
4

Inductive Dependency Parsing

Machine learning based on various forms of inductive inference has been used
for a wide range of problems in natural language processing, with syntactic
parsing being one of the more prominent problems during the last decade.
In particular, methods for parsing unrestricted natural language text under
requirements of robustness and disambiguation have to an increasing extent
been characterized by the data-driven approach, sometimes in combination
with a grammar-based strategy.

In this chapter, we will examine how the parsing methods developed in
the previous chapter can be combined with the data-driven approach using
a form of guided parsing. In this scheme, we use inductive machine learning
to construct parser guides from treebank data. These guides are essentially
classifiers that predict the next transition given the current configuration at
each nondeterministic choice point. In this way, we can maintain the high
efficiency of deterministic processing while developing more and more accurate
guides in order to improve parsing accuracy.

An empirical evaluation of this methodology, with respect to accuracy as
well as efficiency, will be presented in chapter 5. Here we will focus instead
on the model of inductive inference, which belongs to the class of conditional
history-based models, and the way in which this model can be combined with
a deterministic parsing strategy and with discriminative machine learning. We
will also discuss the different kinds of contextual features that can be used as
a basis for prediction, and we will introduce memory-based learning, which is
the learning method that will be used in the experiments reported in the next
chapter. Finally, we will give a very brief description of the implementation
of all these elements in a system called MaltParser, which has been used to
carry out all the experiments reported in this book.

88 4 Inductive Dependency Parsing

4.1 A Framework for Inductive Dependency Parsing

In order to situate our approach within the larger context of data-driven
parsing methods, we begin by recapitulating our analysis of the data-driven
approach in terms of inductive inference based on a formal model of syntactic
representations and a representative sample of the relevant text language (cf.
section 2.3.2). We then define our model of inductive inference as a conditional
history-based model, combine it with a deterministic parsing strategy and
derive a learning problem that can be solved using discriminative classifier
induction. Finally, we show how training data for this learning problem can be
derived from a treebank using a variant of the deterministic parsing algorithm.

4.1.1 Data-Driven Text Parsing

In the data-driven approach to text parsing, the mapping from input strings
to output analyses is defined by an inductive mechanism applied to a text
sample Tt = (x1, . . . , xn) from the language L to be analyzed. As explained in
section 2.3.2, we can generally understand a data-driven text parsing system
as consisting of three essential components:

1. A formal model M defining permissible analyses for sentences in L.
2. A sample of text Tt = (x1, . . . , xn) from L, with or without the correct

analyses At = (y1, . . . , yn).
3. An inductive inference scheme I defining actual analyses for the sentences

of any text T = (x1, . . . , xn) in L, relative to M and Tt (and possibly At).

The model M may be a formal grammar, defining an exact string language,
in which case permissible representations will be restricted to this language.
In our case, the model M is given by the formal framework for dependency
parsing defined in section 3.3, which does not impose any restriction on the
strings being analyzed. Given a set of dependency types R, the permissible
representations for a sentence x = (w1, . . . , wn) is the set of all well-formed
projective dependency graphs G = (Vx, E, L) with node set Vx = Zn+1 and
labeling function L : E → R. Alternatively, in terms of the parsing method
defined in section 3.4, we can characterize the permissible representations as
the set of dependency graphs defined by some terminating transition sequence
corresponding to x. Since the only requirement is that the set of token nodes
in V +

x are in a one-to-one mapping with the tokens in the sentence, and that
the dependency type labels are restricted to a given set R, it is clear that this
imposes no restriction on the set of strings that can be parsed by the system.
Hence, this is not a grammar-driven approach to text parsing.

The sample of text Tt, which is our basis for inductive generalization,
will normally be called the training corpus. Although there exist unsupervised
learning methods that apply to raw, unannotated text, such as the Inside-
Outside algorithm for estimating the parameters of a PCFG, we will follow
the mainstream tradition in data-driven parsing and use supervised learning,

4.1 A Framework for Inductive Dependency Parsing 89

which requires the text sample to be annotated with representations defined
by the model M . This means that the training corpus will be a treebank of the
language L, i.e., a text corpus where each sentence is annotated with its correct
analysis relative to the given model M (Abeillé, 2003b; Nivre, forthcoming).
There are several methodological problems connected to the use of treebank
data for inductive learning, having to do with the representativity of the data,
the validity and reliability of the annotation, and the problem of converting
annotations from one type of representation to another. These problems will
be dealt with in chapter 5, where we report the experiments performed to
evaluate the framework of inductive dependency parsing. For the remainder
of this chapter, we will simply assume that we have available a sample of text
Tt = (x1, . . . , xn) from the language L that we want to analyze and that every
sentence xi ∈ Tt has been annotated with its correct analysis yi ∈ At, where
yi is a well-formed dependency graph as defined in the preceding chapter.

While the formal model M has been described in detail in chapter 3 and
problems connected to the training sample Tt will be dealt with in chapter 5,
the inductive inference scheme I is the central topic of this chapter. This is
the heart of the data-driven approach to text parsing, since it defines the way
in which a parsing system can generalize from sentences found in the training
corpus Tt to previously unseen sentences encountered in new texts.

4.1.2 Inductive Inference

As seen in section 2.3.2, an inductive inference scheme can be conceptualized
and implemented in many different ways but can generally be decomposed
into three main elements:

1. A parameterized stochastic model MΘ assigning a score S(x, y) to each
permissible analysis y of a sentence x, relative to a set of parameters Θ.

2. A parsing method, i.e., a method for computing the best analysis y for a
sentence x according to S(x, y) (given an instantiation of Θ).

3. A learning method, i.e., a method for instantiating Θ based on inductive
inference from the training sample Tt.

It is important to remember that this is a conceptual decomposition, which
does not always correspond to system components or temporal processes. For
example, while it is usually possible to divide the work done by the learning
method and the parsing method into a training phase, which is applied once
to the training corpus, and a parsing phase, which is applied to every new
sentence without reprocessing the training corpus, the exact division of labor
between these phases is dependent on the learning strategy. With an eager
learning method, all the inference is performed during the training phrase;
with a lazy learning method, most of the inductive inference is postponed
until the parsing phase.

