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Treebank Parsing

The problem of parsing unrestricted natural language text has been defined
in this study as the problem of assigning to each sentence in a text its correct
syntactic analysis. Conceived in this fashion, text parsing is essentially an
empirical problem and the accuracy of a text parsing system can only be
evaluated by comparing the analysis produced by the system to some kind of
gold standard. The standard method for carrying out this kind of evaluation
is to apply the system to a sample of text taken from a treebank, i.e., from
a corpus where each sentence is annotated with its correct analysis. In the
data-driven approach to text parsing, treebank data may also be used in
the training corpus, i.e., in the sample of text on which we base our inductive
inference. Using treebank data for training and evaluation is what we normally
understand by the term treebank parsing.

This chapter presents an experimental evaluation of inductive dependency
parsing based on treebank parsing. We use treebank data to train parser
guides, as described in the preceding chapter, and we use treebank data to
evaluate the quality of the resulting parsers, with respect to accuracy as well
as efficiency. Before we turn to the evaluation, we briefly discuss treebanks
and their use in research on syntactic parsing more generally, touching on
some of the methodological problems that arise in using treebank data for
parser evaluation. We then describe our experimental methodology, including
the data sets used, the models and algorithms evaluated, and the evaluation
metrics used to assess performance. The main part of the chapter is devoted
to the presentation and discussion of experimental results, focusing on the
influence of different kinds of parameters related to the feature model and to
the learning algorithm. We conclude the chapter with a final evaluation of the
best models and a comparison with related results in the literature.
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5.1 Treebanks and Parsing

A treebank can be defined as a linguistically annotated corpus that includes
some kind of syntactic analysis over and above part-of-speech tagging. The
term treebank appears to have been coined by Geoffrey Leech (Sampson, 2003)
and obviously alludes to the fact that the most common way of representing
the syntactic analysis is by means of a tree structure. However, in current
usage, the term is in no way restricted to corpora annotated with tree-shaped
representations, but applies to all kinds of syntactically analyzed corpora
(Abeillé, 2003a; Nivre, forthcoming).

Treebanks have been around in some shape or form at least since the
1970s. One of the earliest efforts to produce a syntactically annotated corpus
was made by Ulf Teleman and colleagues at Lund University, resulting in
more than 300,000 words of both written and spoken Swedish, annotated
manually with grammatical functions and a limited form of phrase structure,
an impressive achievement at the time but unfortunately documented only in
Swedish (Teleman, 1974; Einarsson, 1976a,b; Nivre, 2002). This treebank will
be reused in the experiments below.

However, it is only in the last ten to fifteen years that treebanks have been
produced on a large scale for a wide range of languages, usually by combining
automatic processing with manual annotation or post-editing. A fairly rep-
resentative overview of available treebanks for a number of languages can be
found in Abeillé (2003b), together with a discussion of certain methodological
issues. This volume is well complemented by the proceedings of the annual
workshops on Treebanks and Linguistic Theories (TLT) (Hinrichs and Simov,
2002; Nivre and Hinrichs, 2003; Kübler et al., 2004; Civit et al., 2005).

While corpus linguistics provided most of the early motivation for devel-
oping treebanks and continues to be one of the most important usage areas,
the use of treebanks in natural language parsing has increased dramatically
in recent years and has probably become the primary driving force behind
the development of new treebanks. Broadly speaking, we can distinguish two
main uses of treebanks in this area. The first is the use of treebank data in
the evaluation of syntactic parsers, which will be discussed in section 5.1.1.
The second is the application of inductive machine learning to treebank data,
exemplified by the majority of data-driven approaches to text parsing. These
two uses are in principle independent of each other, and the use of treebank
data in evaluation is not limited to data-driven parsing systems. However,
the data-driven method for research and development normally involves an
iterative training-evaluation cycle, which makes not only inductive inference
but also empirical evaluation an integral part of the methodology. This gives
rise to certain methodological problems, which will be treated in section 5.1.2.
Finally, in section 5.1.3 we will address the specific requirements on treebank
data for dependency parsing.
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5.1.1 Treebank Evaluation

Empirical evaluation of systems and components for natural language process-
ing is currently a very active field. With respect to syntactic parsing there are
essentially two types of data that are used for evaluation. On the one hand,
we have so-called test suites, i.e., collections of sentences that are compiled in
order to cover a particular range of syntactic phenomena without consider-
ation of their frequency of occurrence (Lehmann et al., 1996). On the other
hand, we have treebank samples, which are extracted to be representative
with respect to the frequency of different phenomena. Both types of data are
clearly relevant for the evaluation of syntactic parsers, but it is also clear that
the resulting evaluation will focus on different properties. Test suite evaluation
typically measures the coverage of a syntactic parser in terms of the number of
constructions that it can handle, without considering the relative frequency of
these constructions, although it can also give diagnostic information on issues
such as overgeneration and overacceptance (cf. Oepen and Flickinger, 1998).
Treebank evaluation, on the other hand, measures the average performance
that we can expect from the parser when applied to naturally distributed data
from the same source as the evaluation corpus. Given the view of text parsing
adopted in this study, it is clear that treebank evaluation is the most relevant
form of empirical evaluation.

Parser evaluation may focus on several different dimensions. For instance,
robustness (or coverage) can be evaluated by calculating how large a pro-
portion of the input sentences receive an analysis, and disambiguation (or
leakage) can be evaluated by computing the average number of analyses as-
signed to a sentence, normalized with respect to sentence length (Black et al.,
1993). For this kind of evaluation it is not even necessary to have annotated
treebank data. However, as noted by Carroll et al. (1998), these measures
are very weak in themselves, unless they are complemented by some kind of
qualitative evaluation of the analyses assigned to a given sentence. For the
investigations in this book, they are even less interesting, since our parsing
methods guarantee exactly one analysis per sentence for any input text.

Another dimension that can in principle be evaluated without annotated
treebank data is efficiency. Measuring time or memory consumption during
parsing and relating it to the size of the input only requires a sample of text.
Again, however, it is clear that this is a very weak form of evaluation, unless it
is combined with an assessment of analysis quality. In the case of dependency
parsing, it is trivial to construct an optimally efficient parser that simply
analyzes each word as a dependent of the preceding word.

This brings us to the evaluation of accuracy, which is clearly the most
important aspect of treebank evaluation. First, as we have just seen, it is often
a necessary condition for the interpretation of other forms of evaluation. In
most cases, it is simply not meaningful to compare two systems with respect to
robustness, disambiguation or efficiency unless we have some way of comparing
their respective accuracy. More importantly, however, the notion of empirical
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accuracy is at the very heart of the notion of text parsing, as defined in
this study. Whereas grammar parsing can be evaluated in terms of formal
notions such as consistency and completeness, there is simply no alternative
to an empirical evaluation of accuracy for text parsing. And the standard
methodology for this kind of evaluation is to use a sample of treebank data
as an empirical gold standard.

The basic idea is straightforward. If the treebank sample is representative
of the text language that we want to analyze, then applying the parser to the
text and comparing the output of the parser to the original annotation will
allow us to estimate the average accuracy of the parser when applied to an
arbitrary text taken from the same population. In the same fashion, comparing
the output of two different parsers applied to the same sample should allow us
to test the hypothesis that their average accuracy is different. On the face of
it, this is a standard application of statistical inference to experimental data.
In reality, there are a number of problems that arise in connection with this
evaluation method, problems related to data selection, to treebank annotation
and to evaluation metrics.

Starting with the problems of data selection, it is worth remembering that
any application of statistical inference is based on the assumption that we
have a random sample of the variable under consideration, or at least a set of
independent and identically distributed (i.i.d.) variables (Lindgren, 1993). To
what extent a treebank sample satisfies these conditions depends on a number
of factors, some of which are not under the control of the researcher wishing
to perform evaluation, such as the sampling procedure used when collecting
the data for the treebank in the first place. Even if data for the treebank
has been collected by means of a sampling procedure, this sampling is usually
performed on the level of text blocks, such as documents or paragraphs, which
means that the sampling conditions are not satisfied on the level of individual
sentences. This problem becomes even more serious if we measure accuracy
on the word or phrase level, as is the case for many accuracy metrics, since it
is quite obvious that the individual words or phrases of a single sentence are
not i.i.d. variables. By taking these factors into account when selecting data
for evaluation, we can mitigate the effects of statistical dependence between
measurements and avoid the overestimation of statistical significance, even if
we can never in practice attain the ideal situation of having a strict random
sample.

Besides problems having to do with the sampling procedure itself, we must
also ask ourselves which population we are sampling from. Throughout this
study we have referred to the problem of parsing unrestricted natural language
text, but it is highly questionable whether we can ever sample this population
by selecting data from existing treebanks. Many treebanks are limited to a
single genre of text, usually newspaper text which is easily accessible, with
the Wall Street Journal section of the Penn Treebank (Marcus et al., 1993)
being the most well-known example in parser evaluation. And even so-called
balanced corpora usually draw their data from a limited set of text types,
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often including newspaper text, literary works, and various forms of technical
and scientific writing, as in the influential Brown Corpus (Kucera and Francis,
1967). Although this is not literally unrestricted natural language text, it is
still the best we can get if we want to perform a statistical evaluation of
accuracy in text parsing. But we have to keep in mind that our results will
only be valid for the population from which our data have been sampled, and
that the delimitation of this population is often far from clear-cut.

Another way in which treebank data depart from the ideal of unrestricted
natural language text is that it has already been tokenized and segmented
into sentences. Although our definition of text parsing presupposes that a
text consists of a sequence of sentences, and that a sentence consists of a
sequence of tokens, it is a non-trivial problem to segment naturally occurring
text into sentences and tokens (Palmer, 2000), which means that we are bound
to overestimate parsing accuracy when using test samples that are tokenized
and segmented into sentences. Still, unless we are specifically interested in
the influence of tokenization and sentence segmentation on parsing accuracy,
this is a reasonable idealization in practice, which also has the advantage that
it makes it easier to compare different parsers on exactly the same set of
sentences and tokens.

A more serious problem is the role of the gold standard annotation in the
evaluation process. The basic assumption in treebank evaluation of accuracy
is that the gold standard provides the correct analysis for each sentence. In
practice, this assumption is problematic for several reasons. First of all, any
annotated corpus is bound to contain plain errors in the annotation, which
means that in some cases the gold standard will provide an incorrect analysis
of the sentence in question. If errors are rare and randomly distributed, this
can be regarded as a minor problem.

Secondly, we may question the assumption that every sentence in a text has
a single correct analysis, even relative to a fixed model of syntactic representa-
tion. Besides sentences that are genuinely ambiguous even in context, there is
the problem of syntactic indeterminacy (Matthews, 1981), which means that
more than one syntactic analysis may be compatible with an unambiguous
semantic interpretation of a sentence and that one of these analyses therefore
has to be chosen more or less arbitrarily. This may in turn lead to inconsistent
annotation of the same syntactic construction, a problem that is supposed to
be eliminated by detailed annotation guidelines, but which nevertheless exists
in practice, as shown by Dickinson and Meurers (2003).

Finally, when using treebank data for evaluation it is often necessary to
convert the annotation from one type of representation to another in order to
fit the output of the parsers to be evaluated. Thus, many treebank annotation
schemes include empty categories, which are normally removed when evaluat-
ing parsers that do not include such elements. Another relevant example is the
conversion of constituency-based representations to dependency-based repre-
sentations, which is necessary in the experiments reported below. This kind
of conversion can seldom be performed with perfect accuracy, which means
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that the converted annotation will contain a larger proportion of questionable
analyses than the original one.

Despite all these problems, however, an annotated treebank can in most
cases be regarded as a reasonable approximation to a gold standard, or at
least as a sufficiently objective standard for the evaluation of accuracy in text
parsing. The final methodological issue to be discussed concerning treebank
evaluation is how to measure the correspondence between the output of a
parser and the gold standard annotation, i.e., the choice of evaluation metric.
Given a test sample Te = (x1, . . . , xn), with the corresponding gold standard
annotation Ag = (yg

1 , . . . , yg
n) and the output Ap = (yp

1 , . . . , yp
n) of some parser

p, an obvious metric to use is the proportion of sentences where the parser
output completely matches the gold standard annotation, usually referred to
as the exact match (EM) criterion (where δ is the so-called Kronecker’s δ that
has value 1 if the two arguments are identical and 0 otherwise):

EM =
1
n

n∑
i=1

δ(yg
i , yp

i ) (5.1)

The EM metric has the advantage that the variables observed are sentences,
rather than words or phrases, which makes statistical independence assump-
tions somewhat less problematic. At the same time, it is a rather crude metric,
since an error in the analysis of a single word or constituent has exactly the
same impact on the result as the failure to produce any analysis whatsoever.

Consequently, the most widely used evaluation metrics today are based
on various kinds of partial correspondence between the parser output and
the gold standard parse. The most well-known of these evaluation metrics are
the PARSEVAL measures (Black et al., 1991; Grishman et al., 1992), which
consider the number of matching constituents between the parser output and
the gold standard, and which have been widely used in parser evaluation, in
particular using data from the Penn Treebank. By comparing the number m of
matching constituents to the number p of constituents produced by the parser
and the number c of constituents in the gold standard analysis, we can measure
the bracketed precision (m

p ) and the bracketed recall (m
c ). Only considering the

bracketing has the advantage that it enables comparisons between parsers that
use different sets of categories to label constituents. However, if constituent
labels are also taken into account, we get labeled precision and labeled recall
instead. Finally, it is common to include statistics on the mean number of
crossing brackets per sentence (or the proportion of sentences that have zero
crossing brackets), where a crossing bracket occurs if a parser constituent
overlaps a gold standard constituent without one being properly contained in
the other.

