂ξ
, (11)

we define:

Ψ̂ (ξ, η) ≡ Ψ (ξ, η)+ 1

2
θ̇v(ξ

2 + η2). (12)

The total stream function Ψ̂ then reads:

Ψ̂ (ξ, η) = 1

2
θ̇v
(
ξ2 + η2)2 − 1

4π
ln

(ξ − rv)
2 + η2

(rvξ − 1)2 + r2
v η

2 , (13)

where, for convenience, the vortex is placed on the positive ξ -axis. Contour lines of
the stream function are plotted in Figure 2 (see also [9], p. 135). The boundary of the
circular domain is a streamline of the flow, as it should be in order to guarantee zero
wall-normal velocity on the boundary.
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Fig. 2. Contour lines of stream function
describing the motion of passive tracers in
a one-vortex system, plotted in the frame
rotating with the vortex; rv = 0.5. H1 and
H2 are hyperbolic stagnation points, E is
an elliptic stagnation point.

Fig. 3. Poincaré sections of 2 slipping
particles in one-vortex system. rv = 0.5;
St = 0.5.

Stagnation points correspond to critical points of the stream function, i.e. points
where the flow velocity is zero. The Hessian, which is defined as:

H ≡ Ψ̂ξξ Ψ̂ηη − Ψ̂ 2
ξη, (14)

is used to determine the character of the stagnation point (the subscripts indicate dif-
ferentiation). With the Hessian in the stagnation point denoted by H0, the following
classification can be made:

H0 < 0 ⇔ saddle point (hyperbolic point),
H0 > 0 ⇔ extremum (elliptic point).

(15)

With help of Equation (12), the Hessian can also be rewritten in terms of the stream
function Ψ (ξ, η). Since ∇2Ψ (ξ, η) = 0 (irrotational flow), it follows that:

H = −Ψ 2
ξξ − Ψ

2
ξη + θ̇2

v . (16)

From this it follows that if θ̇v = 0, which corresponds to the instantaneous flow field
in the quiescent frame, only hyperbolic stagnation points exist. If, on the other hand,
θ̇v > 0, then also an elliptic stagnation point may arise. This elliptic stagnation point
is always counter-rotating (anticyclonic) with respect to θ̇v .

An example of a rotating point vortex flow field with both hyperbolic and elliptic
stagnation points is shown in Figure 2. This is the flow field induced by one single
point vortex in a circular boundary, plotted in the frame rotating with the vortex. In
this frame, the streamlines are independent of time.

2.3 Motion of heavy particles

Using the one-vortex flow as the background flow field, we now consider the motion
of heavy particles in such a flow. The particles in relevant applications (such as small
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iced droplets in gas-liquid separators) are small and to good approximation spherical.
In most relevant applications of gas-liquid separators, the influence of gravity can be
neglected. For the sake of simplicity, effects of inter-particle collisions are not taken
into account. The particles are assumed not to influence the gas flow, so the approach
presented here is based on a one-way coupling.

At the beginning of the simulation, the particles are assumed to have the same
velocity as the local gas flow. The particles are allowed to cross the circular boundary,
but this does not have a significant effect on the results: a particle that has left the
domain does not enter it again.

The dynamical equations for small spherical particles have been established by
Maxey and Riley [8]. Under the assumptions above they reduce to the following
equation, which reads in a quiescent frame and in dimensionless form:

dxp

dt
= up, (17)

dup

dt
= 1

St
(ug − up). (18)

where xp and up are the position and the velocity of the particle respectively, ug is
the velocity of the gas. The parameter St is the Stokes number. This is the particle re-
laxation time made dimensionless with respect to the vortex strength and the cylinder
radius:

St ≡ τp�

R2 . (19)

Particles with St = 0 will react instantaneously to changes in the flow and will thus
behave as passive tracers, whereas particles with St → ∞ will be insensitive to the
flow field.

In the rest of this paper, it turns out to be practical to rewrite the equations of
motions in a rotating reference frame:

dξp

dt
= υp, (20)

dυp

dt
= 1

St
(υg − υp)+ 2θ̇v ∧ υp + θ̇2

v ξp, (21)

where ξ and υ denote the position and the velocity in the rotating frame. The two
additional terms on the RHS, which depend on the rotation rate θ̇v , are the Coriolis
force and the centrifugal force.

Consider the trajectories of two particles, which are initially very close. The ini-
tial differences in position and velocity are small and therefore denoted by δξp and
δυp, respectively. Now, the 4-dimensional separation vector R ≡ [δξp, δυp]T is
introduced (see also [2]). If the separation between the two trajectories is small, the
time development of the separation vector can be expressed in the following form:

d

dt
R(t) = MR(t), (22)
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where the matrix M reads:

M =

⎛⎜⎜⎜⎝
0 0 1 0
0 0 0 1

1
St

∂υg
∂ξ

+ θ̇2
v

1
St

∂υg
∂η

− 1
St

2θ̇v
1
St

∂νg
∂ξ

1
St

∂νg
∂η

+ θ̇2
v −2θ̇v 1

St

⎞⎟⎟⎟⎠ . (23)

Clearly, the separation vector can only be used in smooth flows for which the gradi-
ent of the velocity field exists. This will be no problem in our test cases. When all
eigenvalues of the matrix M have a real part smaller than zero, the separation vector
goes to 0 for t → ∞. This means that the two particles converge towards each other.

3 Results: heavy particle motion in a bounded one-vortex flow

Now we investigate the motion of heavy particles in bounded vortex flows. Each
particle is traced individually by using a fourth-order Runge–Kutta method. First,
the equations of motion (Equation 18) are integrated using a fixed time step. Sub-
sequently, the same integration is done with half of the time step. This procedure
is repeated until the difference between two subsequent solutions is below a certain
preset level.

In Figure 3, two different particle trajectories are plotted for the case rv = 0.5.
One particle, released on (ξ, η) = (0.25,−0.2), is quickly expelled from the circu-
lar boundary and moves increasingly far away from the origin. The other particle,
released on (ξ, η) = (0, 0), is trapped in one particular attraction point within the
circular domain.

This behavior is better perceptible when the positions of a group of heavy
particles in the course of time are considered. In this case, we have taken 7495
particles which are uniformly distributed over the circular domain at the start of the
simulation (t = 0). The particle positions are plotted in the frame rotating with the
vortex in Figure 4. Clearly, many particles accumulate in the same point. This means
that in physical space the particles approach to a circular trajectory periodic with the
vortex motion.

The particle accumulation within the circular boundary occurs for a wide variety
of initial conditions for the particle position. As an illustration, the particle trapping
efficiency P , defined as:

P ≡ (number of particles with r < 1 for t → ∞)

(total number of initially uniformly distributed particles)
× 100%, (24)

is calculated for three different configurations of a bounded one-vortex flow: rv is
taken 0.3, 0.5 and 0.7, respectively. The results are plotted in Figure 5.

For the particle accumulation to occur, two conditions must be met: firstly, a fixed
point of the dynamical equations (20) and (21) can be found, and secondly, the fixed
point has to be stable, thus attracting particles. Both conditions will be treated in the
remainder of this section.
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Fig. 4. Distribution of heavy particles in one-vortex system; St = 0.6.

Fig. 5. Percentage of particle trapping as a function of St , for three different vortex
configurations.

3.1 Location of fixed points in co-rotating frame

A trapped particle, rotating with the same speed as the vortex, has zero velocity in
the co-rotating frame. Hence, the RHS of Equations (20) and (21) goes to 0 for such
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a particle in the fixed point, say ξ∗. In order for this to happen, the Stokes drag has
to balance the centrifugal acceleration:

(υg(ξ
∗))+ Stθ̇2

v ξ∗ = 0. (25)

From this equation, it follows immediately that for small Stokes numbers also υg

has to be small. Consequently, in the limit of St ↓ 0 the fixed point is situated near
a stagnation point of the gas velocity in the co-rotating frame. The only reasonable
candidate for this is the elliptic stagnation point situated on the negative ξ -axis, since
the hyperbolic stagnation points are unstable by definition.

3.2 Stability of fixed points in co-rotating frame

Now a linear stability analysis is made of the particle approaching the fixed point ξ∗.
If the particle is close enough to the attraction point, its equation of motion can be
approximated by:

d

dt
R∗ = MR∗, (26)

where R∗ is a vector denoting the separation between the attracted particle and the
fixed point:

R∗ ≡ [ξp − ξ∗,υp]T . (27)

The matrix M is given in Equation (23). In this case, the matrix can be evaluated in
the fixed point.

If the real parts of all eigenvalues λ1, . . . , λ4 of M are negative, the fixed point
ξ∗ is called stable. The eigenvalues read:

λ1,2,3,4 =
−1 ±

√
1 − 4θ̇2

v St
2 ± 4St

√−H∗

2St
, (28)

where H∗ denotes the Hessian, defined in Equation (14), evaluated in the fixed point.
For small Stokes numbers, the fixed point is situated close to the elliptic stagnation
point, so that H∗ > 0. Then, the eigenvalues can be approximated by:

λ1,2,3,4 � −1 ± 1

2St
+ St

(
H∗ − θ̇2

v

)± i
√

H∗. (29)

Using the property of the total Hessian in a steadily rotating reference frame, given
in Equation (16), we obtain:

λ1,2,3,4 � −1 ± 1

2St
− St

{
Ψ

2
ξξ + Ψ

2
ξη

}
± i

√
H∗. (30)

Hence, for small Stokes numbers, the real part is always smaller than 0, indicating
that the fixed point is stable and does attract particles. So, if a counter-rotating el-
liptic stagnation point exists in some steadily rotating reference frame, small heavy
particles are attracted to it.
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When the Stokes number becomes larger, the fixed point will be situated further
away from the center of the elliptic island. Then, particles have too much inertia
and will be expelled from the domain. Hence, the number of particles trapped inside
the domain decreases with increasing Stokes number. This behavior is visible in
Figure 5.

Please note that the stability analysis above is not only restricted to the flow in-
duced by a point vortex in a circular domain, but can as well be applied to an other
incompressible inviscid flow, as long as it is steady in some steadily rotating refer-
ence frame. Examples of this comprise the motion of vortices on a regular polygon
on an infinite plane or on a disk (whose origin coincides with the barycenter) or
an approximation of the flow field on a Keplerian disk as given by Chavanis [3].
Chavanis prescribes an anticyclonic vortex region a priori; in our case, the elliptic
island is formed naturally just by the presence of a cyclonic vortex. Still, the res-
ults found here are qualitatively in correspondence with those obtained by Chavanis:
small heavy particles are attracted towards a fixed point in a steady anticyclonic is-
land.

4 Conclusions

In this paper, the trajectories of heavy particles in a bounded point vortex flow have
been calculated numerically. The simulations are based on a one-way coupling. The
results reveal that heavy particles may accumulate in certain regions where the cent-
rifugal and the drag forces acting on the particles balance each other, thus causing an
equilibrium trajectory.

A linear stability analysis shows that particles are always attracted to a fixed
point, as long as the Stokes number is below a critical value, depending on the par-
ticular flow properties. The analysis is shown to be valid not only for point vortex
flows but also for any steadily rotating flow field which can be expressed in terms of
a stream function.

These results can also be relevant for the swirling pipe flow discussed in Sec-
tion 1. Small inertial particles tend to accumulate in regions far away from the hel-
ical vortex filament, but inside the pipe. Although many other effects play a role in
the particle motion on small scales, the inertia is believed to be a dominant effect in
macro-scale motion of particles in this situation.
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Abstract. We present direct simulations with interface resolution of dense, fluidized solid-
liquid suspensions. The flow of interstitial fluid is solved by the lattice-Boltzmann method
(LBM). The monodisperse, spherical particles move under the influence of gravity, hydro-
dynamic forces stemming from the LBM, subgrid-scale lubrication forces, and hard-sphere
collisions. The cases we study have been derived from the experimental work by Duru et al.
[1]. We first show that the experimentally observed waves are well represented by the simu-
lations. Subsequently we use the detailed information contained in the simulation results to
assess two-fluid closures, with a focus on the role of compaction and dilation of the particle
phase.

1 Introduction

Dense fluidized beds exhibit a rich variety of complex, inhomogeneous flow struc-
tures, ranging from one-dimensional traveling waves to bubble-like voids. The hier-
archy of these structures has been a subject of many theoretical and experimental
studies [1–3]. An Eulerian two-phase flow model, which treats the fluid and particle
phases as interpenetrating continua, coupled with simple phenomenological closures
for the effective stresses and the fluid-particle interaction force, seems to capture
the experimentally observed structures in a qualitatively correct manner; however,
quantitative predictions remain elusive [3].

Recently Duru et al. [1] measured the particle volume fraction profiles in fully
developed one-dimensional traveling waves in liquid-fluidized beds. Their wave data
are particularly valuable, as they are made up of regions where the particle assem-
blies undergo dilation and regions where they compact. As compaction and dilation
of particle assemblies are ubiquitous in granular and fluid-particle flows, it is import-
ant to test and validate closure models through clean model problems where both
compaction and dilation occur. One-dimensional waves in fluidized beds serve as
excellent model problems for this purpose.

Critical assessment of the closure relations requires detailed data on the spatial
variation of particle and fluid velocity fields, collision statistics, etc. in these travel-
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Fig. 1. Left: experimental space-time plot of the solids volume fraction at φ̄ = 0.540. The
wave speed (c) can be derived from the slope of the light lines representing the void regions.
Right: solids volume fraction wave profiles for φ̄ = 0.57 (top) and φ̄ = 0.49 (bottom). Re-
printed from [1].

ing waves, in addition to the particle volume fraction profiles. These are not easily
measured in dense suspensions; to date, such measurements have not been made.
However, one can use computer simulations to obtain the missing data. By perform-
ing detailed simulation of the flow of the fluid and the particles corresponding to
these waves, all the detailed data required for critical evaluation of the closures can
be extracted. The experimental data [1] can be used to validate the computer simula-
tions.

2 Flow system

Duru et al. [1] carried out an extensive experimental program in which they studied
the onset and characteristics of planar waves in relatively narrow, vertically oriented
liquid fluidized beds. Their experimental variables were the solids volume fraction,
the (solid over fluid) density ratio, the particle size, the fluid viscosity, and the size
ratio (particle diameter divided by tube diameter). Even though planar waves form
spontaneously, the authors excited specific wave frequencies so that clean, high-
quality data could be obtained. Therefore the excitation frequency and amplitude
are also inputs in the experiments. Figure 1 shows a typical experimental result: a
space-time plot of the solids volume fraction φ. Clearly visible are regions of low
particle volume fraction (“voids”) that travel with a well-defined speed in the ver-
tical (z) direction. Figure 1 also shows two of the many waveforms measured in the
experiments. The top and bottom panels show traveling waves with a single hump
and two humps, respectively.

In the simulations we represent the experimental system by a set of spherical
particles all having the same size (diameter dp) immersed in a fluid. The three-
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dimensional domain has fully periodic boundary conditions. The flow is induced
by a force in the negative z-direction on the particles (gravity), and a body force act-
ing on the fluid that balances the gravity force on the particles. The body force on
the fluid mimics the overall pressure gradient that in real life drives the flow. If we
write the gravitational acceleration as −gez, then the net gravity force acting on each
sphere is

FG = −(ρs − ρ̄)
π

6
d3
pgez,

and the force per unit volume acting on the fluid is

fB = (ρ̄ − ρf )gez, (1)

with ρ̄ = φ̄ρs + (1 − φ̄)ρf the density of the fluid-solid mixture, and φ̄ the overall
(spatially averaged) solids volume fraction.

We need to translate the physical parameters of the experiments into LB-
parameters. The spatial resolution of the simulations can be expressed in terms of
the number of lattice spacings � spanning a particle diameter dp. This number was
set to 16 (after comparing preliminary results obtained with dp = 10�, 16� and
24�). The gravitational acceleration g and the fluid viscosity ν are now chosen such
that the dimensionless group (gd3

p)/ν
2 is the same in experiment and simulation, and

the terminal settling velocity of a single particle in unbounded fluid is of the order
of 0.02 in LB units (distance traveled in lattice spacings per time step). The latter
condition assures that fluid velocities stay well below the speed of sound of the nu-
merical scheme so that incompressible flow is simulated. The density ratio and the
solids volume fraction are dimensionless numbers that can be directly represented
in the simulations. The specific experiments that we selected from [1] had particles
with dp = 685 ± 30 µm, a density ratio ρs/ρf = 4.1, and a fluid viscosity of
ν = 0.90 · 10−6 m2/s (these settings being denoted “Combination 7” in [1]).

Simulations were performed in three-dimensional periodic domains (6dp · 6dp ·
20dp), for three different average particle volume fractions (φ̄ = 0.580, 0.505, and
0.488). After initializing a nearly homogeneous bed, gravity and body force were
turned on. As the lateral dimensions of the box are small (6dp), there is very little
opportunity for any persistent lateral structure to evolve, but one can readily see non-
uniform structures that travel in the direction of the mean fluid flow.

3 Numerical setup

In our simulations, we consider a three-dimensional (Cartesian) domain which is dis-
cretized into a number of lattice nodes residing on a uniform, cubic grid. In the LBM,
fluid particles move from each node to its neighbors according to pre-scribed rules. It
can be proven that (with the proper grid topology and collision rules) in the low Mach
number limit this system obeys the incompressible Navier–Stokes equations (see e.g.
[4]). The specific implementation used in our simulations has been described by [5],
which is a variant of the widely used Lattice BGK scheme to handle the collision
integral (e.g. [6]).
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Pioneering work on the application of lattice-Boltzmann methods for suspension
simulations was done by Ladd [7, 8]. In our code, the no-slip condition at the solid-
fluid boundaries is introduced through a forcing scheme [9, 10]. In this scheme, body
forces acting on the fluid are determined such that at the surface of the sphere the fluid
velocity matches the local velocity of the solid surface (that is the sum of the linear
velocity vp and �p × (r − rp) with �p the angular velocity of the particle). The
collection of forces acting on the fluid at the sphere’s surface is subsequently used
to determine the hydrodynamic force and torque acting on the sphere. We follow the
calibration procedure of Ladd [7] to find the hydrodynamic diameter of the particles.

An artifact of the forcing scheme is that there is fluid inside the spherical
particles. As long as the density of the solid is higher than the density of the fluid, the
effects of the internal fluid can be effectively corrected for: The force (and torque)
acting on the fluid determined by the LB/forcing method is the sum of the force
(torque) needed to accelerate the internal fluid and the force (torque) of the particle
acting on the external fluid. Since the internal fluid largely behaves as a solid body
(i.e. it approximately has the linear and angular velocity of the sphere), the force
(torque) on the fluid (internal and external) due to the solid particle is

FLB = Fext + ρf
π

6
d3
p

dvp
dt

, TLB = Text + ρf
π

60
d5
p

d�p

dt
. (2)

The force (torque) that the external fluid exerts on the particle is −Fext (−Text).
A second effect of the internal fluid that needs to be corrected for in the equa-

tion of linear motion of the particles is the body force acting on the fluid (Equa-
tion (1)) that not only acts on the external fluid, but also on the internal fluid. This
(non-physical) force (π/6)d3

p(ρ̄ − ρf )gez acting on the internal fluid needs to be
compensated by an equal and opposite force on the particle.

If the equation of linear motion of a spherical particle without internal fluid on
which the external fluid exerts a force Fext is

ρs
π

6
d3
p

dvp
dt

= −Fext − (ρs − ρ̄)
π

6
d3
pgez, (3)

the corrections described above lead to the following equation for a particle with
internal fluid:

(ρs − ρf )
π

6
d3
p

dvp
dt

= −FLB − (ρs − ρf )
π

6
d3
pgez. (4)

The equation of angular motion (for a particle with internal fluid) is

(ρs − ρf )
π

60
d5
p

d�p

dt
= −TLB. (5)

In order to test if the above procedure represents the dynamics of spheres immersed
in liquid properly, we considered the transient motion of a single sphere that is accel-
erated starting from rest under the influence of gravity. In the limit of zero Reynolds
number in an unbounded fluid the equation of motion of the sphere has been derived
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by Maxey and Riley [11]. Lattice-Boltzmann results are in excellent agreement with
those obtained by integrating the Maxey and Riley equation even at a density ratio
as low as 1.1.

The spheres mutually interact by means of binary, hard-sphere collisions and
lubrication forces. For the former, we apply an event-driven collision algorithm: we
move the collection of particles until two particles get into contact. At that moment
we carry out the collision (i.e. update the velocities of the two particles taking part
in the collision). Subsequently, the motion of all particles is continued until the next
collision. The collision model that we apply (described in detail in [12]) has two
parameters: a restitution coefficient e and a friction coefficient µ. As the default
situation we consider fully elastic, frictionless collisions (e = 1, µ = 0).

If particles are in close proximity (their distance being of the order or even less
than the lattice-spacing), the hydrodynamic interaction between the particles cannot
be properly accounted for anymore by the LBM. We then explicitly impose lubrica-
tion forces on the particles, in addition to the hydrodynamic forces stemming from
the LBM [13]. Both radial and tangential lubrication have been considered. Lubric-
ation is smoothly switched on once the spacing between two particles gets less than
1.6 times the lattice spacing (0.1dp); it saturates at a distance of 10−4dp. The latter
we use for numerical reasons but also with the surface roughness of the particles
and/or the mean-free-path of the fluid in mind. Further details of the implementation
of the lubrication forces are discussed in [14].

4 Results

4.1 Waves and wave speeds

We start from a random distribution of (non-overlapping) spheres at rest in stagnant
liquid. At t = 0 the gravity and the body force are switched on. The spheres start
falling, and the fluid starts flowing. The system develops a wave instability in a time
span of typically 1d2

p/ν. The associated void travels in the direction opposite to grav-
ity (i.e. the positive z-direction), see Figure 2. Outside the void, the solids volume
fraction is significantly higher than the average volume fraction. At the upper side of
the void, particles detach from the dense region, “rain” through the void, and fall on
the dense region below the void.

The simulated wave can be represented in a space-time plot similar to the ex-
perimental one. Examples of such plots are given in Figure 3. The wave amplitude
and structure depend on the solids volume fraction: shallow waves at high φ̄, more
complicated wave forms for lower φ̄. Duru et al. [1] measured wave speeds of
cdp/ν = 28 and 29 (±1.4) for their “Combination 7” system at φ̄ = 0.488 and
0.496 respectively (with c the wave speed). The wave speeds that can be extracted
from Figure 3 are 33 (±2) (within the error margin c is independent of φ̄).

By z-shifting the set of instantaneous, one-dimensional solids volume fraction
profiles that constitute the space-time plots by an amount ct and subsequently aver-
aging over time produces smooth solids fraction profiles comparable to those meas-
ured in [1]. The resulting graphs are shown in Figure 4. The size of our domain in the
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Fig. 2. Cross sections through the simulated solid-liquid field with φ̄ = 0.505 at various
moments in time. From left to right tν/d2

p = 1.225, 1.277, 1.329, 1.381, 1.434. The gray
scale denotes the absolute value of the liquid velocity (dark is high).

Fig. 3. Simulated space-time plots of the solids volume fraction. From left to right: φ̄ = 0.580,
0.505, and 0.488.

Fig. 4. Solids volume fraction wave profiles for (from left to right) φ̄ = 0.580, 0.505, and
0.488.

z-direction (20dp) is generally smaller than the measured wavelengths – the waves
in Figure 1 have lengths of the order of 40dp – which inhibits a quantitative compar-
ison. Qualitatively there is good agreement: the asymmetric wave shape with smaller
gradients at the compaction (= left) side of the wave; and double humped waves at
lower solids volume fractions.

4.2 Quantitative analysis

During the simulations, data sets containing short-time averages (averaging time ta =
5.2× 10−4d2

p/ν) of volume fractions, velocities, forces, and stresses as a function of
z were stored to disk. A series of 2000 of these sets (spanning a time 2000ta) are used
to determine their profiles in a frame of reference moving with the (fully developed)
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Fig. 5. Variation of the three collisional normal stresses (zz: drawn curve; xx: dashed, yy;

dotted) along the wave. σ̃ is the dimensionless stress defined as σ̃ = σ
d2
p

ρf ν2 . From left to

right: φ̄ = 0.580, 0.505, and 0.488.

Fig. 6. Variation of zz-stresses along the wave (σ̃ has been defined in Figure 5). From left to
right: φ̄ = 0.580, 0.505, and 0.488. Thick, drawn line: collisional stress; thin drawn line: stress
due to lubrication; dotted line: fluid streaming stress; dashed line: particle streaming stress.

wave. For this the same ct-shifting procedure that was applied to derive the solids
volume fraction profiles (Figure 4) was used. In this section of the paper the focus
will be on the momentum transfer mechanisms (i.e. stresses).

The wave clearly induces anisotropy. As an example we show in Figure 5 the
three components of the normal collisional stress. As expected, the two lateral com-
ponents (xx and yy) are approximately equal to one another, and the axial com-
ponent (zz) differs appreciably from the other two. In the void-part of the wave the
collisional stress is much lower than in the dense part.

The most important zz-stresses are presented in Figure 6. Collisions are largely
responsible for the particle phase stress in these flows at high particle volume frac-
tions. In the void, fluid and particle streaming stress are significant and of comparable
magnitude. Lubrication plays only a modest role. The normal viscous stresses (not
shown in Figure 6) are negligible.

In an Eulerian two-phase flow model, continuum equations of motion for the
particle phase are based on the concepts of kinetic theory of dense gases and are
referred to as kinetic theory of granular material (KTGM). This typically leads to a
particle phase stress, σs , expressed in a compressive sense, of the form
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Fig. 7. Dimensionless collisional pressure p̃c as a function of solids volume fraction. From left
to right: φ̄ = 0.580, 0.505, and 0.488. The squares relate to the negative φ-slope (compaction),
the triangles to the positive φ-slope (dilation). The plusses in the right graph are collisional
pressures in the shallow void based on bulk viscosity estimates from the deep void.

σs = psI − κs(∇ · vs)I − µs

[
(∇vs)+ (∇vs)T − 2

3
(∇ · vs)I

]
, (6)

where vs is the particle phase velocity; and ps , κs , and µs are the pressure, bulk
viscosity, and shear viscosity of the particle phase respectively. Although the actual
expressions for the shear and bulk viscosities differ slightly from one derivation to
another, all derivations yield comparable values for them, with the shear viscosity be-
ing larger in magnitude than the bulk viscosity (e.g. [15]). It is also important to note
that in all theories, the bulk and shear viscosities depend on local particle volume
fraction and granular temperature, but not explicitly on the local rate of deforma-
tion. At prescribed particle volume fraction and granular temperature, the particle
phase stress depends linearly on the rate of compaction or dilation of the particle
phase (which is captured through the term); and the bulk and shear viscosities are
independent of whether the assembly is undergoing compaction or dilation locally.

In Figure 7, we present the average of the three collisional normal stresses with
the local particle volume fraction (taken from Figure 4). This average normal stress
is the sum of the contributions of the particle phase pressure and the bulk viscosity
term. Figures 7a and 7b take the form of a single lobe, as it corresponds to a single
hump wave, and it shows unequivocally that the average normal stress is not a unique
function of particle volume fraction and that it is dramatically higher in the compac-
tion branch than in the dilation branch. Figure 7c shows two lobes as it corresponds
to a double hump wave. The rates of compaction and dilation in the shallower void
(Figure 4c) are much smaller than those in the deeper void; Figure 7c suggests that
the average normal stress in the dilation branch is approximately independent of the
rate of dilation. In contrast, the average normal stress in the compaction branch of
the shallower void is appreciably lower than that of the deeper void, indicating a
pronounced dependence on the rate of compaction.

In the kinetic theory, particle phase pressure depends on both volume fraction and
the granular temperature, and the granular temperature is indeed higher in the com-
paction branch than in the dilation branch, but this difference is no more than 30%,
and it cannot explain the factor of 4–6 difference seen in the average normal stresses
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Fig. 8. Solids phase viscosity as a function of the solids volume fraction for φ̄ = 0.488.
(a) Shear viscosity under compaction, (b) shear viscosity under dilation, (c) the bulk viscosity
estimates in the deep void.

in the two branches at intermediate concentrations. It is natural to begin by suspect-
ing that the path dependence seen in Figure 7 is a consequence of the bulk viscosity,
with the bulk viscosity being essentially zero under dilation and non-negligible upon
compaction. In this line of thinking, the difference between the compaction and dila-
tion branches in Figure 7 is exclusively attributed to the bulk viscosity effect. To test
this further, we used the data in the outer lobe of Figure 7c and estimated bulk vis-
cosity at different particle volume fractions. Using these bulk viscosity estimates and
the compaction rate at different locations in the shallow hole, we calculated what the
average normal stress at different locations in this wave must be; these results are
shown in Figure 7c as plusses. Although not quantitative, these estimates are close to
the actual average normal stress in the shallow hole, lending support to the argument
that the bulk viscosity contribution to the particle phase stress is very significant.
The bulk viscosity estimates corresponding to Figure 7c are shown in Figure 8. Also
shown in these figures are the collisional shear viscosities extracted from this simu-
lation. It is clear that the bulk viscosity estimate is appreciably larger than the shear
viscosity.

5 Closure

Dense, fluidized solid-liquid suspensions have been simulated in great detail. Wave
formation was found in qualitative agreement with experimental data from [1]. Sub-
sequently we demonstrated the potential of the simulations for gaining a better in-
sight in the physics of dense solid-liquid suspensions. At the upper and lower side of
the wave the particle phase respectively dilates and compacts. It was shown that in
order to capture the particle phase stresses by means of KTGM-based modeling, the
particle-phase bulk viscosity, and the way it depends on the local variables involved
(such as the solids volume fraction, and the granular temperature) needs further at-
tention.
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Abstract. The drag, lift and moment coefficient of differently shaped single particles with
respect to the angle of incidence and to the particle Reynolds number under different condi-
tions were determined. For this purpose simulations of the flow around these particles were
performed using the three-dimensional Lattice Boltzmann method. The first case studied was
a fixed particle in a plug flow, the second case a rotating particle in a plug flow to determine
the Magnus lift force and the third case a fixed particle in a linear shear flow to determine
the Saffman lift force. In the first case six particle shapes were considered, which are two
spheroids, two cuboids and two cylinders with an axis ratio of 1 and 1.5, respectively. In the
second and third case, only the sphere was considered. The particle Reynolds number was
varied between 0.3 and 480.

Nomenclature

α = angle of incidence

cD = |FD |
1
2ρu

2 π
4 d

2
V

= drag coefficient

cL = |FL|
1
2ρu

2 π
4 d

2
V

= lift coefficient

cM = |M|
1
2ρu

2 π
4 d

2
V dV

= moment coefficient

dV = diameter of a volume-equivalent sphere
FD = drag force
FL = lift force
M = torque
υ = kinematic viscosity

RePa = |u|dV
υ = particle Reynolds number

ρ = fluid density

S = |ω| d2|u| = spin number

u = fluid velocity
ω = ωPa = 1

2∇ × u = particle angular velocity or half fluid vorticity
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1 Introduction

The motion of particles is very important for many technical processes. Examples
are combustion of pulverised coal, pneumatic transport of solids, fluidised beds or
fibre suspension flow in paper forming. But it also plays an important role in natural
processes as well, e.g. in the pollutant transport in the atmosphere. The modelling of
these processes relies mostly on the assumption of spherical particles. For describ-
ing the motion of non-spherical particles, detailed information on the fluid dynamic
forces acting on such particles are necessary, but generally not available.

Analytical solutions exist only in the low Reynolds number limit for the drag of
a sphere in a plug flow FD = 3πdV ρυu or cD = 24/RePa, for the lift of a rotating
sphere in a plug flow (Magnus force) [6] FL = (π/8)d3

V ρω × u or, if ω and u are
perpendicular, cL = 2S, for the lift of a fixed sphere in a linear shear flow (Saffman
force) [7] FLy = (6.46/4)d2

V ρ
√
υ
√

d|u|/dy |u| or cL = 46.46/π
√
S/RePa and for

the torque in the last two cases M = −πd3
V ρυω or cM = 16S/RePa. Correlations for

the drag coefficient of spheres exist in the whole range of particle Reynolds numbers
[4]. Also averaged correlations for the drag coefficient of non-spherical particles are
available which depend on the shape of the particles [3, 4]. Only very few three-
dimensional numerical studies about the drag of non-spherical particle exist, e.g. [2].
This work is to my knowledge the first comprehensive three-dimensional study about
the lift, drag or moment coefficient of non-spherical particles as function of the angle
of incidence.

2 Numerical method

The fluid flow is simulated by the Lattice Boltzmann method which is an alternative
approach to conventional methods. Whereas conventional models are based on the
conservation laws formulated at the macroscopic level, the Boltzmann equation de-
scribes the behaviour of fluids at the molecular level. The BGK relaxation and the
D3Q19 model is used for this work [5].

The curved no-slip boundary condition introduced in [1] is imposed on the par-
ticle surface. This boundary condition considers the exact position of the particle
surface within a cell. The influence of the boundaries of the computational domain
and of the particle resolution was asymptotically calculated and was used to correct
the coefficients. The domain size is 170 × 60 × 74 cells and the smallest dimension
of every particle is 12 cells which allows a good resolution of the flow field around
the particle. The coefficients converge to 99% of the terminal value at RePa = 0.3
after 10000 time steps and at RePa = 240 after 4000 times steps.

3 Coefficients for a fixed particle in a plug flow

For these studies a particle is fixed at a certain angle of incidence in the centre of
a cuboid domain, see Figure 1. As inflow (at x = 0) a plug flow is assumed. The
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Fig. 1. Flow configuration.

other boundary conditions are symmetry boundary condition for the side walls and
stress-free boundary condition for the outlet. Six different particles are considered,
namely a sphere, a cube, a cylinder with an axis ratio of 1 and a spheroid, a cuboid
and a cylinder with an axis ratio of 1.5, respectively. The drag force is positive in the
x-direction, the lift force is positive in the z-direction and the torque is positive in the
y-direction. Four different particle Reynolds numbers, i.e. 0.3, 30, 90 and 240 and
for certain orientations also 480, are considered.

In Figures 2a–2d the drag coefficient is plotted as a function of the angle of
incidence at the four different particle Reynolds numbers. At RePa = 0.3 most of
the non-spherical particles have a minimum in the drag coefficient around an angle
of 45◦ since they have the best streamline shape for this orientation. At 0◦ and 90◦
of incidence the drag coefficient reaches maximum values. In contrast to that, at
RePa = 90 and RePa = 240 the non-spherical particles have the largest drag at
approximately this position, where the projected area reaches its greatest value, e.g.
the cube at 45◦. Thus the streamlining has more influence on the drag at low rather
than at high particle Reynolds numbers and the projected area has more influence at
high rather than at low particle Reynolds numbers. The lengthwise (α = 0◦) spheroid
has the smallest drag and the crosswise (α = 90◦) or nearly crosswise cuboid the
largest drag at every particle Reynolds number. The reason is the good streamline
shape of the lengthwise spheroids and the bad streamline shape of cuboids because
of the rough edges of cuboids. At RePa = 240 all lengthwise particles with axis
ratio 1.5 have a smaller drag than the sphere. In Figure 2e the drag coefficient of the
lengthwise and crosswise particles is plotted versus the particle Reynolds number. It
shows the increase of variation in drag with increasing particle Reynolds number.

Figures 3a–3d show the dependence of the lift coefficient on the orientation for
the different particle Reynolds numbers. At RePa = 0.3 the cube has practically no
lift and the graph of the cuboid shows almost a parabolic shape with the minimum
at about 45◦. At higher particle Reynolds numbers the lift coefficient of the cube
shows stronger variations. The shape of the lift coefficient curves for the cuboid be-
comes non-symmetric with increasing particle Reynolds number and the minimum
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Fig. 2. cD of a fixed particle in a plug flow as a function of α (a–d) and of RePa (e).
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Fig. 3. cL of a fixed particle in a plug flow as a function of α (a–d) and of RePa (e).
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Fig. 4. cM of a fixed particle in a plug flow as a function of α (a–d) and of RePa (e).
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is shifted towards smaller angles of incidence. For the non-spherical particles pe-
riodic flow separations appear at RePa = 240 for angles of incidence where the
projected area reaches its respective greatest values, yielding a increase of the lift
coefficient. From Figure 3e, where the maximum lift coefficient is plotted versus the
particle Reynolds number, it is obvious that between RePa = 0.3 and RePa = 30
the maximum lift coefficient decreases. The average decrease except for the cube is
approximately proportional to Re−0.5

Pa . At higher particle Reynolds numbers the lift
remains almost constant.

The moment coefficient with respect to the angle of incidence plotted in Fig-
ures 4a–4d behaves similar to the lift coefficient, except that the periodic flow sepa-
rations have no observable influence. A particle is in a stable position if the moment
coefficient is zero and if the slope of the graph is positive. For the spheroid, cuboid
and cylinder with axis ratio 1.5 a stable position is the crosswise position (α = 90◦)
and for the cuboid at RePa = 240 also the lengthwise position (α = 0◦). The cube
has stable positions at α = 0◦ and α = 90◦. The cylinder with axis ratio 1 is in stable
position always at α = 90◦ and at RePa = 90 and RePa = 240 also at α = 0◦. The
maximum moment coefficients are plotted against the particle Reynolds number in
Figure 4e. The average slope except for the cube is approximately proportional to
Re−0.18

Pa .

4 Coefficients for a rotating sphere in a plug flow

The flow conditions are the same as in the section before (see Figure 1) except that
the particle is rotating with a constant angular velocity. Hence, the particle experi-
ence a lift which is the well known Magnus force. Four different angular velocities
and therefore four different spin numbers (0.5, 1, 2 and 3) of a sphere are studied.
The drag, lift and moment coefficient versus the particle Reynolds number are shown
in Figures 5a–5c. Except for the sphere with S = 3 an increase of the spin number
causes an increase of the drag. The difference becomes larger with increasing parti-
cle Reynolds number. The lift coefficient fits very well the theoretical solution at low
particle Reynolds numbers, i.e. it remains almost constant. Beyond particle Reynolds
numbers of about 1 the calculated lift becomes much smaller than the theoretical so-
lution. Also the moment coefficient fits the theoretical prediction very well at low
particle Reynolds numbers. At high particle Reynolds numbers the moment coeffi-
cient becomes slightly larger than the theoretical solution.

5 Coefficients for a fixed sphere in a linear shear flow

In contrast to Figure 1 no-slip boundary conditions with a moving wall are imposed
for the bottom and upper wall, yielding a linear shear flow along the computational
domain. Under these conditions a lift acts on a sphere in the direction toward larger
velocities at low particle Reynolds numbers. This is the well-known Saffman force.
The spin numbers, which are determined by the particle size and the ratio between the
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Fig. 5. cW (a), cA (b), cM (c) of a rotating sphere in a plug flow as a function of RePa.

velocity gradient and the velocity, are much lower than in the section before for the
rotating sphere due to the numerical limitation of the maximum Reynolds number.
The spin numbers studied are 0.04 and 0.08, see Figures 6a–6c. The drag coefficient
is almost unaffected by the shear flow. The lift coefficient approaches the theoretical
solution at low particle Reynolds numbers. At both spin numbers the lift changes its
direction between RePa = 30 and RePa = 90. From the small diagram in Figure 6b,
where the y-axis is linear, it can be observed that the change of direction occurs at
nearly the same particle Reynolds number (RePa = 50) for both spin numbers. The
absolute value of the lift coefficient at the high spin number remains larger also after
the change of direction. The moment coefficient fits the theoretical prediction again
very well at low particle Reynolds numbers. Between RePa = 90 and RePa = 240 a
drastic drop of the moment coefficient occurs and it remains almost constant beyond
it.

6 Summary

The drag, lift and torque acting on particles depend, besides the particle Reynolds
number, strongly on the particle shape and the angle of incidence. The particle
streamlining has more influence on the drag at low rather than at high particle
Reynolds numbers and the projected area has more influence at high rather than
at low particle Reynolds numbers. A fixed cube in a plug flow shows practically no
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Fig. 6. cW (a), cA (b), cM (c) of a fixed sphere in a linear shear flow as a function of RePa.

lift or torque at low particle Reynolds numbers in contrast to high particle Reynolds
numbers.

The drag of a sphere is only slightly influenced by rotation of the sphere or a shear
flow. In addition to the drag a lift and torque act on a sphere if it is rotating or placed
in a shear flow. The lift on a rotating sphere in a plug flow is the Magnus force and
the lift on a sphere in a linear shear flow is the Saffman force. In both cases the lift
and moment coefficients approach the theoretical solutions at low particle Reynolds
numbers. At high particle Reynolds number the Magnus force becomes smaller and
the corresponding torque slightly larger compared to the theoretical solution. The
Saffman force becomes smaller with increasing particle Reynolds number until it
changes its direction at approximately RePa = 50.
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Abstract. Although much research has been performed on the motion of contact lines on
solid surfaces, many questions remain. This paper presents results obtained with molecular
dynamics (“MD”) simulations that address some of these questions. Of specific interest is the
nature of the frictional resistance to contact line motion.

Key words: contact angle, contact line motion, molecular dynamics.

1 Introduction

The motion of a liquid drop on a surface is opposed both by hydrodynamic forces
and by resistance to displacement of the molecules of the liquid at the contact line.
Brochard-Wyart and de Gennes [4] discussed the relative importance of these con-
tributions. The resistance to the displacement of the molecules at the contact line is
a major contributor in many experiments, and is dominant at the length scales that
occur in MD simulations.

Blake and Haynes [2] developed a theoretical model of contact line motion. They
used Eyring’s kinetic theory of liquids [9] to describe the motion of molecules near
the contact line. The motion of a contact line is, at a microscopic scale, related to
the frequency of molecular jumps between sites on the solid substrate. Under suit-
able conditions, their result for the contact line velocity can be expressed in terms
of a friction coefficient. The friction coefficient describes the molecular scale dis-
sipation that occurs within a few molecular length scales of the contact line. Thus,
it represents dissipation that is not described by macroscopic (viscous) dissipation.
de Ruijter et al. [6] performed MD simulations of drops spreading on molecularly
smooth, crystalline surfaces. They found that the Blake–Haynes theory described
their results well.

The Blake–Haynes theory assumes that the dynamic contact angle differs from
the equilibrium contact angle. On the other hand, Hocking [11], Hocking and Rivers
[12], and Cox [5] assumed that the dynamic contact angle is equal to the equilibrium
contact angle. One might assume that this difference in views is due to the fact that
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the above studies considered only viscous dissipation, while Blake and Haynes con-
sidered molecular scale dissipation. Brochard [3], Brochard-Wyart and de Gennes [4]
and others have, however, assumed that the dynamic contact angle may differ from
the equilibrium contact angle even when only hydrodynamic dissipation is import-
ant. It is beyond the scope of the present paper to address this issue in general. For
the drops that were studied in the present work, however, the dynamic contact angle
differed significantly from the equilibrium contact angle even for uniform surfaces.

In what follows, the results of MD simulations of drops on crystalline surfaces
will be presented. The results differ from those presented by de Ruijter et al. in
several respects. First, results will be presented for the spreading of drops on a variety
of crystalline surfaces that differ in their wettability for the drop phase. It will be seen
that the friction coefficient increases rapidly with the wettability. A second difference
is that results will be presented for receding contact lines as well as advancing contact
lines. The Blake–Haynes theory did not distinguish between these cases, but it will be
seen that the friction coefficient for a receding contact line is significantly larger than
for an advancing contact line. The difference between the friction coefficients for
advancing and receding contact lines increases with wettability. Finally, MD results
for a drop migrating on a wettability gradient will be presented and the ability of the
Blake–Haynes theory to describe this phenomenon will be discussed.

2 Blake–Haynes kinetic theory

Blake and Haynes [2] developed a kinetic theory model of contact line motion. Their
model indicates that a non-hydrodynamic frictional resistance to contact line motion
exists. The origin of the frictional resistance is an energy barrier that molecules must
cross to move from the liquid drop to available sites on the solid substrate. The result
for the velocity of the contact line obtained by Blake and Haynes is:

v = 2K0λ sinh

(
w

2nkBT

)
, (1)

where K0 is the molecular jumping frequency when equilibrium conditions prevail,
λ is the characteristic displacement distance, n is the density of surface adsorption
sites for the fluid molecules, and w is the work per unit area done by the driving
force. Blake and Haynes argued that w could be related to the surface tension and
the dynamic and equilibrium contact angles through w = y(cos θe − cos θ). If one
assumes that w � 2nkBT , one obtains the following expression for the velocity of
the contact line:

v = γ

ς0
(cos θe − cos θ). (2)

In Equation (2), the friction coefficient, ς0, is given by ς0 = nkBT/K0λ. The Blake–
Haynes theory makes no distinction between advancing and receding contact lines.
Therefore, according to their theory, the above expression for the friction coefficient
should apply to both advancing and receding contact lines.
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In general, one should expect viscous dissipation as well as molecular scale dis-
sipation at the contact line to play a role in determining the spreading or migration
of a drop. To incorporate dissipation, the “wedge” solution presented by Cox [5] was
used to obtain an estimate of the drag force and this was added to the resistance asso-
ciated with the molecular scale dissipation at the contact line. For the case of radial
spreading, the contact line velocity is given by

v = γ

ζ0 + 2µEA ln(1/ε)
(cos θe − cos θ). (3)

In Equation (3), µ is the dynamic viscosity of the drop phase, EA is a function of the
dynamic contact angle that was given by Cox [5], and ε is the ratio of the smallest
hydrodynamic length scale to the largest length scale; the smallest length scale was
taken to be the thickness of the drop-vapor interface, and the largest length scale
was taken to be the planform radius of the drop. The viscosity was determined by
performing a MD simulation of single phase Couette flow for the liquid used in the
drop simulations to be discussed.

De Ruijter et al. [6] used MD simulations of spreading fluid drops to test the
model of Blake and Haynes [2]. They computed the relaxation of the contact angle of
a spreading drop from its initial value to its final equilibrium value by integrating the
Blake–Haynes model and found good agreement with the results obtained directly
from their MD simulation.

3 MD simulations

In this study, MD simulations were carried out for drops composed of diatomic mo-
lecules. Yang et al. [17] used a similar system in their study of “terraced” drop
spreading. An advantage of diatomic molecules is that the vapor pressure is much
smaller than that for monatomic molecules [8]; this facilitates the analysis of the
drop shape.

Following the procedure described by Yang et al. [17], the MD simulations were
performed for diatomic liquid drops in contact with a FCC crystal lattice. All inter-
actions between fluid molecules and other molecules or wall atoms were performed
using a “site to site” approach in which the individual atoms interacted with one an-
other. The atoms interacted through modified Lennard–Jones (“LJ”) potentials with
characteristic energies εff , εwf , and εww for the interactions between fluid atoms
and other fluid atoms, fluid and wall atoms, and wall atoms and other wall atoms,
respectively. The wettability of the surface was varied by choosing different values
for εwf . The LJ potential energy of interaction V between atoms of type i and type
j located a distance f apart is given by

V (r) = 4εij

[(σij
r

)12 − δij

(σij
r

)6
]
. (4)

In Equation (4), δij was chosen to be unity in the simulations to be reported. The
quantities 21/6σff and 21/6σww can be interpreted as the atomic diameters for the
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fluid and wall atoms, respectively. The quantity σff will be denoted by σ , εff will
be denoted by ε, and the mass of a fluid atom will be denoted by m. Dimensionless
quantities will be used in the rest of the paper. The reference mass is m, the reference
length is σ , and the reference time is (mσ 2/ε)1/2. The mass of a wall atom was 5, the
values of σww and σwf were

√
2/21/6 and (1 + σww)/2, respectively, and the value

of εww was 50.
To reduce computation time, periodic boundary conditions were imposed in the

direction normal to the wall, which was 5 atomic layers thick [17]. Periodic boundary
conditions were also imposed in the transverse directions. The LJ potentials were
modified by setting them equal to zero when the distance r was larger than 2.5 for
the fluid-fluid interactions, 2.5σwf for the fluid-wall interactions, and 1.8σww for the
wall-wall interactions.

The equations of motion for the system are a coupled set of nonlinear ODE’s
for the coordinates and the velocity components of each atom. The “velocity Verlet”
algorithm [1] was used to solve the equations. The dimensionless time step in all
simulations was 0.005. The Head of Chain-Link List (HOC-LL) method was used to
reduce computation time [13]. Similar techniques are described by Allen and Tildes-
ley [1]. The technique exploits the finite range of the atomic interactions to reduce
the number of computations per time step to O(N) instead of O(N2), where N is
the number of atoms. The computational domain is divided into a three-dimensional
array of identical cells and each atom is assigned to a cell. In searching for interac-
tion partners of a given atom, one considers only atoms in the given atom’s cell or in
an adjacent cell.

Numerical error and viscous heating can lead to temperature variations. Yang et
al. [17] employed a re-scaling of the molecular velocities to solve this problem. In
the initial part of a simulation, the velocities of all atoms were rescaled. After this
initial part, it was found sufficient to rescale only the velocities of the atoms in the
middle layer of the wall. The same approach was used to obtain the results in the
present paper.

To perform a simulation, several steps were followed. First, a spherical drop was
created. This was done by placing the fluid molecules in a rectangular block that was
well separated from the wall, and then performing the computations for 5×104 time
steps. Then, a small body force was applied to the drop to bring the drop into contact
with the wall. Once the drop had begun to wet the wall, the body force was removed.
In the simulations of drops on uniform surfaces, the computations were performed
for a sufficient number of time steps to allow the drop to reach an equilibrium shape.
Typically, this involved more than 106 time steps.

In the simulations to be discussed, there were 51,622 diatomic fluid molecules
and 50,000 wall atoms. The simulations were performed at a dimensionless temper-
ature equal to 0.7.

Figure 1 shows a side view of an equilibrium drop in contact with a wall for
which εwf = 1.3. The dimensionless periods of the computational domain are 200
in x, 100 in y, and 85 in z, where x and y are measured parallel to the solid surface
and z is normal to the solid surface. The equilibrium contact angle was determined to
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Fig. 1. An equilibrium drop on a uniform surface with εwf = 1.3.

Fig. 2. The dynamic contact angle determined from the MD simulation and the value predicted
by the Blake–Haynes theory are plotted as a function of dimensionless time.

be 44◦ by fitting the drop to a spherical cap shape and excluding the 10 fluid layers
closest to the wall as recommended by de Ruijter et al. [6].

4 Determination of friction coefficients

To determine values for the friction coefficient, ς0, one can use results for the spread-
ing of drops on uniform surfaces. At regular time intervals, the dynamic contact angle
was determined by fitting a spherical cap to the instantaneous shape of the drop. The
results of this procedure are shown in Figure 2 for a drop spreading on a surface for
which εwf = 1.0. It may be seen that the equilibrium contact angle is approxim-
ately 76◦. Also shown in Figure 2 are two theoretical curves. To obtain these results,
the friction coefficient was varied to obtain the best agreement with the results from
the MD simulation. The curve labeled “Blake–Haynes Fit” shows the best fit when
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Table 1. Equilibrium contact angles and values of the friction coefficient for different values
of the wettability parameter, εwf .

εwf θe (degrees) Advancing ς0 Receding ς0
0.4 133 13 31
0.7 104 55 82
1.0 76 83 151
1.3 43 167 NA

viscous dissipation is neglected. The value obtained by this method was ς0 = 94.
The “Combined Fit” curve includes both the Blake–Haynes dissipation and viscous
dissipation. The values of the viscosity and the interface thickness in Equation (3)
were 8.9 and 5.0, respectively. The value obtained by this method was ς0 = 83. In
what follows, only the results obtained when viscous dissipation was included will
be discussed. Using the same procedure for other wettabilities, it was found that ς0
varied monotonically from 13 at εwf = 0.4 to 167 at εwf = 1.3.

To predict the translation velocity of a drop on a surface with a wettability gradi-
ent, one should also determine the friction coefficient for a receding contact line.
This was done by starting with an equilibrium drop on a surface and abruptly redu-
cing the value of the wettability (i.e., the value of εwf ). For example, starting with
the equilibrium drop in Figure 1, the value of εwf was changed from 1.3 to 0.7. The
value of ς0 for a receding contact line on a surface with εwf = 0.7 was thereby found
to be 82. For an advancing contact line on the same surface, the friction coefficient
is 55. For εwf = 0.4, the values of ς0 for advancing and receding contact lines were
13 and 31, respectively. The difference between the values of the friction coefficients
for advancing and receding contact lines increases with εwf .

Table 1 summarizes the values of the friction coefficient for advancing and re-
ceding contact lines as well as the equilibrium contact angles for several surfaces.
The value of the friction coefficient for a receding contact line on a surface with
εwf = 1.3 is not presently available because of the large amount of computer time
needed to compute it. The difficulty is that one must first create an equilibrium drop
on a surface with a significantly larger value of εwf and then abruptly reduce the
value of εwf to 1.3. Unfortunately, the time needed to attain equilibrium increases
rapidly with εwf because of the large resistance to contact line motion.

In all cases, the dynamic angle approached the same steady value for receding
contact lines as for advancing contact lines to within the error within which the angle
could be determined (±1◦). This may be because the surface is molecularly smooth.

5 Drop motion on a wettability gradient

When drops are placed on a solid surface with a wettability gradient, they can migrate
in the direction of increasing wettability [7, 10]. A wettability gradient was created
by setting εwf = 0.4 + 0.006x. A spherical drop was created and then brought into
contact with the solid surface. Figure 3 shows the center of mass x-coordinate of the
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Fig. 3. The x-coordinate of the center of mass and the advancing and receding ends of a drop
on a wettability gradient are shown as a function of dimensionless time.

drop as a function of dimensionless time. It may be seen that the velocity gradually
decreases with time. Also shown in Figure 3 are the x-coordinates of the leading and
trailing ends of the drop as functions of dimensionless time.

The Blake–Haynes theory was used to derive an expression for the migration
velocity by assuming that the friction coefficient was relatively uniform around the
drop’s perimeter. Viscous effects were also included in the calculations by using the
drag computed from the Cox wedge solution.

To compute the driving force that causes a drop to migrate, the cosine of the
equilibrium contact angle as a function of position is required. Figure 4 shows that
the cosine of the equilibrium contact angle is very well approximated by a linear
function of the x-coordinate: cos(θe(x)) = cos(θe(x0)) + α(x − x0), where x0 is a
convenient reference coordinate. Figure 4 was prepared by using the relation between
the equilibrium contact angle and εwf in Table 1; it reflects the fact that the cosine
of θe is well approximated by a linear function of εwf . It is interesting to note that
Maruyama et al. [14] also found that the cosine of the equilibrium contact angle was
well-approximated by a linear function of εwf in their MD simulations.

Using the Blake–Haynes theory and the viscous drag obtained from the Cox
wedge solution, it may be shown that the velocity of the drop is given by the follow-
ing relationship:

v = αγR(
ς0 + µψ ln(1/ε)

π

) . (5)

In Equation (5), the quantity ψ is a function of the local equilibrium contact
angle that is discussed by Subramanian et al. [16]. At dimensionless time 14250, the
friction coefficient at the value of εwf corresponding to the location of the center
of mass was 124. Using this value, the predicted migration velocity is 0.0040. The
actual velocity was 0.0031. The difference between the theoretical and observed val-
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Fig. 4. The cosine of the local equilibrium contact angle is plotted as a function of the dimen-
sionless x-coordinate.

ues is partly due to the fact that the friction coefficient varies significantly over the
perimeter of the drop. Part of this variation is due to fact that εwf depends on x,
and part of it is due to the difference between the values of the friction coefficients
for advancing and receding contact lines. A crude way of accounting for this differ-
ence is to replace the friction coefficient in the expression for the migration velocity
by an average of the advancing and receding values evaluated at the center of mass
location. With this modification, the predicted migration velocity is approximately
0.0035.

6 Conclusions

Our results provide several insights into the behavior of contact lines. First, in sim-
ulations of drops on homogeneous surfaces, we found that a theoretical model that
included the Blake–Haynes contact line dissipation and the viscous dissipation com-
puted from the Cox wedge solution described the MD results well. The viscous dis-
sipation was small but not negligible in comparison with the Blake–Haynes dissip-
ation. De Ruijter et al. [6] performed a similar simulation and arrived at the same
conclusion. Two differences with the present work are that they used a different ap-
proach to modeling the viscous dissipation and their molecules were much larger. We
have developed more comprehensive results over a range of partially wetting condi-
tions and correlated the Blake–Haynes friction coefficient with the LJ parameter that
controls the wettability. The friction coefficient increases rapidly with increase in the
wettability of the surface. We also have presented results for receding contact lines.
These results were obtained by starting with equilibrium drops on relatively hydro-
philic surfaces and abruptly changing the fluid-wall LJ parameter to make the wall
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more hydrophobic. We found that the value of the friction coefficient for a receding
contact line is significantly larger than the value for an advancing contact line; the
ratio of the values for receding and advancing contact lines increases as the surface
is made more hydrophilic. At present, one can only speculate about the cause of this
difference. When a contact line advances, molecules hop from the liquid surface to
adsorption sites on the solid surface. When a contact line recedes, liquid molecules
must be pulled from the solid surface. It seems likely that the energies required for
the two processes are different.

The results of the above studies were used to model the migration of drops on a
wettability gradient. The results suggest that the Blake–Haynes theory can describe
the motion of the drops over a broad range of conditions provided that account is
taken of the facts that (1) the friction coefficient depends on the local wettability of
the surface and (2) the friction coefficient for a receding contact line has a different
value from that for an advancing contact line on the same surface.
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Yong Chen, Nitin Sharma and Neelesh A. Patankar∗

Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA

Abstract. In the paper a Direct Numerical Simulation (DNS) scheme, named Fluctuating
Immersed MATerial (FIMAT) dynamics, for the Brownian motion of particles is presented.
In this approach the thermal fluctuations are included in the fluid equations via random stress
terms. Solving the fluctuating hydrodynamic equations coupled with the particle equations of
motion results in the Brownian motion of the particles. There is no need to add a random force
term in the particle equations. The particles acquire random motion through the hydrodynamic
force acting on its surface from the surrounding fluctuating fluid. The random stresses in the
fluid equations are easy to calculate unlike the random terms in the conventional Brownian
Dynamics (BD) type approaches.

Key words: fluctuating hydrodynamics, mesoscopic scale, Brownian motion, direct numer-
ical simulation (DNS), Distributed Lagrange Multiplier (DLM) method.

1 Introduction

The interaction of sub-micron/nanoscale objects (such as macromolecules or small
particles or small devices) with fluids is an important problem in small scale devices.
A better understanding of fluid dynamics is critical in e.g. bio-molecular trans-
port, manipulating and controlling chemical and biological processes using small
particles. These objects could be moving in an environment with varying temper-
atures and fluid properties. Thermal fluctuations can influence the motion of such
objects.

Direct Numerical Simulations (DNS) of particle motion in fluids is a tool that
has been developed over the past twelve years [4, 8, 9, 13, 15, 19, 20]. In this ap-
proach the fluid equations are solved coupled with the equations of motion of the
particles. DNS allows investigation of a wide variety of problems including particles
in Newtonian or viscoelastic fluids with constant or varying properties. DNS can be
an excellent tool to investigate the motion of sub-micron particles in varying fluid
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environments. The objective of this work is to find a convenient way to incorporate
the effect of thermal fluctuations in the DNS schemes.

A particle suspended in a fluid experiences a hydrodynamic force due to the av-
erage motion of the fluid around it. The average motion of the fluid is represented by
the continuum equations – the Navier–Stokes equations. In addition to the average
force, small particles in fluids experience a random force due to the thermal fluctu-
ations in the fluid. In Brownian dynamic (BD) simulations the principle is to model
this thermal force from the fluid in terms of a random force in the particle equation
of motion.

The conventional approach to perform Brownian dynamic (BD) simulations is
based on the algorithm by Ermak and McCammon [3]. Their numerical method is
based on the Langevin equation for particle motion. Properties of the random force in
the particle equation of motion depend on the hydrodynamic interactions between the
particles. Typically, approximate expressions are used to model the hydrodynamic
interactions.

Brady and Bossis [1] presented Stokesian dynamics technique for simulating the
Brownian motion of many particles. They also considered the Langevin equations for
the motion of the Brownian particles. They computed the hydrodynamic interactions
through a grand resistance tensor instead of using approximations as was done by
Ermak and McCammon [3]. Using these techniques to objects of irregular shapes
and to cases where the fluid exhibits varying properties is not straightforward. This
is mainly because the properties of the random force in the particle equations depend
on the grand resistance tensor, which in turn depends on the particle positions, shapes
and the fluid properties.

In accordance with the BD approach, it is possible to envisage a DNS scheme
where the Navier–Stokes equations for the fluid are solved coupled with the Langevin
equation (which includes a random force term) for particle motion. Again, as stated
above, generation of the random force term is not straightforward because it depends
on the particle resistance tensor. A different approach is preferred.

An alternate approach is to model the thermal fluctuations in the fluid (instead
of in the particle equations) via random stress terms in its governing equations. A
general theory of fluctuating hydrodynamics is given by Landau and Lifshitz [11].
Solving the fluctuating hydrodynamic equations coupled with the particle equations
of motion can result in the Brownian motion of the particles. There is no need to add
a random force term in the particle equations. The particles acquire random motion
through the hydrodynamic force acting on its surface from the surrounding fluctuat-
ing fluid. The random stresses in the fluid equations are easy to calculate unlike the
random terms in the BD approach. In this paper we present such an approach along
with validation.

Ladd [10] presented a Lattice-Boltzmann (LB) method to simulate the Brownian
motion of solid particles. They added a fluctuating term in the LB equation for the
fluid which was equivalent to the random stress term in the fluctuating hydrodynamic
equations of Landau and Lifshitz [11]. Fluctuating LB equations were solved to get
results for the decay of an initially imposed translational and rotational velocity of an
isolated Brownian sphere in a fluid. The current work in this paper is aimed at adding
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the random fluctuating terms directly into the Navier–Stokes equations instead of
the Lattice-Boltzmann equations. It can therefore be easily incorporated in existing
conventional solvers for Navier–Stokes equations to model fluid-particle behavior at
small scales.

Zwanzig [22] showed that the motion of an isolated Brownian particle computed
using fluctuating hydrodynamic equations is consistent with the traditional Langevin
description in the long time (dissipative) limit. Hauge and Martin-Löf [6] showed
that the Langevin equation describing the Brownian motion is a contraction from
the more fundamental, but still phenomenological, description of an incompress-
ible fluid governed by fluctuating hydrodynamics in which a Brownian particle with
no-slip boundary condition is immersed. They showed that the fluctuating hydro-
dynamics approach captures the algebraic tail (t−3/2) in the velocity autocorrelation
function consistent with the molecular time correlation functions. The Langevin de-
scription gives an exponential tail in the velocity autocorrelation function. Hauge and
Martin-Löf [6] also identified conditions under which the classical Langevin descrip-
tion is applicable. These results imply that the simulation of the Brownian motion of
particles based on fluctuating hydrodynamic equations is a sound phenomenological
approach. In this work, only the long time dissipative limit is considered, which is
equivalent to neglecting the inertia terms in the governing equations. As a result,
the velocity autocorrelation function will not be considered. However, the method
will be tested by comparing the Brownian diffusion (in the long time limit), obtained
from the simulations, with known analytic values. The problem involving the solu-
tion of the fluctuating hydrodynamic equations including the inertia terms will be
considered in future work.

Patankar [14] presented preliminary results for the Brownian motion of a cylin-
der by solving the fluctuating hydrodynamic equations of the fluid coupled with the
particle equation of motion. A 2D problem was considered.

Fluctuating hydrodynamic equations have been solved for a single fluid case by
Serrano and Español [16, 17] using a finite volume Lagrangian discretization based
on Voronoi tessellation. They obtained a discrete form of the governing equations
that satisfied the fluctuation dissipation theorem. They ensured this by casting their
discrete equations in the GENERIC (General Equation for Non-Equilibrium Revers-
ible/Irreversible Coupling) structure. The GENERIC structure proposed by Grmela
and Öttinger [5, 12] ensures that the equations describing the macroscopic dynam-
ics of a system are thermodynamically consistent and that the fluctuation dissipation
theorem is satisfied.

In this paper a DNS technique is used to solve the fluctuating hydrodynamic
equations of Landau and Lifshitz [11] coupled with the particle equations of motion.
The method used here is based on our earlier work presented in [18]. In this approach
the entire fluid-particle domain is considered to be a fluid. It is ensured that the ‘fluid’
occupying the particle domain moves rigidly by adding a rigidity constraint [4, 15,
18–20]. Solution of this system of equations results in the Brownian motion of the
particles. The technique is validated by comparing numerical results with analytic
values.
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In Section 2 the mathematical formulation of the problem will be discussed. Nu-
merical results are presented in Section 3 and conclusions in Section 4.

2 Mathematical formulation

Let � be the computational domain which includes both the fluid and the particle
domain. Let P be the particle domain. Assume that the computational domain is
periodic in all directions. Consider one particle in the computational domain. The
particle can be of any shape. In this paper a sphere and an ellipsoid are considered.
The formulation to be presented is not restricted to periodic boundary condition – it
can be extended to non-periodic domains. It is assumed that the entire fluid-particle
domain is a single fluid governed by [4, 15]

ρ

(
∂u
∂t

+ (u · ∇)u
)
= −∇p + µ∇2u +∇ · S̃ + f in �, (1)

∇ · u = 0 in �, (2)

∇ · (D[u]) = 0 in P , (3a)

D[u] · n = 0 on ∂P , (3b)

u|t=0 = u0(x) in �, (4)

where ρ is the fluid and particle density (neutrally buoyant particles are considered
here; however, the formulation can be easily generalized to heavy or light particles),
u is the fluid velocity, n is the outward normal on the particle surface, p is the dy-
namic pressure (i.e. without the hydrostatic component) due to the incompressibility
constraint (Equation 2) and µ is the viscosity of the fluid.

Equation (3) represents the rigidity constraint and Equation (2) is the incom-
pressibility constraint. The rigidity constraint, imposed only in the particle domain,
ensures that the deformation-rate tensor

D[u] = 1

2
(∇u +∇uT ) = 0 in P . (5)

Thus the ‘fluid’ in the particle domain is constrained to move rigidly as required. The
viscous stress is zero in the particle domain due to the rigidity constraint [15].

Equation (3) represents three scalar constraint equations at a point in the particle
domain. They give rise to a force f in the particle domain similar to the presence of
pressure due to the incompressibility constraint [15]. This is the Distributed Lagrange
Multiplier (DLM) approach for particulate flows [4, 15]. f is zero in the fluid domain.

S̃ in Equation (1) is the random stress tensor which is computed as proposed
by Landau and Lifshitz [11]. S̃ is included in the Navier–Stokes equations to model
the fluid at mesoscopic scales. Hydrodynamics as such is a macroscopic theory. At
the macroscopic level the hydrodynamic variables represent an average value over a
macroscopic length and time scale. Consequently, information regarding the random
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fluctuations arising due to the molecular nature of the fluid is lost. S̃ accounts for
these fluctuations when modeling flows at mesoscopic scales. By mesoscopic scales
we typically imply scales ranging from tens of nanometers to micron, depending on
the problem.

S̃ has the following property [11]:

〈S̃ij 〉 = 0,

〈S̃ik(x1, t1)S̃lm(x2, t2)〉 = 2kBT µ(δilδkm + δimδkl)δ(x1 − x2)δ(t1 − t2).

}
(6)

where 〈 〉 denotes averaging over an ensemble, kB is the Boltzmann constant, T is
temperature of the fluid and we have used indicial notation. The above equations are
in accordance with the fluctuation dissipation theorem for an incompressible fluid
[11].