For the time being we will disregard the practical implementation of both
parsing and learning and concentrate on the characterization of models and

90 4 Inductive Dependency Parsing

parameters for inductive dependency parsing. We will return to the parsing
problem in section 4.1.4 and to the learning problem in section 4.1.5.

4.1.3 History-Based Models

The general approach of inductive dependency parsing is compatible with a
variety of different models and parameterizations, but in this book we will
limit our attention to conditional history-based models (cf. section 2.3.2),
which are easily combined with the parsing methods developed in the previous
chapter. In a history-based model, the parameterization essentially involves
three steps (cf. Collins, 1999):

1. Define a one-to-one mapping between syntactic analyses y and decision
sequences D = (d1, . . . , dm) such that D is a canonical derivation of y.

2. Define the score S(x, y), for every sentence x and analysis y, in terms of
each decision di in the corresponding decision sequence D = (d1, . . . , dm),
conditioned on the history H = (d1, . . . , di−1).

3. Define a function Φ that groups histories (and decision sequences) into
equivalence classes, thereby reducing the number of parameters in Θ to
make the learning problem manageable.

In a conditional history-based model, the score S(x, y) defined by the model
is the conditional probability P (y |x) of the analysis y given the sentence
x, which means that the input sentence is a conditioning variable for each
decision in the decision sequence:

P (y |x) = P (d1, . . . , dm |x) =
m∏

i=1

P (di | d1, . . . , di−1, x) (4.1)

In order to get a manageable learning problem, it is normally necessary to
introduce a function Φ, which defines an equivalence relation among histories.
This gives us the final form of the parameterized model:

P (y |x) = P (d1, . . . , dm |x) =
m∏

i=1

P (di |Φ(d1, . . . , di−1, x)) (4.2)

The parameters of this model are simply the conditional probabilities P (d |H),
for all possible decisions d and non-equivalent histories H.

In the framework investigated in this book, the mapping from analyses to
decision sequences is given by the transition system defined in section 3.4.2,
where every terminating transition sequence C0,m = (c0, . . . , cm) defines ex-
actly one dependency graph G (definition 3.16). The inverse mapping from
dependency graphs to transition sequences will be discussed in section 4.1.5
below, because it will be needed to derive training instances for the induc-
tive learner, and we will also demonstrate that any well-formed dependency

4.1 A Framework for Inductive Dependency Parsing 91

graph can be mapped to a transition sequence. It is important to remem-
ber that, although we will only consider deterministic parsing strategies in
this book, the transition system itself is nondeterministic, which means that
it associates a set of transition sequences, and dependency graphs, with any
given sentence. And other parsing strategies might explore a larger part of
this space of alternatives.

Given that an analysis in our framework is a dependency graph G defined
by a transition sequence C0,m = (c0, . . . , cm), where the transition ti defines
the mapping from configuration ci−1 to ci, i.e., ci = ti(ci−1), the conditional
history-based model can now be expressed as follows:

P (G |x) = P (c0, . . . , cm |x) =
m∏

i=1

P (ti | c0, . . . , ci−1, x) (4.3)

However, when considering the input sentence x as a conditioning variable, we
want to be able to take into account not only the sequence of tokens but any
information that is available about the sentence as a result of preprocessing.
Therefore, we replace x with the set of annotation functions Ax, which also
includes the function wx mapping string positions to tokens (cf. section 3.3.1):

P (G |Ax) = P (c0, . . . , cm |Ax) =
m∏

i=1

P (ti | c0, . . . , ci−1, Ax) (4.4)

In order to reduce the number of model parameters, we first group together all
histories that end in the same configuration. In other words, we make a kind
of Markov assumption to the effect that the probability of a transition from
configuration ci is independent of all earlier configurations in the transition
sequence. However, this assumption is not as drastic as it may seem, since
a configuration c = (σ, τ, h, d) records almost all relevant information about
the preceding transition sequence in the state of σ, τ , h and d. Therefore,
we simply use the function Φ to define equivalence classes of pairs (c,Ax),
consisting of a configuration c and an input sentence x represented by its
annotation functions Ax:

P (G |Ax) = P (c0, . . . , cm |Ax) =
m∏

i=1

P (ti |Φ(ci−1, Ax)) (4.5)

We will use the term parser condition to refer to a pair of the form (c,Ax),
where c is a parser configuration and Ax is the set of annotation functions for
a sentence x, and we will use the term parser state for an equivalence class
of parser conditions defined by the function Φ. We will also say that Φ is a
function from parser conditions to parser states, although we will continue
to write Φ as a function of two arguments, one configuration and one set of
annotation functions.

The model parameters are the conditional probabilities P (t |Φ(c,Ax)), for
all possible transitions t ∈ TR and distinct parser states Φ(c,Ax). The car-
dinality of the parameter set therefore depends on two factors. The first is

92 4 Inductive Dependency Parsing

the number of distinct transitions, which is |TR| = 2|R| + 2 (where |R| is the
number of distinct dependency types), since there are |R| different instances
of Left-Arc(r) and Right-Arc(r) plus Reduce and Shift. The second is
the number of distinct parser states Φ(c,Ax), which depends on the definition
of Φ but which will normally be many orders of magnitude greater than |TR|.

In section 4.2 we will show how the parameterization Φ can be defined by
a set of feature functions {φ1, . . . , φp} that extract relevant features from the
current parser condition. The definition of these feature functions will in turn
determine the exact number of parser states and model parameters.