Although the PARSEVAL measures make very few assumptions about the
form of syntactic representations, they do presuppose that representations
are constituency-based. For dependency-based representations, the closest
correspondent to these metrics is the attachment score (AS) (Eisner, 1996a,b;
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Collins et al., 1999), which measures the proportion of words in a sentence
that are attached to the correct head according to the gold standard. If we
let hg denote the gold standard assignment of dependents to heads for the
sentence x = (w1, . . . , wk) and let hp denote the assignment produced by the
parser p, then we can define the unlabeled attachment score (ASU ) of p with
respect to x as follows:

ASU (x) =
1
k

k∑
i=1

δ(hg(i), hp(i)) (5.2)

If we also take dependency labels into account, as proposed by Lin (1995),
we get a labeled version of the attachment score (ASL), which is applicable
to parsers that produce labeled dependency graphs (using dg and dp for the
assignment of dependency labels to words by analogy with hg and hp):

ASL(x) =
1
k

k∑
i=1

δ(hg(i), hp(i)) · δ(dg(i), dp(i)) (5.3)

When calculating the attachment score for the entire test sample, we may
either calculate the mean per sentence (sometimes called the macro-average)
or the mean per word (the micro-average). Although it can be argued that
the former is more natural, the latter is more common in the literature. One
good reason for this is that the sentence score for very short sentences can
only assume a discrete set of values, which may distort the overall scores.

The PARSEVAL measures have been criticized for being too permissive
in some situations while sometimes penalizing the same error more than once
(Lin, 1995; Carroll and Briscoe, 1996; Carpenter and Manning, 1997; Car-
roll and Briscoe, 1996). Regardless of these problems, however, the PAR-
SEVAL measures and the attachment scores for dependency representations
have the disadvantage that they are only applicable to one kind of represen-
tation. As an alternative to these metrics, several researchers have therefore
proposed evaluation schemes based on dependency structure, where both the
treebank annotation and the parser output, whether constituency-based or
dependency-based, are converted into sets of more abstract dependency rela-
tionships (Lin, 1995, 1998; Carroll et al., 1998; Kübler and Telljohann, 2002;
Carroll et al., 2003). Recently, this has led to the development of dependency
banks for parser evaluation (Carroll et al., 2003; King et al., 2003; Forst et al.,
2004). Having more abstract representations also makes the scheme less sen-
sitive to the indeterminacy problem in annotation. The only drawback with
this methodology is the overhead involved in converting parser representa-
tions to the more abstract dependency relationships and the possible errors
that may be introduced in this process. In situations where only one kind of
representation is relevant, it may therefore still be justified to use the more
representation-dependent metrics. Thus, in the experiments reported below
we will mainly use metrics based on exact match and attachment scores for
dependency-based representations.
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5.1.2 Treebank Learning

In the data-driven approach to text parsing, treebank data is crucial not only
for the evaluation but also for the development of parsing systems, since the
core component of this approach is the application of inductive inference to
a representative sample of data in the training phase. In principle, the use of
treebank data in the training phase is independent of its use in evaluation,
but in practice they are intimately connected since the development of a data-
driven parser normally involves an iterative training-evaluation cycle, where
different parameters are varied systematically to improve overall performance.

During both development and final evaluation, it is essential that the data
used for evaluation is distinct from the data used for training. In both cases,
we are interested in estimating the expected accuracy, i.e., the accuracy that
we can expect on average when applying the parser to an independent test set,
and training set accuracy is in general a very poor estimate of this quantity.
Training set accuracy increases consistently with model complexity, but a
model with very high training set accuracy often overfits the training data
and does not generalize well (Hastie et al., 2001).

However, repeatedly using the same test set for evaluation will produce a
similar effect, which means that the test set accuracy may substantially over-
estimate the expected accuracy on unseen data. It is important in this context
to distinguish two different but related problems: model selection and model
assessment (Hastie et al., 2001). Model selection is the problem of estimating
the performance of different models in order to choose the (approximate) best
one; model assessment is the problem of estimating the expected accuracy of
the finally selected model.

In a data-rich situation, the standard solution is to randomly divide the
available data into three parts: a training set, a validation set, and a test set.
The training set is used for inductive inference; the validation set is used
(repeatedly) to estimate accuracy for model selection; and the test set is
used for the assessment of the accuracy of the final chosen model. A well-
known example of this methodology is the standard split of the Wall Street
Journal section of the Penn Treebank into sections 02–21 for training, one of
the sections 00, 22 and 24 for validation, and section 23 for final testing.

In a data-poor situation, there are various techniques that can be used
to approximate the validation step without having a separate validation set,
either by analytical methods, such as Bayesian Information Criterion (BIC)
or Minimum Description Length (MDL), or by efficient sample re-use, such as
cross-validation and bootstrap methods (Hastie et al., 2001). Although these
techniques can also to some extent be used for model assessment, it is more
common to combine them with an independent test set for the final evaluation.

Whether treebank parsing should be considered a data-rich or a data-poor
situation depends to some extent on which languages we are interested in. For
English, there are several treebanks of reasonable size available, which explains
the standard training-validation-test setup usually applied to the Wall Street
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Journal data. However, it is also worth pointing out that, even if section 23
is only used once in every published study based on this data set, it has over
the years been used repeatedly by the same and different research groups,
which in fact amounts to a kind of repeated testing, albeit at a higher level
of abstraction. Thus, the value of this data set as a basis for estimation of
expected accuracy is by now highly dubious, and it is probably better regarded
today as a benchmark set.

For a language like Swedish, which is of special interest in this study,
the availability of treebank data is rather limited, which motivates the use
of cross-validation for model selection, reserving a separate test set for the
final evaluation. Finally, it is worth remembering that for most languages of
the world, there are simply no treebank data available at all, which rules out
supervised learning methods completely.

5.1.3 Treebanks for Dependency Parsing

When the data-driven approach to text parsing is combined with supervised
learning methods, training data must be annotated with the same kind of syn-
tactic representations that are used in the parsing system. In our case, this
means that we require treebanks that are annotated with dependency graphs.
The availability of such treebanks has increased substantially in recent years.
In addition to the Prague Dependency Treebank of Czech (Hajič, 1998; Hajič
et al., 2001), which is probably the most well-known treebank of this kind,
we find the METU Treebank of Turkish (Oflazer et al., 2003), the Danish
Dependency Treebank (Kromann, 2003), the Eus3LB Corpus of Basque
(Aduriz et al., 2003), the Turin University Treebank of Italian (Bosco and
Lombardo, 2004), and the parsed corpus of Japanese described in Kurohashi
and Nagao (2003). Furthermore, there are hybrid treebanks, which include
both constituency and dependency annotation, such as the TIGER Treebank
of German (Brants et al., 2002) and the Alpino Treebank of Dutch (Van der
Beek et al., 2002).

In fact, whereas many of the early large-scale treebank projects, such as
the Lancaster Parsed Corpus (Garside et al., 1992) and the original Penn Tree-
bank (Marcus et al., 1993), were based on constituency annotation only, most
annotation schemes today include some kind of functional analysis that can be
regarded as a partial dependency analysis. This is true of the Penn Treebank
II annotation scheme (Bies et al., 1995), which adds functional tags to the
original phrase structure annotation, and similar combinations of constituent
structure and grammatical functions are found in the SUSANNE annotation
scheme (Sampson, 1995), in the ICE-GB Corpus of British English (Nelson
et al., 2002), and in the adaptations of the Penn Treebank II schemes that
have been developed for Chinese (Xue et al., 2004), Korean (Han et al., 2002),
Arabic (Maamouri and Bies, 2004) and Spanish (Moreno et al., 2003).

Constituency-based treebanks, with or without functional annotation, can
in principle be converted to dependency treebanks. As shown by Gaifman
(1965), it is straightforward to convert a constituency tree to an unlabeled
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dependency tree, provided that every constituent c has a unique head child
ch. The dependency tree is obtained by recursively letting the head d of each
non-head child cd of c be a dependent to the head h of the head child ch

of c (where a terminal node ch = h is its own head) (cf. Xia and Palmer,
2001). This method has been used in several studies to convert constituency-
based treebank annotations to dependency structures, notably using data from
the Penn Treebank (Collins, 1996, 1997, 1999; Xia and Palmer, 2001; Xia,
2001; Yamada and Matsumoto, 2003; Nivre and Scholz, 2004), but also from
the German treebanks TüBa-D (Kübler and Telljohann, 2002) and TIGER
(Bohnet, 2003; Ule and Kübler, 2004).

In practice, there are normally a number of factors that interact to make
some of the converted dependency representations less than optimal. Besides
problems that are inherent in the dependency-based approach to syntactic
representations, such as the existence of constructions that are not readily
analyzed as single-headed, the main problem is that it may be difficult to
identify the head child in a constituency representation even when such a child
exists, since most constituency-based annotation schemes do not mark heads
explicitly. The standard solution to this problem is to use head percolation
tables (Magerman, 1995; Collins, 1996, 1999) that provide heuristic rules for
identifying the head child in a constituent of a specific type. Figure 5.1 shows
the head percolation table used by Yamada and Matsumoto (2003) and Nivre
and Scholz (2004). The first column contains the constituent labels found in
the Penn Treebank. For each constituent label, the second column specifies
the direction of search (from the right [R] or from the left [L]) and the second
column gives a list of potential head child categories, partially ordered by
descending priority (with the vertical bar | symbolizing equal priority). For
example, for a constituent of type NP, we start searching from the right for
a child of type POS, NN, NNP, NNPS or NNS. The first child matching this
condition is chosen as the head. If no child matching this condition is found,
we proceed to search for a child of type NX, etc. If the entire list is exhausted,
the first child encountered when searching in the specified direction is chosen
as the head.

When applied to the Penn Treebank, a head percolation table of this kind
gives a quite reasonable conversion to dependency structures for the majority
of constituent types. However, for certain types of constituents, such as com-
plex noun phrases involving coordination, it is extremely difficult to devise
a set of rules that guarantees an adequate conversion in all cases. The most
elaborate scheme in this respect is probably the rules used by Collins (1999),
where the head percolation table is supplemented by special rules for noun
phrases and coordination (cf. also Bikel, 2004).

The problem of identifying head children in constituency representations
is mitigated if an extensive functional annotation is present. Thus, in convert-
ing the Swedish treebank Talbanken (Einarsson, 1976a,b) to a dependency
treebank, the problem of identifying head children can be solved almost com-
pletely by only considering the functional annotation (Nilsson et al., 2005).
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NP R POS|NN|NNP|NNPS|NNS NX JJR CD JJ JJS RB QP NP
ADJP R NNS QP NN $ ADVP JJ VBN VBG ADJP JJR NP JJS DT

FW RBR RBS SBAR RB
ADVP L RB RBR RBS FW ADVP TO CD JJR JJ IN NP JJS NN

CONJP L CC RB IN
FRAG L
INTJ R
LST L LS :
NAC R NN|NNS|NNP|NNPS NP NAC EX $ CD QP PRP VBG JJ

JJS JJR ADJP FW
PP L IN TO VBG VBN RP FW

PRN R
PRT L RP
QP R $ IN NNS NN JJ RB DT CD NCD QP JJR JJS

RRC L VP NP ADVP ADJP PP
S R TO IN VP S SBAR ADJP UCP NP

SBAR R WHNP WHPP WHADVP WHADJP IN DT S SQ SINV
SBAR FRAG

SBARQ R SQ S SINV SBARQ FRAG
SINV R VBZ VBD VBP VB MD VP S SINV ADJP NP

SQ R VBZ VBD VBP VB MD VP SQ
UCP L

VP L VBD VBN MD VBZ VB VBG VBP VP ADJP NN NNS NP
WHADJP R CC WRB JJ ADJP
WHADVP L CC WRB

WHNP R WDT WP WP$ WHADJP WHPP WHNP
WHPP L IN TO FW

NX R POS|NN|NNP|NNPS|NNS NX JJR CD JJ JJS RB QP NP
X R

Fig. 5.1. Head percolation table for the Penn Treebank

However, the presence of functional annotation is even more crucial if we
want to convert constituent representations to labeled dependency graphs,
since dependency type labels can normally be inferred from the functional
annotation but only indirectly from the constituency annotation.

The experiments presented in this chapter are based on data from Swedish
and English. The choice of these languages does not reflect the availability of
dependency treebanks but rather a desire to develop better parsing systems
for Swedish, on the one hand, and to compare the performance of the system
to available benchmarks for English, on the other hand. An unfortunate con-
sequence of this choice is that the experiments will in both cases be performed
on dependency treebanks that are the result of conversion from another kind
of annotation. Experiments on genuine dependency treebanks, notably the
Prague Dependency Treebank and the Danish Dependency Treebank, have
also been performed but will not be reported here. The main reason is that
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Genom PR AAPR

skattereformen NNDDSS AA

införs VVPSSMPA FV

individuell AJ SSAT

beskattning VN SS

av PR SSETPR

arbetsinkomster NN SS SSET

. IP IP

Fig. 5.2. Swedish sentence annotated according to MAMBA

this requires special treatment of non-projective dependency graphs, which
would take us too far afield in this study. Preliminary results on the use of
inductive dependency parsing in combination with graph transformation tech-
niques to capture non-projective structures are reported by Nivre and Nilsson
(2005).

5.2 Experimental Methodology

As noted above, the experimental evaluation of the deterministic and memory-
based version of inductive dependency parsing is based on data from two
languages, Swedish and English. We will systematically vary parameters of
the feature model and the learning algorithm in order to study their influence
on parsing accuracy and efficiency. We will also compare the results to relevant
previous research. In this methodological section, we first describe the data
sets used in the experiments, the parameters varied in the experiments, and
the metrics used to evaluate parsing accuracy and efficiency.

5.2.1 Treebank Data

The Swedish data for the experiments come from Talbanken (Einarsson,
1976a,b), a syntactically annotated corpus of written and spoken Swedish,
created in a series of projects at the University of Lund in the 1970s. In
this study, we use the Professional Prose section, containing informative and
argumentative text from brochures, newspapers, and books. The syntactic an-
notation follows the MAMBA scheme (Teleman, 1974), which is described by
its creators as an eclectic combination of constituent structure, dependency
structure and topological field analysis. Figure 5.2 shows an example of the
MAMBA annotation applied to a Swedish sentence taken from Talbanken.1

1 Word-by-word gloss: ‘Through tax-reform-def introduce-past-passive individual
taxation of work-income-plur.’ Translation: ‘Through the tax reform individual
taxation of work incomes is introduced.’
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The annotation consists of two layers, the first being a lexical analysis,
consisting of part-of-speech information including morphological features, and
the second being a syntactic analysis, in terms of grammatical functions. Both
layers are flat in the sense that they consist of tags assigned to individual
word tokens, but the syntactic layer also gives information about constituent
structure, as exemplified with respect to the grammatical subject in figure 5.2.
All the words belonging to the subject noun phrase individuell beskattning av
arbetsinkomster (individual taxation of work incomes) are annotated with
the tag SS for subject, but the head noun beskattning (taxation) is marked
as such by having only this tag, while the pre-modifying adjective individuell
(individual) is also tagged AT for adjectival modifier and the words of the
post-modifying prepositional phrase av arbetsinkomster (of work incomes)
are tagged ET for nominal post-modifier. Within the prepositional phrase,
the noun arbetsinkomster (work incomes) is marked as the head, while the
preposition av (of) gets an additional tag PR for the prepositional function.