The solution of Equations (1)–(4) and (6) gives the velocity field u in the entire
domain. The particle translational and angular velocities, U and ω, respectively, can
then be computed by

MU =
∫
P

ρu dx and IPω =
∫
p

r × ρu dx, (7)

where r is the position vector of a point with respect to the centroid of the particle,
Ip is the moment of inertia of the particle and M its mass.

In this work the inertia is neglected (which is equivalent to taking the long time
limit [18]) and the following Stokes problem, that is driven by the random stresses,
is solved

−∇p + µ∇2u +∇ · S̃ + f = 0 in �, (8)

where the time discretized properties of the random stress are given by

〈S̃ij 〉 = 0,

〈S̃ik(x1)S̃lm(x2)〉 = 2kBT µ

�t
(δilδkm + δimδkl)δ(x1 − x2).

⎫⎬⎭ . (9)

Solution of the Stokes problem represented by Equations (8), (2), (3) and (9)
gives the velocity u in the entire domain. The velocity field u in Equation (8) is
not the true velocity of the fluid material point at any instant. It is the Brownian
diffusion of the fluid material point in time�t divided by�t . Hence, the velocity will
also be referred to as the apparent velocity in the following discussion. For further
discussion see [18] and references therein. The translational and angular velocities
of the particle as computed by Equation (7) must be interpreted similarly.

The governing equations to be solved are stochastic. It is known that, for determ-
inistic equations, central differencing ensures second-order accuracy. Discretization
of stochastic equations based on central differencing may not be sufficient to obtain
thermodynamically consistent discrete equations. A consistent discretization should
ensure that the resultant discrete equations satisfy the corresponding fluctuation dis-
sipation theorem (FDT). It must be noted that even if the differential equations sat-
isfy the FDT it does not imply that the corresponding discretized equations based on
central differencing will necessarily satisfy the FDT for the discrete equations.
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Thermodynamic consistency of the discrete equations can be ensured if we dis-
cretize the equations such that they are in the GENERIC form as proposed by Grmela
and Öttinger [5, 12]. Serrano and Español [16] and Serrano et al. [17] have presented
a systematic derivation of two-dimensional discrete equations that obey the GEN-
ERIC structure for the case of a fluid (i.e. no particles in the domain). They used a
finite volume Lagrangian discretization based on Voronoi tessellation. They showed
that simple central differencing does not ensure thermodynamically consistent dis-
cretized equations but this can be corrected by adding certain terms to the discrete
equations. They also argued that these additional terms may be neglected under cer-
tain conditions.

In this paper an Eulerian control (finite) volume discretization based on cubic
cells is used. A staggered control volume scheme is used to solve the fluid equations
[18, 20]. The momentum equations obtained by simple central difference discretiz-
ation of Equation (8) did not strictly satisfy the FDT, however, in agreement with
the analysis in [17], it was found that the additional term was small. Hence it was
neglected. A detailed derivation will be presented elsewhere [2]. It was also found
that the solution of the fluid equations without the particles gave the results in close
agreement with the FDT [2]. The details of the algorithm to solve the particulate
Stokes flow problem are given in [18, 20].

3 Results

The Brownian diffusion of a single sphere, of diameter d, in a fully periodic domain
is considered first. A non-dimensionalized problem was solved. The fundamental
scales for non-dimensionalization are

Time →
√
µ�V�t

kBT
,

Length → L,

Mass → L

√
µ3�V�t

kBT
,

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(10)

where �V = �h3 is the volume of the control volume, �t is the time over which
the Brownian diffusion is computed and L is the length of the periodic domain. The
scales for velocity, pressure and stress are

velocity → L

√
kBT

µ�V�t
,

stress, pressure → L

√
µkBT

�V�T
.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (11)

In terms of the non-dimensionalized variables, the governing equations are

−∇p∗ + ∇2u∗ + ∇ · S̃∗ + f∗ = 0 in �, (12)
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Fig. 1. Comparison of the frequency distribution of the relative apparent velocity of the particle
with the analytic Gaussian distribution (φ = 0.008).

∇ · u∗ = 0 in �, (13)

∇ · (D[u∗]) = 0 in P and D[u∗] · n = 0 on ∂P , (14)

where the superscript ∗ represents the corresponding non-dimensionalized variable.
The above equations were discretized as discussed before. Properties of the random
stress S̃∗ after discretization were obtained by non-dimensionalizing Equation (9) to
give

〈S̃∗ij 〉 = 0 and 〈S̃∗ik S̃∗lm〉 = 2(δilδkm + δimδkl). (15)

A single sphere was located at the centre of a cubic periodic domain. No body
force was applied either in the particle domain or the fluid domain other than the
force due to the random stresses. Components of the random stresses at different
locations were generated from a Gaussian random number generator with the de-
sired mean and variance. Once the random stresses were generated, the Stokes prob-
lem, defined by Equations (12)–(15), was solved [18, 20]. It is ensured that the net
momentum in the periodic domain is zero. One simulation was considered as one
realization. We solved for several realizations which constituted an ensemble. For
each realization a different initial seed was assigned to the Gaussian random number
generator for random stresses. This ensured that each realization was different. In a
given realization, the apparent velocity U∗ of the sphere was computed according to
Equation (7). The variance of the apparent velocity gives the Brownian diffusion D,
which in turn is related to the drag coefficient K as follows:

D = 〈|U|2〉�t
6

= kBT

3πµdK
⇒ K = 6kBT

3πµd�t〈|U|2〉 . (16)

In terms of the non-dimensional variables we get
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Fig. 2. Plot of the translational drag coefficient as a function of the volume fraction.

Fig. 3. Plot of the rotational drag coefficient as a function of the volume fraction.

K = 6

3πN3d∗〈|U∗|2〉 . (17)

Note that N = L/�h gives the information regarding the degree of discretization in
the computational domain. Equation (17) was used to compute the drag coefficient
from the numerical simulation. This numerical value of the drag coefficient was then
compared with the analytic value obtained by Hasimoto [7] and Zick and Homsy
[21].

Figure 1 shows a histogram of the apparent velocity based on 900 realizations.
It is compared to the analytic Gaussian distribution. The analytic frequency distribu-
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tion has zero mean and the variance is 6/3πd∗N3KA (Equation 17), where KA is the
analytic value of the drag coefficient from Hasimoto [7] and Zick and Homsy [21].
Figure 2 shows the translation drag coefficient KT , calculated according to Equa-
tion (17), as a function of the volume fraction. The results are compared with the
analytic value of Zick and Homsy [21]. The error bars were drawn based on a chi-
square distribution for the variance [18]. Figure 3 shows the results for the rotational
drag coefficient KR , calculated similar to Equation (17) but for the rotational fluc-
tuations. These results are compared to the analytic values by Ladd [10]. In all the
cases we see that the agreement is good.

The method was also verified for non-spherical particles. An oblate ellipsoid was
considered in a periodic domain at a volume fraction of 0.01676. The long axes were
two times the short axis of the ellipsoid. The ellipsoid was placed with the principle
axes coincident with the coordinate direction. The translational and rotational drag
with respect to the principle axes are different for an ellipsoid. The drag data for el-
lipsoids are typically represented in terms of an effective radius. For the translational
case the effective radius Rte is defined by

Dt = 〈u2〉�t
2

= kBT

6πµRte

⇒ Rte = kBT

3πµ〈u2〉�t , (18)

where Dt is the translational diffusion. The value of Rte is different along different
principle directions. E.g. the effective radius with respect to the x direction is ob-
tained if 〈u2〉 is based on the x component of the random velocity of the ellipsoid.
Similarly, the rotational drag is represented by the effective radius Rre defined by

Dr = 〈ω2〉�t
2

= kBT

8πµR3
re

⇒ Rre =
(

kBT

4πµ〈ω2〉�t
)1/3

, (19)

whereDr is the rotational diffusion.Rre is different for different principle directions.
The effective radii were also computed from non-Brownian simulations. In this case
a force or torque was applied to the ellipsoid. A Stokes problem was solved to obtain
the particle translational and angular velocities [20]. The effective radii are then given
by

Rte = F

6πµU
and Rre =

(
T

8πµω

)1/3

, (20)

where F and T are the applied force and torque with respect to the chosen prin-
ciple direction. U and ω are the corresponding translational and angular velocities
obtained from the Stokes solution of the coupled fluid-particle problem [20]. Table 1
shows the comparison between the effective radii obtained from the Brownian and
non-Brownian simulations for the same geometry and volume fraction (0.01676).
The agreement is good.

4 Conclusions

A DNS scheme, named FIMAT dynamics, for the Brownian motion of particles is
presented. The thermal fluctuations were included in the fluid equations via ran-
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Table 1. Effective radii representing the drag on an ellipsoid from non-Brownian
and Brownian simulations.

Rte/L Rte/L Rre/L Rre/L

Non-Brownian Brownian Non-Brownian Brownian
x-direction 0.2530 0.2682 0.1622 0.1655
y-direction 0.2530 0.2692 0.1622 0.1604
z-direction 0.3289 0.3587 0.1758 0.1801

dom stress terms. Solving the fluctuating hydrodynamic equations coupled with the
particle equations of motion resulted in the Brownian motion of the particles. The
particles acquired random motion through the hydrodynamic force acting on its sur-
face from the surrounding fluctuating fluid. The random stresses in the fluid equa-
tions were easy to calculate unlike the random terms in the conventional Brownian
Dynamics (BD) type approaches.

The problem was solved in the long time dissipative limit. Solution of the gov-
erning equations gave the Brownian displacements of the particle. The numerical
results were used to find the corresponding drag coefficient acting on spheres and
ellipsoids. The numerical values of the drag coefficient were compared with analytic
values. The agreement was found to be good.

The method can be potentially extended to fluids with varying properties. Applic-
ation to many particles and the scaling of the computational time with the number of
particles is the subject of our future work. Implementation of fast solvers is currently
being undertaken after which the computational time for the current method will be
compared with the traditional methods for Brownian simulations.
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Abstract. In this paper, we present a new definition of liquid–vapor interface at the molecu-
lar level which can capture the local and instantaneous structure of the interface. The new
definition is not a thermodynamic definition of the interface, such as the equimolar surface,
but is based on the instantaneous particle density distribution of molecules. Applying the new
definition of the interface to the MD result of the liquid–vapor interface, we found that our
definition of the interface was able to capture the microscopic fluctuation caused by molecular
motion. Furthermore, we confirmed that on the longtime average our definition of the interface
shows good agreement with the equimolar surface.

Key words: instantaneous interface, molecular dynamics, equimolar surface, level set
method.

1 Introduction

The study of liquid–gas or liquid–liquid interface have an important role in the wide
range of physical, chemical, and biological processes. Especially the elucidation of
the physico-chemical properties of the water–air interface leads to an essential un-
derstanding of various interfacial phenomena. Recently, the microscopic phenomena
related to the water–air interface have been reported, of which mechanisms have not
been understood clearly. For example, nanometer sized bubbles (nanobubbles) stably
existing on the hydrophobic surfaces in water, were reported [1–3]. However, it is
considered that bubbles of this size in water are inherently unstable due to the strong
effect of surface tension. Therefore, the contradiction between the experimental facts
and the theoretical predictions about the stability of nanobubbles is recognized as an
unresolved problem [4].

So far, a microscopic picture of the liquid–gas or liquid–liquid interface have not
fully been understood, although there have been a number of efforts to investigate
the interface. For one reason, there is difficulty of the experimental approach to the
microscopic features at the liquid interface [5]. On the contrary, our approach to the
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microscopic phenomena is based on the numerical simulation. In this study, we car-
ried out a molecular dynamics (MD) simulation of liquid–vapor coexistence systems
of water, and focused on the molecular scale structure of the liquid–vapor interface.

A number of molecular level investigations of the liquid–vapor interface using
molecular simulations have been reported (see [6] and references therein). Some
of the above studies analyzed the molecular structures of the interface from the
viewpoint of both static properties and dynamic properties. Almost all the statistical
quantities of molecular properties in these analyses are based on the static interface,
that is, physical properties are averaged according to the one dimensional distance
from the thermodynamically defined interface.

In contrast, we introduce a new definition of the liquid–vapor interface which
can capture the local and instantaneous structure of the interface. We visualized this
instantaneous interface and confirmed the interface fluctuations due to molecular
motions. To compare with the statistical quantities based on the static interface men-
tioned above, we obtained new statistical quantities which are calculated according
to the fluctuating interface, and found that this definition sheds light on the different
physical pictures of the nanometer-scale interface.

2 Molecular dynamics simulations

In order to analyze the liquid–vapor interface, we carried out MD simulations by two
computational systems. One is a rectangular cell with a three-dimensional periodic
boundary condition (PBC) applied, and water molecules are placed in the middle of
the cell. At the equilibrium state, water molecules form the water film which has two
flat (in the thermodynamic sense) surfaces. This system is refered to as the planar
surface system in this study. The other is a cubic cell also with the three-dimensional
PBC, referred to as the bubble system. In this system, we form a nanometer-sized
void region by the procedure described in detail later.

We used the water molecules as solvent molecules and 1-heptanol (C7H15OH) as
solute molecules to investigate adsorption structure and to verify our newly definition
of the interface described in Section 3. The number of each molecule used in the MD
simulations is shown in Table 1. In both systems, we performed two calculation sets:
pure water and 1-heptanol solution systems.

We used the all-atom model potential which is based on the AMBER force
field [7] for the surfactant dynamics, and SPC/E potential [8] for water molecules
as a potential function. We adopted a cut-off length of van der Waals interaction; the
length is 3.79σOO (= 12 Å, σOO corresponds to σ for oxygen-oxygen pair of water),
while the coulomb potential was calculated by the SPME method [9].

The equation of motion was integrated by the r-RESPA method [10] as the Mul-
tiple Time Scale (MTS). In this study, the time step for intramolecular motions was
0.2 fs, and that for intermolecular motions was 1.0 fs. The sampling of configuration
was taken every 100 fs.

The cell size of the planar surface system is 30×30×120 Å, while in the bubble
system the cell size is varied with each computational set. The initial configurations
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Table 1. Simulation conditions about the number of molecules.

Calculation set # surfactant # water

Bubble system

Pure water 0 1024

1-heptanol 15 906

Planar surface system

Pure water 0 1024

1-heptanol 18 1024

of the bubble systems are achieved by the following procedures. At first, each system
is equilibrated at 300 K and 1 atm in the NPT ensemble [11]. Next, the system is
expanded isotropically at a certain ratio. In this study, the expansion ratio in volume is
1.20 for the pure water system and 1.11 for the 1-heptanol system. The cell size given
by the above procedure was 33.35 Å (side length) for the pure water system, and
33.75 Å for the 1-heptanol system. Snapshots of the planar system and bubble system
in the 1-heptanol system are shown in Figure 1, In Figure 1, void regions (white
spheres in Figure 1c) are defined by the region where there is no water molecule
within a certain radius from the grid point (grid spacing of about 1 Å) in the MD
cell [12].

Before the production run, the system temperature is set to 300 K in all systems
by velocity scaling [13] for 60 ps, and the system is equilibrated for 240 ps in the
NVE ensemble. The production run is implemented in the NVE ensemble for 720 ps.
Total MD steps are 720,000 steps for this production run in both the planar surface
system and the bubble system, and it typically takes about 1 hour for 10,000 steps
(10 ps) using Pentium4 3.2 GHz single processor.

3 Definition of local and instantaneous interface

The Gibbs dividing surface is a mathematical definition of the interface on which
interfacial physics has long ago been constructed [14]. Therefore, in the study of
interfacial science, investigations are usually based on the Gibbs dividing surface.
However, the interface defined in this manner loses the molecular-level fluctuations
in the sense of both space and time.

On the contrary in this study, we introduced a new definition of the local and
instantaneous interface which is not time- and space-averaged. In this definition, we
express the single particle density of solvent molecules, which is described as the
summation of the Dirac delta function, as the field quantity. In general, the single
particle density in the system is defined as,

ρ(1) (r) =
N∑
i=1

δ(r − ri ), (1)
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Fig. 1. Snapshots of computational systems of the MD simulation in the 1-heptanol system;
(a) planar system, (b) slice view of the bubble system, (c) void view of the bubble system. In
(a) and (b), white spheres indicate oxygen atoms of water molecule, and black and dark gray
spheres indicate oxygen atoms and carbon atoms of surfactant, respectively. In (c), the water
molecules are not shown and the void region is shown as white spheres, and the colors of the
surfactant molecules are the same as in (b). The void view shown here is based on the method
proposed by Maruyama et al. [12].

where r is the field position, ri is the position of particle i, and N is the number
of particles in the system. In order to express the single particle density as the field
quantity, we introduce the following smoothed delta function on the center of mass
of each solvent molecule instead of the Dirac delta function,

D
(

r − r(par)
)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(2k�x)−3

3∏
i=1

{
1 + cos π

k�x

(
ri − r

(par)
i

)}
,

if
∣∣∣ri − r

(par)
i

∣∣∣ < k�x,

0, otherwise ,

(2)

where r(par) is the position of the particle. The index i of ri indicates each direction
x, y, z of Cartesian coordinates. The Cartesian grids are generated in the MD cell in
order to evaluate the density on that grid point, and �x is a grid spacing. Therefore
k�x determines the broadening of the delta function and the arbitrary value k is
discussed below. Finally, the smoothed single particle density is described instead of
Equation (1) as
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Fig. 2. Time series of the distribution function of scaled single particle density on each grid
in the planar surface system of pure water. Lines are drawn every 1.0 ps. The single particle
density is scaled by 1/(�x)3.

ρ
(1)
D (r) =

N∑
i=1

D(r − ri ). (3)

An important variable k indicates the broadening of the delta function, and it de-
termines the fluctuation scale of the interface which can be captured. In this study,
the value of k was determined so that the broadening of the smoothed delta function
approximately coincided with the mean intermolecular distance of water.

In order to decide the position of the interface, we calculated a distribution
function of the single particle density on each grid point. The distribution func-
tion is defined as the probability which finds the density value ranging from ρ

(1)
D

to ρ(1)D + dρ
(1)
D at a grid point. The distribution function is averaged over all the grid

points at the indivisual time. As the result, the distribution function typically showed
two peaks which correspond to the vapor phase (ρ(1)D = 0) and the liquid phase
(Figure 2). Using this information, we determined the density of the interface as the
center value between the two density values which gives two peaks of the distribu-
tion function. We will discuss whether this definition is proper from the viewpoint of
relation with the Gibbs surface later.

After we determine the interface, by applying re-initialization of the level set
method [15] we can calculate a distance function from the interface. Thus, once the
distance function is defined, we can calculate a normal vector to the interface, mean
curvature, and other geometric quantities by using the distance function.

4 Results and discussions

4.1 Result of the new definition of the interface

First, we show the snapshots of the local and instantaneous interface from the MD
result (Figure 3). The grid spacing is about 0.6 Å. In both the planar surface system
and the bubble system, we can see that our definition of the interface can capture the
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Fig. 3. Snapshots of the local and instantaneous interface of each system; (a) planar surface
system of the 1-heptanol solution and (b) bubble system of the 1-heptanol solution. In (a)
and (b), black and gray spheres indicate oxygen and carbon atoms of surfactant molecules,
respectively.

local fluctuation of the surface. Especially, in the bubble system, we found that the
shape of the void region did not necessarily hold the spherical shape. Furthermore,
we note that in the 1-heptanol system the position of the surface is recognized just at
the position of the surfactant head groups (-OH) adsorbed at the surface in accord-
ance with a physical picture of surfactant adsorption. This fact shows the validity of
our definition of the interface.

Next, we discuss the relation between our definition of the inteface and the
Gibbs dividing surface in the pure water system. At first, we calculated the posi-
tion of the Gibbs dividing surface, especially the equimolar surface on which the
surface excess of number density becomes zero. In the planar surface system, the
one-dimensionality can be assumed on long-time average, that is, in the x, y dir-
ection (parallel to the surface plane), the system is uniform and physical quantities
depend only on the z direction (perpendicular to the surface plane). Therefore, a
number density profile of water molecules can be described as [14],

ρ (z) = ρliq + ρvap

2
+ ρliq − ρvap

2
tanh

(
z− zd

2δd

)
, (4)

where ρliq and ρvap is the number density of bulk liquid and vapor, respectively. zd is
the position of the equimolar surface and δd is the surface thickness. From the MD
result, the mean number density is calculated and Equation (4) is fitted to the pro-
file to obtain zd and δd. On the other hand, in the bubble system one-dimensionality
in a radial direction can be assumed, that is, the void region should be a spherical
shape thermodynamically. In this study, an instantaneous center of mass of the void
region was defined as the center of mass of those grid points with a negative level set
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Fig. 4. A number density profile of water in the planar system. Cross marks are the aver-
aged raw data, and the solid line is fitted by the tanh function. The center of the cell is
z = 6×10−9 m.

Fig. 5. A number density profile of water in the bubble system. Cross marks are the averaged
raw data, and the solid line is fitted by the tanh function.

value (vapor phase), and a number density was averaged according to the radial dir-
ection. The number density profile assumed in this system is similar to Equation (4),
replacing the coordinate z by the radial coordinate r .

In Figures 4 and 5, the number density profiles in the planar system and the
bubble system are drawn with the fitting line mentioned above. In the planar system,
the origin of the z coordinate is set at the bottom of the computational domain. From
these figures, we found that the density profiles were fitted to Equation (4) well.
Then we could obtain the positions of the equimolar surface and the surface thick-
ness. These results with the averaged positions of the instantaneous interface in the
planar surface system and the bubble system are shown in Tables 2 and 3, respect-
ively. From Table 2, we found that in the planar surface system, the positions of the
equimolar surface and the averaged positions of the instantaneous surface showed
good agreement. In this table, the two positions of the interface correspond to both
sides of the surface of the liquid film. Also in the bubble system, from Table 3, we
found that the equimolar surface and the averaged position of the instantaneous in-
terface showed reasonable agreement.
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Table 2. Results of surface positions and surface thickness in the planar surface system

equimolar surface instantaneous interface

surface 1 42.92 43.25

surface 2 77.13 77.40

unit: [Å]

Table 3. Results of surface positions and surface thickness in the bubble system

equimolar surface instantaneous interface

radius 9.999 9.560

unit: [Å]

4.2 Result of physical quantities based on the instantaneous interface

In this section, we show one example of physical quantities based on the instantan-
eous interface in the planar surface system, and compare the result with that based
on the equimolar surface. Usually, a number density profile is calculated with respect
to the z coordinate or the distance function from the equimolar surface as shown in
Figure 4. However in this study, we calculated the number density profile with re-
spect to the distance function from the instantaneous interface. This result is shown
in Figure 6, and the number density profile with respect to the distance function from
the equimolar surface in Figure 7; this figure is basically the same as Figure 4. From
these figures, we found that the number density profile based on the equimolar sur-
face changed smoothly from the bulk vapor phase to the bulk liquid phase, while
the number density profile based on the instantaneous interface had peaks and an
oscillatory profile in the liquid phase. We consider that this oscillation corresponds
to the molecular layering at the liquid–vapor interface. This physics has not been so
clear from the picture based on the thermodynamic interface as opposed to the case
of solid–liquid interface. To our best knowledge, this is the first demonstration of the
clear molecular layering at the liquid–vapor interface of water.

5 Conclusions

In this study, we introduced a novel definition of the interface which was able to cap-
ture the local and instantaneous structure of the liquid–vapor interface at the molecu-
lar level. We consider the density field which is obtained by making the originally
discrete single particle density smoothed, and then we can treat the system as a field
rather than particles. The interface is defined as the iso-surface which has the same
density value. Applying this definition to the MD result of the liquid–vapor equilib-
rium system, we confirmed that our definition was able to capture the microscopic
fluctuations due to the molecular motion.
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Fig. 6. A probability density of number density according to the distance from the instant-
aneous interface. A negative value of the distance function corresponds to the vapor phase
region, while a positive value of the distance function corresponds to the liquid phase region.

Fig. 7. A probability density of number density according to the distance from the equimolar
surface.

In this study, we calculated the physical quantities based on the instantaneous
interface proposed here. From the result, we found that the number density across the
surface showed the peaks and oscillatory profile because of the molecular layering of
water. We can conclude that the statistical average based on the instantaneos interface
can extract the characteristic pictures of the interface more fully than that based on
the Gibbs dividing surface.
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Abstract. To investigate the two-way interaction between solid particles and fluid turbulence,
a homogeneous flow field including more than 2000 spherical particles was directly simulated.
Since flow around each particle is approximately resolved, no models were used for particle
motion or fluid turbulence. A particle settles under gravity with the Reynolds number ranging
from 50 to 300, based on diameter and slip velocity. When particle clusters are formed due
to the wake attraction, the average settling velocity increases. Thus particular attention was
focused on the distribution of particles. The influence of Reynolds number and loading ratio
are assessed. It is found that the rotation of particle dominates the cluster dynamics.

1 Introduction

Particle-laden flows are widely observed in nature and industrial applications. Solid
particles significantly affect the transfer of momentum, heat and mass in turbulent
flows. Extensive research has therefore been conducted for the turbulence modula-
tion by particles.

The interaction takes place through a wide range of scales, such as particle dia-
meter, inter-particle distance, size of particle clusters, wakes from particles as well as
clusters. Considering the importance of the energy input at the upstream in the cas-
cade process of turbulence, the interaction at the larger scales could be dominant for
turbulence modulation. The largest scale is not close to the particle scale but related
to the particle distribution. Particularly the non-uniformity in particle distribution is
investigated in this study.

The objective of this study is to clarify factors governing the pattern of particle
distribution. Especially, the influence of particle Reynolds number, loading ratio and
particle rotation are considered. To this end, direct numerical simulation (DNS) is
applied. In DNS, the flow around each particle is calculated to represent the basic
physics involved in the turbulence modulation. Therefore, any empirical model such
as point-source model for particle motion is not used.

Hereafter particles are assumed to be rigid spheres of uniform diameter. The
sphere is the simplest three-dimensional shape, but the flow around it has a wide
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variation, even for a fixed particle in a uniform stream, as known experimentally
[1, 2] and numerically [3, 4]. The Reynolds number ranges attracting researchers’
interests have been from 200 to 300 and near 3×105, where the Reynolds number is
based on the sphere diameter Dp and relative velocity U . The unsteadiness is caused
at the Reynolds number higher than the former range. The drag crisis takes place
around the latter. This study deals with the Reynolds number range below 400.

The pattern of wake has been observed as follows [1, 4]. A steady and axisym-
metric vortex ring attaches at the sphere for Reynolds number less than approx-
imately 210. The vortex ring becomes non-axisymmetric, but steady and plane-
symmetric, for Re between 210 and 270. For Reynolds numbers greater than ap-
proximately 270, unsteady vortex shedding takes place. But there remains some di-
versity in critical Reynolds number. The orientation and period of vortex shedding
seems nearly constant for Re � 300 and then they become more random for higher
Reynolds number. These patterns have also been successfully reproduced by our nu-
merical method [5, 6].

This paper describes DNS result of homogeneous flow laden by particles falling
gravitationally. First, the numerical method for full-scale computation from particle
scale to particle-induced turbulence is outlined. Then DNS results are discussed from
the viewpoint of particle distribution. Particular attention is focused on the influence
of particle Reynolds number, loading ratio and particle rotation.

2 DNS method

2.1 Numerical scheme

A DNS method [5, 6] has been developed for the full-scale simulation of flow includ-
ing more than 1000 particles moving with vortex shedding, up to Reynolds numbers
of the order of O[102]. In this method, flow around each particle is resolved and the
force on particle is evaluated based on the surface integral of fluid stress. For such
a sense, we believe it may be used for complete DNS of particle-laden flows, rather
than the previous ones using point-source model.

The Cartesian coordinate system is selected for the DNS of particle-laden tur-
bulence due to the following reasons. The most accurate and efficient method for
computation of flow around a sphere may be to use a spherical coordinate system
attached to the body. But the cost increases significantly for many spheres in relative
motion. In addition, considering the objective of the present simulation, uniform and
isotropic resolution of the computational grid is desired for turbulent flows.

The computational mesh, cubic in this study, does not fit the surface of spher-
ical particles. The volume fraction of the particle in the cell, including solid-fluid
interface, is taken into account [6].

The volume-weighted average velocity

u = αup + (1 − α)uf (1)
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is introduced for two-way coupling between solid particles and fluid turbulence. In
Equation (1), α represents the volumetric fraction of the solid in the computational
cell, uf the fluid velocity, up(= vp +ωp × r) the velocity in the solid body moving
with velocity vp and angular velocity ωp. Based on the Navier–Stokes equation and
continuity equation for uf

∂uf

∂t
= −∇ p

ρf
− uf · ∇uf + νf∇2uf , ∇ · uf = 0 , (2)

a governing equation for u is given as

∂u

∂t
= −∇ p

ρf
− u · ∇u + νf∇2u + f p , ∇ · u = 0 , (3)

where ρf is the fluid density and νf the kinematic viscosity. The additional term

f p = α(up − ûf )/�t (4)

is given at the cell that includes the solid-fluid boundary. The meaning of f p can
be explained through the time-marching procedure as follows. First, the unsteady
equations for fluid flow (2) is calculated, as if the field was occupied by fluid. This
result is once expressed by ûf . Next, f p modifies ûf to u using u = ûf + �tf p.
Considering the difference between Equation (2) and Equation (3), f p is interpreted
as the momentum exchange between the phases [6], which is meaningful in a cell of
α > 0.

The surface integral of the fluid stress in the equations for the particle can there-
fore be replaced by the volumetric integral of f p as

d(mpvp)

dt
=
∫
Vp

f pdV + gp ,
d(Ip · ωp)

dt
=
∫
Vp

r × f pdV + hp , (5)

where mp denotes the mass of the particle, Ip the inertia tensor, and r the relative
position from the center of rotation. The last two terms, gp and hp, are external
force and moment: respectively gp = −[(ρp − ρf )/ρp]mpgez and hp = 0 in
this computation. The domain Vp is slightly larger than the particle, including all its
interfacial cells. Since the grid for the fluid-flow simulation is used for the volumetric
integral in Equation (3), there is no residual in the momentum exchange between the
two phases.

We apply our DNS method to homogeneous turbulence including spherical
particles. Grid points for the fluid turbulence simulation are distributed uniformly in
a periodic computational domain. The spatial derivative is approximated by a central
finite-difference method of fourth-order accuracy. Second-order schemes are applied
for time marching, namely the Adams–Bashforth method for the equations of motion
for fluid and solid particle and the Crank–Nicholson method for the displacement of
particle position. The SMAC method is used for velocity-pressure coupling in Equa-
tion (3).

The above-mentioned method is one of the simplest immersed boundary tech-
niques, in which the fortified Navier–Stokes approach [7] is extended for the realiz-
ation of solid boundaries.
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2.2 Computational setup

Periodic boundary conditions are applied in all directions assuming homogeneity of
the flow field. Each computational cell is cubic. The numbers of them are Nx =
Ny = 512 in the horizontal directions and Nz = 1024 in the vertical direction. The
ratio of particle diameter to grid spacing is Dp/� = 10, which allowed sufficient
accuracy for vortex shedding at the particle Reynolds number range of interest [5, 6].
Four steps for the number of solid particles are calculated: Np = 256, 512, 1024 and
2048.

The number of particles is limited so that the volumetric fraction � is 0.4%. In
such a relatively dilute loading, inter-particle collisions could occur, but are unlikely
to dominate the particle distribution and the flow field. Thus, elastic collisions for
simplicity are assumed in this study.

Initially, both the uniformly distributed particles and the fluid are at rest. The
density ratio between solid and fluid is ρp/ρf = 8.8. Hence, particles settle due to
gravity. To keep the mass flow rate of the mixture to zero, we adjusted the vertical
gradient of pressure in the equation of fluid motion. The Reynolds number is adjusted
as Reps = 50, 100, 200 and 300 by changing the fluid viscosity so that the gravity
and drag are in balance. This is based on the particle diameter and the terminal ve-
locity when a particle falls in a stationary and infinite domain. The drag is estimated
by the standard Reps -CD curve for a fixed sphere in a uniform flow [8]. On the other
hand, shown later is based on the average slip velocity between falling particles and
fluid in a periodic domain. This is different fromReps . The setups correspond to cop-
per particles having diameters in the range from 0.34 mm (Reps = 50) to 0.85 mm
(Reps = 300) in water.

One can manipulate a particular parameter in the numerical experiment. In this
study, the value of ωp is forced to be 0 as a virtual situation, for the purpose of invest-
igating the effect of particle rotation. Namely, the angular momentum, governed by
the second Equation (5), is ignored in such a situation. Hereafter, such a hypothetical
particle is expressed by ‘irrotational’, while ‘rotational’ means a realistic particle.

3 Results and discussion

3.1 Effects of Reynolds number and particle rotation

First, the Reynolds number dependence together with the influence of particle ro-
tation is considered at constant loading-ratio (� = 0.1%, Np = 512). Figure 1
shows the time evolution of the averaged Reynolds number Rep and rotation intens-
ity, ωph = (ω2

px + ω2
py)

1/2 of particles. Figure 2 compares the influence of rotation
on the inter-particle (center-to-center) distances.

As for the lower Reynolds number particles Reps = 50 and 100, they fall with
almost the same velocity as a single particle (Rep ≈ Reps ) as shown in Figure 1(a).
The influence of particle rotation is insignificant. The particles moving with low
Reynolds number have almost axisymmetric vortex rings in their wake. Since the

146



DNS of Collective Behavior of Solid Particles

0 2000 4000 6000

0

100

200

300

400

tU0 /Dp

R
e
p

Irrotational
Rotational

Reps= 300

Φ=0.001 (Np= 512)

Reps= 200

Reps= 100

Reps= 50

0 2000 4000 6000

0

0.02

0.04

0.06

tU0 /Dp

ω
p
h

 r
m

s

Reps= 200

Φ=0.001 (Np= 512)

Reps= 100

Reps= 300

Reps= 50

(a) Mean settling velocity (b) Angular velocity of horizontal axis
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interaction between them through their wakes is not evident, they tend to move in-
dividually. The inter-particle distances are therefore almost constant in these cases
as shown in Figure 2. Particle rotation is weak as shown in Figure 1(b). The time
evolution of rotation intensity takes spiky profile when a few particles move due to
rotation in a disturbed flow field.

For the intermediate Reynolds number Reps = 200, the particles exhibit collect-
ive behavior as shown in Figure 2. Accordingly, the settling velocity becomes larger
than for a single particle of the same property,Rep > Reps , as shown in Figure 1(a).
The experimental evidence is that flow around a particle fixed in a uniform stream at
this Reynolds number is axisymmetric. But this axisymmetric state is unstable un-
like that at the lower Reynolds number. Thus particles of Reps = 200 moving in a
disturbed field are likely to have continuous rotation.
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For particles with higher Reynolds number, Reps = 300, vortex shedding takes
place from each particle. In this case, the above-mentioned tendency becomes more
evident. Moreover, the influence of rotation causes qualitative difference in collect-
ive motion of particles. Clearly from Figures 1(a) and 2, fluctuation of Rep and
Lp shows negative correlation. It suggests that the falling velocity increases when
particles form clusters. In this paper, the high-density region of particles is denoted
by ‘cluster’. The drag on a particle trapped in the wake of another becomes smaller
and it reaches the other. Such a ‘wake-attraction’ is the mechanism of clustering in
our case. Since many particles have less drag in the cluster, the average Reynolds
number increases.

The correlation between particle distribution and fluid turbulence is as follows
[9, 10]. Velocity fluctuation in the vertical direction increases with slight delay of
increase in particle Reynolds number due to clustering. Then the horizontal compon-
ent follows with additional delay. As a consequence, clusters break up mainly due
to horizontal fluctuations. This is the life cycle of a cluster. Through some cycles,
the particle-laden flow field develops to statistically steady state. At this stage, there
seems to be quite an important difference between actual particles and non-rotating
particles. Irrotational particles keep cluster structure with weak fluctuations. On the
other hand, particles with rotation cause formation/break-up of clusters with long
period.

As shown in Figure 1(b), for Reps = 300, the rotation increases gradually
through the non-dimensional time between 2000 and 3000 and then between 5000
and 6000. They are the period of clustering as suggested in Figures 1(a) and 2(b).
Particles acquire angular momentum within the high shear region around clusters.
Thus continual lift force due to rotation acts on the particles and they tend to slide
horizontally. The direction of lift by rotation is outward from clusters. As a result,
clusters are reproduced periodically but become weaker due to the inertia of rotation.

3.2 Effects of loading ratio and particle rotation

The collective motion of particles in the self-induced turbulence is strongly affected
by the particle distribution as discussed in the former section. Thus it may be also
influenced by the mean loading ratio of solid particles. Here, loading-ratio depend-
ence in couple with the influences of particle rotation are considered at the highest
Reynolds number (Reps = 300).

Figure 3 compares the time evolution of averaged Reynolds number Rep . Fig-
ure 4 shows time evolutions of mean distance to the nearest particles Lp normalized
by Lm = (Vc/Np)

1/3, where Vc is the volume of computational domain. Clearly
from the comparison of Figure 4 with Figure 3, variations of Reps and Lp show
a negative correlation. It means the falling velocity becomes larger when particles
form clusters. Settling velocity of irrotational particles is larger than for a single by
approximately 20%, regardless of the loading ratio. Clusters of irrotational particles
seem to be maintained continuously.

The behavior of actual particles, on the other hand, is affected by the mean load-
ing ratio. For 0.05% volume loading, the average fall velocity is reduced. In this case,
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particles do not form clusters. Thus the drag increases because they move in the self-
induced turbulence. As the loading ratio increases from 0.1% to 0.2%, clusters are
formed intermittently. Furthermore, for 0.4% loading, the period becomes shorter
and more irregular. The mean drag coefficient decreases as a consequence of the
development of clusters.

Figures 3 and 4 show a clear difference between actual particles and rotation-
ignored particles. Irrotational particles keep cluster structure. On the other hand, ro-
tational particles cause quasi-periodic formation and break-up of clusters. Such a
collective behavior is affected by the loading ratio.
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Fig. 5. Typical example of instantaneous distribution of particles (Np = 1024, Reps = 300,
ρp/ρf = 8.8.)

3.3 Instantaneous flow fields

Figure 5 shows examples of the instantaneous flow field including 1024 particles
(� = 0.2%) for the case of Reps = 300 [10]. Each particle sheds hairpin-type
vortices similar to the observation in experiments [1, 2].

Irrotational (hypothetical) particles form vertically elongated clusters. From
movies one can observe that irrotational particles, even if they once drop out of a
cluster, they return to it or go into another cluster. Clusters behave somewhat dynam-
ically but the structure is maintained, as observed in Figures 3(a) and 4(a). Particles
in the high concentration region fall faster than average. The flow field including
rotational (realistic) particles, on the other hand, fluctuates intensely as observed in
Figure 3(b).

When the particle rotation is accounted for, firstly developed clusters have sim-
ilar size and strength with those of irrotational ones shown in Figure 5(a). But they
are broken completely. At the next step, regenerated clusters become larger but the
particle density is lower. During the iteration of this process, the particle rotation
grows as shown in Figure 1(a). Consequently, the high concentration clusters such
as initial ones are never reproduced as shown in Figure 5(b). From movies one can
confirm the sliding motion of particle in the horizontal plane due to the Magnus lift
force.

The difference between rotational and irrotational particles is due to the differ-
ence in the direction of lift. Clusters cause faster downward current of fluid and
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make high-shear layer around them. In this region, particles without rotation receive
the lift force to the direction of cluster center, resulting in the absorption. This cor-
responds to an experimental finding [11], in which they reported the lift is in the
direction to less relative velocity side for Reynolds number greater than 60. When
particles receive angular momentum in the shear region, the Magnus lift force is in
the direction outward from cluster center. In addition, the rotation tends to sustain the
sliding motion because the orientation of unsteady vortex shedding tends to be fixed.
Then, rotational particles have continuous horizontal motion, which is originally in
the direction dropping out from clusters. As a consequence, they travel randomly and
unlikely form high concentration clusters until their rotation is damped.

4 Conclusion

The interaction in larger scale is more important for turbulence modulation. The
largest scale is not close to the particle size but it is related to the particle distribu-
tion. So the non-uniformity in particle distribution was particularly discussed in this
study, in the multiple-scale interactions between particles and turbulence. Thus, the
dominant factors for the collective behaviors of particles, especially, the influence of
Reynolds number, loading ratio and rotation of particles were considered by means
of DNS.

Particles in clusters fell faster than average because of the smaller fluid drag in
the wake of other particles. It is due to the high density in fluid-particle mixture. Then
clusters made high-shear region around them resulting in turbulence production. The
effect of particle rotation manifested itself after such a process. Irrotational (hypo-
thetical) particles maintained cluster structure while rotational (realistic) ones moved
randomly in the horizontal direction. Moreover, the collective behavior of rotational
particles was affected by the loading ratio. The major reason for the difference was
the direction of lateral component of the fluid force, that is the lift force. A dominant
factor of rotational particles was the Magnus lift force, which was given by the fluid
shear and preserved due to the inertia of rotation.

Recently, Nishino and Matsushita found a vertically elongated structure in
particle distribution by experiment and named it ‘columnar particle accumulation’
(CPA) [12]. Our DNS method was applied to a condition corresponding to the ex-
periment: Reps = 200 and ρp/ρf = 2.5. The simulated and measured flow field is
in qualitative agreement [13].
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Abstract. Proteus1 is a new code that utilizes elements of the Immersed Boundary (IB) and
Lattice Boltzmann Method (LBM) as well as a Direct Forcing (DF) scheme. As a computa-
tional method, it is very flexible and it appears to be ideal in solving fluid-particle interaction
problems including problems with deformable boundaries. Proteus uses a regular Eulerian
grid for the flow domain and a regular Lagrangian grid to follow particles that are contained
in the flow field. The rigid body conditions for the fluid and the particles are enforced by
applying the external force acting on the boundary of particles. A penalty method is used,
which assumes that the particle boundary is deformable with a high stiffness constant. The
velocity fields for the fluid and particles are solved by incorporating a force density term into
the lattice Boltzmann equation. This force term is determined by using a technique that is
based on the direct forcing scheme. Proteus preserves all the advantages of LBM in tracking a
group of particles and, at the same time, provides an alternative and better approach to treating
the solid-fluid boundary conditions. Because of this it provides for a smooth boundary inter-
face, with only a few nodes assigned for the size of particles. This new method also solves
the problems of fluctuation of the forces and velocities on the particles when the “bounce-
back” boundary conditions are applied. The method has the capability to simulate deformable
particles and fluid-structure deformation. The results of the Proteus code have been validated
by comparison with results from other computational methods as well as experimental data.
Some of the validation results will be given in the presentation of this paper.

1 Introduction

Ladd [8, 9] successfully applied the Lattice Boltzmann Method (LBM) to particle-
fluid suspensions. The LBM overcame the limitations of the conventional Finite
Volume and Finite Element Methods (FEM) by using a fixed, non-adaptive (Eu-
lerian) grid system to represent the flow field. Since then, the LBM has proven to

1 In the Greek mythology, Proteus is one of the many mythical heroes. He was the son of
God Poseidon and was granted by Zeus the abilities to change shapes, to take different
forms at will and to correctly predict the future. One cannot ask for better attributes from a
computer code.
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be a robust and efficient method to accurately simulate particulate flows with a large
number of particles. When the LBM is used to simulate particle-fluid interaction
problems, the no-slip condition on the particle-fluid interface is treated by the so-
called “bounce-back” rule [9], and the particle surface is represented by the so-called
“boundary nodes”, which are essentially a set of mid-points of the links between two
fixed grids, in which one of the grid points is within the fluid domain and the other is
within the solid domain. This arrangement causes the computational boundary of a
particle to be defined by step-wise scheme. In order to represent a smooth boundary
and accurately represent the shape of any particle, it is necessary to use a large num-
ber of lattice points. In addition, when a particle moves, its computational boundary
varies in each time step and this introduces fluctuations in the forces that act on the
particle. This limits the ability of LBM to solve particle-fluid interaction problems at
very high Reynolds numbers. Peskin [11] developed the immersed boundary method
(IBM) in order to model the flow of blood in the heart. This method uses a fixed
Cartesian mesh for the fluid, which is composed of Eulerian nodes. However, for the
solid boundaries, which are immersed in the fluid, the IBM uses a set of Lagrangian
boundary points, which are advected by the fluid-solid interactions. This method is
especially suitable for the simulation of the effect of deformed immersed boundaries
and has been widely used in biological fluid dynamics. Höfler and Schwarzer [7]
presented a finite-difference method for particle-laden flows by adding a constraint
force into the Navier-Stokes equations to enforce particle rigid motions, with the
constraint force being determined by a penalty method. Goldstein et al. [6] used a
so-called adaptive or feedback forcing scheme to model the no-slip conditions on a
stationary boundary. This technique necessitates the use of two free parameters that
must be chosen, based on the flow conditions. In the recent years, the concept of
IBM has been employed into the FEM. Glowinski et al. [4, 5] developed the Ficti-
tious Domain Method (FDM) by using Lagrange multipliers to enforce the no-slip
boundary conditions between the particle surfaces and the fluid. They were able to
apply this method in order to simulate a flow system with 1024 spherical particles
[5]. Ten Cate et al. [13] used an adaptive-forcing scheme with the LBM to simu-
late the sedimentation of a single sphere in an enclosure. Feng and Michaelides [2]
combined the IBM and the LBM by computing the force density through a penalty
method in the simulations of particulate flows. This method has the disadvantage that
it requires a priori selection of the stiffness parameter based on the specific problem
to be solved.

The key point of the success of both LBM and IBM is that instead of re-meshing
the fluid domain, they both use a fixed mesh to represent the fluid field. In the LBM,
the moving boundaries are approximated by the fixed points on the grid. These are
essentially the midpoints of the boundary links if the bounce-back rule is used to
implement the no-slip boundary condition. Hence, the moving boundaries are de-
scribed by Eulerian points. In the IBM, the moving boundaries are represented by
a set of Lagrangian boundary points, which are advected by the fluid. In this paper,
we develop a new computational method called Proteus, which combines the direct
forcing and the lattice Boltzmann methods. Proteus makes use of Eulerian lattice
nodes for the fluid flow field and Lagrangian boundary points to represent particles
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or moving-boundary surfaces. Unlike the penalty method we have employed in our
previous study [2], this method applies the direct forcing scheme, which was ori-
ginally proposed by Mohd-Yusof [10] for fixed complex boundaries. This eliminates
the need for the determination of the free parameter for the stiffness coefficient and
makes the method much more straightforward and efficient. In addition, Proteus al-
lows us to implement the rigid-body conditions inside a particle in a more convenient
manner.

2 Proteus – Description of the numerical method

Proteus resolves the no-slip boundary conditions by adding a force density term
in the Navier–Stokes equations. It computes the force density via a direct forcing
scheme, and then solves the flow field by using the LBM. The basic idea of the
LBM is to decompose the flow domain into a regular lattice grid and model the fluid
as a group of fluid particles that are only allowed to move between lattice nodes
or stay at rest. To apply the conventional LBM to particulate flow, the boundary of
solid particles is enforced using the bounce-back rule, according to which, the fluid
particles will bounce back when they run into a solid boundary. However, the diffi-
culty with this approach is that it uses boundary nodes, which are the midpoints of
boundary links. We call these nodes Eulerian boundary nodes to differentiate them
from the Lagrangian boundary points/nodes that represent the surface of the particles
as the particles move inside the fluid. This representation of a surface causes signific-
ant fluctuations of the computational boundaries, especially when a relatively small
number of lattice nodes are used to represent the surface of the particles. The de-
termination of the Eulerian boundary nodes is a non-trivial task especially when the
particles do not have simple shapes. The worst disadvantage of the “bounce-back”
rule is that it either fails to achieve accurate results or it could not yield converge res-
ults at high Reynolds number flow, which requires finer updating scheme for particle
velocity and position during one lattice time step. To resolve this problem one may
use the IB-LBM [2] and represent the particulate surfaces by using a set of inde-
pendent Lagrangian boundary points that are attached to the boundary. The main
advantages of doing this is that the computational boundary of the particles will be
smooth and that the exact locations of the Lagrangian boundary points may be easily
determined if we keep a track of the transformation matrix.

Let us consider a particle with a boundary surface, �, immersed in a three-
dimensional incompressible viscous fluid with a domain, �. The particle boundary
surface, �, is represented by the Lagrangian parametric coordinates, s, and the flow
domain, �, is represented by the Eulerian coordinates x. Hence, any position on the
particle surface may be written as x = X(s, t). Let F(s, t) and f(x, t) represent the
particle surface density and the fluid body force density. The no-slip boundary condi-
tion is satisfied by enforcing the velocity at all boundaries to be equal to the velocity
of the fluid, u, at the same location:

∂X(s, t)
∂t

= u(X(s, t), t). (1)
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The governing equations for the fluid-particle composite as follows:

ρ

(
∂u
∂t

+ u · ∇u
)
= µ∇2u − ∇p + f, (2)

∇ · u = 0, (3)

f(x, t) =
∫
�

F(s, t)δ(x − X(s, t)) dss (4)

and
∂X
∂t

=
∫
�

u(x, t)δ(x − X(s, t)) dx, (5)

where p(x, t) is the fluid pressure, ρ is the fluid density and µ the fluid viscosity.
Equations (2) and (3) are the Navier–Stokes equations of a viscous incompressible
flow. Equation (4) shows how the force density of the fluid, f(x, t), may be obtained
from the immersed boundary force density, F(s, t) through the integration over the
immersed boundary. Equation (5) is essentially the no-slip condition at the interface,
since the particle moves at the same velocity as the neighboring fluid. In the nu-
merical implementation of the IBM the whole fluid domain, including the parts that
are occupied by immersed bodies, is divided into a set of fixed regular nodes. Since
these fluid nodes are not moving with the flow, we will call them Eulerian nodes. The
immersed boundary is discretized into a group of boundary points that move under
the action of the moving fluid. We will call these boundary nodes Lagrangian nodes.
It must be pointed out that in the IBM, the Lagrangian nodes do not necessarily
coincide with the Eulerian nodes.

To solve the fluid field with a body force density, f(x, t), the LBM equation is
modified by adding a term to the collision function. The details of the implementation
may be found in [1].

In the Proteus method we use a set of Lagrangian boundary points to describe
the particle boundary. Equation (2) is also valid at these Lagrangian boundary points.
Assuming that the velocity and pressure fields at the time step t = tn are known, we
have an explicit scheme to determine the force term at these Lagrangian boundary
points at time t = tn+1:

f
(n+1)
i = ρ

(
u
(n+1)
i − u

(n)
i

�t
+ u

(n)
j u

(n)
j,i

)
− µu

(n)
i,jj + p

(n)
,i . (6)

The Einstein notation for subscripts and derivatives is used in the last equation.
In order to impose the boundary condition that at t = tn+1, the velocity on the im-
mersed Lagrangian boundary points is equal to the velocity of the particle at the same
point, UP(n+1)

i , the density force at these points should be given by the following ex-
pression:

f
(n+1)
i = ρ

(
U
P(n+1)
i − u

(n)
i

�t
+ u

(n)
j u

(n)
j,i

)
− µu

(n)
i,jj + p

(n)
,i . (7)
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Fig. 1. A set of Lagrangian boundary points for a two-dimensional particle.

The above equation is called direct forcing, since it may be used to evaluate the
force density at the Lagrangian boundary points without introducing any pre-defined
parameters.

Figure 1 shows the boundary points for a two-dimensional particle boundary. The
velocities at these Lagrangian points at the current time step t = tn may be computed
by a bilinear interpolation using the velocity values of four neighboring grid points
for two-dimensional flows or eight neighboring grid points for three-dimensional
flows. However, the calculated force density using Equation (7) is at a Lagrangian
boundary point, and we have to spread it into the neighboring Eurlerian nodes using
a spreading function. In the adaptive forcing scheme, the fluid density force is also
computed at boundary points. In this work, we use a delta function to spread the
force density to the nearby Eulerian nodes.

The use of the force spreading technique is consistent with the theory of the
immersed boundary method. The procedure employed may be explained as follows:
For simplicity, we consider a two-dimensional problem with a particle boundary �.
We also consider a small area ε around a Lagrangian boundary point si , as shown in
Figure 1 and by integrating the force density within the small area, we obtain:∫

ε

f(X)x, t)) dA =
∫
�

F(s, t)
(∫

ε

δ(x − X(s, t)) dA

)
ds =

∫
�ε

F(s, t) ds. (8)

The relation between the flow force density, f(X(s, t)), and the surface force
density, F(s, t), of Equation (4) is used. Equation (8) implies that the flow force
density integral for a small area ε is equal to the boundary force density integral
over the boundary element �ε , which is the intersection of this small area and the
particle boundary � (from �1 to �2 in Figure 1). For a uniform grid with spacing
δx = δy = δ, it is reasonable to assume that a Lagrangian boundary node si carries
an area of δsδ (where δs is the length of the small boundary element �ε). The force
acting on this area is f(X(si , t))δsδ. Hence, the integral of the surface force density
over the small area can be approximated as:
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�ε

F(s, t) ds ≈ f(X(si , t))δsδf. (9)

For the three-dimensional case, one needs to consider a small volume around a
Lagrangian point. Hence, the line integral should be replaced by a surface integral
over a small boundary surface area intersected by a small volume. Also, δs should
be replaced by δA, the area of this boundary surface element. By using Equation (9)
as an approximation for the surface force density integral, the flow force density at
each Eulerian node may be determined from Equation (4). This is the same proced-
ure as the force spreading if a delta function is used for the spreading of the force.
Equation (9) also provides an approach for the computation of the force acting on
the particles, since the total force acting on a particle is equal to the sum of the forces
acting on each surface element. The direct-forcing method combined with LBM is
to be implemented in three-dimensional particulate flows. Details of the method are
given by Feng and Michaelides [3].

3 Modeling the inter-particle collisions

In any type of particulate flows collisions between particles are unavoidable, espe-
cially when the flow is dense and the particles move at high Reynolds numbers. The
correct handling of these collisions in any direct numerical simulation (DNS) is very
important for the study of all particulate processes. Generally, the grid used in a
DNS study is not fine enough to handle the lubrication force that develops between
the particles or between particles and a solid boundary. Therefore, an artificial mech-
anism is necessary to be introduced in the numerical scheme in order to account
for the repulsive force during collision processes. Without such a mechanism, it is
likely that the particles will penetrate significantly into each other’s computational
boundary, thus, rendering the results meaningless.

We introduce a repulsive force when the gap between two particles is lower than
the “safe zone”. This artificial short-range repulsive force is added as an external
force, with the functional form that was developed by Glowinski et al. [5]. This col-
lision technique allows particles to overlap when the stiffness parameter is very large,
that is, when the particles undergo “soft” collisions. For “soft” collisions, the partial
overlapping of particles may be significant when a large number of particles undergo
a packing process. The particles at the bottom, which have to bear the load of the
particles above, will exhibit the maximum overlapping. To counteract this overlap-
ping, we choose the repulsive force by considering the following situations: before
the two particles contact, a repulsive force developed by Glowinski et al. [5] is used;
when the two particles start to overlap, a higher spring force is applied. This force is
proportional to the overlapping distance of two particles, and typically is much larger
than the repulsive force with no overlapping. The advantage of the present collision
scheme is that it enables us to use a small repulsive force for particles sedimentation
before packing and the larger spring force for particles in the packing process. When
particles start the sedimentation and before packing, the small repulsive force will be
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enough to repel the two particles and this will reduce unwanted side effects by large
repulsive force used otherwise; when the particles start packing, the spring force will
take effect to prevent penetration.

The Proteus numerical scheme has been validated by comparison with several
sets of experimental and computational data. Details of the validation as well as
more details of the method are given by Feng and Michaelides (2005).

4 Results – Sedimentation of 1232 spherical particles in a
shallow box

We simulated the sedimentation process of 1232 spherical particles in a narrow en-
closure. The group of particles is initially packed in a closed three-dimensional box,
3.125 cm long, 3.125 cm high and 0.09375 cm wide. The diameter of the particles
is d = 0.0625 cm and, hence, the width of the box is 1.5d . As in the previous case,
the fluid density is ρf = 1000 kg/m3, and the particle/fluid density ratio is 1.01. The
dynamic viscosity of the fluid is 0.001 kg/ms. The “safe zone” between particles is
equal to d/8. The stiffness parameters for the collisions are εP = 0.25, EP = 0.02
and εW = 0.5εP . From the results presented in the last section, it is reasonable to
conclude that Proteus will yield accurate results with the parameters chosen for this
simulation. Initially, both the fluid and particles are stationary in an arrangement
similar to closely-packed spheres, with the heavier particles on top of the fluid.

The numerical simulation box is 400×12×400 in lattice units, and the diameter
of each particle is equal to 8 lattice units. As in the last simulation, two boundary con-
ditions will be examined in the width direction: (a) solid walls with no-slip boundary
condition and (b) periodic boundary conditions, which imply an infinite array of
identical particles. The boundaries in all the other directions are solid boundaries
with no-slip velocity conditions. The relaxation time for the first case is τ = 0.9915
and each lattice time step corresponds to a physical time of 0.001 s; the relaxation
time for the second case τ = 0.74576 and each lattice time step corresponds to a
physical time of 0.0005 s. All the simulations were conducted on a SGI Onyx 3500
machine. In the case of sedimentation with 1232 particles, the time to complete a
single iteration is about 15.8 s. This results in approximately 4.3 hours computa-
tional time to simulate 1 s of physical time for the first case, or about 11 days to
complete a simulation of 60 s of physical time without any paralleling. More details
of the Proteus code and more results are given by Feng and Michaelides [3].

5 Conclusions

An efficient three-dimensional computational method, Proteus, based on the LBM
and the direct forcing scheme, has been developed for use with large groups of
particles. This method computes the force term directly and does not require the
use of any other coefficients as additional parameters. Compared with the conven-
tional LBM, this method provides a smooth computational boundary. While it has
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Fig. 2. Particle positions at t = 25 s.

the same order of accuracy as the LBM, Proteus is capable of achieving results at
higher Reynolds numbers and, if needed, to easily enforce the rigid body motion
in the interior of the particles. Proteus is also easier and more efficient to be used
when the particles do not have a simple shape. The method has been validated by
comparison of results from the simulations of the motion of single spheres settling
in an enclosure with analytical and experimental results that were derived in the past
and has been successfully applied to the sedimentation problem of an arrangement
of spheres.
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An Explicit Finite-Difference Scheme for Simulation
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Abstract. We present an explicit finite-difference scheme for direct simulation of the mo-
tion of solid particles in a fluid. The method is based on a second-order MacCormack finite-
difference solver for the flow, and Newton’s equations for the particles. The fluid is modeled
with fully compressible mass and momentum balances; the technique is intended to be used
at moderate particle Reynolds number. Several examples are shown, including a single sta-
tionary circular particle in a uniform flow between two moving walls, a particle dropped in a
stationary fluid at particle Reynolds number of 20, the drafting, kissing, and tumbling of two
particles, and 100 particles falling in a closed box.

1 Introduction

This paper develops an explicit finite difference scheme for direct numerical solution
of particles in a nearly incompressible Newtonian fluid. It is hoped that the present
scheme will find success in regimes where conventional methods work awkwardly.
Finite element methods, such as the Particle-Mover arbitrary Lagrangian–Eulerian
(ALE) method of Hu [2–4] or Johnson and Tezduyar’s stabilized space-time method
[5], are efficacious for small numbers of particles at moderate Re but have prohibit-
ive computational requirements when particles fill the domain. When these methods
are used to simulate closely-space particles, the mesh may need to be refined excess-
ively. This gives rise to memory and/or processing issues due to the remeshing and
projection procedures. A fixed, uniform grid becomes an attractive choice. Addition-
ally, the time step must be smaller than the intrinsic time scale of the particle motion
in order to properly capture the physics. For dense particle configurations this time-
scale may be comparable to the largest stable time step of an explicit scheme, which
would make the explicit scheme competitive.

In solving the incompressible Navier–Stokes equations using the primitive vari-
ables (velocity and pressure), one numerical difficulty lies in the continuity equa-
tion. The continuity equation can be regarded either as a constraint on the flow field
to determine the pressure or the pressure plays the role of the Lagrange multiplier
to satisfy the continuity equation. In a flow field, the information (or disturbance)
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travels with both the flow and the speed of sound in the fluid. Since the speed of
sound is infinite in an incompressible fluid, pressure disturbances are propagated in-
stantaneously throughout the domain. In many numerical schemes for solving the
incompressible Navier-Stokes equations, the pressure is obtained by solving a Pois-
son equation. The Poisson equation may occur in either continuous form or discrete
form. Solving the pressure Poisson equation is often the most costly step in these
schemes.

One technique to surmount the difficulty of the incompressible limit is to intro-
duce an artificial compressibility (AC) as Chorin did [1]. This formulation is nor-
mally used for steady problems with a pseudo-transient formulation. In the formula-
tion, the continuity equation is replaced by

∂p

∂t
+ c2∇ · u = 0, (1)

where c is an arbitrary constant and could be the artificial speed of sound in a corres-
ponding compressible fluid with the equation of state p = c2ρ. The formulation is
called pseudo-transient because (1) does not have any physical meaning before the
steady state is reached. However, when c is large, (1) can be considered as an approx-
imation to the unsteady solution of the incompressible Navier–Stokes problem [1].
Nourgaliev et al. [8] have pointed out that the AC method is both easily parallelized
and economically coded.

The present work is closest in spirit to Norgaliev’s Numerical Acoustic Relaxa-
tion (NAR) method [8]. Our scheme is fully explicit and second order in both time
and space. Rather than use Equation (1), we instead use the fully compressible con-
tinuity and momentum equations, but with Chorin’s artificial equation of state. For
the particle interface, we redraw the particle at each time-step and handle change of
phase in a manner similar to Udaykumar et al. [10]. The force and torque are cal-
culated by integration over the interface, and the particles are then explicitly moved
according to Newton’s third law.

2 Explicit MacCormack scheme

Instead of using the artificial continuity equation of (1), one may start with the ex-
act compressible Navier–Stokes equations with the artificial equation of state. In
Cartesian coordinates, the component form of the continuity equation and compress-
ible Navier–Stokes equation in two dimensions can be written as

∂ρ

∂t
+ ∂(ρu)

∂x
+ ∂(ρv)

∂y
= 0, (2)

∂

∂t
(ρu)+ ∂

∂x
(ρu2)+ ∂

∂y
(ρvu) = ρgx − ∂p

∂x
+ µ∇2u+ µ

3

∂

∂x

(
∂u

∂x
+ ∂v

∂y

)
, (3)

∂

∂t
(ρv)+ ∂

∂x
(ρuv)+ ∂

∂y
(ρv2) = ρgy − ∂p

∂y
+ µ∇2v + µ

3

∂

∂y

(
∂u

∂x
+ ∂v

∂y

)
, (4)
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with the equation of state p = c2ρ, where c is the speed of sound in the medium.
As long as the flows are limited to low Mach numbers and the conditions are almost
isothermal, the solution to this set of equations should approximate the incompress-
ible limit (see [6]). The physical continuity equation is preferred because the range
valid Mach number of (1) is unknown, and there is no computational reason to make
an approximation.

The explicit MacCormack scheme, after [7], is essentially a predictor-corrector
scheme, similar to a second-order Runge–Kutta method commonly used to solve
ordinary differential equations. For a system of equations of the form

∂U
∂t

+ ∂E (U)
∂x

+ ∂F (U)
∂y

= 0, (5)

the explicit MacCormack scheme consists of two steps,

U∗
i,j = Un

i,j −
�t

�x
(En

i+1,j − En
i,j )−

�t

�y
(Fn

i,j+1 − Fn
i,j ), (Predictor)

Un+1
i,j = 1

2

[
Un
i,j + U∗

i,j −
�t

�x
(E∗

i,j − E∗
i−1,j )−

�t

�y
(F∗

i,j − F∗
i,j−1)

]
. (Corrector)

The vector U = (ρ, ρu, ρv) contains the update variables. The vectors E, and F are
functions of the update variables and some of their spacial derivatives. Notice that
the spatial derivatives in (5) are discretized with opposite one-sided finite differences
in the predictor and corrector stages. The star variables are supposed to be evaluated
at time level tn+1. This scheme is second order accurate in both time and space.

Applying the MacCormack scheme to the compressible Navier–Stokes equations
(2)–(4) and replacing the pressure with p = c2ρ, we have the predictor step

ρ∗i,j = ρni,j − c1
[
(ρu)ni+1,j − (ρu)ni,j

]− c2
[
(ρv)ni,j+1 − (ρv)ni,j

]
, (6)

(ρu)∗i,j = (ρu)ni,j − c1
[
(ρu2 + c2ρ)ni+1,j − (ρu2 + c2ρ)ni,j

]
(7)

− c2
[
(ρuv)ni,j+1 − (ρuv)ni,j

]+ 4

3
c3(u

n
i+1,j − 2uni,j + uni−1,j )

+ c4(u
n
i,j+1 − 2uni,j + uni,j−1)

+ c5(v
n
i+1,j+1 + vni−1,j−1 − vni+1,j−1 − vni−1,j+1),

(ρv)∗i,j = (ρv)ni,j − c1
[
(ρuv)ni+1,j − (ρuv)ni,j

]
(8)

− c2
[
(ρv2 + c2ρ)ni,j+1 − (ρv2 + c2ρ)ni,j

]+ c3(v
n
i+1,j − 2vni,j + vni−1,j )

+ 4

3
c4(v

n
i,j+1 − 2vni,j + vni,j−1)

+ c5(u
n
i+1,j+1 + uni−1,j−1 − uni+1,j−1 − uni−1,j+1).
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and likewise for the corrector. The coefficients are defined as

c1 = �t

�x
, c2 = �t

�y
, c3 = µ�t

(�x)2
, c4 = µ�t

(�y)2
and c5 = µ�t

12�x�y
. (9)

In both the predictor and corrector steps the viscous terms (the second-order
derivative terms) are discretized with centered-differences to maintain second-order
accuracy. For brevity, body force terms in the momentum equations are neglected
here.

Tannehill et al. [9] give the following semi-empirical stability criterion for the
explicit MacCormack scheme:

�t ≤ σ

(1 + 2
/

Re�)

[
|u|
�x

+ |v|
�y

+ c

√
1

�x2 + 1

�y2

]−1

, (10)

where σ is a safety factor (≈ 0.9), Re� = min(ρ|u|�x/µ, ρ|v|�y/µ) is the min-
imum mesh Reynolds number. This condition is quite conservative for flows with
small mesh Reynolds numbers. We find that at moderate flow Re (Re = 10 to 500)
the CFL condition gives results that more closely resemble the actual stability limits
of our scheme,

�t ≤ min

(
0.5�x

c
,

0.5�y

c

)
. (11)

To resolve the motion of the particles in particulate flows, time step is usually lim-
ited by the distance the particle is allowed to move during each step. If this distance
is one grid spacing in the simulation, this restriction represents a similar condition
for the time step based on the particle velocity. The condition in (11) is not very
restrictive for such flows, since the ratio of the time step in (11) to the time step for
capturing the particle motion is just the Mach number. For simulating incompressible
behavior of the particulate flows, we limit the Mach numbers to be small, say around
0.1, but not too small, to avoid excessively tiny time steps.

3 Flow over a circular cylinder between sliding walls

To test the scheme for the case of flow over an immersed body, we simulated an
infinite (i.e. two dimensional) circular cylinder in a channel with two moving side
walls and a uniform inlet velocity profile (Figure 1). This problem is mathematically
equivalent to the problem of a cylinder moving in a fluid at constant speed down a
channel with stationary walls, although the numerical treatment of these two cases
differ.