4.1.4 Parsing Methods

Given a conditional history-based model, the conditional probability P (yj |x)
of analysis yj given input x can be used to rank a set of alternative analyses
{y1, . . . , yk} of the input sentence x, derived by a nondeterministic parser.
If the model allows a complete search of the analysis space, we can in this
way be sure to find the analysis yj that maximizes the probability P (yj |x)
according to the model:

arg max
yj

P (yj |x) = arg max
(d1,...,dm)

m∏
i=1

P (di |Φ(d1, . . . , di−1, x)) (4.6)

With a deterministic parsing strategy, we instead try to find the most probable
analysis yj without exploring more than one decision sequence, based on the
following approximation:

arg max
yj

P (yj |x) ≈ (d∗1, . . . , d
∗
m) : d∗i = arg max

di

P (di|Φ(d1, . . . , di−1, x)) (4.7)

A deterministic parsing strategy is in this context a greedy algorithm, making
a locally optimal choice in the hope that this will lead to a globally optimal
solution (Cormen et al., 1990). The main problem with the greedy strategy
is that it may not lead to a globally optimal solution. The main advantage
is that it improves parsing efficiency by avoiding an exhaustive search of the
analysis space. An additional advantage is that it reduces the effective number
of parameters of the stochastic model, since only the mode of the distribu-
tion P (di |Φ(d1, . . . , di−1, x)) needs to be estimated for each distinct condition
Φ(d1, . . . , di−1, x). This also means that a larger class of learning methods can
be used, including discriminative methods as well as methods for estimating
generative and conditional probability models.

In section 3.4.3, we gave the following specification of the deterministic
algorithm for dependency parsing:

4.1 A Framework for Inductive Dependency Parsing 93

Parse(x = (w1, . . . , wn))
1 c ← (ε, (1, . . . , n), h0, d0)
2 while c = (σ, τ, h, d) is not terminal
3 if σ = ε
4 c ← Shift(c)
5 else
6 c ← [o(c,Ax)](c)
7 G ← (Vx, Ec, Lc)
8 return G

This algorithm assumes the existence of an oracle function o predicting the
next transition for a given nondeterministic configuration c in the correct
transition sequence for the sentence x (cf. section 3.4.3). In inductive depen-
dency parsing, we replace the oracle o with a guide g, which predicts the next
transition for a given configuration c, based on the parser state Φ(c,Ax). This
is a form of guided parsing (Boullier, 2003), where the parser is guided by the
function g at each nondeterministic choice point, which gives us the following
parsing algorithm:

Guided-Parse(x = (w1, . . . , wn))
1 c ← (ε, (1, . . . , n), h0, d0)
2 while c = (σ, τ, h, d) is not terminal
3 if σ = ε
4 c ← Shift(c)
5 else
6 c ← [g(c,Ax)](c)
7 G ← (Vx, Ec, Lc)
8 return G

The only difference with respect to the original algorithm is that we have
replaced the oracle function o(c,Ax) with a guide function g(c,Ax), which
means that we no longer assume that the guide always returns the correct
answer. In inductive dependency parsing, as opposed to other forms of guided
dependency parsing, we use inductive machine learning to construct the guide.
Given training data from a dependency treebank, we induce a classifier g that
maps every distinct parser state Φ(c,Ax) to a transition. We overload notation
by using the symbol g to refer both to the classifier, which is a function from
parser states to transitions, and for the guide, which is a function from parser
conditions to transitions and which respects the condition that the transition
returned is applicable to the configuration included in the parser condition.
More precisely, the guide g returns the transition returned by the classifier g
if this is a permissible transition, but returns Shift otherwise (since Shift is
applicable to any non-terminal transition). Formally:

g(c,Ax) =
{

g(Φ(c,Ax)) if g(Φ(c,Ax)) is applicable to c
Shift otherwise (4.8)

where g(Φ(c,Ax)) is the value of the classifier for the parser state Φ(c,Ax).

94 4 Inductive Dependency Parsing

Given the conditional history-based model underlying our parsing strategy,
the optimal classifier g can be characterized as follows:

g(Φ(c,Ax)) = arg max
ti

P (ti |Φ(c,Ax)) (4.9)

Since there is no guarantee that the most probable transition, given Φ(c,Ax),
is also the transition required by the correct analysis of x, it may be the case
that g(Φ(c,Ax)) �= o(c,Ax), which means that the guide g defined in terms of
the optimal classifier is not a true oracle even in theory. In practice, we will
have to use an estimated approximation ĝ of the optimal classifier g, which
means that it may also be the case that ĝ(Φ(c,Ax)) �= g(Φ(c,Ax)). Thus,
finding the best possible estimate ĝ for the optimal classifier g, given a sample
Tt of treebank data with analyses At, is the central learning problem in this
framework.

Going back to our characterization of the inductive inference scheme for
history-based models, we can say that choosing a deterministic form of guided
parsing as our parsing method reduces the complexity of the model MΘ in
two ways. First of all, the parameter set Θ only contains the modes of the
conditional distributions P (ti|Φ(c,Ax)):

Θ = {ti | arg max
ti

P (ti|Φ(c,Ax))} (4.10)

Secondly, the score S(x, y) assigned to an analysis y of sentence x by the
model MΘ is binary:

S(x, y) =
{

1 if y = Guided-Parse(x)
0 otherwise (4.11)

However, it is important to remember that the history-based model defined
in section 4.1.3 is also compatible with many other parsing methods, which
do not reduce the model complexity in this way.

Before we turn from parsing methods to learning methods, it is worth
noting that the linear time complexity of the deterministic parsing algorithm
is based on the assumption that computing the oracle function o(c,Ax) is a
constant-time operation. If we want to preserve this complexity for inductive
dependency parsing, we therefore have to ensure that the computation of the
guide function g(c,Ax) can also be performed in constant time. We will return
to this issue when we discuss the definition of feature functions in section 4.2.

4.1.5 Learning Methods

The learning problem that we have derived from the conditional history-based
model, in combination with the deterministic parsing algorithm, consists in
the induction of a classifier that can be used to construct a guide, as defined
in the previous section. In terms of machine learning, this is an instance

4.1 A Framework for Inductive Dependency Parsing 95

of function approximation (Mitchell, 1997), where the target function is the
optimal classifier g while the learned function ĝ is an approximation of g.