The constituent structure recognized in MAMBA is rather flat, especially
on the clause level where the analysis to a large extent is modeled after the
topological field analysis proposed by Diderichsen (1946) for the Scandinavian
languages. The main constituents recognized in the clause are the following:

• Verb (–V)
• Subject (–S)
• Object (–O)
• Predicative (–P)
• Adverbial (–A)

A more fine-grained classification of these constituents is obtained by varying
the first letter of the two-letter tag. Thus, finite verbs are tagged FV, non-
finite verbs IV; logical subjects are tagged ES, formal subjects FS, and other
subjects SS, etc. In addition to the constituents recognized in Diderichsen’s
topological field model, there is a limited phrase structure analysis of noun
phrases, prepositional phrases, adjective phrases, and subordinate clauses,
with special tags for internal grammatical functions. Altogether, there are
42 distinct grammatical function tags in the MAMBA annotation scheme
(Teleman, 1974).

Thanks to the rich functional annotation it is relatively straightforward to
convert the MAMBA annotation to dependency graphs. For the majority of
phrases, the syntactic head is explicitly marked and the function tags assigned
to other constituents can be used to label dependency arcs. However, there are
two types of structures that require special treatment. The first is the clause
structure, where there is no explicit indication of a syntactic head, and where
the following categories are considered as candidate heads in descending order
of priority:

1. The leftmost finite verb (FV).
2. The leftmost non-finite verb (IV).
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ADV Adverbial modifier
APP Apposition
ATT Attribute (adnominal modifier)
CC Coordination (conjunction or second conjunct)
DET Determiner
ID Non-first element of multi-word expression (idiom)
IM Infinitive dependent on infinitive marker
INF Infinitival complement
IP Punctuation
OBJ Object
PR Complement of preposition
PRD Predicative complement
ROOT Dependent of special root node
SUB Subject
UK Head verb of subordinate clause dependent on complementizer
VC Verb chain (nonfinite verb dependent on other verb)
XX Unclassifiable dependent

Fig. 5.3. Dependency types in Swedish treebank

3. The head of the leftmost predicative complement (–P).
4. The head of the leftmost subject, object or adverbial (–S, –O, –A).
5. The leftmost word.

The second type of structure is coordination, where the MAMBA annotation
treats every conjunct as a head. In our conversion to dependency structure, we
adopt a Mel’čuk style analysis of coordination and treat the leftmost conjunct
as the head (cf. section 3.1.2).

After the initial conversion to dependency graphs, we apply two types of
transformations to these graphs. The first is related to some of the traditional
open issues in dependency grammar, where we prefer a different analysis than
the one assumed in the MAMBA annotation. More precisely:

1. Prepositional phrases are headed by the preposition, which takes the head
noun of the nominal complement as a dependent.

2. Subordinate clauses with an overt complementizer (except relative clauses)
are headed by the complementizer, which takes the finite verb of the sub-
ordinate clause as a dependent.

3. Infinitival verb phrases with an overt infinitive marker are headed by the
infinitive marker, which takes the infinitive verb as a dependent.

The second type of transformation concerns three kinds of structure that do
not have a clear-cut dependency analysis, namely idioms (including multi-
word proper names and compound function words), verb chains and coordi-
nate structures. By analogy with Tesnière’s notion of dissociate nuclei, these
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Fig. 5.4. Dependency graph for Swedish sentence, converted from Talbanken

constructions are treated as left-headed chains, where each subsequent ele-
ment is a dependent of the immediately preceding one, and where left and
right dependents of the entire unit are attached to the leftmost and rightmost
element, respectively (and internal dependents to the leftmost element). In the
case of verb chains, this means that left dependents will formally be treated
as dependents of the leftmost verb (normally the finite verb in Swedish), while
right dependents will be attached to the rightmost verb (possibly a non-finite
verb).

The final thing to note about the conversion of the MAMBA annotation
is the set R of dependency types used as arc labels. On the one hand, we have
collapsed some of the finer distinctions in the original set of grammatical func-
tions, where no less than twelve different types of adverbials are distinguished.
On the other hand, we have added a few dependency types for relations that
are not marked explicitly in the MAMBA annotation, notably for verb chains
and coordination. This gives us a set R of 17 dependency labels (including
the special root label r0 = ROOT), which are listed with explanations in
figure 5.3.

The part-of-speech tags included in the original annotation of Talbanken
have not been used in the experiments, mainly because there is no part-of-
speech tagger available for this tagset. Since we want to be able to apply
the parsing system to new texts, we have therefore used a statistical tagger
trained on the much larger Stockholm-Ume̊a Corpus (Ejerhed and Källgren,
1997), using a tagset consisting of 150 tags, to preprocess the Swedish data
both for training and for evaluation. The estimated accuracy of the tagger,
when evaluated on held-out data from the Stockholm-Ume̊a Corpus is 94.4%.
Figure 5.4 shows the result of converting the sentence in figure 5.2 using the
procedure described in this section and tagging it with the statistical part-of-
speech tagger (although the morphological features of the part-of-speech tags
have been suppressed for readability reasons).

The dependency treebank obtained by converting the Professional Prose
section of Talbanken consists of 6316 sentences and 97623 tokens (including
punctuation), which gives a mean sentence length of 15.46 tokens. For previous
experiments, the sentences of this treebank have been randomly divided into
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Fig. 5.5. English sentence annotated according to Penn Treebank II

ten equally large sections, numbered 0–9, where sections 1–8 have been used as
training data and section 9 as validation data, saving section 0 for later studies
(Nivre et al., 2004; Nivre and Nilsson, 2004; Nivre, 2004a). In this study, we
instead use nine-fold cross-validation on sections 1–9 for model selection, and
use section 0 as the test set for the final model assessment. The data set used
for cross-validation consists of 5685 sentences and 87757 tokens, while the
final test set consists of 631 sentences and 9841 tokens.

The English data are taken from the Penn Treebank (Marcus et al., 1993),
which has been the most widely used treebank for parser evaluation over
the last decade. In this study, we use the Wall Street Journal section of the
treebank, with the Penn Treebank II annotation scheme (Bies et al., 1995),
which combines constituency analysis with a limited functional annotation.
Figure 5.5 repeats the example sentence used in chapters 1–4, this time in the
original annotation format using the full node labels, composed of bracketing
labels and grammatical function labels.

We assume that the Penn Treebank II annotation scheme is familiar to
most readers and proceed directly to a discussion of the way in which this
annotation can be converted to dependency graphs. For the unlabeled depen-
dency graphs we rely on the standard method described in section 5.1.3, using
the head percolation table of Yamada and Matsumoto (2003), which is a
slight modification of the rules used by Collins (1999). Using this conversion
scheme permits us to make exact comparisons with the parser of Yamada
and Matsumoto (2003), as well as the parsers of Collins (1997) and Charniak
(2000), which are evaluated on the same data set in Yamada and Matsumoto
(2003). The head percolation table can be found in figure 5.1.

In addition to the structural conversion, we also have to derive dependency
types to use as arc labels. Compared to the Swedish treebank, the functional
annotation in the Penn Treebank is much less comprehensive, which makes
this a non-trivial problem. Given an arc i → j, derived from a local constituent
tree where wi is the head of the head child h and wj is the head of a non-
head child d, let M , H and D be the original labels on the mother node,
head child h and child d, respectively, except that H and D are replaced by
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AMOD Modifier of adjective or adverb (phrase adverbial)
DEP Other dependent (default label)
NMOD Modifier of noun (including complement)
OBJ Object
P Punctuation
PMOD Modifier of preposition (including complement)
PRD Predicative complement
ROOT Dependent of special root node
SBAR Head verb of subordinate clause dependent on complementizer
SBJ Subject
VC Verb chain (nonfinite verb dependent on other verb)
VMOD Modifier of verb (sentence or verb phrase adverbial)

Fig. 5.6. Dependency types in English treebank

TAG if they are part-of-speech tags. The labels M , H and D, stripped of
their function tags, have been used by Collins (1999) to construct complex
dependency labels (M,H,D, dir), where dir is L or R (for left and right
dependency, respectively). In our experiments, we instead use these labels
to formulate a set of rules for choosing the arc label r, i

r→ j. In order of
descending priority, the rules are as follows:

1. If D is a punctuation category, r = P.
2. If D contains the function tag SBJ, r = SBJ.
3. If D contains the function tag PRD, r = PRD.
4. If M = VP, H = TAG and D = NP (without any function tag), r = OBJ.
5. If M = VP, H = TAG and D = VP, r = VC.
6. If M = SBAR and D = S, r = SBAR.
7. If M = VP, S, SQ, SINV or SBAR, r = VMOD.
8. If M = NP, NAC, NX or WHNP, r = NMOD.
9. If M = ADJP, ADVP, QP, WHADJP or WHADVP, r = AMOD.

10. If M = PP or WHPP, r = PMOD.
11. Otherwise, r = DEP.

The complete set R of dependency types, including the root label r0 = ROOT,
is listed in figure 5.6. The explanations given reflect the intended interpreta-
tion of each category, although it is clear that the rules for choosing depen-
dency types will also cover cases that do not fit the descriptions. A notoriously
difficult problem is the treatment of complex noun phrases, which have a very
flat structure in the Penn Treebank. For example, coordinated noun phrases
will often be analyzed as structures where the last conjunct is the head, while
preceding conjuncts as well as the coordinating conjunction are analyzed as
dependents of the NMOD type. Similar problems can be identified for most of
the rules and categories. However, having a set of dependency types that are
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Fig. 5.7. Dependency graph for English sentence, converted from the Penn Treebank
(cf. figures 1.1, 2.2 and 3.1)

Table 5.1. Data sets for training, validation and test; Sec: section, W: number of
tokens, S: number of sentences, W/S: mean number of tokens per sentence

Swedish English
Data set Sec W S W/S Sec W S W/S

Training 1–9 87757 5685 15.44 01-21 950028 39832 23.85
Validation – – – – 00 46451 1921 24.18
Test 0 9841 631 15.60 23 56684 2416 23.46

similar in nature and cardinality to the Swedish set will make results more
comparable.

As regards part-of-speech tagging, we use the gold standard tags from the
Penn Treebank for training, and a statistical tagger trained on section 2-21 for
validation and final testing. The tagger has an accuracy of 96.1% on section
23. In the final evaluation, we will also evaluate the parser on gold standard
tags to see how large proportion of the errors can be attributed to tagging
errors. Figure 5.7 shows the result of converting the sentence in figure 5.5
using the procedure described in this section (with the gold standard tags
from the treebank).

The dependency treebank obtained by converting the Wall Street Journal
section of the Penn Treebank consists of 49208 sentences and 1173766 tokens,
which gives a mean sentence length of 23.85 words. We use sections 2-21 for
training (39832 sentences, 950028 tokens), section 00 for validation and model
selection (1921 sentences, 46451 tokens), and section 23 for the final model
assessment (2416 sentences, 56684 tokens).

Table 5.1 gives an overview of all the data sets used in the experiments.
There is no separate validation data set for Swedish, given that we use cross-
validation for model selection.
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5.2.2 Models and Algorithms

As emphasized on several occasions, the parsing methods evaluated in these
experiments are only one possible instantiation of the general framework of
inductive dependency parsing. This means that, although the experiments will
involve a systematic study of the influence of different variables on accuracy
and efficiency, there are also many factors that will be kept constant. This
holds in particular for the parsing algorithm, which will in all cases be the
deterministic arc-eager algorithm presented and analyzed in section 3.4. But
it also holds for the learning method, in the sense that we will only consider
memory-based learning algorithms, as described in section 4.3, although we
will explore many variants of this general approach to machine learning.

The first part of the experiment, presented in section 5.3, will be devoted to
parameters of the feature model, exploring different combinations of the three
types of features discussed in section 4.2: part-of-speech features, dependency
features, and lexical features. We will begin with simple models based only
on part-of-speech features and gradually increase model complexity by adding
first dependency features and then lexical features. The different models will
mainly be evaluated with respect to parsing accuracy, but a selected subset
will also be evaluated for efficiency. Finally, we will consider the learning
curves of different models, i.e., parsing accuracy as a function of the size of
the training corpus. Throughout the first part, the parameters of the learning
algorithm will be kept constant. As described in section 4.3.2, we will use the
following settings for the k-NN classification provided by the memory-based
learner:

1. Number of nearest distances: k = 5
2. Distance metric: MVDM with l = 3
3. Feature weighting: None
4. Distance-weighted class voting: ID weighting.

In terms of the TiMBL system, this corresponds to the following parameter
settings: -k 5 -m M -L 3 -w 0 -d ID (cf. Daelemans et al., 2004).

The second part of the experiment, presented in section 5.4, will explore
some of the options provided by TiMBL for the memory-based learning and
classification. In particular, we will consider the influence of different k values
and distance metrics, in interaction with different schemes for feature weight-
ing and distance-weighted voting. Throughout the second part, the parameters
of the feature model will in principle be kept constant, but we will consider
two different feature models, one that is lexicalized and one that is not.

The first two parts of the experiment constitute the validation or model
selection phase, in the terminology of section 5.1.2. The third and final part
of the experiment is the final evaluation or model assessment phase, where
we apply the best models with the best settings to a test data set that has
not been used in the validation phase. However, it is important to keep in
mind that, because of the complex interaction of feature models, learning
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algorithm parameters and properties of the data sets, there is no guarantee
that the models and settings selected for the final evaluation are in fact truly
optimal even for the given data sets.