To apply the no-slip condition exactly at the surface of the particle, one can
Taylor expand from the boundary gridpoint to the true surface. It is natural to en-
force no-slip on the point on the cylinder surface nearest to each boundary point,
because it minimizes the truncation error in the Taylor series.
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Fig. 1. Flow over a circular cylinder between two sliding walls. Inlet and wall velocities are
both U , channel length is L, channel width is H , cylinder diameter is D, and the center of the
cylinder is at (xcenter, ycenter).

The continuity equation provides one possible boundary condition for density
(or pressure, since they are proportional here). When this condition is used on the
cylinder, it results in a jagged pressure distribution on the surface. The reason for
this is not yet understood. A boundary condition based on the momentum equation
gave better results. This condition can be derived by taking the component of the
pressure (density) normal to the cylinder surface, which is n̂ · ∇p, and combining
with Equations (3) and (4). The result is

∂ρ

∂n
= µ

c2

(
n̂x

3

(
4
∂2u

∂x2
+ 3

∂2u

∂y2
+ ∂2v

∂x∂y

)
+ n̂y

3

(
3
∂2v

∂x2
+ 4

∂2v

∂y2
+ ∂2u

∂y∂x

))
− ρ

c2

(
n̂x

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
+ n̂y

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

))
, (12)

where the equation of state p = c2ρ has been used to eliminate pressure and n̂x and
n̂y are the x- and y-components of the surface normal. Each term can be evaluated
using one-sided second-order differences for the derivatives.

In this section, the MacCormack scheme for flow over a cylinder is validated. In
the tests that follow, L = 35D, H = 4D, and �x = �y in all cases. The cylinder
center is 15.5 diameters from the inlet. All lengths have been non-dimensionalized
usingD, and the pressure and shear stress with ρU2. We examine lift and drag coeffi-
cients (CL and CD) as functions of time, the convergence of CD at two Reynolds and
Mach numbers, and the pressure and shear distributions at three Re and M = 0.05.
When calculating the pressure and shear stress on the particle surface, the density and
velocity gradient terms were Taylor expanded from the boundary point to the surface
in the same manner described above for the velocity. Lift and Drag coefficients were
determined by numerical integration of the pressure and shear on the particle surface
using the trapezoidal rule.

The lift and drag coefficients as a function of time are shown for Re = 100
(M = 0.05) in Figure 2b. The oscillation of the lift coefficient, CL = 2Fy/(ρU2D),
is induced by vortex shedding.

The pressure distribution on a fine mesh (40 grid spacings across the cylinder dia-
meter) is shown in Figure 2a. It is worth noting that the drag coefficient at Re = 100
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(a) (b)

Fig. 2. (a) Non-dimensional pressure distribution. (b) CD and CL vs. time at Re = 100. There
are 40 grid spacings across the cylinder diameter, and the Mach number is 0.05. The Strohl
number for the MacCormack scheme is 0.233, and for Particle-Mover it is 0.227. Note that
the walls are only 1.5D away from the cylinder.

changed by just 2% when the mesh was set to 20 grid spacings per diameter, so one
need not use such a fine mesh in most instances. The non-dimensional pressure dis-
tribution plot also includes the results of a Particle-Mover finite element calculation
with 20 elements across the cylinder diameter. At Re = 100, the flow is unsteady, so
the pressure distribution is a snapshot at non-dimensional time t = 77.36. Time was
non-dimensionalized by L/U .

4 Circular cylinder translating at constant speed

Next we consider the case of a cylinder dragged at constant speed through a sta-
tionary fluid in a channel. This introduces some new implementation issues. The
boundary gridpoints must be picked anew each time the cylinder moves, resulting in
points that were formerly inside the cylinder leaking from the rear. In the previous
case of the stationary cylinder, these interior points did not need values assigned to
them – they were invisible to the fluid. Since this is no longer the case, the velocity
and density must now be chosen for these points.

Our method of dealing with the “leaking” of interior points into the bulk fluid is
to assign them reasonable values before the cylinder is moved. Only the first layer of
interior points needs to be considered, since the particle always moves less than one
grid spacing per time step due to the CFL condition. Expanding in a Taylor series
from the boundary point to each associated interior point, density and the velocity
components are assigned to the interior points. (The derivatives of the velocity and
density at the boundary point are already known from the boundary point update.)

The drag and lift coefficients for the translating cylinder, shown in Figures 3a
and 3b, demonstrate that the results obtained for a moving cylinder in a stationary
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(a) (b)

Fig. 3. Lift and drag coefficients vs. non-dimensional time. The thin lines represents the mov-
ing cylinder, and the dots represents the stationary cylinder. (a) The drag coefficient CD .
(b) The lift coefficient CL.

fluid agree with those for a stationary cylinder in a moving fluid. This is expected,
but given that the boundary points representing the cylinder are changing with each
iteration, direct confirmation is important. In both cases, the Mach number was 0.05.
For the stationary case, the cylinder center was 15.5 diameters from the inlet, and the
channel length was 35 diameters. The channel length for the moving cylinder was 70
diameters. In both cases, the cylinder was centered horizontally in the channel, which
was 4 diameters wide. For the case of the stationary cylinder, the outflow boundary
condition was used. The channel for the moving cylinder was closed (velocity set to
zero) on all boundaries. In both cases there were 40 grid spacings across the cylinder
diameter, and the time step was chosen according to Equation (11) with a safety
factor of 0.5.

5 Freely falling cylinders

The translating cylinder simulation may now be modified to deal with the case of
freely falling cylinders by adding a collision scheme. A collision scheme is neces-
sary because under most circumstances the lubrication forces will only become large
enough to prevent collisions in a time that is much smaller than �t . It will also be
necessary to integrate the equations of motion for the cylinders, but this is done as a
part of the collision scheme. For details on the collision scheme, see [4]. The equa-
tions of motion, which are solved as part of the collision scheme, are the result of a
force and moment balance on each particle.

For a Reynolds number of 20 based on the terminal velocity and diameter, the
particle remained in the center of the channel. (There was some off-center wandering
due asymmetries in the MacCormack discretization, but in all cases, the wandering
was by less than a single grid spacing.) Results for the velocity versus time are shown
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Fig. 4. Velocity (non-dimensionalized by U ) versus non-dimensional time tU/D for a single
falling particle. U is the terminal velocity.

(a) (b)

Fig. 5. The paths of the center of each particle in the drafting-kissing-tumbling sequence. For
the MacCormack result, δ/D = 7.5%, and for Particle-Mover it was δ/D = 3%. (a) Particle-
Mover finite element result. (b) MacCormack result. In both cases, the thick line corresponds
to the particle initially on the bottom.

in Figure 4. The simulation parameters are the same as in the previous translating
cylinder tests.

If two particles in a fluid are initially placed one above the other and re-
leased, drafting, kissing, and tumbling occurs. This behavior was observed in the
MacCormack simulation when the two particles were initially separated by two dia-
meters (measured center to center). The locus of particle positions in the laborat-
ory reference frame is shown in Figure 5 alongside the results from Particle-Mover.
The density ratio of the solid phase to the fluid was 1.04. There were 30 grid spa-
cings across the diameter of each particle. The channel was 8 diameters wide, and
there were 40 diameters between the top and bottom (the channel length is infinite).
The minimum distance between two particles, δ, was set to three grid spacings, or
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Fig. 6. One hundred particles sedimenting in a closed box. The time increases from left to
right and top to bottom. ρs/ρf = 2. The box side length is 24.2 particle diameters, and there
are 20 grid spacings across each particle. The safety zone thickness δ = 3�x.

a tenth of the particle diameter. The maximum Reynolds number was around 80.
The results of the finite element solution and the MacCormack agree only qualitat-
ively because the details of the collision scheme differ. The safety zone in the case
of the MacCormack results was 7.5% of the particle diameter, compared to 3% for
Particle-Mover. A thick safety zone was required here by the use of one-sided deriv-
atives in the boundary conditions, however, improvement can be explored in future
work. After the tumble, wiggles in the particle path appear due to vortex shedding.

For a given resolution, the computational effort required to compute any number
of particles hardly changes, provided the collision scheme is efficient. One hundred
particles are shown sedimenting in a closed box in Figure 6. The sides of the box are
24.2 particle diameters long (a non-integer number of particle diameters is required
because the particles must be separated by at least a safety zone thickness δ). The
solid phase is twice as dense as the fluid. There are 20 grid spacings across each
particle.
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6 Concluding remarks

A second-order explicit MacCormack finite difference scheme for moving particles
has been described. The scheme solves the compressible Navier–Stokes equations
on a uniform grid, and is quite efficient for simulation of concentrated suspensions.

Several examples were demonstrated, including a circular cylinder translating at
constant speed, a single freely falling cylinder, two cylinders drafting, kissing, and
tumbling, and one hundred particles sedimenting in a closed box.
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1 Introduction

Our group aims to simulate “bedload transport” of sediment by a turbulent flow over
a sediment bed, and thence to investigate how bed shear drives sediment flux, how
sand becomes suspended, how bed particles are sorted by size or density, how bed
ripples form, and so on. Passing up through the bedload layer, the mechanism res-
isting flow changes rapidly from interparticle contacts and collisions to turbulent
momentum transport. This juxtaposition necessitates both (1) tracking O(1000) 3D
particles in the manner of Particle Dynamics Simulations, with appropriate model-
ing of contact forces, and (2) resolving most of the scales of the turbulence for long
enough to measure third moments of fluctuating quantities. We are interested in the
scientifically important transition from hydraulically smooth to rough beds, which
corresponds to particle Reynolds numbers, based on relative velocity, from 10 to a
few hundred; in the upper half of this range, the above considerations set a lower limit
on resolution ofO(10) grid points per diameter. Current processing power sets an up-
per limit that is not much greater, while imposing “fictitious-domain” techniques in
which particles, moving through a fixed Cartesian grid, are “rigidified” by artificial
forcing. The simple scheme due to Kajishima et al. [1] remains the only such scheme
to have calculated the motion of 1000 or more solid 3D particles in a turbulent flow,
with particle Reynolds number in the range 10∼300, and for this reason our efforts
focussed from an early stage on their method. Following a standard “fluid” step, the
motion inside particles is forced to a “target velocity” which is predicted from the
prior motion of the particle (see [1, 2, 3] for details). As an “explicitly-coupled”
method, the particle acceleration is not treated as an unknown while calculating the
fluid-particle interaction. Also, the method is built on a constant-density N-S solver,
so the fluid acceleration calculated within the particle during the “fluid” step is that
based on the fluid’s density, not the solid’s. Thus there is no guarantee that the added-
mass reaction is predicted correctly by the fluid solver. Similar comments apply to
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other explicitly-coupled methods (see, for example, Uhlmann and Pinelli [4] in the
present volume for a review of such methods).

For the particular case of neutral solid density, Patankar [5] improved the method
of Kajishima et al. [1] so as to achieve implicit interphase coupling; the target (an-
gular) velocity to which particles are forced at a new time step is treated, analog-
ously to new fluid velocities, as an unknown, and is accordingly calculated by aver-
aging the (angular) momentum, following a “fluid step”, over the grid cells occupied
by the particle. The net forcing applied to recover rigid motion thus sums to zero
within each particle. By building on a variable-density incompressible flow solver,
the present paper has adapted Patankar’s [5] idea to cover non-neutrally buoyant
cases.1 Because the density of the virtual fluid equals that of the particle, the particle
acceleration, and thus the added-mass force, is calculated correctly. By design, this
method does not require any separate equations of motion for the particles, and as
such is an “implicitly-coupled” method. This property will be extremely important
in future calculations of bedload sediment transport, when the particles can collide
anywhere and at any instant.

While the computational cost of previously reported implicitly-coupled methods,
e.g.[6], [7] and references therein, has so far prevented their application to 3D prob-
lems with thousands of particles, the marginal computational load associated with
the present method of rigidifying particles is, like in [8], only a few percent. Ex-
ploiting efficient multigrid codes for the pressure in a variable-density flow solver,
processing power should not be a major obstacle to simulating 3D problems of the
scale reported in [1]. As a first step in that direction, the present work has tested the
method in 2D in the context of a single disk: (1) dropped from rest due to gravity at
terminal Reynolds numbers of 13 and 310, and (2) in a Couette channel flow. Particle
trajectories compare favorably with reliable benchmark data [6] and with the exact
solution, respectively.

2 Numerical algorithms

2.1 Variable density-based implicit volumetric forcing method “VIV”

The basic finite-difference Navier–Stokes solver, for incompressible but variable-
density flow, is a very standard one based on a staggered grid, forward Euler
stepping in time, central differences in space, and a SMAC treatment of pressure.
Steps therein are denoted below by F#). P#) denotes steps treating the particle
phase, notably “rigidification” where the velocity field within particles is forced to
rigid motion and details of which are given in the following subsection.

1 During the late stages of the present work, Sharma and Patankar [8] reported an equivalent
extension of Patankar [5] to non-neutral cases based on a variable-density Navier–Stokes
solver. Flowing from the common seminal ideas [1, 5], the core of the method reported
here and in our preliminary report [9] (Equations (8) and (9) herein) corresponds to Equa-
tions (32) through (35) in their work.
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F1) With the Navier–Stokes equations for momentum conservation in an incom-
pressible velocity field u in fluid of variable density ρ written as

D(ρu)
Dt

= −∇p + � + ρg ≡ F, (1)

calculate the intensive fluid force Fn, i.e. F at the n−th timestep tn , in each
momentum cell. � is the viscous term and the “gravity” g can be any conservative
body force.

P1) Update particle positions to tn+1
. , then calculate the new density field ρn+1.

F2) Subtracting the momentum advection term A, obtain the “fractional-step” mo-
mentum density ρn+1ũ:

ρn+1ũ = ρnun + �t
(
Fn − An

)
(2)

and thence the fractional step velocity ũ.

F3) Project ũ to obtain a solenoidal velocity field

˜̃u = ũ − �t

ρn+1 ∇hφ, (3)

where φ satisfies the following elliptic equation (cf. [10]):

∇h ·
(

1

ρn+1 ∇h φ

)
= ∇h · ũ

�t
. (4)

The pressure field is then updated by pn+1 = pn + φ.

P2) Within each particle, redistribute momentum to yield a rigidified momentum
density ρn+1un+1, and reset the particle’s (angular) velocity accordingly.

The pressure gradient is a conservative body force, applied to satisfy incompress-
ibility. Analogously, our term “rigidification” means constraining the “flow” within
particles to rigid-body motion, by applying non-conservative body forces [5].

2.2 Details of steps treating the particle phase

P1) We use forward Euler steps to update the position each particle’s center:

xn+1
m = xnm + vnm�t, (5)

where m indexes the particles, taken herein to be spherical. The new solid volume
fractions corresponding to each particle are calculated by the following smoothed
distribution:
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αim = 1 rim ≤ (a − δ): core region

= 1

2

(
1 + cos

(
π
rim − (a − δ)

2δ

))
a − δ < rim < a + δ: “surface cells”

= 0 if rim ≥ a + δ,

(6)

where rim is the distance from the center of cell i to the center of particle m, a is
particle radius, and δ is the half-width of the smoothing fringe. The new density
and viscosity fields, ρn+1 and µn+1 , are then calculated in proportion to the new
solid volume fractions. We typically take δ to be one-half to two grid spacings, so
that particles can interpenetrate to some degree. These solid volume fractions are
assigned to pressure nodes, and the corresponding density ρi in that node is taken to
be

ρi =
np∑
m=0

αimρm, (7)

where ρm is the density of particle m,with m = 0 referring to the fluid, and np is
the number of particles contributing mass to the cell. When solid volume fraction is
required in momentum cells, it is simply taken to be the average of the two pressure
nodes straddled by the momentum node.

To avoid constraining the time step any more than necessary, the viscosity
employed for the solid phase is usually set proportional to density, so that the
kinematic viscosity is constant; results of the test cases described below were
insensitive to this choice.

P2) The average velocity is calculated by

vn+1
m =

∑
i

ρmα
i
m
˜̃ui
/∑

i

ρmα
i
m. (8)

This average is then assigned as the particle’s tentative velocity, in addition to de-
terming the rigid-motion velocity field in (12) below. The tentative angular velocity
of the particle is calculated by

�m =
∑
i

ρmα
i
m ri × uni

/(∑
i

ρmα
i
m(xi − xc)2 +

∑
i

ρmα
i
m(yi − yc)

2

)
. (9)

The momentum density field is rigidified according to

ρn+1un+1
i =

np∑
m=0

αimρmuim, (10)

where the forcing velocity of the fluid and solid phases are

uim = ˜̃ui if m = 0 (fluid; unforced)

= vn+1
m +�n+1

m × rim if m ≥ 1 (solid).
(11)
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This step introduces a modification to the velocity field after the pressure correction,
generally introducing some divergence into the velocity field. This could be remedied
by iterating over steps F3) and P2). Our tests with a single such iteration in the case
of a freely falling particle indicated negligible effect on the particle trajectories.

2.3 A constant density-based explicit volumetric forcing method “CEV”

For comparison, we have also implemented a method named Constant density-based
Explicit Volumetric Forcing (CEV). This represents our best effort to implement
Kajishima et al.’s [2] volumetric forcing idea to a constant density solver in a way
that is stable and conserves momentum. In this implementation, P1) of Section 2.1
is followed by F1), F2) and F3), with however ρf replaced everywhere by ρ. This
is followed by

P2/CEV) Set “target velocity” un+1
p within each particle based on most recent

particle (angular) velocity

un+1
p = vnp +�n

p × rni , (12)

evaluate the body force fn+1
p required to impose target velocity in proportion to

volume fraction α

fn+1
p = αn+1ρf

unp + 1 − ˜̃u
�t

, (13)

and apply with particles

un+1 = ˜̃u + �tfn+1
p

ρf
= (1 − α) ˜̃u + αun+1

p , (14)

update particle velocity by

MpUn+1
p = Mpvnp +�t

(
�Mpg − h2

∑
i

fn+1
p

)
(15)

and analogously for angular velocity.
It would appear desirable at this point to update the velocity field un+1 within the

particle to match the rigid velocity field un+1
p = vn+1

p + �n+1
p × rn+1

i , and indeed
Kajishima et al. [2] did precisely that “at every grid point inside the particle (α =
1)”. However we have not found a simple way to perform such an update and still
conserve momentum, even approximately, so no such adjustment is done here.

As a result, the updated particle velocity up does not affect the velocity field u
until Equation (14) in P2/CEV, nearly a full step later. Consider a gravitational force
that is applied, starting in step 1, to a particle initially at rest in still fluid. This will
affect the velocity field inside the particle only in substep P2/CEV of step 2, and
the velocity field outside the particle remains unaffected until step 3. This very loose
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Table 1. Numerical and computational parameters in the simulation. Boundary conditions
are 4 walls for Case D# and periodic in x for Case C. The last column reports the terminal
Reynolds number observed in [6].

Case Domain xc yc d ν ρp/ρf |g| Res Ret

D13 [0, 2] × [0, 4] 1.0 3.5 0.25 0.1 1.25 981 - 13.83
D310 [0, 2] × [0, 6] " 5.5 " 0.01 1.5 " – 310.75
C [0, 8] × [0, 4] 4.0 2.0 1.0 0.01 1.0 0.0 40.0 –

nature of the fluid-particle coupling in our CEV scheme will strongly influence the
particle trajectories, especially those presented in Section 3.1.2

3 Results for 2D test cases

We have implemented the above implicit and explicit schemes for cylindrical
“particles” in two 2D test problems: a disk dropped in a quiescent fluid (Cases
D#) and a single freely translating,though non-rotating, disk in Couette channel flow
(Case C); conditions are summarized in Table 1. Further details of the test conditions
are provided in the following subsections.

3.1 Circular disk dropped from rest in a quiescent fluid

In the first test problem we consider the motion of a rigid disk dropped from rest
in an incompressible viscous Newtonian fluid. Parameters in our simulation, which
match those reported in [6], are given in Table 1 (Cases D13 and D310). Terminal
Reynolds number is defined by Ret = dVt/ν, where d is circular disk diameter
and Vt is terminal velocity. All Reynolds numbers given in Table 1 correspond to
reference data.

At the initial state, a disk of diameter d is submerged in the fluid domain
[0,Width] × [0,Height] at the location [xc, yc] and everything is at rest. When
dropped, the disk accelerates until its immersed weight balances the fluid drag force.
Figure 1 shows histories of velocity, for a nominal half-width of the density fringe
of 2h and grid spacings of 1/32, 1/64 and 1/128 (d/8, d/16, d/32) calculated by the
CEV and VIV methods together with the reference data [6] for Cases D13 and D310.
The calculated terminal velocities are given in Table 2.

In Figure 1 the curves calculated by the VIV method are closer to the reference
curve than those calculated by the CEV method during the initial acceleration phase.
We believe that the way of calculating the particle target velocity in the CEV method
is the main source of the discrepancy. Because the particle’s target velocity used to
force the velocity field has a one-time step lag, its acceleration is under-predicted.

2 As explained in [3], it is conceptually sounder to replace Mp with the excess mass �Mp in
the non-gravity terms of Equation (15), but the resulting scheme is only stable for density
ratios greater than about 1.9 [11], which is greater than the test cases considered herein.
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Fig. 1. Calculated velocity histories. Symbols are reference data in [6], thick curves are VIV
calculation and thin curves are CEV calculation. Numbers indicate grid spacing.

3.2 A freely translating disk in Couette channel flow

In this test problem we simulate a single neutrally buoyant circular disk placed ini-
tially in the centerline of a Couette channel flow that is taken periodic in x. The chan-
nel dimensions, material properties and calculation parameters, which match those
in [12], are summarized in Case C, Table 1. Res is shear Reynolds number defined
by Res = LVw/ν in where L is the shear gap between walls, and Vw is the wall
velocity. The disk’s initial velocity is set to the average of the two walls. The initial
velocity field, including that within the circular disk, is set to the undisturbed velo-
city that would occur with no particle; the solver corrects this violently to satisfy the
rigid motion inside the particle. Galilean invariance then dictates that the disk should
continue thereafter at the initial velocity, and such a behavior was indeed observed
when the walls moved in opposite directions at equal speeds; the disk remained in
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Table 2. Comparison between our calculated terminal velocities with reference data [6] for
Cases D13 and D310 at varying grid resolutions h.

Case h
Terminal velocity Vt Relative error (%)
Ref. [6] CEV VIV CEV VIV

D13
1/32

5.53
4.67 4.57 15.55 17.36

1/64 5.19 4.98 6.15 9.95
1/128 5.45 5.23 1.45 5.42

D310
1/32

12.43
10.28 9.96 17.29 19.87

1/64 11.86 11.39 4.58 8.36
1/128 12.71 12.34 -2.25 0.72

place. However, with the upper wall fixed and the lower one moving at a speed of
0.1 to the right, the disk’s velocity was calculated to decrease and the disk migrated
toward the fixed wall to an incorrect equilibrium position, as shown in Figure 2a.

Figure 2b shows the “lead velocity” of the particle, i.e.the difference between
the particle’s velocity and the undisturbed fluid velocity at the height of the particle
center, as a function of x. For all cases, the particle initially leads the fluid, but soon
starts to lag more and more until reaching a steady value. The early overshoot pre-
sumably results from the sudden adjustment to the initially uniform shear prescribed
inside the particle. Normally, one would like to initialize simulations less violently,
but the present method serves nicely to contrast the behavior of the two methods, as
follows.

The peak lead velocities observed for VIV are less than 1/5 that for CEV at the
same resolution, and the duration of the leading period, which is roughly independ-
ent of resolution, is more than twice as long for CEV as for VIV. It would appear that
the response time of the former method is about twice that of the latter. This is not
surprising; recall that in CEV there is a one step lag between update of particle velo-
city and the consequent forcing of the velocity field inside the particle domain, and
an additional step before any influence is felt by the fluid velocity. More surprising
than the relative durations are the absolute durations, which seem inexplicably long
given that the particle is neutrally buoyant.3

As shown in Table 3, when increasing the grid resolution, the VIV method con-
verges to the exact solution faster than the CEV method. At the finest resolution, the
error of the CEV method is still quite large compared with that of the VIV method.

4 Conclusion

In the present paper, we have presented a Variable density Implicit Volumetric for-
cing (VIV) method, and compared with a Constant density Explicit Volumetric for-
cing (CEV) method [3], modified from [2], for a single disk: (1) dropped from rest

3 The plots of lag velocity suffer from oscillations in x, of period 8 and perfectly aligned from
one curve to another, which implicates our handling of the periodic boundary condition.
Despite strenuous efforts, we have not been able to identify the cause of these oscillations.
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Fig. 2. Trajectories of a neutrally buoyant non-rotating disk in Couette flow (Case C) at dif-
ferent grid resolutions. Thin curves: CEV; thick curves: VIV. Numbers indicate grid spacing.
Near-equilibrium part of trajectory for CEV at h = 1/16, not shown, is barely distinguishable
from that for VIV at h = 1/8.

due to gravity at terminal Reynolds numbers of 13 and 310, and (2) in a Couette
channel flow. The results for the dropped disks show that the VIV method is better
than the CEV method in treating the particle’s instantaneous acceleration. The in-
ferior performance of the CEV method may result from the fact that the momentum
of the coupled solid-fluid system is not conserved within one time step. The disk’s
target velocity is calculated by separate equations, so generally the net forcing ad-
ded to the domain is not zero. This non-zero forcing is recorded and re-injected to
the velocity field through Equation (15) at the next time step. The error due to this
delayed re-injection is relatively small during one time step but its accumulated error
is a potential source of non-physical behavior.
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Table 3. Comparison between our calculated equilibrium positions of the moving disk for
Case C at different grid resolutions h with the exact solution.

Case h
Equi. position Relative error
Exact CEV VIV CEV(%) VIV(%) VIV/CEV

C

1/4

2.0

2.51 2.26 25.5 13.0 0.51
1/8 2.22 2.06 11.0 3.0 0.27
1/16 2.07 2.01 3.5 0.50 0.14
1/32 2.01 2.00 0.50 0.00 0.00

Trajectories in the Couette flow revealed a lateral motion of the disk that was
much greater for the CEV method. Such non-physical behavior would be especially
unacceptable in the calculations of the highly sheared region near a particle bed that
we are targeting.
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1 Introduction

This paper reports on an original computational method for simulating dynamics of
liquid-solid mixtures. Our purpose is to validate fully-resolved unsteady simulations
with a view to built confidence about the implicit tracking of fluid-solid interfaces,
via a viscosity-based penalty method called the 1-Fluid method (1F). This method
is generally used for simulating bubbles, drops and free-surface flows. For examples
we refer the reader to [2, 5, 10, 11]). The 1 fluid method has been recently adapted by
Caltagirone [3] who was inspired by volume penalty methods in fictitious domains
and interface reconstruction. The term “1-Fluid” means that fluid and solid phases
are considered as a single equivalent fluid in the sense of the Navier–Stokes equa-
tions. The equivalent fluid requires equivalent densities and viscosities depending
on a phase function. The latter indicates whether the considered grid node belongs
to fluid or solid phase, and drives the coupling of the Navier–Stokes equations with
the interface transport equation. The following features make the 1F method very
attractive for simulating particles in fluid: (i) using phase function allows to use com-
putationally practical fixed Cartesian grids, (ii) the same set of equations is solved in
both dispersed and continuous phases and the interface between the phases is only
tracked implicitly; as a result the computational effort does not scale with the number
of particles, (iii) the tensorial penalty method [15] used to ensure both incompress-
ibility constraint in the fluid phase and undeformability constraint in the solid is just
based upon two parameters defined from the characteristic flow scales, and (iv) for
solving the velocity-pressure coupling, the augmented Lagrangian algorithm [6] is a
stable and efficient technique.

The 1F method was tested successfully in academic configurations. The goal of
this work is to study and extend the scope of our approach to flows dominated by
inertia.

The global convergence and validation of the method have been carried out by
comparison with PIV’s measurements from Ten Cate et al. [4] concerning a sphere
settling under gravity with Reynolds numbers based on particle diameter (Rep) ran-
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ging from 1.5 to 31.9. Early results are presented in this paper for a sphere settling
in a rectangular tank at Rep = 280.

2 Numerical method

2.1 Principles of the 1-Fluid model

The global technique consists of adding extra-terms to Navier–Stokes equations so
that local modifications of equations are induced through local viscosities and dens-
ities µ(x, y, z, t) and ρ(x, y, z, t). In that sense, the 1F method has similarities with
the fictitious domain approach of Glowinski et al. [7] and with the Immersed Bound-
ary Method of Peskin [12].

Great advantages are found by using a single Cartesian grid and by introducing
the phase function C(x, y, z, t) that matches the multiphase topology of the flow. So
the dispersed phase is characterized by C = 1 and the continuous one by C = 0. It is
consequently possible to express the global properties of the mixture as function of
C, it is said basically : µ = µf (1−C)+µpC and ρ = ρf (1−C)+ρpC, whereµ is
the dynamic viscosity, ρ the density. The subscripts f and p pointing out respectively
the fluid and solid phases. The latter one being considered like a fluid, it becomes
necessary to set its viscosity as µp → ∞ so as to ensure a solid behavior. The final
equations set compiles the Navier–Stokes equations (1), an advection equation on
the phase function (2), and the incompressibility constraint (3):

ρ

(
∂−→u
∂t

+ (−→u .∇)−→u
)
= ρ−→g −∇p +∇.(µ(∇−→u +∇ t−→u )), (1)

∂C

∂t
+−→u .∇C = 0, (2)

∇.−→u = 0. (3)

2.2 Computational methodology

Solving Equation (2) requires transport schemes to handle correctly the high gradi-
ents located on liquid-solid interfaces. Consequently Volume of Fluid schemes (see
the VOF-PLIC method of Youngs et al. [17]) were chosen and validated.

Concerning the resolution of the Navier–Stokes equations, and in particular the
velocity-pressure coupling, the method of the Augmented Lagrangian [6] based on
an Uzawa optimization method has been adapted.

In order to satisfy the fluid incompressibility this technique have been designed
for multiphase flows by Vincent et al. [16]. It has been generalized to ensure the
solid phase undeformability. The augmented Lagrangian-like methods are based on
the principle of adding specific implicit terms to the conservation equations. By this
way some specific constraints such like incompressibility and solid behavior could
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Fig. 1. Non-dimensional drag force F Vs.
solid volume fraction Cv at increasing spa-
tial resolution N .

Fig. 2. Convergence rate of the 1F method
as a function of N .

be imposed locally. For a complete discussion about the formulation, the implement-
ation and the validation of this method, we refer the reader to [15, 16]. Equations (1)
to (3) are approximated by means of a finite volume method on a staggered mesh.
The momentum equation is linearized with respect to inertia. The associated time
discretization is fully implicit including inertial, augmented Lagrangian and viscous
terms. All of the terms in Equation (1) are spatially discretized via a second order
accurate centered scheme. We use a second order accurate Gear scheme for discret-
ization in time. The algebraic system, resulting from the discretization of the various
equations, is inverted by the iterative method BiCG-STAB.

2.3 Validations and numerical settings

Several academic configurations were used to set the numerical parameters and check
the numerical consistency of the 1F method.

Convergence in space

Simulations of Stokes flow through simple cubic arrays of fixed spheres are com-
pared to the results from Zick and Homsy (see [13]). The non-dimensional drag
force F of the array is modulated through changes in the solid volume fraction Cv .

The simulation domain is a periodic box and the sphere stands on the box center.
With N defined as the number of points along the cube side, Figures 1 and 2 demon-
strate the spatial convergence of the 1F method. The latter is shown to be first order
accurate in space, but the N = 15 case show that a good physical consistency is still
observed for very low resolutions.

Numerical settings for liquid-solid coupling

Concerning moving particles (see [15]), the deformation rate must tend to zero as a
rigid motion is constrained in the inclusion. The main difficulty lies in setting a con-
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Fig. 3. Impact of viscosity ratio k on the
non-dimensional settling velocity U∞/Uth∞
of a sphere.

Fig. 4. Dimensionless drag coefficient Vs.
particle/wall gap, 1F method(–), Theory [1]
(♦).

venient viscosity µp in the dispersed phase which does not alter the flow solution.
This paragraph details the impact of the solid to liquid viscosity ratio k = µp/µf

on the coupling between phases. Theoretical corrections of terminal settling velo-
city for a sphere sedimenting in infinite cylindrical tanks are used (Haberman exact
theory [8]). Three-dimensional simulations of this case are performed and the res-
ults are depicted in Figure 3 where different values of U∞/Uth∞ are obtained through
changes in the ratio k. It is made clear that there is a range k ∈ [103, 106] where the
liquid-solid coupling is efficient. For k ∈ [1, 103], the particle is subjected to strong
deformations. For viscosity ratios higher than 106 (with a fixed number of iteration
steps for both the linear system inversion and the augmented Lagrangian), increasing
discrepancies are found. This is a numerical artifact due to the deterioration of the
linear system conditioning subjected to the viscosity ratio. For k > 106, accurate
results require nonlinearly-increasing costs that make such simulations impossible
to lead in practice.

Particle-wall interactions

In this section, our goal is to check the lubrication effects involved in the mo-
tion of a sphere perpendicular to a plane wall. We use well-known theoretical
results1 for which the non-dimensional drag coefficient Cd/C

∞
d should scale as

1/R = 1/(yc/a − 1), where a is the sphere radius and yc its vertical coordinate.
For reducing computational costs, the flow was simulated in an axisymmetric do-
main. The sphere is initially placed 10 diameters away from the top and bottom
walls and 20 diameters from the side wall. Concerning spatial resolution, approxim-
atively 18 grid points per diameter are set here. A physical analysis is done to obtain
Rep = 0.01 in the steady state for an unbounded fluid. In the present simulation,
the error in the terminal settling velocity with respect to Stokes’ velocity does not

1 Limited to creeping regimes and a single unlimited wall, see Brenner [1].
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Fig. 5. Particle time series Up(t), 1F sim-
ulations, experiments from Ten Cate et al.
[4]. Rep = 1.5, 11.6, 31.9.

Fig. 6. Spatial convergence of the velo-
city direction fields. 1F method (dp =
15, 7.5, 4.5 grid points), PIV fields [4].

exceed 1%. As the dimensionless gap R tends to zero, Figure 4 shows that the nor-
malized drag is very well reproduced. Then some significant over-prediction appear
as R < 0.2. This means that while the gap R exceeds approximatively two grid
points, no sub-grid lubrication model is required which is quite a good result for a
DNS method.

3 Simulations

In Section 3.1, our method is compared to experimental data from Ten Cate et al. [4]
related to the case of a single sphere settling under gravity at three different particle
Reynolds numbers, Rep = 1.5, 11.6, 31.9. Section 3.2 deals with the simulation of
a sphere settling at Rep = 280, with a view to reproduce the experimental data from
Mordant et al. [14].

3.1 Simulations at Rep ∈ [1.5, 31.9]
In this section we use a full set of PIV experiments reported by courtesy of Ten
Cate and Derksen [4]. Designed for the validation of Lattice-Boltzmann direct nu-
merical simulations, a wall-bounded geometry is set, and the particle containment
(0.15) is relatively important. The container sizes 0.1 ∗ 0.1 ∗ 0.16 [m3], the latter
dimension being parallel to the gravity direction. A sphere of radius a = 0.0075 [m]
and density ρp = 1120 kg/m3 is initially placed at mid-distance from the span-
wise walls. The gap separating sphere’s bottom from the container’s is initially set
to 8 diameters. PIV measurements are performed in a slice placed at mid-distance
from the two opposite side-walls. Data are available for three flow regimes repres-
enting Rep = 1.5, 11.6, 31.9, and corresponding respectively to dynamic viscosities
µf = 0.373, 0.113, 0.058 [Pa.s] and fluid densities ρf = 970, 962, 960 kg/m3.
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Concerning the simulations, a three-dimensional domain is defined. A way to
reduce computational costs lies in using the two perpendicular symmetry planes ex-
pected in the flow, according to the moderate particle Reynolds numbers. The other
boundaries are modelled by no-slip conditions. The particle time series plotted in
Figure 5 denote that simulations match the experiments as well for the terminal set-
tling velocity as for transient velocity.

Numerical consistency

Convergence in time and space have been checked for Rep = 31.9. The convergence
in time was found to be first-order accurate. We use second-order time schemes but
the impact of the augmented Lagrangian method causes the order to decrease. For
particle relaxation time Ta = 2(ρp + .5ρf )a2/9µf and time step �t , it has been
found that the ratio Ta/�t must be O(103) for well-resolved transient behavior. Fig-
ure 6 has been obtained by plotting on the same mesh the experimental velocity field
then the interpolation of three simulated fields with spatial resolutions respectively
set at 160.50.50, 80.25.25 and 48.15.15 grid points. It is shown that in the low-
sheared zones the results are physically consistent even with extremely weak resol-
utions in the particle (i.e. dp = 4.5 grid points). In high-sheared zones it is shown
that the simulation accuracy improves monotonically toward the experimental field.
Following simulations have been performed with dp = 15 grid points.

Direction and magnitude of the velocity field

Figure 7 depicts slices of the flow field at particle Reynolds numbers 1.5 and 31.9
respectively (on each of the six pictures, the left part is numerical, the right one is
experimental). By representing the flow field direction (vectors) and the normalized
velocity magnitude (contour levels from 0 to 100% of the maximal settling velocity
in an unbounded medium), one must notice that the fluid and particle behaviors are
correctly predicted.

Far from the sphere, the PIV fields are dominated by experimental noise which
explains discrepancies in the comparison of velocity directions. Time series in fluid
are also checked on a monitor point situated one diameter away from the bottom
wall and one diameter away from the tank vertical axis. It is roughly the point where
the recirculation next to the sphere is passing through during the deceleration of the
sphere. Figure 8 shows that this results in strong velocity gradients. Here is shown
that these gradients are accurately predicted by the 1F method.

3.2 Simulations at Rep = 280

In this section we are interested to reproduce the motion of a sphere settling at a
particle Reynolds number Rep = 280 and a Stokes number St = Repρp/9ρf =
240. The reference we use lies in one of the experimental results2 from Mordant et

2 Experimental data: tank of dimensions H ∗D ∗W = 0.75∗1.1∗0.65 [m] filled with water;
particle: steel bead ρp = 7710 [kg/m3], u∞ = 0.316 [m/s].
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Fig. 7. Comparison of 1F simulation and PIV slices at specific times. Rep numbers are re-
spectively 1.5 and 31.9 from top to bottom. Times are respectively t � 0.1, t � 0.5s and
t � 1s from left to right. On each of the 6 pictures, the left part is numerical, the right one is
experimental. Contour levels of normalized velocity magnitude |u|/u∞, direction of velocity
field.

al. [14]. The effects of the containment on particle’s motion must be negligible, so
the computational domain is taken as a box of dimensions H ∗ D ∗ W = 0.064 ∗
0.004∗0.004 [m]. Simulations are performed here using the full sphere. The temporal
resolution is set as Ta/�t = 5000. Three simulations have been performed with
increasing resolutions in space successively defined as dp = 7, 8 and 10 grid points.
There is no significant changes between dp = 8 and 10. At increasing resolutions,
the convergence of our method to experimental data is made clear in Figure 9 (see
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Fig. 8. Fluid time series for normalized velocity components ux/u∞ and uy/u∞. From left
to right: Rep = 1.5 and 31.9. 1F (lines) & experimental (dots). Arrows indicate when the
particle reaches the bottom of the tank.

the magnified zone). The error realized on the terminal settling velocity is roughly
2% with our method (see Figure 10).

The flow fields represented in Figure 11 show that the initial axisymmetric topo-
logy is not broken. Regarding the high density ratio (ρp/ρf = 7.71), our results can
be evaluated by assuming the analogy with fixed-sphere data from literature. The
flow characteristics such as the recirculation size or the maximum velocity in the
fluid are found consistent with the literature. But at Rep = 280, we should obtain
a transition from steady planar-symmetric to unsteady planar-symmetric topologies.
So we try here to detect such a transition at a lower level, so our investigation is
focused on the out-of-plane velocity field Vz(x, y, 0)/u∞ depicted in Figure 12 with
a zero-centered logarithmic scale. Different zones appear successively as coherent
’V-shape’ structures.

This oscillating behavior makes it possible to evaluate the Strouhal number which
has been found to be of the same order as those reported in the literature. It is made
clear that much more simulations are required for being confident about the results,
specially concerning the particle containment, suspected here to damp the growing
oscillations.
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Fig. 9. Particle trajectory, Rep = 280,
dp = 7 (dash-dotted line), dp = 8 (dashed
line), dp = 10 (plain line), Experiment [14]
(symbols).

Fig. 10. Particle velocity, Rep = 280, 1F
method dp = 10 (plain line), Experiment
[14] (line with symbols).

Fig. 11. Flow field slices at times t = 0.028, 0.091, 0.175 [s] from left to right. Streamlines
and contour levels for |u|/u∞. The indexes refer to the dimensionless vertical coordinate
(y − yp(0))/dp and the black circle to the release position.

Recent parallelization efforts has opened new perspectives for investigating this
problem. The particle containment is now reduced from 0.2 to 0.125, and the mesh
size is 1000 × 80 × 80 with dp = 10 points across the particle diameter. Lateral
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Fig. 12. Out-of-plane velocity Vz(x, y, 0)/u∞.

Fig. 13. Azimuthal velocity, streamlines in the particle referential.

Fig. 14. Particle trajectory.

walls are replaced by periodic boundary conditions. Results differ sensitively from
preceding simulations as the sidewall effects are reduced. Very similar ‘V-shaped’
structures are plotted in 3D in Figure 13 but the wake action on the particle behavior
is now distinct from numerical noise. It can be seen in Figure 14 that a very weak
lateral deviation occurs. As the regime increases, the particle trajectory decomposes
into three successive stages : vertical, oblique, oblique and oscillating. In the range
Rep ∈ [270, 300], very similar behavior was shown in a recent paper from Jenny et
al. [9]. During the oblique stage, a plane distinct from principal directions is selected.

Related streamlines are plotted in the referential moving with the particle. At long
times the vertical velocity slowly decays with no visible oscillations and shows dis-
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crepancies with the experimental terminal velocity. Clearly much more work needs
to be done at this level. Further investigations will require more points for defining
the particle and its boundary layer. Nevertheless, numerical experiments leaded with
the 1F method are qualitatively consistent with the actual knowledge about the onset
of instabilities.

4 Conclusions

We have described the 1F method as an efficient way to simulate liquid-solid mix-
tures. Designed for being totally implicit, the method results in excellent numer-
ical stability properties. Several benchmarks and fully-resolved simulations demon-
strated a good physical consistency. We have shown that the accuracy level remains
unexpectedly high for very low spatial resolutions. In spite of important requirements
in terms of computing time and memory inherent to the present DNS methods, its
particular advantage is that it uses fixed grids and that in the case of several inclu-
sions of equivalent densities, the computing time and the amount of particles are
independent.
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Abstract. The results of a fully-resolved simulation of 1,024 particles settling under grav-
ity in a periodic domain are described and analyzed. The particle volume fraction is about
13% and the single-particle terminal Reynolds number is about 10. Collisions are modelled
as completely elastic. The results show that the formation of nearly-horizontal particle pairs
is an important phenomenon which affects the mean settling velocity as well as the velocity
fluctuations.

1 Introduction

Most of the substantial literature on fluid flow with suspended particles is based on
an Eulerian–Lagrangian treatment of point particles. While much has been learned
from these studies, there are many situations which cannot be modelled in this way,
such dense systems, particles larger than the smallest flow scales, and liquid-solid
systems. For all these situations it is necessary to account for the finite size of the
particles. Furthermore, when the ratio of the fluid to the particle density is not very
small, considerable uncertainties exist as to the parameterization of the fluid forces,
which may introduce errors of uncontrollable and unknown magnitude in the results.

For these reasons, a considerable effort has been devoted to developing methods
capable of solving the coupled fluid-particle equations without approximations other
than those inherent in the discretization of the continuum equations. In addition to
the papers included in this volume, recent representative work is that of Patankar et
al. [1], Singh et al. [2] and Dong et al. [3], who used a fixed finite-element mesh, and
that of Johnson and Tezduyar [4], who used a moving finite-element mesh. Several
finite-difference methods have also been developed. Interesting examples are given in
[5–12]; one may also cite the Cartesian grid method of Udaykumar et al. [13]. A great
impulse to this type of studies has been given by the advent of the lattice-Boltzmann
method [14–16], which has also been combined with the immersed boundary ap-
proach in [17, 18].

Each one of these methods has strengths and weaknesses the analysis of which
is the object of current research. In this study we briefly describe another method,
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PHYSALIS, and illustrate its application to the sedimentation of 1,024 spherical
particles in a viscous fluid. A significant advantage of this method, which is more
fully described in [19–21], is the spectral decrease of the error as the number of de-
grees of freedom assigned to each particle increases. As the method is based on a
fixed grid, the computational effort is determined mostly by the extent of the com-
putational domain rather than by the number of particles. Furthermore, the force and
torque on each particle are found directly as a by-product of the calculation, thus
avoiding the difficulty encountered with some other methods which require extra-
polation to obtain the fluid stress distribution on the particle. These advantages come
at the price of the restriction of the method – at least as currently formulated – to
spherical particles.

2 Mathematical-numerical method

The analytical basis and numerical implementation of the method used in this work
are described in several other publications [19–21] and a brief description will be
sufficient here.

Due to the no-slip condition, at the surface of each particle the fluid velocity field
has a rigid-body character. By continuity, the deviation of the fluid velocity from
this rigid-body velocity field in the immediate neighborhood of the particle will be
small and its square can therefore be neglected. On the basis of this remark, after
some transformation, it is possible to introduce an auxiliary divergenceless velocity
field which to an excellent approximation satisfies the Stokes equations very near
the particle surface. It should be stressed that this procedure is not a linearization of
the Navier–Stokes equation about 0, as the original Stokes equation, but about the
rigid-body motion of each particle. Furthermore, the approximation is used only up
to a distance of the order of one mesh size from the particle surface and, therefore,
the magnitude of the error can be controlled by controlling the discretization.

The general solution of the Stokes equations near a spherical boundary was given
by Lamb [22, 23] in terms of three scalar potentials P, �, X. Each potential is a har-
monic function and can therefore be expressed as the superposition of solid harmon-
ics. For example, P =∑∞

1 (pn + p−n−1) consists of an infinite series of harmonics
both regular, pn, and singular, p−n−1, at the particle center. The generic regular har-
monic is written as

pn =
( r
a

)n n∑
m=0

[
Pnm cosmϕ + P̃nm sinmϕ

]
Pm
n (cos θ) , (1)

where Pnm and P̃nm are dimensionless coefficients, Pm
n is an associated Legendre

function, and r , θ , and ϕ are spherical coordinates centered at the particle center.
The other harmonics φn, χn entering the definition of � and X are written in a sim-
ilar way with other dimensionless coefficients. The regular harmonics represent the
“incident” flow and the singular ones the disturbance induced by the particle. The
coefficients of the singular harmonics can be readily related to those of the regular
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harmonics by the boundary conditions at the particle surface. The pressure and vor-
ticity fields can also be represented in a similar fashion in terms of the same set of
coefficients.

At the same time as we consider these local spectral representations of the solu-
tion valid near each particle, we construct by finite-differences a solution of the full
Navier–Stokes equations in the interstitial fluid. The advantage of this two-fold rep-
resentation of the fields is that, rather than imposing the boundary conditions on the
finite-difference solution at the particle surfaces, we demand that the finite-difference
solution match the local solution at the points of a suitable cage of nodes surround-
ing each particle. The nodes are part of the finite-difference grid and, therefore, the
geometric complexity that arises from the mismatch between the regular grid and the
particle boundaries is avoided.

The finite-difference grid is constructed to cover the entire domain, irrespective
of the presence of the bodies. A standard staggered grid arrangement is used with
pressure at cell centers and velocities at the midpoint of cell sides. Each particle is
surrounded by a cage of cells with the respective grid nodes for velocity, pressure,
and vorticity.

For the solution of the Navier–Stokes equations we use methods of first- or
second-order accuracy in time. The former one is described in [19], while the latter
one, based on the work of Brown et al. [24], is described in [21]. Spatial discret-
ization is second-order accurate. The Poisson equation(s) are solved by a multigrid
method.

After truncating the infinite summations in Lamb’s potentials to a finite number
of terms Nc, we calculate the flow by an iterative procedure. By matching the pres-
sure and vorticity of a provisional estimate of the fields at the cage nodes, we obtain
a first estimate of the coefficients Pnm etc. for each particle. These coefficients are
then used to calculate the velocity at the cage nodes and the flow fields are updated by
solving the discretized Navier–Stokes equations using these velocities as boundary
conditions. The process is then repeated until convergence.

3 Sedimentation velocity

We conducted the present simulation in a domain of size (32a)3, where a is the
particle radius, discretized with 1283 cells. With 1,024 spheres, this translates into a
volume fraction β of π/24 � 13.1%. The spheres were 50% denser than the fluid
and the Reynolds number Re = 2awt/ν based on the terminal velocity wt of a
single particle in an unbounded domain, was approximately 10.1. Particle collisions
were treated as fully elastic. The infinite summations of the Lamb potentials were
truncated to Nc = 1, which corresponds to retaining 10 coefficients per particle.
First-order-accurate time stepping was used.

The initial configuration of the particles was generated starting from a regular
arrangement and subjecting each sphere to a large number of random displacements
as described, e.g., in [25, 26]. The spheres were released from rest.
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Fig. 1. Normalized average vertical velocity of the fluid (upper line) and particles in a frame
of reference in which the mean vertical volumetric flux vanishes.

Fig. 2. Evolution of the fluid velocity fluctuations vs. nondimensional time.

The time development of the mean velocities of fluid and particles in a frame
of reference in which the total volumetric flux vanishes is shown in Figure 1. Here
and in the following the subscript ‖ refers to velocity components in the positive
z-direction, which is parallel and opposite to the direction of gravity, and the angle
brackets denote the volume average. The velocities are normalized by the single-
particle sedimentation velocity wt .

At steady state, the Richardson–Zaki correlation [27] predicts that the relative
particle-fluid velocity should be reduced by a factor (1−β)N , withN = 4.45Re−0.1,
with respect to the single-particle value. With Re = 10.1 we have N = 3.531 and
(1−β)N � 0.61. According to more recent analyses (e.g. [28]), this value should be
reduced by a factor k estimated between 0.8 and 0.9. Upon taking k = 0.85, we find
〈w‖〉 = 0.52 in very good agreement with the computed value. The corresponding
single-particle Reynolds number is approximately 5.2.

The time evolution of the normalized velocity fluctuations is shown in Figures 2
and 3 respectively. For the fluid, the vertical fluctuations are defined as
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Fig. 3. Evolution of the particle velocity fluctuations vs. nondimensional time.

Fig. 4. Sample particle trajectories; the paths are shown as departing from a common origin.

〈U ′‖〉 = 〈(U‖ − 〈U‖〉)2〉1/2 (2)

while the horizontal fluctuations are defined as

〈U ′⊥〉 =
[

1

2
〈(Ux − 〈Ux〉)2 + (Uy − 〈Uy〉2)〉

]1/2

. (3)

The volume average is calculated by summing over the fluid nodes and dividing
by their number. The definitions of the particle velocity fluctuations are analogous.
These results are comparable to those reported in [29] for the case where the dis-
tance between the walls included in that simulation is large. These velocity fluctu-
ations exhibit a marked anisotropy, with fluctuations in the vertical direction (upper
lines) about twice as large as those in the horizontal direction. A similar result was
reported in [30] for a comparable single-particle Reynolds number, but at smaller
concentrations.

A small number of randomly chosen sample particle trajectories is shown in Fig-
ure 4. The trajectories are shown departing from a common origin to illustrate the
diffusive nature of the particle motion. The complexity of these paths is a clear illus-
tration of the strong interactions among the particles. It is interesting to notice that
one particle, evidently trapped in a relatively fast upward-moving fluid mass, moves
upwards against the direction of gravity.
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Fig. 5. Snapshot of the particle arrangement and fluid kinetic energy at nondimensional time
twt /a = 16.

4 Microstructural effects

The results shown in Figures 1 to 3 exhibit some quite noticeable fluctuations which
can be connected with the evolving microstructure of the system.

Figure 5 shows a snapshot of the settling particles taken at the nondimensional
time twt /a = 16. Fluid from the top 1/4 of the computational domain has been
removed to show the particle arrangement. A striking feature of this image is the
presence of several clusters of two or more particles which may be observed every-
where in the domain.

A first quantification of this feature may be found by calculating the distance of
the center of each particle to that of its nearest neighbor and averaging over all the
particles. This quantity, normalized by the particle radius, is plotted in Figure 6 as a
function of the nondimensional time. For the initial condition used, the particles are
already close at the beginning of the simulation, but their distance decreases further
with time stabilizing around r/a = 2.3, suggesting a tendency to cluster. This effect
may be attributed to the energy loss during collision. Even though collisions are
modelled elastically, there is an energy loss due to viscosity as the particles approach
and separate before and after contact. A similar clustering was observed in the Stokes
flow simulation of Wylie and Koch [31] without a mean relative flow at a particle
volume fraction of 20%.

While these considerations explain the large number of close pairs observed in
Figure 5, they do not account for the fluctuations of the mean values. For this issue
we turn to the study of the orientation factor which we define as (see e.g. [32])
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Fig. 6. The average distance to the nearest neighbor vs. nondimensional time.

A(t; rmin, rmax) = 1

Np(Np − 1)

∫ rmax

rmin

∫
d�

Np∑
α=1

Np∑
β=1,β �=α

δ(r − rαβ)P2(cos θ) .

(4)
Here Np = Np(rmin, rmax) is the number of particles in the shell rmin ≤ r ≤ rmax, �
the solid angle, rαβ the separation vector between particles α and β, and θ the angle
to the vertical. The radial integration limits rmin and rmax will be chosen so as to
explore different ranges. Due to the form of the second-order Legendre polynomial
P2 = 1

2 (3 cos2 θ − 1), A will be positive if there is a prevalence of particle pairs
with cos θ ≥ 1/

√
3 (corresponding to an angle smaller than approximately 54.7◦)

and negative in the opposite case; A would vanish for a completely isotropic system.
The time evolution of A is plotted in Figure 7 for different values of rmin and

rmax. To investigate the orientation of closely spaced particles we take rmin = 2 and
rmax = 2.5 (solid line). For particles with an intermediate spacing we take rmin = 2.5
and rmax = 4 (dashed line) while, for widely separated particles, rmin = 4 and rmax =
6 (dotted line). All three lines start close to 0, which indicates that no significant
asymmetry is present in the initial conditions. The line for widely separated particles
(dotted) remains close to zero for all times, indicating that such particle pairs do
not exhibit any special orientation. In marked contrast, the line for close particles
(solid) quickly becomes negative and, while fluctuating, remains negative for the
entire simulation. Particle pairs at an intermediate distance (dashed) also exhibit a
weak horizontal preferential orientation.

The curve for close particle pairs (2 ≤ r/a ≤ 2.5) presents two peaks at nondi-
mensional times around 17 and 33. At these instants, then, the probability of vertical
arrangements increases, even though horizontal pairs are still more frequent. From
Figure 1 it is seen that, at these same times, the mean particle velocity exhibits min-
ima (i.e. maxima in absolute value). To establish a correlation between these two
observations, it is instructive to consider the mean vertical velocity of “horizontal”
and “vertical” particle pairs.

Figure 8 shows the mean center of mass of velocity of such pairs. For the purpose
of this figure, only particle separations in the range 2 ≤ r/a ≤ 2.5 were considered.
Pairs with a separation vector inclined between 0 and π/6 or between 5π/6 and
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Fig. 7. Orientation factor defined in (4) vs. nondimensional time.

π were defined as “vertical”, while pairs with a separation vector inclined between
0.45π and 0.55π were defined as “horizontal”. These choices define two regions
with the same volume in the three-dimensional configuration space. It is seen that, on
average, vertical doublets fall appreciably faster than horizontal ones, with a velocity
difference of the order of 20%. While this phenomenon is well known in the case
of two particles (see e.g. [33]), our results prove that it also occurs in a concentrated
dispersion. From these results it is evident that a temporary increase in the number of
vertically-oriented particle pairs will lead to an increase of the mean particle settling
velocity, as observed in Figure 1.

The minimum value of A for close pairs is approximatively −0.09, with oscil-
lation around −0.05. Perfect horizontal orientation would correspond to A = −0.5.
This suggests that while preferential orientation is a weak phenomenon in the present
sedimentation process, it is large enough to explain the observed mean-velocity fluc-
tuations.

5 Summary and conclusions

We have described some aspects of a fully resolved simulation of 1,024 particles
settling under gravity in a Newtonian fluid and presented some results on the spatial
structure of the system and its effects on the mean phase velocities.

In agreement with experiment (e.g., [30]), we have found a marked anisotropy in
the velocity fluctuations of both phases. An analysis of the average distance between
neighboring particles reveals that the particles tend to cluster due to hydrodynamic
interactions. We have shown that the weak maxima in the particle mean settling
velocity correlate with an increase in the number of vertically-oriented particle pairs,
which fall faster than horizontal ones. The analysis of the orientation of particle
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Fig. 8. Center-of-mass vertical velocity vs. nondimensional time for vertical and horizontal
particle pairs.

pairs reveals a preference for a horizontal arrangement when the distance between
the surfaces of the two particles is less than a particle radius.

These results have been obtained with a newly developed computational method,
PHYSALIS, which has lived up to the expectations of robustness and efficiency sug-
gested by earlier calculations [21]. While several aspects of the method can be im-
proved (e.g., a more faithful representation of the flow near colliding particles, accel-
eration of the iterative procedure, more flexible parallelization), the code can already
generate a wealth of interesting results.
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1 Motivation

The numerical modelling of fluidized bed is widely encountered in fundamental re-
search and industrial applications in the field of chemistry, energy or material pro-
cesses. The problem is complicated by the presence of different length and time
scales describing the particles and the reactors. Several modellings exist for simu-
lating particulate flows. In averaged Eulerian models where the size of the particles
is small compared to the continuous medium characteristic scale, fluid-particle in-
teractions are taken into account using constitutive laws. In the present study, a nu-
merical model is proposed to describe the fluid-particle interactions at the particle
scale, based on fixed Eulerian structured grids, penalty methods and Volume Of Fluid
(VOF) techniques. Our interest is to build a general model and approximation meth-
ods efficient enough for leading Direct Numerical Simulations of particulate flows
without any requirements of physical parametrization such as particle-particle inter-
actions. In addition, our motivation is to analyze the results of the numerical exper-
iments in terms of equivalent macroscopic quantities such as velocity fluctuations,
granular pressure or solid fraction.

Fluidized beds are characterized by thousands of particles interacting in a mov-
ing fluid. Solving such fluid/particle motion at the particle scale can be achieved
thanks to two main approaches. First, the conservation equations can only be solved
in the fluid phase and the grid is adapted in a Lagrangian manner at each calcu-
lation step to account for the particle shape. In three dimensional unsteady prob-
lems, this method is too expansive in calculation time and difficult to implement.
The second approach consists in solving the fluid-solid two-phase flow on a fixed
Eulerian grid. This method is easy to develop for complex and evolving topologies
of the two phases. However, the conservation equations must take into account the
discontinuous and unsteady behavior of the flow characteristics.
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A brief presentation of the Direct numerical Simulation (DNS) formulation, in
terms of generalized Navier–Stokes equations for multi-material flows, is reported.
Physical validations are proposed involving particle group effects and particle in-
teractions, meaningfull for fluidized bed applications. A 2D fluidized bed involving
2860 particles in a liquid is also considered. Time and space statistics on macroscopic
and phase average variables are analyzed. Perspectives for 3D numerical experiments
and improvements of existing modelling and empirical laws are finally drawn.

2 Numerical model

An Eulerian modelling is chosen. The solid and fluid zones �s and �f are distin-
guished by using a phase functionC defined as C = 1 in �s and C = 0 in �f . After
convolution of the Navier–Stokes equations by C and integration over all the phases,
the equations of motion are written as:

∇ · u = 0,

ρ

(
∂u
∂t

+ u · ∇u
)
= −∇p + ρg +∇ · µ[∇u +∇T u],
∂C

∂t
+ u · ∇C = 0,

(1)

where u is the velocity, p the pressure, ρ the density, µ the dynamic viscosity, g the
gravity and t the time. The solid phase is assumed as a fluid with a specific rheology
and the generalized Navier–Stokes equations (1) for two-phase flows apply every-
where. The solid behavior is obtained by using an Implicit Tensorial Penalty Method
(ITPM) [1, 9] that assumes µ → +∞ in the solid zone, i.e. C = 1. Numerically, µ
lies in the range 10 to 10000. Velocity-pressure coupling and incompressibility are
treated with an augmented Lagrangian algorithm [4]. It has also been generalized to
account for solid behavior [12, 13]. Finally, an Uzawa algorithm [11] is applied to
solve the penalized Navier–Stokes equations by means of a minimization procedure.

The conservation equations are approximated with implicit finite volume and
staggered grids. Centered schemes and second order Euler discretization are respect-
ively used to discretize the space fluxes and the time derivatives. A Piecewise Linear
Interface Construction VOF-PLIC method is adopted for the advection of C [15].
The viscosity and density evolutions are directly obtained thanks to numerical laws
depending on the phase function as

if C ≥ 0.5 then ρ = ρs and µ = µs

else ρ = ρf and µ = µf .
(2)

An explicit collision model can be included in the ITPM approach following for
example the work of Singh et al. [10]. Nevertheless, no explicit treatment of particle-
particle or particle-wall interaction has been considered in the present formulation of
the ITPM method. As it will be demonstrated in the next section, the implicit penalty
technique is sufficient to manage the collision under the control of the size of the
grid cells.
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Fig. 1. Lubrication when a particle interacts with a solid wall – Comparison between analytical
and numerical solutions for 2 (15 × 25 × 15), 4 (30 × 50 × 30) and 8 (60 × 100 × 60) points
in particle diameter.

3 Physical validation

Two types of physical tests, representative of local flow structures in fluidized beds,
have been considered [8]. The correct representation of interactions between two
particles or a particle and a wall (lubrication phenomenon) are demonstrated first.
Then, the group effect of several particles in a periodic domain is condidered in a
Face Centered Cubic (CFC) array.

3.1 Lubrication effect and particle-wall interaction

In the existing Eulerian numerical approaches of the literature (for example, [6]),
the interactions between particles or between particles and domain walls are expli-
citely added in the models through a repulsive body force depending on the distance
between the particles and their obstacles [10]. The present physical test case aims
at demonstrating that our ITPM method is able to implicitly account for lubrication
effects without explicit modelling. A Stokes flow between a particle and a wall is
considered as a reference case for comparison and validation. Analytical solutions
are available [2] for the drag force of the particle when it comes near the wall.

We consider a sphere settling in a cylindrical tank of radius Rt = 5.23 cm and
height 0.1046 m, filled with a liquid of viscosity 30 Pa.s and density 900 kg.m−3. The
density of the particle is 3847 kg.m−3 and its radius is Rp = 9.198 mm. Initially, the
vertical position of the particle is zp = 10Rp. The particle Reynolds number Re =
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2ρf RpU∞
µf

is 2 · 10−2 and the corresponding Stokes number St = 2ρs
9ρf Re is 10−2. In

Figure 1, we present the convergence of the numerical drag force compared to the one
of the same sphere in an infinite medium with respect to the dimensionless vertical
position zp

Rp
− 1. Three-dimensional simulations on three different grids demonstrate

the convergence of the ITPM to the analytical solution of Elasmi. Even with only
two Eulerian mesh points in a particle diameter (15 × 25× 15 grids), the lubrication
effect is well predicted as long as there is more than one cell between the particle and
the wall. It should be mentionned that the lubrication effect is an important physical
process occurring in fluidized beds.

3.2 Drag force of an array of ordered spheres

The drag force exerted on a fixed Cubic Face-Centered (CFC) array of particles by
a viscous flow is finally investigated with the ITPM Direct Numerical Simulation
approach. This particle framework is usually considered to mimick group effects in
particulate flows. A parametric study is presented for two characteristic Reynolds
numbers (Re = 10 and 100) for values of mean solid fractions between 0.05 and
0.6. The ratio between the drag force coefficient of the CFC array Cd over the drag
force coefficient Cds of a single sphere is an important parameter for macroscopic
models of fluidized beds.

70 × 70 × 70 grids are used. The domain is periodic in all Cartesian directions.
Nylon particles of density ρ = 2700 kg.m−3 are considered. The value of the particle
radius Rp is varied according to the particle Reynolds number Re = 2ρRpUf

µf
. The

particles are plunged into a viscous fluid whose properties are 10−3 Pa.s for the vis-
cosity and 1000 kg.m−3 for the density. In this study, the particles are fixed and
the fluid motion is obtained applying a pressure gradient in a normal direction to
one face. We demonstrate the good behavior of the ITPM method by comparing
our numerical results to empirical drag force laws [3, 14] and single phase DNS
on body meshes adapted to the CFC array [7] (see Figure 2). The differences ob-
served between the fixed CFC simulation, both with Eulerian and body fitted grids,
and the correlations are due to the fixed character of the particles in the simulations
while the empirical correlations were derived for moving fluidized beds. In the near
future, numerical experiments will be carried out using the ITPM method with mov-
ing particle arrays, various fluid properties (inertial flows) and radii of the spheres
varying between particles (polydisperse particulate flows).

4 Simulation of 2D fluidized beds

A two-dimensional liquid-solid fluidized bed is considered corresponding to the con-
figuration proposed by Gevrin et al. [5]. In a rectangular tank full of water, 2860 glass
particles are fluidized under a vertical pressure gradient. The solid fraction is 0.2, the
particle Reynolds number is 555 and the Stokes number is 70. Typical DNS and av-
eraged particulate flow configurations are presented in Figure 3. On the averaging
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Fig. 2. Evolution of the dimensionless drag force coefficient according to solid fraction for
Re = 10 and Re = 100. Comparisons witn the results of Ergun [3], Wen and Yu [14] and
Massol et al. [7].

10 × 500 grids corresponding to Gevrin’s macroscopic simulations, the mean velo-
cities and solid fraction demonstrate the alternation of void fraction and concentrated
bands in a characteristic planar like instability.

Based on the DNS of the fluidized bed (Figure 3 left), statistical and averaging
procedures are implemented in order to extract macroscopic quantities from the
small scale simulations. For example, the mean solid fractions, bed heigth, granular
pressure, particle fluctuation velocities and fluidizations velocities are obtained after
scale and time integration of the 100 × 3930 grid simulations on a corser 10 × 500
mesh (see Figure 4).
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Fig. 3. Fluidization of cylindrical particles in water – From left to right, DNS solid concentra-
tion, solid fraction and particle velocities integrated on a 10 × 500 macroscopic grids corres-
ponding to results of [5], granular pressure averaged over time and space.
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Fig. 4. Examples of macroscopic datas available after statistical treatment of the DNS simula-
tions. Top: time evolution of the dimensionless solid fraction and fuidized bed heigth. Middle:
Fluctuating kinetic energy integrated over the whole calculation domain. Bottom: averaged
granular pressure calculated with the velocity fluctuations.
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5 Future works

A new Implicit Tensorial Penalty Method has been presented and validated for the
simulation of particulate flows. We proved the accuracy and the consistency of the
ITPM approach for simulating the lubrication effect between a particle and a wall in
Stokes flows and the drag force of a CFC array of fixed particle. We have presented
the first results of 2D simulations of fluidized beds involving thousands of particles
and we have provided some illustrations of macroscopic datas extracted from simu-
lations at local lengthscale.