There are many different learning methods that could be used to solve
this problem. Since the target function g is defined in terms of a conditional
probability, it may seem natural to use a probabilistic learning method. In
a generative model we could estimate the joint probability P (Φ(c,Ax), t), for
every parser state Φ(c,Ax) and transition t ∈ TR, and then derive the required
conditional probability by conditioning and marginalizing:1

P̂ (t |Φ(c,Ax)) =
P̂ (Φ(c,Ax), t)∑

ti∈TR
P̂ (Φ(c,Ax), ti)

(4.12)

When only the conditional probability is needed, we may be able to make more
efficient use of the training data by estimating the conditional distribution
P (t |Φ(c,Ax)) directly. Thus, an early version of inductive dependency pars-
ing was based on conditional maximum likelihood estimation (Nivre, 2004b).
However, given that it is only the mode of the conditional distribution that is
needed, i.e., the transition t that maximizes P (t |Φ(c,Ax)), we can take this
argument one step further and argue that a discriminative learning method
might be even more efficient.

One way of relating discriminative learning to our conditional model
is to say that, instead of estimating the complete conditional distribution
P (t |Φ(c,Ax)), discriminative methods try to optimize the mapping from in-
puts Φ(c,Ax) to outputs t by only estimating the mode of this distribution
(Jebara, 2004). For example, memory-based learning tries to find the opti-
mal output by extrapolating from the most similar inputs seen previously,
but without explicitly estimating a conditional probability (Daelemans and
Van den Bosch, 2005). Other discriminative learning methods are artificial
neural networks (Bishop, 1996) and support vector machines (Vapnik, 1995).

Using a discriminative learning method means that we can formulate
the learning problem as a pure classification problem, where an input in-
stance is a parser state Φ(c,Ax) and an output class is a transition t ∈ TR.
Using a supervised learning method, our task is then to induce a classifier ĝ
given a set of training instances Dt. Ideally, we would like the training set to
be a sample of the function that we want to approximate:

Dg = {(Φ(c,Ax), t) | g(Φ(c,Ax)) = t} (4.13)

However, since the function g is not known, it is not clear how such a sample
could be established. What we have instead is a training corpus Tt, from
which we can obtain a sample of training instances defined in terms of the
oracle function o and the parameterization function Φ. For every sentence
x = (w1, . . . , wn), let Co,x

0,m = (c0, . . . , cm) be the unique transition sequence
such that c0 = (ε, (1, . . . , n), h0, d0) and ci = [o(ci−1, Ax)](ci−1) (for i > 0).
The sample of training instances for Φ given Tt is:
1 We use the notation P̂ (·) to denote an estimate of P (·).

96 4 Inductive Dependency Parsing

DΦ = {(Φ(c,Ax), t) | o(c,Ax) = t, c ∈ Co,x
0,m, x ∈ Tt} (4.14)

This set can be defined in a two-step process, where we first extract a set of
pairs (c, t) from the training corpus Tt:

Dt = {(c, t) | o(c,Ax) = t, c ∈ Co,x
0,m, x ∈ Tt} (4.15)

This set is independent of the parameterization function Φ and can be reused
with different parameterizations to define proper training sets:

DΦ = {(Φ(c,Ax), t) | (c, t) ∈ Dt} (4.16)

In order to construct a specific instance of the inductive dependency parser,
we therefore have to solve three independent subproblems:

1. Derive the set Dt from the training corpus Tt.
2. Define the parameterization Φ and derive the training set DΦ from Dt.
3. Induce a classifier ĝ from the training set DΦ using inductive learning.

The first problem can be solved using a form of guided parsing, using an oracle
defined by the gold standard dependency graph from the treebank, as we will
show in the next section. The second problem will be the topic of section 4.2,
where we discuss the way in which different types of features can be defined in
terms of parser conditions. The third problem will be addressed in section 4.3,
where we introduce memory-based learning, which is the family of learning
methods that will be used in the experiments reported in chapter 5.

4.1.6 Oracle Parsing

Given a training corpus Tt = (x1, . . . , xn), we want to extract the set of
training instances Dt = {(c, t) | o(c,Ax) = t, c ∈ Co,x

0,m, x ∈ Tt}. If we let
Dx be the set of instances derived from a particular sentence x, i.e., Dx =
{(c, t) | o(c,Ax) = t, c ∈ Co,x

0,m}, then we can construct Dt by taking the union
of Dx for all the sentences x ∈ Tt:

Dt =
⋃

x∈Tt

Dx (4.17)

For each sentence x ∈ Tt, let Gg = (Vx, Eg, Lg) be the dependency graph
assigned to x by the gold standard annotation, and let hg : V +

x → Vx and
dg : V +

x → R be defined as follows:

1. hg(i) = j if and only if (j, i) ∈ Eg

2. dg(i) = r if and only if ∃j : ((j, i), r) ∈ Lg

We can then derive the set Dx of instances for each sentence x by the following
algorithm, which is a variant of the deterministic parsing algorithm defined
in section 3.4.3:

4.1 A Framework for Inductive Dependency Parsing 97

Oracle-Parse(x = (w1, . . . , wn), hg, dg)
1 c ← (ε, (1, . . . , n), h0, d0)
2 Dx ← ∅
3 while c = (σ, τ, h, d) is not terminal
4 if σ = ε
5 c ← Shift(c)
6 else
7 t ← Oracle(c, hg, dg)
8 D ← Dx ∪ (c, t)
9 c ← t(c)

10 return Dx

The main difference, apart from the fact that we accumulate pairs (c, t) in the
variable Dx, is that the oracle function o is replaced by a call to the function
Oracle, which predicts the next transition using the gold standard functions
hg and dg:

Oracle(c = (σ|i, j|τ, h, d), hg, dg)
1 if hg(i) = j
2 return Left-Arc(dg(i))
3 else if hg(j) = i
4 return Right-Arc(dg(j))
5 else if ∃k ∈ σ (hg(j) = k or hg(k) = j)
6 return Reduce

7 else
8 return Shift

For any configuration c = (σ, τ, h, d) that is passed as an argument to the
function Oracle, we know that both the stack σ and the input sequence τ
are non-empty, because c is non-terminal (τ) and nondeterministic (σ). Hence,
we can always assume that there is a token i on top of the stack σ and a token
j at the head of the input list τ . Now, if i and j are linked by a dependency
arc according to hg, then the correct transition is Left-Arc(r) or Right-

Arc(r), with the dependency type r specified by dg. If there is no arc between
i and j, then Reduce is the correct choice if and only if j is linked to a token
to the left of i (below i in the stack σ); otherwise, the correct transition is
Shift.