5.2.3 Evaluation

We will use two different metrics to evaluate parsing accuracy, attachment
score (AS) and exact match (EM). AS measures the proportion of tokens
that are correctly analyzed, while EM measures the proportion of sentences
that are assigned a completely correct dependency graph. Both metrics come
in an unlabeled version, which only considers the attachment of dependents
to head, and a labeled version, which also takes the dependency type labels
into account.

Definition 5.1. Given a test sample Te = (x1, . . . , xm), consisting of m sen-
tences, where each sentence xi = (w1, . . . , wk) consists of ki tokens, and
the total number of tokens in the sample is n (i.e., n =

∑m
i=1 ki). Let

Ag = (Gg
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m) be the dependency graphs of the gold standard anno-
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The unlabeled attachment score ASU of p with respect to Te and Ag is:
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The labeled attachment score ASL of p with respect to Te and Ag is:
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The unlabeled exact match EMU of p with respect to Te and Ag is:
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The labeled exact match EML of p with respect to Te and Ag is:
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In the final evaluation in section 5.5, we will also provide a breakdown of the
attachment score for different dependency types, which will be computed as
unlabeled attachment score, (labeled) precision, (labeled) recall and (labeled)
Fβ measure (β = 1) for each dependency type r.

Definition 5.2. Let Te be a test sample and let hg
i , dg

i , hp
i and dp

i be defined
as in definition 5.1. The unlabeled attachment score ASU (r) of dependency
type r for parser p with respect to Te and Ag is:

ASU (r) =
|{wj ∈Te | dg

i (j)=r, hg
i (j)=hp

i (j)}|
|{wj ∈Te | dg

i (j)=r}|

The precision P(r) of r for p with respect to Te and Ag is:

P(r) =
|{wj ∈Te | dp

i (j)=dg
i (j)=r, hg

i (j)=hp
i (j)}|

|{wj ∈Te | dp
i (j)=r}|

The recall R(r) of r for p with respect to Te and Ag is:

R(r) =
|{wj ∈Te | dp

i (j)=dg
i (j)=r, hg

i (j)=hp
i (j)}|

|{wj ∈Te | dg
i (j)=r}|

The F measure F(r) of r for p with respect to Te and Ag is:

F(r) =
2 · P(r) · R(r)
P(r) + R(r)

While the ASU (r) score only measures how often a dependent of type r is
assigned the correct head (regardless of the assigned label), the P(r) score
tells us how often the parser is completely correct when using the label r and
the R(r) score how often a dependent of type r is parsed completely correctly,
while F(r) is the harmonic mean of P(r) and R(r).

In all scores reported for evaluation metrics concerning accuracy, punctua-
tion tokens will be omitted from the counts. Figure 5.8 lists the parts-of-speech
that are counted as punctuation categories in the two treebanks.

Efficiency will be evaluated by the following three metrics:

1. Training time: The time required to construct the instance base for the
memory-based classifier, including the parsing of the training corpus using
the gold standard parsing algorithm and the precomputation of metrics
by TiMBL.

2. Parsing time: The time required to parse one sentence of the test corpus,
excluding the initialization of the parser.

3. Memory consumption: The amount of memory allocated for parsing the
test corpus.

Although parsing time is measured for each individual sentence, the results
will mostly be presented in aggregated form, as the total parsing time for
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Swedish English

MAD Major delimiter . Sentence-final punctuation

MID Minor delimiter , Comma
: Colon, semi-colon

PAD Paired delimiter -LRB- Left bracket character
-RRB- Right bracket character

" Straight double quote
‘ Left open single quote
“ Left open double quote
’ Right close single quote
” Right close double quote

# Pound sign
$ Dollar sign

Fig. 5.8. Punctuation categories in Swedish and English treebank

a given test corpus, as the mean parsing time per sentence, or as the mean
number of words parsed per second (cf. table 5.1 for quantitative proper-
ties of the data sets). Time is measured using standard system calls, with
measurements reported in seconds (s) or milliseconds (ms), while memory
consumption is measured through the UNIX command top and reported in
number of megabytes (MB). All experiments are run on a SunBlade 2000 with
one 1.2GHz UltraSPARC-III processor and 1GB of memory.

The results presented in section 5.3–5.4 are based on the cycle of training
and validation for model selection. For the smaller Swedish data set, validation
is performed by means of nine-fold cross-validation on sections 1–9, and all
results presented are the arithmetic mean of the results from the nine folds.
For the larger English data set, we consistently use sections 02–21 for training
and section 00 for validation. The results presented in section 5.5 are the
final results for model assessment, which involve training on sections 1–9 and
testing on section 0 for Swedish, training on sections 02-21 and testing on
section 23 for English. For the final evaluation, we use McNemar’s test to
assess the statistical significance of differences in accuracy (both attachment
score and exact match).

5.3 Feature Model Parameters

We start our investigation of different feature models from a baseline model,
where the only features used to predict the next transition are the parts-of-
speech of the top token and the next token. In the notation introduced in
section 4.2.4, the baseline is written Φp

00, and its two features p(σ0) and p(τ0).
In the next three sections, we will gradually increase the complexity of the
model by adding a larger part-of-speech context, dependency features, and
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Table 5.2. Accuracy as a function of part-of-speech context only; AS: attachment
score, EM: exact match; U: unlabeled, L: labeled; Swedish (cross-validation), English
(section 00)

Swedish English
Model AS EM AS EM

U L U L U L U L

Φp
00 71.0 64.5 15.6 12.3 58.4 56.2 3.7 3.1

Φp
01 73.8 67.5 17.8 13.8 75.9 73.1 8.5 6.8

Φp
10 74.8 67.8 23.4 15.5 60.5 58.0 5.0 4.0

Φp
11 77.9 70.9 27.2 18.0 77.7 74.8 13.4 10.2

Φp
21 78.4 71.0 28.4 18.6 77.7 74.8 14.2 10.7

Φp
31 78.0 70.0 28.1 18.4 77.1 74.2 13.6 10.0

Φp
12 77.4 70.1 26.6 17.8 79.0 76.1 14.4 10.0

Φp
13 77.1 69.7 26.1 17.3 78.8 75.9 13.6 9.5

Φp
14 77.1 69.7 26.3 17.3 78.8 75.9 14.6 10.2

Φp
15 77.0 69.7 26.0 17.3 78.5 75.5 14.1 9.6

Φp
16 77.0 69.6 25.9 17.2 78.7 75.7 14.3 9.3

lexical features. Finally, we will evaluate a subset of the models with respect
to efficiency and also investigate their learning curves.

5.3.1 Part-of-Speech Context

The role of part-of-speech features in data-driven approaches to parsing is far
from clear-cut, as noted in section 4.2.2, but they are nevertheless used in most
models and appear to have a positive effect especially by providing a backoff
model for lexical features (Charniak, 2000; Van den Bosch and Buchholz,
2002).

Table 5.2 shows the accuracy obtained for Swedish and English with fea-
ture models that differ only with respect to the number of tokens included in
the part-of-speech context. Remember that Φp

mn is a model that includes the
m+1 top tokens on the stack and the n+1 next input tokens (cf. section 4.2.4).

Our first observation is that the baseline model achieves a very modest
parsing accuracy, both with respect to attachment score and exact match,
especially for English. We see that adding a lookahead of just one token (Φp

01)
makes a tremendous difference for English, and is clearly beneficial for Swedish
as well. We see that adding one more token from the stack (Φp

10) also has a
positive effect, although in this case the difference is greater for Swedish, where
it has an especially strong effect on the exact match evaluation. For English,
the strong positive effect on the exact match evaluation shows up only when
the extra stack token is combined with an extra input token (Φp

11).
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Fig. 5.9. Nominal compounds and multi-word names in English and Swedish

Considering the results at a superficial level, it seems that looking forward
is more important for English, while looking backwards is more important
for Swedish. However, this difference can to a very large extent be explained
by the proliferation of nominal compounds in English, in combination with
the particular dependency analysis inherited from the converted phrase struc-
ture annotation and the deterministic parsing strategy used. To illustrate this
phenomenon, let us consider a typical example from the Wall Street Journal
data:

the New York Stock Exchange (5.4)

Apart from the determiner the, this noun phrase consists of four consecutive
words, which in the Penn Treebank annotation are all tagged as proper nouns
(NNP). According to the head percolation table, a noun phrase of this kind
is always headed by the rightmost noun, in this case the noun Exchange, with
all the preceding words as dependents. In order to parse such a structure
correctly, the parser must keep shifting until the head noun is the next input
token and then perform a series of Left-Arc(nmod) transitions until all
the dependents have been attached to the noun. However, without any form
of lookahead it will be very hard to predict when the last noun has been
encountered, especially with a feature model that only includes part-of-speech
features.

The same problem does not arise with the Swedish data. First of all,
Swedish compounds are normally written as single words, which means that
nominal compounds will not be encountered as syntactic units in the Swedish
data. Moreover, in structures similar to the English example, such as multi-
word proper names, the Swedish annotation marks the leftmost element as the
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head and treats each subsequent element as a dependent of the immediately
preceding element. Therefore, the problem of predicting when the head has
been found does not occur when parsing Swedish. The difference between
the two styles of analysis are illustrated in figure 5.9, which contrast the
annotation of English nominal compounds in the converted Penn Treebank
with the annotation of Swedish multi-word units in Talbanken.

Moving on to the middle section of table 5.2, we see that adding a second
extra stack token (Φp

21) gives a marginal increase in accuracy, especially with
respect to exact match, but that adding a third token (Φp

31) gives a decrease
across the board. In the lower section, we see essentially the same pattern with
respect to lookahead, although with a differentiation between languages. For
English, adding a second lookahead token (Φp

12) is beneficial but extending the
context even further is not. For Swedish, accuracy starts to go down already
with the second lookahead token. However, we will see later that the effect of
increasing the part-of-speech context is also sensitive to the presence of other
features.

Summarizing the results for part-of-speech features only, it seems that the
model Φp

21 gives the best performance for Swedish, while the model Φ12 is
optimal for English. In addition, the model Φp

11 gives reasonable performance
for both languages (and even outperforms Φp

12 with respect to labeled exact
match for English). We will therefore keep all three models when we go on to
add dependency features in the next section.

5.3.2 Dependency Structure

The use of dynamic dependency type features for making parsing decisions is
largely unchartered territory in the literature, which is due to the fact that
data-driven dependency parsers normally do not construct labeled dependency
graphs and therefore do not have access to dependency type labels during
parsing. In this section, we investigate the effect of adding to the part-of-
speech models the previously assigned dependency types of the top token
(d(σ0)), its leftmost and rightmost dependents (d(l(σ0)), d(r(σ0))), and the
leftmost dependent of the next token (d(l(τ0))) (cf. section 4.2.4). The results
are shown in table 5.3.

The most important observation is that adding the dependency type of
the top token (Φd

000) gives a substantial increase in parsing accuracy across
the board, for both languages, all part-of-speech models, and all evaluation
metrics. Adding information about other dependencies has a more marginal
impact, and the leftmost dependent of the top token even has a negative effect
on attachment score for English. By and large, however, the models that
incorporate all dependency features (Φd

111) are the best performing models
for both languages, regardless of part-of-speech context, a result that holds
without exception for the exact match criterion.

These results can be related to research on constituency-based parsing in
the following way. The positive effect of including the dependency type of
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Table 5.3. Accuracy as a function of dependency type features; AS: attachment
score, EM: exact match; U: unlabeled, L: labeled; Swedish (cross-validation), English
(section 00)

Swedish English
Model AS EM AS EM

U L U L U L U L

Φp
11 77.9 70.9 27.2 18.0 77.7 74.8 13.4 10.2

Φp
11 + Φd

000 80.3 72.5 29.2 19.0 80.9 77.7 16.3 11.7

Φp
11 + Φd

100 80.3 72.8 29.6 20.3 80.5 77.5 16.3 11.8

Φp
11 + Φd

010 81.2 73.4 31.6 19.9 81.2 78.1 18.1 12.9

Φp
11 + Φd

001 81.6 73.9 31.1 19.8 81.8 78.8 18.9 13.9

Φp
11 + Φd

111 82.3 74.9 33.6 22.6 81.6 78.7 19.5 15.0

Φp
21 78.4 71.0 28.4 18.6 77.7 74.8 14.2 10.7

Φp
21 + Φd

000 80.3 72.4 30.0 19.3 80.6 77.3 16.6 12.0

Φp
21 + Φd

100 80.2 72.6 29.5 20.0 80.3 77.2 16.4 12.1

Φp
21 + Φd

010 81.4 73.5 32.0 20.2 81.2 77.9 19.0 13.4

Φp
21 + Φd

001 81.6 73.8 31.6 20.0 81.3 78.3 19.2 14.4

Φp
21 + Φd

111 82.2 74.8 33.4 22.1 81.5 78.5 19.8 15.2

Φp
12 77.4 70.1 26.6 17.8 79.0 76.1 14.4 10.0

Φp
12 + Φd

000 80.4 72.4 29.2 18.9 82.4 79.2 18.4 12.4

Φp
12 + Φd

100 80.5 72.8 29.1 19.7 82.3 79.3 19.2 14.1

Φp
12 + Φd

010 81.5 73.6 31.9 19.9 83.1 80.0 20.5 14.7

Φp
12 + Φd

001 81.8 73.9 31.4 20.0 83.5 80.5 21.2 15.0

Φp
12 + Φd

111 82.5 75.1 33.5 22.2 83.4 80.5 21.9 17.0

the top token mirrors the observation that grandparent nodes are important
in phrase structure parsing (Collins, 1999; Charniak, 2000). Both types con-
tribute to disambiguation by clarifying the grammatical function of the node
in question. For example, observing that the top token has the dependency
type subject or object can be helpful in exactly the same way as knowing that
a particular NP is immediately dominated by an S node or a VP node in
phrase structure parsing. The mixed evidence concerning dependents of the
target nodes, in particular the rightmost dependent of the top token and the
leftmost dependent of the next token, has bearing on the issue of whether it
is relevant to consider sibling nodes in phrase structure parsing. For instance,
while Charniak (2000) conditions on up to four preceding siblings, Collins
(1997, 1999) achieves similar accuracy without including any information of
this kind.