Three-dimensional simulations of typical fluidized bed configurations involving
hundreds of particles will be carried out in the near future . In parallel, numerical
experiments will be realized in periodic boxes containing 10 to 100 particles subjec-
ted to simple stresses. In both configurations, a statistical analysis of local particulate
flows will be developped in order to extract interesting meso or macroscopic features
such as velocity fluctuations, mean inter-particle distance and the mean drag force
in an integration volume. Our objective is to understand the local hydrodynamics
effects and to provide useful informations for macroscopic modelling.
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1 Introduction

In the present article we are concerned with efficient and accurate methods for the nu-
merical simulation of the dynamics of rigid particles suspended in an incompressible
fluid. We focus our attention on so-called fictitious domain methods, a framework in
which the presence of suspended particles is accounted for by means of an artificial
forcing term added to the Navier–Stokes equations. Thereby, simple fixed grids can
be used and the additional cost of repeated adaptation of the computational mesh is
avoided.

Existing fictitious domain methods fall into two main classes: those where the
constraint force is explicitly formulated (“direct forcing”) and those where some
kind of feedback mechanism is employed (“indirect forcing”). The latter type of for-
mulation is usually based upon the virtual spring-and-damper technique of Goldstein
et al. [1], which has the drawback of introducing two additional free parameters into
the problem. Also, since the characteristic time scale of the feedback system needs
to be resolved, very small time steps are sometimes required for stability reasons.

Direct forcing methods, on the other hand, are in general free from the above
mentioned problems. However, it has been observed [2] that a linear interpolation
procedure (as used in [3, 4]) can lead to highly oscillatory hydrodynamic forces
when a solid immersed body is in motion relative to the fixed grid.

In [5] the artificial force term is instead weighted by the solid fraction of the
surrounding grid cell, providing some amount of smoothing. However, the resulting
drag/lift variation obtained in our computations with this method still shows substan-
tial grid-induced oscillations (see results in Section 3.1).

In Peskin’s immersed boundary method [6] – which originally uses indirect for-
cing – quantities are transferred between arbitrary (Lagrangian) positions and the
fixed (Eulerian) grid by means of a so-called “regularized delta function” with desir-
able smoothness properties and compact support.

Recently, a new direct forcing scheme which makes use of Peskin’s delta func-
tion during the necessary interpolation steps was formulated in [7]. In the following
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we will discuss this method and its validation through a selection of test cases. Fi-
nally we will present preliminary results from the simulation of the sedimentation of
several hundred spherical particles.

2 Numerical method

Let us write the time-discretized momentum equation in the following form

un+1 − un

�t
= rhsn+1/2 + f n+1/2 , (1)

where rhsn+1/2 regroups all usual forces (convective, pressure-related, viscous) and
f n+1/2 is an artificial force term, both evaluated at some intermediate time level.
Since Fadlun et al. [3] it is common to express the additional force term by simply
rewriting the above equation as

f n+1/2 = u(d) − un

�t
− rhsn+1/2 , (2)

where u(d) is the desired velocity at the point where forcing is to be applied. Formula
(2) is characteristic for direct forcing methods. Problems arise from the fact that
in general the locations where the desired velocity is known do not coincide with
the Eulerian grid. In [7] the definition of the force term was instead formulated at
Lagrangian positions attached to the surface of the particles, viz.

F n+1/2 = U(d) − Un

�t
− RHSn+1/2 , (3)

where uppercase letters indicate quantities evaluated at Lagrangian coordinates. Ob-
viously, the velocity in the particle domain S is simply given by the solid-body mo-
tion,

U(d)(X) = uc + ωc × (X − xc) X ∈ S , (4)

as a function of the translational and rotational velocities of the particle, uc, ωc.
The final element of the method of Uhlmann [7] is the transfer of the velocity

(and r.h.s. forces) from Eulerian to Lagrangian positions as well as the inverse trans-
fer of the forcing term to the Eulerian grid positions. For this purpose we define a
Cartesian grid xijk with uniform mesh width h in all three directions and distribute
so-called discrete Lagrangian force points Xl evenly on the particle surface. Using
Peskin’s [6] regularized delta function formalism, the transfer can be written as:

U(Xl) =
∑
ijk

u(xijk) δh(xijk − Xl) h
3 , (5a)

f(xijk) =
∑
l

F(Xl ) δh(xijk − Xl) �V , (5b)
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where �Vl designates the forcing volume assigned to the lth force point. We use
the particular function δh given in [8] which has the properties of continuous differ-
entiability, second order accuracy, support of three grid nodes in each direction and
consistency with basic properties of the continuous delta function.

The algorithm for each time-step can then be summed up as follows:

1. compute ũ = un + rhsn+1/2

2. transfer ũ to Lagrangian positions, using (5a)
3. compute F(Xl) from (3)
4. transfer the force back to Eulerian positions, using (5b)
5. solve Navier–Stokes on the fixed grid with the added force term f(xijk).

The above method has been implemented in a staggered finite-difference context,
involving central, second-order accurate spatial operators, an implicit treatment of
the viscous terms and a three-step Runge–Kutta procedure for the non-linear part.
Continuity in the entire domain is enforced by means of a projection method. The
particle motion is determined by the Runge–Kutta-discretized Newton equations for
rigid-body motion, which are weakly coupled to the fluid equations. In the present
simulations direct particle interactions (collisions) are not considered.

3 Results

3.1 Uniform flow around an oscillating cylinder

In this first test case the particle motion is prescribed, i.e. one-way coupled. We con-
sider the flow around a cylinder with diameter D located at the origin in a domain
which measures �1 = [−6.17, 20.5]D × [−13.33, 13.33]D. The uniform grid has
1024 × 1024 nodes, i.e. D/h = 38.4. The time step was set to �t = 0.003, corres-
ponding to a maximum CFL number of approximately 0.6. The cylinder follows a
prescribed periodic motion perpendicular to the mean flow, i.e.:

yc(t) = A sin(2π ff t) , (6)

with the amplitude set to A = 0.2D and the frequency ff /fn = 0.8, where fn is the
natural shedding frequency obtained from the value of the Strouhal number from the
literature: St = fnD/u∞ = 0.195 (for ReD = 185). This case corresponds to one of
the cases simulated in [9]. The maximum velocity of the cylinder is max(|uc|)/u∞ =
2πff A/u∞ = 0.196. The boundary conditions are: uniform velocity at the inflow
and along the top and bottom boundaries; convective condition at the outflow.

Figure 1 shows that the temporal variation of the drag follows a reasonably
smooth periodic curve when using the current scheme. The same goes for the lift
force which has been omitted. On the other hand, the method of Kajishima and
Takiguchi [5], implemented as shown in [2], yields significant oscillations on the
time-scale of the mesh-width divided by the cylinder velocity. In other words, the
smoothing provided by the present method proves more efficient in hiding the influ-
ence of the fixed grid.
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Fig. 1. Time-periodic variation of the drag coefficient in the case of a translationally oscillating
cylinder in uniform cross-flow at ReD = 185 with D/h = 38.4 and CFL ≈ 0.6. Left graph:
present method. Right graph: method of Kajishima and Takiguchi [5], implemented into the
present solver as described in [2].

Table 1. Dimensionless coefficients obtained from the simulation of the flow around a cylinder
at ReD = 185 which oscillates near the natural shedding frequency and using D/h = 38.4
and �t = 0.003. The domain �1 has been used, except where otherwise stated.

C̄D C′
D

(CL)rms
present 1.380 ±0.063 0.176
present, enlarged domain �2 1.354 ±0.065 0.166
Kajishima & Takiguchi’s scheme [5] 1.282 ±0.088 0.223
Lu and Dalton [9] 1.25 0.18

The mean values and fluctuations of drag and lift are given in Table 1. The mean
drag is over-predicted by approximately 10% with the current scheme. A similar
over-prediction was noted in [10] where the original immersed boundary method
was used for the prediction of the flow around a stationary cylinder on the same grid.
In the latter reference the over-prediction was attributed to an insufficient domain
size. Here we verify this argument by repeating the simulation in an enlarged do-
main �2 = 1.5�1, while maintaining the mesh width and time step. The effect is
that indeed both mean drag and lift fluctuations decrease, yielding an error of approx-
imately 8% in the larger domain. The difference in mean drag between the result of
the present method and the method of Kajishima and Takiguchi [5] is probably due
to the different smoothing properties.

3.2 Sedimentation of a single sphere

We consider a single sphere which is released from rest at t=0 in a quiescent fluid.
The physical parameters of the simulation are chosen in order to match cases 1,
2, 4 of the experiment of Mordant and Pinton [11], where the motion of spherical
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Table 2. Parameters of the experiment of Mordant and Pinton [11] and resulting terminal
particle Reynolds number ReD in the case of a single sedimenting sphere.

case
ρp

ρf
ν × 103 ReD exp. [11] ReD present

1 2.56 5.41637 41.17 41.12
2 2.56 1.04238 362.70 366.69
4 7.71 2.67626 280.42 282.45

(a) case 1 (b) case 2 (c) case 4
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Fig. 2. Sedimentation of a single sphere corresponding to [11]. Vertical velocity:
present, experimental data.

beads in water was investigated, while their material and diameter were varied from
case to case. The experiment takes place in a large container, justifying the use of
periodic conditions in the simulation. By similarity with the experiment (density
ratio, Froude number, particle Reynolds number) we have selected the values for the
particle diameter D = 1/6 and the gravitational acceleration |g| = 9.81 alongside
the parameters given in Table 2. The range of Reynolds numbers spans 40 . . .360
and the density ratio is varied between 2.56 and 7.71. The values for the numerical
parameters are: mesh width h = 1/76.8, i.e. D/h = 12.8; time step �t = 0.0025,
i.e. yielding a maximum CFL number of 0.3, 0.75, 0.5, respectively.

Figure 2 shows the vertical particle velocity as a function of the elapsed time.
Gravitational scaling is used, i.e. uref = √|g|D and tref = √

D/|g| are the reference
velocity and time, respectively. The computational results are shown for times before
the particle motion in the periodic domain is affected by the remnants of its own
wake. A very good agreement with the experimental measurements can be observed.
In Table 2 the terminal value of the Reynolds number is reported for all three cases.
It can be seen that the maximum error is below 2% (case 2).

3.3 Many-particle sedimentation

Here we consider a similar case as the one studied in [5]. A large number of particles
are sedimenting in a tri-periodic domain. The dynamic formation of particle agglom-
erations is the object of the investigation in [5]. In the present study, all particles have
a density ratio ρp/ρf = 2.56 and a diameter D = 1/6; the fluid has a viscosity value
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Table 3. Definitions for the two different configurations used in triply-periodic many-particle
simulations in Section 3.3, listing the number of particles Np , the volume fraction of solid
εp and the domain size in the three coordinate directions Li (gravity acts in the negative
z-direction).

case Np εp Lx/D Ly/D Lz/D

A 512 0.4% 40 20 80
B 1000 0.8% 40 40 40

of ν = 10−3 and the gravitational acceleration measures |g| = 9.81. This leads to a
terminal Reynolds number of approximately 400 for a single sphere, similar to case
2 in Section 3.2. Our series of simulations have only been initialized recently and,
therefore, the present results only show the behavior of the systems for early times.

Table 3 gives the details of the two configurations presently studied. The volume
fraction is kept below 1%, meaning that the dilute regime is addressed. Figure 3
shows the initial particle positions and the configuration after 100 time units (grav-
itational scaling) for case A. At that time the particles have reached a seemingly
disordered state with an inhomogeneous spatial distribution. Statistically, this means
that the range of inter-particle distances changes. Most prominently, the global min-
imum of that distance rapidly approaches the limit of one particle diameter (cf. Fig-
ure 4). In fact, since we do not use any explicit collision strategy, the distance can
drop below this limit and cause non-physical overlap. When this occurred we have
stopped the simulation. Figure 4 also shows that the average distance to the nearest
particle neighbor decreases significantly from the initial homogeneous state. From
Figure 5 we can see that during the initial phase the average sedimentation velo-
city reaches a minimum (where w̄/uref ≈ 2.6) and then levels out to approximately
w̄/uref = 2. This is a manifestation of a strong wake-sheltering effect as already
observed in [5]. Obviously, the minimum is not observed in the case of a single sedi-
menting sphere. Figure 5 also shows the r.m.s. values of the angular particle velocity.
It is interesting to note that the values for rotation vectors in the horizontal plane are
by a factor 6 higher than those in the vertical direction.

3.4 Efficiency of the method

Operation count

The following numbers refer to the operations carried out during one Runge–Kutta
sub-step, of which there are three per full time step. The main work in the pure fluid
part of the code is done while solving the Helmholtz problems during the prediction
step and when solving the Poisson problem of the projection step. Using a multi-
grid method, the number of operations scales as O(NxNyNz). On the other hand,
the particle-related work scales as O(Np · (D/h)2), i.e. linear with the number of
particles (since we neglect collisions) and with the square of the number of grid
points per diameter (since we only force the surface of the particle).
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Fig. 3. Particle positions during the simulation of many-particle sedimentation, case A: t = 0
(left graph); t/tref = 100 (right graph).
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Fig. 4. Statistical particle-related quantities during the simulation of many-particle sediment-
ation. The left graph shows the minimum inter-particle distance for case A ( ), case B
( ). The graph on the right shows the average distance to the nearest neighbor for the
two cases.

Time step

It was observed that the present method does not have a noticeable influence upon
the theoretical temporal stability limit, CFL <

√
3.

Parallelization

Standard domain decomposition over a three-dimensional Cartesian processor grid
was used for the fluid solver. The particle-related operations are performed by a
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Fig. 5. Statistical particle-related quantities during the simulation of many-particle sediment-
ation. The left graph shows the mean sedimentation velocity for case A ( ), case B
( ) and a single sphere ( ). The graph on the right shows the root-mean-square
angular particle velocities in the horizontal plane and the vertical direction for the former two
cases. In both graphs gravitational scaling is used.

Table 4. Execution times on an IBM Cluster with Power 4 processors at 1.1 GHz (64 bit
arithmetic), using different grid sizes Nx × Ny × Nz, numbers of particles Np and numbers
of processors nproc. The resolution of the spherical particles was set to D/h = 12.8 in all
cases.

Nx ×Ny ×Nz Np nproc texec[s]
512 × 512 × 512 1000 64 115.0
512 × 512 × 1024 1000 128 144.9
512 × 512 × 1024 2000 128 147.4

master processor who is responsible for all particles contained in its private sub-
volume of the domain. Particles overlapping more than one sub-volume are handled
by one or more slave processors.

Timing

Table 4 shows some execution times per full time step for the present scheme. Good
scaling with the number of processors can be observed. Also, it becomes clear that
the particle-related work makes up only a small fraction of the total execution time
for the problems under consideration.

4 Conclusions

We have discussed the problems associated with fictitious domain methods of the
direct and indirect type, presenting a recently proposed variant which uses the regu-
larized delta function of Peskin and co-workers [6, 10, 8] for the association between
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arbitrary Lagrangian and discrete Eulerian positions. Thereby, the hydrodynamic
forces acting upon the solid domains, which are at the same time driving the particle
motion, are free from significant oscillations. This effect was demonstrated for the
flow around an oscillating cylinder.

The comparison of the new scheme with well-established experimental results
for the sedimentation of a spherical particle shows its accuracy over a significant
range of Reynolds numbers while using a very realistic resolution of only 13 grid
points per diameter.

Taking into account the fast execution speed of the current method we can con-
clude that it is indeed very competitive. Further work – which is currently underway
– will include the performance of simulations with O(10000) particles in larger do-
mains. The evaluation of numerical collision strategies will be an important issue
which needs to be addressed in detail.
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Abstract. The lateral migration of a single spherical particle in tube Poiseuille flow is sim-
ulated by ALE scheme, along with the study of the movement of a circular particle in plane
Poiseuille flow with consistent dimensionless parameters. These particles are rigid and neut-
rally buoyant. A lift law L = CUs(�s−�se) analogous to L = ρU� is validated in both two
dimensions and three dimensions here; Us and �s are slip velocity and angular slip velocity,
�se is the angular slip velocity at equilibrium. A method of constrained simulation is used to
generate data which is processed for correlation formulas for the lift force, slip velocity, and
equilibrium position. Our formulas predict the change of sign of the lift force which is ne-
cessary in the Segré–Silberberg effect. Correlation formulas are compared between tube and
plane Poiseuille flows by fixing the dimensionless size of particle and the Reynolds number.
Our work provides a valuable reference for a better understanding of the migration of particle
in Poiseuille flows and the Segré–Silberberg effect.

1 Introduction

The literature on the migration of rigid particles in shear flow has been reviewed by
Yang et al. [6] and else where and will not be reviewed here. Yang et al. [6] used the
ALE scheme to study the lift force on a neutrally buoyant sphere in tube Poiseuille
flow. They validated the lift law in three dimensions and established a general proced-
ure for obtaining correlation formulas from numerical experiments. Their correlation
formulas and predictions obtained good agreement with the literature.

The main goal of this work is to correlate the lift laws in two dimensions and
three dimensions simultaneously by fixing some important dimensionless parameters
such as Reynolds number and the dimensionless size of particle. Another goal is to
study the analogy and difference between the migration of a spherical particle in tube
Poiseuille flow and that of a circular particle in plane Poiseuille flow by analyzing
the results obtained from the same procedure of data interrogation.
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Fig. 1. Sketches for the problem of (a) a rigid spherical particle in tube Poiseuille flow and
(b) a rigid circular particle in plane Poiseuille flow.

2 Governing equations and dimensionless parameters

The fluid-particle system is governed by the Navier–Stokes equations for the fluid
and Newton’s equations for rigid body motions. The dimensionless governing equa-
tions in a general three-dimensional case are (see [6])

Re

(
∂u
∂t

+ (u · ∇)u
)
= −∇p + ∇2u, (1)

ρp

ρf
Re

dUp

dt
= Geg + 6

π

∫
[−p1 + τ ] · n d�,

ρp

ρf
Re

d�p

dt
= 60

π

∫
(x − Xp)× ([−p1 + τ ] · n) d�. (2)

The dimensionless parameters are

Re = ρf V (2a)

µ
= ρf γ̇w(2a)2

µ
= 8a2ρf Um

µR
, the Reynolds number; (3)

where γ̇w is the wall shear rate and V = 2aγ̇w.

G = (ρp − ρf )g(2a)2

µV
, the gravity number; (4)

ρp/ρf , the density ratio. (5)

It is convenient to carry out the analysis of correlations in terms of dimensionless
forms of correlating parameters. The ratio of the particle radius a to tube radius R
and the dimensionless radial position r̄ are defined by

ā = a/R, r̄ = r/R. (6)

The dimensionless lift is given by

L̄ = 6ρf
πµ2L. (7)
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Relative motions between the fluid and the particle, which may be characterized
by slip velocities, are essential to understand the lift force on the particle. We use
Up and �p to denote the translational and angular velocities of the particle at steady
state. The slip velocities are defined as:

Us = Uf − Up, the slip velocity; (8)

�s = �p −�f = �p + γ̇ /2, the slip angular velocity, (9)

whereUf and γ̇ are the fluid velocity and the local shear rate evaluated at the location
of the particle center in the undisturbed flow.

We express the flow quantitiesUm,Us , �s ,�se in the form of Reynolds numbers.
A flow Reynolds number is given by

Ūm = ρfUmR

µ
= Re

8ā2 . (10)

Slip velocity Reynolds numbers are defined as

Ūs = ρf Us(2a)/µ, �̄s = ρf�s(2a)2/µ, �̄se = ρf�se(2a)2/µ. (11)

A dimensionless form of the productUs(�s −�se) which enters into our lift law
is given as the product Ūs(�̄s − �̄se).

We draw the reader’s attention to the fact that the flow is in the negative x direc-
tion in our three-dimensional simulation (see Figure 1(a)). The symbolUm in (3) and
(10) should be understood as the magnitude of the fluid velocity at the tube center-
line. Similarly, we use the magnitude of Uf and Up to calculate the slip velocity Us

defined in (8). We shall focus on the steady state flow of a neutrally buoyant spherical
particle, in which the left-hand side of (2) and the term Geg in (2) vanish. Thus, Re

and ā are the two parameters at play.
Here, we do not describe again the equations and parameters in two dimensions.

Interested readers are referred to [1, 2, 5] for details. The only change is that in this
paper the coordinate is at the centerline of channel.

In the plane Poiseuille flow, the Reynolds number is

Re = ρf V (2a)

µ
= 2ρf γ̇w(2a)2

µ
= ρfW(2a)2p̄

µ2
, (12)

where p̄ is the constant pressure gradient. We also introduce the dimensionless para-
meter r̄ to the two-dimensional cases,

r̄ = |y|
R

= |y|
W/2

, (13)

where W is the width of channel and R is half of the channel width. The dimension-
less lift is given by

L̄ = 6ρf (2a)

πµ2
L. (14)

Other dimensionless quantities, such as Ūs , �̄s and �̄se, result in the same expres-
sions as those in the three dimensions.
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3 Correlations from the numerical simulation

In our numerical simulations, we perform both unconstrained and constrained sim-
ulations. In the unconstrained simulation, the particle moves freely until it reaches
its equilibrium position. In the constrained one, the particle is only allowed to move
along a line parallel to the axis of tube and rotate freely; its lateral migration is sup-
pressed. Numerical experiments using constrained simulation provide us with the
distribution of the lift force and particle velocity in the tube and the position and
velocity of the particle at equilibrium. We develop correlations for these quantities
in this section. The key correlation is for the lift force, which shows the dependence
of the lift force on the slip angular velocity discrepancy �s − �se. The lift force
correlation predicts the change of sign of the lift force, which is necessary to explain
the two-way migration in the Segré–Silberberg effect. The correlations for the equi-
librium state of the particle are also of interest, because they may be used to predict
the position and the velocities of the particle at equilibrium.

3.1 Correlation for the lift force

The steady state values of the lift forces on a particle at different radial positions com-
puted in constrained simulation are plotted in Figure 2 for a spherical particle with
the radius ratio ā = 0.15 in three-dimensional tube Poiseuille flow. The same cor-
relations for the migration of a circular particle in two-dimensional plane Poiseuille
flow are also given in this figure. The positive direction of the lift force is in the neg-
ative er direction. In other words, L̄ is positive when pointing to the centerline and
negative when pointing away from the centerline.

The equilibrium positions of a neutrally buoyant particle are the points where
L̄ = 0. The stability of the equilibrium at a zero-lift point can be determined from the
slope of the L̄ vs. r̄ curve. The centerline is on a negative-slope branch of the L̄ vs. r̄
curve. When a particle is disturbed away from the centerline, the lift force is negative
and drives the particle further away from the centerline. Therefore the centerline is
an unstable equilibrium position. The other zero-lift point is between the centerline
and the wall and it is on a positive-slope branch of the curve. When the particle is
disturbed away from this point, the lift force tends to push the particle back. Thus the
zero-lift point between the centerline and the wall is a stable equilibrium position. It
is a surprise to see that the stable equilibrium position r̄e moves towards the wall as
the Reynolds numbers increases for the three-dimensional cases but away from the
wall for the two-dimensional cases.

We discuss the three-dimensional cases with the radius ratio ā = 0.15. When
the Reynolds number is small (Re = 1, 2, 9 or 18), only one stable branch and
one unstable branch can be observed in the L̄ vs. r̄ curves (Figures 2(b), 2(d)). For
higher Reynolds numbers, the distributions of the lift force as a function of the radial
position become more complicated (Figure 2(f)). A refined mesh was necessary to
obtain converged results at high Re.

We seek expressions for the lift force in terms of the slip velocities. The slip velo-
city Reynolds numbers have been defined in (11). We plot �̄s−�̄se at different radial
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Fig. 2. The dimensionless lift force L̄ at different radial positions for a particle with the radius
ratio ā = 0.15. The curves in (a), (c) and (e) are for the migration of a circular particle in
plane Poiseuille flow with different Reynolds numbers; the curves in (b), (d) and (f) are for the
migration of a spherical particle in tube Poiseuille flow.

positions in Figure 3 for a particle with ā = 0.15 for both the two-dimensional and
the three-dimensional cases. Comparison of Figures 2 and 3 shows that the quantity
�̄s − �̄se always changes sign above and below the stable equilibrium position for
either the two dimensions or the three dimensions.

The lift L̄ changes sign with the discrepancy �̄s−�̄se near the stable equilibrium
position at all the Reynolds numbers. The lift correlation is developed in the region
near the stable equilibrium position.

We seek correlations between the lift force L̄ and the product

F = Ūs(�̄s − �̄se). (15)

From our data, we noted that in the vicinity of the stable equilibrium position, the
relation between L̄ and F may be represented by a linear correlation:

L̄(r̄, Re, ā) = k(Re, ā)F (r̄, Re, ā), (16)

where k is the proportionality coefficient which depends on the Reynolds number
and the radius ratio ā. Some examples of the linear correlation between L̄ and F
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Fig. 3. The dimensionless slip angular velocity discrepancy at different radial positions for a
particle with ā = 0.15. The curves in (a), (c) and (e) are for the migration of a circular particle
in plane Poiseuille flow with different Reynolds numbers; the curves in (b), (d) and (f) are for
the migration of a spherical particle in tube Poiseuille flow.

are plotted in Figure 4. The linear correlation (16) is not valid far away from the
equilibrium position.

We use power laws to fit the expressions for k in terms of the Reynolds number
and then obtain the linear correlations between L̄ and F by Equation (16). To reveal
the dependence of the lift force on the slip velocities explicitly, we substitute the
definitions of L̄ and F into these correlations and then obtain the lift laws in Table 2.

The lift force in our correlation is on a freely rotating particle translating at steady
velocity. Thus correlations in Table 1 apply to particles with zero acceleration. For a
migrating particle with substantial acceleration, these correlations may not be valid.

3.2 Correlations for slip velocity Us and slip angular velocity �s

Besides the lift force on the particle, the translational and the angular velocities of
the particle at steady state are also of interest. We use power laws to fit the correla-
tions between the slip velocities and the Reynolds number. All of coefficients in the
power law correlations can be explicitly expressed in terms of r̄ . Details about the
construction of the correlations for the slip velocity Us and the slip angular velocity
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Fig. 4. The linear correlation between L̄ and F in the vicinity of the stable equilibrium position
of a neutrally buoyant particle. (a) Re = 1, ā = 0.15, plane Poiseuille flow; (b) Re = 9,
ā = 0.15, plane Poiseuille flow; (c) Re = 18, ā = 0.15, plane Poiseuille flow; (d) Re = 1,
ā = 0.15, tube Poiseuille flow; (e) Re = 9, ā = 0.15, tube Poiseuille flow; (f) Re = 18,
ā = 0.15, tube Poiseuille flow.

Table 1. Lift laws for the migration of a single neutrally-buoyant particle with ā = 0.1 and
ā = 0.15 in plane and tube Poiseuille flows.

�s can be found in [6] and will not be shown here. The final correlations for Us and
�s and the corresponding applicable ranges are listed in Table 2.
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Table 2. Correlations of slip velocity and slip angular velocity for the migration of a single
neutrally-buoyant particle with ā = 0.1 and ā = 0.15 in plane Poiseuille flow and tube
Poiseuille flow.

Fig. 5. The stable equilibrium position r̄e of a neutrally buoyant particle as a function of the
Reynolds number in (a) tube Poiseuille flow and (b) plane Poiseuille flow.

3.3 Correlations for parameters at equilibrium

The equilibrium state of a particle is always the focus of the study of particle migra-
tion. We obtain the particle parameters at stable equilibrium, such as the equilibrium
position r̄e, the slip velocity Use and the slip angular velocity �se by unconstrained
simulation and find that they may be correlated to the Reynolds number. We sum-
marize the particle parameters at stable equilibrium in Table 3.

The correlations for the equilibrium position r̄e are shown in Figure 5. In two di-
mensions, multiple power law fittings are used in different ranges of Reynolds num-
bers (Figure 5(b)). As mentioned before, r̄e moves closer to the wall as the Reynolds
number increases for the three-dimensional cases but moves to the centerline for the
two-dimensional cases.

Figure 6 shows that power law correlations also exist between the dimensionless
slip angular velocity at equilibrium �̄se and the Reynolds number Re for either the
two dimensions or the three dimensions. These correlations are important because
they give explicitly the slip angular velocity when the particle is at stable equilibrium.
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Table 3. Particle parameters at stable equilibrium: the equilibrium position r̄e, the dimen-
sionless slip angular velocity �̄se = ρf�se(2a)2/µ and the dimensionless slip velocity
Ūse = ρf Use(2a)/µ.

The correlations for parameters at equilibrium are summarized in Table 4.

4 Conclusion

• A lift law L = CUs(�s −�se) analogous to L = ρU� of the classical aerody-
namics is valid in both two dimensions and three dimensions.

• Equilibrium may be identified at the Segré–Silberberg radius at which the lift
vanishes (for a neutrally buoyant particle).
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Fig. 6. The correlations between �̄se and the Reynolds number Re for the migration of (a) a
spherical particle in tube Poiseuille flow and (b) a circular particle in plane Poiseuille flow.

Table 4. Correlations of particle parameters at equilibrium for the migration of a single
neutrally-buoyant particle with ā = 0.1 and ā = 0.15 in plane Poiseuille flow and tube
Poiseuille flow.

• The slip angular velocity discrepancy �s − �se is the circulation for the free
particle and it is shown to change sign at the equilibrium position where the lift
reaches zero on its stable branch. The behaviors of L and �s − �se are very
similar between the two dimensions and the three dimensions at comparatively
low Reynolds numbers.

• The equilibrium position (the Segré–Silberberg radius) moves towards the wall
as Re increases at each fixed ā for the migration of a spherical particle in tube
Poiseuille flow but moves away from the wall for the migration of a circular
particle in plane Poiseuille flow.
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Abstract. The force-coupling method (FCM) provides an efficient tool for computing particle
motion and the flow in the surrounding fluid both in confined microflow systems and in larger
scale suspensions. Here we present results for the interaction of individual particles in a shear
flow showing that FCM captures reliably the changes in lift and drag forces. We note too
the extension from spherical to non-spherical particles and comment on the use of FCM to
analyze flow systems, bridging the gap between simulation data and macroscopic descriptions
of dispersed two-phase flows.

1 Introduction

In order to investigate microflow systems that involve a small number of particles,
or larger scale suspensions it is important to have a reliable way to compute the mo-
tion of the particles and the surrounding fluid. Several techniques for full numerical
simulation have been developed such as the Distributed Lagrange Multiplier (DLM)
method, see [1, 2], or the Lattice Boltzmann method (LBM) [3]. Both schemes are
adapted for solid particles and use a static computational grid but require significant
numerical resolution per particle. The Force-Coupling Method (FCM) was initially
proposed [4] as a self-consistent approximation for finite-sized particles in a turbu-
lent flow and to avoid the limitations of particle-tracking models [5]. It has proven
to be a robust tool for studying both low Reynolds number, Stokes flows for which
an analytic theory is available, and particle motion at finite Reynolds numbers. The
spatial resolution required for each particle with the FCM scheme is modest and us-
ing spectral methods reliable results have been obtained using 3–4 grid points per
particle diameter, though 4–5 points is preferable. LBM and DLM simulations usu-
ally require a minimum of 8 grid points and typically 12 or more points for accuracy.
The scheme is also computationally efficient, requiring orders of magnitude less ef-
fort as compared to direct numerical simulations [6]. All of the FCM simulations
presented here were performed on a single CPU Linux PC workstation, while the
corresponding DNS results were obtained with 32 CPUs on an IBM SP3 parallel
computer or comparable system.
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A further advantage of FCM is that all the flow variables vary continuously so
that it is straightforward to go from simulation data to continuum descriptions and av-
eraged flow quantities. It is possible to see immediately the significance of averaging
procedures. In the following sections we briefly summarize the FCM scheme, present
some examples of particle motion in shear flows including nonspherical particles and
discuss how the results for large systems of particles may be analyzed as a continuous
system.

2 Force-Coupling Method (FCM)

The Force-Coupling Method (FCM), developed in [7, 8], uses a set of finite force
multipoles to represent the presence of each particle in the flow. Fluid is assumed to
fill the whole flow domain, including the volume occupied by the particles. The flow
is specified in terms of a ‘volumetric’ velocity field u(x, t) that is incompressible and
satisfies

ρDu/Dt = −∇p + µ∇2u + f(x, t), (1)

where the fluid density and pressure are ρ and p respectively, µ is the viscosity. The
body force density f is made up of the contributions from the individual spherical
particles centered at Y(n)(t) and is given by

fi(x, t) =
N∑
n=1

F
(n)
i �(x − Y(n)(t))+G

(n)
ij ∂�′(x − Y(n)(t))/∂xj . (2)

The local density distributions �(x),�′(x) are Gaussian functions

�(x) = (2πσ 2)−3/2 exp(−x2/2σ 2), (3)

with length scales σ and σ ′ set in terms of the particle radius a as σ/a = √
π and

(σ ′/a)3 = 6
√
π .

The first term in (2) represents a finite force monopole of strength F while the
second term is a force dipole Gij , that combines the effect of an external torque on

the particle and a symmetric stresslet. The symmetric part of G(n)
ij is adaptively set

to eliminate any net rate of strain on the rigid particles and for each particle∫ (
∂ui

∂xj
+ ∂uj

∂xi

)
�′(x − Y(n)(t))d3x = 0. (4)

The strength of the force monopole is set by the external force Fextacting on the
particle and the inertia of the particle. Under conditions of steady motion F(n) is
equal to the force exerted by the particle on the fluid. The velocity of the particle
V(n)(t) is found by forming a local average of the fluid velocity over the region
occupied by the particle as

V(n)(t) =
∫

u(x, t)�(x − Y(n)(t))d3x. (5)
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A spectral/hp element method [9] has been used to solve for the primitive variables
u, p in the Navier–Stokes equations.

The force-coupling method was initially derived so as to reproduce standard
results for Stokes flow. Detailed comparisons for individual particles and groups
of particles at low Reynolds numbers are given in [7, 8, 10]. Further comparisons
against full direct numerical simulations for finite Reynolds number flows are given
in [6, 11, 12]. All of these show that there is either exact or good agreement, within
1–3%, for the fluid forces in a range of situations. A comparison of experiments [13]
involving particles in a channel flow with corresponding simulations with FCM also
showed good agreement. The flow representation at distances of 0.25 − 0.5a from a
particle surface agrees generally with DNS, while nearer the surface the representa-
tion is smoothed out over the interior region of the particle.

3 Particles in shear flows

3.1 Spherical particles

An illustration of how FCM can predict particle motion is given by a calculation of
the forces acting on particles held fixed, without rotation, in a Poiseuille flow. We
compare results from a full direct numerical simulation (DNS) with FCM results for
both a single particle and two particles held fixed near a wall. The flow configuration
is shown in Figure 1. The interaction between the two particles and the presence of
the wall illustrates too the limitations of particle-tracking models for such situations.

In terms of the particle radius a, the channel length is 20a and the distance
between the two planar, no-slip walls is 7a. In the spanwise direction, −3.5 <

x3/a < 3.5, periodic boundary conditions are applied. The Poiseuille flow is driven
by a fixed pressure gradient such that in the absence of any particles the parabolic
velocity profile has a value U0 = 1.225 at the centerline and the approach velocity
for the center of the particle is 1.0. Otherwise a periodic boundary condition is ap-
plied in the streamwise direction. For both the case of a single sphere and the case
of two spheres, the particles are positioned at Y2 = 1.5 so that the gap between a
particle and the adjacent wall is 1.0a. The fluid viscosity and density are both equal
to one and the particle Reynolds number is 2.0, based on the local approach velocity
of the flow. The corresponding shear Reynolds number, based on the local velocity
gradient, is 4.2.

The DNS for a single particle uses a structured mesh of 1728 hexahedral spec-
tral elements that fully resolves the flow about the spherical surface and adequately
resolves the flow elsewhere in the channel. Each element has an eighth-order Jac-
obi polynomial representation. For the two particle case, where Y

(1)
1 = 6a and

Y
(2)
1 = 10a, a new nonuniform structured mesh of 768 ninth-order spectral elements

is used. For all the computations with FCM a much simpler mesh of 480 rectangular
elements is used, distributed uniformly in the streamwise and spanwise directions as
a 20 × 4 array. In the x2 direction there are 6 elements distributed to provide greater
resolution of the region 0 < x2 < 3.5a. Each element has an sixth-order Jacobi
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Fig. 1. Positions of spheres in channel flow.

Table 1. Drag, lift and torque on particles held fixed in a channel flow.

Drag Lift Torque
F1/µaU0 F2/µaU0 T3/µa

2U0
FCM Particle 1 18.14 –1.36 2.60
DNS Particle 1 17.48 –1.33 2.69
FCM Particle 2 17.39 0.41 2.51
DNS Particle 2 16.68 0.43 2.59
Single particle DNS 21.82 –0.98 3.22
Single particle FCM 22.58 –1.00 3.11

polynomial representation. Further details and illustrations of the meshes used are
given by Liu [12].

A comparison of the drag and lift forces, and the torque acting on the single
particle is given in Table 1. The FCM results agree well with those from DNS espe-
cially for the sensitive features of lift and torque. As FCM is a mobility, as opposed
to resistance, formulation a penalty scheme [14] is employed to maintain the particle
at its fixed position. The drag and other forces are determined from the resulting
FCM parameters in (2). The results show that the lift force is directed away from
the wall, consistent with general expectations from the theory of Saffman [15] and
McLaughlin [16]. These theories apply to lower Reynolds number flows and isolated
particles in a uniform shear flow but are often the basis for determining lift forces in
particle-tracking models. The drag is substantially larger than for an isolated particle
due to the influence of the nearby wall.

For the two particles, there is again good agreement between the forces computed
from FCM and the DNS results. The drag on both particles is significantly lower
due to their mutual interaction effects on the flow. Most noticeably, the lift on the
upstream particle is increased and directed away from the wall whereas the lift force
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Fig. 2. Velocity profiles of u1 versus x2 at selected streamwise locations for the two spheres:
sphere 1, left; sphere 2, right.

Fig. 3. Velocity profiles of u2 versus x2 at selected streamwise locations for the two spheres:
sphere 1, left; sphere 2, right.

on the downstream particle is directed towards the wall. Standard methods based on
particle tracking models would fail to capture this effect yet such interactions are
quite likely at even modest void fractions.

There is also good comparison of the flow fields computed by the two methods. In
Figures 2 and 3 we compare the profiles for the streamwise and wall-normal velocity
components at selected streamwise locations within the symmetry plane, x3 = 0.
These show the flow variation just upstream of the particles and in the region between
them. As expected there is a good correspondence in the region half a radius or
further from the particle surface. FCM does not resolve the boundary conditions on
the particles and simply matches lower-order integral moments. The usually strong
surface vorticity is distributed in a smoother variation extending into the volume
nominally occupied by the particle. For the calculation of viscous dissipation and
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Fig. 4. Flow past a fixed spheroid in a channel flow: velocity profiles of u1 (left) and u2 (right)
at different streamwise locations.

other physical properties, the particle volume is an active part of the flow domain
[7, 8].

3.2 Spheroidal particles

Originally, FCM was developed for the motion of rigid spherical particles in a fluid
at low to moderate particle Reynolds numbers. The procedures have recently been
extended to rigid ellipsoidal particles [12]. The extension requires a specification of
the Gaussian distribution (3) in terms of principal body axes of each particle and
scaling the length scale σ to account for the different values of the semi-axes. The
ratios of σ and σ ′ to the semi-axes are the same as for a spherical particle.

As an illustration, the results for flow past a fixed spheroid in a channel are shown
in Figure 4. The particle, with semi-axes equal to 2.0, 1.0, 1.0 is placed at x = 0,
with the channel walls at x2 = −3.33, 10. The major axis is parallel to the wall. A
parabolic velocity profile u1 = (1 + 0.3x2)(1 − 0.1x2) is prescribed at the inflow at
x1 = −14 such that the approach velocity u0 = 1.0 at x2 = 0. A simple outflow
condition is set at x1 = 6 while periodic conditions are specified in the spanwise
direction at x3 = ±5. The fluid density and viscosity are again both set equal to one.
The FCM results are compared to corresponding results for a full direct numerical
simulation resolving all the boundary conditions. The agreement is generally good
except in the immediate region of the particle. The results for the drag force and
torque agree to within 0.5%, while the lift force is 3.08 (FCM) versus 2.90 (DNS)
and is directed away from the adjacent wall.

4 Macroscopic flow analysis

Although the FCM scheme follows the motion of individual finite-sized particles it
may be expressed in terms of the more familiar continuum field variables of two-
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phase flow. The instantaneous particle concentration for any realization of a system
of N particles, each of volume �(n)

P is

c(x, t) =
N∑
n=1

�
(n)
P �(x − Y(n)), (6)

where �P� plays the role of an indicator function. We can form the conditional,
particle-phase velocity field v(x, t) as

cv(x, t) =
N∑
n=1

�
(n)
P V(n)�(x − Y(n)), (7)

defined where c �= 0. It is straightforward to verify from these definitions the
particle-phase conservation law

∂c

∂t
+ ∇ · cv = 0. (8)

The liquid-phase density is ρ(1 − c(x, t)) and a conditional, liquid-phase velocity
field w(x, t) is similarly given as

(1 − c(x, t))w(x, t) = u(x, t)− cv(x, t). (9)

Again it is straightforward to verify the usual liquid-phase mass conservation law.
In contrast to the volumetric velocity field u(x, t), both v(x, t) and w(x, t) are

compressible. FCM ensures that the volume of each particle is constant and that
the underlying liquid phase is incompressible. The particle-phase and liquid-phase
velocities are only defined in their respective phase while u is defined at all locations
and varies continuously.

The volumetric velocity field u is easier to interpret physically, especially when
the flow variables are averaged either for a random suspension or for a turbulent
flow. For example in a turbulent shear flow, the conditional, mean particle velo-
city is 〈cv(x, t)〉 / 〈c(x, t)〉 and is commonly used to determine whether on average
the particles are moving faster or slower than the ambient flow. If the particles are
nonuniformly distributed and possibly dispersing away from a near-wall region then
this particle velocity is not defined where 〈c〉 = 0 and has poor statistical value
where the particles are sparsely distributed. A more robust procedure is to com-
pare 〈c(x, t)〉〈u(x, t)〉 and 〈cv(x, t)〉. These quantities are defined everywhere and
are most significant in the regions of higher particle concentration. These concepts
may be applied to other variables such as the turbulent fluctuating velocities. If a
simulation of dispersed two-phase flow has been computed using conditional phase
variables then it is still possible to construct the volumetric velocity from (9). A
useful check would then be that this velocity field is indeed incompressible.

This discussion is not limited to FCM and may equally be used to interpret simu-
lation data obtained by other methods such as LBM or DLM. Such direct numerical
simulations provide the instantaneous volumetric flow field directly.

243



M.R. Maxey et al.

Fig. 5. Profiles of viscous stresses and dipole stress in laminar channel flow.

FCM is also helpful in understanding features such as the enhanced viscosity of
a particle suspension. The usual Stokes–Einstein estimate for a dilute suspension of
neutrally buoyant, spherical particles is that the effective viscosity of the suspension
is µeff = µ(1 + 2.5〈c〉). This assumes that the particles are small compared to the
scale over which the flow is varying and that there are sufficiently many particles to
make such an average meaningful. In many applications, especially at finite Reyn-
olds numbers, these assumptions may not be appropriate. The enhanced viscosity
is directly linked to the stresslet induced in the flow by each particle in response
to the external velocity gradient. The FCM equations (1–2) show that the stresslet
distribution gives rise to a stress tensor

∑N
n=1 G

(n)
ij �′(x − Y(n)(t)).

In a Poiseuille flow the mean shear stress is then

τ12 = µ
∂U1

∂x2
+ 〈−ρu′1u′2〉 +

〈
N∑
n=1

G
(n)
12 �

′(x − Y(n)(t))

〉
. (10)

In equilibrium, this stress profile will vary linearly across the channel regardless of
the respective contributions. In Figure 5 results are shown for a laminar Poiseuille
flow at Re = 1, based on the channel half-width h = 1 and centerline velocity
U0 = 1. Particles of radius a = 0.1 have been seeded near each wall at Y2 = ±0.85
at an average void fraction of 4.2%, or a peak concentration 〈c〉 = 0.0955 at x2 =
±0.85. Without the particles, the viscous stress at the wall is 2.0 and we see here that
there is about a 10% increase in the drag. The Reynolds stresses are absent in this
regular arrangement of the particles, while the dipole stress term counterbalances the
variations in the regular viscous shear stress term.
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5 Conclusion

Results have been given to illustrate the effectiveness of FCM in calculating the mo-
tion of individual particles at finite Reynolds numbers. The method is applicable
to both spherical and nonspherical particles. This approach is valuable for investig-
ating microflow systems such as peristaltic pumps created from the forced motion
of microspheres [14]. The FCM scheme is also valuable in guiding the analysis of
dispersed two-phase flows and provides a physically realizable connection between
direct numerical simulations and continuum descriptions. In particular, the volumet-
ric velocity field provides an unambiguous representation of the flow dynamics and
preserves the properties of incompressible flow and mass conservation.
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1 Introduction

This work is motivated by needs of modeling high-speed particulate flows, such as
encountered in explosive dispersal of solid materials, shock-induced powder com-
paction and fluidization, protection of structures against explosions using particle
layers or foams, etc. [13]. It is well known, that such flows are dominated by particle-
to-particle collisions, and our aim here is to address this need at the DNS level.

Particle-to-particle collision models can be classified into two major groups:
“hard-sphere” (integral-form) and “soft-sphere” (differential-form) [4]. Upon a col-
lision in the “hard-sphere” models, the particles instantaneously change their ve-
locities based on momentum conservation principles. The loss of energy during a
collision can be represented by introducing restitution coefficients. An example of
“hard-sphere” model used in the DNS of suspensions can be found in a study by
Johnson and Tezduyar [8]. In the “soft-sphere” models, the dynamics of colliding
particles is represented by solving the equations of motion, in which the force due to
collision is computed as a function of deformation ς , i.e. F(ς). In DNS of particulate
flows, two major classes of the “soft collision” models have been used: the “short-
range repulsive” model of Glowinski et al. [7] and the “lubrication theory-based
collision” model of Nguyen and Ladd [10]. The collision force in the “short-range
repulsive” model mimics the force of the classic Hertz impact theory and is expressed
as Fcol ∼ κςn, where κ is a stiffness coefficient, and 1 ≤ n ≤ 2. This model is elastic
and unable to represent the loss of energy, which is significant in high-speed colli-
sions. Furthermore, the stiffness coefficient is an empirical constant, which is chosen
to smear-out the collision in order to avoid particle overlaps and numerical stability
problems. The “lubrication theory-based collision” model on the other hand does not
treat solid-solid interactions at all. As such it is limited to low speed collisions, where
all energy is dissipated in the hydrodynamics.

Here we are interested in the other extreme of behavior, where the principal ef-
fects are due to the solid-sold interaction itself. This involves both elastic, and dissip-
ative effects, as well as fluid-dissipative effects to a degree however that is likely to
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depend on the flow conditions. Our aim is the creation of a computational framework
appropriate for representing these phenomena in high speed, compressible flows.

For the gas dynamics we utilize the computational framework which is based
on explicit high-order-accurate Godunov-type schemes, implemented in the adaptive
mesh refinement (AMR) environment [1, 14], and capable of effectively capturing
the motion of fluid-solid boundaries using an Eulerian formulation [11, 12]. Our
interface boundary-condition-capturing approach, denoted here as the “Level-Set-
based Cartesian Grid (LSCG)/Adaptive Characteristics-Based Matching (aCBM)”,
is the crucial element of the approach.

Particle collisions can be possibly implemented into this framework using two
approaches. The first one is the “restitution coefficient-based hard sphere (RBHS)”
model. In this approach, upon a collision, the particles instantaneously change their
velocities, as in the above-discussed “hard-sphere” low-speed models, with the resti-
tution coefficient ε provided from an apriori-developed inelastic collision database.
This would be basically a multi-dimensional map, constructed using a physics-based
collision model for the particular material involved and all possible collision con-
figurations, including different impact velocities, collision angles and offsets. The
second alternative would be a direct implementation of a physics-based collision
(PBC) model into the algorithm for time advancement of gas dynamics and particle
logics, using a “soft-sphere” formulation.

We have found that (i) provided a sufficient grid resolution is feasible (in our case,
for example, due to AMR), both RBHS and PBC approaches are numerically stable;
(ii) due to specifics of high-speed collision, the time step of gas dynamics (�tgd ∼ns)
is much less than the collision time (tc ∼ µ s), which means that the PBC model
does not introduce any significant burden to the computation.Therefore, we believe
that the PBC collision approach is preferable in high-speed flow simulations, while
the RBHS is inefficient (especially when contact geometries and surfaces are taken
into account in construction of collision maps) and inelegant. Here, we demonstrate
the implementation of PBC collision approach, using Brilliantov et al.’s model [2]
for viscoelastic collisions, and test the approach on numerical examples of shock-
induced head-on and offset two-particle collisions.

2 Overview of the numerical method

Level-Set-Based Cartesian Grid Method (LSCG). For description of moving
fluid-solid boundaries in compressible flows, we employ the Level-Set-based
Cartesian Grid (LSCG) method. In this approach, the physical time-space is discret-
ized using structured adaptively refined meshes [1, 12]. The fluid-solid boundaries
are represented by the level set function, defined in all computational nodes as a
signed distance to the boundary ϕ. Zero-level of this function represents an interface
which separates fluid (ϕ > 0) and solid (ϕ < 0). We do not solve the level set
equation as in the case of fluid-fluid interface [12], but analytically reconstruct
the distance function based on currently available particle’s positions, updated as
discussed below, after each time step of the numerical solution for fluid. More detail
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description of the LSCG concept is presented in [11].

Gas dynamics. As our basic numerical method for gas dynamics, we employ the
Godunov-type scheme, which is based on the third-order-accurate Runge-Kutta
TVD time advancement, and the third-order-accurate MUSCL3 space discretization,
supplemented by van Albada’s limiter. Flux terms are treated with either Local-
Lax-Friedrichs (LLF) or AUSM+,up schemes. Heat transfer and viscous effects are
neglected for purpose of this illustration.

Characteristics-Based Matching (CBM). The purpose of the CBM is to “infuse”
the desirable set of boundary conditions in the numerical solution for computational
cells near zero level set. The key features of the CBM [12] are (i) a Riemann-solver-
based treatment, which is essential for accuracy in the case of very strong shock
waves; and (ii) elimination of the need for ghost fields and corresponding ghost
cells, which we found to be necessary for compatibility with AMR (see below). The
CBM is based on the generation/tracking/disposal of the subcell-interface-markers
(denoted as CBM points), which exist only during one time step �t . Applying the
one-sided Riemann solver at CBM points, the wave structure and gas dynamics
solutions at the interface are computed and applied for direct modification of
numerical fluxes in the fluid (ϕ > 0) Eulerian cells near the interface, using the
subcell position of the interface and a flux inter-/extrapolation algorithm. The
concept of subcell markers and Riemann solutions are borrowed from front-tracking
methods. The natural-neighbor interpolation (NNI) procedure is employed to correct
the numerical solutions at Eulerian computational cells whose material occupancy
has changed during the time step. These are denoted here as “degenerate” cells.
The modification of numerical fluxes and treatment of “degenerate” cells are the
substitutes for GFMs [5, 6] ghost fields/cells and the related to it PDE- or FM-based
extrapolation techniques. Algorithmic details of the CBM are given in [12].

Structured Adaptive Mesh Refinement (SAMR). In the present study, we use
Berger’s and Colella’s SAMR algorithm [1], as implemented in LLNL’s SAMRAI
package/(infrastructure) [14] for SAMR applications. SAMR is based on a sequence
of nested, logically rectangular meshes, organized in a hierarchy of L grid levels
with the coarsest grid covering the entire computational domain. Grids are refined
in both time �tk and space �hk , k=0,...,L−1, using the same ratio r = hk

hk+1
for

refinement, i.e. �t0
h0

= �t1
h1

= . . . = �tL−1
hL−1

. Each level consists of a union of logically
rectangular regions, or patches at the same grid resolution hk . The utilities for
dynamic management of AMR patches require tagging criteria for refinement. In
the present paper, the grid is refined near fluid-solid boundaries, shocks and contact
discontinuities, as discussed in [12]. An example of the SAMR mesh is shown in
Figure1.

Particle logics. The solid phase is assumed to consist of two-dimensional rigid (at
the gas dynamic level) circular particles. The governing equations for motion of the

249



R. Nourgaliev et al.

Fig. 1. Example of AMR grid (4 levels of adaptation with refinement ratio 2), outline of
patches, pressure (left) and Mach number (right) fields for the head-on collision test. Effective
grid resolution is 80 nodes/Dia. The apparent discontinuities in contours are due to the post-
processor limitations at junctions of AMR patches.

ath particle are [9]: ⎡⎣ dVa

dt
= Fa

ma

dra
dt

= Va

⎤⎦ and

⎡⎢⎣
d�za

dt
= Kza

Iza

dθza
dt

= �za

⎤⎥⎦ , (1)

where Va and Fa are the velocity of the particle’s center of inertia and the total force
acting on the ath particle of mass ma and radiusRa; ra and θza are the position of the
center of inertia and orientation angle of the particle; �za , Kza and Iza = π

2 R
4
a are

the angular velocity, torque and principle moment of inertia, respectively. The total
force acting on the ath particle is composed of the hydrodynamic and “collision”
forces, Fa = F

(HD)

a + F
(Col)

a .
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Equations (1) are discretized using the third-order-accurate Runge–Kutta differ-
encing scheme. Due to the complex parallel structure of the AMR grid, communic-
ation of local forces and torques as needed for integration over each particle is non-
trivial, as the particle’s surfaces in general reside on different patches and processors.
Thus, we have developed an algorithm, in which (i) the surface of each particle is
sub-divided on the patch-scale segments, using current arrangement of patches on
the finest level; (ii) each segment is uniformly discretized on grid-size segments;
(iii) the hydrodynamic forces are interpolated into the center of each grid-size seg-
ment, using the natural-neighbor- and bi-cubic-spline- interpolation techniques; and,
finally, (iv) the forces for each particle are integrated over all grid-size and patch-
size segments, to determine the total force and torques acting on each particle. Item
(iv) is implemented by using an apriorily constructed map reflecting the residence
of patch-scale segments in the patch (processor) network. The above map is dy-
namically created during each time step on the finest AMR level, as the patches are
dynamically created/removed according to the flow conditions.

3 Description of particle-particle collisions

Consider a collision between two circular particles i and j . The relative velocity of
the colliding particle’s surfaces at the point of contact is gij = Vi − Vj . Defining

the normal vector as n = ri−rj
|ri−rj | , the normal and tangential components of relative

velocity are gN = n
(
n · gij

)
and gT = gij − gN , respectively. Next, we define

the deformation as ς(t) = R̃i + R̃j − ∣∣ri − rj
∣∣, where R̃a = Ra + δs.z., a=i,j

and the “safety zone”, used to prevent particle-particle overlap, is typically set to
δs.z. = hL−1.

“Hard-sphere (RBHS) model”. In the “hard-sphere” model, upon a collision event
ς > 0, the particle’s velocities are instantaneously changed as

V
(after)

i = V
(before)

i − meff

mi

{
(1 + ε)gN + 2

7
|gT | t

}
,

V
(after)

j = V
(before)

j + meff

mj

{
(1 + ε)gN + 2

7
|gT | t

}
,

(2)

where ε, meff = mimj

mi+mj
and t are the restitution coefficient, effective mass and

tangential vector, respectively.

“Soft-sphere (PBC) model”. We employ a “viscoelastic” model introduced by Bril-
liantov et al. in [2]. In this model, the collision force is computed as

F
(Col)

a =
{

0 if ς < 0,
FNn + FT t otherwise,

(3)

where the normal force consists of an elastic (conservative) part due to the de-
formation ς of the particles and a viscous part due to the dissipation of energy
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Table 1. On grid convergence for hydrodynamic forces. L1-norms of error are computed

as
∑

Nt

|CDg1
(t)−CDg2

(t)|
Nt

, where Nt is the total number of time steps, and gi is the grid
resolution expressed in terms of number of nodes per diameter.

Test-case Particle L
10−20/Dia

1 Rate L
20−40/Dia

1

1 1.328 · 10−1 2.037 3.2345 · 10−2

Head-on elastic (normal) collision
2 7.92 · 10−2 1.454 2.89 · 10−2

1 1.247 · 10−1 1.18 5.5 · 10−2

Offset viscoelastic (normal) collision
2 1.373 · 10−1 2.035 3.348 · 10−2

in the bulk of the particle material, which depends on the deformation rate, i.e.
FN = Cς

1/2
(ς + Aς̇). The conservative part is computed using Hertz’s theory of

elastic contact, with the elasticity coefficient computed as

C = 2Y

3(1 − ν2)

√
RiRj

Ri + Rj

,

where Y and ν are the Young modulus and the Poisson ratio. The coefficient of
viscoelasticity A in addition depends on the particle shape. For tangential force, we
use FT = sgn(−|gT |) 1

2 |FN |, which is the simplified version of the model employed
by Campbell and Brennen in their Lagrangian, particle-only simulations [3].

4 Numerical results and discussion

Formulation. Sample calculations will be presented on examples of two-particle
collisions. In a two-dimensional computational domain of size 10 × 10 mm, two
circular particles of radius Rp = 1 mm and density ρp = 2, 000 kg/m3 are
suspended in initially motionless air (γ = 1.4) under atmospheric conditions, i.e.
P = 105 Pa and ρ = 1.19 kg/m3. Two configurations are considered: “head-on”
(r1 = [5; 3] mm and r2 = [5; 5] mm) and “offset” (r1 = [4.5; 3] mm and
r2 = [5; 5] mm). A planar incident Msh = 30 shock wave hits the particles
from below, causing their motion and collision. For the “soft-sphere” model, the
following material parameters are used: Y = 1010 N/m2, ν = 0.3 and A = 5 ·10−7 s.

Results and discussion. Figures 2 and 3a,b present the results for the case of head-
on elastic collision. As it can be seen, the durations of the collision due to elastic
(Hertz-theory)/viscoelastic (Brilliantov’s) model are ≈ 0.5/1.5 µs, whereas the time
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Fig. 2. Dynamics of the pressure (left) and Mach number (right) fields for the head-on elastic
collision test. Effective grid resolution is 80 nodes/Dia.

step for gas dynamics is ∼ns. Such a small time step is characteristic of the CFL-
controlled explicit flow solver used for the simulation of highly compressible sys-
tems. Consequently, the collision dynamics can be fully resolved by the same time
step as used for the flow solver. The longer duration of the viscoelastic collision is
due to dissipative term ς̇ , which makes the collision force less repulsive. Compar-
ison between hydrodynamic and collision forces during the collision event shows
that the collision force is about an order of magnitude larger than the hydrodynamic
force, Figures 3a vs. 3b. Other practical situations with weaker incident shock would
further decrease the significance of the hydrodynamic force during the collision. The
above observation is true for both elastic (Hertz’s) and viscoelastic (Brilliantov’s)
models.

As shown in Table 1, our numerical method is high-order-accurate, with the
Richardson extrapolation-based convergence rate for hydrodynamic drag coefficient
varied between 1 and 2 (assuming the grids at play are already in the asymptotic
convergence regime).
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Fig. 3. History of the “hydrodynamic” drag coefficient, (a) and (c); “collision” drag coefficient
and particle’s velocity during collision, (b) and (d). Head-on collision (a) and (b) vs offset
collision (c) and (d). CD ≡ |F|

ρpsU2
ps/2

, where “ps” is “post-shock”.

Computational results for shocked particles in an offset configuration are given
in Figures 3c,d, 4, 5 and 6, which include Hertz’s elastic, Brilliantov’s viscoelastic,
and elastic hard-sphere (ε = 1) collisions. Simulation with the inelastic hard-sphere
model, using the same restitution coefficient as in Brilliantov’s viscoelastic collision
(ε = 0.008), is found to be unstable, as the particles tend to cluster, which requires
a special treatment of the collision logics to prevent spurious collisions due close
proximity of particles.

As can be seen from Figure 4, the particles appear to get aligned due to the effect
of the wake behind the first particle. In a general collision situation, both normal and
tangential collision forces are important. The tangential force is often represented as
linearly-dependent on the normal force. However, a collision model, which provides
a consistent basis for simultaneous treatment of the normal and tangential collision
forces, is yet to be developed. More importantly, there are fundamental issues in
applying Hertz theory and its extended versions for situations with a high collision
velocity. First, the Hertz theory requires that the collision velocity is much smaller
than the speed of sound in the particle material. Second, Hertz’s treatment assumes
that the collision area and deformation is several orders of magnitude smaller than
particle’s diameter. Both conditions may not be satisfied when the particles collide
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Fig. 4. Dynamics of the pressure field for the offset elastic collision test. Effective grid resol-
ution is 40 nodes/Dia.

at high speed. In the generalized Hertz theory, such as Brilliantov’s viscoelastic col-
lision model, although accounting for energy dissipation during the collision, the
treatment remains elastic. Elasticity requires the particle to return to its initial shape
by the end of collision. Physically, such a model leads to a prolongation of the col-
lision in order for the material in the collision zone to fully relax. We found that the
elasticity condition was manifested in Brilliantov’s viscoelastic model by inducing
a prolonged period of unphysical attractive force (to keep particles together) during
the collision run-apart phase. Obviously, a better inelastic collision model should
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Fig. 5. Dynamics of the Mach number field for the offset viscoelastic collision test. Effective
grid resolution is 40 nodes/Dia.

take into account the realistic change of the particle’s shape under large, irreversible
deformations (plasticity effects).
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Fig. 6. Comparison of the Mach number field and particle positions for t = 8.54 µs. Effective
grid resolution is 40 nodes/Dia.

It is interesting to note a significant difference between hard-sphere, and elastic
soft-sphere simulations, Figures 3c and 6. The drag coefficient for the second (wake)
particle is nearly 50% of that in the soft-sphere collision. This is associated with
a finite duration of the collision time (≈ 1 µs) for the soft-sphere model, which is
comparable to acoustic time scales of gas dynamics and sufficient to alter the particle
trajectory, keeping it in the wake of the first particle.

5 Conclusions and recommendations

To our knowledge, this is the first time direct numerical simulations of collisions in
particulate systems, under highly compressible gas flow conditions (shock waves),
were performed. The computations were made possible by the Characteristics-Based
Matching method implemented on an Adaptive Mesh Refinement platform. The fol-
lowing findings are drawn from these first computations:

1. With a sufficient grid resolution (via AMR), calculations are stable and do not
require smearing over time-space.
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2. The effects of hydrodynamic forces on particle-particle collision are insignificant
compared to collision forces.

3. Viscoelastic collision models, such as Brilliantov’s, do not correctly reflect the
nature of high-speed collision. Plasticity is a key feature needed for the numer-
ical simulation of high speed flows.

4. For large-deformation collisions, the simplified particle-particle interactions
models utilized here must be substituted by the full description of structural
mechanics inside the particles. Methods employed here provide readily for such
an extension.
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Struggling with Boundary Layers and Wakes of
High-Reynolds-Number Bubbles
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Abstract. We discuss two sets of non-trivial effects affecting the motion of high-Reynolds
number gas bubbles rising in still liquid which have been significantly clarified thanks to direct
numerical simulations making use of a suitable boundary-fitted technique. We first summarize
some features of the interaction between two spherical bubbles rising side by side in a viscous
liquid. Then we briefly discuss some aspects of the path instability of a spheroidal bubble
rising in a low-viscosity liquid.

1 Introduction

Computational techniques for multiphase flows have undergone a tremendous de-
velopment over the last fifteen years. Thanks to the spectacular increase of computer
capabilities and to the improvements of methods such as Front-Tracking [1], ALE [2]
and others, direct numerical simulations of dispersed flows involving some hundreds
of deformable bubbles or rigid particles is now possible, provided the particle Reyn-
olds number is of O(10) or less. For instance, in [1] the authors carried out a DNS
of 256 bubbles rising with a Reynolds number in the range 10–30 using four months
of CPU time on eight processors. On a different scale, the point-force approximation
and its extensions allow global effects of a large number of particles on the carrying
flow to be investigated at a reasonable cost, provided the expression of the various
forces acting on each particle is known to a good approximation. However, for differ-
ent reasons, none of these two streams of methods is currently capable of resolving
properly the thin boundary layer and wake that develop around particles moving at
Reynolds numbers of O(102) or more, or the extremely thin boundary layers as-
sociated with the diffusion of high-Schmidt-number contaminants, like surfactants.
For such problems the boundary-fitted technique remains by far the most appropri-
ate approach, even though it can only deal with simple topologies. We illustrate the
above point of view by considering briefly two problems that we recently addressed.
Other physical situations considered by groups using the same gneral approach may
be found in, for instance, [3, 4].
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2 Outline of the numerical technique

The computations discussed below were carried out with the JADIM code developed
in our group. This code has been extensively described in previous publications
(e.g. [5–7]). It solves the three-dimensional unsteady Navier–Stokes equations writ-
ten in velocity-pressure variables in a general system of orthogonal curvilinear co-
ordinates. The discretisation makes use of a staggered grid and the equations are
integrated in space using a finite-volume method with second-order accuracy, all
spatial derivatives being approximated with second-order centered schemes. Time
advancement is achieved through a Runge–Kutta/Crank–Nicolson algorithm which
is second-order accurate in time. Incompressibility is satisfied at the end of each
time step by solving a Poisson equation for an auxiliary potential. The points we
wish to stress here concern the curvilinear grids used in the applications discussed
below. While it is quite easy to design such grids (in two dimensions) by using either
conformal or quasiconformal mappings, the treatment of highly curved regions, fre-
quently located very close to the body, requires special care. This is because extra
source terms due to the rotation of the local grid axes arise in the momentum equa-
tions and may have a crucial influence on the overall results. A specific procedure
allowing us to ensure that these extra source terms do not create artificial sinks or
sources of momentum in the discrete equations is used. In brief this procedure en-
forces the obvious property that, once discretized on the orthogonal grid, any con-
stant vector must have a zero curl, while any constant second-order tensor must have
a zero divergence [7]. Another technical point deserves some comments. When deal-
ing with high-Re bubbles or particles moving in an unbounded domain, two opposite
requirements are encountered. First, the outer boundary must be located at a suf-
ficient distance from the body to avoid artificial confinement effects, even though
non-reflecting boundary conditions are used in the wake. This distance is generally
of some tens of equivalent radii of the body for the Reynolds numbers considered
below, which, in order to reduce the cost of the computations, suggests to use large
cells near the outer boundary. Second, it is crucial to describe properly the boundary
layer around the body, which frequently means that the thickness of the first row of
cells surrounding it has to be only a few percents of the body equivalent radius. As
a consequence of these two requirements, the grids used in such computations are
highly stretched in the radial direction, with a ratio between the thickest and the thin-
nest cells frequently of O(102). Maintaining the spatial accuracy on such stretched
grids is not obvious and requires the staggered velocity and pressure nodes to be
properly located with respect to each other. An example of the influence of this rel-
ative location on the accuracy of the overall results is discussed in [6]. Note that in
the applicatons discussed below, at least 5 grid points lie within the boundary layer
whatever the Reynolds number, which allows effects of the vorticity generated on
the body to be fully resolved, as shown in [8].
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Fig. 1. Detail of the grid used in the computation of the interaction between two spherical
bubbles (S = 3). The vertical plane on the left is the symmetry plane of the flow. The hori-
zontal line at the bottom is the symmetry axis of the grid.