To check whether j is linked to a token to the left of i, we need to check if
there is a token k ∈ σ that is either the head of j (hg(j) = k) or a dependent of
j (hg(k) = j). The first of these conditions can be checked simply by inspecting
hg(j), since it holds if and only if 0 < hg(j) < i. The second condition may in
a naive implementation require searching the entire stack σ. However, if there
is a token k to the left of i such that hg(k) = j, then we must already have
encountered k in a previous configuration. And if we use an auxiliary stack to
store tokens that have their head to the right, according to hg, then we only
need to compare the top of this stack with j.

98 4 Inductive Dependency Parsing

It is worth pointing out that, whereas every transition sequence C0,m =
(c1, . . . , cm) for a sentence x defines a unique dependency graph Gm =
(Vx, Em, Lm), the inverse relation is strictly speaking not a function, since
there are a limited number of situations where two distinct transition se-
quences define the same dependency graph. This happens in configurations
where the smallest arc, according to the gold standard graph Gg, that spans
both the top token i and the next token j does not involve either i or j but
tokens k and l, such that k < i and j < l. In this case, both i and j must be
popped from the stack before the arc connecting k and l can be added, but
the order in which i and j are reduced is immaterial. In other words, either
Reduce or Shift is a possible transition and both of them will lead to the
correct dependency graph. The algorithm defined above always prefers Shift

in this situation, which means that j will be reduced before i. In other words,
the Oracle-Parse algorithm constructs a canonical transition sequence for
every dependency graph, consistently choosing Shift in cases of harmless
Shift-Reduce conflicts.

We conclude the discussion of oracle parsing with a correctness proof for
the algorithm Oracle-Parse. Theorem 4.1 says that the functions hm and
dm derived by the algorithm are identical to the input functions hg and dg

for any sentence x and projective dependency graph Gg = (Vx, Eg, Lg), which
entails that the transition sequence C0,m used to construct the training data
set Dx assigns Gg to x. As promised in section 3.4.4, this indirectly proves also
theorem 3.22, since we can use Oracle-Parse to constructively prove that
there exists a corresponding transition sequence for any projective dependency
graph.

Theorem 4.1. For every sentence x = (w1, . . . , wn) with dependency graph
Gg = (Vx, Eg, Lg), if cm = (σm, ε, hm, dm) is the terminal configuration in the
computation of Oracle-Parse(x, hg, dg), then hg = hm and dg = dm.

Proof. We need to show that hg(i) = hm(i) and dg(i) = dm(i) for every
i ∈ V +

x . We begin by noting that the following conditions hold for every token
i ∈ V +

x , in virtue of the transition system used by Oracle-Parse:

1. In the initial configuration c0, h0(i) = 0 and d0(i) = r0 (definition 3.9).

2. Before the terminal configuration cm is reached, i must be shifted onto
the stack, i.e., there exist p (0 ≤ p < m) and q (p < q ≤ m) such that
cp = (σp, i|τp− , hp, dp) and cq = (σq− |i, τp− , hq, dq) (definition 3.10).

3. The values of h(i) and d(i) can only change in a transition from a configu-
ration c where i occurs at the head of the input list, i.e., c = (σ, i|τ, h, d),
or on top of the stack, i.e., c = (σ|i, τ, h, d). In the former case, h(i) and
d(i) are modified only by a Right-Arc(r) transition; in the latter case,
only by a Left-Arc(r) transition (definition 3.12).

There are three cases to consider, based on the value of hg(i):2

2 Line numbers in this proof refer to the Oracle algorithm defined on page 97.

4.1 A Framework for Inductive Dependency Parsing 99

1. If hg(i) = 0 (and dg(i) = r0), we only need to show that h0(i) = hm(i)
and d0(i) = hm(i), i.e., that i cannot be involved as the dependent in a
Left-Arc(r) or Right-Arc(r) transition. Given condition 3 above, this
reduces to two subcases:

a) In a configuration c = (σ|i, τ, h, d), Left-Arc(r) is excluded because
hg(i) = 0 (contradicting the condition in line 1).

b) In a configuration c = (σ, i|τ, h, d), Right-Arc(r) is excluded because
hg(i) = 0 (contradicting the condition in line 3).

We conclude that hg(i) = h0(i) = hm(i) and dg(i) = d0(i) = dm(i).

2. If hg(i) �= 0 and hg(i) < i, we need to show that there is some transi-
tion where h(i) and d(i) are changed from h0(i) and d0(i) to hg(i) and
dg(i). (Together with Lemma 3.20, this entails that hg(i) = hm(i) and
dg(i) = dm(i).) In virtue of condition 2 above, we know that there exists
a configuration cp = (σp, i|τp− , hp, dp). There are three cases to consider
for the transition out of this configuration:

a) If cp = (σp− |j, i|τp− , hp, dp), hg(j) = i and dg(j) = r, Oracle returns
Left-Arc(r), so cp+1 = (σp− , i|τp− , hp[j �→ i], dp[j �→ r]) (line 1–2).

b) If cp = (σp− |j, i|τp− , hp, dp), hg(i) = j and dg(i) = r, Oracle returns
Right-Arc(r), so cp+1 = (σp− |j|i, τp− , hp[i �→j], dp[i �→r]) (line 3–4).

c) If cp = (σp− |j, i|τp− , hp, dp), hg(i) �= j, hg(j) �= i and hg(i) ∈ σp− ,
Oracle returns Reduce, so cp+1 = (σp− , i|τp− , hp, dp) (line 5–6).

In case (b), the goal has been reached. In cases (a) and (c), i remains at the
head of the input list, while the size of the stack decreases by 1. Hence,
as long as hg(i) ∈ σp− , there will eventually be a configuration cq−1 =
(σq−1− |hg(i), i|τp− , hq−1, dq−1) followed by a Right-Arc(r) transition,
where dg(i)=r. Assume hg(i) �∈ σp− . Then hg(i) must have been popped
from the stack in an earlier transition, which entails that there is a node
k such that hg(i) < k < i and either hg(hg(i)) = k (if hg(i) was popped
in a Left-Arc(r′) transition) or there is a token l such that l < hg(i)
and k is linked to l (if hg(i) was popped in a Reduce transition). But
in either case this is a contradiction, since Gg is projective. Hence, we
may conclude that hg(i) ∈ σp− . It follows that hg(i) = hq(i) = hm(i) and
dg(i) = dq(i) = dm(i).