Comparing the different part-of-speech models, we see that the model Φp
12

still gives the highest accuracy for English. However, after the addition of
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Table 5.4. Accuracy as a function of part-of-speech context (with dependency type
features); AS: attachment score, EM: exact match; U: unlabeled, L: labeled; Swedish
(cross-validation), English (section 00)

Swedish English
Model AS EM AS EM

U L U L U L U L

Φp
12 + Φd

111 82.5 75.1 33.5 22.2 83.4 80.5 21.9 17.0

Φp
13 + Φd

111 82.4 74.9 33.2 21.9 83.8 80.8 22.6 17.1

Φp
14 + Φd

111 82.1 74.5 32.5 21.3 83.6 80.7 23.0 17.3

Φp
15 + Φd

111 82.0 74.5 31.6 20.9 83.5 80.6 22.8 17.2

Φp
16 + Φd

111 82.0 74.4 31.4 20.5 83.7 80.8 22.7 17.0

the dependency type features, this model also gives the highest accuracy for
Swedish with respect to attachment score. And with respect to exact match,
it is now the model Φp

11, not Φp
21, that gets the top score. This result can

probably be explained by the fact that the head of the top token, if present in
a given configuration, is always identical to the second topmost token on the
stack, which means that there is considerable redundancy in the information
given by the features p(σ1) and d(σ0). In order to further investigate the
interaction of part-of-speech features and dependency type features, we have
also repeated part of the experiment presented in table 5.2, increasing the
lookahead with respect to part-of-speech features, but this time in the presence
of all dependency type features. The results are given in table 5.4.

For English, it is no longer detrimental to increase the lookahead. The best
performing models now include three (Φp

13) or four (Φp
14) extra input tokens,

and it is possible to increase the lookahead up to six tokens without more than
marginal degradation. This seems to indicate that the positive effect of an
increased lookahead is dependent on having a more richly articulated feature
model to start from. For Swedish, we can observe similar results, although
the best performing model is still limited to two lookahead tokens, and the
degradation with increasing lookahead is somewhat steeper. This can probably
be explained as a problem of sparse data, since the Swedish training corpus is
one order of magnitude smaller than the English one. On the whole, however,
we see very small differences as a function of varying the lookahead above one
token.

5.3.3 Lexicalization

Lexicalization is usually considered a necessary condition for accurate disam-
biguation in data-driven parsing. Table 5.5 shows the result of adding lexical
features to a subset of the models considered in previous sections. The upper
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Table 5.5. Accuracy as a function of lexical features (with part-of-speech context
and dependency features); AS: attachment score, EM: exact match; U: unlabeled,
L: labeled; Swedish (cross-validation), English (section 00)

Swedish English
Model AS EM AS EM

U L U L U L U L

Φp
12 + Φd

111 82.5 75.1 33.5 22.2 83.4 80.5 21.9 17.0

Φp
12 + Φd

111 + Φw
10 83.7 78.5 34.9 26.3 85.2 83.2 25.7 22.5

Φp
12 + Φd

111 + Φw
01 84.6 78.7 37.2 25.3 85.0 82.5 25.7 20.2

Φp
12 + Φd

111 + Φw
11 85.6 81.5 39.1 30.2 86.6 84.8 29.9 26.2

Φp
12 + Φd

111 + Φw
21 85.7 81.5 39.4 30.3 86.9 85.1 30.1 26.4

Φp
12 + Φd

111 + Φw
12 85.9 81.7 39.4 30.1 87.3 85.4 30.1 26.2

Φp
12 + Φd

111 + Φw
22 85.9 81.6 39.8 30.4 87.3 85.6 31.1 27.7

Φp
11 + Φd

111 + Φw
22 85.9 81.7 39.5 30.4 86.3 84.6 28.8 25.7

Φp
12 + Φd

111 + Φw
22 85.9 81.6 39.8 30.4 87.3 85.6 31.1 27.7

Φp
13 + Φd

111 + Φw
22 85.8 81.5 39.6 30.0 87.6 85.8 31.2 27.3

Φp
14 + Φd

111 + Φw
22 85.7 81.4 39.1 29.6 87.5 85.7 31.0 27.0

Φp
15 + Φd

111 + Φw
22 85.5 81.1 39.0 29.4 87.5 85.7 31.0 26.8

Φp
16 + Φd

111 + Φw
22 85.4 80.9 38.6 29.0 87.4 85.7 30.2 26.3

part of the table is based on the model Φp
12 + Φd

111, incorporating all depen-
dency type features and a lookahead of two tokens, and shows the effect of
adding the word form of the top token (feature w(σ0), model Φw

10), the word
form of the next token (feature w(τ0), model Φw

01), and the word forms of both
target tokens (model Φw

11), followed by the further addition of the head of the
top token (feature w(h(σ0)), model Φw

21), one lookahead token (feature w(τ1),
model Φw

12), and both of these tokens (model Φw
22) (cf. section 4.2.4).

First of all, we see that the benefit of lexicalization is evident for inductive
dependency parsing as well as for other data-driven approaches. With very
few exceptions, parsing accuracy increases steadily with the addition of each
lexical feature, although the magnitude of the improvement quickly decreases.
However, there is a clear difference in this respect between Swedish, where
improvement is marginal for any features after the first two, and English,
where accuracy increases more steadily, especially with respect to the exact
match metrics. Again, this difference can probably be explained by reference
to data sparseness for Swedish, which is even more sensitive for lexical features
than for part-of-speech features.

The lower part of table 5.5 again explores the variation of lookahead, while
keeping the number of lexical features constant at the maximum (Φw

22). We
see that increasing the lookahead to three tokens is beneficial for English but
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not for Swedish, while decreasing it to one has a strong negative effect for
English but is barely noticeable for Swedish, where the labeled attachment
score even goes up. These results give further support to the assumption that
the Swedish data is too sparse to make effective use of the discriminative
power of a more complex feature model.

Let us summarize the results concerning the influence of the feature model
on parsing accuracy. For part-of-speech features, it is essential to include a
context of at least one token in each direction, in addition to the top token
and the next token. Increasing the context further on the stack side appears to
give no improvement, while increasing the lookahead is beneficial to the extent
that there are sufficient quantities of training data available. Dependency type
features have a positive influence on parsing accuracy, especially with respect
to the exact match metrics, and the dependency type of the top token is
the single most important feature. Lexicalization, finally, has a substantial
positive effect on parsing accuracy, but the addition of lexical features over
and above the word form of the target tokens is dependent on the availability
of large quantities of training data.

Given the results so far, we will now restrict our attention to a subset
of the models considered, which will be evaluated with respect to efficiency
and learning curves. In section 5.4, an even smaller subset will be used as a
basis for the exploration of learning algorithm parameters. Altogether, we will
consider five models, in order of increasing complexity:

B = Φp
00

P = Φp
12

D = Φp
12 + Φd

111

L2 = Φp
12 + Φd

111 + Φw
11

L4 = Φp
12 + Φd

111 + Φw
22

The first model (B) is the baseline model, where the only features included
are the parts-of-speech of the target tokens. The second model (P ) is the best
pure part-of-speech model for English, with a context of one stack token and
two lookahead tokens. The third model (D) is the model obtained by adding
all dependency type features to the P model. The last two models (L2 and
L4) are lexicalized models, based on the D model, and incorporating two and
four lexical features, respectively. Note that L4 is not the best performing
model for English, where the model Φp

13 + Φd
111 + Φw

22 has a higher accuracy
on the validation set. We will return to this model in the final evaluation in
section 5.5. Table 5.6 gives an overview of the accuracy of the five selected
models.

5.3.4 Efficiency

One of the the main tenets of this study is that, even though accuracy is
the single most important evaluation criterion in natural language parsing,
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Table 5.6. Accuracy as a function of feature model (selection); AS: attachment
score, EM: exact match; U: unlabeled, L: labeled; Swedish (cross-validation), English
(section 00)

Swedish English
Model AS EM AS EM

U L U L U L U L

B 71.0 64.5 15.6 12.3 58.4 56.2 3.7 3.1

P 77.4 70.1 26.6 17.8 79.0 76.1 14.4 10.0

D 82.5 75.1 33.5 22.2 83.4 80.5 21.9 17.0

L2 85.6 81.5 39.1 30.2 86.6 84.8 29.9 26.2

L4 85.9 81.6 39.8 30.4 87.3 85.6 31.1 27.7

it cannot be regarded in isolation from other requirements, such as robust-
ness, disambiguation and efficiency. We have chosen to treat robustness and
disambiguation as absolute requirements, but we still have to consider the
trade-off between accuracy and efficiency. Increasing model complexity tends
to correlate positively with parsing accuracy (if overfitting can be avoided) but
negatively with efficiency. It is therefore important to see how the differences
in accuracy observed so far correlate with differences in efficiency.

Table 5.7 shows the evaluation of our five selected models with respect to
the efficiency metrics defined in section 5.1.1. The first column reports training
time (T); the next three columns show parsing time, expressed as total parsing
time (P), mean parsing time per sentence (S), and mean number of words
parsed per second (W); the fifth column gives the memory consumption (M).
Time is expressed in seconds for T and P, milliseconds for S, and memory
consumption is reported in megabytes. It should be remembered that the size
of both training and test corpora are about one order of magnitude larger for
English than for Swedish (cf. table 5.1). (The results for Swedish are as usual
the mean score of a nine-fold cross-validation.)

Starting with the training time, we see that the memory-based approach is
very efficient, as can be expected, with training times of three to four minutes
for the most complex models on section 2-21 of the Wall Street Journal section
of the Penn Treebank. We also see that training time scales very well, with
an approximately linear growth both with respect to the number of features
(2, 5, 9, 11, and 13 for the selected models) and with respect to the size of
the training corpus (one order of magnitude difference between Swedish and
English).

With respect to parsing efficiency, the memory-based approach has a draw-
back in that all training instances have to be kept in memory during parsing.
Even with the optimized storing and indexing provided by TiMBL, this is
bound to show up in the measurements of time and memory consumption.
Nevertheless, we see that although the English parsers generally require more
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Table 5.7. Efficiency as a function of feature model; T: training time (s), P: parsing
time (s), S: mean parsing time per sentence (ms), W: mean number of words parsed
per second, M: memory requirements during parsing (MB)

Model Swedish English
T P S W M T P S W M

B 4.1 3.4 5.4 2753.7 4 42.5 16.3 8.5 2844.5 4

P 7.0 5.3 8.4 1771.7 14 73.6 63.4 33.0 732.8 61

D 9.9 11.3 17.9 831.7 19 109.7 72.2 37.6 643.1 96

L2 14.8 158.7 251.5 59.2 42 178.2 971.8 505.9 47.8 298

L4 18.2 549.3 870.5 17.1 56 226.8 2861.3 1489.5 16.2 420

memory than the Swedish ones, the ratio is always less than 10:1 for the same
feature model. And with respect to parsing time, there is very little difference
at all when considering the mean number of words per second, except for
the model P , which is surprisingly slow for English. The difference in parsing
time per sentence can largely be explained by the fact that the mean sentence
length is longer for English, and the difference in total parsing time of course
by the different sizes of the test corpora.

The picture that clearly emerges from table 5.7 is that model complexity is
the most important factor with respect to parsing time. For both languages, we
see that parsing speed drops by one order of magnitude with the introduction
of lexical features. Comparing total parsing times, the ratio between L2 and
D is about 14:1 for both languages. The crucial difference between lexicalized
and non-lexicalized models is not the number of features, but the number
of values per feature. Whereas both part-of-speech features and dependency
features have value sets with a cardinality ranging from about 10 to 50, the
number of values for lexical features are in the order of 104–105. Adding
more lexical features slows down parsing even further, as can be seen in the
difference between L4 and L2, which is about 3:1 and which is caused by the
addition of two more lexical features. This can be compared with the difference
between D and P , which is about 2:1 for Swedish and barely noticeable for
English, despite the addition of four new features.

The decrease in efficiency with increasing model complexity has to be seen
in relation to the gain in accuracy. Going back to table 5.6, we note that
the addition of four dependency features from the P model to the D model
gives a gain in accuracy of 4–5 percentage points for attachment score, and
even more for exact match, with less than a 50% drop in parsing speed. By
contrast, the addition of two more lexical features from the L2 model to the L4

model improves attachment score by 0.1–0.8 percentage points while reducing
parsing speed by about 70%. Whether we are willing to pay this price or not
is dependent on the requirements of our applications, which may put different
constraints on the lowest acceptable accuracy or efficiency, but it illustrates
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Fig. 5.10. Parsing time (ms) as a function of sentence length (number of words);
Model B; Swedish, section 9 (630 data points)

the inevitable trade-off between accuracy and efficiency in data-driven parsing
and the consequent need for joint optimization.

To complete the analysis of efficiency, we will consider the relation between
sentence length and parsing time. In section 3.4, we established that the time
complexity of the parsing algorithm is O(n), where n is the number of words
in the sentence, provided that transitions can be performed in constant time.
Using a memory-based classifier to predict the next transition allows us to
perform transitions in time that is constant in the number of words for a
given feature model and training data set, but the size of this constant clearly
depends on the complexity of the feature model and the size of the training
data set. Moreover, because of the optimized storage and indexing techniques
used in TiMBL, classifying a new instance may or may not require an ex-
haustive search of the instance base, which means that we can expect a larger
variation in classification time for more complex models.

Figures 5.10–5.12 show a plot of parsing time (ms) as a function of sentence
length for the models B, D and L2 applied to section 9 of the Swedish treebank
(after training on sections 1–8). The plot is based on 630 data points, each
point representing one sentence. Figures 5.13–5.15 show the same plots for
section 00 of the English treebank (after training on section 02–21 as usual),
this time including 1920 sentences.

The linear behavior of the parser is most clearly discernible for the B
model, where the time spent on classification is relatively small but also rela-
tively constant given the very simple feature model. With increasing model
complexity, the correlation between sentence length and parsing time becomes
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Fig. 5.11. Parsing time (ms) as a function of sentence length (number of words);
Model D; Swedish, section 9 (630 data points)

Fig. 5.12. Parsing time (ms) as a function of sentence length (number of words);
Model L2; Swedish, section 9 (630 data points)
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Fig. 5.13. Parsing time (ms) as a function of sentence length (number of words);
Model B; English, section 00 (1920 data points)

Fig. 5.14. Parsing time (ms) as a function of sentence length (number of words);
Model D; English, section 00 (1920 data points)
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Fig. 5.15. Parsing time (ms) as a function of sentence length (number of words);
Model L2; English, section 00 (1920 data points)

increasingly noisy, as classification time begins to dominate parsing time. Even
though the plots for some of the more complex models do not quite resemble
straight lines, the data is very sparse for high values of the sentence length
variable, and there are no grounds to reject the assumption that parsing time
remains linearly related to sentence length even for more complex models,
although the variance clearly increases due to the increased variance in classi-
fication time.