3 Interaction of two spherical bubbles rising side by side

This problem is of particular relevance in the understanding and determination of the
properties of bubbly suspensions in which the bubbles move at moderate-to-large
Reynolds number. The reason for this is that potential flow theory predicts the stable
position of two neighboring bubbles to be reached when they come in contact with
their line of centres perpendicular to gravity [9]. This finding was confirmed a decade
ago in “direct” numerical simulations of the potential flow induced by the rise of a
cloud of bubbles, which revealed that the bubbles eventually agglomerate in thin
horizontal clusters [10, 11]. This conclusion is clearly not realistic, since the bubble
distribution observed in many laboratory experiments is close to homogeneity. A
possible explanation for this discrepancy is the role of the vorticity produced at the
surface of the bubbles. A thorough investigation of these effects was carried out in
[12], using grids such as those shown in Figure 1. Here we only summarize the most
significant conclusions of this study.

Figure 2 shows the evolution of the transverse force between the two bubbles as
a function of the rise Reynolds number Re = 2UR/ν and for various separations
S = d/R (U is the rise velocity, R the bubble radius, d the distance between the
two bubble centers, and ν the kinematic viscosity of the fluid). It is clear that the
force is always positive (i.e. repulsive) for low enough Reynolds numbers, whereas
it becomes negative (i.e. attractive) when the Reynolds number exceeds a critical
value. Obviously this critical value depends on the separation and lies roughly in the
range 30-80; the smaller the separation, the larger the critical Re.

Figure 3 allows us to understand the origin of the evolution depicted in Figure 2.
The vorticity contours corresponding to Re = 300 are seen to be almost symmetrical
with respect to the vertical plane passing through the bubble center, which indic-
ates that there is nearly no direct interaction between the two vorticity fields. Hence
the dominant interaction results from the two potential dipoles associated with the
bubbles. This irrotational interaction is known to accelerate the flow in the gap (Ven-
turi effect), resulting in a pressure gradient directed away from the symmetry plane.
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Fig. 2. The interaction force (normalized by πρU2R2/2) vs. the Reynolds number for various
separations. ◦ S = 2.25, � S = 2.5, � S = 3, ♦ S = 4, ∇ S = 5, ∗ S = 6, + S = 10;
- - - irrotational prediction.

Fig. 3. Iso-contours of the vorticity field for two widely different Reynolds numbers (S = 4);
the symmetry plane of the flow is on the left.
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This is of course in line with the existence of the attractive force observed in Fig-
ure 2 in this range of Re. The situation is drastically different at a moderate-to-low
Reynolds number. Now, vorticity tends to spread quite far around each bubble but
this diffusion is prevented in the gap, owing to the presence of the second bubble.
This blocking effect results in an asymmetry of the vorticity distribution. It is an easy
matter to show that, in the horizontal plane where the two bubbles lie, the vorticity
induces an upward contribution in the velocity field. As the vortex lines are tightened
in the gap, this upward contribution is maximum there, thus tending to make the ver-
tical velocity minimum in between the two bubbles. This velocity minimum is of
course associated with a pressure maximum and the transverse force is now repuls-
ive. From this analysis one can infer that the change of sign of the interaction force
occurs when the irrotational and the vortical mechanisms balance each other.

4 Zigzagging/spiraling bubbles

Millimetric spheroidal bubbles rising in water (or more generally in low-viscosity
liquids) frequently exhibit zigzagging or spiraling trajectories. While this intriguing
phenomenon has been described in many experiments, its physical origin remained
unclear until recently. This is due to the many different mechanisms that can be in-
volved in the phenomenon, among which deformation and oscillations of the bubble,
effects of possible contamination by surfactants, and wake instability [13]. Direct
numerical simulation is particularly useful to help elucidating such complicated situ-
ations because it allows us to separate or even suppress arbitrarily each of the various
possible mechanisms. This was the line of thinking we decided to follow. Based on
various considerations, we guessed that the basic mechanism responsible for the path
instability lies in the wake dynamics. As we showed in the past [8] that the strength
of the vorticity produced on a clean spheroidal bubble increases tremendously with
its aspect ratio (the aspect ratio χ is defined as the ratio of the lengths of the major
and minor axes), we decided to study the model problem of the free rise of a fixed-
shape spheroidal bubble submitted to a shear-free condition at its surface. This model
problem is in some sort a fluid-structure interaction problem in which a moving body
induces a disturbance in the surrounding fluid, and this disturbance in turn generates
forces and torques that drive the body motion. From a technical point of view, solv-
ing numerically such problems requires either the grid to deform according to the
body displacements (ALE technique such as the one used in [2]), or (when the flow
domain is unbounded externally) the governing equations to be transformed in such
a way that the effects of the body translation and rotation are directly incorporated
in the formulation. Albeit it cannot be easily extended to multibody problems, we
chose this second possibility which allows high-accuracy results to be obtained at a
moderate cost. Hence we transformed properly the Navier–Stokes equations and the
boundary conditions so as to avoid to regenerate the grid during the computation. We
supplemented these equations with the Newton’s equations so as to ensure that the
total force and torque acting on the bubble remain zero at all time, as the bubble may
be considered as an inertialess body (note that here as well as in the example above,
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the flow inside the bubble is not solved). All technical details concerning this formu-
lation may be found in [14]. It is just worth pointing out here that the computations
discussed below require about 2 ·105 grid points and several hundreds thousand time
steps, which represents about two months CPU time on a standard Linux PC.

The model problem depends on two control parameters, namely the aspect ratio
χ and the so-called Galileo number Ga = g1/2R

3/2
eq /ν which may be thought of

as a Reynolds number based on a gravitational scaling of the velocity (Req is the
equivalent radius of the bubble and g denotes gravity). The computational protocol
consists in releasing the bubble from rest with its minor axis aligned with gravity. A
small (10−4g) sinusoidal perturbation with a random frequency is added to gravity
to trigger the path instability, but we checked that it just shortens the time required
for the transition to occur without influencing the final result.

In what follows we shall describe the observations made in the case Ga = 138
which corresponds to a bubble with Req = 1.25 mm rising in water under standard
conditions [15]. Nothing special happens for χ < 2.25, approximately: the bubble
rises in straight line and its wake remains axisymmetric. In contrast, when the aspect
ratio is slightly increased beyond χ = 2.25, the bubble first rises in straight line and
then quickly bifurcates toward a planar zigzag path (the plane of which is selected
by the artificial perturbation). A detailed analysis reveals that this transition occurs
through a supercritical Hopf bifurcation. When χ is further increased up to χ = 2.5,
the crest-to-crest amplitude and the Strouhal number St = 2f (Req/g)

1/2 of the
zigzag motion saturate at a value of 4.8Req and 0.09, respectively (Figure 4).

The path remains in a plane for a very long time. However a careful observation
indicates that the horizontal component of the bubble velocity perpendicular to the
plane of the zigzag slowly grows in time. At a certain moment, this growth becomes
larger, resulting in a significant motion of the bubble out of the plane of the zig-
zag; simultaneously, a slight reduction of the amplitude of the zigzag is observed.
The two horizontal components of the bubble velocity eventually reach the same
amplitude, yielding a perfectly circular helical motion of the bubble. This second
transition from a planar zigzag to a circular helix was observed in all cases where
the rectilinear/zigzag bifurcation occurred. This suggests that the zigzag is only a
very long transient, i.e. the zigzag/helical transition is not a secondary bifurcation.
However this has still to be confirmed since, owing to the cost of the computations,
our coverage of the (χ,Ga) plane was quite coarse and we may have missed inter-
mediate values of the control parameters for which the zigzag could be stable at long
time.

The connection between the path of the bubble and the structure of the wake
can be established by recording some characteristic features of the latter. An ex-
cellent indicator is provided by the streamwise vorticity shown in Figure 5. While
this quantity is obviously zero during the straight part of the path (since the wake
is then axisymmetric), it becomes nonzero as soon as the zigzag path sets in. The
streamwise vorticity is then concentrated within two counter-rotating vortex tubes.
By examining simultaneous records of the path, it is found that these vortex tubes
disappear when the bubble crosses the inflexion point of its trajectory, and then re-
appear with an interchange in the sign of the vorticity (Figures 5b and 5b′). Finally,
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Fig. 4. Complete path of a zigzagging/spiraling bubble corresponding to χ = 2.5 and Ga =
138.

when the bubble enters the helical stage of its trajectory, the two vortex tubes wrap
up around one another and the wake becomes steady in a system of axes rotating with
the bubble. Figures 4 and 5 clearly indicate that there is a one-to-one correspondence
between the path and the wake structure; in other terms the “devil” responsible for
the non-rectilinear path of the spheroidal bubble lies in the wake.

Further insight into the physical mechanisms at work may be obtained by ex-
amining the lateral force balance during the zigzag stage. Figure 6 shows the evolu-
tion of the various contributions to this force. The largest of them is the wake-induced
force Fω resulting from the two counter-rotating vortices. This force is balanced by
the combination of the lateral component of the buoyancy force (which is nonzero
since the bubble inclines itself so as to maintain its minor axis essentially parallel to
its instantaneous velocity), and the added-mass force due to the acceleration of the
liquid displaced by the bubble. Note that in Figure 6 all forces are normalized by the
buoyancy force, which reveals that the maximum of Fω is of the same order as the
Archimedes force that drives the whole system.

Combining all the ingredients contained in Figures 4 to 6, we obtain the fol-
lowing scenario. The instability that breaks the initial axial symmetry of the wake
generates a new wake topology in which streamwise vorticity is concentrated within
two vortex threads of opposite sign. The flow field due to this vorticity distribution
results in a lateral lift force which generates horizontal displacements of the bubble
and makes the rectilinear path unstable. A complete analysis of the force and torque
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Fig. 5. The four successive stages of the wake corresponding to the path of Figure 5. (a) No
streamwise vorticity (rectilinear path); (b) and (b′) the streamwise vorticity is concentratted
within two vortex tubes and changes sign twice during a period of the zigzag; (c) the wake is
steady in a system of axes rotating with the bubble (helical path).

Fig. 6. The various contributions to the lateral force balance during the zigzag stage (χ = 2.5,
Ga = 138).

balances (not detailed here) then allows us to understand why the zigzag path is
selected among all possible nonrectilinear paths.

5 Conclusions

We discussed two fundamental problems of bubble hydrodynamics for which the use
of direct numerical simulation based on boundary-fitted grids proved to be extremely
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useful. This technique, while limited in terms of the geometrical complexity of the
flows it can handle, is highly accurate. It probably remains the most efficient tool to
investigate problems involving thin gaps or thin boundary layers, as in the two cases
considered here, and allows subtle physical mechanisms to be elucidated.
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Abstract. The status of direct numerical simulations of bubbly flows is reviewed and a few
recent results are presented. The development of numerical methods based on the one-field
formulation has made it possible to follow the evolution of a large number of bubbles for a
sufficiently long time so that converged statistics for the averaged properties of the flow can be
obtained. In addition to extensive studies of homogeneous bubbly flows, recent investigations
have helped give insight into drag reduction due to the injection of bubbles into turbulent flows
and two-fluid modeling of laminar multiphase flows in channels.

1 Introduction

Boiling heat transfer, cloud cavitation, aeration and stirring of reactors in water puri-
fication and waste water treatment plants, bubble columns and centrifuges in the
petrochemical industry, cooling circuits of nuclear reactors, propagation of sound in
the ocean, the exchange of gases and heat between the oceans and the atmosphere,
and explosive volcanic eruptions, are just a few examples of multiphase bubbly flows
occurring in both industrial and natural processes. As these examples show, under-
standing the evolution and properties of bubbly flows is therefore of major technolo-
gical as well as scientific interest.

Although Direct Numerical Simulations (DNS) of bubbly flows have come into
their own only in the last few years, computational studies of multiphase flow date
back to the beginning of computational fluid dynamics, when the MAC method of
Harlow and collaborators was used for simulations of the Rayleigh–Taylor instabil-
ity, splats due to impacting droplets, and other problems involving a free surface or
a fluid interface. Although the MAC method, and its successor the VOF method,
slowly gained popularity, in the late seventies and the early eighties, serious compu-
tational studies relied mostly on boundary integral methods and body fitted grids for
intermediate Reynolds numbers [23]. The current surge of activities in multiphase
flow simulations goes back to the beginning of the nineties, when significant im-
provements in methods that use fixed grids took place. Fixed grids offer great flex-
ibility in the geometric complexity of the multiphase flow under investigation, com-
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bined with the efficiency inherent in the use of regular structured grids. The continu-
ous surface force (CSF) method [4] to compute surface tension in VOF methods, the
level set [24], the phase field, and the CIP [27] methods were all introduced at that
time, along with the front tracking method of Unverdi and Tryggvason [30]. By now,
a large number of refinement and new methods have been introduced and the devel-
opment of numerical methods for multiphase flow is currently a “hot” topic. There
is, for example, hardly an issue of the Journal of Computational Physics that does
not have at least one paper in some way related to multiphase flow simulations.

The development of more efficient, accurate, and robust methods continues to
be of considerable interest, as well as the extension of the various methods to handle
more complex physics. It is, however, the use of numerical methods to conduct direct
numerical simulations of complex multiphase flows that is sure to have the greatest
impact in the future. Such simulations are already yielding unprecedented insight,
even though DNS have only been used to examine a tiny fraction of the systems that
can be explored with current capabilities. Those studies that have been done have
focused mostly on suspensions of solid particles and bubbly flows. Here we will
discuss the current status of DNS of bubbly flows.

2 Numerical method

For non-dilute disperse multiphase flows at intermediate Reynolds numbers, it is ne-
cessary to solve the full unsteady Navier–Stokes equations. Most methods currently
in use for DNS of multiphase flows are based on writing one set of the governing
equations for the whole flow field by allowing the density and viscosity fields to be
discontinuous across the phase boundary and by including a singular term represent-
ing the surface forces. The momentum equation is:

ρ
∂u
∂t

+ ρ∇ · uu = −∇P +∇ · µ(∇u +∇uT )+ σ

∫
F

κf nf δ(x − xf ) dAf . (1)

Usually both fluids are assumed to be incompressible:

∇ · u = 0. (2)

Here, u is the velocity, P is the pressure, and ρ and µ are the discontinuous density
and viscosity fields, respectively. δ is a three-dimensional delta-function constructed
by repeated multiplication of one-dimensional delta-functions. κ is twice the mean
curvature. n is a unit vector normal to the front. Formally, the integral is over the
entire front, thereby adding the delta-functions together to create a force that is con-
centrated at the interface, but smooth along the front. x is the point at which the
equation is evaluated and xf is the position of the front.

Numerical implementations of Equations (1) and (2) include the Volume of Fluid,
the Level Set, and the CIP methods as well as the Front-Tracking/Finite Volume
method of Unverdi and Tryggvason [30]. The front-tracking method is used for the
simulations presented here. In all these methods, the governing equations are solved
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Fig. 1. The computational setup. The conservation equations are solved on a regular structured
grid, but the phase boundary is tracked by a moving unstructured triangular grid.

by a projection method on a fixed grid. The way the phase boundary is tracked is,
however, different. In most cases a marker function that identifies the different flu-
ids is advected by the flow. In the method of Unverdi and Tryggvason, however, the
phase boundary is tracked by connected marker points (the “front”) and the marker
function reconstructed from the location of the “front”. This keeps the boundary
between the phases sharp, and allows the accurate computation of the surface ten-
sion. The front points are advected by the flow velocity, interpolated from the fixed
grid. As the front deforms, surface markers are dynamically added and deleted. The
surface tension is represented by a distribution of singularities (delta-functions) loc-
ated at the front. The gradients of the density and viscosity become delta functions
when the change is abrupt across the boundary. To transfer the front singularities to
the fixed grid, the delta functions are approximated by smoother functions with a
compact support on the fixed grid. At each time step, after the front has been ad-
vected, the density and the viscosity fields are reconstructed by integration of the
smooth grid-delta function. The surface tension is then added to the nodal values of
the discrete Navier–Stokes equations. Finally, an elliptic pressure equation is solved
by a multigrid method to impose a divergence-free velocity field. For a detailed de-
scription of the original method, including various validation studies, see [29, 30].
Figure 1, where the velocity field computed on a fixed grid is shown along with the
tracked surface for a single buoyant bubble, summarizes the computational approach.

The original method of Unverdi and Tryggvason [30] has been extremely suc-
cessful for relatively complex multiphase flows at modest Reynolds numbers. As it
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has been applied to more challenging problems, such as higher Reynolds numbers
and large properties ratios, a number of improvements have been implemented. The
development include improved regridding procedures for the tracked front, conser-
vative techniques to compute the surface tension, high order upwind methods for the
advection terms, the use of non-conservative form of the advection terms to elim-
inate spurious oscillations for high density ratios, and non-uniform grids. The basic
method has, however, remained the same, confirming that robustness of direct track-
ing of the interface.

3 Results

Below we review briefly the status of our studies of bubbly flows, using direct nu-
merical simulations. We have examined a large number of cases, but until recently
we have mostly focused on homogeneous flows, modeled by fully periodic domains.

3.1 Homogeneous bubbly flows

The interactions of two bubbles in a periodic domain was examined briefly in [30].
The motion of many nearly spherical bubbles at moderate Reynolds numbers was
studied by Esmaeeli and Tryggvason [10] for a case where the average rise Reynolds
number of the bubbles remained relatively small (1–2) and Esmaeeli and Tryggv-
ason [11] looked at another case where the Reynolds number was 20–30. Bunner and
Tryggvason [5, 6] simulated a much larger number of three-dimensional bubbles us-
ing a parallel version of the method used by Esmaeeli and Tryggvason. Their largest
simulations followed the motion of 216 three-dimensional buoyant bubbles per peri-
odic domain for a relatively long time. The simulations showed, among other things,
that modest Reynolds bubbles generally interact through “drafting, kissing, and tum-
bling” collision [13] and that the probability of finding horizontal bubble pairs in-
creases with the Reynolds numbers. While “low order” statistical quantities like the
rise velocity of the bubbles converged rapidly as the size of the system increases,
other quantities like the dispersion coefficients converge slower. Esmaeeli et al. [12]
briefly examined bubbles that settle down into periodic wobbling and showed that
the bubbles slow down significantly once they start to wobble. Göz et al. [14] ex-
amined higher Reynolds number bubbles and found what looked like chaotic motion
at high enough Reynolds numbers. The effect of deformability was studies by Bunner
and Tryggvason [7] who found that relatively modest deformability could lead to a
streaming state where bubbles gathered in a stream or a chimney. Other studies of
the motion and interactions of many bubbles have been done by several Japanese
authors. Early work, using the VOF method to compute the motion of a single two-
dimensional bubble can be found in [28] and more recent work on bubble interac-
tions, using both VOF and the Lattice Boltzman Method, is presented in [25, 26].
The various simulations that have been done for bubbly flows suggest that we are
well on our way to understand elementary behavior of homogeneous bubbly flow
when the Reynolds number is relatively low.
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3.2 Using DNS to validate and develop models

For industrial systems DNS are generally not practical and it is necessary to use
models that predict the average behavior of the system. Reynolds Averaged Navier–
Stokes (RANS) computations of homogeneous flows have a long history, starting
with the pioneering work of Launder and Spalding [20] and Harlow and collaborat-
ors (e.g. [2]). For multiphase flows, several averaged models have been developed,
ranging from simple mixture models to more sophisticated two-fluid models. Consid-
erable effort has, in particular, been devoted to the development of two-fluid models
for disperse flows (see, for example, [8, 9, 31]. The averaging leads to an equation for
the void fraction and separate momentum equations for each phase. It also results in
the usual Reynolds stresses and the force between the phases as the terms that must
be modeled. The force is usually split into several parts, including the steady-state
drag and lift, added mass, Basset force, wall drag and wall-repulsion, and disper-
sion force. These terms are modeled using a combination of analytical solutions for
Stokes flow and empirical correlations/corrections to account for higher Reynolds
numbers. For a spherical isolated particle the forces are reasonably well understood,
with the exception of lift, but for higher concentrations and deformable bubbles the
situation is more uncertain. The momentum equation for the continuous phase is al-
ways solved using an Eularian approach, where the averaged equations are solved
on a fixed grid, but the dispersed phase can be treated either using a Lagrangian or
an Eularian approach. In the Eularian approach the momentum equation for the av-
eraged particle velocity is solved in the same way as for the continuous phase, but
in the Lagrangian approach the dispersed phase is represented by point particles that
are tracked through the flow domain. As the particles move, they generate velocity
disturbances in the continuous phase, even if it is initially quiescent. These velocity
fluctuations show up as Reynolds stresses in the averaged equations and are usually
modeled using potential flow solutions for flow over a sphere. In turbulent flows they
are simply added to the Reynolds stresses generated by the fluid turbulence. For well-
behaved flows, such as flows in pipes and ducts, current two-fluid models generally
do well and capture the main flow features.

We have recently started to look at two-fluid models by comparing results from
direct numerical simulations with the predictions of the model of Antal et al. [1] for
laminar bubbly flow. The primary goal of this study is simply to find out what kind of
domain sizes are needed to produce results with well-converged averages. The sim-
ulations were done assuming a two-dimensional flow so we had to adjust the model
parameters slightly. We did, however, find that once we adjusted the parameters for
one flow, other situations were well predicted by the same model parameters. For
steady-state flow, where the slip velocity between the bubbles and the continuous
phase is given by an algebraic relation, there is no question of ill-posedness and the
model converged rapidly when the grid is refined. We are currently in the progress of
doing fully three-dimensional simulations that will allow us to do a more thorough
term-by-term assessment of the closure models and to explore their sensitivity to a
distribution of bubble sizes, bubble deformability, and so on. We have also done a
low resolution preliminary simulation of bubbles in a turbulent channel flow (similar
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Fig. 2. Comparison of the average velocity and void fraction profile from a simulation of
64 bubbles and the two-flluid model of Antal et al. [1]. While the model does not capture
completely the location of the wall peaks in void fraction, the overall agreement is good.

to our study of drag reduction described below, but with bubbles rising due to buoy-
ancy) and we plan to use the results to shed some light on the interaction of bubble
induced velocity fluctuations and the already existing turbulence. Figure 2 shows a
comparison of the simulated void fraction and velocity profiles, averaged over the en-
tire computational domain, and profiles predicted using the two-fluid model of Antal
et al. [1]. Except for the location of the wall-peak, the model captures the simulated
results reasonably well. The results also show that the bubbles are pushed to the wall
until the flow in the center of the channel is in hydrostatic equilibrium and essentially
homogeneous. For details, see [3].

3.3 Drag reduction due to bubble injection

In addition to providing data and insight for modeling, DNS studies can help explain
complex interactions between the bubbles and the flow. Sometimes such interactions
involve very subtle effects. Figure 3 shows one frame from a simulation of bubbles in
a turbulent channel flow with a Reynolds number of 4000. In addition to the bubbles,
isocontours of spanwise vorticity are shown, with different shading indicating posit-
ive and negative vorticity. The wall shear on the bottom wall is also shown. The goal
of this investigation is to cast some light on the mechanisms underlying drag reduc-
tion due to bubble injection and to provide data to help with the modeling of such
flows. Experimental studies (see [17, 19, 22], for a review) show that the injection
of a relatively small amount of bubbles into a turbulent boundary layer can result in
a significant drag reduction. While the general belief seems to be that the bubbles
should be as small as possible (a few wall units in diameter), drag reduction is found
experimentally in situations where the bubbles are considerably larger (order of 100
wall units).

We have examined the effect of bubbles on turbulent channel flow, mostly using
simulations with sixteen bubbles in the so-called “minimum turbulent channel” of
Jimenez and Moin [15]. The results, discussed in detail in [21], show that slightly
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Fig. 3. One frame from a simulation of the effect of bubbles on the wall shear in a turbulent
flow, at a relatively early time. The computational domain is 2π × π × 2 in the streamwise,
spanwise and wall-normal direction, respectively.

deformable bubbles can lead to significant reduction of the wall drag (up to 20%)
by sliding over streamwise vortices and forcing them toward the wall where they
are cancelled by the wall bound vorticity of the opposite sign. Spherical bubbles, on
the other hand, often reach into the viscous sublayer where they are slowed down
and lead to a increase in drag. This study has demonstrated powerfully the ability
of DNS to explain very subtle effects that could probably not be understood in any
other way. While the minimum turbulent channel flow is, admittedly, a somewhat
special situation, preliminary simulations using larger channels (Figure 3), suggest
that the evolution does not depend sensitively on the channel size. Kanai and Miyata
[16] and Kawamura and Kodama [18] have also examined the motion of bubbles in
turbulent channel flows, but did not see drag reduction.

4 Conclusions

The goal of numerical studies of multiphase flows is to obtain insight into the dynam-
ics of the flow as well as quantitative data. Such data is essential for the modeling of
industrial flows. Major progress has been made in using DNS to understand bubbly
flows in the last few years, but much remains to be done. Very little has been done
to examine the effect of different bubbles sizes and essentially noting for bubble
breakup and coalescence. Similarly, the application of the results to help with the
improvements of models is only beginning.
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1 Introduction

Droplet formation is a fascinating process. In industrial atomizers high-speed liquid
jets are deformed and broken into drops by a sequence two-phase flow instabilities.
In many others processes, such as droplet impact and splashing, volcanic eruptions,
or turbulent liquid-gas flows droplet and bubbles are formed through diverse and
complex mechanisms. The direct numerical simulation of flows with interfaces has
brought significant insight on these processes. Here we review one of the most active
aspects, the destabilizing of liquid gas mixing layers.

Atomizing devices exist in many different types, but of particular interest are
those which involve parallel liquid and gas jets, especially coaxial atomizers (Fig-
ure 1). The parallel jets form mixing layers that create small droplets close to the
nozzle exit. A liquid-gas mixing layer involves parallel liquid and gas streams that
mix behind a splitter plate (Figure 2).

Fig. 1. Atomization in a coaxial atomizer.
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Fig. 2. Typical velocity profiles (a) behind a splitter plate and (b) some distance downstream.
In a typical flow the Reynolds number is large and as a result the gas boundary layer will
change little while the liquid boundary layer is reversed. The size of the liquid boundary layer
is actually growing downstream.

2 Basic equations and methods

We assume two Newtonian, viscous fluids with constant surface tension. We use
standard notations with σ the surface tension, κ the interface curvature, n the normal
to the interface, µ the viscosity. The Navier–Stokes equations are

∂tu + u · ∇u = − 1

ρ
∇p + 1

ρ
∇ · (2µD)+ σκnδS, (1)

where δS is a distribution concentrated on the interface and D is the rate-of-strain
tensor

Dij = 1

2

(
∂uj

∂xi
+ ∂ui

∂xj

)
. (2)

Incompressible flow is assumed

∇ · u = 0. (3)

The interface follows the flow, or in other words, the normal velocity of the inter-
face equals the normal flow velocity u · n. To follow the interface, several methods
have been described in the literature: the immersed boundary method [17, 18] or the
Volume of Fluid method [15]. In the Volume of Fluid (VOF) method the interface is
tracked by the volume fraction in each cell: Cij being the volume fraction of the li-
quid phase in cell ij (Figure 3). In the Piecewise Linear Interface Calculation method
(PLIC) the interface is reconstructed by linear segments in each cell, leading to er-
rors of the order of κh2. Thus the method is second order accurate and leads to exact
reconstructions for straight lines. One of the critical components for reconstruction
is the computation of the normal. The elementary finite-difference estimate of the
normal is
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Fig. 3. The basic principle of the VOF-PLIC method: the interface is reconstructed by linear
unconnected segments in each cell.

nij = ∇hC

||∇hC|| , (4)

with properly-centered finite differences. More advanced method for normal calcu-
lation have been known for some time [15].

Beyond reconstruction, the propagation of the interface is another essential com-
ponent of the method. Several “advanced” propagation methods have been discussed
in [1, 16]. A remarkable property of the recently developped methods, such as EI-LE
or the geometrical method of Aulisa et al. [1] is that it conserves mass to machine
accuracy. It may seem strange to the reader that the VOF methods do not always con-
serve mass to machine accuracy. This comes from small errors occuring during the
propagation step. However, methods that do not conserve mass to machine accuracy
still give good results: many of our results have been obtained with the method of
Li [11] which does not conserve mass at machine accuracy, but has other advantages
such as simplicity and the fact that it maintains the volume fraction between 0 and 1,
consistent with its definition. It must be noticed that when the methods are used with
relatively poor accuracy, for instance with unsufficient grid resolution, errors may
become large, and the loss of mass becomes obvious. This may happen for instance
when an entire atomizer is simulated, for instance the entire field shown on Figure 1.

The interface tracking is not the only important component of a numerical
method. Of at least equal importance is the surface tension algorithm. The surface
tension force added to the Navier–Stokes equations is

fσ δS = −σκnδS. (5)

In the Continuous Surface Force (CSF) method of Brackbill et al. [5], the δS dis-
tribution is approximated by ||∇hC|| (the subscript h indicates a finite difference).
This approximation seems natural since the discrete color or marker function Cij

approximates the Heaviside function H and we have ∇H = −δSn. Thus we add the
following force fij to the velocity nodes,

fij = σκh||∇hC||nhij , (6)
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where κh is an approximation of the curvature and nhij is an approximation of the
normal.

Using (4) for the normal we get fij = σκh∇hC. In practice use of this (and other
methods for surface tension) leads to problems when the surface tension is large.
The dimensionless surface tension is the Laplace number La = ρdσ/µ2 where d
is a characteristic length scale, for instance the droplet diameter. For the discussion
of surface tension the liquid ρ and µ should be used, as they allow the force on the
interface to be compared with the smallest viscous dissipation.

The Laplace number La is of the order of 106 for a 1 cm air bubble in wa-
ter. At such large La and for air-water density ratios, computation of surface ten-
sion becomes particularly difficult. To improve things, there are two main options:
either smooth the color fraction Cij or improve the computation of the curvature. A
smoothed color function may be obtained by convolution

H̃ (x) = (H ∗K)(x) =
∫
V

H(x′)K(x − x′; ε)dx′ , (7)

where K(x; ε) is an integration kernel of width ε. A discrete approximation of the
convolution is

C̃ij = A(ε)
∑
m

∑
l

ClmK

(
1 − x2

il + y2
jm

ε2

)
h2, (8)

where xil = xi − xl , yjm = yj − ym and xi is the abcissa of the ith column in a
rectangular grid. The sum is over all l, m such that (xl, ym) is in the disk �ε of radius
ε, and A(ε) is a normalization constant (Figure 4). The other way to improve surface
tension is to improve curvature estimates. This is the basis of the PROST method
of Renardy and Renardy [14], which exactly fits a quadratic curve or a circle. Other
methods such as the method of Popinet and Zaleski [13] will improve surface tension
calculations in combination with marker methods instead of Volume of Fluid.

The marker methods are somewhat less complex to use, however their behavior
will be very different in one respect: a marker method typically does not reconnect
interfaces. The difficulty is then to design an algorithm or a realistic physical rule for
reconnecting interfaces.

Another issue when solving the above equations is the viscosity interpolation in
mixed cells. The arithmetic mean is most often used

µij = µlCij + µg(1 − Cij ), (9)

where µij the viscosity at node ij . The other method is the harmonic mean

µ−1
ij = µ−1

1 Cij + µ−1
2 (1 − Cij ). (10)

3 Theory of mixing layer instability

The theory of mixing layer instability is based on linearized perturbations of the
viscous Navier Stokes or inviscid Euler equations. Results based on the full Orr–
Sommerfeld viscous stability equations were obtained recently by Boeck and Zaleski
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Fig. 4. The smoothing of the color function by a kernel to improve the surface tension calcu-
lation. The kernel averages the color function over a region of size ε.

Fig. 5. Amplitude growth for the arithmetic and harmonic mean of the viscosity with small
initial amplitude. The harmonic mean result is very close to linear theory even at small amp-
litudes while the arithmetic mean is close to linear theory only when the interface height is
larger than one grid size (from [3].

[4]. They are based on smooth velocity profiles of the type of the boundary layer pro-
file (b) shown in Figure 2. These profiles are naturally evolving from the parallel flow
just behind the splitter plate. Recent agreement with laboratory experiments was ob-
tained (Alain Cartellier, personal communication), and agreement is also obtained
with the numerical code described above (Figure 5) . This agreement has been ex-
tremely difficult to get, because among other difficulties the oft-used results of the
inviscid stability theory (as for instance in [12]) differ from the more realistic viscous
theory by a large factor.

The dimensionless wavelength λ∗ = λ/δg of the two-dimensional instability is

predicted using simple scaling arguments [3] to increase like Re 1/2∗ where Re ∗ =
Ugδg/νg is the Reynolds number based on the gas boundary layer size δg (Figure 2).
A similar analysis has been performed by Gordillo and Perez-Saborid [8].

Further into the flow the two-dimensional instability is supposed to lead to a
three-dimensional instability, but there are several different mechanisms discussed
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in the literature. The simplest idea is to assume that the tip of ligaments form quasi-
cylinders that break by the Rayleigh instability. A numerical demonstration of this
mechanism was attempted by Fullana and Zaleski [7] but it failed, probably be-
cause the simulated ligaments were not thin enough. This issue of the thinness of
the ligaments that can be simulated without breakup in a VOF method arises re-
peatedly. Other mechanisms involve three-dimensional instabilities that arise be-
fore ligaments are fully formed, for instance the two different types of “Rayleigh–
Taylor” instabilites discussed by Marmottant and Villermaux [12] and Cartellier and
Hopfinger (unpublished). Three-dimensional numerical simulations have not yet re-
solved the issue.

Another tantalizing possibility is that there is a direct amplification of the three-
dimensional flow, through transient growth mechanisms [19]. This possibility awaits
both experimental and numerical scrutiny.

4 Numerical simulation results

The numerical simulation of the full Navier–Stokes equations for the high speed jet
atomization problem has been seldom performed. Work based on the Surfer code
is now relatively old (beginning with Keller et al. [9], Tauber and Tryggvason [17],
and Tauber et al. [18]ăin 2D and Zaleski et al. [20] in 3D), but recent results [3]
have allowed to investigate the mixing layer instability [10] and the formation of
filaments in much greater detail. In Figure 6 we show results for the amplification
of the instability in a temporal setup: the domain is spatially periodic. It turns out
that the old low-resolution results were in a way misleading: at low resolution the
ligaments form and then break relatively early (as in Figure 7 on a 128 × 128 grid)
while with finer resolution the ligaments are stretched much longer (Figure 6, on a
512 × 512 grid). )

When one attempts to perform 3D simulations with present day facilities, the res-
olution is even worse. Moreover, 3D temporal simulations such as those of Zaleski et
al. [20] will still not be very realistic. The ultimate goal in direct numerical simula-
tion of atoimization is to perform spatial 3D simulations. For instance, in Figure 8 we
show results obtained on a 128×128×256 grid for a spatially developing instability.
Similar 3D calculations may be found in [2]. This type of simulation actually com-
pounds two difficulties: one is the move to 3D, and the other is the spatial character:
we have two simulate several wavelengths of instability in the same domain instead
of one or two. To obtain in 3D the same kind of accuracy as in the simulation of
Figure 6 we would need to have many boxes of size 5123.

5 Conclusion and perspectives

One feeling that this short review of methods and physical problems hopefully con-
veys is the sheer complexity of the numerical simulation approach. Although experts
generally agree that Volume Of Fluid methods have attained a satisfactory degree of
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(a)

(b)

(c)

Fig. 6. Three stages of ligament formation and elongation at higher Reynods number, 512 ×
512 grid: Re g = 4000 and We g = 500, (a) t = 4, (b) t = 4.8, (c) t = 9.76.

Fig. 7. Same simulation at lower (128× 128) resolution: the breakup occurs much earlier than
in the high resolution case. t = 8.16 . Here the ligament is shown at t = 8.4 just before
breakup.

accuracy and efficiency, this does not mean that efficient codes are available or easy
to construct. For the physicist using Volume of Fluid methods, (or other methods
for interface tracking) the sequence of algorithms to be used is complex and several
important issues must be mastered. One is the resolution: Volume of Fluid methods
tend to reconnect interfaces whenever they come within a grid cell of another inter-
face. Thus thin ligaments can be followed only for a while: as they become thinner
than one grid cell, the simulation becomes unrealistic.

Surface tension is also a source of difficulty. While most simulations show ar-
bitrary Re , We and density ratios, the specific parameters of laboratory air/water
experiments are difficult to attain. Surface tension calculations may be improved by
smoothing using Equation (7), However smoothing introduces another difficulty: be-
cause the surface tension force is spread over a domain of width ε (see Figure 4), it
acts as an effective interaction between interfaces, with a range of ε. Thus the min-
imum thickness of filaments before reconnection and breakup occur is not the grid
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Fig. 8. The spatial development of an atomizing jet simulated in 3D (obtained by A. Lebois-
setier). The domain shown is 128 × 128 × 256.

size h but ε. The cost of the simulation is multiplied by (ε/h)3. Another possibility
is the PROST method or other recent methods for improving the surface tension.
However none of them has been tested yet on atomization problems, and PROST is
expensive in CPU.

Another source of uncertainty is the averaging of viscosity inside mixed cells.
Typically an arithmetic mean is used. However, the harmonic mean is superior for
a parallel flow and interfaces aligned with it [6]. Changing the type of mean used
may have a dramatic effect on the growth rate of the instability when the interface
perturbation amplitude is smaller than a grid cell (Figure 5). It is not clear whether
the small amplitude at which this phenomenon occurs makes it irrelevant or whether
it would have a significant effect on full simulations.

The above difficulties make it hard to make predictions through numerical simu-
lations that may be compared directly to experimental air-water results. This is both
a question of sheer computer power (the objective being to increase the grid size),
and of algorithm development (how to design even better algorithms that correct
the principal defects without costing too much to implement and use). Because of
the complexity of a numerical simulation code a third difficulty is numerical ana-
lysis and programming: the whole task of developing a code often overwhelms the
abilities of isolated researchers. It is not enough to have pieces of code, corres-
ponding to published algorithms, available on the internet (as on the author’s web
site http://www.lmm.jussieu.fr/∼zaleski and links therein). In order to write
good quality, easy to use codes from these pieces, an in-depth knowledge of the
issues is needed which may be achieved only with sufficient expertise.

The question thus remains relatively open as to which type of code, with what
degree of complexity will eventually be developed to simulate a fully 3D, realistic,
experimentally relevant atomisation problem. It may involve other methods than
Volume Of Fluid, such as marker methods for immersed boundaries which are less
prone to reconnection, or involve adaptive mesh refinement. Once such a code is
available and efficient, it will function as a kind of “virtual atomizer”: a device al-
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lowing to design nozzle shapes in order to optimize characteristics of the outgoing
spray. Similar conclusions may be drawn in other areas of two-phase flow simulation
research, with in some cases even larger computer power perhaps necessary, such as
splash calculations or boiling.
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1 Introduction

A sharp-interface treatment of the solid-fluid boundaries [1] is combined with the
Ghost Fluid Method (GFM) [2–4] to simulate interactions between droplets and solid
surfaces [5]. All interfaces are represented by level sets [6, 7]. Application of contact
angle conditions at the junction between the solid-fluid and fluid-fluid boundaries
is fairly challenging in the level-set approach. In the VOF approach [8] the contact
angle can be imposed by reconstructing the partial volume in the fluid-fluid interface
cell that lies adjacent to the solid surface such that the reconstructed surface assumes
the specified contact angle with respect to the solid surface [8]. In the Lagrangian
moving mesh approach [9, 10] the mesh node that lies on the solid surface can be
moved to apply the desired angle. An alternative approach based on a local level-set
reconstruction has been modified and advanced in the present work. Additionally, the
method is designed to enable simulations of droplet spreading on arbitrarily shaped
solid surfaces. The results are compared with experimental as well as numerical res-
ults.

2 The current method

In the present work, the incompressible Navier–Stokes equations are solved in two-
dimensional planar as well as axi-symmetric situations. For a solid-fluid boundary,
a no-slip condition for the velocity and a Neumann condition for pressure [11] are
applied at the interface. However, in the simulation of droplet impact on a solid
surface, a slip boundary condition is applied in the immediate vicinity of the moving
contact line. At a fluid-fluid boundary, jump conditions in velocity, velocity gradients
and pressure [2] are applied.
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3 Flow solver

A cell-centered collocated arrangement of the flow variables is used to discretize the
Navier–Stokes equations with a two-step fractional step method [11] to advance the
solution in time. Interfaces are represented by level sets. Computational cells fall
into two categories: (1) bulk cells with all neighbors in the same phase, (2) interfa-
cial cells neighboring solid and other fluid phase cells, or both. For simplicity the
discretization is shown below for a 1-dimensional case (x-direction) only. The dis-
cretization for multi-dimensions proceeds in similar fashion independently in each
coordinate direction.

3.1 A general form of the discretization for the operators

A general discrete form for the diffusion operator (βψx)x can be obtained as follows
when multiple (say Lmax) embedded boundaries are present in the flow.

(βψx)x = β̂+xα+x
(ψ+x − ψi,j )

γx�x2
− β̂−xα−x

(ψi,j − ψ−x)
γx�x2

+ β̂+xα+x
γx�x2

+ β̂−xα−x
γx�x2 + β̂+x(1 − χ+x)b+x

βi+1γx�x2 + β̂−x(1 − χ−x)b−x
βi−1γx�x2 , (1)

where the coefficients β̂±x , α±x and γx are obtained as described below (see [1, 5]
for details). Using the level-set information switch functions (Equations (2) and (3))
that provide appropriate coefficients for mesh points adjoining fluid-fluid, fluid-solid
and solid-solid interfaces are obtained in a generalized framework:

(sl)±x =
{
(φl)i,j (φl)i±1,j

|(φl)i,j (φl)i±1,j |
}
, s±x = min

l=1,Lmax
{(sl)±x}, (2)

χ±x = min
l=1,Lmax

{
|max((sl)±x, 0)| + |(φl)i,j |

|(φl)i,j | + |(φl)i±1,j | |min((sl)±x, 0)|
}
, (3)

δ±x =
{

1 if solid-fluid interface between (i, j) and (i ± 1, j),

0 otherwise,
(4)

ψ±x = δ±xψI±x + (1 − δ±x)ψi±1,j , (5)

α±x = δ±x
1

χ±x
+ (1 − δ±x), (6)

β̂±x = βi,j βi±1,j

βi,jχ±x + βi±1,j (1 − χ±x)
, (7)

γx = δ+x
χ+x

2
+ δ−x

χ−x
2

+ (1 − δ+x)
{

1

2
+ 1

2
χ−xδ−x |min(s+x, 0)|

}
+ (1 − δ−x

{
1

2
+ 1

2
χ+xδ+x |min(s−x, 0)|

}
, (8)
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a±x = (φl1)i,j

|(φl1)i,j |
aI±x |min(s±x, 0)|(1 − δ±x), (9)

b±x = ± (φl2)i,j

|(φl2)i,j |
bI±x |min(s±x, 0)|(1 − δ±x). (10)

Note that the above equations reduce, in the appropriate cases by the use of simple
level set based switch functions, to the discrete form for a solid-fluid interface or
for a fluid-fluid interface or to standard central differences for bulk cells. Thus, a
sharp-interface calculation that handles any kind of immersed boundaries and their
interactions can be easily programmed by a few lines of code that modify a simple
uniform Cartesian grid flow solver. The treatment of the convection terms as well
as the pressure gradients for velocity correction proceeds in a fashion identical and
consistent to that described above. Further details of implementation are described
in [1, 5].

3.2 Modeling the moving contact line

The precise relationship between contact line velocity and contact angle is poorly un-
derstood. This problem is simplified by using experimentally measured [10, 12, 13]
contact angles as input for the numerical model. Modeling of fluid behavior in the
vicinity of a moving contact line is complicated because the no-slip boundary con-
dition at the solid-liquid interface leads to a force singularity at the contact line [14].
This is resolved by replacing the no-slip boundary condition with a slip model [15].
In the present work, the advancing and receding contact angles (θadvancing, θreceding)
are assumed constant. The Navier slip boundary condition allowing the contact line
to slip in a direction tangent to the substrate is applied in the immediate vicinity of
the contact line. The local level-set field is reconstructed in this region to by fitting
a parabolic curve that satisfies the contact angle condition at the solid surface while
intersecting the solid surface at the contact line. During hysteresis the current model
allows the surface tension to retract the fluid back decreasing the angle from θadvancing
to θreceding.

4 Validation: Water droplet impact on a flat surface

Droplet impact on a solid surface is simulated for the conditions in [10], corres-
ponding to Re = 3130, We = 64. Computed drop shapes and those reported by
Fukai et al. [10] corresponding to the same instant of time are plotted in Figure 1.
Consistent with Fukai’s prediction, the spreading process ends at t∗ = 7.5. During
this spreading process, the contact angle is maintained at the advancing value of 92◦
as specified by the model. Contact angle hysteresis takes place approximately from
t∗ = 5.0 to t∗ = 7.0. After t∗ = 7.5, the recoil process begins and the fluid recedes
from the maximum wetted radius at the specified receding contact angle (60◦). A
bulk upward motion near the axis occurs after t∗ = 28 and oscillation of the droplet
ensues after this time. The equilibrium shape of the drop is characterized by a typical
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Fig. 1. Calculated droplet spreading shapes compared with numerical results from Fukai et al.
[10] for droplet impact with Re = 3010 and We = 57, θadvancing = 92◦, θreceding = 60◦,
θstatic = 75◦.

sessile spherical cap drop shape with an equilibrium angle of 75◦. The maximum
spreading radius reported by Fukai et al. [10] for the given parameters is 3.6 while
the current predicted result is 3.45. The current model obtains a drop thickness of
2.35 while Fukai et al. [10] report a value of 2.7. However, the time for the droplet
to reach maximum spreading is agreement with that reported in [10]. Figure 2(a)
depicts the contact angle as a function of time. During hysteresis, no fixed contact
angle is imposed but the contact angle is free to be adjusted by surface tension while
the contact line remains motionless.
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Fig. 2. (a) Calculated droplet spreading radius compared with experimental results for Re =
3010 and We = 57, θadvancing = 92◦, θreceding = 60◦, θstatic = 75◦. (b) Calculated droplet
thickness compared with experimental results for Re = 3010 and We = 57, θadvancing = 92◦,
θreceding = 60◦, θstatic = 75◦. (c) Contact angle for water droplet with Re = 3010 and
We = 57, θadvancing = 92◦, θreceding = 60◦, θstatic = 75◦.

5 Impact of droplets on arbitrarily shaped solid surfaces

Figure 3(a) shows a 2-dimensional planar simulation of droplet impact on a solid
surface inclined at 45◦ to the horizontal corresponding to Re = 3333, We = 100,
ρliquid/ρgas = 1000. This case differs from the previous cases in that there are
two contact lines which move with different velocities with two distinctive contact
angles. When the droplet is sliding down the curved surface, the left side has an
advancing (110◦) and the right side has a receding (60◦) contact angle. The droplet
undergoes spreading, hysteresis, recoiling, as well as subsequent oscillations as it
slides down the plane. It eventually reaches a static shape represented by an upper
(69◦) and lower (72◦) contact angle. The current calculations compare qualitatively
well with experimental studied reported in [16] and with VOF calculations reported
in [8].

297



S. Krishnan et al.

Fig. 3. (a) Calculated shapes for water droplet impacting on inclined surface with Re = 3333
and We = 100, θadvancing = 110◦, θreceding = 60◦. (b) Calculated shapes for water droplet
impacting on curved surface with Re = 3333 and We = 50, θadvancing = 110◦, θreceding =
60◦.
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Figure 3(b) shows droplet impact with wetting effects on an arbitrary-shaped
surface corresponding to Re = 3333, We = 50, ρliquid/ρgas = 1000 and θadvancing =
100◦, θreceding = 60◦. The droplet is seen to flow down the surface to the trough, with
the specified receding and advancing contact angles. It overshoots the trough due to
inertia but finally settles to equilibrium in the trough with the resting contact angle
values of 88.3◦ and 86.5◦ at the two contact lines.

6 Summary

A sharp-interface method is presented for the simulation of fluid-fluid interfaces in-
teracting with solid-fluid interfaces. The framework of the method rests on a level-set
representation of all interfaces allowing easy implementation of a finite-difference
scheme to discretize the governing equations in the presence of interfaces such
that explicit knowledge of the interface location is not necessary. The discretization
scheme unifies a sharp-interface solid-fluid interface treatment with the ghost-fluid
method and is used to study impact of droplets on solid surfaces.
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Abstract. A finite-volume/front-tracking (FV/FT) method is developed for computations of
multiphase flows in complex geometries. The front-tracking methodology is combined with a
dual time-stepping based FV method. The interface between phases is represented by connec-
ted Lagrangian marker points. An efficient algorithm is developed to keep track of the marker
points in curvilinear grids. The method is implemented to solve two-dimensional (plane or
axisymmetric) dispersed multiphase flows and is validated for the motion of buoyancy-driven
drops in a periodically constricted tube with cases where drop breakup occurs.

Key words: finite-volume/front-tracking method, dual time-stepping, dispersed multiphase
flows, complex geometries.

1 Introduction

The main difficulty in simulating multiphase flows is the presence of deforming
phase boundaries. Although there are a number of numerical methods developed and
successfully applied to multifluid and multiphase flow problems [6, 8, 10], there is
still considerable need to accurate computations of multiphase flows involving strong
interactions with complex solid boundaries. Modeling these strong interactions is a
challenging task faced in many engineering and scientific applications such as mi-
crofluidic systems [9], pore-scale multi-phase flow processes [4, 5] and biological
systems [1, 7].

In this study, we present a FV/FT method for the computations of multiphase
flows involving complex solid boundaries. The front-tracking method has many
advantages such as its conceptual simplicity and small numerical diffusion. How-
ever, its main disadvantage is probably the difficulty to maintain the communication
between the Lagrangian marker points and Eulerian body-fitted curvilinear or un-
structured grids. To overcome this difficulty, a computationally efficient and robust
tracking algorithm is developed for tracking the front marker points in body-fitted
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curvilinear grids. The tracking algorithm utilizes an auxiliary regular Cartesian grid
and it can be easily extended to unstructured grids.

The finite-volume method is based on the concept of dual (or pseudo) time-
stepping which provides direct coupling of the continuity and momentum equations
for incompressible flows. Detailed description of the FV/FT method can be found in
[11].

In the present study, the method is applied to buoyancy driven motion of drops
in constricted channels studied experimentally by Hemmat and Borhan [2].

2 Mathematical formulation

The incompressible flow equations for an axisymmetric flow can be written in the
cylindrical coordinates in the vector form as

∂q
∂t

+ ∂f
∂r

+ ∂g
∂z

= ∂fv
∂r

+ ∂gv
∂z

+ hv + fb, (1)

where

q =
⎧⎨⎩ 0
rρvr
rρvz

⎫⎬⎭ , f =
⎧⎨⎩

rvr
r(ρv2

r + p)

rρvrvz

⎫⎬⎭ , g =
⎧⎨⎩

rvz
rρvrvz

r(ρv2
z + p)

⎫⎬⎭ , (2)

and

fv =
⎧⎨⎩

0
τrr
τzr

⎫⎬⎭ , gv =
⎧⎨⎩

0
τzr
τzz

⎫⎬⎭ , hv =
⎧⎨⎩

0
p − 2

r
∂
∂r
(rµvr)− ∂

∂z
(µvz)

− ∂
∂z
(µvz)

⎫⎬⎭ . (3)

In Equations (1)–(3), r and z are the radial and axial coordinates and t is the physical
time; ρ, µ and p are the fluid density, the dynamic viscosity and pressure; vr and
vz are the velocity components in r and z coordinate directions, respectively. The
viscous stresses appearing in the viscous flux vectors are given by

τrr = 2µ
∂rvr

∂r
, τzz = 2µ

∂rvz

∂z
, τzr = µ

(
∂rvr

∂z
+ ∂rvz

∂r

)
. (4)

The last term in Equation (1) represents the body forces resulting from the buoyancy
and surface tension and is given by

fb = −r(ρo − ρ)G −
∫
S

rσκnδ(x − xf )ds, (5)

where the first term represents the body force due to buoyancy with ρo and G be-
ing the density of ambient fluid and the gravitational acceleration, respectively. The
second term in Equation (5) represents the body force due to the surface tension, and
δ, xf , σ , κ , n, S and ds denote the Dirac delta function, the location of the front, the
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surface tension coefficient, the twice of the mean curvature, the outward unit normal
vector on the interface, the surface area of the interface and the surface area element
of the interface, respectively.

In Equation (1), the fluids are assumed to be incompressible and the effects of
heat transfer are neglected. Therefore, the density and the viscosity of a fluid particle
remains constant, i.e. Dρ/Dt = 0 and Dµ/Dt = 0

3 Numerical method

As can be seen in Equation (1), the continuity equation is decoupled from the mo-
mentum equations since it does not have any time derivative term. In order to over-
come this difficulty and to be able to use a time-marching solution algorithm, artifi-
cial time derivative terms are added to the flow equations in the form

�−1 ∂w
∂τ

+ I1 ∂ρw
∂t

+ ∂f
∂r

+ ∂g
∂z

= ∂fv
∂r

+ ∂gv
∂z

+ hv + fb, (6)

where τ is the pseudo time. The solution vector w, the incomplete identity matrix I 1

and the preconditioning matrix �−1 are given by

w =
⎧⎨⎩ rp

rvr
rvz

⎫⎬⎭ , I 1 =
⎡⎣ 0 0 0

0 1 0
0 0 1

⎤⎦ , �−1 =
⎡⎣ 1

ρβ2 0 0

0 ρ 0
0 0 ρ

⎤⎦ , (7)

where β is the preconditioning parameter with dimensions of velocity [11].
With the goal of treating complex geometries, Equation (6) can be transformed

into a general, curvilinear coordinate system

ξ = ξ(r, z), η = η(r, z), (8)

and the resulting equations take the form

�−1 ∂hw
∂τ

+ I1 ∂ρhw
∂t

+ ∂hF
∂ξ

+ ∂hG
∂η

= ∂hFv

∂ξ
+ ∂hGv

∂η
+ h(hv + fb), (9)

where h = rξ zη − rηzξ represents the Jacobian of the transformation. The vectors
hF = zηf − rηg; hG = −zξ f + rξg and hFv = zηfv − rηgv ; hGv = −zξ fv + rξgv ,
represent the transformed inviscid and viscous flux vectors, respectively.

A three point second order backward implicit method is used to approximate
the physical time derivatives. The spatial derivatives are discretized using a finite-
volume method that is equivalent to a second order finite-difference method in uni-
form Cartesian grid. Time integration in pseudo time is achieved by an alternating
direction implicit (ADI) method. Three types of grids used in the present method are
sketched in Figure 1. Conservation equations are solved on a body-fitted curvilinear
grid and the interface is represented by a Lagrangian grid. To maintain efficient com-
munication between the curvilinear and Lagrangian grids and to keep track of the
marker points, an auxiliary uniform Cartesian grid is used.
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Fig. 1. Three types of grids used in the computations.

The overall solution procedure can be summarized as follows: In advancing solu-
tions from physical time level n (tn = n·�t) to level n+1, the locations of the marker
points at the new time level n + 1 are first predicted using an explicit Euler method,
i.e.,

X̃
n+1
p = Xn

p +�tVn
p, (10)

where Xp and Vp denote the position of front marker points and the velocity in-
terpolated from the neighboring curvilinear grid points onto the front point Xp, re-
spectively. Then the material properties and surface tension are evaluated using the
predicted front position as

ρn+1 = ρ(X̃
n+1
p ); µn+1 = µ(X̃

n+1
p ); fn+1

b = fb(X̃
n+1
p ). (11)

The velocity and pressure fields at new physical time level n+ 1 are then computed
by solving the flow equations (Equation 9) by the FV method for a single physical
time step and finally the positions of the front points are corrected as

Xn+1
p = Xn

p + �t

2
(Vn

p + Vn+1
p ). (12)

After this step the material properties and the body forces are re-evaluated using
the corrected front position. The method is overall second order accurate both in
time and space but the spatial accuracy reduces to first order near the interfaces.
All terms except fb in Equation (9) are treated implicitly in physical time so that
the physical time is determined solely by the accuracy considerations and stability
constraint mainly due to surface tension.

4 Results and discussion

The FV/FT method is applied to the buoyancy-driven motion of viscous drops
through a vertical capillary with periodic corrugations studied experimentally by
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Table 1. Two-phase systems used in the computations.

System Suspending Drop µo µd ρo ρd σ

fluid fluid (mPa·s) (mPa·s) (kg/m3) (kg/m3) (N/m)
GW3 glycerol-water UCON 450 530 1250 995 0.0105

(96.2wt%) 1145

GW5 glycerol-water UCON 450 97 1250 950 0.0057
(96.2wt%) 50HB100

DEGG10 diethylene-glycol UCON 28 63 1110 975 0.0016
(100.0wt%) 165

DEGG12 diethylene UCON 87 115 1160 966 0.0042
glycol-glycerol 285
(63.8wt%)

Hemmat and Borhan [2]. The computational setup is sketched in Figure 2a. The
capillary tube consists of a 26 cm long, periodically constricted cylindrical tube
with 6 corrugations. The average internal radius of the tube is R = 0.5 cm, and
the wavelength and amplitude of the corrugations are h = 4 cm and A = 0.07 cm,
respectively. The suspending fluids are an aqueous glycerol solution (denoted by
GW3 and GW5) and diethylene glycol-glycerol mixtures (denoted by DEGG10 and
DEGG12). A variety of UCON oils are used as drop fluids. The properties of the drop
and suspending fluids are summarized in Table 1 where the same label is used for
each system as that used by Hemmat and Borhan [2]. A complete description of the
experimental set up can be found in [2]. A portion of a coarse grid containing 8×416
grid cells is plotted in Figure 2b to show the overall structure of the body-fitted grid
used in the simulations.

The average rise velocity of buoyant drops as well as the drop shapes are com-
puted and the results are compared with the experimental data [2] for a range of the
governing parameters, viz. the dimensionless drop size, κ , defined as the ratio of the
equivalent spherical drop radius to the average capillary radius, the dimensionless
corrugation amplitude, α, defined as the ratio of the amplitude of corrugation to the
average capillary radius, the ratio of the drop to the suspending fluid viscosities, λ,
the corresponding ratio of fluid densities γ , and the Bond numberBo = �ρgzR

2/σ ,
representing the ratio of buoyancy to interfacial tension forces; �ρ and σ denote
the density difference and interfacial tension between the drop and suspending fluid,
respectively, and gz is the gravitational acceleration.

In all the results presented in this section, the drops are initially spherical, loc-
ated at z = 1.5h in the ambient fluid that fully fills the cylindrical tube and is initially
in the hydrostatic conditions. Symmetry boundary conditions are applied along the
centerline and no-slip boundary conditions are used at top, bottom and lateral sur-
faces of the cylindrical tube. Drops are stationary and start rising due to buoyancy.
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Fig. 2. (a) Schematic illustration of the computational setup for a buoyancy-driven rising drop
in a constricted channel. (b) A portion of a coarse computational grid containing 8×416 cells.
(c) and (d) are snapshots of buoyant drops of GW3 and DEGG12 systems, respectively, for
drops sizes κ = 0.54, 0.78 and 0.92, from left to right for each system. The gap between two
successive drops in each column represents the distance the drop travels at a fixed time interval
and the last interface is plotted from left to right at t∗ = (c) 1044.4, 783.3, 783.3, (d) 2831.3,
3693.0 and 5416.4, respectively.

The results are expressed in terms of non-dimensional quantities denoted by su-
perscript “*". The dimensionless coordinates are defined as z∗ = z/h and r∗ = r/R.
Time and velocity are made dimensionless with

Tref = µo

�ρgzR
and Vref = �ρgzR

2

µo

,

respectively.
First a qualitative analysis of the shapes of the drops are shown in Figures 2c

and 2d. In these figures, a sequence of images showing the evolution of the shapes
of viscous drops through constricted channel are plotted for GW3 and DEGG12
systems with the non-dimensional drop sizes κ = 0.54, 0.78 and 0.92. The compu-
tations are performed on a 32 × 1664 grid, the physical time step is �t∗ = 1.641
and the residuals are reduced by three orders of magnitude in each sub-iteration. As
can be seen in these figures, when a large drop (κ > 0.7) reaches a constriction,
its leading edge follows the capillary wall contour and squeezes through the throat.
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Fig. 3. (a) Snapshots of the drops at the expansion (upper plots) and at the throat (lower
plots) of the constriction for the DEGG12 system for drop sizes (from left to right) κ = 0.54,
0.78 and 0.92, respectively. (b) Evolution of a GW5 drop with κ = 0.90 in the constricted
channel.The drop size is greater than the critical drop size and thus the drop breakups (α =
0.14 and κcr = 0.87).

Once the leading meniscus clears the throat, its rise velocity increases as it enters the
diverging cross-section while the trailing edge of the drop remains trapped behind
the throat similar to the experimental observations [2]. After a critical value of the
non-dimensional drop size denoted by κcr, there occurs a neck between the leading
edge and the trapped trailing edge which eventually leads to drop breakup. To better
show the effects of the constrictions, the snapshots of the drops before and after the
throat of the constriction are shown in Figure 3a for DEGG12 system for drop sizes
κ = 0.54, 0.78 and 0.92. As can be seen in this figure, the drop shapes are smooth
in all the cases indicating accuracy of the computations. A sequence of snapshots
showing the breakup phenomenon is given in Figure 3b. Note that the drop shapes in
Figure 3 qualitatively compare well with the experimental observations published by
Hemmat and Borhan [2]. The critical values leading to drop breakup of the drop sizes
is an important parameter which is given in Table 2 for various geometries together
with available experimental data [3]. As can be seen in this table, the computed crit-
ical drop radius for breakup compares well with the experimental value. It is also
seen that κcr reduces as the amplitude of corrugation increases as expected.

Table 2. Critical non-dimensional drop sizes for GW5 system.

κcr Numerical 1.10 0.87 0.75 0.68 0.62 0.52
κcr Experimental – 0.85 – – – –
α 0.07 0.14 0.21 0.28 0.35 0.50
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Fig. 4. The non-dimensional vertical positions (left plot) and the non-dimensional rise velo-
cities (right plot) of the drop tip plotted against the non-dimensional time t∗ for the drops of
DEGG12 system with κ = 0.54, 0.78 and 0.92. Grid: 32 × 1664, �t∗ = 1.641.

(a) (b)

Fig. 5. The variations of the deformation parameter D with axial position of the advancing
meniscus within one period of corrugation for (a) DEGG12 system and (b) GW3 system. The
dashed curves are the numerical results and the solid lines are the experimental data.

Finally the vertical drop tip location scaled by the corrugation wavelength and
the drop tip rise velocity scaled by the reference velocity Vref are plotted against the
non-dimensional time in Figure 4 for DEGG12 system for various drop sizes. The
retardation effect of the constrictions is clearly seen in these figures for large drops,
i.e., κ > 0.7. It is also seen that the drops quickly accelerate and reach a periodic
motion in all the cases.

To demonstrate the performance of the present FV/FT method, the numerical res-
ults are compared with the experimental data. In order to qualitatively characterize
the evolving shapes of drops as they pass through the corrugations, a deformation
parameter denoted by D is defined as the ratio of the perimeter of the deformed drop
profile to that of the equivalent spherical drop. The variations of the deformation
parameter as a function of the axial position of the drop within one period of corrug-
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(a) (b)

Fig. 6. Dimensionless average rise velocity as a function of drop size. The dashed curves are
the numerical results and the solid lines are the experimental data. The numerical results are
obtained with (a) the average tube radius of R = 0.5 cm and (b) the modified tube radius of
R = 0.535 cm that yields the same Bond number given by Hemmat and Borhan [2].

ation are plotted in Figures 5a and 5b for GW3 and DEGG12 systems, respectively,
and are compared with the experimental data. It can be seen in these figures that the
general trend for the deformation parameter is well captured by the present compu-
tations for both GW3 and DEGG12 systems. The deformation is negligibly small for
small drops, i.e., drops with κ < 0.60, and increases rapidly as the drop size gets
larger. The discrepancy between the computed and the experimental results for D is
partly attributed to the uncertainties in the experimental data and the inconsistency
between the Bond number reported by Hemmat and Borhan [2] and the Bond number
computed from the material properties and the average tube radius.

The computed average rise velocities are compared with the experimental data
and the non-dimensional average rise velocity Um is plotted against the non-
dimensional drop size κ in Figure 6a. The numerical results are in a good agreement
with the experimental data, i.e., the trend is well captured and the maximum error is
less than 10% for all the cases. In addition, if the inconsistency between the Bond
numbers mentioned above is taken into account by modifying the average tube radius
to match the given Bond number in [2], the computed results match much better with
the experimental data as shown in Figure 6b. In this case, the difference between the
computed and experimental data reduces below a few percent.

5 Conclusions

A finite-volume/front-tracking (FV/FT) method has been developed for computa-
tions of dispersed multiphase flows in complex geometries. The method is based on
the one-field formulation of the flow equations and treating the different phases as
a single fluid with variable material properties. The flow equations are solved by a
FV method on a body-fitted curvilinear grid and a separate Lagrangian grid is used
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to represent the interfaces between different phases. An efficient tracking algorithm
which utilizes an auxiliary uniform Cartesian grid is developed to track the interfaces
on the curvilinear grid.

The method is implemented to solve two-dimensional (plane or axisymmetric)
dispersed multiphase flows and has been successfully applied to the motion and
breakup of buoyancy-driven rising drops in a continuously constricted channel. Com-
parison with the experimental data proved the method to be successfully. It is found
that the present method is a viable tool for accurate modeling of dispersed multiphase
flows in complex geometries.

References

1. L. Fauci and S. Gueron (eds), 2001, Computational Modeling in Biological Fluid Dynam-
ics, Springer-Verlag, New York.

2. M. Hemmat and A. Borhan, 1996, Buoyancy-driven motion of drops and bubbles in a
periodically constricted capillary, Chem. Eng. Commun. 150, 363.

3. M. Hemmat, 1996, The motion of drops and bubbles through sinusoidally constricted
capillaries, Ph.D. Thesis, The Pennsylvania State University.

4. W.L. Olbricht and L.G. Leal, 1983, The creeping motion of immicible drops through a
converging/diverging tube, J. Fluid Mech. 134, 329.

5. W.L. Olbricht, 1996, Pore-scale prototypes of multiphase flow in porous media, Annu.
Rev. Fluid Mech. 28, 187.

6. S. Osher and R.P. Fedkiw, 2001, Level set methods: An overview, J. Comput. Phys.
169(2), 463.

7. C. Pozrikidis (ed.), 2003, Modeling and Simulation of Capsules and Biological Cells,
Chapman and Hall/CRC.

8. R. Scardovelli and S. Zaleski, 1999, Direct numerical simulation of free-surface and in-
terfacial flow, Annu. Rev. Fluid Mech. 31, 567.

9. H.A. Stone, A.D. Stroock and A. Ajdary, 2004, Engineering flows in small devices: Mi-
crofluidics toward lab-on-a-chip, Annu. Rev. Fluid Mech. 36, 381.

10. G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W. Tauber, J. Han, S. Nas
and Y.-J. Jan, 2001, A front-tracking method for the computations of multiphase flow, J.
Comput. Phys. 169(2), 708.

11. M. Muradoglu and A.D. Kayaalp, 2005, An auxiliary grid method for computations of
multiphase flows in complex geometries, J. Comput. Phys., submitted.

310



The Effect of Surfactant on Rising Bubbles
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Abstract. The rising velocity of a spherical bubble in contaminated water can be less than a
half of that in pure water. This is explained in terms of the Marangoni effect caused by the
adsorption of surfactants in liquid phase on bubble surface. In this study, we conduct a numer-
ical simulation with different surfactant species and bulk concentrations, and the dependence
of their properties on the rising velocity of a bubble is analyzed through comparison with ex-
periments. The simulation results show good agreement with the experimental ones, and the
surface velocity and the concentrations are estimated. We also develop a simulation method
for solving bubble deformation in the presence of a surfactant. We succeed in reproducing the
conglobation effect of a bubble in surfactant solutions.