3. If hg(i) > i, we again need to show that there is some transition where h(i)
and d(i) are changed from h0(i) and d0(i) to hg(i) and dg(i). In virtue
of condition 2 above, we know that there exists a configuration cq =
(σq− |i, τp− , hq, dq). Moreover, since hg(i) > i, hq(i) = 0 and dq(i) = r0.
We know that hg(i) ∈ τp− (since hg(i) > i) and that hg(i) must eventually
be pushed onto the stack (condition 2). We now show that this can only
happen in a configuration where h(i) = hg(i) and d(i) = dg(i) (which

100 4 Inductive Dependency Parsing

together with Lemma 3.20 entails that hg(i) = hm(i) and dg(i) = dm(i)).
More precisely, this follows from the following two propositions:

a) The node i can only be popped from the stack in a configuration of
the form cr = (σq− |i, j|τr− , hr, dr) (r ≥ q), where hg(i) = j. Assume
hg(i) �= j. Then Left-Arc(r) is obviously excluded (line 1). And
Reduce is excluded because this would entail that there exists some
k such that hg(j) = k or hg(k) = j and k < i < j < hg(i) (line 5),
which contradicts the assumption that Gg is projective.

b) The node hg(i) can only be pushed onto the stack in a configuration
of the form cs = (σs, hg(i)|τs− , hs, ds) (s > q), where i �∈ σs. Assume
i ∈ σs. Then Shift is excluded because there exists some k (namely
i) such that k ∈ σs and hg(k) = hg(i) (line 5). And Right-Arc(r)
is excluded because this would entail that there exists some k such
that k = hg(hg(i)) and i < k < hg(i) (line 3), which contradicts the
assumption that Gg is projective.

Hence, hg(i) = hr+1(i) = hm(i) and dg(i) = dr+1(i) = dm(i).

This concludes the proof of theorem 4.1.
�

4.2 Features and Models

One of the key elements in the model of inductive dependency parsing defined
in the previous section is the function Φ that defines an equivalence relation on
the set of parser conditions and thereby defines what properties of a condition
are relevant for the prediction of the next transition. This is reflected in the
definition of the learning problem, where the set of possible input instances is
simply the range of the function Φ, which we call the set of parser states.

In this section, we will discuss how Φ can be defined in terms of a set
of feature functions, each of which extracts a relevant feature of the current
parser condition. We will begin by defining a formal model for the specification
of feature functions and move on to discuss the specific feature functions that
will be used in the experiments reported in chapter 5. Finally, we will introduce
the concept of a feature model, which corresponds to an instantiation of the
function Φ, defined by a specific set of feature functions.

The formalization of feature functions is necessary for the implementation
of feature models in the MaltParser system, described briefly in section 4.4,
but it is not essential for the experimental study of memory-based inductive
dependency parsing reported in chapter 5, where only a subset of the definable
features will be used. Readers who are not interested in the formal aspects
of feature functions can therefore skip most of the technical discussion in
section 4.2.1 without missing anything that will be important later on.

4.2 Features and Models 101

4.2.1 Feature Functions

The role of the function Φ in our model is to determine which properties
of a parser condition are relevant for the prediction of the next transition.
In general, Φ can be defined by a set of simpler functions φi, which we call
feature functions. Although the order of these functions is normally irrelevant,
we will assume that they are ordered in a sequence Φ1,p = (φ1, . . . , φp), which
will save us the trouble of introducing a special name for each feature function
φi, since it can be identified by its position in the sequence.

If Φ1,p = (φ1, . . . , φp), then each function φi corresponds to a feature, or
attribute, of a parser condition (c,Ax). Applying Φ to (c,Ax) is equivalent
to applying each feature function φi to (c,Ax) in turn, which means that
Φ(c,Ax) = (v1, . . . , vp) if and only if φi(c,Ax) = vi for every φi ∈ Φ. In this
way, the value of Φ(c,Ax) corresponds to the standard representation of an
instance as a sequence of features, often called a feature vector, which is widely
used in machine learning (Mitchell, 1997).

Recall from section 3.3.1 that every function f in the set Ax of annotation
functions for a sentence x = (w1, . . . , wn) is a function from the set of token
nodes V + = {1, . . . , n} to some set of values Vf , where Vw is the set of
possible word forms and Vp is the set of permissible part-of-speech categories,
etc. Using Af to denote the set of possible annotation functions, the notion
of a feature function can be characterized as follows:

Definition 4.2. Given a set of configurations C, a set of annotation functions
Af , and a set of values Vφ, a feature function is a function φ : (C×2Af) → Vφ.

We can then define parameterization functions in terms of feature functions:

Definition 4.3. Given a sequence of feature functions Φ1,p = (φ1, . . . , φp),
the corresponding parameterization function is the function Φ : (C × 2Af) →
(Vφ1 ×· · ·×Vφp

) such that Φ(c,Ax) = (v1, . . . , vp) if and only if φi(c,Ax) = vi

(for 1 ≤ i ≤ p, c ∈ C and Ax ∈ 2Af).

The number of distinct parser states Φ(c,Ax) can now be defined as |VΦ| =
|Vφ1 | · . . . · |Vφp

|, and the total number of model parameters in MΘ is |Θ| =
|TR| · |VΦ| for the general model and |Θ| = |VΦ| for the reduced model with
a deterministic parsing strategy (cf. section 4.1.4). But even for the general
model, it is normally the case that |Θ| is O(|VΦ|).