5.3.5 Learning Curves

The final aspect of feature models that will be considered in this evaluation is
their sensitivity to the amount of training data available, which can be assessed
by considering their learning curves. Figures 5.16–5.17 plot the accuracy of the
feature models D and L2 for Swedish as a function of the size of the training
corpus. Figure 5.16 depicts the development of attachment score (labeled and
unlabeled), while figure 5.17 shows exact match (labeled and unlabeled). The
training corpus varies from 1 to 8 sections, and the values depicted are the
mean of a nine-fold cross-validation as usual. Figures 5.18–5.19 give the same
type of information for English, except that each increment of the training
corpus represents two sections, i.e., one tenth of the entire training corpus,
and measurements are only based on the validation set, section 00.

First of all, we may note that the lexicalized L2 model generally has a
steeper learning curve than the non-lexicalized D model, which is only to
be expected given that the data is much more sparse for lexical features than
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Fig. 5.16. Learning curve for attachment score; ASU (dashed) and ASL (dotted);
models D (•) and L2 (◦); Swedish

Fig. 5.17. Learning curve for exact match; EMU (dashed) and EML (dotted);
models D (•) and L2 (◦); Swedish
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Fig. 5.18. Learning curve for attachment score; ASU (dashed) and ASL (dotted);
models D (•) and L2 (◦); English

Fig. 5.19. Learning curve for exact match; EMU (dashed) and EML (dotted);
models D (•) and L2 (◦); English
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for part-of-speech and dependency features. At the same time, it is worth
pointing out that the L2 model outperforms the D model at all data points,
i.e., even when only training on a single section of the Swedish treebank, which
only contains about 600 sentences and 10,000 tokens. This indicates that the
analogy-based smoothing provided by the memory-based learner works well
even for sparse data sets.

If we compare the two types of evaluation metrics, we see that exact match
has a steeper learning curve than attachment score, which might be taken to
show that the former is a more discriminative metric. Especially the L2 model
shows a steady increase in exact match accuracy for both languages.

Comparing the two languages, finally, it is evident that the curves are
steeper for Swedish than for English. This is a direct reflection of the different
sizes of the data sets involved, where the complete training corpus for Swedish
is of about the same size as the smallest fraction considered for the English.
In this way, the Swedish curves could almost be considered as a zoom-in of
the first data point of the English curves. Some of the curves for English are
really very flat, especially for attachment score and the D model. This is both
good news and bad news. It is good news in the sense that (almost) optimal
accuracy can often be obtained with only half of the training data, which can
make parsing more efficient. But it is bad news in the sense that accuracy
is unlikely to improve with the addition of more training data. The picture
is somewhat different for the exact match metrics, where especially the L2

model continues to improve up until the maximum size of the training corpus.

5.4 Learning Algorithm Parameters

Having examined the influence of different feature models on both accuracy
and efficiency, we will now turn to the role of the learning algorithm, which in
our case means exploring the parameter space of memory-based learning and
classification, as provided by the TiMBL system. It is important to remember
that feature selection and parameter optimization can be highly dependent on
each other (Daelemans and Hoste, 2002; Daelemans et al., 2003). In principle,
we should therefore explore the combined space of feature models and learning
algorithm parameters in order to arrive at a truly optimal combination. In
practice, this is often impossible because of the combinatorial effect, and the
standard approach is therefore to keep one factor constant while varying the
other systematically, which is also the methodology adopted in this study.
However, because the factors are not independent, we need to make sure that
the factor kept constant has a nearly optimal value, or the results can be
highly misleading. This is the reason that we did not use the default settings
of TiMBL when exploring different feature models in the preceding section,
but instead used parameter settings that had been found optimal in previous
studies. By the same reasoning, we will not use arbitrary feature models as our
basis for parameter optimization in this section, but will limit our attention
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to two of the best models. More precisely, we will study the D model, which
was the best performing non-lexicalized model in the preceding section, and
the L2 model, which was a model that gave close to optimal performance for
both Swedish and English and that strikes a good balance between accuracy
and efficiency.

5.4.1 Neighbor Space and Distance Metric

Two fundamental parameters of the k-NN classification provided by memory-
based learning are the number k of nearest neighbors (distances) taken into
account and the metric used to compute the distance between instances. In
our first experiment, we compare the Overlap and MVDM metrics, while
varying the value of k from 1 to 9 in increments of 2.2 The results are shown
in table 5.8.

Starting with the Overlap metric, we see that performance is reasonable
but not optimal with a k value of 1 but degrades drastically as the k value
increases. The reason for this behavior is that, with the simple Overlap metric,
there will typically be an abundance of ties in nearest neighbor position, and
increasing the k value will lead to larger and larger portions of the instance
base being used to classify each instance (Daelemans and Van den Bosch,
2005). This means that the set of local neighborhood approximations will
eventually give way to a globally defined approximation, which simply assigns
the overall majority class to every instance.

In terms of dependency parsing, this means that the parser will select
the Shift transition in every configuration, constructing a dependency graph
where every token is attached to the special root node. The attachment score
of such a parser is simply the proportion of tokens attached to the special
root node in the gold standard treebank, which happens to be 7.0% for the
Swedish treebank and 4.7% for the English treebank. The non-lexicalized D
model, which has fewer features and fewer values per feature, reaches this
stage already at k = 7, while the lexicalized L2 model degrades at a slightly
slower pace. The degradation is accelerated by the fact that TiMBL uses the
k nearest distances, rather than the k nearest neighbors, but the result will
eventually be the same anyway.

Using the more sophisticated MVDM metric gives a completely different
picture. Increasing the k value from 1 to 3 has a positive effect for both
models with respect to all metrics, but further changes have very little effect
overall. The highest accuracy is found at k = 3 for the D model in both
languages. For the L2 model, the optimum appears to be k = 5 for Swedish
and k = 7 for English, although the differences are generally small. In the
following experiments, we will therefore use k = 3 for the D model but use
both k = 5 and k = 7 for the L2 model.

2 In order to avoid ties, it is recommended to use odd integers as values of k.
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Table 5.8. Accuracy as a function of distance metric (Overlap, MVDM) and k
value; AS: attachment score, EM: exact match; U: unlabeled, L: labeled; Swedish
(cross-validation), English (section 00)

Swedish English
Model Metric k AS EM AS EM

U L U L U L U L

D Overlap 1 78.4 70.0 29.6 20.0 81.9 78.8 20.4 15.4

3 63.0 52.4 18.4 12.0 65.4 61.1 7.1 4.5

5 31.7 24.1 7.4 4.9 37.7 34.3 1.2 1.0

7 7.0 7.0 3.8 3.8 4.7 4.7 0.4 0.4

9 7.0 7.0 3.8 3.8 4.7 4.7 0.4 0.4
MVDM 1 80.8 72.7 31.8 20.9 82.9 79.9 20.9 16.1

3 82.5 75.0 33.1 21.5 83.4 80.5 21.9 17.1

5 82.5 75.1 32.8 20.7 83.1 80.1 21.8 16.5

7 82.5 75.1 33.0 21.0 82.8 79.8 21.7 16.1

9 82.2 74.8 32.3 20.7 82.7 79.6 20.9 15.0

L2 Overlap 1 82.2 76.2 34.3 24.7 85.2 83.0 27.0 22.5

3 72.5 63.5 22.8 14.8 74.1 71.1 12.0 9.0

5 44.9 34.8 11.2 6.7 51.0 47.5 2.7 1.5

7 9.5 8.9 4.0 3.8 19.7 18.4 0.5 0.4

9 7.0 7.0 3.8 3.8 4.7 4.7 0.4 0.4
MVDM 1 83.1 78.6 34.9 26.0 85.1 83.2 26.2 23.4

3 84.7 80.6 37.2 28.6 86.2 84.5 29.2 25.8

5 84.8 80.8 37.6 29.1 86.3 84.5 29.7 25.2

7 84.7 80.7 37.4 29.0 86.3 84.6 29.7 26.3

9 84.7 80.6 37.1 28.8 86.2 84.4 29.6 26.0

While the MVDM metric is in most cases superior to the Overlap metric
already at k = 1 and improves with larger k values, it is also more sensitive
to data sparseness. TiMBL therefore provides a back-off from MVDM to
Overlap through a frequency threshold l, which means that the distance metric
switches from MVDM to Overlap whenever one or both values compared occur
less than l times in the training data. Table 5.9 shows the effect of increasing
this threshold from 1 to 5 in increments of 1 for the D model with k = 3 and
the L2 model with k = 5 and k = 7. We see that the D model is completely
insensitive to this parameter, with identical results for all settings, indicating
that data sparseness is not a problem for the non-lexicalized D model, not
even for Swedish. For the L2 model, we see a small but steady improvement
with a higher threshold, especially for Swedish with a more limited amount
of training data. For k = 5 the optimal threshold appears to be 3 for both
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Table 5.9. Accuracy as a function of switching threshold l (MVDM to Overlap);
AS: attachment score, EM: exact match; U: unlabeled, L: labeled; Swedish (cross-
validation), English (section 00)

Swedish English
Model k l AS EM AS EM

U L U L U L U L

D 3 1 82.5 75.0 33.7 21.5 83.4 80.5 21.9 17.1

2 82.5 75.0 33.7 21.5 83.4 80.5 21.9 17.1

3 82.5 75.0 33.7 21.5 83.4 80.5 21.9 17.1

4 82.5 75.0 33.7 21.5 83.4 80.5 21.9 17.1

5 82.5 75.0 33.7 21.5 83.4 80.5 21.9 17.1

L2 5 1 84.8 80.8 37.6 29.1 86.3 84.5 29.7 25.9

2 85.2 81.1 38.4 29.3 86.5 84.7 29.9 26.1

3 85.3 81.2 38.8 29.7 86.5 84.8 29.9 25.9

4 85.4 81.1 38.8 29.6 86.5 84.7 30.0 26.0

5 85.3 81.0 38.5 29.3 86.5 84.7 30.0 25.8
7 1 84.7 80.7 37.4 29.0 86.3 84.6 29.7 26.3

2 85.0 80.9 38.2 29.1 86.5 84.7 29.9 26.5

3 85.1 81.0 38.4 29.2 86.6 84.8 29.9 26.3

4 85.2 81.0 38.5 29.2 86.6 84.6 29.9 26.2

5 85.1 80.9 38.3 29.2 86.6 84.8 30.0 26.2

languages, which confirms earlier experiments (Nivre et al., 2004; Nivre and
Scholz, 2004). For k = 7 the best results are obtained with a threshold of 5 for
English, whereas for Swedish accuracy is consistently worse than for k = 5.
In the following, we will therefore consider k = 5, l = 3 to be optimal for
Swedish but consider both k = 5, l = 3 and k = 7, l = 5 for English.

5.4.2 Weighting Schemes

In addition to distance metric and k value, the k-NN classification may be
tuned by different weighting schemes. In this section, we will consider two
types of weighting. On the one hand, we have applied feature weighting with
Information Gain (IG) and Gain Ratio (GR). On the other hand, we have used
distance-weighted class voting with inverse distance (ID) and inverse-linear
(IL) weighting. The results of these experiments are reported in table 5.10.

The overall tendency is that these weighting schemes have a negative influ-
ence on parsing accuracy. One possible explanation is that the MVDM metric
in itself has a feature weighting effect, as observed in section 4.3, and that
additional weighting will therefore result in overfitting. For the D model, the
best results are obtained with IG feature weighting, which gives marginally
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Table 5.10. Accuracy as a function of weighting scheme; FW: feature weighting
(GR: gain ratio, IG: information gain); DWCV: distance weighted class voting (ID:
inverse distance, IL: inverse linear); AS: attachment score, EM: exact match; U:
unlabeled, L: labeled; Swedish (cross-validation), English (section 00)

Swedish English
Model k l FW DWCV AS EM AS EM

U L U L U L U L

D 3 1 – – 82.5 75.0 33.7 21.5 83.4 80.5 21.9 17.1

GR – 82.1 74.9 32.9 22.3 83.0 80.1 21.7 17.0

IG – 82.2 75.1 33.0 21.5 83.4 80.5 22.0 17.1

– ID 82.0 74.4 33.3 21.8 83.4 80.4 21.7 17.1

– IL 81.0 73.0 32.2 21.3 82.9 79.9 21.5 16.6

L2 5 3 – – 85.3 81.2 38.8 29.7 86.5 84.8 29.9 25.9

GR – 84.6 80.4 37.1 28.7 86.0 84.1 29.0 25.5

IG – 83.8 79.8 34.6 26.7 86.0 84.5 27.3 24.4

– ID 85.6 81.5 39.1 30.2 86.6 84.8 29.9 26.2

– IL 85.0 80.6 38.1 28.9 86.0 84.2 28.3 25.0
7 5 – – – – – – 86.6 84.8 30.0 26.2

GR – – – – – 85.7 83.8 28.2 24.9

IG – – – – – 86.0 84.5 27.5 24.9

– ID – – – – 86.8 85.0 30.3 26.9

– IL – – – – 86.5 84.7 29.4 26.0

higher ASL for Swedish and EMU for English, but also lower ASU and EMU

for Swedish. By an appeal to Occam’s razor we will therefore conclude that
the optimal parameter settings for non-lexicalized models are as follows:

1. Number of nearest distances: k = 3
2. Distance metric: MVDM with l = 1
3. Feature weighting: None
4. Distance-weighted class voting: None

Turning to L2, we find that distance-weighted class voting with ID weighting
has a consistent positive effect, whereas all the other weighting schemes are
detrimental. We also see that, with the addition of ID weighting, k = 7 and
l = 5 gives better performance than k = 5 and l = 3 for English. Hence, we
conclude that the following settings are optimal for our lexicalized models:

1. Number of nearest distances: k = 5 (Swedish), k = 7 (English)
2. Distance metric: MVDM with l = 3 (Swedish), l = 5 (English)
3. Feature weighting: None
4. Distance-weighted class voting: ID
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With the exception of the higher k and l values for English, these are also the
settings that were used in the validation of feature models, and which have
been found optimal in previous studies (Nivre et al., 2004; Nivre and Scholz,
2004).