Key words: Marangoni effect, boundary-fitted grid, finite difference, adsorption desorption
kinetics.

1 Introduction

It is well known that a bubble in contaminated water rises much slower than one in
super-purified water (see, for example, [1]), and the rising velocity in a contaminated
system can be less than half of that in a pure system. This phenomenon is explained
by the Marangoni effect: when a bubble is rising, there exists a surface-concentration
distribution along the bubble surface because the surfactant is swept off at the front
and accumulates at the rear by advection. Due to this surfactant accumulation at
the rear of the bubble surface, a variation of surface tension along the surface is
developed which causes a tangential shear stress on the bubble surface. This is known
as the Marangoni effect. This shear stress results in a decrease of the rising velocity
of the bubble in contaminated liquid. This explanation was first given by Frumkin
and Levich [2], after which many studies have been conducted on this subject.

However, a full numerical simulation using the Navier–Stokes equations with a
contamination effect was not conducted until the last decade due to a lack of com-
puter performance. There are many kinds of free-surface solvers using rectangular
grid systems, such as Level Set [3], Front Tracking [4] and CIP [5]. Many of these
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methods are very powerful tools to simulate multiphase flows. The present prob-
lem, however, presents a very thin boundary layer of the bulk concentration of the
surfactant above the bubble surface. To capture this thin boundary layer, we need to
have more grid points close to the surface than are required for capturing the velocity
boundary layer. This requirement is very restrictive if we use a fixed rectangular grid
system.

To capture the thin surfactant boundary layer, Cuenot et al. [6] used a boundary-
fitted coordinate system with sufficient grid points near the surface. A good review of
this field is also given in their paper. They investigate the effects of slightly soluble
surfactants on the flow around a spherical bubble. In their method, the continuity,
momentum and bulk/surface concentration equations are coupled under a spherical
bubble assumption. Liao and McLaughlin [7] allows the deformation of a bubble
using the same governing equations as Cuenot et al. [6].

In the present study, we investigate bubbles rising through a liquid with differ-
ent kinds of surfactant under different bulk concentrations. We conducted numer-
ical simulations to investigate the steady and unsteady behaviors of the bubble. We
also conducted a related experiment, using super-purified water with the addition of
various amount of three kinds of surfactants (1-Pentanol, 3-Pentanol, TritonX-100).
Through a comparison between the experimental results and the numerical ones, the
effect of the bulk concentration and physical-chemical parameters of a surfactant on
a single bubble motion is discussed.

2 Numerical methods

2.1 Governing equations

An axisymmetric grid is used with a boundary-fitted coordinate system. The grid
system near the bubble is shown in Figure 1. The physical model for adsorption
and desorption of surfactant molecules on the bubble surface is almost the same as
Cuenot et al. [6]. The continuity equation (Equation (1)), full Navier–Stokes equa-
tion (Equation (2)), and the transport equation of surfactant concentration in the bulk
liquid (Equation (3)) and that on the surface (Equation (4)) are coupled. The dimen-
sionless forms of these equations are shown below. These differential equations are
solved by the SIMPLER algorithm.

∇ · u = 0, (1)

∂u
∂t

+∇ · (uu) = −∇P + 1

Re
∇2u, (2)

∂C

∂t
+∇ · (uC) = 1

Pe
∇2C, (3)

∂�

∂t
+∇s · (us�) = 1

Pes
∇2
s � − 1

Pe
∇Cs · n, (4)

where
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Fig. 1. Grid near the bubble.

u = u℘
U∞

, C = C℘

C∞
, � = �℘

�max
, Re = 2ρU∞R0

µ
, Pe = 2U∞R0

D
. (5)

The subscript ℘ denotes the dimensional values, and the subscript s denotes the
values at the surface. R0, ρ, µ, D, U∞, C∞, �max denote bubble radius, liquid dens-
ity, liquid viscosity, diffusion coefficient of surfactant concentration, terminal rising
velocity, surfactant concentration in the far-field, and saturation value of surface con-
centration, respectively.Re andPe are the Reynolds and Peclet number, respectively.

2.2 Boundary conditions

The boundary condition of the bulk concentration near the interface is:

−(∇C)s · n = Ha ·K · Pe
{
Cs(1 − �)− 1

La
�

}
, (6)

where

Ha = R0kaC∞
U∞

, La = C∞
β

, K = �max

2R0C∞
, (7)

are dimensionless numbers. In this equation, diffusion flux from the bulk near the
surface balances the adsorption/desorption originating from Langmuir kinetics. The
adsorption of the surfactant on the bubble surface is given by the Marangoni for-
mulation. The Marangoni stress balances the tangential stress in the liquid phase as
follows:

τξη = t · ∇sσ = −t ·Ma
∇s�

1 − �
, (8)

where the Marangoni number (Ma) is defined by

313



Y. Matsumoto et al.

Ma = RGT �max

µU∞
, (9)

where RG denotes the gas constant and T denotes the temperature.Ma expresses the
ratio between the Marangoni stress and viscous stress. From these expressions, the
surface tension coefficient is

σ = σ0 +Ma ln(1 − �). (10)

In the present study, we solve the problem not only for the fixed spherical shape
but also for the deformable bubble. In the case of the deformable bubble, an ad-
ditional condition is required to decide the bubble shape. That is the normal stress
condition, which is expressed as follows:

−p + 2

Re
eηη = −pg + σ(κ(ξ) + κ(φ)), (11)

where 2
Re
eηη is the dimensionless normal viscous stress, pg is the dimensionless

pressure inside a bubble, while κ(ξ) and κ(φ) are the principal curvatures of the bubble
surface.

To satisfy the above relations, an iterative procedure [8] similar to the one from
Ryskin and Leal [9], which was originally developed for the steady state problem, is
here extended to the unsteady problem and is used to obtain the instantaneous shape
of a deformed bubble.

3 Results and discussions

3.1 Steady behavior

To verify our simulation results, we compare the computed drag coefficient and sur-
face concentration with those of Cuenot et al. [6]. Although the Peclet number is 105

in their simulation, we used a lower Peclet number of 200. The effect of this on the
results is discussed below.

Table 1. Simulation condition (spherical bubble).

Re Pe Ma Ha La K

100 200 61 0.001 0.112 1

In this simulation, the bubble rising velocity is assumed to be constant, and the
surfactant effect suddenly emerges at a certain instant when the bubble is at its steady
state in the clean liquid system.

Figure 2(a) shows the temporal evolution of the surface concentration as a func-
tion of the angle from the front stagnation point of the bubble. In our numerical
simulation, the effect of surface diffusion is larger than that of Cuenot et al., because
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(a)

(b)

Fig. 2. Comparison with the simulation by Cuenot et al. [6] for Pe = 200. (a) Surface concen-
tration as a function of angle from the front stagnant point. (b) Drag coefficient as a function
of dimensionless time. The drag coefficient changes from that of a clean bubble to that of a
rigid sphere.

our Peclet number is much smaller, and the discrepancy in surface concentration is
recognized in the region where the surface concentration gradient is sharp. However,
in most of the surface area, the distribution agrees well with Cuenot et al. including
the unsteady behavior.

Figure 2(b) shows the temporal evolution of the drag coefficient as a function
of dimensionless time. The drag coefficient increases to that of a rigid particle. As
for the drag coefficient, good agreement with Cuenot et al. is also obtained, and it
is confirmed that the force acting on a bubble is evaluated accurately even at the
relatively low Peclet number of 200.

We conclude that the Peclet number does not affect the surface concentration
and the rising velocity, for values of Pe larger than 200. Therefore, in the present
simulations, we set the Peclet number 200, since the simulation becomes easier due
to a larger grid size to resolve the boundary layer of surfactant concentration.

315



Y. Matsumoto et al.

Table 2. Physical properties of surfactant.

Surfactant ka β kaβ �max × 10−6

[m3/mol.s] [mol/m3] [1/s] [mol/m2]
1-Pentanol (Fainerman and Lylik [12]) 5.08 21.7 110.24 5.9
TritonX-100 (Borwankar et al. [13]) 50 6.6 × 10−4 0.033 2.9

3.2 Dependence on the adsorption/desorption properties

Figure 3(a) shows the drag coefficient for three different kinds of surfactant (1-
Pentanol, 3-Pentanol, TritonX-100) in two different conditions of bulk concentra-
tion. In the case of a 3-Pentanol solution of 3.70 × 10−2 mol/m3, there is little de-
viation from the drag coefficient of the clean bubble [10]. For a TritonX-100 solu-
tion, however, the bubble already shows the drag of a rigid particle [11] even at
7.10 × 10−4mol/m3. This is due to the difference in the adsorption/desorption kin-
etics between Pentanol and TritonX-100. The adsorption rate of TritonX-100 is 10
times larger than that of 1-Pentanol, and the desorption rate is 1/3000 that of 1-
Pentanol. TritonX-100 being less desorbable, a surfactant molecule adsorbed in the
front part of the bubble surface and transported to the rear part will remain there, pro-
ducing a large surface concentration gradient. Therefore, in a TritonX-100 solution,
the rising velocity of a bubble can be more easily reduced to that of a solid particle
even if the bulk concentration is much lower than for Pentanol.

Figure 3(b) shows the numerical results of the surface velocity. The simulation
conditions correspond to those induced by the arrows in Figure 6(a). It is found that
the surface velocity of a bubble in a TritonX-100 solution is similar to that of a
non-slip rigid sphere and differs from that of a bubble in a 1-Pentanol solution. For
1-Pentanol, it is shown that the surface velocity is retarded depending on the bulk
concentration, that is, the surface velocity for case 2 is more retarded than that for
case 3. This result explains why case 2 shows the drag coefficient closer to that of a
solid particle than does case 3. It is noted that the surface velocity and the concen-
tration distributions are very difficult to obtain through experiments but numerical
simulation gives detailed information on them.

3.3 Unsteady motion of a bubble

Figure 4 shows the effect of the adsorption/desorption kinetics on the unsteady mo-
tion of a rising bubble. In these simulations, the initial bubble velocity is set to zero.
Therefore, the bubble starts accelerating towards terminal velocity. There are three
important processes related to the unsteady motion of a bubble:

(1) acceleration toward the terminal velocity of a clean bubble;
(2) deceleration by the effect of the slow adsorption process of surfactant;
(3) nearly steady state with a constant rising velocity.

In (1), the adsorbed surfactant is transported toward the rear stagnation point by the
advection on the surface, and a large gradient of surface concentration is formed. In
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(a)

(b)

Fig. 3. Dependence on concentration and kind of surfactant. (a) Drag coefficient for various
surfactants (1-Pentanol, 3-Petanol, TritonX-100). (b) Surface velocity distribution as a func-
tion of the angle from the front stagnant point.

(2), the effect of adsorption gradually begins to emerge on the rising velocity. The
position of the large gradient of surface concentration moves forward and gives a
larger stress on the bubble surface. This increase of stress retards the bubble surface
velocity, and the bubble begins to decelerate. In (3), the drag on the bubble balances
the buoyancy force and the rising velocity becomes nearly constant, although the
amount of adsorption continues to increase for a while.

Figure 4(a) shows the dependence of the rising velocity on the adsorption con-
stant and Figure 4(b) shows that on the desorption constant. The results show that if
the adsorption constant is small or the desorption constant is large, then the bubble
behaves like a clean bubble. Increasing the adsorption constant or decreasing the
desorption coefficient reduces the terminal velocity to the value for a solid sphere.
Beyond the condition which affects the terminal velocity, a qualitative difference of
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(a)

(b)

Fig. 4. Temporal evolution of the instantaneous rising velocity for (a) different adsorption
constants, (b) different desorption constants.

the phenomenon between the increase of adsorption constant and the decrease of
desorption constant appears. As is shown in Figure 4(a), a further increase of the
adsorption constant gives a reduction of the relaxation time and the surfactant effect
appears in a shorter time. On the other hand, as shown in Figure 4(b), a further de-
crease of the desorption constant does not reduce the relaxation time and there exists
an asymptotic behavior for this case.

3.4 Deformation of a contaminated bubble

To investigate the effect of the boundary condition on the bubble surface, we conduc-
ted a numerical simulation with both a free-slip and a non-slip bubble. The non-slip
bubble represents the situation in which sufficient surfactant is dissolved in the liquid.
Figure 5 shows the simulation result of a deformed bubble at Re = 10, We = 10,
where the Weber number We is defined as
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Fig. 5. Temporal evolution of bubble shape for Re = 10, We = 10. Color represents the
amplitude of vorticity. (Left: non-slip bubble, Right: free-slip bubble).

We = 2RρU2∞
σ0

. (12)

It is shown that a free-slip bubble deforms much more than a non-slip bubble.
The tendency is observed not only in the steady state but also in the unsteady state. It
must be noted that these behaviors of two bubbles correspond to the cases of different
liquids, since the comparison was made for the same dimensionless number Re and
We, although the non-slip bubble have a larger drag coefficient.

Next, the deformation of a bubble in a surfactant solution is discussed. The sim-
ulation conditions are shown in Table 3. This corresponds to the lower Reynolds
number and the higher Weber number condition, under which the steady shape is
insensitive to the Weber number in the case of a super-purified system. Here, Ma,
which governs the tangential stress on a bubble surface, is changed to investigate the
Marangoni effect on the bubble deformation.

The bubble shapes in the steady state are shown in Figure 6. The overall shapes of
both bubbles look very similar except for the high curvature region of the sharp edge
around the bubble. As is shown in Figure 6, Case 2 has a sharper shape of the bubble
than Case 1 in the largest curvature part. Subject to Equation (10), different values
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Table 3. Simulation conditions (deformed bubble).

Re We Ha La K Ma

20 15 5.0 × 10−4 0.112 1.0
Case 1: 30

Case 2: 60

Fig. 6. Numerical result of bubble shape for two Marangoni numbers: 30 and 60. Higher
Marangoni number gives the larger curvature at the edge of the bubble.

of the Ma number give different values of the surface tension coefficient as well as
the Marangoni stress on a bubble. When the value of Ma is high, the reduction of
the surface tension coefficient increases, and the curvature near the outer edge of the
bubble becomes larger.

4 Conclusion

The effect of different kinds of surfactant on a single bubble motion in a quiescent
liquid was investigated numerically taking the Marangoni effect into account. As a
result, the following conclusions were obtained:

Spherical Bubbles:

(1) The terminal velocity can be easily reduced to that of a rigid sphere for surfact-
ants like TritonX-100 which have a very low desorption constant. The difference
of adsorption constant gives the difference of relaxation time to the terminal ve-
locity. Whereas, in Pentanol solutions, the terminal velocity of the bubble is more
gradually reduced than that in TritonX-100 solutions, depending on the amount
of surfactant.

(2) Not only for the steady behavior of a bubble but also for the unsteady behavior,
the ratio between the adsorption and desorption constants has a large effect. An
increase of the adsorption rate shortens the transient overshoot process of the
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rising velocity. On the contrary, a decrease of the desorption rate reduces the
terminal velocity itself.

Deformed Bubbles:

(3) It is confirmed that a non-slip bubble becomes more spherical than a free-slip
bubble at the same Reynolds and Weber number.

(4) In the case of a deformable bubble in surfactant solutions at the lower Re (≤ 20)
and the higher We (≥ 10), the Marangoni number does not significantly affect
the overall bubble shape.
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1 Introduction

The propagation of shock waves in bubbly liquids has attracted great interest be-
cause of its practical importance. It has many interesting applications in petroleum
and chemical engineering, biological and medical sciences, geophysics, etc. It is also
of fundamental importance. Despite the fact that shock waves in a dilute bubbly li-
quid have been extensively investigated in the literature [1–4] using model equations,
direct numerical simulations using the full Navier–Stokes equations, where the ef-
fects of viscosity and vorticity are fully accounted for, have not been treated before
due to the complexity of the phenomenon. The front tracking method [5], has been
rather successful in solving the full Navier–Stokes equations in the presence of a de-
forming phase boundary in many multi-phase flow applications. Such applications
[6,7] include the collapse of a cavitation bubble near a solid wall and the formation
of a toroidal bubble by a high speed micro-jet near a rigid boundary.

Here, our goal is to extend the front tracking method to be able to follow the
collapse of a cluster of bubbles in a quiescent liquid inside a 2D or 3D rectangular
domain excited by a pressure jump at the top. The study of a relatively simple model
(say, by considering a polytropic law for the gas as a first step) by numerical simu-
lations using the front tracking method, where bubble deformations and interactions
are fully accounted for, is a useful first step in understanding the flow characteristics
behind the shock. Such simulations will yield information about the magnitude of ve-
locity and pressure fluctuations, and allow us to quantify the effect of bubble/bubble
interactions and bubble deformation. Numerical simulations also make it possible to
go beyond the classical Rayleigh–Plesset analysis for a dilute liquid, where the upper
limit of the void fraction is only a few percent.
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2 Shock propagation in bubbly liquids by using the front
tracking method

We consider a bubbly liquid filling a 2D or a 3D rectangular domain. The bubbles
are initially assumed to be either circular (in 2D) or spherical (in 3D) in shape, uni-
formly distributed and in equilibrium with the surrounding liquid. A pressure jump
(incident shock wave) is introduced at the top wall of the domain (with liquid in-
flow) and a wall boundary condition is imposed at the bottom (with no outflow). The
domain is taken to be periodic in the transverse direction(s). For the numerical sim-
ulation by the front tracking method, the fluid motion is governed by the normalized
unsteady Navier–Stokes equations, valid for the whole flow field. Neglecting gravity
and surface tension, these equations can be written as

∂(ρu)
∂t

+∇ · (ρuu) = −∇p + 1

(Re)
∇ · (2µD), (1)

where the density ρ varies in the interval ρb ≤ ρ ≤ ρ" and the viscosity µ varies
in the interval µb ≤ µ ≤ µ", with subscripts b and " denoting the bubble and the
liquid, respectively. Here, D is the deformation tensor, u is the velocity field and p

is the pressure field. The Reynolds Re number is given by

Re = ρ′m
√
p′
m/ρ

′
mL

′

µ′
m

, (2)

where L′ is a characteristic length of the order of the initial mean radius of the
bubbles, ρ′m and µ′

m are conveniently defined normalization values of the density
and of the viscosity, both lying between those values of the liquid and of the bubble,
and p′

m is a normalization pressure chosen for a characteristic speed
√
p′
m/ρ

′
m or for

a characteristic time L′√ρ′m/p′
m (all primed variables are dimensional). We neglect

the compressibility of the carrier liquid, taking it to be incompressible so that

∇ · u = 0 (3)

in the carrier liquid phase, and assuming its viscosity and density to remain constant
at all times. The bubbles, on the other hand, are compressible with the pressure inside
either set to a constant or varied isothermally. This imposes a moving boundary con-
dition on the pressure field to be satisfied at the bubble/liquid interfaces and forces
the imposed pressure at the top to drop to the level specified inside the bubbles. Thus,
the presence of the bubbles prevents the effect of the increased pressure at the top
to reach further into the bubbly mixture. The fact that the bubbles do not completely
block the channel allows this effect to be felt slightly deeper, but not significantly.
Equation (1) together with the incompressibility condition (3) in the liquid phase and
a specified pressure in the bubbles, set equal to either a global constant or its local
value resulting from the polytropic law, are solved iteratively by a conventional finite
difference method on a staggered grid [5]. For the simulations with the polytropic gas
law, we evaluate the area (2D) or volume (3D) of each bubble at each time step. The
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Reynolds number is assumed to be of O(1) in magnitude characterizing a flow field
with a finite, but low Reynolds number.

Numerical simulations were carried out for both two- and three-dimensional do-
mains. Since the pressure is specified inside the bubbles, the fluid properties there
play a minor role in the evolution and, to make the computations as easy as possible,
we used a density and viscosity ratio of ρ"/ρb = µ"/µb = 10. Tests with higher
ratios using the two-dimensional domain confirmed that the results are essentially
independent of these ratios. The computed results were compared with those of one-
dimensional homogeneous bubbly mixture theory. In particular, a mean shock speed
was found by computing the distances advanced by a constant pressure rise in the
shock profile over a time interval �t at several times during the evolution and by di-
viding the mean distance by�t . The shock speeds thus obtained were compared with
those calculated by the one-dimensional homogeneous bubbly liquid theory where
the shock speed Us is given by

U2
s = (1 − β1)(p1 − p0)

(1 − β0)(β0 − β1)ρ"
, (4)

using the Rankine–Hugoniot relations [1, 2] at a discontinuity connecting two re-
gions of equilibrium states, designated by 0 and 1. In Equation (4), β0 and β1 are
the void fractions and p0 and p1 are the mixture pressures of the equilibrium re-
gions 0 and 1, respectively. To justify the comparison of the mean shock speed with
Equation (4), steady-state conditions for shock propagation should be reached which
requires long distances in the direction of propagation [9, 10]. Although these con-
ditions are probably not reached over the relatively short distances of propagation
in the computational domains of the present simulations, the calculated r.m.s. values
of fluctuations of the instantaneous shock speeds about the mean shock speed are
shown to be only within a few percent, making the comparison of the mean shock
speed with Equation (4) meaningful.

3 Results and discussion

For the numerical simulations, two- and three-dimensional rectangular computa-
tional domains were considered. A grid study was conducted with a resolution ran-
ging from 50 × 98 points to 122 × 242 points in 2D and from 18 × 18 × 66 points to
34 × 34 × 130 points in 3D in order to control numerical accuracy. Better resolution
of the bubble/liquid interfaces were observed as the grid resolution was increased.
However, the results for the shock structures and shock speeds remained almost un-
changed. For the 2D case,where the gas pressure inside the bubbles is held constant,
a rectangular grid containing 24 bubbles were considered. All bubbles were assumed
to be initially circular in shape with the same radius R = 0.25. At time zero, the
pressure at the top of the domain was raised by �p = 0.4 and kept constant during
the simulations.
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Fig. 1. Results obtained by the front tracking method showing a shock wave initially at y = 8.0
with strength �p = 0.4 propagating into a quiescent bubbly liquid in a rectangular domain
containing 24 bubbles, each with initial radius R = 0.25 where the gas pressure inside the
bubble is held constant at its initial value (the density and viscosity of the liquid and of the
gas are, respectively, ρ" = 2.5; µ" = 0.07 and ρb = 0.25; µb = 0.007). (a) Snapshot of the
bubbly liquid at the initial time t = 0.0. (b) Snapshot of the bubbly liquid at time t = 3.0
showing the collapse of bubbles as the shock propagates (shaded areas show higher pressure
zones). (c) Snapshot of the bubbly liquid at time t = 5.5 showing the collapse of bubbles as
the shock propagates (shaded areas show higher pressure zones). (d) The pressure distribution
for the bubbly shock wave at locations y = 3.333 (dashed line) and y = 6.0 (solid line) along
the boundary x = 0.

Snapshots of the results obtained by the front tracking method showing the de-
formation of the collapsing bubbles and the evolution of the pressure distribution at
two locations along the direction of propagation (the y-axis) in a rectangular grid
with a resolution of 122 × 242 points are shown in Figures 1(a)–(d). The results
in Figures 1(a)–(c) show that the bubbles collapse with non-circular shape (almost
elliptical in the beginning) followed by a re-entrant jet before they totally disappear
(the interfaces are here resolved up to a point where the top interface almost touches
the bottom one). In this case, the fluctuations in the hydrodynamic variables observed
in the transverse direction (x-direction) are reasonably small to justify the use of the
one-dimensional homogeneous bubbly flow theory. Figure 1(d) shows the evolution
of the pressure distribution of oscillating shock waves at locations y = 3.333 and
y = 6.0 along the direction of propagation (y-axis) at the boundary x = 0, where
periodic boundary conditions are imposed. The amplitude of the pressure fluctuations
in this case can be as high as 0.36 at the beginning of oscillations, but they eventually
decay in time. The mean shock speed obtained by the simulations using the above
mentioned averaging yields a value equal to 1.103 (with r.m.s. fluctuations being less
than 2%), which seems to be in good agreement with the value Us = 1.128 evalu-
ated by Equation (4) for homogeneous bubbly liquids with p1 − p0 = �p = 0.4,
ρ" = 2.5, β0 = 0.1473 and β1 = 0.0.
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Fig. 2. Results obtained by the front tracking method showing a shock wave with strength
�p = 0.4 propagating into a quiescent bubbly liquid in a rectangular box containing 16
bubbles, each with initial radius R = 0.25 where the gas pressure inside the bubble is held
constant at its initial value. (a) Snapshot of the bubbly liquid at the initial time t = 0.0.
(b) Snapshot of the bubbly liquid at time t = 3.5 showing the non-spherical collapse of
bubbles as the shock propagates. (c) The pressure distribution for the bubbly shock wave at
locations z = 2.0 (light line) and z = 3.0 (dark line) along the line x = 0 and y = 0.

The 3D numerical simulations for the case where the gas pressure was held con-
stant were carried out in a rectangular box, with a grid resolution of 34 × 34 ×
130 points, containing 16 bubbles. The bubbles were again taken initially in equi-
librium with the quiescent liquid and spherical in shape, all with the same radius
R = 0.25. A shock wave with strength �p = 0.4 was incident at the top wall of
the rectangular box. The results obtained by the front tracking method are shown in
Figures 2(a)–(c). The non-spherical collapse of bubbles as the shock propagates can
clearly be seen in Figure 2(b). An almost uniform flow field can be observed over
the cross-section in the lateral direction as the shock propagates, justifying the use of
Equation (4) for the one-dimensional homogeneous bubbly liquid model in this case
as well. The pressure distributions at locations z = 2.0 and z = 3.0 along the line
x = 0 and y = 0 in the propagation direction of the shock are plotted in Figure 2(c).
The pressure at these locations oscillates with a maximum amplitude of 0.15, and the
pressure fluctuations decay as the shock propagates further. The mean shock speed
from the simulations using the above discussed averaging method yields a value of
0.953 (with r.m.s. fluctuations being less than 5%), which seems to agree well with
the value Us = 0.91 evaluated by Equation (4) for homogeneous bubbly liquids with
p1 − p0 = �p = 0.4, ρ" = 2.5, β0 = 0.2618 and β1 = 0.0.

Finally, a 2D numerical simulation was carried out for the case where a 2D iso-
thermal law (with the polytropic index being equal to unity) for the gas pressure was
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Fig. 3. Results obtained by the front tracking method showing a shock wave with strength
�p = 0.4 propagating into a quiescent bubbly liquid in a rectangular domain containing 24
bubbles, each with initial radius R = 0.25 where the gas pressure is varied isothermally (the
density and viscosity of the liquid and of the gas are, respectively, ρ" = 2.5; µ" = 0.07
and ρb = 0.25; µb = 0.007). (a) Snapshot of the bubbly liquid at the initial time t = 0.0.
(b) Snapshot of the bubbly liquid at time t = 1.6 showing collapsing bubbles behind the
shock as the shock propagates (shaded areas show higher pressure zones). (c) Snapshot of the
bubbly liquid at time t = 3.6 showing collapsing and rebounding bubbles behind the shock as
the shock propagates (shaded areas show higher pressure zones). (d) The pressure distribution
for the bubbly shock wave at locations y = 3.333 (dashed line) and y = 6.0 (solid line) along
the boundary x = 0.

assumed. The same rectangular grid used for the constant pressure case containing
24 bubbles, all having the same radius R = 0.25, was considered for the flow sim-
ulations. The incident shock strength was also set equal to �p = 0.4 to allow a full
comparison with the case of constant gas pressure. Snapshots of the initial bubble
distribution and of its evolution using a grid resolution of 122 × 242 points at non-
dimensional times t = 1.6 and t = 3.6 are shown in Figures 3(a)–(c).

When the shock front hits the boundary of the bubbles, the bubbles start to col-
lapse isothermally and the gas pressure inside the bubbles increases resulting in
a decrease in the pressure threshold for further collapse. Eventually this pressure
threshold diminishes and the bubbles rebound (after a few oscillations, they would
eventually reach equilibrium if the computational domain is enlarged). Therefore,
in the first instance of shock propagation, only collapsing bubbles are seen (Fig-
ure 3(b)). As the shock propagates downward towards the bottom wall, the bubbles
close to the top (where the shock was incident) start to rebound (Figure 3(c)).
The bubbles collapse and rebound almost elliptically for this case. Again, the lat-
eral pressure and velocity fluctuations can be neglected resulting in an almost one-
dimensional propagation of the shock front. The evolution of the pressure distri-
butions at locations y = 3.333 and y = 6.0 along the boundary, where periodic
boundary conditions are imposed, are shown in Figure 3(d). The profiles look much
more smooth for the reasons explained above. The mean shock speed obtained from

328



Shocks in Bubbly Liquids

the simulations using the above mentioned averaging yields a value of 1.992 (with
r.m.s. fluctuations being less than 7%). On the other hand, the shock speed Us of one-
dimensional homogeneous bubbly liquid is evaluated by Equation (4) with ρ" = 2.5,
p1 − p0 = �p = 0.4, β0 = 0.1473 and β1 = 0.1052. The shock speed thus ob-
tained using Equation (4) yields the value Us = 1.997, which agrees well with the
simulated value. Due to the increase in the gas pressure as the bubbles collapse, the
bubbles collapse at a slower rate and the shock propagates faster in this case as com-
pared to the case where the gas pressure is held constant under the same conditions.

4 Concluding remarks

The results of this investigation have shown that shock propagation in a bubbly liquid
with void fractions as high as 15% to 25% can still be well described by the one-
dimensional homogeneous bubbly liquid model when the gas pressure inside the
bubble is kept constant or varied isothermally, irrespective of the dimensionality of
the computation domain. While bubble deformation and bubble/bubble interactions
are properly accounted for by the present simulations, our results do not address the
effects of liquid compressibility, thermal damping and bubble fragmentation. These
effects demand the solution of the compressible Navier–Stokes equations together
with the energy equation both inside and outside the bubble. Although this does not
seem to be possible at present times, a model equation that replaces the polytropic
law for the pressure inside the bubble by an equation similar to that proposed by
Prosperetti [8] to take into account the effect of thermal damping can be used as a
first step. Only then, can this simple model be extended to simulate bubbly flows in
more complex geometries than those examined here, such as bubbly flows through
constrictions or over curved boundaries.
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Abstract. Large-Eddy Simulation is used for the investigation of the breaking of steep water
waves on a beach of constant bed slope. The method is built within a multi-fluid flow solver, in
which the free surface is tracked using a Volume-of-Fluid method featuring piecewise planar
interface reconstructions on a twice-as-fine mesh. The Smagorinsky sub-grid scale model is
used for explicit under-resolved turbulence closure, coupled with a new scheme for turbulence
decay treatment on the air-side of massively deformable free surfaces. The simulations were
conducted for shear Reynolds numbers Re∗

G
≈ Re∗

L
≈ 400, based on the mean water depth.

The Large-Eddy Simulation formulation in the interface tracking, single-fluid formulation is
introduced for this purpose. The approach is demonstrated as a powerful tool for exploring
large-scale, interfacial turbulent flows. The discussion focuses on coherent structures forma-
tion, the free surface flow effects at breaking, and form drag evolution with the surface.

1 Introduction

The traditional treatment of wave breaking in coastal engineering research using
single-fluid hydro-codes has been based on free surface models imposing zero pres-
sure boundary conditions, e.g. [1, 2]. The main flow features of wave breaking that
have been explored in such research include surface rollers at the front of spilling
breakers, the dynamics of water tongues while jetting forward to impact on the sur-
face in front of the crest, flow patterns under the breaking waves, and to some extent
the generation of turbulence by the wave deformations. The breaking of free-surface
waves is contrasted with the breaking of interfacial waves (both owing to a con-
vective instability) in terms of subsequent scalar mixing and air entrainment [3].
Free-surface simulations that involve sharp-interface capturing/tracking techniques
are not needed for the study of scalar (density) mixing.

Water-flow simulations, on their own, provide no insight into the air flows above
the free surface. The effects of winds on wave motions and breaking, and gas ab-
sorption by oceans, cannot be handled naturally without detailed coupled air-water
flow solutions. Even in conventional studies of wave breaking, imposing a free sur-
face pressure boundary condition may not be necessarily adequate. Observations of
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significant form drag resulting from wave motions in the stratified flow scenarios in-
vestigated by Sullivan and McWilliams [4] are applicable to wave breaking in free
surface flows. In the case of steep wave propagation and breaking, form drag is not
distributed uniformly across the free surface as may be implied by a zero-pressure
boundary condition. In wave plunging, strong events such as the propagation of the
water tongue ahead of the wave crest and its impact onto the free surface can be ser-
iously affected by the air flow ahead of the wave. The counter-current air-water flow
of Fulgosi et al. [5] shows a significant population of coherent structures on both
sides of the sheared interface. The use of free surface models that ignore the details
of turbulence in the air flow may lead to significant discrepancies in the the water
flow solution, and, to a certain extent, in the associated interfacial scalar transfer
mechanisms.

Studies of wave breaking incorporating gas-side flow solutions have been per-
formed in the context of stratified flow studies in idealized geometries using forcing
function-based wave generators. Fringer and Street [3] explored breaking dynamics
in detail, and found the interface thickness to be a crucial factor in determining the
size and strength of Kelvin–Helmholtz billows, and hence the prevalence of shear or
convective instability. Such observations may have some analogue in the breaking
of free-surface waves, but cannot be confirmed in the literature due to the lack of
free-surface wave breaking studies with explicit air flow solutions.

In this paper, we investigate the dynamics of turbulence in the free surface flow
solution by incorporating the flow physics pertaining to the air flow and entrainment
induced by wave motion and breaking. We proceed by identifying the effects of the
air flow on the free surface profile and water-flow solution. For the purpose, a novel
LES approach for interfacial turbulent multi-fluid flows has been developed, based
on the filtered single-fluid Navier–Stokes equations. The Smagorinsky-based eddy-
viscosity model is used, coupled with a new scheme for correct damping of turbu-
lence at deformable interfaces from the gas side. Different damping model functions
are used, depending whether the flow is approaching interfaces or solid walls. The
near-interface flow physics modeling is applied within a rigorously momentum con-
servative method, coupled with a high-order PLIC-VOF approach for large-density
ratio flows.

2 Mathematical formulation

2.1 The filtered single-fluid equations

The single-field representation of two-phase flows (k = L,G) applies to interfacial
flows with typical length scales larger than the grid size. Phase inter-penetration is not
presumed, instead, interfacial jump conditions are directly incorporated by solving
a single set of transport equations. The phases are identified locally using the phase
indicator functionC, which reduces in the continuous limit to the Heaviside function:
C = 1 if x ∈ k = G, and C = 0 if x ∈ k = L. The local density is thus defined by
ρ =∑k C

kρk . Subharmonic mean is used for the treatment of viscosity.
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The LES concept has been recently extended [6] for turbulent, interfacial multi-
fluid flows, based on the filtered single-field transport equations. In this context the
resolvable super-grid quantities f are obtained by convolution using a spatial filter
G:

f (x) =
∫
D

G(x − x′)f (x′)dx′. (1)

Non-resolved sub-grid scale (SGS) components (f ′ = f − f ) are modeled.
The filtered phase indicator function, C, is subsequently interpreted as the resolved
volume fraction, and is used to determine the filtered local density

ρ =
∑
k

Ck ρk. (2)

The derivation of the filtered single-field equations is based on Component-
Weighted Volume Averaging procedure [7], inspired from Favre’s flow averaging
of compressible flows: f̃ (x) = ρ(x)f (x)/ρ(x).

Performing the convolution product on the transport equations and applying the
local density-based flow decomposition yields the filtered single-field transport equa-
tions for turbulent multi-fluid flows:

∂ρ

∂t
+ ∂

∂xj
(ũj ρ) = 0, (3)

∂C

∂t
+ ∂

∂xj
(ṽj C) = 0, (4)

∂ρũi

∂t
+ ∂

∂xj

(
ρ ũi ũj

) = − ∂p

∂xi
+ ∂

∂xj

[
σ̃ij − τij

]+ ρgi + γ κ n̂i δ + ε, (5)

where vj is the interface velocity (which reduces to the fluid velocity in absence of
phase change), τij is the phasic SGS Reynolds stress tensor, defined by

τij ≡ ρ
(
ũiuj − ũi ũj

)
, (6)

ε is the sum of the filtering-induced non-linearity and commutation errors, γ is the
surface tension coefficient, κ is the interfacial curvature, and ni is the unit inter-
face normal. The surface tension is localized to the interface by the delta function
δ. Derivation details can be found in [6]. Note only that ε contains the following
non-resolved interfacial terms:

εd = ∂

∂xj

[
σ ij − σ̃ij

]
, (7)

εγ = γ κ n̂i δ − γ κ n̂i δ. (8)

These two quantities, referring to non-resolved interfacial deformations, are primar-
ily grid dependent. Their interaction with turbulence is unclear at this stage; therefore
they were neglected in this work.
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2.2 Numerical schemes

The MFVOF-3D code has been developed for transient, high-density ratio multi-
fluid flows. In this finite volume solver, interfaces are tracked using a 3D VOF
method that is resolved on a twice-as-fine sub-mesh nested within the underlying
solver mesh. Well-oriented interface planes in the 3D PLIC-VOF (Piecewise Linear
Interface Calculation) scheme ensure free surface representations remain compact
over time; more details on 3D PLIC-VOF can be found in [8]. Mesh refinement is
particularly important for the tracking of high-curvature interfaces, ensuring high-
order accuracy and reducing numerical surface tension effects. The code is based on
a rigorous momentum-conservative formulation; accuracy and stability are ensured
using VOF-augmented momentum advection, in which the convective flux densities
are inferred from VOF-based material fluxes.

2.3 SGS turbulence modeling

The LES approach employed is based on explicit SGS modeling within the eddy-
viscosity framework. The Smagorinsky SGS model linking the eddy-viscosity µt to
the resolved strain rate Sij takes the following form:

µt = fµInt ρ
[
Cs �

]2 √
2Sij Sij (9)

with a value of the model coefficient CS = 0.1 in the core flow. In this new multi-
fluid flow context, it is understandable that the CS value could be inferred only by
reference to wall flows, or, in a certain measure, from known DNS [5] or LES [7]
data. The extensive DNS study of stratified two-phase flow [5] has revealed the need
for turbulence damping approaching deformable interfaces, very much in the same
way as for wall flows. For low to moderate interface deformations, this DNS database
suggests an exponential dependence of the model function fµInt on y+Int [9]:

fµInt = 1 − exp
[
−1.3.10−04y+Int − 3.6.10−04y+Int

2 − 1.08.10−05y+Int
3
]
. (10)

The concept of a non-dimensional “interface shear unit” y+Int, defined by analogy to
“wall shear units” as

y+Int = Uτ
Intφ

RDF/νG; Uτ
Int =

√
τInt/ρG, (11)

requires the definition of its own interfacial gas-side shear velocity Uτ
Int and recon-

structed distance function (RDF) φRDF. Given the dependence of y+Int on local flow
conditions, the width of interface support for defining the RDF may fluctuate signi-
ficantly during the simulation.

2.4 Multi-physics treatment near deformable interfaces

In the RDF algorithm, the piecewise planar interface reconstructions of the 3D VOF
scheme are used to generate interface markers, by extracting the coordinates of all in-
tercepts of interface planes with the edges of its bounding mesh cell. These intercepts

334



Large-Eddy Simulation of Steep Water Waves

are stored, and the centroid of each interface plane is extracted from these intercepts
and stored. For each point (i, j, k), the closest interface marker is identified, and is
used to compute φRDF

i,j,k . The use of the twice-as-fine mesh ensures that RDF compu-
tations based solely on interface-plane centroid data retain acceptable accuracy and
smoothness.

The next step of the scheme is to perform a mesh sweep confined to a one-cell
interface support, in which a new list of interface points is identified and the shear
recorded. Throughout this interface support, cell-centered Points P are identified to
the gas side of φRDF = 0, and a normal estimate is determined at that point by n̂RDF

P =
∇φRDF

P /|∇φRDF
P |. Tracing back along n̂RDF

P generates the interface point coordinate
estimate (x, y, z)Int′ , and an estimate of the interface velocity uInt′ = (u, v,w)Int′ is
generated by extrapolating through the gas-sided velocity field to interface point I ′;
the same procedure is used to estimate the velocity at Point P. Vector resolution is
used to extract the shear components of uP and uInt′ , and the interface shear τInt′ is
then computed and stored in the list.

The second mesh sweep, in which fµInt is computed, is performed over a wider
cell support. Tracing back from gas-side Point P along the RDF normal n̂RDF

P ends
at a point I on the interface that doesn’t necessarily coincide with any point I ′ in
the list. An estimate of τInt at (x, y, z)Int is then estimated as an inverse distance-
weighted interpolation estimate of τInt′ values in the list. The gas-side shear velocity
Uτ

Int =
√
τInt/ρG is computed to finally compute the interface turbulence length scale

y+Int. In practical applications, the grid resolution around the interface should be fine
enough to resolve the interfacial viscous sublayer, in particular in the presence of
interphase heat/mass exchange.

3 LES of Steep Water Waves

The fifth-order Stokes theory of Fenton [10] is the basis of the free surface initial-
ization used here. Flow parameters were similar to those used by Christensen and
Deigaard [2] in their “weak plunger” case study, albeit in our case the initial wave
was of higher amplitude. Specifically, we set the mean channel depth to d = 0.321 m,
the wave amplitude to H = 0.12 m, the wave period to T = 1.4 s, the Stokes drift
velocity to cS = 0 m/s, and g = 9.81 m/s2. Two grid resolutions were employed
(140×40×20 and 200×80×40), covering a domain size of 8 m × 0.6 m × 0.3 m.
The fine grid resolution helped resolve the wall and interface viscous sublayers down
to y+Wall ≈ y+Int ≈ 0.1, respectively. Only results obtained with the fine grid resolution
are discussed next.

3.1 Wave breaking events

Although the problem setup corresponds (for the most part) to the “weak plunger”
breaker type in [2], flow scenarios resembling the “spilling” and the “strong plunger”
breaker types have also been observed. Figure 1 shows frames that correspond to a
weaker plunging event, in which a tongue of water is thrown forward of the crest,
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t = 0.90 sec t = 1.00 sec

Fig. 1. Frames of C = 0.5 isosurfaces during a weaker plunging event.

t = 2.50 sec t = 2.60 sec

t = 2.70 sec t = 2.80 sec

Fig. 2. Frames of C = 0.5 isosurfaces during a stronger plunging event.

before impacting with the free surface in front of the crest. In Figure 2, the tongue
is thrown much further ahead of the crest. Rather than the plunger fully rebounding
off the free surface, air entrainment is visible, which is consistent with penetration
of the plunger. This behavior, combined with an upward rise of liquid in front of the
plunger after impact, are suggestive of a stronger plunging event. A spilling event has
also been captured in simulation, in which the wave rolls through the crest without
any liquid being thrown ahead of the crest.

3.2 Coherent structures

Underlying coherent structures (CS) are responsible for the transport of scalars and
for the production/dissipation of turbulence. The −λ2 approach of Jeong and Hus-
sain [11] has been used for coherent structures (CS) identification in [5] (by illustrat-
ing the structure of instantaneous vortex cores), and is used again here to provide a
qualitative indication of the effect of the interfacial motion on the quasi-streamwise
vortices. The analysis of various snapshots has revealed a multitude of forms, shapes
and extensions of these structures resembling those in channel flow, very much de-
pendent on the topology of the free surface; among the CS we could recognize in-
cluded sheets, hairpins and hockey-sticks. In the present case CS seem to have a
greater angle of inclination.

Figure 3 shows isosurfaces of −λ2 = 0.05 applied across both phases at one
instant. What is unique to this simulation is the way CS adapt to the shape of the
interface, almost independently from one phase to the other. It seems that on the gas-
side the CS are distributed in a relatively uniform manner, taking the form of quasi-
streamwise vortices that tilt in the spanwise direction according to the orientation
of the free surface. A lower CS concentration is observed over the concave part of
the interface (air side), while a dense population forms on top of the convex shape,
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Fig. 3. Coherent structures at t = 0.5 sec defined by using the CDF-based eduction of −λ2 =
0.05: (left) air side and (right) liquid side.

where the interfacial shear is high. In fact, the genesis of CS occurs at the upslope or
impact zone of the surface and project over the trough, where they lose their identity.
Similar CS dynamics have already been observed by Calhoun and Street [12] in their
LES of turbulent flow over a wavy surface. This is particularly remarkable in flow
zones over small slope, long wave-lengths (e.g. centre of the left panel). However,
in flow regions evolving over high slope, short wave-lengths, both the upsolpe and
downslope of the wave are covered by CS; part of it being created by the main-flow
over the upslope, the rest by the returning flow, in the opposite direction. This strong
interaction between the two CS populations is responsible for their later dissipation.

The liquid-side CS analysis reveals that these are preferentially concentrated un-
der the wave crests and near the shore, and their alignement seems to depend on
the water depth, in contrast to the air-side CS. Indeed, it is important to note that
the prominent structures are quasi-streamwise in shallow water flow regions (high
Froude number), and more three-dimensional and isotropic in deep water zones (low
Froude number). Note, too, that the particular snapshot shown may indicate that the
CS are more numerous in the liquid side; other snapshots reveal the inverse scen-
ario. The above observations lead to the conclusion that the turbulence structure is
particularly sensitive to wave deformations: in particular, the production/dissipation
mechanisms may in turn behave differently in the air and liquid sides. Such an ana-
lysis is beyond the scope of this paper. It seems that the evolution of the streamwise
vortices differs from one phase to the other, although both are highly correlated with
the wave motion.

Various authors (e.g. [12]) speculate about the role of the Taylor-Goertler invis-
cid instability mechanisms associated with wavy surfaces, and their exact relation-
ship with the generation/destruction of streamwise vortices. Although the prominent
structures are also quasi-streamwise in our flow, like in the flow over the wavy solid
surface of [12], we also believe that the Goertler instability play an important role in
the creation of vortices. That is, convex curvature regions are associated with stabil-
ization, whereas the inception of vortices occurs in concave curvature regions.

A notable feature of the wave breaking process illustrated in Figure 2 is the form-
ation of surface wrinkles in the plunging tongue almost normal to the spanwise dir-
ection; these are shown in more detail in figure 4(left). The wrinkles on and behind
the plunging tongue are some of the larger 3D distortions of the interface in the en-
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Fig. 4. (Left) wrinkles in the plunging tongue at t = 2.32 sec; (right) gas-side CS nestled in
the wrinkles ahead of the plunging tongue.

tire flow solution. The concentration of CS in the vicinity of tongue is more detailed
in Figure 4 (right) in which the CS were determined using the streamwise vorticity
contours rather than −λ2 = 0.05 isosurfaces. Figure 4 (right) shows most of the in-
dividual wrinkles on the air side to be filled with single quasi-vertical vortices, which
were not observed elsewhere in the flow. The absence of significant wrinkling over
most of the free surface upstream of the breaking zones points to a strong correla-
tion between turbulence structures, including CS, and surface wrinkling. The precise
mechanisms are not yet well understood.

3.3 Form drag evolution

In the case of an interface deformed by the shear imposed by the turbulent air-flow,
the form drag can be defined on that side of the interface as a projection of the surface
pressure onto the interface advection:

Dp = p−→n A · −→u /|−→u |, (12)

where p is the surface pressure, −→n the normal vector to the interface, A is the local
surface area, and the scalar product with −→u represents the velocity component par-
allel to the interface. In the present case, Dp is computed at the nearest (i, j, k) loc-
ations to the air side of the interface. In early studies dealing with fixed water wave
trains [4], the form stress was integrated over the “prescribed” wave length λ. In the
present study, however, waves of different slopes and wave-ages form and deform,
which makes it more practical to derive the form drag using the above equation.

Figure 5 displays the instantaneous distributions of form drag over the interface
(upper panel), together with the interface elevation contours on the same interface
(middle panel), at two instants during the simulation. The third panel of the figure
highlights the corresponding positions on the free surface where Dp is computed;
the contours correspond to the gas-sided turbulence damping function fµInt. The fig-
ure highlights a clear variation of the form stress with interface elevation, or more
precisely with the change in the surface elevation. There is a persistent trend for the
form stress to be higher with wave extrema.
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t = 1.0 sec

Dp t = 1.8 sec h

Fig. 5. Profiles of the form drag on the wave surface (top row), the corresponding elevation of
the surface (middle and bottom rows), the latter is colored by fµInt.

Fig. 6. Spanwise-averaged form drag and interfacial shear velocity distributions along the
wave propagation direction.

The spanwise-averaged form drag and interfacial shear velocity distributions,
defined by 1/z

∫ a
−a Dpdz and 1/z

∫ a
−a U

τ
Intdz (where a stands for the domain width),

are plotted in Figure 6 along the wave propagation direction. The various snapshots
analyzed so far reveal a strong correlation between the two quantities. The form
stress is shown to be significantly sensitive to the slightest variations of the interfa-
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cial shear. The profiles are almost in phase, featuring various modes with different
amplitudes. This finding is in agreement with the results of Sullivan and McWilliams
[4], and helps answer the question as to which velocity scale is appropriate for steep
wave growth analysis. Near-zero or slightly negative form drag correspond to flow
regions where the wave travels fast; maximum form stress corresponds to near stand-
ing wave scenarios, which occur in this simulation, too.

4 Conclusion

Large-eddy simulation investigation of breaking water waves has been conducted.
The study has shown wave breaking events in flows initialized using Fenton’s wave
theory, ranging from spilling to stronger plunging events. Turbulence structure is
seen to be particularly sensitive to wave deformations. The evolution of the stream-
wise vortices is found to be different in each phase, although both are highly correl-
ated with the wave motion. In particular, lower CS concentration is observed over the
concave part of the interface, while a dense population forms on top of the convex
shape. In the liquid-side, however, CS seem to preferentially concentrate under the
wave crest. The significant wrinkling at the breaking zones suggests a strong correl-
ation between turbulence vorticity-induced structures and surface wrinkling. A clear
dependency of the form stress on interface elevation is observed, with a persistent
trend for rapid changes with wave extrema and interfacial shear. Ongoing research
includes the investigation of breaking-waves turbulence interactions.
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1 Introduction

This work is motivated by the need for a high-fidelity numerical treatment of com-
pressible flows with multimaterial interfaces. Of particular interest are immiscible
flows with high Acoustic Impedance Mismatch (AIM) interfaces, such as those
between gases and liquids, under both weak and strong shock wave conditions. These
types of flow are encountered in numerous generically-important processes, such as
propagation of shock waves in bubbly media, and interfacial instability and mixing,
as well as in applications, such as explosive dispersal of liquids or solids, and atmo-
spheric dissemination of liquid chemical agents [18]. Here, we capitalize on recent
progress made by front capturing [7, 15, 16] and front tracking [5, 6] methods to
deploy an adaptive mesh refinement strategy such as needed to cope with the often
multiscale nature of such flows in practical settings.

The central theme, which guides the present development, addresses the need to
optimize between the algorithmic complexities in advanced front capturing and front
tracking methods, developed recently for high AIM interfaces, with the simplicity
requirements imposed by the AMR multi-level dynamic solutions implementation
[1–3, 19]. We have achieved this objective by means of relaxing the strict conservat-
ive treatment of AMR prolongation/restriction operators in the interfacial region, and
by using a Natural-Neighbor-Interpolation (NNI) algorithm [17] in a characteristics-
based matching (CBM) scheme at the interface [13]. The later is based on a two-fluid
Riemann solver, which brings the accuracy and robustness of the front-tracking ap-
proach into the fast local level set, front-capturing [14] implementation of the CBM
method. The performance of our method is demonstrated on three examples of shock
wave interactions with (i) a single gas bubble, (ii) a cluster of three bubbles and (iii) a
liquid drop.
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Fig. 1. Example of a hierarchy of SAMR meshes.

2 Overview of the method

Structured Adaptive Mesh Refinement (SAMR). The platform for our nu-
merical approach is the Structured Adaptive Mesh Refinement (SAMR) meth-
odology, originally developed by Berger and co-authors [1–3], and implemen-
ted as the SAMRAI package at Lawrence Livermore National Laboratory [19].
SAMR is based on a sequence of nested, logically rectangular meshes. Let
hk = {h0, h1, . . . , hk}|k=0,...,L−1 denote a collection of mesh spacings, where hk is
a mesh spacing of a SAMR grid level k subject to hk+1 ≤ hk . A SAMR grid �hL−1

is a nested hierarchy of L grid levels �h0 ⊃ �h1 ⊃ · · · ⊃ �hL−1 , where the coarsest
grid �h0 covers the entire computational domain. Grids are refined in both time and
space, using the same mesh refinement ratio r = hk

hk+1
, i.e. �t0

h0
= �t1

h1
= · · · = �tL−1

hL−1
.

Thus, the same explicit difference scheme is stable on all levels. As a consequence,
more time steps are taken on the finer grids than on the coarser grids, but the smallest
time step of the finest level is not imposed globally.

Each level �hk consists of a union of Mk logically rectangular regions, or
patches, Gk,m|m=�,...,Mk , at the same grid resolution hk . The levels are nested, but
the patches on different levels are not, and the patches on the same level may over-
lap, i.e. Gk,i ∩ Gk,j �= 0|i �=j. However, the requirement is that the discrete solution
must be independent of how �hk is decomposed into patches Gk,m. Thus, a point
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x of the computational domain in general may exist on several grids. The solution
vector U(x) is taken from the finest level. If there are several equally fine grids con-
taining the point, one can use the value from any of them, since the solution on the
intersection of overlapping same-level grids is identical. Figure 1 shows an example
of a hierarchy of SAMR grids with three levels of adaptation.

Time update of a solution on a hierarchy is organized in such a way, as to proceed
sequentially from the coarser to finer grids. More specifically, before updating at
any level, the next-coarser level solution must be already available, so as to allow
the complete inter-level communications needed for populating each patch’s ghost
cells by interpolation in both time and space. For parallelization, all patches of a
hierarchy are distributed between different processors.

Characteristics-Based Matching (CBM). The Characteristics-Based Matching
method on uniform meshes was introduced in [10, 11]. There are three elements
needed to incorporate the CBM into SAMR: inter-patch communication, genera-
tion/disposal of patches, and time update on a patch.

The inter-patch communication is necessary for synchronization of time updates
on different patches. More specifically, it is required to properly populate ghost cells
around each patch, before one may proceed with its update. There are three types
of inter-patch communications: same-level, coarse-to-fine and fine-to-coarse. The
utilities for these operations are provided by SAMRAI. In the case of gas-liquid inter-
faces, the conservative coarse-to-fine and fine-to-coarse inter-level communications
fail and must be modified. The origin for these failures is discussed in [13]. To cure
this problem, we have introduced non-conservative prolongation/restriction operat-
ors, which are applied near the interface. Algorithmic details of these operators are
given in [13].

The second element of our approach is related to adaptive generation/disposal of
AMR patches on different levels of a hierarchy. The SAMR grid may be modified at
discrete times. The finest level needs to be changed most often (patches are moved,
added or deleted, if required). When the level�hk is changed, all finer levels �hj |j>k
are changed as well, but the coarser levels �hi |i<k may remain the same. The utilities
for dynamic management of AMR patches require tagging criteria for refinement. In
particular, the computational mesh needs to be refined around flow discontinuities,
such as shocks and contacts, as well as around multimaterial interfaces. For inter-
faces, we use a distance-based criterium, and for shocks, we have a shock-detection
criterium that leaves out rarefactions. Both are described in [13].

Lastly, the major components of our patch time update strategy include
(a) a high-order-accurate Godunov-based conservative finite difference method
for gas dynamics to advance the solution in the bulk fluids [10]; (b) level-set-
based sharp capturing of interfaces, supplemented by localization (FLLS) and re-
initialization algorithms [14] for computational efficiency and accuracy, respectively;
and (c) “Characteristics-Based Matching (CBM)” for coupling solutions across the
interface [10, 11]. The key features of the CBM are (i) a Riemann-solver-based coup-
ling, which is essential for robustness in the case of high-AIM (i.e., gas-liquid) inter-
faces, and for accuracy in the case of very strong shock waves in both multi-gaseous
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and gas-liquid media; and (ii) elimination of the need for ghost fields and correspond-
ing ghost cells, as we found this to be necessary for compatibility with AMR. The
CBM is based on the generation/tracking/disposal of the subcell-interface-markers
(denoted as CBM points), which exist on each patch only during one time step �tk .
Applying the two-fluid, pseudo-multidimensional Riemann solver at CBM points,
the wave structure and gas dynamics solutions at the interface are computed and
applied for direct modification of numerical fluxes in the Eulerian cells near the
interface. This is based on the subcell position of the interface and a flux inter-
/extrapolation algorithm. The concepts of subcell markers, and two-fluid Riemann
solutions, are borrowed from front-tracking methods. On the other hand, and on ac-
count of the semi-Lagrangian nature of the level set method, the natural-neighbor
interpolation (NNI) procedure is used to correct the numerical solutions at Eulerian
computational cells that have found themselves to change fluid occupancy (based on
cell center) during the time step. These cells are denoted here as “degenerate” cells.
The modification of numerical fluxes and treatment of “degenerate” cells are the sub-
stitutes for GFM’s [7] ghost fields/cells and the related to them PDE- or FM-based
extrapolation techniques. Algorithmic details of our patch time update approach are
given in [13].

3 Propagation of shock waves in bubbly media

Two test-cases are considered in 2D: a single-bubble subjected to a planar shock and
a three-bubble cluster in a cylindrically imploding shock wave.

Single-bubble collapse. Consider a 2D cylindrical air bubble, 6 mm in diameter,
immersed in a water pool, initially under atmospheric conditions. The center of the
bubble is located at xb = (12, 12) mm in the computational domain of size 24 ×
24 mm. A planar incident Msh = 1.72 shock wave is initially located 5.4 mm to
the left of the bubble center. The gas is modeled using the ideal-gas-law equation
of state, with γ = 1.4. The liquid is represented with a stiffened gas equation of
state, P = (γ − 1)ρi − γ#, where γ = 4.4 and # = 6 · 108. Viscous, heat
transfer, and surface tension effects are neglected. Boundary conditions are periodic
in the vertical direction and non-reflection at the left and right boundaries of the
domain. Simulations were performed on a SAMR grid with six levels of adaptation
and a refinement ratio of two, which corresponds to an effective resolution of 800
computational nodes per initial bubble diameter. The third-order Runge-Kutta TVD
and the fifth-order monotonicity-preserving MP-WENO5 schemes are applied for
discretization in time and space respectively. The Local Lax Friedrichs (LLF) flux
splitting technique is used for numerical flux treatment. Computations are performed
using CFL=0.4.

Snapshots of the bubble shape evolution are shown in Figure 2. Due to the
large AIM at the water-air interface, the incident shock transmits a relatively weak
shock into the air, producing a strong reflected rarefaction wave in the water. By
approximately 2.3 µs, the air bubble becomes involuted, with a distinct water jet
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Fig. 2. Dynamics of shock-induced single-bubble collapse. The isolines represent the Mach
number field (30 isolines are uniformly distributed in the range from 0 to 3.54).

formed at the centerline. At approximately 3.69 µs, the water jet hits the other
side of the bubble with a velocity of 2.85 km/s, cutting the bubble in half. Upon
impact, an intense blast wave, with maximum pressure of 10.1 GPa, is generated.
Caused by the blast wave, secondary jets penetrate into the smaller bubbles, and
finally cut the initial bubble into four pieces. The gas volume reaches its minimum
at approximately 4.5 µs, starting to slowly grow after that (rebound). The maximum
temperature of the gas at the moment of minimum volume is ≈25,000 K. Since we
have not modeled heat transfer and real gas effects here, the temperature history can
be regarded as qualitative. Nevertheless, the observed intense heating is consistent
with the observation of luminescence in experiments by Bourne and Field [4],
performed under similar conditions.

Collapse of a three-bubble cluster. Two-dimensional cylindrical gas bubbles of ra-
dius R = 6 mm are placed in a computational domain of size (10 × 10)R, as shown
in Figure 3, with one bubble in the center and two bubbles shifted from the center by
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Fig. 3. Three-bubble cluster collapse under a cylindrically imploding shock wave. Mach num-
ber (top halves) and pressure (bottom halves) fields shown.
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Fig. 4. (a)–(c) Samples of temperature distribution inside bubbles. (d) Transient of peak gas
temperature.

3R. A cylindrical shock is generated setting the following pre- and post-shock con-
ditions: Vpre−shock = [1 · 105; 1000; 0; 0]T and Vpost−shock = [4 · 109; 1350; 0; 0]T,
where V = [P, ρ,u, v]T. These are chosen in such a way as to match the strength
of the collapsing inwards shock at the moment of its impact upon the gas-liquid
interface to the planar shock, considered in the previous example. Non-reflection
boundary conditions are applied at all four boundaries of the computational domain.
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A computational mesh of size 500×500 was used on the coarsest AMR level. Using
4 AMR levels with refinement ratio 2, the effective grid resolution is 800 computa-
tional nodes per initial bubble diameter.

Selected snapshots of the pressure and Mach number fields are presented in
Figure 3, while the history of the gas temperature is given in Figure 4. First, the
shock wave hits the “offset” (outer-layer) bubbles, causing their deformation. By
t = 3.2 µs, two water jets are formed inside the outer bubbles, whilst the central
bubble remains unaffected. Next, the outer bubbles are fragmented into two pieces
each, with generation of blast waves in front of them and compression waves behind.
These compression waves eventually become shock waves. By that time, the cent-
ral bubble has already been hit by the primary cylindrical shock and by the shock
waves due to outer-layer bubble collapses. There are three distinct jets in the central
bubble, moving toward each other. The still collapsing central bubble leaves behind a
growing compression wave, which is transformed into a shock wave by t = 4.72 µs.
Finally, the central bubble collapses and generates another blast wave. At the same
time, the shock waves, generated by the outer-layer bubble collapse, collide with
each other, forming reflected shock waves, expanding upwards and downwards.

4 Interaction of gaseous shock wave with a liquid drop

This problem is particularly difficult, because it involves a curved gas/liquid (slow-
fast) interface, and associated with this we have rather complex, and varied, shock
refraction patterns. Such patterns have been investigated previously for planar gas-
gas interfaces [9] and, recently, using methods described here, extended to weakly
shocked planar gas-liquid interfaces [12]. It turns out that numerical schemes in
general are sensitive to resolution of irregular refractions, especially in the case of
gas-liquid interfaces, when the errors are easily amplified due to the stiffness of EOS
for liquid [12]. The types of pattern obtained depend on the angle of incidence, and
include regular refraction with reflected shock (RRR), regular refraction with reflec-
ted expansion (RRE), free precursor (FPR), free von Neumann refraction (FNR), and
refraction with anomalous reflection (ARR). In the present case the angle of incid-
ence continuously varies, as the shock propagates over the drop, and in addition we
have focussing effects that interact with these patterns. Strong shocks exhibit still
different and interesting behaviors, as illustrated for example in [18, figure 9] .

The problem formulation is the following. A cylindrical (R = 3.2 mm) liquid
mass is suspended in motionless gas, under atmospheric conditions, at the center
of the computational domain of size 32 × 32 mm. The following parameters of the
stiffened equation of state are used [γ ;#]T = [2.8; 3.036 · 108]T and [1.4; 0] for
liquid and gas, respectively. A planar incident Msh = 1.47 shock wave with post-
shock conditions Vpost−shock = [2.35 · 105; 1.811; 246.24; 0]T is initially placed
4 mm to the left of the cylinder’s center. Boundary conditions are periodic in the
vertical direction and non-reflection for both left and right boundaries of the domain.
A computational mesh with six AMR levels of adaptation and refinement ratio 2 was
used, corresponding to the effective grid resolution of 640 computational nodes per
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Fig. 5. Shock wave interaction with liquid drop. Sample pressure field and outline of AMR
patches (bottom).

diameter. An example of layout of AMR patches together with a sample of the pres-
sure field are shown in Figure 5. We employed the RK3/LLF/MP-MUSCLMinMod

3
scheme and CFL = 0.2.

The dynamics of the interaction during the first 14 µs are shown in Figure 6.
When the incident shock hits the liquid, it is reflected as a shock, transmitting an
acoustic pressure wave into the liquid. Early on, the incidence angle β is sufficiently
small, and the refraction is regular (RRR). The intersection of the incident, reflected
shocks and transmitted pressure wave is a “refraction node”, which exists only dur-
ing the first 2–3 µs. When the incidence angle becomes sufficiently large (t = 4 µs),
the transmitted pressure wave “peels-off” the refraction node, transforming into a
“precursor” pressure wave, and the refraction pattern corresponds to the irregular
“Free Precursor Refraction (FPR)”. With a further increase of the incidence angle β,
the combination of the incident and reflected shocks transforms into the Mach reflec-
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Fig. 6. Wave dynamics as depicted by numerical Schlieren, computed as ϑ =
exp
(
−κ |∇ρ|

|∇ρ|max

)
with κ = 105 and 5 · 103 for the liquid and gas, respectively.

tion, forming the “Free von Neumann Refraction (FNR)” irregular pattern. When the
transmitted pressure wave passes the equator of the cylinder at t = 6 µs, it is back-
refracted in a “fast-slow” configuration [12]. Since the transmitted pressure wave
at this moment is nearly perpendicular to the interface, the back-refraction pattern
is irregular, corresponding to the so-called anomalous reflection (AR) [8, 12]. The
back-transmitted pressure wave in the gas is extremely weak, and it is indistinguish-
able in the plotted numerical Schlieren field. By t = 8 µs, the incidence angle of
the back-(fast-slow)-refraction becomes smaller, which results in formation of the
regular pattern with reflected rarefaction, denoted as RRE. Due to the focusing geo-
metry of the interface, the two reflected rarefaction waves collide with each other
at t = 10 µs, forming a strong rarefaction wave with negative pressure (cavitation
possible). As the reflected rarefaction wave moves backwards, t = 12 µs, it inter-
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acts with the non-uniform flow field, which weakens the rarefaction, and, when the
equator is passed at t = 14 µs, converts it into a compression wave.

5 Conclusion

The sharp capturing of high acoustic impedance interfaces under strong shock con-
ditions in practical settings requires adaptive mesh refinement, and this in turn we
found to require abandonment of (a) strict conservative treatment of the prolonga-
tion and restriction operators (needed to communicate solutions from one AMR level
to another) in the immediate vicinity of the interface, and (b) extrapolation steps in
populating cells found on the “other side” of the interface as needed for advanced
front capturing, such as the Ghost Fluid method. In both concerns we have found
alternatives that with the help of highly accurate, front-tracking-like, Riemann treat-
ment at the interface, and the Natural Neighbor Interpolation algorithm seem to work
very well, even in the highly challenging case of a shock passing over a liquid drop
suspended in a gaseous medium. However, there are still problems with simulating
the longer term evolution, including deformation of the interface. In this case further
improvements are needed in treatment of cut cells and numerical algorithms for time
advancement.
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1 Introduction

The subject of this talk is multiphase flow under extreme conditions of pressure,
pressure gradients, transients, and phase-differential speeds (kilometers per second).
Single-phase as well as multi-phase shocks are important. Reflection/transmission at
interfaces, including material interfaces of extremely large density ratios, and acous-
tic impedance mismatch (AIM) are important too. We are interested in interfacial
breakup, mixing phenomena, and the eventual dispersal of the dense phase.