The definition of a feature function is very general and compatible with
many different ways of specifying such functions. In this study, we will restrict
our attention to feature functions φ that can be defined in terms of the the
composition of two simpler functions aφ and fφ as follows:

φ(c,Ax) = v ⇔ [fφ ◦ aφ](c) = v (4.18)

where aφ and fφ satisfy the following conditions:

aφ : C → V + (4.19)
fφ ∈ Ax ∪ {dc} (4.20)

102 4 Inductive Dependency Parsing

The basic idea is that aφ is an address function, mapping the configuration
c to a specific token i ∈ V +, and that fφ is an attribute function, picking
out a specific attribute v of i. This attribute may be given by one of the
annotation functions in Ax or by the dependency type function dc. Note that
the function dc is parameterized for the current configuration c, since this
function is updated dynamically from one configuration to the next, whereas
the annotation functions in Ax remain constant during the analysis of a given
sentence x.

The reason for restricting the class of feature functions in this way is
twofold. First, we want to ensure that feature functions can be computed effi-
ciently, so that overall parsing efficiency is not compromised. Computing the
value of each feature function must be done for every new parser condition,
both in the construction of training instances during the training phase (cf.
section 4.1.5) and in the construction of instances for the classifier during the
parsing phase (cf. section 4.1.4). Secondly, we want to define a formal speci-
fication language for feature functions, so that implementations of inductive
dependency parsing do not need to rely on hard-coded feature functions but
can allow users to specify arbitrary feature functions within the space of per-
missible functions. The MaltParser system described in section 4.4 implements
this functionality.

In the remainder of this section we will discuss the formal specification of
feature functions, in particular the specification of the address function aφ.
Part of this discussion will be rather technical, but we will try to illustrate all
the formal definitions with concrete examples. We will use a configuration from
the transition sequence in figure 3.5 as our running example, more precisely
the configuration c14, resulting from a Reduce transition. Figure 4.1 shows
the relevant properties of this configuration, together with the annotation
functions wx and px for the sentence in question (cf. figure 3.3).

First of all, we define functions that extract a token from the stack σc or
the input sequence τc of the current configuration.

Definition 4.4. For every configuration c = (σc, τc, hc, dc) and i ≥ 0:

1. σi(c) = σc[i]
2. τi(c) = τc[i]

where x[i] returns the ith element of the list x (starting from 0).

Note that σi and τi (for i ≥ 0) are partial functions, which are undefined if the
length of the relevant list is less than or equal to i. For example, the function
σ0, when applied to a configuration c, returns the top token (if any), while the
function τ1 returns the token following the next token in the input sequence
τc (if τc has length two or more). For our example in figure 4.1, σ0(c14) = 5,
while τ1(c14) = ⊥ (because τ14 has length one).

Given the basic functions σi and τi, we can construct complex address
functions by composition with functions that map tokens to tokens according
to their relations in the dependency graph, as defined by the function hc in

4.2 Features and Models 103

c14 = ((3, 5), (9), h7, d7)
σ14 = (3, 5)
τ14 = (9)

h7(1) = 2 d7(1) = NMOD wx(1) = Economic px(1) = JJ
h7(2) = 3 d7(2) = SBJ wx(2) = news px(2) = NN
h7(3) = 0 d7(3) = ROOT wx(3) = had px(3) = VBD
h7(4) = 5 d7(4) = NMOD wx(4) = little px(4) = JJ
h7(5) = 3 d7(5) = OBJ wx(5) = effect px(5) = NN
h7(6) = 5 d7(6) = NMOD wx(6) = on px(6) = IN
h7(7) = 8 d7(7) = NMOD wx(7) = financial px(7) = JJ
h7(8) = 6 d7(8) = PMOD wx(8) = markets px(8) = NNS
h7(9) = 0 d7(9) = ROOT wx(9) = . px(9) = PU

Fig. 4.1. Configuration c14 with functions wx and px (cf. figures 3.3 and 3.5)

the current configuration. To this end we define three higher-order functions,
that map an arbitrary address function to a new address function by com-
posing it with a function returning the head, leftmost dependent or rightmost
dependent of a token.

Definition 4.5. For every function a : C → V +:

1. h(a) = hc ◦ a
2. l(a) = lc ◦ a
3. r(a) = rc ◦ a

where lc(i) and rc(i) are partial functions returning the leftmost and rightmost
dependent, respectively, of a token i ∈ V +.

Equipped with the basic functions σi and τi and the higher-order functions
h, l and r, we can now give an inductive definition of the class of address
functions.

Definition 4.6. The set of address functions is the smallest set A satisfying
the following conditions:

1. For every i ≥ 0, σi, τi ∈ A.
2. For every a ∈ A, h(a), l(a), r(a) ∈ A.

It is worth pointing out again that all address functions are partial and fail
to return a token as soon as one of the underlying functions (σi, τi, hc, lc or
rc) is undefined.

In order to exemplify the use of complex address functions, we consider the
functions h(σ0) and r(r(h(σ0))), which return the head of the top token and
the rightmost dependent of the rightmost dependent of the head of the top
token, respectively. For the example in figure 4.1, these functions return the

104 4 Inductive Dependency Parsing

Function Description

σ0 The top token

σn(n > 0) The nth stack token (not counting the top token)

τ0 The next token

τn(n > 0) The nth input token (not counting the next token)

h(σ0) The head of the top token

l(σ0) The leftmost dependent of the top token

r(σ0) The rightmost dependent of the top token

l(τ0) The leftmost dependent of the next token

Fig. 4.2. Commonly used address functions

tokens 3 and 6, respectively, since h(σ0)(c14) = h7(σ0(c14)) = h7(5) = 3 and
r(r(h(σ0)))(c14)=r7(r7(h7(σ0(c14))))=r7(r7(h7(5)))=r7(r7(3))=r7(5)=6.

Although the framework allows address specifications of almost arbitrary
complexity, most of the features considered in this study will be based on a
relatively small number of functions, in combination with different attribute
functions. The most commonly used address functions are listed with expla-
nations in figure 4.2. The list does not include the functions h(τ0) and r(τ0),
since the parsing algorithm precludes the possibility of the next token having
a head (other than 0) or a right dependent in the current configuration.