5.5 Final Evaluation

In this section, we will assess the quality of the feature models and parameter
settings that produced the best results during validation by applying them
to an independent test set. In this way, we can hope to get a more unbiased
estimate of the expected accuracy and efficiency with respect to new data.
However, it is important to remember that, even though the test sets have
not been used in the validation phase, they are nevertheless sampled from the
same treebanks as the respective training and validation sets. Our estimates
will therefore be valid for text that belongs to the same population, but not
for text from other sources in Swedish or English.

We will also compare the performance of the best models to the state of
the art in dependency-based parsing. This will raise certain questions about
the sources of parsing errors, and we will try to tease apart the influence
of three such sources: errors in part-of-speech tagging, errors in the function
approximation, and errors due to the greedy, deterministic parsing strategy.

5.5.1 Accuracy and Efficiency

Table 5.11 shows the accuracy obtained on the test sets for the best lexical-
ized and non-lexicalized models, using the optimal parameter settings of the
learning algorithm. We have included both the best models from section 5.3
and the models used as the basis for parameter optimization in section 5.4.
This yields five models altogether, since the best non-lexicalized model for
Swedish from section 5.3 is identical to the D model used in section 5.4. We
use the notation D′ and L′

4 to denote the models that are exactly like D and
L4 except that they include a part-of-speech lookahead of three tokens instead
of two.

If we compare the results to those obtained during validation, they are
comparable in all cases, which indicates that the models have not been over-
fitted to the training and validation data. Differences between validation scores
and test scores are generally less than one percentage point for attachment
scores, whereas the exact match scores show a variation of up to two per-
centage points (with a decrease in accuracy for Swedish and an increase for
English). This is only natural, given that the number of observations is one
order of magnitude greater for the attachment scores, which are word-based,
than for the exact match scores, which are sentence-based.

As for the comparison between feature models, the only differences that
are statistically significant for Swedish are those between the non-lexicalized
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Table 5.11. Final evaluation: accuracy; AS: attachment score, EM: exact match;
U: unlabeled, L: labeled; Swedish (section 0), English (section 23)

Swedish English

Model AS EM AS EM

U L U L U L U L

D = Φp
12 + Φd

111 83.2 75.8 33.4 20.2 83.5 80.5 23.2 17.3

D′ = Φp
13 + Φd

111 83.3 75.7 31.8 19.2 83.6 80.7 23.5 18.0

L2 = Φp
12 + Φd

111 + Φw
11 86.3 82.0 37.7 29.6 87.4 85.7 30.8 26.8

L4 = Φp
12 + Φd

111 + Φw
22 86.1 81.8 37.3 29.8 87.8 86.0 32.7 28.7

L′
4 = Φp

13 + Φd
111 + Φw

22 86.3 82.0 39.2 30.8 88.1 86.3 32.8 28.4

models D and D′, on the one hand, and the lexicalized models L2, L4 and L′
4,

on the other. Between these groups, the difference is statistically significant
beyond the 0.01 level for all metrics (McNemar’s test).3 Within the groups,
however, there are no significant differences.4 For English we find basically
the same pattern, but in addition to the differences between non-lexicalized
and lexicalized models, which are all significant beyond the 0.0001 level, there
are also significant differences between the model with two lexical features
(L2) and the models with four lexical features (L4 and L′

4) with p < 0.01
for all metrics. Comparing L4 and L′

4, finally, the differences appear to be
significant for the attachment scores but not for the exact metrics. However,
this result should be taken with a pinch of salt, since the attachment scores
are based on observations of word tokens, which are very far from being in-
dependent of each other. Therefore, the lack of a significant difference in the
sentence-based exact match comparison throws serious doubt on the value
of the differences in attachment score. In conclusion, it therefore seems fair
to say that the difference in accuracy between lexicalized and non-lexicalized
models is statistically significant for both languages, and that the addition of
two extra lexical features makes a significant difference for English, with the
larger data sets, but not for Swedish. Any conclusions beyond these are not
clearly warranted by the experimental results.

In order to get a more fine-grained picture of accuracy, we will now con-
sider the accuracy for different dependency types. Table 5.12 gives unlabeled
attachment score (ASU ), labeled precision (P), recall (R) and F measure (F)
for the top scoring model L′

4 on the Swedish test set. Broadly speaking, we
can divide dependency types according to accuracy into three sets. In the
high-accuracy set, with a labeled F measure from 84% to 98%, we find all

3 For EMU p = 0.01; for the other three metrics p < 0.0001.
4 It is worth remembering that the Swedish test set only contains 631 sentences,

which means that the difference between 29.6% and 29.8% in the EML score for
L2 and L4 is the difference of a single sentence.
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Table 5.12. Final evaluation: attachment score (ASU ), precision (P), recall (R) and
F measure per dependency type: Swedish (model L′

4)

Label n ASU P R F

ADV 1607 79.8 75.8 76.8 76.3
APP 42 23.8 38.1 19.0 25.4
ATT 950 81.3 79.9 78.5 79.2
CC 963 82.5 78.1 79.8 78.9

DET 947 92.6 88.9 90.2 89.5
ID 254 72.0 72.5 58.3 64.6
IM 133 98.5 98.5 98.5 98.5
INF 10 100.0 100.0 30.0 46.2
OBJ 585 88.0 78.2 77.3 77.7
PR 985 94.2 88.6 92.7 90.6

PRD 244 90.6 76.7 77.0 76.8
ROOT 607 91.3 84.6 91.3 87.8
SUB 957 89.8 86.7 82.5 84.5
UK 213 85.0 89.4 83.6 86.4
VC 238 93.7 82.1 90.6 86.1
XX 29 82.8 85.7 20.7 33.3

Total 8782 86.3 82.0 82.0 82.0

dependency types where the head is a closed class word: IM (marker → infini-
tive), PR (preposition → noun), UK (complementizer → verb) and VC (aux-
iliary verb → main verb). We also find the type DET (noun → determiner),
which has similar characteristics although the determiner is not treated as
the head in the Swedish annotation. The high-accuracy set also includes the
central dependency types ROOT and SUB, which normally identify the finite
verb of the main clause and the grammatical subject, respectively.

In the medium-accuracy set, with a labeled F measure in the range of
75–80%, we find the remaining major dependency types, ADV (adverbial),
ATT (nominal modifier), CC (coordination), OBJ (object) and PRD (predi-
cative). However, this set can be divided into two subsets, the first consisting
of ADV, ATT and CC, which have an unlabeled attachment score not too
much above the labeled F measure, indicating that parsing errors are mainly
due to incorrect attachment. This is plausible also because ADV and ATT are
the dependency types typically involved in modifier attachment ambiguities,
and coordination is a source of attachment ambiguities as well. The second
subset contains OBJ and PRD, which both have an unlabeled attachment
score close to 90%, which means that they are often correctly attached but
may be incorrectly labeled. This is again plausible, since these types identify
nominal arguments of the verb (other than the subject), which can often occur
in the same syntactic contexts.
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Table 5.13. Final evaluation: attachment score (ASU ), precision (P), recall (R) and
F measure per dependency type: English (model L′

4)

Label n ASU P R F

AMOD 2072 78.2 80.7 73.0 76.7
DEP 259 42.9 56.5 30.1 39.3

NMOD 21002 91.2 91.1 90.8 91.0
OBJ 1960 86.5 78.9 83.5 81.1

PMOD 5593 90.2 87.7 89.5 88.6
PRD 832 90.0 75.9 71.8 73.8

ROOT 2401 86.4 78.8 86.4 82.4
SBAR 1195 86.0 87.1 85.1 86.1
SBJ 4108 90.0 90.6 88.1 89.3
VC 1771 98.8 93.4 96.6 95.0

VMOD 8175 80.3 76.5 77.1 76.8

Total 49368 88.1 86.3 86.3 86.3

Finally, we have a low-accuracy set, with a labeled F measure below 70%,
where the common denominator is mainly that these dependency types are
rare: INF (infinitive complements), APP (appositions), XX (unclassifiable).
The only exception to this generalization is the type ID (idiom constituent),
which is not that rare but which is rather special for other reasons. All types
in this set except APP have a relatively high unlabeled attachment score,
but their labels are seldom used correctly. An extreme case is INF, which has
both an unlabeled attachment score and a labeled precision of 100%, although
there are only 10 instances in total in the test set, but which has a much lower
labeled recall (30%). The dependency type APP, finally, is used for a family
of loosely connected modifiers of either nouns or verbs, which apparently are
very difficult to attach correctly.

Table 5.13 gives the same kind of breakdown across dependency types
for the top scoring model L′

4 on the English test set, where we can distin-
guish a similar division into three sets according to accuracy level. In the
high-accuracy set, with a labeled F measure from 86% to 95%, we find SBJ
(subject) and three dependency types where the head is a closed class word:
PMOD (preposition → complement/modifier), VC (auxiliary verb → main
verb) and SBAR (complementizer → verb). In addition, this set includes the
type NMOD, which includes the noun-determiner relation as an important
subtype.

In the medium-accuracy set, with a labeled F measure from 74% to 82%, we
find the types AMOD, VMOD, OBJ, PRD and ROOT. The former two depen-
dency types mostly cover adverbial functions, and have a labeled accuracy not
too far below their unlabeled attachment score, which is an indication that
the main difficulty lies in finding the correct head. By contrast, the argument
functions OBJ and PRD have a much better unlabeled attachment score,
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which shows that they are often attached to the correct head but misclassified.
This tendency is especially pronounced for the PRD type, where the difference
is more than 15 percentage points, which can probably be explained by the
fact that this type is relatively infrequent in the annotated English data.

The low-accuracy set for English only includes the default classification
DEP. The very low accuracy for this dependency type can be explained by the
fact that it is both a heterogeneous category and the least frequent dependency
type in the data.

If we compare the results across languages, we can distinguish the following
general patterns:

• Dependents of closed class words have high accuracy, labeled as well as
unlabeled. This includes the following construction types:
1. Preposition → Noun (Swedish PR, English PMOD5)
2. Complementizer → Verb (Swedish UK, English SBAR)
3. Auxiliary verb → Main verb (Swedish and English VC)

• Core arguments of the verb have high unlabeled accuracy. This includes:
1. Subjects (Swedish SUB, English SBJ)
2. Objects (Swedish and English OBJ)
3. Predicative complements (Swedish and English PRD)
Subjects also have high labeled accuracy, whereas objects and predicative
complements are more easily confused with each other.

• Modifiers generally have medium accuracy, both labeled and unlabeled.
• Atypical, heterogeneous and rare dependency types have low accuracy,

especially when labels are taken into account.

One apparent difference between the languages is that nominal modifiers
(NMOD) have a very high accuracy for English (90.5% ASU , 90.4% F),
whereas the closest corresponding dependency type for Swedish (ATT) has
both unlabeled and labeled accuracy below 80%. However, this can prob-
ably be explained by the fact that the English category NMOD contains two
prominent subcategories that contribute significantly to the overall result.
These subcategories are determiners, which have a very high accuracy also in
Swedish (91.5% ASU , 89.6% F), and constituents of noun-noun compounds,
which can usually be identified relatively easily but which are absent in the
Swedish data because of different orthographic conventions.

Another difference is that the type ROOT, which normally identifies the
finite verb of the main clause, has a considerably higher accuracy for Swedish,
where it belongs to the high-accuracy set, than for English, where it is found
in the middle set. This is probably related to the greater sentence complexity
in the English data set, where a greater mean sentence length can be expected
to correlate with a greater mean number of clauses per sentence, which tends
to make the identification of the main clause more difficult.

5 The PMOD type also contains modifiers of prepositions but is heavily dominated
by nominal complements.
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Table 5.14. Final evaluation: efficiency; T: training time (s), P: parsing time (s), S:
mean parsing time per sentence (ms), W: mean number of words parsed per second,
M: memory requirements during parsing (MB)

Model Swedish English

T P S W M T P S W M

D = Φp
12 + Φd

111 9.5 10.1 16.0 974.4 19 102.8 71.7 29.7 790.6 96

D′ = Φp
13 + Φd

111 12.0 13.6 21.6 723.6 26 118.9 93.7 38.8 605.0 155

L2 = Φp
12 + Φd

111 + Φw
11 16.0 167.0 264.7 58.9 45 171.0 1140.5 472.1 49.7 295

L4 = Φp
12 + Φd

111 + Φw
22 18.0 574.0 909.7 17.1 57 217.9 3327.8 1380.0 17.0 416

L′
4 = Φp

13 + Φd
111 + Φw

22 20.9 661.2 1050.0 14.9 66 234.6 3641.8 1510.0 15.6 457

Finally, it is worth remembering that the two data sets differ in the treat-
ment of coordination, which falls under a separate dependency type (CC) for
Swedish, which is comparable in accuracy to the modifier constructions. For
English, coordination is not analyzed as a separate category, which means
that coordinate structures can be present in any category, although most in-
stances are likely to be found in the VMOD and NMOD categories. Since the
analysis assigned to coordinate structures in this way is often linguistically
inadequate, it is fair to say that the accuracy results for English give a too
optimistic estimate of the true accuracy for parsing unrestricted text.

To complete the picture on model assessment, we also present an evalu-
ation of efficiency on the training and test sets. The results are presented in
table 5.14. As can be expected, there are no significant deviations from the
results obtained during validation. The higher absolute parsing times (P) for
English are due to the fact that the test set is larger than the validation set,
but the mean number of words parsed per second is very similar. Relating
efficiency to accuracy, we may note that for Swedish the L4 and L′

4 models
more than triple the parsing time without a statistically significant improve-
ment in accuracy, which makes the L2 model appear as the best choice for
a joint optimization of accuracy and efficiency. For English, the addition of
two more lexical features gives a significant improvement in accuracy, which
means that the more complex models will be optimal for applications where
we can accept the decrease in parsing speed. Finally, it is worth pointing out
that the differences observed between Swedish and English in this respect are
more probably related to the size of the data sets than anything else.