Processes of interest may involve pre-existing particulates, or evolving length
scales via the breakup of liquid and/or solid masses. The liquids may be Newtonian
or viscoelastic, the latter being rendered so, to varying degrees, by the addition of
polymeric substances of varying molecular weight, cross-linking and concentration.
The length scale evolution defines the degree of coupling in both momentum and
energy (cooling or reaction effects, for example) between the gas and the liquid.
Scales of interest range from the microscopic, where interfacial instabilities nucleate
and where rupture finally occurs, to the grossly macroscopic that embody evolutions
of hundreds of kilogram quantities of material over tens to hundreds of meters spa-
tial domains. Some of the areas of application include Inertia Confinement Fusion,
energetic dissemination of liquids or solids in the atmosphere, estimation of weapon
effects such as fallout of nuclear explosions, and innovative designs of rocket propul-
sion or Internal Combustion Engines.

Our work in this area, and this talk, are motivated by a new impetus derived from
national defense and homeland security needs. My purpose is to illustrate the funda-
mental and diverse nature of these needs, to provide highlights of an approach, and
related infrastructure necessary towards meeting these needs, and to show a sampling
of initial results obtained as we began to dwell into the subject. The particular prob-
lem of interest is in the area of energetic dispersal of liquids, and as one can surmise
from the following, the issues involved make this problem, along with the one con-
cerning the mixing in inertia confinement fusion (see below), make it paradigmatic
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of a much broader subject we wish to define as Compressible Multi-Hydrodynamics
(CMH).

2 An integral problem in CMH

Consider a liquid mass, suddenly exposed, at supersonic speeds, to a gaseous at-
mosphere. The quantities of liquid involved may vary in the range 10−3–105 g, the
ambient (atmospheric) pressure may be anywhere between 10−4–100 atm, the initial
relative velocity may reach Mach 10, and the liquids may be viscous Newtonian, or
viscoelastic, exhibiting very substantial resistance to breakup. We would like to know
the liquid material disposition; that is, the spatial distribution of material quantities
and length scales at the time they have reached dynamic equilibrium (stable particle
sizes at terminal velocities) with the atmosphere. This, also known as the source
term, is what is needed by atmospheric dispersal codes to estimate ground depos-
ition characteristics and any consequent effects. Of special interest is the portion of
the size spectrum that is above ∼100 µm.

Considering how little is known about the breakup of mm-size liquid
droplets, a much-studied microcosm of the subject at hand, with this problem
we found ourselves in essentially virgin territory. Accordingly we began by a
broad/comprehensive, but cautious, scoping of the various aspects of the problem
and by building the essential infrastructure for laboratory experiments and computa-
tions. At this time we have an overall approach, and we find ourselves at the initial
stages of implementation. The approach is key-physics oriented, yet, our principal
guide is fitness for purpose, and expect that in a flexible, continuously refocusing,
and appropriately integrative effort, we will be able to meet the objective robustly,
in an efficient manner, and within time constraints that are consistent with the prac-
tical needs. It should be clear at the outset that, even if affordable, a purely empirical
approach, that is one based on generating and correlating data taken at field con-
ditions (full scale, prototypic), is simply out of the question. Rather, we plan for a
few field tests that will be specially-designed for final testing, hopefully validation
of predictions, once the problem has been well understood.

A first-order partition of the problem can be made in terms of the material quant-
ities involved. At the small mass extreme, the principal scaling parameters are the
Weber (We), Ohnesorge (Oh), and Mach (M) numbers. For viscoelastic liquids, an
additional scaling group is needed to involve the polymeric fluid relaxation time,
τR , and the rate of strain in the induced flow, R = τR/τS . For given values of Oh,
and M numbers, and a perfectly spherical (small) droplet of a Newtonian liquid sud-
denly exposed to uniform gas flow, there is a critical Weber number (WeCR) below
which the drop will be accelerated (to the gas flow speed) while remaining intact.
For Oh ∼ 0 this critical threshold for breakup is known from experiments to be ∼10.
Also known is that under supercritical conditions (We > WeCR) the resulting daugh-
ter drops are well-subcritical at the free stream conditions, however only an initial
and rather narrow attempt has been made so far for quantification (see [44], and fur-
ther below). The WeCR increases with increasing Oh number, but this relationship, as
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well as the daughter size spectra remain to be quantified as well. Initial results (see
below) suggest that the role of viscoelasticity in these matters is profoundly rich.

Larger masses would inherently entail departures from perfectly spherical shape,
as well as extraneously imposed, poorly defined, and uncontrollable surface per-
turbations. Also, larger masses would entail, for increasing portions of the masses
involved, greater and greater departures from the “sudden exposure to steady flow”
scenario. In particular, we can expect shielding, other long-range interaction effects,
collisions and coalescence, and more generally collective behavior, until the cloud
expands to a sufficiently large dimension for it to be considered dilute, and the entit-
ies within it to be acting independently.

It is important to appreciate that breakup processes are inseparable from the col-
lective response, and that the so-created aerodynamic history causes a spreading out,
and in a sense a blunting of the severity of the interaction. On the other hand, vis-
coelastic liquids resist breakup, they first stretch into ligaments and sheets extens-
ively, and this, combined with aerodynamic history, is at the essence of the profound
difficulty of our problem. We expect the experiments at the small mass extreme, aided
by direct numerical simulations, will yield a lower limit on the daughter drop spectra
to be found in large scale events of this type. On the basis of these results, experi-
ments involving larger liquid quantities, and with the further help of effective field
modeling, we aim to address the overall mass-scaling question, over the whole range
of parameters of interest, including consideration of uncertainty in such assessments.

3 Design and role of experiments

Previous experiments in aerobreakup of mm-scale droplets, were carried out in shock
tubes, and focused principally on the morphology of break-up. Results were ex-
pressed in qualitative depictions of these regimes, and We number criteria for trans-
itions. Only meager data on final size distributions exist, and only for “bag” break-up.
The accepted regime sequence is “vibrational”, “bag”, “bag-and-stamen”, “shear” or
“stripping”, and “catastrophic”. Theoretical understanding is meager too. The “strip-
ping” regime was postulated by Taylor in 1949 [42], who proceeded to estimate the
rates of liquid removal and thus the total breakup time, and this calculation was re-
peated, in a slightly improved version, by Ranger and Nichols [40] and others. The
catastrophic regime was proposed by Harper et al. [16] on the basis of analysis that
accounted for aerodynamic deformation along with Rayleigh–Taylor (R–T) instabil-
ity, on the windward-side of the interface. They defined its existence for We > 104

but without any basis, or even reasoning. The same regime was postulated again
(without reference to any criteria for existence) very recently by Joseph et al. [20]
who reconsidered the classical R–T problem (i.e. [3]) in terms of viscous potential
flow theory. It is apparent now [43] that due to visualization limitations the experi-
ments in this case mislead, and erroneously were appealed to for supporting, these
partial [16], or ad hoc [20], attempts at theory. Moreover no theory, or simulation are
available for the other regimes, nor for the effect of viscosity on any of these regime
transitions.
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Fig. 1. (a) ALPHA facility and (b) Mach number – dynamic pressure domain of operating
conditions accessible in it.

Further it is apparent that the shock tube geometry, with limited visualization
access, limitations in imaging technology, and extremely limited observation times
available, have prevented an approach to the equilibrium size distribution question.
As we will see below the observation time requirement is particularly acute in the
case of viscoelastic liquids. These then are the starting points of our consideration
in the design of our experiments, as well as of our approach to instrumentation and
measurement.

The ALPHA facility (Figure 1a) is a pulse, supersonic wind tunnel, capable of
accessing the M-1/2 ρv2 space shown in Figure 1b, with steady flow durations of
up to 100 ms. The 4 m long, fully transparent test section, has a flow cross-sectional
area of 0.2 × 0.23 m2, and it has been shown able to accommodate gram-liquid
quantities (a mass scale up, relative to the past work referred to above, by a factor
of 103) without wall interference. Especially designed converging-diverging nozzles,
following the rupture of a Kapton (or Mylar)-film diaphragm, accelerate the flow to
the desired Mach number, while two Phantom V7 video cameras illuminated by a
synchronized copper-vapor laser, record the interaction with an injected liquid mass
that is hit by the gas flow while in transit. Highly resolved, in both space and time,
visualization is achieved by framing rates of up to 160 kHz, each frame being ex-
posed for only ∼10 ns. Special close-up arrangements allow spatial resolutions of
up to 10 µm. The receiving tanks can be evacuated down to 10 Pa, and with the
appropriate pressure ratio we can access operating pressures in the test section down
to this level. The flow is instantaneous behind an initial shock, and the transition to
somewhat lower, and steady dynamic pressure takes place within 500 µs.

Initial results from the ALPHA facility have provided the basis for establishing
the following [24, 43]:

(a) There are only two principal breakup regimes for the mm-scale, low-viscosity
(Oh ∼ 0) Newtonian liquid drops, Piercing and Shearing (Figure 2). In the pier-
cing regime the gas penetrates the drop, starting with a single wave (the “bag”)
at WeCR, and developing to multiple piercing waves with increasing Weber num-
ber. In the shearing regime the gas flows around the drop, shearing and entraining
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Fig. 2. Classification of aerobreakup regimes (based on [43]). All the data shown here were
obtained from our ALPHA-I facility – vertical test section. The liquid is Tributyl Phosphate
(TBP); water-like viscosity and surface tension. NPT means normal pressure and temperature,
subsonic flow conditions. Other data were obtained at low pressure, for M = 3. Drop sizes:
2.2 to 3.8 mm.

the liquid within a rather confined two-phase layer, that exits at the drop equator.
The transition between these two regimes occurs gradually, in some finite in size
Weber number range, around 102 to 103. The multiple-wave piercing seems to
be only accessible in the low-density, highly supersonic flow in ALPHA, where
such break-up configurations were first observed.

(b) The piercing regime is dominated by Rayleigh–Taylor instabilities as confirmed
by theoretical interpretation of experimental data, obtained with the low viscosity
Tributyl Phosphate (TBP), and the very viscous pure Glycerin. The theory is
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Fig. 3. Regime map for Newtonian (Oh ∼ 0) drop breakup [43]. R–T: Rayleigh–Taylor pier-
cing; S: shearing; U : Rayleigh–Taylor wave penetrating velocity; Ui : interfacial velocity due
to shear. MuSiC denotes results with shear stresses obtained from DNS.

Fig. 4. Surface waves and shearing of a 3.5 mm TBP drop subject to M = 3 flow (We =
30,000).

based on the requirement that an odd number of half wavelengths should fit on
the available forward-facing area of an appropriately flattened drop.

(c) Contrary to previous analytical results [16, 20] the asymptotic high Weber num-
ber regime is Shearing, not Piercing, and the so-called “catastrophic” regime is
not physically attainable. The fallacy of these previous analytical results is to be
found in ignoring shear as a process competing with piercing. Theofanous et al.
[43], tipped by the ALPHA experiments, focused on this competition by compar-
ing the penetration rate of non-linear R–T waves to the shear-induced velocities
parallel to the interface. The regime map so obtained (Figure 3) was found to be
in agreement with all experiments, but a still more unambiguous demonstration
from still higher-resolution visualization (more recent tests in ALPHA) is given
in Figure 4.
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Fig. 5. Sample images and size distributions. Note the non-spherical shapes of the VE frag-
ments.
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Fig. 6. Schematic of the ASOS facility.

(d) The fallacy in interpretation of previous experimental results was in failing to
appreciate the mirage created by shadow imaging of the superposition of finely-
entrained mist on one hand, and of the expanding gas that has been compressed
behind the bow shock on the other. The mist thus acquires a significant radial
velocity component, thus creating the illusion of an “explosion” (and thus the
imagined “catastrophic” breakup due to penetration by R–T waves).

These ALPHA results further indicate that the daughter drop size distributions,
for the first time caught in the process of them being generated, are crucially depend-
ent on the regime of breakup. A sample to illustrate the point is given in Figure 5.
The viscoelastic liquid behavior shows the importance of long flow times in ALPHA.
It also shows the merit of investigating more thoroughly the small mass extreme of
stability, and this is our immediate next task in ALPHA. In addition, a systematic
collection of size distribution data over the range of conditions of interest is under-
way.

Several complementary thrusts, involving an independent measurement of size
spectra, dynamic pressures that reach up to 2 million Pascal, and liquid masses that
reach up to tens of gram quantities, are to be pursued in the ASOS facility, which is
currently under construction. As illustrated in Figure 6, the ASOS facility is a shock
tube, made at the same dimensions as the ALPHA, and equipped with a large catch
tank. In distinction to normal shock tube operation, the idea here is to extend the
available pulse time by operating behind the contact discontinuity, as a follow-up to
the flow behind the initial shock. In this way, by using a pair of gases, Helium in the
driver and air or Nitrogen in the expansion section, the dynamic pressures in these
two flow regions can be matched, and thus seamlessly extend the flow duration to
∼3 ms, as needed for completion of fragmentation of tens of grams liquid quantities,
at the upper end of the dynamic pressure range of interest (∼106 Pa). Other features
of ASOS include a double-pulse operating regime attainable in normal operation
with a single gas, long term observation and measurements (radar, lidar, etc.) of
particle clouds suspended in the catch chamber, and size analysis of the deposited
mass on witness plates lining the inner walls.

360



Compressible Multi-Hydrodynamics

Fig. 7. Shock-induced interface instability and mixing [34]. Numerical Schlieren images and
outline of AMR patches. The shock (Msh = 1.22) propagates from right to left.

Fig. 8. Shock wave refraction pattern on a planar slow-fast, gas-gas (CO2/CH4) interface.
Experimental [1] vs. numerical [35] Schlieren images. Twin von Neumann Reflection (TNR)
pattern.

4 Direct Numerical Simulations (DNS)

Previous work with direct numerical simulations in CMH was spurned to a signific-
ant level of activity, and accomplishment, by a similar, as here, interest in interfacial
breakup and mixing under the passage of a shock wave (Richtmyer–Meshkov, R–
M, instability). Herein we find the first high-fidelity, front tracking approaches [6],
and it is here that we find the first, and perhaps still highest fidelity super-large-scale
simulations of such mixing processes [18, 44]. Yet, these are only a microcosm of
the R–M problem in applications that motivate this work (fusion devises), DNS as
a lone approach has come to an impasse, and it is not clear yet what modeling ap-
proach would be needed for simulating the evolution of mixing in the longer term,
nor is it clear how to interface it with the DNS [9]. In addition our problem here
is burdened with: (a) high acoustic impedance mismatch interfaces, and the special
numerical resolution and stability issues they engender, (b) complex fields that span
all flow speeds, reaching down to M ∼ 0, (c) much broader range of time and spatial
scales as our interest extends, vitally, all the way out to equilibrium, and (d) complex
fluid behavior due to the presence of polymeric additives.

Other important works on front/particle tracking numerics that we must include
are the contributions of Grove and Menikoff [14], Cocchi and Saurel [7] and Ball
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Fig. 9. Shock wave refraction patterns on a curved gas-liquid interface. Numerical Schlieren.
RRR: Regular Refraction with Reflected shock. FPR: Free Precursor Refraction. FMR: Free
precursor with Mach stem Refraction. MSR: Mach Stem Refraction. ARE: Anomalous Refrac-
tion with reflected Expansion.

Fig. 10. Shock-induced bubble collapse [34].

et al. [2]. In parallel we also have available the important, more recently made ad-
vances in front capturing, including the Volume of Fluid [17, 28], Level Set [28, 37],
γ -transport-based models [21, 38], Quasi-Conservative models [41], and the Ghost
Fluid Method [13], and several further developments on them, notably on accom-
modating high acoustic impedance mismatch interfaces and very strong shocks [19,
26, 32], as well as the Particle Level Set [12] as a way of adding fidelity and stability
to the numerical scheme.

Our approach, in this aspect of the infrastructure needs, adopts and adapts ele-
ments of these bases, and builds on them towards the creation of a comprehensive
numerical package, the Multi-scale Simulation Code (MuSiC), that extends a broad
but all-compatible capability from DNS to Effective Field modeling, and from in-
compressible to highly compressible flow conditions (within the same computation),
including their seamless interfacing, in a parallel, adaptive mesh refinement environ-
ment, implemented in 3D.

Key elements of MuSiC include (a) Godunov-based compressible and pseudo-
compressible high-order-accurate solvers, connected in any combination with the
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Fig. 11. Underwater explosion [34]. Dynamics of numerical Schlieren (left) and pressure
(right) fields. Energy density deposited in the explosion zone is 7.163 GJ/m.

Fig. 12. Particle drag coefficients under the influence of a surrounding particle of the same
diameter (DP) located at different distances and angles as illustrated. Re = 100. CD0 is the
drag coefficient on an isolated particle.

adaptive Characteristics-Based Matching (aCBM), for the sharp capturing of free in-
terfaces across any media (arbitrary density and viscosity ratios, acoustic impedance,
etc.), at any flow speeds [31, 34], (b) the AUSM treatment applied at DNS, as well
as an effective field model of disperse multiphase flow [4, 5], again amenable to all
Mach number flows, and (c) a numerical model that naturally devolves a DNS sim-
ulation into regions of dispersed flows as needed due to continuous refinement of
length scales in the mixing region [9].

The status of this development in regards to DNS is illustrated by sample res-
ults as shown in Figures 7–11. Key aspects of the developments on the effective
field model are discussed in the next section. On the DNS, the key considerations,
challenges and requirements thereof are (a) respecting information flow across mul-
timaterial interfaces, which includes taking into account high acoustic impedance
mismatch and related to this a variety of complex shock refraction patterns (Figures 8
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Fig. 13. Illustration of long-range interactions in disperse compressible multiphase flows [23].
Pressure (top) and velocity (bottom) fields.

and 9); (b) achieving a sufficiently sharp treatment of the interface as to accommod-
ate truly the jump conditions in material properties and stresses [22, 36]; (c) simu-
lating large deformation, breakup and coalescence, which is especially challenging
in gas-liquid, slow-fast configurations, and requires high fidelity in spatial resolution
and related massively parallel simulations using adaptive mesh refinement techno-
logy (Figures 7 and 10); (d) operating in a wide range of flow speeds and com-
pressibilities, including simulation of supersonic and extremely slow or nearly in-
compressible flows within one setting, which necessitates the development of hybrid
flow solvers (compressible/incompressible) (Figure 9); (e) disparity of character-
istic time scales (acoustic and material), which necessitates the development of new,
more efficient time discretization strategies (Figure 9); (f) turbulence modeling for
compressible flows, including the development of new LES models that take into
account the existence of flow and material discontinuities and are capable of work-
ing in adaptive mesh refinement environment; (g) non-Newtonian fluid dynamics,
related constitutive descriptions, and numerical scheme implications; and (h) incor-
poration of micro/(nano)-scale physics, including surface tension, which raise the
need to re-evaluate applicability of the existing Riemann-solver-based flux discretiz-
ation schemes.
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Fig. 14. Shock-induced dispersal of solid particles [33]. Dynamics of Mach field and particle
displacements for elastic (left) and viscoelastic (right) particle-particle collisions.

5 Effective Field Modeling (EFM)

As noted above, the purpose of EFM in our approach is to capture and eventually
predict mass scale-up; that is, collective behavior and related aerodynamic history
effects. In relation to past work in formulating and solving homogenized (averaged,
or multi-fluid) models (i.e. [10, 15, 30, 39]), essential new features and related chal-
lenges stem from the highly structured internal constitution of supersonic flows, as
given by the simple illustrations in Figures 13 and 14. This has implications in long-
range drag interaction effects, as shown in Figure 12, and on breakup behavior as
depicted in Figure 15. In turn these raise the issue of what would be an appropri-
ate homogenization approach to preserve the physics sufficiently, so that it would
be amenable to a manageable constitutive description. Direct numerical simulations
that examine the microcosm of collective behavior, as shown in Figure 14, experi-
ments, and special purpose DNS for extracting drag interactions in multi-particle ar-
rays (Figure 12 and [23]) are used to guide development of an appropriate effective
field model. Of particular interest in this respect are concepts of the Heterogeneous
Multiscale Method of E and Engquist [11].

The complementary avenue is through a direct computational framework [8] at
the DNS level that can accommodate simultaneously disperse flow regions. This
framework is based on the AUSM+ scheme [4, 5] already extended to a simple two-
fluid model, as illustrated in Figure 16.

365



T. Theofanous et al.

Fig. 15. Breakup of (a) an isolated drop and (b) of a drop behind a cylindrical rod. TBP in
ALPHA.

Fig. 16. Interaction of Msh = 6 shock wave with a liquid drop (D = 6.4 mm), using the
two-fluid AUSM+ method [5]. Viscosity and surface tension are not taken into account.
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6 Concluding remarks

The experiments, direct numerical simulations, and effective field modeling are to
meet on the grounds of the interfacial area transport equation, supplemented by the
source and sink terms in a way that accounts for major morphological changes, and
in a way that preserves the major physics of phase interactions, until a dilute, equi-
librium state has been attained.
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On Stochastic Modeling of Heavy Particle Dispersion
in Large-Eddy Simulation of Two-Phase Turbulent
Flow
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Abstract. The effect of subgrid scales on the dispersion of heavy particles could be significant
especially when the subgrid energy content is not negligible and/or the particle time constant is
small. In this work, a modified Langevin type equation is used to reconstruct the instantaneous
velocity of the seen fluid particle which is needed in the particle momentum equation. To
assess the model, a decaying isotropic turbulence is studied via a priori test. A good agreement
between the model and DNS results is observed.

1 Introduction

Large-eddy simulation (LES) has been widely used for more than a decade to study
two-phase flows in which a large number of particles are dispersed in a turbulent
carrier phase [3]. The LES of single-phase turbulence by itself is a challenging task,
particularly when dealing with wall boundaries at high Reynolds numbers. The pres-
ence of particles adds significantly to this challenge.

The common practice in the LES of particle-laden turbulent flows is to simu-
late the dispersed phase in the Lagrangian framework by individually tracking the
particles and solving their Lagrangian equations. To solve these equations, the in-
stantaneous field quantities of the carrier phase are required; however, only the re-
solved (filtered) quantities are available in LES. Most of the previous studies have
used the resolved, instead of the instantaneous velocities to solve the particle equa-
tions, thus neglecting the effect of the subgrid scales on particles. Armenio et al. [1]
and Shotorban [8] showed via a priori and a posteriori tests that this assumption
could result in less accurate predictions of the dispersed phase. Furthermore, they
concluded that the neglect of subgrid-scale effects on particles is more critical when
the subgrid kinetic energy is significant and/or the particle time constant is small.

Only a few models are reported by which the effect of the subgrid scales on
particles can be taken into account. Wang and Squires [12] proposed to model the
subgrid-scale velocities using a Gaussian random variable scaled by a velocity scale
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obtained by the transport equation for the subgrid-scale kinetic energy. A similar
model was employed by Sankaran and Menon [7] in the case of reacting droplets.
The main drawback of this model is that its stochastic approach ignores the time
correlation in the particle trajectory. In a model proposed in [8], it is assumed
that the particle position and velocity and the velocity of the fluid particle seen by
the particle (referred to as the “seen” fluid particle hereinafter) evolve based on a
Langevin type equation. The statistics generated by this model were in a good agree-
ment with those obtained by DNS for particles with small time constants. However,
some discrepancy was observed between the model and DNS results for particles
with large time constants. Okong’o and Bellan [4, 5] proposed an efficient determin-
istic method to model the subgrid-scale quantities in the droplet-laden flows. Despite
good predictions for mixing layers, this model does not satisfy the Galilean invari-
ance which is a symmetry property for the subgrid-scale components of velocities.
Recently, Shotorban and Mashayek [10] proposed to model the subgrid-scale effects
on particles by approximate deconvolution [11]. Using this model the represented
modes in LES is reconstructed for the use in the particle momentum equations.

In this manuscript we present a modified version of our previously proposed
stochastic model [8]. This modification is needed for particles with large time con-
stants.

2 Governing equations

In the particle-laden flow considered in this study, the carrier phase is an incom-
pressible Newtonian fluid and the dispersed phase is composed of a large number of
spherical particles with equal diameters much smaller than the smallest length scale
of the carrier flow. It is also assumed that the global number density of particles is
small such that the effect of particles on the carrier phase can be neglected (one-way
coupling assumption).

2.1 Carrier-phase equations

Considering the non-dimensional Navier–Stokes equations as the governing equa-
tions of the carrier phase and applying a spatial filter on them results in the filtered
Navier–Stokes equations

∂ui

∂xi
= 0, (1)

∂ui

∂t
+ uj

∂ui

∂xj
= − ∂p

∂xi
+ 1

Re0

∂2ui

∂xj ∂xj
− ∂τij

∂xj
, (2)

where the filter operator . on any variable φ is defined as

φ(x, t) =
∫ ∞

−∞
φ(x′, t)G(x′ − x;�)dx′, (3)
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whereG denotes the filter kernel with � as the filter size. G also has the property that
if φ = φ then φ is spatially uniform. In Equation (2), Re0 is a reference Reynolds
number and

τij = uiuj − uiuj , (4)

is the subgrid scale stress. The term uiuj , appeared in Equation (4), renders the set
of the carrier-phase equations unclosed. Various models are available for the closure
problem in LES [6].

2.2 Dispersed-phase equations

The governing equations for particle position xpi , and velocity upi , in the Lagrangian
frame are, respectively,

dxpi

dt
= upi , (5)

dupi

dt
= f1

τp
(usi − upi ), (6)

where usi denotes the instantaneous velocity of the seen fluid particle, i.e. usi (t) =
ui(xpi (t), t), τp = Re0ρpd

2
p/18 is the particle time constant and f1 = 1+0.15Re0.687

p
is an empirical correlation used to modify the Stokes drag for large Rep. The particle
Reynolds number is defined as Rep = Re0

√
vdivdidp, with ρp, dp and vdi = upi−usi

denoting the density, diameter and the relative velocity of the particle, respectively.
In Equation (6), the terms due to unsteady drag, added mass and Basset history forces
are absent because their effects on particles are negligible when the density ratio of
particle to fluid is high (∼ 1000). Also in this work, it is assumed that the gravity
force is negligible.

3 Stochastic modeling of dispersed phase

In the absence of the instantaneous velocities in LES, one needs to reconstruct them
from the filtered velocities before solving Equation (6). In this work, we use a
stochastic approach to model these velocities.

A Langevin type equation can be used to model the fluid particle evolution in
LES

dufi =
[
− ∂p

∂xi
+ 1

Re0

∂2ui

∂xj∂xj
− 1

TL
(ufi − ui)

]
dt +√C0εdWi, (7)

where TL is an appropriate time scale representing the time scale of the flow subgrid
scales, ε is the dissipation rate of the subgrid-scale kinetic energy, and Wi is Wiener
process. Equation (7) was originally proposed and implemented by Gicquel et al. [2]
for the Monte-Carlo simulation of single-phase turbulence. Shotorban et al. [9] and
Shotorban [8] carried out assessment studies on the application of this equation in
two-phase turbulence via a priori and a posteriori tests, assuming ufi ≈ usi . This
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assumption may not be accurate enough due to the inertial effect of the particle. The
tests were conducted in decaying isotropic turbulence for particles with different time
constants. Good predictions by the model were observed for particles with small time
constants; however, a discrepancy between the model and DNS results was noted for
large particle time constants. This discrepancy is believed to be due to the particle
inertial effect which is not taken into account in Equation (7).

Another issue involved in this stochastic approach is the modeling of TL and ε.
Gicquel et al. [2] modeled TL and ε as

TL = k/

(
1

2
+ 3

4
C0

)
ε, ε = Cε

k3/2

�
, (8)

where k is the subgrid-scale kinetic energy. In the LES of incompressible flows, the
common practice is to model only the anisotropic part of the subgrid-scale stress
tensor because the deviatoric part, which represents the subgrid scale kinetic en-
ergy, can be absorbed in the pressure term. Shotorban [8] employed Yoshizawa’s
model [13] for subgrid-scale kinetic energy

k = CI�
2|s|2, (9)

where CI is a model constant, which can be dynamically computed. The perform-
ance of this model for calculating the subgrid-scale kinetic energy is acceptable
in isotropic turbulence [8]. However, a more accurate model may be required for
more complex configurations. One possibility is to solve a transport equation for the
subgrid-scale kinetic energy [12].

A modification is needed in Equation (7) to make it applicable for particles with
large time constants. It is shown that Equation (7) is strictly valid when τp → 0
which could be considered as a limit that the particle behaves similar to the fluid
tracer particle. On the other hand, it can be assumed that usi → usi when τp → ∞.
Therefore, the effect of the subgrid scales on the inertial particles can be neglected
at this limit. This assumption is physically sound because particles with large time
constants respond mainly to the large scales of turbulence. If one assumes that TL
represents the time scale of subgrid scales in LES, then τp/TL is a non-dimensional
number representing the interaction between subgrid scales and particle scales. For
τp/TL � 1, Equation (7) can directly be used as an equation for the evolution of the
seen fluid particle. To make Equation (7) also applicable for τp/TL � 1, we modify
this equation as

dusi =
{
− ∂p

∂xi
+ 1

Re0

∂2ui

∂xj∂xj
− 1

TL

[
1 + g

(
τp

TL

)]
(usi − usi )

}
dt

+√C0εdWi, (10)

where

g(α) =
{

0 if α � 1,
∞ if α � 1.

(11)

is introduced in an ad hoc manner. Various functions can be considered which satisfy
the conditions in (11). In this work g(α) = α2 is used.
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Fig. 1. (a) Variation of the Taylor-scale Reynolds number. (b) Variation of the Kolmogrov time
scale.

4 Model assessment and results

To assess the performance of the model, the particle-laden decaying isotropic tur-
bulence is considered. The carrier phase is initialized with a solenoidal random ve-
locity using a Gaussian distribution in a box with (2π)3 dimensions and 1283 res-
olution. The initial energy distribution is E0(κ) ∼ (κ/κm) exp(−κ/κm) where κ

is wave-number and κm is a wave-number for which E0(κ) is maximum. In this
study κm = 2.8, the initial turbulence kinetic energy 1

2 〈uiui〉 = 1 and Re0 = 240.
The evolution of the Taylor-scale Reynolds number and Kolmogorov time scale is
presented in Figure 1. A large number of particles with τp = 0.2 are also released
with a uniform random distribution in the computational domain with initial velocit-
ies equal to their seen fluid particle velocities.

The model assessment is carried out via a priori test, i.e. direct numerical simu-
lation is conducted and the instantaneous velocities are filtered at every time step to
obtain the filtered velocities. The filter used is Gaussian with a filter size four times
the grid spacing. Four different groups of particles are tracked simultaneously in the
same simulation. Since only one-way coupling is considered and the carrier phase is
not modified by particles, the statistics of all groups are independently obtained from
the same realization of the carrier phase. These groups of particles are independently
tracked using the instantaneous velocities obtained from DNS, the filtered velocit-
ies, the filtered velocities along with Equation (7) for the seen fluid particle and the
filtered velocities along with Equation (10) for the seen fluid particles. These groups
are denoted by “DNS”, “filtered”, “model” and “modified model”, respectively.

Figure 2 shows the evolution of the turbulence kinetic energies of the particles
and the seen fluid particles. The turbulence kinetic energies of both particles and
the seen fluid particles, are under-predicted by “filtered” while it is over-predicted
by “model”. This under-prediction by “filtered” is due to the fact that in this case
particles are driven by the carrier-phase filtered velocities which possess less amount
of energy than the carrier-phase instantaneous velocities. It is also seen in this figure
that “modified model” can precisely predict the DNS results. It is noted that the
underprediction of energy at t = 0 in “filtered”, “model” and “modified model”
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Fig. 2. (a) Turbulence kinetic energy of particles and (b) turbulence kinetic energy of the
seen fluid particles for DNS (solid line), filtered (dotted line), model (dashed-dotted line) and
modified model (dashed line).

Fig. 3. (a) Mean square displacement of particles and (b) Lagrangian autocorrelation of
particles for DNS (solid line), filtered (dotted line), model (dashed-dotted line) and modified
model (dashed line).

cases, is due to the fact that particles are initially released with velocities equal to the
filtered velocities of the carrier phase at the location of particles in these cases.

The time variation of the particle mean square displacement and Lagrangian
autocorrelation are shown in Figure 3. These statistics are defined by

〈x2
p1〉 = 〈(xp1(t)− xp1(t0))

2〉, (12)

and

β(t1, t) = 〈up1(t)up1(t1)〉
〈u2

p1(t)〉1/2〈u2
p1(t1)〉1/2

, (13)

respectively. Here, t0 = 0 and t1 = 2 are considered. As can be seen in this figure,
“modified model” predicts the DNS results better than “model” and “filtered”.
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5 Conclusions

The previously proposed stochastic model [8] is modified for simulation of particles
with lager time constants. The main argument for this modification is that particles
with large time constants interact with large scales of turbulence. Nevertheless, the
model is also valid for particles with small time constants. The new model is val-
idated in isotropic turbulence via a priori tests where the particle turbulence kinetic
energy, the seen fluid particle turbulence kinetic energy, the mean square displace-
ment of particles and their Lagrangian autocorrelation obtained by the new model are
compared against those obtained by DNS. It is shown that the accuracy of the statist-
ics obtained by the original model and those obtained by only the filtered velocities
is less than those from the modified model.
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Abstract. Recent measurements of bubble-phase velocity, volume fraction, and velocity vari-
ance, and liquid velocity profiles for flows of bubbly liquids in a vertical pipe are shown to be
in good agreement with the predictions based on averaged equations.

1 Introduction

The problem of deriving equations of motion of particles or bubbles suspended in a
liquid has been the subject of many investigations over the past 40 years. Much pro-
gress has been made in the last two decades with the development of computers and
efficient computational algorithms that allow numerical simulation of particle inter-
actions. These simulations provide valuable insight into how the microstructure of
the suspension depends on the nature of the flow, and how the suspension properties
depend on the microstructure and microscale physics. Our analytical efforts were
devoted to two special cases: (i) particles in a gas for which the particle Reynolds
number is small compared with unity but the Stokes number, which is the product
of particle to gas density ratio and the Reynolds number, is O(1) [4, 9]; and (ii) gas
bubbles in a liquid for which the bubble Reynolds number is large compared to unity
but the Weber number is small such that the bubbles are approximately spherical
[3, 5, 7, 8, 10]. In both cases, even though the particle scale inertial effects are sig-
nificant, the particle interactions are governed by simplified forms of Navier–Stokes
equations: the gas-solid suspensions can be simulated with Stokes equations of mo-
tion, and the gas-liquid suspensions by the potential flow equations. In both cases,
it was possible to combine the results of numerical simulations with suitable kinetic
theory to derive averaged equations of motion.

For the case of bubbly liquids a crucial assumption is the validity of the potential
flow approximation. Potential flow approximation is shown to yield accurate results
for a single bubble motion when the Weber number is O(1) or smaller. However, its
validity to bubble suspensions is not yet established. Since the conditions of large
Reynolds and small Weber numbers in a liquid free of surface-active impurities are
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not satisfied in many of the reported experimental investigations of bubbly liquids,
we began an experimental program to study flows of bubbly liquids at Cornell Uni-
versity. The present communication gives an overview of the theory and comparison
with experiments. The experiments for vertical and inclined channel have been re-
ported elsewhere [13, 14]; here, we shall focus on recent experiments on flows of
bubbly liquids in a vertical pipe.

Section 2 reviews our past work on averaged equations of motion with a few
modifications and corrections. Section 3 gives the boundary conditions for bubbly
liquid flows, and Section 4 a comparison with the experiments.

2 Averaged equations

Averaged equations for non-coalescing, monodispersed, bubble suspensions under
potential flow conditions were derived in [8]. The equations consist of continuity and
momentum equations for the gas-liquid mixture and for the bubble phase treated as a
continuum. An expression was derived for the bubble-phase stress (later corrected by
Bulthuis et al. [2]) in terms of bubble velocity distribution and inter-bubble forces.
The stress depends on the mean relative velocity of the bubbles and the bubble-phase
temperature, defined as one-third the velocity variance of the bubbles. An equation
for determining temperature was also proposed. Computations of dispersed-phase
stress and other average properties of bubbly liquids have been made for two relat-
ively simple cases: (i) flow generated by the buoyancy force acting on the bubbles
[7] and (ii) bubbly liquids subjected to simple shear flow in the absence of buoyancy
force [3]. Numerical simulations for the first case with periodic boundary conditions
indicated that the bubbles form clusters in horizontal plane that span the unit cell
width, suggesting thereby that the homogeneous state of bubbly liquids is unstable.
The clustering was absent in the second case and it was shown that the kinetic theory
can be used to determine constitutive relations for bubbly liquids. Averaged equa-
tions of bubbly liquids must account for the fact that the microstructure, and, hence,
the average properties as well as constitutive relations differ for different imposed
flows. Since the microstructure is a strong function of the magnitude of velocity
fluctuations compared to the mean bubble relative velocity, Spelt and Sangani [10]
carried out detailed potential flow simulations at various volume fractions and ratios
of bubble-phase velocity variance and mean bubble relative velocity. These investig-
ators also presented simplified set of equations that incorporated the results of their
simulations and the kinetic theory of sheared bubbly liquids developed in [3].

The aforementioned discussion was limited to spherical bubbles. The potential
flow approximation may also be used to predict virtual mass and viscous drag on a
bubble at small but finite Weber numbers for which the bubble aspect ratio is less
than about 2. Simulations for finite Weber numbers were carried out by Kushch
et al. [5] who determined added mass and viscous drag coefficients and aspect
ratio of bubbles as functions of volume fraction and Weber number. Their results
were limited to a special case of randomly distributed oriented bubbles and would
therefore be appropriate when the clustering is absent. Effects of clustering and
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bubble deformation may be combined in an ad-hoc manner as suggested in [5]. The
resulting averaged equations shall be presented elsewhere. Here, we summarize
the equations proposed by Spelt and Sangani [10] with a few modifications and
corrections (as stated below). The averaged equations are as follows.

Equations for the gas-liquid mixture:

∂Ui

∂xi
= 0, (1)

∂

∂t
((1−φ)UL

i )+
∂

∂xj
((1−φ)UL

i U
L
j ) = − 1

ρ

∂P

∂xi
+ (〈φ〉 −φ)gi − 1

ρ

∂

∂xj
%̂ij . (2)

Equations for the bubble-phase continuum:

∂φ

∂t
+ ∂

∂xi
(φVi) = 0, (3)

dIi

dt
= −1

n

∂Pij

∂xj
−mgi − 12πµaCdVi +m

DUi

Dt
− γjiIj

+ ρφ

(
(1 + 1/2Ca)Vk

∂

∂xk
[φ(1 + 1/2Ca)Vi]

)
, (4)

3

2
(ρ/2)φ

dT

dt
= −∂Qj

∂xj
− P ∗

ij eij − 36πµan(RdissT − ξV 2). (5)

Here, Ui is the mixture velocity, UL
i is the liquid velocity, ρ and µ are, respectively,

the density and viscosity of the liquid, P is the mixture pressure, φ is the bubble
volume fraction, n is the number density of the bubbles, Vi = UG

i −Ui is the bubble
relative velocity, UG

i is the velocity of the bubbles, Ii is the mean impulse (virtual
momentum) of the bubbles due to their relative motion,

D

Dt
= ∂

∂t
+ Uj

∂

∂xj

is the derivative following the mixture motion,

d

dt
= ∂

∂t
+ (Uj + Vj)

∂

∂xj

is the derivative following the motion of the gas phase, T is the bubble-phase tem-
perature, Pij is the bubble-phase stress, γij = ∂Ui/∂xj is the mean mixture velo-
city gradient, eij is the rate of strain tensor given by eij = (γ

p
ij + γ

p
ji)/2 where

γ
p
ij = γij + ∂(CaVi)/∂xj , Qj is the flux of fluctuation energy.

Equation (4) represents the momentum balance for the bubble phase. The second
and third term on the rhs of this equation represent, respectively, the buoyancy and
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drag forces. The next two terms represent force due to mixture velocity variation in
time and space. The force is exact when the curl of mixture velocity is zero. It also
agrees with the lift force on a single spherical bubble in weak shear flow as given by
Auton [1]. Finally, the last term, equivalent to the ponderomotive force in the theory
of electrostatics, occurs due to interaction of dipole induced by the relative motion
of the bubbles with the back flow.

Equation (5) represents the balance in fluctuation energy of bubbles’ motion. It
includes the sink term due to viscous energy dissipation and the source terms due
to shear and the nonzero mean relative velocity of the bubbles. The last one could
not be determined from numerical simulations due to excessive clustering seen in
simulations of bubbles rising due to gravity [7]. We used experimental measurement
of bubble-phase temperature for bubbles rising in a vertical channel in [13] to es-
timate ξ as given by ξ = 0.02 + 0.45φ. The clustering observed in the experiments
was much smaller than that observed in dynamic simulations with periodic boundary
conditions, and it was conjectured that this may be due to the presence of the chan-
nel walls and the channel width-scale fluctuation motion resulting from the clusters
breaking up. ξ may therefore depend on the channel width.

The bubble impulse is related to the mean bubble relative velocity by Ii =
m/2CaVi where m = 4πa3ρ/3 is the mass of the liquid displaced by the bubble.
The added mass coefficient for spherical bubbles is estimated using

Ca = 1 + 2φ + 9
40φA

1 − φ
. (6)

Here, A = V 2/T . The spatial distribution of the bubbles becomes more uniform
as A decreases. The bubble-phase stress is given by

Pij = (ρ/2)φT (1 + 4χφ)δij − [κ − 2/3µs]ekkδij − 2µseij . (7)

In [10] an additional term referred to as the Maxwell stress was given. The force
due to Maxwell stress is the ponderomotive force referred to earlier. The bubble-
phase viscosity may be estimated using

µs = 8ρ

5π1/2 (φ)aT
1/2φ2χ

[
1 + π

12

(
1 + 5

8φχ

)2
]
+ µ

(
1 + 5

3
φ

)
. (8)

Here, we have added the viscosity of the liquid to the expression given by Spelt and
Sangani [10]. The kinetic theory is applicable only when the Reynolds number based
on shear is large for which the transport of bubble-phase momentum by collision and
fluctuations in bubble velocity is dominant. Expressions for χ , fluctuation energy
flux, conductivity, viscous drag coefficient, mixture stress, and other terms may be
found in [10].

3 Boundary conditions

The potential flow approximation cannot be used for large-scale dynamic simulations
of bubble suspensions confined by walls as it fails in predicting bubble-wall interac-
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tions. We have used experimental observations on bubble wall interactions by Tsao
and Koch [11] to determine approximate boundary conditions for the bubble-phase.
The bubble motion near a wall depends on its size and the angle between the wall
and the bubble velocity. In general, the component of the velocity parallel to the wall
decreases as a result of bubble-wall encounter while the component perpendicular
to the wall may remain same or even increase. We have carried out dynamic sim-
ulations for a model of bubble suspension in which the bubble velocity and kinetic
energy associated with its motion satisfy following collision rule:

Vt,+ = αVt,−, V 2+ = γV 2−. (9)

Here − denotes before the bubble-wall collision while + denotes after the collision,
t refers to the tangential component of the bubble velocity. The parameters α and γ

are assumed to be independent of the angle of approach of the bubble. To isolate the
effect of bubble-wall interactions, we carried out simulations in which the drag and
added mass coefficients for all bubbles are identical and equal to unity. This is equiv-
alent to neglecting hydrodynamic interactions, and if it were not for the bubble-wall
interactions, all bubbles would rise with identical velocity and the bubble-phase tem-
perature will be zero. Dynamic simulations were carried out for this model bubble
suspension confined by two parallel plates. Periodic boundary conditions were used
in the other two directions. Profiles of bubble velocity, temperature, stress, etc. were
determined as a function of the lateral position in the channel. Results from one
representative simulation are shown in Figure 1.

The profiles thus obtained using direct numerical simulations were compared
with those obtained by solving the averaged bubble-phase equations presented in the
previous section together with the boundary conditions

Vn = 0, (10)

ρφχw(1 − α)T 1/2

(2π)1/2(1 − φ)
Vt = −µs

∂Vt

∂xn
, (11)

k
∂T

∂xn
= φ

2
χw

(
T

2π

)1/2

[(γ − 2α + 1)V 2
t + 4(γ − 1)T ], (12)

where the subscripts n and t represent the components normal and parallel to the
wall, respectively, and χw is given by

χw = 1 + φ + φ2

(1 − φ)2
. (13)

These boundary conditions were derived by assuming that the velocity distribu-
tion of bubbles near the wall is Maxwellian and determining the rate of momentum
and energy flux due to bubble-wall collisions. The dashed lines in Figure 1 corres-
pond to the predictions based on averaged equations with the above boundary condi-
tions. These predictions agree well with the results obtained by dynamic simulation.
The bubble-wall interaction is the main source of velocity fluctuations, and con-
sequently, the bubble-phase temperature is greatest at the walls. The bubble-phase
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Fig. 1. Comparison between averaged equation theory (FEM) and numerical simulations (MD)
for a model bubble suspension.

pressure drives the bubbles towards the center of the channel leading to a maximum
in the volume fraction there.

More detailed inspection of various quantities such as shear stress and fluctu-
ation energy flux does indicate some discrepancies. For example, the fluctuations
in the velocity component parallel to the channel walls are much greater than those
in the direction perpendicular to the walls. In other words, the velocity variance is
anisotropic. Also the velocity distribution is non-Maxwellian, especially near the
channel walls where it is significantly bimodal as the velocity distribution of the
bubbles approaching the walls is quite different from those bouncing back from the
wall. In [6], a kinetic theory is developed that accounts for both the anisotropy and
the bimodal nature of velocity fluctuations. The resulting equations, however, are
far more complicated, and therefore we shall use the simpler description based on
isotropic Maxwellian distribution.

We also need to specify the boundary conditions for the mixture equations. One
obvious condition is that the component of the mixture velocity normal to the rigid,
nonporous walls must be zero. We allow the tangential component to have nonzero
slip. Assuming that we have a layer of thickness δ of bubble-free liquid near the wall
and the velocity of the liquid at the edge of the layer is UL

t , continuity of the tangen-
tial stress at the interface of bubble suspension and the clear liquid layer requires
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Fig. 2. Image of bubbles in the pipe at a typical volume fraction of 0.072. The mean equivalent
diameter is 1.01 mm and the standard deviation is 0.08 mm. The mean aspect ratio is about
1.2. The terminal velocity of this size of bubble in clean water is about 20 cm/s. ReL is 1100
(Tsang [12]).

UL
t = −δµs

µ

∂UL
t

∂xn
. (14)

We may take δ = λa in the above equation to provide an effective boundary con-
dition for the slip in the tangential component of the velocity. The predicted results
appear to agree well with the experiments if we take λ = 0.5.

4 Comparison with experiments

We shall compare the theoretical predictions for a bubbly liquid flow in a vertical
pipe with the experiments recently carried out by Tsang [12]. MgSO4 was added to
deionized water to prevent bubbles from coalescing. Figure 2 shows a photograph
of a bubbly liquid. We see that bubbles are approximately spherical and uniform in
size.

Averaged equations along with the boundary conditions for the flows of bubbly
liquids in a vertical pipe were solved numerically using a Chebyshev pseudo-spectral
collocation technique. Tsang [12] performed experiments for seven different flow
conditions: four different liquid Reynolds numbers for 〈φ〉 = 0.02, two for 〈φ〉 =
0.05, and one for 〈φ〉 = 0.075. All results given below are obtained by setting α =
0.3, γ = 0.7 in the boundary conditions given by Equations (11) and (12). The
velocities are normalized by the terminal velocity of a single bubble and the radial
distances by the bubble radius. The bubble radius depended on the volume fraction
and the liquid Reynolds number. The bubble Reynolds number based on its terminal
velocity and radius varied in the range 35–75 – a range for which one expects the
potential flow based approximation to provide reasonable estimates of the bubble
phase properties.
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Fig. 3. Variation of ratio of liquid velocity to mean liquid velocity (smooth line represents
prediction from theory).

As seen in Figure 3 the liquid velocity profiles are well predicted by the theory.
The estimated liquid slip velocity and the predicted ones for all the seven flow condi-
tions are shown in Figure 4. We see that the slip velocity increases with the Reynolds
number. The shear stress in the mixture increases with the Reynolds number and this,
in turn, causes the slip velocity to increase.

Tsang [12] found that the bubble-phase temperature was approximately constant
across the pipe cross-section and reported average bubble-phase temperatures for
each of the seven flow conditions. The results are shown in Figure 5. The agreement
with the theory predictions is quite good. At higher Reynolds numbers, the shear
stress is higher, and this leads to larger bubble-phase temperature. The temperature
seems to be relatively insensitive to the bubble volume fraction.

Figures 6 and 7 show the results for the mean relative velocity of the bubbles
as functions of ReL and 〈φ〉. We note that the velocities are significantly lower than
what would be predicted simply by balancing the viscous drag and buoyancy, as the
viscous drag coefficient, Cd , is not much greater than unity for these conditions. The
lower velocities are caused by the bubble-phase shear stress gradient. The mixture
momentum equation requires that the pressure gradient be balanced by the shear

388



Flow of Bubbly Liquids in a Vertical Pipe: Theory and Experiments

Fig. 4. Liquid slip velocity normalized by the bubble terminal velocity. Open symbols rep-
resent experiments and filled represent the theory. diamonds: ReL = 1100; triangles: ReL =
1600; squares: ReL = 2100; circles: ReL = 2600.

Fig. 5. Bubble-phase temperature. See caption of Figure 4 for symbols.

stress gradient. Since the same shear stress gradient also appears in the bubble-phase
equation, higher the pressure gradient, higher is the shear stress force on the bubble,
and consequently, lower the bubble-phase relative velocity. For the case of steady,
unidirectional flow, the bubble-phase and mixture momentum equations can be com-
bined to yield

∂P

∂z
+ ρ〈φ〉g = 12πµanCdV. (15)

Thus, the effect of negative pressure gradient required for the upward liquid flow is
to effectively reduce the force on the bubbles.
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Fig. 6. Variation of mean relative velocity of bubbles normalized by the bubble terminal velo-
city with liquid Reynolds number, ReL, for 〈φ〉 = 0.02. Open symbols represent experiments
and filled represent the theory.

Fig. 7. Variation of mean normalized relative velocity of bubbles with volume fraction for
ReL = 1100.

Finally, Figure 8 shows the comparison for the bubble volume fraction profiles.
The lift force causes the bubbles to accumulate near the wall. The bubble-phase pres-
sure gradient is not large enough so that the peak in the volume fraction occurs within
about one diameter of the bubbles. The experiments give peaks that are more diffused
and at greater distance from the wall, especially for 〈φ〉 = 0.02. Position of the peak
seems to be relatively insensitive to the bubbles-wall interaction parameters α and γ .
Most probable cause for the discrepancy is the simplified boundary conditions (cf.
Equations (12)–(13)) employed here. The assumption of isotropic Maxwellian velo-
city distribution is not valid at low volume fractions. Bimodal velocity distribution
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Fig. 8. Volume fraction profiles. Smooth lines represent theory.

is likely to cause an effective repulsive wall force that is not included in the present
simplified equations.

5 Conclusions

We have presented recent experiments on flows of bubbly liquids in a vertical pipe
in which the bubbles were approximately spherical and nearly monodisperse – an
ideal case for comparison with the averaged equations based on the potential flow
approximation. The theory predictions are shown to agree reasonably well with the
experiments.
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Abstract. In this work we address the effect of particle inertia in particulate density currents.
First we introduce a novel two-fluid model based on the equilibrium Eulerian approach [6].
The resulting model captures very important physics of two-phase flows, such as preferential
concentration and migration of particles down turbulence gradients (turbophoresis), which
modify substantially the structure and dynamics of the flow. We solve the mathematical model
with a highly accurate spectral code, capturing all the length and time scales of the flow. We
present two-dimensional simulations in planar configuration for Grashof Gr = 1.5 × 106. In
the simulation results we observe the particles to migrate from the core of Kelvin–Helmholtz
vortices shed from the front of the current and to accumulate in the current head, which affects
the propagation speed of the front.

Key words: Density currents, gravity currents, two-phase flow, two-fluid model, equilibrium
Eulerian model, spectral methods.

1 Introduction

Density (or gravity) currents are flows generated by the action of gravity over two
fluids with density difference. The current may move below, above or in between of
ambient fluid layers. Examples of particulate density currents are dusty thunderstorm
fronts, pyroclastic flows produced in volcano eruptions, aerosol releases in the en-
vironment, flows originated by the discharge of a sediment-laden flow into the ocean
or a lake and snow avalanches. Many more examples can be found in the books by
Simpson [15] and Allen [2]. In most of the cases the density difference is only a
few percent, however, this is enough for these currents to travel long distances and
transport large amounts of sediment. Particles may settle or be re-entrained into the
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flow and particulate density currents are sometimes called non-conservative density
currents.

Density currents have engineering, environmental and geological implications.
Several studies on the accidental release of liquefied gas have been done modeling
the flow as a non-conservative density current that looses mass due to evaporation
[16]. In the ocean, sediment slump can trigger particulate density currents capable of
traveling kilometers. These strong flows can carve submarine canyons [8] and mold
the seabed producing different bed forms patterns as ripples, dunes, antidunes and
gullies.

In this work we concentrate on the effect of particle inertia on the flow struc-
ture and dynamics. It is important to recognize that particles move with a velocity
field which is different from the fluid. The fact that particles with finite size cannot
follow exactly the fluid velocity plays a very important role and modifies substan-
tially the structure and dynamics of the flow. In the following section we present a
novel Eulerian–Eulerian mathematical model for simulating particulate density cur-
rents based in the well-accepted formalism of two-phase flow and the equilibrium
Eulerian approach [6]. Then, we present two-dimensional direct numerical simula-
tions and assess the effect of finite inertia on the current structure and front velocity.

2 Formulation of the mathematical model

We are interested in simulating buoyant flows driven by the presence of solid
particles of finite inertia. In this situation particles not only modify the bulk density
[13] but also move with their own velocity. Table 1 shows dimensionless paramet-
ers representing settling (w̃) and inertia (τ̃ ) of sand particles of varying size (d) and
initial concentration (φ0) in water for different flow scales. The formal definition of
these parameters is presented in the next section and for the analysis in this section it
is enough to recognize that their numerical values dictates their relative importance
in the mathematical model. Observe that in the cases shown in this table inertia is as
important as settling.

Here we develop a new formulation that includes the role of particle inertia, in the
interest to simulate gravity currents on environmental and geological scales. In this
section we present an Eulerian–Eulerian model based on an asymptotic expansion of
the two-phase flows equations in parameters describing the particle inertia (τ ) and
the particle concentration (φd ). The model is formally exact to O(φdτ + τ 2 + φ2

d )

Table 1. Sand in water, β = 0.476, R = 1.65.

d = 100 µm φ0 = 0.1 d = 100 µm φ0 = 0.2 d = 10 µm φ0 = 0.2

Gr τ̃ w̃ τ̃ w̃ τ̃ w̃

106 2.4 × 10−2 7.6 × 10−2 3.8 × 10−2 6.1 × 10−2 3.8 × 10−4 6.1 × 10−4

1010 5.2 × 10−3 1.6 × 10−2 8.3 × 10−3 1.3 × 10−2 8.2 × 10−5 1.3 × 10−4

1014 1.1 × 10−3 3.5 × 10−3 1.8 × 10−3 2.8 × 10−3 1.7 × 10−5 2.8 × 10−5
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and consists of conservation equations for the mixture, an algebraic equation for the
particle velocity and a transport equation for the particle volume fraction.

Let the indices c and d denote the continuum and disperse phases, respectively.
We denote the densities, volume fractions, and velocities of each phase by ρc, φc,
uc, and ρd , φd , ud , respectively. We base our formulation on the volume-averaged
velocity

uv = φcuc + φdud . (1)

In the case of constant density phases and no mass transfer between phases the
mass conservation equations are [17]

∂φc

∂t
+ ∇· (φcuc) = 0 and

∂φd

∂t
+ ∇· (φdud ) = 0 , (2)

where φc + φd = 1. Observe that adding these two equations we get ∇· uv = 0, i.e.
the volume-averaged velocity is a solenoidal field. This is a key feature that allows
the use of incompressible Navier–Stokes solvers.

The process of obtaining the ensemble-averaged momentum equations [11] and
their closure has been presented in detail in [17] and more recently in [12] (see also
[14]). The resulting momentum equation for the flow can be expressed as

∂

∂t
(φcρcuc)+ ∇· (φcρc uc ⊗ uc) = φcρcg − φc∇p + µc∇2uv − F (3)

+ ∇· (φcRc) ,

∂

∂t
(φdρdud)+ ∇· (φdρd ud ⊗ ud ) = φdρdg − φd∇p + F + ρd∇· (φdRd) . (4)

Here p is the pressure in the continuous phase, µc is the dynamic viscosity of the
continuous phase, g is the gravity vector, (F − φd∇p) is the net hydrodynamic in-
teraction between phases and Rc,d are the kinematic Reynolds stresses.

In order to obtain a momentum equation based on uv we operate under the as-
sumption that φd � 1, but also attempt to capture the grossest features of the dy-
namics in the case when φd becomes significant. A momentum equation based on the
volume-averaged velocity can be obtained by adding Equations (3) and (4), which
approximated to O(φdτ + τ 2 + φ2

d ) reads

ρc

(
∂uv
∂t

+ uv · ∇uv

)
= φd(ρd − ρc)g − ∇p + µc∇2uv,

where the Boussinesq approximation has also been used.
The two-fluid model is completed by computing the particle velocity field from

the equilibrium Eulerian approach proposed originally by Ferry and Balachandar [6]

ud = uc + w + τβ

2
νc∇2uc − τ (1 − β)

(
∂uc
∂t

+ uc · ∇uc

)
, (5)

where νc = µc/ρc, τ is the particle response time and β is the density ratio factor
defined by
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τ = d2(ρd + Cmρc)

18µc

and β= ρc + Cmρc

ρd + Cmρc
, (6)

respectively. Here d is the particle diameter, and the added mass coefficient is Cm =
1/2. The settling velocity w is defined as w = τ (1 − β)g, and it is assumed to be
O(τ) in this work, i.e. we assume that the Reynolds number based on the settling
velocity and particle diameter, ρcd|w|/µc, is less than one.

The formula for ud in terms of uv then becomes

ud = uv + (1 − φd)w + τβ

2
νc∇2uv − τ (1 − β)

(
∂uv
∂t

+ uv · ∇uv

)
(7)

to O(τφd + τ 2 + φ2
d).

The velocity ud is used to evolve the disperse phase volume fraction φd :

∂φd

∂t
+ ∇· (φdud ) = κ∇2φd. (8)

The particle diffusivity κ will be taken as a constant multiple of the continuous phase
kinematic viscosity: κ = νc/Sc, where Sc is the Schmidt number. Particle diffusivity
is a way to account for the departure in particle motion from equilibrium prediction.
Such departures arise from close interaction of particles and in general diffusivity
is a function of both local particle concentration and local shear [1, 7]. However, as
shown by other researchers solution of Equation (8) with little or no diffusion is nu-
merically unstable, especially in the context of spectral simulations. Here, based on
numerical considerations we simply chose Sc = 1 and consistently with the findings
of Härtel et al. [10] we observe that the results to be presented are not sensitive to
this choice.

3 Formulation of the problem

We consider the setting depicted in Figure 1. The channel is filled at one end with the
mixture separated by a gate from the rest of the channel, which is filled with clear
fluid. When the simulation begins the gate is released and the flow develops forming
an underflow intrusion of the mixture into the clear fluid (solid line in Figure 1).

Let the half height of the channel (h0) be the length scale, U0 = √
g φ0 R h0

be the velocity scale and the initial volume fraction (φ0) be the concentration scale.
Here R = (ρd −ρc)/ρc = 3(1−β)/(2β). Then, time and pressure scales are h0/U0
and ρcU2

0 . Let ·̃ denote the dimensionless variables. The dimensionless equations of
the model are
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Fig. 1. Sketch of a density current with the nomenclature used in this work.

∂ ũv
∂ t̃

+ ũv · ∇ũv = φ̃d
g
g
− ∇p̃ + 1√

Gr
∇2ũv, (9)

∇· ũv = 0, (10)

ũd = ũv + (1 − φ0φ̃d)w̃ + β τ̃

2
√
Gr

∇2ũv (11)

−τ̃ (1 − β)

(
∂ ũv
∂ t̃

+ ũv · ∇ũv

)
, and

∂φ̃d

∂ t̃
+ ∇·

(
φ̃d ũd

)
= 1

Sc
√
Gr

∇2φ̃d . (12)

The key non-dimensional parameter that characterizes the strength of the current is
the Grashof number, defined as Gr = (U0 h0/νc)

2. The other two controlling para-
meters define the individual suspended particles in terms of particle Stokes number
(τ̃ = τU0/h0) and non-dimensional settling velocity (w̃ = |w|/U0). These paramet-
ers characterize the inertial and settling effects of the particle, respectively.

The dimensionless governing equations are solved using a de-aliased pseudo-
spectral code [4]. Fourier expansions are employed for the flow variables in the ho-
rizontal direction (x). In the inhomogeneous vertical direction (z) Chebyshev expan-
sion is used with Gauss–Lobatto quadrature points. The flow field is time advanced
using a Crank–Nicholson scheme for diffusion terms. The advection and buoyancy
terms are advanced with a third-order Runge–Kutta scheme. More details on the
implementation of this numerical scheme can be found in [5]. The computational
domain is a box of size Lx = 40 × Lz = 2, which extends from x̃ = −20 to
x̃ = 20 and from z̃ = 0 to z̃ = 2. The flow is initialized from rest with φ̃d = 1 in
x̃ ∈ (−2, 2) for all z̃ and φ̃d = 0 otherwise. This setting of the problem generates
two currents moving from the center outward. In this way we can enforce periodic
boundary conditions in the horizontal direction for all variables avoiding to specify
an outflow boundary condition. At the top and bottom walls no-slip conditions are
enforced for velocity. For the disperse phase zero net flux is set at the top wall and
zero particle resuspension is set at the bottom wall [3], i.e.
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Fig. 2. Contours of particles concentration. Solid line: 0.1, dashed line:1.0. Solution for Gr =
1.5 × 106, τ̃ = 0.0 and w̃ = 0.0.

w̃zφ̃d − 1

Sc
√
Gr

∂φ̃d

∂z̃
= 0, and

∂φ̃d

∂z̃
= 0, (13)

respectively. The solution was advanced in time until the front reached location of
x̃ = 18 to avoid the influence of finite domain size [9]. The simulations were per-
formed using a resolution of Nx = 1024 × Nz = 220. It must be mentioned that
almost twice the resolution is needed for the particulate flow simulations compared
to the corresponding scalar case (i.e. same dimensionless numbers with τ̃ = 0 and
w̃ = 0). The resolution was selected to produce a decay of 6 to 8 decades in the
energy spectrum of every variable.

4 Results

Figure 2 shows the results for the limit when particles are so small that they act as
a scalar field (w̃ = 0 and τ̃ = 0). The flow is visualized by a contour of φ̃d = 0.1.
Soon after the release an intrusion front forms with a lifted nose due to the no-slip
boundary condition. As the current advances Kelvin–Helmholtz vortices are shed
from the front which produce a net drag that balances the initial acceleration of the
front. As a consequence, after the initial set-up of the Kelvin–Helmholtz vortices,
the front moves at constant speed until the dilution in the current becomes important.
Then, the current slows down and eventually dissipates.

Figures 3 and 4 show the results for currents of inertial particles with negligible
settling (τ̃ = 0.05, w̃ = 0) and (τ̃ = 0.1, w̃ = 0) respectively. Two contours
are shown in these figures: the solid line contour that corresponds to φ̃d = 0.1,
and the dash line contour that corresponds to φ̃d = 1. Two main differences are
observed compared to the no inertia particles case. The first one is the migration of
particles away from the core of Kelvin–Helmholtz vortices, and the second one is
the accumulation of particles in the front of the current, producing regions of particle
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Fig. 3. Contours of particles concentration. Solid line: 0.1, dashed line:1.0. Solution for Gr =
1.5 × 106, τ̃ = 0.05 and w̃ = 0.0.
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Fig. 4. Contours of particles concentration. Solid line: 0.1, dashed line:1.0. Solution for Gr =
1.5 × 106, τ̃ = 0.1 and w̃ = 0.0.

concentration greater than the initial value (i.e. φ̃d > 1). These two effects can be
explained by noting that the divergence of the particles velocity field is

∇ · ũd = τ̃ (1 − β)
(
‖�‖2 − ‖S‖2

)
, (14)

where S and� are the symmetric and skew-symmetric parts of the local fluid velocity
gradient tensor. Note from Equation (6) that for particles substantially heavier than
the continuous phase (β → 0), ∇· ũd > 0 when ‖�‖ > ‖S‖, which means that
particles migrate from regions of vorticity and accumulate in regions of high strain
rate.

The preferential particles accumulation described above has a very important
consequence in the current front velocity. Figure 5 shows the front velocity for the
three different cases studied in this work. Observe that the front velocity in the phase
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Fig. 5. Front velocity for the total time simulation. Solution for Gr = 1.5× 106 and w̃ = 0.0.

of constant velocity increases for larger values of τ̃ . The current with τ̃ = 0.1
presents a front velocity 5% larger that the current with τ̃ = 0.

5 Summary and conclusions

We have presented a novel two-fluid model for the simulation of particulate density
currents with particles of finite inertia. The model consist of conservation equations
for the mixture, an algebraic equation for the particle velocity and a transport equa-
tion for the particles concentration. By the incorporation of the equilibrium Eulerian
approach [6] we avoid solving a partial differential equation for the conservation of
momentum of the disperse phase which constitutes a big saving in computational
time.

The results presented in this work show that particle inertia has an important in-
fluence in the structure and dynamics of the flow. Particles migrate from the core
of Kelvin–Helmholtz vortices and accumulate in the front of the current. As a con-
sequence the front velocity at the initial stage of the flow is larger with increasing
particle inertia. Finally, we speculate that inertia may have an important influence
in the deposition patterns produced by these type of flows since the deposition flux
is proportional to the particles concentration. Three-dimensional simulations are un-
derway and will serve to address this speculation.
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1 Introduction

Recent direct numerical simulation (DNS) of large number of solid particles inter-
acting through a fluid medium by Joseph and collaborators [1, 2] show that a layer of
heavy particles with fluid streaming above it can develop Kelvin–Helmholtz (K–H)
instability waves whereas a layer of particles above a lighter fluid develops Rayleigh-
Taylor instability. However, performing full DNS of millions of dispersed particles
in a turbulent flow (e.g. spray combustion, liquid atomization, spray coating, fluid-
ized bed combustion, aerosol transport) is computationally intensive. For such ap-
plications, the particle size is typically smaller than the grid-resolution used for the
computation of the continuum fluid. Under these conditions, the particles are subgrid
and some sort of subgrid modeling is necessary to simulate their motion.

The “point-particle” assumption is commonly employed where forces on the dis-
persed phase are computed through model coefficients. The effect of the particles on
the carrier phase is represented by a force applied at the centroid of the particle. For
dilute particle loadings with swirling, separated flows in a coaxial combustor com-
puted using LES of point-particles, Apte et al. [3] indicated good agreement with the
experimental data. However, for moderate loadings and wall-bounded flows, Segura
et al. [4] have shown that the point-particle approximation fails to predict the tur-
bulence modulation compared to experimental values. In order to capture the same
level of turbulence modulation observed in experiments, it was required to artificially
increase the particle loadings by an order of magnitude when using the point-particle
approach [4]. In addition, if the particle size is greater than Kolmogorov scale, simple
drag/lift laws used in this approach do not capture the unsteady wake effects [5, 6].