5.5.2 Related Work

In this section, we will try to relate the results from the final evaluation to the
state of the art in dependency-based text parsing. For Swedish this is rather
difficult, since there is no comparable evaluation reported in the literature, let
alone based on the same data. Most of the parsers developed for Swedish use
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constituency-based representations, either for full parsing (S̊agvall Hein, 1982)
or partial parsing (Kokkinakis and Johansson Kokkinakis, 1999; Megyesi,
2002; Bigert, 2005). Voutilainen (2001) presents a partial and informal evalua-
tion of a Swedish FDG parser, based on manually checked parses of about 400
sentences from newspaper text, and reports F measures of 95% for subjects
and 92% for objects. These results clearly indicate a higher level of accuracy
than that attained in the experiments reported here, but without knowing
the details of the data selection and evaluation procedure it is very difficult to
draw any precise conclusions. In any case, the results reported in this study
may serve as a benchmark for future evaluations of Swedish dependency pars-
ing. The results are encouraging, given the limited amount of data available
for training, but it must also be kept in mind that the Swedish data set does
not exhibit the same level of complexity as the English one.

For English there is much more relevant work to compare with. The first
large-scale evaluation of dependency parsing on the Wall Street Journal data
was performed by Eisner (1996b,a). However, Eisner excluded certain types of
sentences from the evaluation, in particular sentences involving coordination,
which means that the results are not strictly comparable. The same goes for
the evaluations of grammar-driven parsers such as the statistical CDG parser
of Wang and Harper (2004), the XLE LFG parser of Kaplan et al. (2004) and
the CCG parser of Clark and Curran (2004), which are all based on different
ways of extracting dependencies from the Penn Treebank data, the latter two
using the PARC 700 Dependency Bank (King et al., 2003) and the CCGbank
(Hockenmaier, 2003a), respectively.

By contrast, the results reported by Yamada and Matsumoto (2003) and
Isozaki et al. (2004) are based on exactly the same data samples and conversion
methods (except that they only consider unlabeled dependencies). In addition,
Yamada and Matsumoto (2003) derive comparable results for the parsers of
Collins (1997) and Charniak (2000), by applying the same conversion to the
output of these parsers. More recently, the same data sets have also been used
by McDonald, Crammer and Pereira (2005). Table 5.15 presents a comparison
of our results with those obtained with the other systems, limited to unlabeled
accuracy metrics. In addition to the usual metrics ASU and EMU , we also
break down the attachment score into dependency accuracy (DA), which is
the attachment score for all tokens not attached to the special root node, and
root accuracy (RA), which is the attachment score for all tokens attached to
the special root node. Given the conversion of the Penn Treebank annotation
to dependency graphs, there is exactly one token per sentence attached to the
special root node in the gold standard.

It is clear that, with respect to unlabeled accuracy, our parser does not
quite reach state-of-the-art performance, even if we limit the competition to
deterministic methods such as those of Yamada and Matsumoto (2003) and
Isozaki et al. (2004). We believe that there may be three different reasons for
this. First of all, the part-of-speech tagger used for preprocessing in our experi-
ments has a lower accuracy than the one used by Yamada and Matsumoto
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Table 5.15. Comparison with related work; ASU : unlabeled attachment score, DAU :
dependency accuracy, RAU : root accuracy, EMU : unlabeled exact match

Study ASU DAU RAU EMU

Collins (1997) (Model 3) 91.7 91.5 95.2 43.3
Charniak (2000) 92.2 92.1 95.2 45.2
Yamada and Matsumoto (2003) 90.4 90.3 91.6 38.4
Isozaki et al. (2004) 91.4 91.2 95.7 40.7
McDonald, Crammer and Pereira (2005) 91.0 90.9 94.2 37.5
This study 88.1 88.2 86.4 32.8

(2003) (96.1% vs. 97.1%).6 Although this is not a very interesting explanation,
it undoubtedly accounts for part of the difference. We will return to this in
our error analysis in the next section.

A more important factor is the relatively low root accuracy of our parser,
which may reflect a weakness in the one-pass parsing strategy with respect to
the global structure of complex sentences. Although the systems of Yamada
and Matsumoto (2003) and Isozaki et al. (2004) are also deterministic, they
perform multiple passes over the input, building the structures bottom-up. In
the case of Isozaki et al. (2004), parsing is also preceded by a separate root
detection phase, which explains the improved root accuracy of this system
over Yamada and Matsumoto (2003).

It is noteworthy that our parser has lower root accuracy than dependency
accuracy, whereas the inverse holds for all the other parsers. The problem
becomes even more visible when we compare dependency and root accuracy
for sentences of different lengths, as shown in table 5.16. Here we see that for
really short sentences (up to 10 words) root accuracy is indeed higher than
dependency accuracy, but while dependency accuracy degrades very gracefully
with sentence length, the root accuracy drops more drastically (which also
very clearly affects the exact match score). It is also interesting to compare
with the results for Swedish, where the mean sentence length is considerably
smaller, and where root accuracy is indeed as high as 91.3% (cf. table 5.12).
This may be taken to suggest that some kind of preprocessing in the form of
clausing or root detection could improve overall parsing accuracy.

Although it seems clear that the inferior root accuracy is primarily related
to the single-pass deterministic parsing strategy, it is less clear whether the
lower dependency accuracy is due to the parsing strategy or to lower prediction
accuracy of the classifiers involved. Whereas our system uses memory-based
learning and classification, the systems of Yamada and Matsumoto (2003)
and Isozaki et al. (2004) are based on support vector machines. In a recent
study by Sagae and Lavie (2005), using data from the Penn Treebank and

6 Isozaki et al. (2004) apparently used the tags provided by the Collins parser,
although this is not entirely clear from the description in the paper.
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Table 5.16. Accuracy in relation to sentence length; ASU : unlabeled attachment
score, DAU : unlabeled dependency accuracy, RAU : root accuracy, EMU : unlabeled
exact match

Length ASU DAU RAU EMU

≤ 10 93.8 93.4 95.5 85.4
11 ≤ 20 89.4 89.3 90.0 43.4
21 ≤ 30 87.7 87.9 84.4 22.4
31 ≤ 40 87.5 87.7 83.1 11.1
41 ≤ ∞ 86.8 87.1 73.7 5.3

a parsing methodology very similar to ours albeit with constituency-based
representations, it is found that support vector machines give consistently
higher accuracy than memory-based learning. We will return to this issue in
the error analysis in the next section.

Turning finally to the assessment of labeled accuracy, we are not aware of
any strictly comparable results, but Blaheta and Charniak (2000) report an
F measure of 98.9% for the assignment of grammatical role labels to phrases
that were correctly parsed by the parser described in Charniak (2000), using
the same data set. If null labels are excluded, the F score drops to 95.6%.
The corresponding F measures for our system, based on the labeled preci-
sion and recall for tokens that are assigned the correct head, are 98.0% and
97.8%, treating the default label DEP as the equivalent of a null label. The
experiments are not strictly comparable, since they involve different sets of
functional categories (where only the labels SBJ and PRD are equivalent) and
one is based on phrase structure and the other on dependency structure, but
it nevertheless seems fair to conclude that the labeling accuracy of our parser
is close to the state of the art, even if its capacity to derive correct structures
is not. It should also be kept in mind that the labeling here is performed in the
same deterministic one-pass parsing process as the derivation of the structure,
whereas Blaheta and Charniak (2000) apply an elaborate probabilistic model
to the output of a probabilistic parser.

To make the comparison complete, it should also be pointed out that, if
the memory-based deterministic approach dependency parsing does not quite
reach the state of the art in terms of accuracy, it is highly competitive in terms
of efficiency. This holds both with respect to parsing time, with a linear time
parsing algorithm, and with respect to training time, where the memory-based
approach vastly outperforms, e.g., support vector machines.

5.5.3 Error Analysis

Although we will not be able to present a detailed error analysis, we will try
to tease apart some of the error sources involved in deterministic memory-
based dependency parsing. More precisely, we will consider the influence of
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Table 5.17. Accuracy as a function of tagging accuracy (English, model L′
4); AS:

attachment score, EM: exact match; U: unlabeled, L: labeled

AS EM
Tagging Accuracy U L U L

Gold standard 100.0 89.7 88.3 36.0 31.8
Nakagawa et al. (2002) 97.1 88.7 87.1 34.4 29.8
Hall (2003) 96.1 88.1 86.3 32.8 28.4

part-of-speech tagging errors and the role of the inductively defined parser
guide in relation to the deterministic parsing strategy.

Table 5.17 presents the parsing accuracy obtained with the best model for
the English data, with three different ways of assigning part-of-speech tags in
the preprocessing. The first uses the gold standard tags in the Penn Treebank
annotation; the second uses the output of the tagger described in Nakagawa
et al. (2002), based on revision learning with support vector machines and used
in the parsing experiments of Yamada and Matsumoto (2003);7 the third uses
the output of the tagger described in Hall (2003), based on hidden Markov
models with suffix probabilities and used in all the experiments of this study.

We see that there is a substantial improvement in parsing accuracy when
using the gold standard tags, ranging from 1.6 percentage points for unlabeled
attachment accuracy to 3.4 percentage points for labeled exact match. A more
detailed look at different dependency types (not shown in the table) reveals
that the greatest improvement is found for the argument types OBJ and PRD,
where the labeled F measure increases by 4.1 (OBJ) and 3.2 (PRD) percentage
points. This indicates that a significant proportion of the cases where these
two types are confused during parsing are due to tagging errors. Using gold
standard tags also improves the root accuracy of the parser from 86.4% to
90.0%, which is a very substantial difference.

Using the tagger of Nakagawa et al. (2002) instead of our own HMM tagger
also makes a significant difference. In fact, although the error reduction in
tagging is only about 25%, the error reduction in parsing is roughly 40% when
compared to the scores obtained with gold standard tags, and as much as 50%
for unlabeled exact match. It thus seems that the tagging errors avoided by the
better tagger are of a kind that are important for syntactic parsing. However,
without a detailed analysis of the differences between the taggers, it is difficult
to say anything more precise than this.

The second kind of error analysis that we will present is an attempt to
distinguish the influence of prediction errors, caused by errors in the learned
approximation of the guide function, and errors that are the combined effect
of previous prediction errors and the greedy, deterministic parsing strategy.

7 Special thanks to Hiroyasu Yamada for supplying us with the output of this tagger
for section 23 of the Wall Street Journal section of the Penn Treebank.
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Table 5.18. Classification accuracy, number of instances, and number of exact
matches (model L′

4); Swedish (section 0), English (section 23)

Data set Accuracy Instances Exact

Swedish 90.7 16714 1064
English tagged 94.4 102419 15185
English gold 95.2 102419 15962

Table 5.18 presents the pure classification accuracy of the best memory-based
models for learning and classification when tested on the set of instances
derived from a gold standard parse of the respective test sets, section 0 of
the Swedish treebank and section 23 of the English treebank. This proportion
tells us how often the estimated guide prediction ĝ(Φ(c,Ax)) coincides with
the true oracle prediction o(c,Ax) for the given data sets. The table also
gives the number of instances in each test set (equivalent to the number of
nondeterministic parser configurations in parsing the test set) and the number
of parser states that had an exact match in the instance base.

First, we may note that the number of exact matches in the instance base
is relatively low, about 6% for Swedish and about 15% for English. The higher
proportion for English is expected, since the training data set is one order of
magnitude larger. With a low percentage of exact matches it is crucial to
have an adequate smoothing model, and it seems that the similarity-based
smoothing built into the memory-based classification solves this problem very
well, with classification accuracy above 90% for all conditions. For English
we can also observe that tagging errors have a relatively small impact on
classification accuracy as such, although the effect is magnified in parsing
because of subsequent errors caused by the initial prediction error.

Comparing classification accuracy and parsing accuracy is not completely
straightforward, but the most relevant metric is labeled attachment score,
since the transitions chosen in the classification task are parameterized for
dependency types. For Swedish, a classification accuracy of 90.7% corresponds
to a labeled attachment score of 82.0%, which indicates a drop in accuracy
of about 9% because of the greedy parsing strategy. For English with noisy
tagging, a classification accuracy of 94.4% corresponds to a labeled attach-
ment score of 86.3%, which is roughly 8% deterioration. For English with gold
standard tags, there is only a 7% drop from 95.2% to 88.3%. As expected, the
drop in accuracy from pure classification to parsing is smaller the better the
classification accuracy, since a lower probability of prediction errors also leads
to a lower probability of errors caused by earlier prediction errors. As a first
approximation, we can predict the labeled attachment accuracy to be the
square of the classification accuracy (CA) (treating both ASL and CA as
proportions ranging from 0 to 1):

ASL = CA
2 (5.5)
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This prediction overestimates the parsing accuracy more for English than
for Swedish. This can probably be explained by the fact that the English
sentences are generally longer and more complex, which by itself increases the
probability of errors being caused by previous prediction errors. In order to
more accurately predict the parsing accuracy from the classification accuracy,
we therefore need to introduce a constant c related to the complexity of the
text samples being parsed:

ASL = c · CA
2 (5.6)

In our experiments, the value of c appears to be approximately 0.97 for English
and almost 1.0 for Swedish. Since the negative effect of error propagation is
likely to increase with sentence length, we might be able to predict the value
of c from the mean sentence length in the test corpus. For the test sets used
here, a good approximation can be obtained by setting c = 1− 0.003(n− 15),
where n is the mean number of words per sentence. Whether a model of this
kind can be generalized to other languages and data sets is a question that
can only be answered by further research.

In conclusion, it seems that the classification accuracy attained by the
memory-based approach to learning is sufficient for highly accurate parsing,
especially if sufficient amounts of training data are available, as indicated by
the significantly higher accuracy for the English data sets. However, in order
to convert this potential into state-of-the-art parsing accuracy, the parsing
process clearly needs to be improved. This improvement may take the form
of enhanced preprocessing, as suggested by the results of Isozaki et al. (2004),
or it may require abandoning the strictly deterministic parsing strategy. We
will return to these issues in the concluding chapter.