In this work we attempt to extend the point-particle approximation by accounting
for the finite-size of the particles and the corresponding volume displacement (&f ) of
the carrier phase. Accordingly, the carrier phase continuity and momentum equations
are modified to include &f . The formulation was originally put forth by Dukow-
icz [7] in the context of spray simulations. However, the particle volume fractions
are often neglected owing to the increased complexity of the governing equations as
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well as numerical stiffness they impose in the dense spray regime. Several studies on
dense granular flows [8–10] use this model for laminar flows. Similar formulation
has been applied for bubbly flows at low bubble concentrations to investigate the
effect of bubbles on drag reduction in turbulent flows [11]. However, these studies
do not identify the effects of the fluid displacement by dispersed phase compared to
the point-particles. In the following sections, the mathematical model and numerical
scheme are described in brief. The model is applied to simulate gravitational settling
and fluidization by jet to validate the numerical scheme. Next we compute plane
Poisuille flow with rigid spheres at the bottom to show particle dispersal and lift.

2 Mathematical formulation

The formulation described below consists of the Eulerian fluid and Lagrangian
particle equations, and accounts for the displacement of the fluid by the particles
as well as the momentum exchange between them [12].

2.1 Gas-phase equations

The fluid mass for unit volume satisfies a continuity equation,

∂

∂t
(ρf&f )+% · (ρf&f uf ) = 0, (1)

where ρf , &f , and uf are the fluid density, volume fraction, and velocity, respect-
ively. This indicates that the average velocity field of the fluid phase does not sat-
isfy the divergence-free condition even if we consider an incompressible suspending
fluid. The particle volume fraction, &p = 1 −&f is defined as

&p(xcv) =
Np∑
k=1

VpkGσ (xcv, xpk ), (2)

where the summation is over all particles Np. Here xpk is the particle location, xcv
the centroid of a control volume, and Vpk the volume of a particle. The interpolation
function, Gσ , effectively transfers Lagrangian quantity to give an Eulerian field (per
unit volume, Vcv , of the grid cell containing the particle centroid) on the underlying
grid and is defined later. The fluid momentum equation is given as

∂

∂t

(
ρf&f uf

)+% · (ρf&f uf uf ) = −% (&f p) +% · (µf Dc)+ F, (3)

where p is the average pressure, µf is the viscosity of the fluid, and Dc = %uc +
%uTc the average deformation-rate of the fluid-particle composite, uc the composite
velocity of the mixture [12], and F the force per unit volume exerted on the fluid by
particles.
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2.2 Dispersed-phase equations

The individual particle positions and velocities can be obtained by solving the ordin-
ary differential equations in Lagrangian framework for each particle:

d

dt
(xp) = up; mp

d

dt
(up) = Fp, (4)

where xp is the particle position, up the particle velocity, Fp = mpAp the total
force acting on the particle of mass mp, and Ap is the particle acceleration. This
consists of the standard hydrodynamic drag force, dynamic pressure gradient, gradi-
ent of viscous stress in the fluid phase, a generalized buoyancy force, inter-particle
collision and external body forces (gravity). In the present work, we assume that the
particle forces consist of drag, collision and gravitational acceleration, and neglect
all other terms in order to investigate the effect of the particle volume fraction. For
high density ratios (ρp/ρf ∼ 1000), these assumptions are valid [3]:

Ap = Dp(uf,p − up)−
(

1 − ρf

ρp

)
g + Acp. (5)

Here Acp is the acceleration due to inter-particle forces and uf,p the fluid velocity at
the particle location. The standard expression for drag force, Dp , is used

Dp = 3

8
Cd

ρf

ρp

|uf,p − up |
Rp

, (6)

where Cd is the drag coefficient [13],

Cd = 24

Re
(1 + 0.15Re0.687

p )&−2.65
f , for Rep < 1000 (7)

= 0.44&−2.65
f , for Rep ≥ 1000; (8)

Rp = (
3Vp/4π

)1/3 is the particle radius. The particle Reynolds number (Rep) is
given as, Rep = 2ρf&f |uf,p − up|Rp/µf . There is an indirect collective effect in
this drag term: when there is a dense collection of particles passing through the fluid,
the interphase momentum exchange term in Equation (3) will cause uf to approach
the particle velocity, up , thus decreasing the drag on a particle, a drafting effect. The
inter-particle collision scheme is based on the discrete element approach of Cundall
and Strack as given in [9]. This is necessary to keep the particle centroids from
overlapping each other. The interphase momentum transfer function per unit volume
in Equation (3) is given as

F(xcv) =
Np∑
k=1

GσmpkDpk (uf,pk − upk ). (9)
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3 Numerical method

In this work, we modify the numerical scheme for unstructured, arbitrary shaped ele-
ments developed by Mahesh et al. [14] to take into account the fluid volume fraction.
On Cartesian grids in three-dimensions, bilinear interpolation functions utilizing 26
neighboring grid cells to interpolate Eulerian fields from the Lagrangian quantities
have been used [8, 10]. In an effort to generalize these interpolations to unstructured,
arbitrary shaped elements, we make use of a Gaussian distribution function centered
at the particle centroid as an interpolation function and is given by

Gσ (xcv, xp) = 1(
σ
√

2π
)3

exp

[
−
∑3

i=1 [(xcv)i − (xp)i ]2
2σ 2

]
. (10)

Here we assume that Vp < Vcv and set the filter width to be equal to the longest
diagonal of the control volume (CV) containing the particle. The interpolation oper-
ator is applied to all the neighbors of the CV (having at least one grid node common).
Similar interpolation function has been used in the context of resolved simulations of
particles [15]. In addition, G is normalized to satisfy

∫
Vcv

Gσ (xcv, xp)dV = 1, where
the integration is performed over CV and all of its immediate neighbors. The final
step is necessary to enforce mass (or volume) conservation. The resulting &p will be
smooth and mass-conserving as the particles move from one CV to another. We use
an implicit scheme for the fluid solver, however, the interphase momentum exchange
terms are treated explicitly. The particle equations are integrated using third-order
Runge–Kutta schemes for ode-solvers. At each Runge–Kutta step, the particles were
re-located and the collision force was re-computed. We use the Lagrangian particle
tracking algorithm developed in [3].

4 Results

4.1 Case 1: Gravitational settling

We first simulate sedimentation of solid particles under gravity in a rectangular box.
Details of this case are given in Table 1. The initial parcel positions are generated
randomly over the box length. These particles are then allowed to settle through the
gas-medium under gravity. The dominant forces on the particles include gravity and
inter-particle/particle-wall collision. As the particles hit the bottom wall of the box,

Table 1. Parameter description for gravity-dominated sedimentation.

Computational domain, 0.2 × 0.6 × 0.0275 m Grid, 10 × 30 × 5
Fluid density, 1.254 kg/m3 Particle Density, 2500 kg/m3

Number of Parcels, 1000 Particles per parcel, 3375
Diameter of particles, 500 µm Initial particle concentration, 0.2
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Fig. 1. Temporal evolution of particle distribution during gravity-dominated sedimentation.

they bounce back and stop the incoming layer of particles, and finally settle to a
close pack limit. The upper mixture interface between the particles and the fluid is
closely approximated by h = gt2/2 [10]. As the particles settle the fluid in the bot-
tom half of the box starts to move upward giving resistance to the settling particles.
The evolution of the mixture interface closely follows the analytical estimate in our
computation.

4.2 Case 2: Fluidization by jet

We consider the problem of fluidization of solid particles arranged in an array at
the bottom of a rectangular box. Fluidization is achieved by a jet of gas from the
bottom of the box. The flow parameters are given in Table 2. The particle motion
is mostly dominated by the hydrodynamic drag force and collision model should
not affect the overall particle motion. The collision model, however, is important in
governing the particle behavior near the walls and helps prevent the volume fraction
from exceeding the close-pack limit.

Figure 2 shows the position of parcels at different times during bubbling fluidiz-
ation. The jet issued from the bottom wall pushes the particles away from the center
region and creates a gas-bubble in the center. The particles collide with each other,
against the wall and are pushed back towards the central jet along the bottom wall.
They are then entrained by the jet and are levitated. This eventually divides the cent-
ral bubble to form two bubbles. The particles tend to move upward and collide with
the upper wall and remain levitated during future times. The computational results

Table 2. Parameter description for the simulation of fluidization by a gas jet.

Computational domain, 0.2 × 0.6 × 0.0275 m Grid, 10 × 30 × 5
Gas jet velocity, 9 m/s Jet diameter, 0.04 m
Fluid density, 1.254 kg/m3 Particle Density, 2500 kg/m3

Number of Parcels, 2880 Particles per parcel, 3375
Diameter of particles, 500 µm Initial particle concentration, 0.4
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Fig. 2. Temporal evolution of particle distribution during fluidization by a gas jet. Initially all
particles are uniformly arranged in layers at the bottom of the rectangular box. Air is injected
through a rectangular slot at the bottom wall. Air bubbles are trapped within the particles and
the growth and pattern of these bubbles are in agreement with simulations by Patankar and
Joseph [9].

are in good agreement with the simulations of [9]. Similar results are reported using
Eulerian–Eulerian approach in two-dimensions [16].

4.3 Case 3: Fluidization by lift

The transport of particles by fluids in coal-water slurries, hydraulically fractured
rocks in oil-bearing reservoirs, bed-load transport in rivers and canals and their over-
all effect on the river bed erosion etc., are important scientific and industrial issues in
particulate flows. In order to understand fluidization/sedimentation in such conduits,
Choi and Joseph [1] performed a DNS study of fluidization of circular cylinders (300
particles) arranged at the bottom of a channel in plane Poisuille flow. They observed
that with sufficient pressure gradient across the channel, the particles initially at rest
in the lower half of the channel start moving and roll over the wall. Particle rotation
in a shear flow generates lift and the channel is fluidized after some time.

The flow parameters are given in Table 3. As opposed to [1], we are performing
three-dimensional simulations. The particles initially at rest, accelerate and setup
instability waves between the fluid and particle layers. Figure 3 shows the time-

Table 3. Parameter description for the simulation of fluidization of spherical particles in a
plane Poisuille flow.

Computational domain, 63 × 12 × 12 cm Grid, 20 × 11 × 10
Fluid density, 1 g/cm3 Fluid viscosity, 1 poise
Particle Density, 10.0 g/cm3 Diameter of particles, 0.95 cm
Number of Parcels, 3780 Particles per parcel, 1
Initial array height, 4.75 cm, Initial centerline velocity, 360 cm/s
Pressure gradient, 20 dyne/cm3
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Fig. 3. Temporal evolution of axial velocity contours in a plane Poisuille flow with particles
in the bottom half of the channel.

evolution of axial velocity contours in the fluid as well as particle locations in the
z = 0 plane. As the fluid is pushed out of the control volume by motion of particles
a vertical pressure gradient is created imparting vertical velocity to the particles and
the channel gets fluidized. We also did several test cases, with higher grid resolution,
increased density ratios to obtain similar results. With increased particle density, the
inter-phase momentum exchange decelerates the fluid in the bottom half of a channel
and an inflection point is created in the axial velocity profile. This eventually causes
lift and particle dispersal.
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It should be noted that the mechanism of lift observed in the DNS simulations is
different from the one given by the model. In the DNS, the particles accelerate and ro-
tate due to the shearing motion. This rotation of the particles in a shear flow gives lift.
In the model, however, we do not consider particle rotation and the only force exerted
by the fluid on the particle is through the drag law. The unsteady effects of particle
motion are captured entirely through the distribution of the particle volume fraction.
In the present simulations, the presence of a particle in a fluid control volume is felt
through the interphase momentum transfer due to two-way coupling, and changes
in the particle volume fraction field. The particle motion alters both continuity and
momentum equations and in turn affects the pressure field. In the present simulation,
the particles in the top layer move faster than those in the bottom layers. It is found
that this gives rise to gradients in pressure in the wall normal direction. This gives
vertical velocity to the fluid and causes lift of particles through the drag law.

5 Discussion

We also simulated all the above cases using the point-particle approach with colli-
sions and compared to the present model predictions [17]. For the first case (gravita-
tional settling), the particle evolution obtained from point-particles and the finite-size
model are similar. This is mainly because, the flow is gravity and collision domin-
ated and there is no mean fluid flow. For the second and third cases, however, the
point-particle approximation gave very different results compared to the finite-size
model. The patterns observed in Figure 2 are absent when simulated using point-
particles. Also, for the Poisuille flow, point-particles do not predict any lift and flu-
idization. This indicates that two-way coupling modeled using point-particles is not
sufficient to produce the effects observed in direct numerical simulations of these
flows. In the present formulation where we account for the volume displacement, the
particle volume fraction alters the flow evolution in three-different ways: (a) continu-
ity equation, (b) the momentum equation, and (c) the drag force. The blocking effect
of particles on the fluid phase, modeled by the continuity equation alters the fluid
flow in regions of high variations in volume fraction.

These findings have several implications on LES/DNS of two-phase flows. As
mentioned earlier, the point-particle approach does not reproduce the turbulence at-
tenuation obtained by solid particles in a channel flow even at moderate loadings
compared to the experimental observations [4]. For such wall-bounded flows, the
particles near the wall, tend to move slowly due to their inertia thus increasing their
residence time near the wall. Inter-particle and particle-wall collisions play an im-
portant role. The grid resolution in the wall-normal direction is such that the particle
diameter is typically occupied by 4-5 grid cells near the wall. In addition, due to
increased residence times near the wall, the local particle volume fractions become
high and gradients in the volume fraction field can alter the fluid flow. Prosperetti and
Zhang [18] argued that the effect of volume fraction may be more important than
inter-particle collisions in the near wall regions. As shown in the above case stud-
ies, considering the fluid displaced by the particles in the continuity and momentum
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equations has an indirect effect of increased particle loading on the fluid phase. Se-
gura et al. [4] had to artificially increase the particle loading to match the experi-
mental data on turbulence modulation. This suggests that the variations in volume
fraction field near the wall could account for these effects. Extension of the present
formulation to LES is straight forward. The filtered equations for LES can be de-
rived based on Favre-averaging commonly employed in variable density flows and
standard subgrid closures can then be applied.

Furthermore, applications involving dense flows such as liquid-fuel atomization
in automotive and aircraft engines, coal-fired combustion chambers, and fluidized
beds, should account for the finite-size of the droplets/particles in order to predict the
evolution of the fuel mass fractions correctly. As demonstrated by the last case above,
instability waves created by dense fuel flowing in a lighter fluid can be captured by
this model and will allow us to better represent the important features of primary
atomization often neglected in these simulations [19].

6 Conclusions

In the present study we extend the point-particle approach typically employed in
multiphase flows by accounting for the finite-size of the particles. The presence
of particles affects the fluid phase continuity and momentum equations through the
volume fraction field. Efficient interpolation scheme to obtain Eulerian fields from
Lagrangian points on arbitrary shaped, unstructured meshes has been developed. The
numerical technique has been applied to dense particulate flows such as gravitational
settling and fluidization by a gaseous jet. Finally, we have shown that the present
model can predict lift and fluidization of a plane channel flow with heavy particles
arranged in layers at the bottom of the channel. These effects were captured entirely
due to the fluid volume displaced by the particles and were not observed using the
point-particle approach. Based on this study, we propose that for moderate loadings,
the standard point-particle approach should be modified to account for the finite-size
of the particles. Further investigations on turbulent flows at moderate to high particle
loadings are necessary.
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1 Introduction

A Lagrangian formulation of fluid mechanics involves following parcels of inform-
ation (eddies, fluid particles, particles, droplets or bubbles) or ‘identifiable pieces
of matter’ [1] advected by the flow. This is in contrast to an Eulerian formulation
which involves keeping account of information at fixed points (such as mesh points
in a numerical code). Both formulations are formally equivalent and originate from
Euler, as noted by Lamb [8]. The penalty in developing a Lagrangian formulation
is the large number of pieces that must be tracked in time; but it has great strengths
in that it enables physical processes to be easily interpreted. Figure 1a illustrates the
added complexity that may result from a Lagrangian formulation with the simplest
problem: irrotational flow past a rigid cylinder. In an Eulerian framework, the flow
pattern is well-known with tagged fluid elements being advected around the cylinder
(Figure 1a (i)). In contrast (Figure 1a (ii)), for a Lagrangian formulation, informa-
tion following fluid elements is tracked. The fluid particle trajectories are complex
and must be calculated numerically. Solving a problem computationally within a
Lagrangian formulation may involve following a deformable grid; while such ap-
proaches are applied to non-Newtonian flows, there can be significant problems as
grid elements become stretched resulting in the Jacobian of the mapping becoming
zero.

Lagrangian models of a dispersed multiphase flow involves following individual
elements of the dispersed phase. Figure 1b illustrates a particle interacting with an
ambient flow such as, for example, a vortex. The ambient flow undisturbed by the
particle is characterised by a lengthscale Lv , while the particle is characterised by
a size a. Their trajectories are calculated by integrating the equations describing the
action of force and torque on individual elements with time, estimated from the local
velocity gradient tensor, the instantaneous velocity and acceleration of the particles
(see [9]). In this paper, we describe how to set up a Lagrangian model of a dispersed
phase and some of the assumptions on which they are based. Broadly, our discussion
is focussed on when there is a separation of scales between Lv and the particle size.
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When a � Lv , the Lagrangian description is quite mature and we show why, un-
der certain conditions, adding together viscous and inviscid contributions is justified
and apply the description to examine how particles are dispersed by coherent struc-
tures. When a ≥ Lv , current Lagrangian models fail because the force description
is no longer accurate. We provide new results showing how the force description is
modified for inviscid flows and some of the important implications.

2 Small particles interacting with a large vortex (a � Lv)

When a � Lv , the dynamics of the discrete phase is determined by integrating
the particle’s equation of motion, using local estimates of the velocity and vorticity
field (whether or not they are coupled to the flow of the discrete phase). We describe
new results justifying the adhoc assumption that the total force on a particle may
be estimated by adding together viscous and inviscid forces (for weakly straining
flows). We then apply a one-way coupled Lagrangian model to study how particles
are transported and dispersed in the vicinity of coherent structures such as spherical
vortices.

2.1 Force and torque on individual particles

The dynamics of individual particles are determined from expressions describing the
force and torque acting on them. The force on a particle moving with velocity v in a
flow u(x, t) is described by

ρpV
dv
dt

= −ρf CmV
dv
dt

+ ρf (1 + Cm)V
Du
Dt

+ Fd + FL + Fg, (1)

where ρp, ρf are the density of particle, fluid, Cm is the added-mass coefficient
and V is the volume of the particle. The force consists of added-mass, inertial
force, buoyancy (Fg), viscous/form drag (Fd), shear-induced lift (FL), and other
forces which we do not consider here. The description of the effects of torque on
particles and bubbles is quite recent, with an important contribution by Mougin and
Magnaudet [11] to this area. It is important to note that the viscous force depends on
the instantaneous relative velocity of the particles to the ambient flow while the iner-
tial force depends on the instantaneous local acceleration of the flow. Although there
is substantial effort computationally to justify the adhoc approach of simply adding
inviscid and viscous forces together, there is little supporting theoretical work (ex-
cept in the weakly inertial limit).

With a prescribed flow field u(x, t), (1) can be integrated to determine how
particles move through an evolving, inhomogeneous flow when low particle con-
centration and mass fraction are assumed. As the complexity of the flow description
increases (from K.S. to D.N.S., for example), fewer terms in (1) tend to be included
in the particle equation of motion. A useful approach is to drastically simplify the de-
scription of the ambient flow (e.g. by representing it in terms of coherent structures),
while still capturing the salient features of the particle dynamics in turbulence.
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Fig. 1. (a) Schematic illustrating the difference between an Eulerian and Lagrangian descrip-
tion The grid on the left of the cylinder illustrates the typical Eulerian approach where inform-
ation is calculated at fixed (grid) points. (b) Schematic of a particle moving near a vortex.

Fig. 2. Schematic (a) showing how the flow around a rigid body in a uniform flow is modified
(b) by the presence of strain.

2.2 The addition of inviscid and viscous forces for straining flows

Figure 2a shows a schematic of the inertial flow past a rigid body. Positive and neg-
ative vorticity is generated on the surface of the body and advected downstream. In
three-dimensions the Reynolds number of the wake flow decreases sufficiently for
it to be laminar far downstream; for two-dimensional flows the Reynolds number
is constant and a von Karman vortex sheet wake is generated. The wake vorticity
generates a positive velocity deficit, so that fluid is transported towards the body.
Sufficiently far enough downstream of the body, the volume flux Q associated with
the wake tends to a constant which is related to the force on the body F0, through
Q = F0/ρU , with U the body translation velocity [2]. The presence of the volume
flux means that through mass conservation the far field flow away from the wake is
dominated by a source of strength Q.

In the presence of a weak positive planar straining flow (Figure 2b), the cross-
stream diffusive flux of vorticity, which normally leads to the wake spreading, is
counterbalanced by the inward convective flux so that the wake spreading is ulti-
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mately arrested. Now, the positive and negative components of vorticity diffuse into
one another, leading to vorticity annihilation and a gradual reduction in the strength
of the velocity deficit. The volume flux in the wake decreases rapidly downstream
of the body so that the flow is ultimately irrotational. In such circumstances, Betz’s
[2] analysis is now no longer valid. The total force on the body, evaluated using a
momentum flux argument, is

F = −ρf µT U
dux
dx

, (2)

where µT is the total dipole moment. The reduction of the volume flux in the wake
is equivalent to a line of sinks, which combined with the source flow near the body
leads to a dipolar far field, characterised by a dipole moment µW = Q/2πα. The
local flow around the body also generates a dipolar flow with moment µB and speed
U , so that µT = µW + µB and

F = −ρf (µW + µB)U
dux
dx

= ρfQU − ρf µB
dux
dx

= F0 − ρf µBU
dux
dx

. (3)

The dipole moment associated with the flow around the body differs less than 10%
from the inviscid prediction (see [7]). Thus, according to the above calculation, the
addition of a viscous and inviscid force is justified, and this is supported by the
numerical work of Magnaudet et al. [10].

2.3 Particle motion near coherent structures

One of the important applications of Lagrangian models is to develop closure re-
lations, such as average settling velocity and dispersivity, for use in Eulerian mod-
els. We illustrate this technique by considering how particles move near coherent
structures, in this case represented simply as a spherical vortex. Even for such a
well-defined problem there are subtle ambiguities about defining even an apparently
simple quantity. To illustrate this, consider inertialess particles settling in a steady
flow u(x) with a terminal fall velocity vT . Their velocity will be

v = u − vT x̂. (4)

If particles are introduced randomly into a bounded flow with zero mean velocity,
〈u〉 = 0, we could anticipate that the average particle fall velocity

〈v〉 = 〈u〉 − vT x̂ = −vT x̂, (5)

is unchanged, since particles are as likely to experience a positive or negative vertical
velocity. But if we follow particles in time, we can see that they are always excluded
from a fraction of the flow – the shadow regions – and this biased sampling by the
particles means that the average fall velocity is slightly increased so that

〈v〉 = 〈u〉 − vT x̂ = −vT (1 + α)x̂, (6)
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Fig. 3. Schematic showing particles sedimenting past a Rankine vortex and illustrating the
presence of a PSP.

where α is the volume fraction of the shadow regions. The particle velocity is there-
fore determined by the non-dimensional parameter vT /U . Whether particles sed-
iment faster or slower (or disperse faster or slower) in the presence of turbulence
depends on the structure of the turbulence and how quickly particles respond to the
flow field, which is characterised by the Stokes number St = τp/TL, where τp is the
particle response time and TL is the advective timescale associated with the flow.

To understand how the mean settling velocity of particles is influenced by vor-
tices, Davila and Hunt [3] considered a reduced model where particles sediment past
a Rankine vortex, taken to represent the elongated vortical structures observed in the
DNS computations of Vincent and Meneguzzi [15] – the ‘sinews of turbulence’ (see
Figure 3).

Davila and Hunt [3] were able to clarify the difficulty with interpreting the mean
settling velocity because they considered a problem where the deviation of particle
trajectories from the vertical was significant. Of particular importance is the presence
of the particle stagnation points (PSPs) where the local vertical fluid velocity is equal
to vT . Shadow regions can be determined by linking together PSPs. To understand
how these affect particle dispersivity, consider particles sedimenting past a vortex
ring – for which some of the conditionally convergent drift integrals considered by
Davila and Hunt [3] are now rendered exact. Despite the simplified nature of these
problems, they can provide a clear ‘mechanistic’ description of particle dynamics in
turbulence where the influence of PSPs dominate the bulk settling properties, and
this can be supported by experimental evidence.

Figure 4a shows the computed trajectories of particles (characterised by vT /U =
0.1) released above a Hill’s spherical vortex translating vertically upwards. Quickly
responding particles released close to the centreline are pushed around the vortex
giving rise to trajectories that are also almost symmetrical up and downstream of
the vortex. The radius of the shadow region is comparable to, but smaller than the
size of the vortex. As the particle Stokes number increases, particles penetrate the
PSP and spend an increased time within the vortex. Figure 4b shows experimental
observations of particles sedimenting near a spherical vortex where vT /U = 0.25.
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Fig. 4. (a) The influence of Stokes number on the trajectories of particles falling past a vertic-
ally rising Hill’s spherical vortex [5], and (b) experimental observations.

Fig. 5. (a, b) Numerical calculations of the deformation of a horizontal sheet of particles
for different values of vT /U . The right-hand figure shows the influence of increasing the
particle Stokes number from St = 0.1 to 1 (both from [5]). The group of images below
show experimental observations of a vortex passing through a descending sheet of particles
for vT /U ≈ 0.25.

Particles close to the centreline penetrate the vortex, but still a shadow region is
created.

To estimate how particles are dispersed by a vortex, it is pertinent to consider
how ‘conceptually’ a horizontal sheet of particles is deformed by a vertically trans-
lating vortex. Figure 5a shows the permanent deformation of a horizontal sheet for
a fixed Stokes number St = 0.1 for various vT /U . The vertical displacement of the
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Fig. 6. The change in the average settling velocity of dense particles sedimenting through a
random array of vortices is shown for varying vT /U and St = 0.01 (+), 0.1 (�), and 1 (�),
from [5].

sheet does not decrease monotonically with vT , since it depends subtly on how long
particles spend in the vortex. For vT /U ∼ 1, particles spend an increased time within
the vortex leading to a faster dispersion. Figure 5b shows experimental observations
of a dilute, almost horizontal, thin cloud of particles sedimenting through/around a
vertical vortex. The lines drawn on the images indicate the edge of the particle cloud.
The interface is strongly deformed and pushed forward by the local flow around the
vortex consistent with the theoretical model.

Figure 6 shows how the mean settling velocity of particles are influenced by
the vortices. Since the numerical calculations were undertaken for unbounded flows,
there are some effects arising from the boundedness of a flow, most notably reflux
(or return flow) contributions. These calculations highlight the subtle influence of
global mass constraints on the flow, which must always be considered, and which
are also dependent on whether (in computational models) the flow is doubly or singly
periodic. Whether the mean settling velocity is increased or decreased by the vortices
depends on the relative contribution of reflux (which pushes particles around the
vortex) or particle inertia (which leads to particles spending an increased time near
the PSPs).

Whether particles are dispersed quickly or slowly depends both on the fall velo-
city of the particles and their Stokes number. For low Stokes number, dense particles
may be dispersed faster than neutrally buoyant fluid particles when vT /U ∼ 1, but
they are dispersed much more slowly if they have a faster setting velocity. For high
St , particles are dispersed much faster. The particle dispersivity tensor is always an-
istropic for settling dense particles, though in this case both the particle and fluid
dispersivity tensor are anisotropic. An asymptotic analysis, based on St � 1, high-
lights the sensitivity of horizontal dispersivity to inertia, since it varies as St2.
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3 Large particles interacting with small vortices (a ≥ Lv)

The inertial flow past rigid particles may by turbulent or unsteady, creating flow fea-
tures with a scale Lv comparable to, or even smaller than a, the characteristic size
of the particles. Particles that shed vorticity will experience unsteady lift and drag
forces [13], as well as those from their interaction with vortices shed from upstream
particles. These forces are significant for particles whose density is comparable to,
or less than, the ambient fluid. Under these circumstances, the particles are not much
smaller than the local lengthscale associated with the flow, and the approximations
for the force and torque generally used are not suitable. We need therefore to un-
derstand how particles move in the vicinity of coherent structures, such as vortices,
which are of comparable size to or smaller than the particles. This is illustrated here
using a inviscid model of a planar rigid body interacting with a distribution of point
vortices. The flow generated by a collection of (free) point vortices may be inter-
preted in terms of image vortices required to satisfy the kinematic constraint on the
surface of the body, in addition to bound vorticity representing the body itself [12].

The force on a body located at Xb and moving with velocity U = Ẋb is equal to
the normal pressure force integrated over the surface of the body (Sb), defined by

ρbV I ·U̇ = F =
∫
Sb

pn̂dS = − [İb + İi + İv
]
, (7)

where n̂ is the unit vector normal to the surface of the body and directed into the body.
Ib, Iv and Ii are respectively the impulse of the body, vortices and image vortices.
The force on the body is therefore determined by the rate of decrease of the total
impulse of the flow.

The impulse of the body, Ib, is determined by the velocity of the body and its geo-
metry, characterised in terms of the added-mass tensor Cm, through Ib = ρf CmV ·U.
Equation (7) is identical to the result of Sarpkaya and Garrison [14]. Integrating (7)
with respect to time gives[

(ρbI + ρf Cm)V · U + Ii + Iv
]t

0 = 0. (8)

The above expression has a clear physical interpretation, with the sum of the mo-
mentum of the body and the total impulse of the flow being conserved. It is the
simple form of (8) which enables us to study analytically the coupled dynamics of
isolated bodies and singular distributions of vorticity.

To illustrate the subtlety of the coupled interaction between the exterior flow and
a ‘particle’ we consider a dipolar vortex moving from infinity and striking a cylin-
der which is initially at rest. Figure 7 shows a phase diagram which distinguishes
whether a cylinder acquires momentum from a vortex and moves off to infinity, or
whether it is just displaced a finite distance forward. This exchange depends critic-
ally on the density of the cylinder, with dense cylinders not acquiring momentum.
Such processes also occur in three dimensional flows. This illustrates the subtlety
of the critical binding together of the momentum of bodies and the ambient flow,
particularly when ρb ≤ ρf , processes that are not yet included in current models.
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Fig. 7. The left-hand side shows a phase diagram of the interaction between a cylinder (radius
a, density ρb) and a dipolar vortex (width 2d), which determines whether the cylinder acquires
impulse or does not. On the right-hand side, the trajectories of the dipolar vortex, for different
d and ρb, are shown.

4 Concluding remarks

In this paper we have briefly described some of the issues related to developing and
applying a Lagrangian model of a dilute two-phase flow. The essential feature of
such models is following individual elements in time using semi-empirical expres-
sions for the force and torque acting on them. The primary aim of such models is
to quantify how material is moved from one place to another and to develop the ne-
cessary closure relations for Eulerian CFD models. There are still a broad number
of issues which still need to be addressed in relation to Lagrangian models. When
a � Lv , Lagrangian models seem to be quite mature but there is still significant
progress to be made in trying to understand how inhomogeneous flow fields affect
the bulk settling properties of particles. Lagrangian models for a ≥ Lv are in their
infancy with most of the progress currently made using full resolved flow fields.
Finally we note that according to Lamb [8], there should be a formal equivalence
between Eulerian and Lagrangian models but this equivalence is exact only in a few
instances in multiphase flow models, raising some fundamental questions about the
class of models described by (1).
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Abstract. Constitutive relations are derived for a gas-particle suspension in which the
particles are subject to a fluid velocity field, and experience inter-particle collisions. The flow
is driven by two types of energy sources, an imposed mean shear and fluid velocity fluctu-
ations, in the limit where the time between collisions τc is small compared to the viscous
relaxation time τv , so that the dissipation of energy between collisions is small compared to
the energy of a particle. Constitutive relations from the kinetic theory of dense gases are used
when the flow is driven by the mean shear. The effect of fluid velocity fluctuations is incor-
porated using an additional diffusive term in the Boltzmann equation for the particle velocity
distribution, and this leads to an additional ‘diffusion’ stress.

1 Introduction

In the present analysis, we focus on the effect of fluid velocity fluctuations on the
velocity distribution for a sheared granular flow. The steady state velocity distribu-
tions in sheared granular flows have been typically analysed using the kinetic theory
of gases [1–4]. In this analysis, there is a source of energy due to the mean shear,
and dissipation due to inelastic collisions between the particles. The velocity dis-
tribution is determined by solving the Boltzmann equation, in which the ‘granular
temperature’, which is the mean square of the velocity fluctuations, is determined by
a balance between the production due to the mean shear and the dissipation due to
inelastic collisions. When the coefficient of restitution of the particles is close to 1,
the dissipation of energy in a collision is small compared to the energy of a particle.
An asymptotic scheme can be used in which the source and dissipation of energy are
neglected in the leading approximation, and the system is identical to a gas of elastic
particles, for which the distribution function is a Maxwell-Boltzmann distribution
function. The steady state velocity distribution has been determined using kinetic
theory, and there have been systematic derivations of kinetic equations up to Burnett
order starting from the Boltzmann equation [5–7].

The dynamics of the particles in a suspension is governed by the Reynolds num-
ber (Re), which is the ratio of fluid inertia and viscosity, and the Stokes number (St),
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which is the ratio of particle inertia and fluid viscosity. The drag force exerted by the
fluid on a particle depends on the Reynolds number, and is given by the linear Stokes
drag law when the Reynolds number is small. Since the particle density is usually
three orders of magnitude larger than the fluid density, particle inertia could be sig-
nificant (St � 1) even when the Reynolds number is small. In this case, particles
interact due to solid body collisions or due to hydrodynamic interactions mediated
by the suspending gas. In the limit of low Reynolds number, hydrodynamic interac-
tions can be analysed using the linear Stokes equations. Koch [8] showed that particle
collisions are dominant for St � φ(−3/2), where φ is the volume fraction, and the
velocity distribution is close to a Maxwell distribution if the coefficient of restitution
is close to 1. The velocity distribution function for a bidisperse particle-gas suspen-
sion settling under gravity was determined by Kumaran and Koch [9, 10], and it
was found that the distribution function is close to a Maxwell–Boltzmann distribu-
tion when the time between collisions is small compared to the viscous relaxation
time. Tsao and Koch [11] analysed the distribution function for the shear flow of a
gas-solid suspension, and reported that dynamical states with different fluctuating
velocities could coexist at the same particle volume fraction and mean strain rate.
The effect of hydrodynamic interactions on the shear flow of a particle suspension
was considered by Sangani et al. [12], using numerical simulations and asymptotic
analysis in the low Reynolds number and O(1) Stokes number limit. The Stokes
flow interactions between particles were modified to incorporate the breakdown of
the lubrication theory when the gap thickness is of the same magnitude as the mean
free path. Asymptotic studies were carried out in the limit of nearly elastic collisions
(1 − e) � 1, where e is the coefficient of restitution for particle collisions, as well
as for high Stokes numbers. The results of a moment expansion for finite Stokes
number was found to be in good agreement with numerical simulations.

In the present analysis, constitutive relations are derived for a gas-particle suspen-
sion subjected to turbulent fluctuations in the absence of hydrodynamic interactions.
Two sources of fluctuating energy, an imposed shear flow and fluid velocity fluctu-
ations, are examined in the present analysis, while the dissipation is due to viscous
drag which is described by the Stokes drag law. The collisions are considered to be
elastic for simplicity, and the drag force used here is assumed to be a linear function
of the difference between the particle and fluid velocities. When the source of en-
ergy is due to the mean shear, the constitutive relations used here are similar to those
used in the dynamics of granular materials, with an additional force on the particles
due to the viscous drag exerted by the fluid. The effect of fluid velocity fluctuations
generated due to fluid turbulence is incorporated using a very simple model in the
present analysis in the specific limit where the time scale for the fluid velocity fluc-
tuations is small compared to the viscous relaxation time of the particles, so that the
acceleration of the particles due to the fluid velocity fluctuations can be modeled as
a Gaussian white noise. For simplicity, it is assumed that the statistics of the fluid
velocity fluctuations are known, and the particle motion does not affect the fluid ve-
locity fluctuations. Though this is not expected to provide quantitatively accurate
results, it does provide some indication about the qualitative effect of fluid velocity
fluctuations on the growth rates of the perturbations. In the model, the particle accel-
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eration a is separated into fluid drag and the effect of turbulent velocity fluctuations,
a = −(u/τv) + (v′/τv), where u is the difference between the particle velocity and
the mean fluid velocity, v′ is the turbulent velocity fluctuation in the fluid, and τv is
the viscous relaxation time.

In addition to the viscous relaxation and collision times, there is an additional
time scale for the fluid velocity fluctuations, τf , which is is integral time (uf /λ),
where uf is the magnitude of the fluid velocity fluctuations and λ is the Taylor mi-
croscale. For τv � τf and τc � τf , the particle trajectories follow the fluid stream-
lines, and the transport of particles is similar to the turbulent diffusion of a passive
scalar. The present analysis is restricted to the opposite limit τv � τf , and τc � τf ,
where the the change of particle velocity is small for time scales comparable to the
fluid integral time, and the particles experience a fluctuating force due to the fluid
turbulence, in addition to the fluid drag. The parameter regime considered here is
applicable to practical situations. The viscous relaxation time for particles in a gas
scales as 108R2 seconds for particles with a density of 103 kg/m3, where R is the
radius in meters. An upper bound on the fluid integral time scale can be taken as
(L/U), where L, the length of the largest eddies, is the same as the macroscopic
scale, and U is the magnitude of the velocity (it should be noted that the strain rate
increases and the turnover time decreases with a decrease in the eddy size). For mac-
roscopic systems with (L/U) ∼ 1 s−1, which corresponds to a Reynolds number
of about 105, the integral time is small compared to the viscous relaxation time for
particles with radius larger than 100µm.

In order to obtain analytical expressions for the stress tensor, it is necessary to
assume that the fluctuating force due to the fluid velocity is distributed as a Gaus-
sian white noise distribution, so that it is possible to write a Fokker–Planck equation
for the particle velocity distribution which is equivalent to the microscopic equation
for the evolution of the particle velocity. This equation for the distribution function
contains a term that provides the diffusion of particles in velocity space due to the
fluid velocity fluctuations, in addition to the rate of change of distribution function
due to particle collisions from the Boltzmann equation. The diffusion coefficientDij

scales as (v2
f τf /τ

2
v ), and has units of (length2/time3). It can be easily inferred that

the rate of increase of energy due to the diffusion in the velocity coordinates is pro-
portional to ρDii , the isotropic part of the diffusion tensor. Therefore, the production
of particle fluctuating energy due to fluid velocity fluctuations is large compared to
the shear production for Dii � (T 1/2Ḡ2/(ρd2)), and the temperature is given by
T = τvDii in this case. In this case, the ratio of the collision time and the viscous
relaxation time is (ρd2D

1/2
ii τ

3/2
v )−1, and the collision time is small compared to the

viscous relaxation time for (ρd2D
1/2
ii τ

3/2
v ) � 1. The analysis in Section 2 shows

that the deviatoric part of the stress tensor is proportional to τcDii , and is O(τc/τv)

smaller than the isotropic pressure.
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2 Constitutive relations

The system consists of a suspension of elastic particles of diameter d in a fluid with
viscosity η subjected to a uniform shear flow with strain rate Ḡ. A Cartesian coordin-
ate system is used, where the mean velocity is in the x direction, the velocity gradient
is in the y direction and the vorticity is in the z direction. The mean velocity of the
fluid and particles are equal, and the effect of the fluid on the particles is modeled by
a linear drag law. In this section, the mass and length dimensions are scaled by the
particle mass and diameter in all the quantities.

The fluid velocity fluctuations are assumed to be uncorrelated over time scales
comparable to the collision time (time between collisions) if the correlation time of
the velocity fluctuations is small compared to the time between collisions, or if the
mean free path is large compared to the correlation length of the turbulent eddies that
cause the velocity fluctuations. The drag force is considered to be a linear function of
the difference between the particle and fluid velocities. For the present purposes, the
fluid velocity fluctuation is separated into a mean velocity and a fluctuating compon-
ent due to the turbulent fluctuations. If the difference between the particle velocity
and the mean velocity of the fluid is u, and the fluctuating velocity is v, the particle
acceleration is defined as

a = − u
τv

+ v′

τv
. (1)

The evolution of the velocity with time is then given by

u(t) = exp (−t/τv)u(0)+ 1

τv
exp (−t/τv)

∫ t

0
dt ′ exp (t ′/τv)v′(t ′). (2)

The rate of change of the second moment of the velocity distribution of the particles
can be easily determined by taking the tensor product of (2) and the velocity, and
averaging over the turbulent velocity fluctuations,

duu
dt

= −2uu
τv

+ exp (−t/τv) 〈u(0)v
′(t)+ v′(t)u(0)〉

τv

+ 1

τ 2
v

exp (−t/τv)
∫ t

0
dt ′ exp (t ′/τv)〈v′(t)v′(t ′)+ v′(t ′)v′(t)〉, (3)

where 〈 〉 is an average over all realisations of the fluid velocity fluctuations, and the
average 〈v′〉 is zero. The rate of change of the particle energy is

d(u2/2)

dt
= −u2

τv
+ 1

τ 2
v

exp (−t/τv)
∫ t

0
dt ′ exp (t ′/τv)〈v′(t).v′(t ′)〉. (4)

If a single exponential form is used for the correlation function 〈v′(t).v′(t ′)〉 =
v2
f exp (−|t − t ′|/τf ), where τf is the correlation time for the fluid velocity field,

the rate of change of energy is
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d(u2/2)

dt
= −u2

τv
+ v2

f

τ 2
v (τ

−1
v − τ−1

f )
(exp (−(t/τf ))− exp (−(t/τv)))

≈ −u2

τv
+ τf v

2
f

τ 2
v

, (5)

for t ∼ τc, τf � τc and τv � τc. If the granular temperature T is the mean square of
the particle velocity fluctuations, the rate of production of energy scales as τf v2

f /τ
2
v ,

while the rate of dissipation of energy due to drag isO(T/τv), and so the temperature
scales as T ∼ (v2

f τf /τv) � v2
f . Even though the results in (5) were calculated

for a specific model for the decay of fluid velocity correlations, it can be inferred
that the same scaling for T is valid for other models for the decay of fluid velocity
correlations for τf � τv . If the time between collisions is small compared to the
viscous relaxation time, the change in energy over the collision time is O(T τc/τv),
which is small compared to the energy of a particle. This provides the opportunity to
use a kinetic theory approach where the leading order distribution function is given
by the Maxwell-Boltzmann distribution.

To proceed further analytically, it is necessary to assume that the The distribution
for the fluid velocity fluctuations is assumed to be a Gaussian, so that the Boltzmann
equation for the velocity distribution function contains a diffusive term, similar to
that in the Fokker–Planck equation, with a tensor diffusivity D given by

D = 1

τ 2
v

∫ ∞

0
dt ′〈v′(t ′)v′(0)〉. (6)

Note that D is a symmetric matrix, and has dimensions of (length2/time3), since
this is a diffusion coefficient for the velocity distribution. When the fluid velocity
fluctuations are driven by a shear flow in the x–y plane, the components Dxz and
Dyz are zero because the probability distribution for the velocity fluctuations in the
z direction is an even function of v′z. In addition, if the fluid velocity fluctuations are
driven by an imposed shear flow with positive Sxy , where Sxy is the xy component
of the symmetric part of the rate of deformation tensor, then 〈v′xv′y〉 is negative, and
so the component Dxy of the diffusivity tensor is negative.

The Boltzmann equation for the distribution function, with the additional diffu-
sion term and the drag force exerted on the particles, is

∂f (u)
∂t

− G :(u∇uf (u))− 1

τv
u.∇uf (u)− D : ∇u∇uf (u) = ∂cf (u)

∂t
, (7)

where f (u) is the distribution function, which is defined so that f (u)du is the prob-
ability of finding a particle in the volume du about u in velocity space, and ∇u is
the gradient operator in velocity space. The first term on the left side of Equation (7)
is the rate of change of distribution function, the second is the change in the distri-
bution function due to the mean shear flow exerted on the particles, and G = ∇U
is the strain rate. The third represents the effect of the drag force on the particles
and the fourth is due to the fluctuating gas velocity. The term on the right side is
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the ‘collision integral’ which is the rate of change of the distribution function due to
particle collisions. In the present analysis, this term is represented by the Boltzmann
collision integral [13]

∂cf (u)
∂t

= ρχ(φ)

∫
dk
∫

du†(f (ub)f (u
†
b)− f (u)f (u†))w.k. (8)

In Equation (8), ub and u†
b are the velocities of a pair of particles before collision so

that the post collisional velocities are u and u†, k is the unit vector in the direction
of the line joining the centers of particles at collision, w = u − u† is the velocity
difference between the particles, χ(φ) is the pair distribution function, and the above
integral is carried out for w.k ≥ 0 so that the particles approach each other prior to
collisions.

The simplest procedure for obtaining a constitutive relation from the Boltzmann
equation involves the use of a second moment closure approximation for the distri-
bution function,

f = 1

(2π)3/2Det(T)1/2
exp

(
−u.T−1.u

2

)
. (9)

This distribution function is inserted into the Boltzmann equation, multiplied by the
uu, and integrated over velocity space in order to determine the second order tensorT.
The stress is then determined from the distribution function. It is difficult to obtain
analytical solutions for the Boltzmann equation due to the non-local nature of the
collision integral in velocity space, and an asymptotic expansion is used in the ra-
tio of the collision and viscous relaxation time. The leading order solution for the
distribution is calculated assuming that the energy is conserved in collisions, since
the dissipation of energy between successive collisions is small compared to the en-
ergy of a particle for τc � τv . The leading order solution is a Maxwell–Boltzmann
distribution, and the leading approximation T(0) = T I is isotropic, where I is the
identity tensor. However, the value of T is not determined in the leading approxima-
tion, and is determined from the first correction to the energy balance equation. The
first correction T(1) is determined from the first correction to the deviatoric part of
the second moment balance equation, and the viscous stress is determined from T(1).
Though this procedure does not give an exact result, due to an assumption regarding
the specific form of the distribution function, it is known that the result for the vis-
cosity obtained from this procedure is in error by about 1.2% when compared to that
obtained by a more exact procedure [13]. When a similar procedure is applied to the
modified Boltzmann Equation (7) which contains the term due to diffusion in velo-
city space, it can easily be seen that the diffusion coefficient D is an inhomogeneous
term in the resulting equation, which is independent of T and G. This provides an
additional ‘diffusion’ stress due to the diffusion of particles in velocity space.

The equations for the density (ρ) and velocity (Ui) fields for the particle phase
are of the form,

∂tρ +∇(ρU) = 0, (10)
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ρ(∂tUi + (U.∇)U) = ∇.σ − R(φ)(U − V), (11)

where U is the mean velocity of the particle phase, V is the mean velocity of the
fluid, ∂t ≡ (∂/∂t), σ is the stress tensor, φ is the volume fraction, and R(φ) is the
drag coefficient, which is (ρ/τv) in the dilute limit. The last term on the right side
of (11) is the drag force exerted by the fluid on the particles. At moderate and high
density, the factor R(φ) incorporates the variation in the drag force with particle
volume fraction due to interaction between particles.

Expressions for the pressure, viscosity and viscometric coefficients from the kin-
etic theory of dense gases are used in the present analysis, suitably augmented by
terms that arise from the diffusion of particles in velocity space. The stress tensor σ
for the particle phase is given by the constitutive relation for a ‘Newtonian’ fluid,

σ = −pI − E + µ(∇U + (∇U)T − (2/3)I∇.U)+ µbI∇.U, (12)

where p is the particle pressure, and µ and µb are the particle phase shear and bulk
viscosities respectively. The pressure and viscosities for the particle phase depend on
the particle density and the temperature T [13],

p = ρT (1 + 4φχ(φ)), (13)

µ(φ) = µφ(φ)T
1/2, (14)

µb(φ) = µbφ(φ)T
1/2, (15)

where µφ and µbφ are functions of the volume fraction,

µφ = 5

16
√
πχ(φ)

(
1 + 8φχ(φ)

5

)2

+ 48φ2χ(φ)

5π3/2
, (16)

µbφ = 16φ2χ(φ)

π3/2
, (17)

and φ is the volume fraction of the particles. The contribution to the stress tensor due
to the fluid velocity fluctuations, E, is given by

E = 5(D − (I/3)Tr(D))
8
√
πχT 1/2

(
1 + 8φχ

5

)
. (18)

In order to evaluate the above contribution to the stress tensor, it is necessary to de-
termine the correction to the Boltzmann Equation (7) due to the diffusion in velocity
space, Dij , using an asymptotic expansion in the ratio of the collision and viscous
relaxation times. This calculation is algebraically complicated, and so the details
are not provided here. However, the form of the stress Eij , correct to within multi-
plicative constants, can be determined as follows. The first correction to the second
moment Tij in (9) due to the diffusion in velocity space is O(τc(D − (I/3)Tr(D))).
It should be noted that the trace of the first correction T(1) is zero, without loss of
generality, because the leading approximation is isotropic when the collision time
is small compared to the viscous relaxation time. The first correction to the stress is
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proportional to (−ρT(1)), where T(1) is the first correction to T, in the dilute (kinetic)
regime [13] where stress is transmitted due to the physical motion of particles. The
additional factor (8φχ/5) in Equation (18) accounts for the ‘collisional’ contribution
to the stress at high densities [13].

The equation for the particle temperature has the form

ρCv
DT

Dt
+ p∇U − ρTr(D)+ E : ∇U − 2µ(φ, T )(∇U):(∇U)

− µb(φ, T )(∇.U)2 + 2CvR(φ)T + ∇.q = 0, (19)

where Cv = (3/2) is the specific heat at constant volume, the heat flux is given by

q = −K∇T , (20)

where K , the thermal conductivity, is

K(φ) = T 1/2

[
75

64
√
πχ(φ)

(
1 + 12πχ(φ)

5

)2

+ 15φ2χ(φ)

2
√
π

]
. (21)

The second term on the left side of (19) is the rate of change of energy due to com-
pression or expansion, while the third term on the left is the source of energy due
to the fluid velocity fluctuations. The fourth term on the left is the work done due
to the diffusion stress Eij , while the fifth and sixth terms contribute to the rate of
increase of particle energy due to viscous dissipation. The seventh term on the left is
the rate of dissipation of energy of the particles due to the drag force. As noted after
Equation (6), if Sxy is positive for a shear flow in the x–y plane, then Dxy and Exy

are negative, and so the production of energy due to the diffusion stress has the same
sign as the production due to the viscous stress for the particle phase.

3 Conclusions

The important conclusion from this analysis is the effect of fluid velocity fluctuations
on the constitutive relation for a gas-particle suspension. Though a very simple model
was used for the fluid velocity fluctuations in the present analysis, the results indicate
that there is an additional ‘diffusion’ stress in the expression for the stress tensor due
to spatial variations in the correlation function for the fluid velocity fluctuations. In
addition, there is an additional source of energy in the suspension due to the fluid
velocity fluctuations, which is balanced by the dissipation due to inelastic collisions
or due to viscous drag. This could have a significant effect on the dynamics of the
suspension; in particular, this contribution is known to stabilise the uniform state of
a sheared suspension which is unstable in the absence of fluid velocity fluctuations
[14].
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Prediction of Particle Laden Turbulent Channel Flow
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Abstract. This paper presents a method for integrating two-phase flow into the vector for-
mulation of the One-Dimensional Turbulence model (ODT) without the introduction of any
additional free parameters into the model. ODT is an unsteady turbulent flow simulation model
implemented on a one-dimensional domain, representing flow evolution as observed along a
line of sight through a 3D turbulent flow. Overturning motions representing individual eddies
are implemented as instantaneous rearrangement events. Particles are simulated in a turbulent
channel using one-way coupling.

Numerical simulations were run with turbulent friction Reynolds numbers, Reτ , 180 and
640. Validation was achieved by comparing wall-normal profiles of particle statistics with
DNS, LES, and experiments.

1 Introduction

Particle transport in turbulent flows is of immense importance in engineering and
scientific disciplines. Because it is so widespread in nature, environmental scientists
need to study and understand it for weather and pollution control. Examples range
from volcanic dust dispersion in the atmosphere, to the formation of clouds, to the
entrainment of pharmaceuticals into air. The development and validation of a two-
phase flow submodel for vector ODT would prove advantageous for the advancement
of one-dimensional (inexpensive) turbulent two-phase modeling.

2 Overview of the One-Dimensional Turbulence (ODT) model

Kerstein [2] developed a one-dimensional Monte Carlo modeling technique for tur-
bulent mixing of velocity and scalar fields. A subsequent extension [3] keeps three
velocity components on the ODT domain. This allows for the introduction of an ODT
analogy of pressure scrambling. The fields defined on the one-dimensional domain
evolve by two mechanisms: molecular diffusion and a stochastic process representing
advection. The ODT approach represents turbulent advection by a random sequence
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of “eddy” maps applied to a one-dimensional computational domain. Profiles of the
velocity components (ui) and the advected scalars evolve on this domain. Equations
for the turbulent flow field are not solved explicitly, rather the viscous and diffusive
equations are solved,

∂ui(y, t)

∂t
= ν

∂2ui(y, t)

∂y2 − 1

ρ

dp

dx
,

∂θ(y, t)

∂t
= κ

∂2θ(y, t)

∂y2 , (1)

where t is time, ν is the kinematic viscosity, ρ is the density, θ can be any advected
scalar (e.g. temperature or species concentration) and κ is the corresponding dif-
fusion coefficient. Note that the dp/dx term in Equation (1) is an imposed mean
pressure gradient in the streamwise direction.

In order for ODT to be used there must be a minimum of one homogeneous
direction. There should be a predominantly streamwise direction. The one dimension
in the ODT model is transverse to the mean flow. The ODT model implements triplet
maps or eddies as instantaneous rearrangements of the velocity ui(y, t) field.

The events representing advection may be interpreted as the model analogue of
individual turbulent eddies. However, this interpretation is not essential to the ana-
lysis; it merely provides an intuitive basis for presenting the model. Essentially each
“eddy event” has three properties: a length scale, a time scale, τ , and a measure of
kinetic energy.

The vector (3-component) form of ODT has eddy events consisting of two math-
ematical operations. The first is a measure-preserving map representing the fluid
motions of a turbulent eddy. The other is a modification of the velocity profiles in
order to account for energy transfers between velocity components.

ui(y)→ ui(f (y))+ ciK(y), θ(y)→ θ(f (y)). (2)

The fluid at location f (y) is moved to location y by the mapping operation. This
mapping is the vector ODT analog of the advection operator v · grad of the Navier–
Stokes equations. This mapping is applied to all fluid properties. The additional term
ciK(y) which is only applied to the velocity components is the ODT analogue of
pressure-induced energy redistribution among the velocity components. This also
takes care of velocity changes due to pressure gradients or body forces.

The triplet map has a starting point y0 and a length l which are sampled randomly
from an eddy distribution rate. The mapping rule y → ȳ for a triplet map is given by

ȳ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
y0 + 1/3 (y − y0) y0 < ȳ < y0 + 1/3 l

y0 + 2/3 l − 1/3 (y − y0) y0 + 1/3 l < l̄ < y0 + 2/3 l

y0 + 2/3 l + 1/3 (y − y0) y0 + 2/3 l < ȳ < y0 + l

y otherwise

(3)

where ȳ is the y profile after the instantaneous rearrangement.
The desired attribute of the triplet map is to provide a means of mimicking the

increase in strain intensity, the decrease in strain length scale and the increase in mix-
ing due to eddies in physical turbulent flow. This mapping rule assures that closest
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neighbors after the spatially discretized mapping event were no more than three cells
(or fluid elements) apart before the mapping event. Hence the increased strain rate
and shortening length scale is attained without undue introduction of discontinuities.
Using the continuous analog to describe the triplet map: the original scalar profile is
reduced by a factor of three, and a copy is placed in both the first third and the last
third of the eddy domain. For the middle third, the reduced image is inverted.

Though there are other mappings which could be used, this implementation of
the triplet map is the simplest which obeys three key physical conditions: (1) measure
preservation (the non-local analog of vanishing velocity divergence; this property is
manifestly satisfied in the discrete numerical implementation, in which the map is a
permutation of equal-volume fluid cells on the 1D domain); (2) continuity (no intro-
duction of discontinuities by the mapping operation); and (3) scale locality (at most
order-unity changes in property gradients). The first two conditions are fundamental
properties of incompressible fluid motion. The third is based on the principle that
length-scale reduction in a turbulent cascade occurs by a sequence of small steps
(corresponding to turbulent eddies), causing down-scale energy transfer to be effect-
ively local in wavenumber.

Fluid parcels or elements are moved instantaneously during the triplet map from
one y location to another. The momentum and passive scalar properties of each fluid
particle or cell are preserved and remain unaffected (at first) by the instantaneous
rearrangement. Subsequently energy redistribution among the three velocity com-
ponents is implemented. This is represented by the ci term in Equation (2). In Equa-
tion (2) the K term is a kernel function that is defined as K(y) = y − f (y). Hence
its value is equal to the distance the local fluid element is displaced. Therefore it
is by definition non-zero only within the eddy interval l. The kernel integrates to
zero so that the “eddy event” does not change the total (y-integrated) momentum of
individual velocity components.

As mentioned above, each eddy event has a time, a length scale and a measure
of kinetic energy associated with it. The kinetic energy of an individual velocity
component i is

Ei ≡ 1

2
ρ

∫
u2
i (y) dy. (4)

(The density ρ, assumed constant, is defined here as mass per unit length.) The amp-
litudes ci in Equation (2) are determined for each individual eddy subject to two
constraints: (1) the total kinetic energy remains constant, and (2) the energy removed
from any individual velocity component by the kernel mechanism cannot exceed the
energy available for extraction [3].

In ODT eddy events are instantaneous in time and occur with frequencies com-
parable to the turnover frequencies of corresponding turbulent eddies. Events are
therefore determined by sampling from an event-rate distribution that reflects the
physics governing eddy turnovers.

Flow properties (e.g. velocity variations) affect the eddy rate distribution and
the successful eddy events (based on sampling using a rejection method) affect the
velocity distribution (and passive scalars). This creates a feedback by increasing the
strain rate which allows more triplet maps to occur. The event rate, λ, is shown to be
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λ(y0, l; t) ≡
C

l2τ (y0, l; t)
= Cν

l4

√√√√(u2,Kl

ν

)2

+ α
∑
j

T2,j

(
uj,K l

ν

)2

− Z, (5)

where the matrix T assures invariance under axis rotation. All other new variables
are defined shortly. If the quantity in the radical of Equation (5) is negative, the eddy
is deemed to be suppressed by viscous damping and λ is taken to be zero for that
eddy. In the square root term the quantities preceding Z involve groups that have the
form of a Reynolds number. As such Z can be viewed as a parameter controlling the
critical Reynolds number for eddy turnover.

There are three free parameters in the ODT model proper: C, α, and Z. The
free parameter C determines the strength of the turbulence, hence C allows fine
adjustments to the eddy rate distribution. The transfer coefficient α determines the
degree of kinetic energy exchange among components. [The matrix T in Equation (5)
depends on α.] The viscous cutoff parameterZ determines the smallest eddy size for
given local strain conditions.

These three parameters, along with the initial and boundary conditions of the flow
and the physical conditions of the fluid (density, viscosity, etc.), constitute the com-
plete inputs for the vector ODT model proper. The three parameter values used here
were set for single-phase channel flow [9]. Somewhat different values are preferred
for free-shear flows [3]. No additional free parameters are needed for this two-phase
flow application.

3 Two-phase flow addition to the ODT model

One way coupling is achieved by following motions of the particle as dictated by the
particle drag law. ODT has all three velocity components (on the one-dimensional
domain). As such particle trajectories are integrated in all three directions, but the
particles are required to stay on the ODT domain.

The authors implement this drag coupling directly, using the vector wall-normal
fluid velocity profile evolved by ODT, but lateral motion of fluid parcels (displace-
ment by eddy events) and velocity of fluid parcels are distinct in ODT, so this pro-
cedure violates physical requirements such as correct representation of the marker-
particle or tracer-particle limit. That is to say, a tracer particle does not necessar-
ily follow the fluid cell it is in. A fluid cell only moves in the y direction during
triplet maps, however, a tracer particle would likely move out of a particular fluid
cell between triplet maps because the fluid velocity in the wall-normal direction v is
generally non-zero.

The Bassett–Boussinesq–Oseen equation (see [11]) describes the equation of mo-
tion for a spherical particle suspended in a fluid. If the density of the particle is much
greater than the density of the air, and the diameter of the particle is smaller than the
smallest turbulent eddy scale, the only significant forces on the particle are gravity,
FG, and the drag force,
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dṼ

dt
= F̃G

mp

+ (ũ− Ṽ )
f

τp
,

dX̃

dt
= Ṽ , (6)

where tilde denotes a vector quantity,V is particle velocity,X is particle position, and
mp is particle mass. The aerodynamic response time, τp, the non-linear correction
factor, f , [7], and the particle Reynolds number are given by

τp = 2ρpr2
p

9µg

, (7)

f =
{

1 Stokes law,

1 + 0.15Re0.687 non-linear,
Re = ρrp|Ṽ − ũ|

µg

, (8)

where the subscript p denotes properties of the particle, µg is the viscosity of the
gas, and rp is the radius of the particle. Non-linearity of the drag force is significant
for a particle Reynolds number near or greater than one.

4 Results, conclusions, and future work

4.1 Mean and rms velocities at Reτ of 180

A series of runs were made to compare to a DNS [6]. As such the simulations used
the same gravitational constant as the DNS. Runs were performed simulating 70 µm
copper with a Stokes number (with fluid time scale based on wall units), τ+p = 790;
50 µm glass with a τ+p = 120; and 25 µm lycopodium spores with a τ+p = 10.
Within each of these particle categories the velocity statistics for the mean stream-
wise velocity, U , the rms streamwise velocity, U ′, the wall normal rms velocity, V ′,
and the spanwise rms velocity, W ′, were obtained as a function of wall-normal loc-
ation y. Wang and Squires [12] published a LES of the same case (U , U ′, V ′, and
W ′). Their results are included for comparison.

The results for the velocity statistics of copper, glass, and lycopodium compared
to the DNS and LES are shown in Figure 1. All velocities are scaled by the friction
velocity Uτ to make them non-dimensional. The ODT is about as good a match to
the DNS as the LES is. Figure 1a shows U+ for all three particles. The rms statistics
for copper, glass, and lycopodium are shown in Figures 1b, 1c, and 1d, respectively.

4.2 Mean and rms velocities at Reτ of 640

A series of runs were made to compare to the experiments of Kulick et al. [4]. They
measuredU , U ′, and V ′ across a turbulent channel. Runs were performed simulating
70 µm copper with a τ+p = 2400; 50 µm glass, τ+p = 350; and 25 µm lycopodium
spores, τ+p = 31. Within each of these particle categories the velocity statistics for
U , U ′, V ′, and W ′ were measured across the channel width. Wang and Squires [12]
published a LES of the same experiment. Their results are included for comparison.
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Fig. 1. ODT model wall-normal profiles of wall-normalized velocity for copper (τ+p = 790),

glass (τ+p = 120), and lycopodium spores (τ+p = 10) for Reτ = 180, compared to the
DNS of Rouson and Eaton [6] and the LES of Wang and Squires [12]. (a) Mean streamwise
velocity U for all three. Note, the copper and lycopodium curves are represented by the top
three symbols and the glass curves are represented by the bottom three symbols. The copper
U curves are everywhere greater than the glass or lycopodium curves; (b) rms streamwise
U ′, wall-normal V ′, and spanwise W ′ velocity for copper; (c) rms streamwise, wall-normal,
and spanwise velocity for glass; (d) rms streamwise, wall-normal, and spanwise velocity for
lycopodium spores. Note for (b) (c) (d), the U ′ and W ′ curves are represented by the top three
symbols and the V ′ curves are represented by the bottom three symbols. The U ′ curves are
everywhere greater than the W ′ curves.

Rouson and Eaton [6] suggest that initial non-uniform loading and an insufficient
wind tunnel development length in the Kulick et al. experiments could produce the
“check mark” shape in the measurements. The analysis of Graham [1] supports the
Rouson and Eaton suggestion that the wind tunnel development length was insuffi-
cient. Rouson and Eaton demonstrate that the particle motion of 70 µm copper is
collision dominated. Therefore a correct particle-wall interaction model is essential
to capturing the subtleties of the near wall measurements. None of the simulation
analysis (ODT, DNS, or LES) uses anything but a spectral reflection at the wall,
so phenomena which may be important such as inelastic collision, wall roughness,
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Fig. 2. ODT model wall-normal profiles of wall-normalized velocity for copper (τ+p = 2400),

glass (τ+p = 350), and lycopodium spores (τ+p = 31) for Reτ = 640, compared to the meas-
urements of Kulick et al. [4] and the LES of Wang and Squires [12]. (a) Mean streamwise
velocity U for all three. Note the copper U curves are represented by the top three symbols,
the glass are represented by the middle three symbols, and the lycopodium curves are repres-
ented by the bottom three symbols; (b) rms streamwise U ′, wall-normal V ′, and spanwise W ′
velocity for copper; (c) rms streamwise, wall-normal, and spanwise velocity for glass; (d) rms
streamwise, wall-normal, and spanwise velocity for lycopodium spores. Note for (b) (c) (d),
the U ′ curves are represented by the top three symbols, the V ′ curves are represented by the
middle three symbols, and the W ′ curves are represented by the bottom three symbols. There
are no W ′ measurements.

particle spin, and Magnus effect, are not represented. Kulick et al. describe the devel-
opment section of the wind tunnel as made out of particle board, where the walls of
the test section was made out of acrylic. The change in material brings up obvious is-
sues on the particle-wall collision dynamics and if it were true that the materials had
different collision dynamics the development time for the particles between when
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the wall material was changed to acrylic was obviously too small to smooth out any
transients caused by the material change.

The results for the velocity statistics of copper, glass, and lycopodium compared
to the measurements and LES are shown in Figure 2. All velocities are scaled by
the friction velocity Uτ . The ODT is about as good a match to the measurements as
the LES is, though neither captures the overall shape of the measurement curves of
either copper or glass. Figure 2a shows U+ for all three particles. The rms statistics
for copper, glass, and lycopodium are shown in Figures 2b, 2c, and 2d, respectively.

4.3 Conclusions, future work

For the particle simulations at Reτ = 180 and 640 the ODT simulations are reason-
able representations of steady-state statistics for U , U ′, V ′, and W ′ when compared
to how the LES compares to the respective DNS and measurements, with the greatest
deviation in U ′ occurring for lycopodium spores at Reτ = 180, and for copper in the
near wall region at Reτ = 640. This 1D model is less expensive than LES yet com-
pares well with the more complex formulations and can solve higher Re problems.

This two-phase flow model for ODT fails to meet the tracer particle limit. This
failure could be a contributing factor to the Reτ = 180 lycopodium curves not being
as good a match to the DNS. These particles have the smallest Stokes number (τ+p =
10) and would be most susceptible to the aforementioned problem. An alternate two-
phase flow model for ODT which correctly captures the tracer particle limit has been
formulated [8].

Schmidt et al. [10] implement ODT as a sub-grid model for LES. The addition
of the ODT particle model would prove fruitful as this would readily give particle
sub-grid fluctuations without the need of an additional sub-grid model.

To eliminate the ambiguities associated with the comparison to Kulick et al. [4],
Kerstein and Krueger (in progress) are working on a droplet collision representation
to compare to Reade and Collins [5].
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