Having considered the construction of address functions at some length,
we are now in a position to define a set of feature functions, using higher-
order functions that map an address function a to a new function φ from
parser conditions (c,Ax) to values v of an attribute function f , such that
φ(c,Ax) = f(a(c)). Formally:

Definition 4.7. If a is an address function, then for any configuration c and
set of annotation functions Ax:

1. f(a)(c,Ax) = fx(a(c)) for every fx ∈ Ax

2. d(a)(c,Ax) = dc(a(c))

The attribute function is either one of the annotation functions fx ∈ Ax

(including the token function wx) or the function dc belonging to the current
configuration c. In the former case, we have a static feature, since the value
of the attribute function fx(i), for a given token i, remains constant during
the parsing of a sentence x. In the latter case, we have a dynamic feature,
because dc(i) will change dynamically between the different configurations of
a transition sequence. Static features will be discussed further in section 4.2.2
below, while dynamic features are treated in section 4.2.3.

Finally, a short note on the implementation of feature functions. As noted
in section 4.1.4, the linear time complexity of the inductive parsing algorithm

4.2 Features and Models 105

is dependent on the assumption that the guide function g(c,Ax) can be com-
puted in constant time. A naive implementation of the functions lc and rc,
using only the function hc in the current configuration c, would require an
exhaustive search of the set of input tokens to find the leftmost or rightmost
dependent. However, this can easily be avoided by adding an explicit represen-
tation of the functions lc and rc. These functions can be updated in constant
time for any transition t as follows:

• If t = Left-Arc(r) and c = (σ|i, j|τ, h, d) then lc(j) ← i.
• If t = Right-Arc(r) and c = (σ|i, j|τ, h, d) then rc(i) ← j.
• If t = Reduce or t = Shift then no update is needed.

Given these functions, any component function of a complex address function
can be computed in constant time. We can therefore conclude that an address
function constructed from k component functions can be computed in time
which is O(k) regardless of the length of the input sentence. Moreover, since
the application of an attribute function to the value returned by the address
function is a constant time operation, it is clear that the time required to
compute a feature function is constant in the length of the input.

4.2.2 Static Features

A static feature function has the form f(a), where a is an address function
and f refers to one of the annotation functions in Ax. In other words, static
features are based on information available as input, which remains constant
throughout the parsing process. On the other hand, since the address defined
by a is relative and not absolute, the actual value of a static feature function
will of course vary in the course of a transition sequence.

One important class of static features are those with the attribute function
wx, which we call lexical features, since they are defined in terms of the actual
word form wi of a token i, where wx(i) = wi. As discussed in section 2.3.2,
the importance of lexical features for disambiguation has been a dominant
theme in research on natural language parsing over the last ten to fifteen
years. And despite studies such as Gildea (2001), Dubey and Keller (2003),
Klein and Manning (2003) and Bikel (2004), which can be taken to show
that the significance of lexicalization has been overstated, it remains a fact
that all state-of-the-art systems for robust disambiguation make use of lexical
information in some way. The benefit of using lexical features in the inductive
dependency parsing was demonstrated in Nivre et al. (2004) and is further
investigated in the experiments in chapter 5.

In the previous section, we introduced the most commonly occurring ad-
dress functions. In a similar fashion, figure 4.3 introduces the lexical features
that will be used in the experiments later on. The most central features are
w(σ0) and w(τ0), which extract the word form of the top token and the next
token, respectively. But we will also make use of lexical features for lookahead

106 4 Inductive Dependency Parsing

Function Description

w(σ0) Word form of the top token

w(τ0) Word form of the next token

w(τn)(n > 0) Word form of the nth input token

w(h(σ0)) Word form of the head of the top token

Fig. 4.3. Lexical features

tokens, i.e., tokens occurring n positions after the next token, denoted by
w(τn), and for the head of the top token, symbolized by w(h(σ0)).

Returning to our example configuration in figure 4.1, we get the following
values for some of the features defined in figure 4.3:

w(σ0)(c14, Ax) = wx(5) = effect
w(τ0)(c14, Ax) = wx(9) = .
w(τ1)(c14, Ax) = wx(⊥) = ⊥

w(h(σ0))(c14, Ax) = wx(3) = had

(4.21)

Besides lexical features, static features can be defined in terms of any kind
of annotation introduced as a result of preprocessing and encoded in a func-
tion f : V + → Vf included in Ax. The only kind of preprocessing that will
be used in our experiments is part-of-speech tagging, which means that the
only annotation function that will be used in features is the function px that
maps each token to its part-of-speech (as defined by the part-of-speech tagger
applied in preprocessing). We call these features part-of-speech features.

If the role of lexicalization in syntactic parsing has recently been the matter
of some debate, the role of part-of-speech tagging is even more of a moot point.
In early work on treebank parsing it was more or less standard practice to have
a separate tagging phase prior to parsing proper (Charniak, 1996), but with
the emergence of lexicalized models it was found that better parsing accuracy
could often be obtained if the part-of-speech analysis was integrated in the
parsing process (Charniak, 1997a; Collins, 1997). More recently, it has been
argued that the main reason for using parts-of-speech in data-driven parsing is
that they provide a back-off model for lexical features and thereby counteract
the sparse data problem (Charniak, 2000; Van den Bosch and Buchholz, 2002).

In a study of memory-based shallow parsing, Van den Bosch and Buchholz
(2002) showed that a model incorporating words but no parts-of-speech, while
inferior with small training data sets, outperforms a model involving parts-
of-speech but no words for training sets over a certain size (which in their
experiments was around 50 000 sentences). However, it was still the case that
a model incorporating both words and parts-of-speech gave the best overall

4.2 Features and Models 107

Function Description

p(σ0) Part-of-speech of the top token

p(σn)(n > 0) Part-of-speech of the nth stack token

p(τ0) Part-of-speech of the next token

p(τn)(n > 0) Part-of-speech of the nth input token

Fig. 4.4. Part-of-speech features

performance, which indicates that the smoothing effect obtained by including
parts-of-speech is beneficial also with large training sets.

In the experiments reported in the next chapter we make use of part-of-
speech features for the two target tokens, i.e., the top token and the next
token, as well as neighboring tokens both on the stack and in the sequence
of remaining input tokens. We use the term stack tokens to refer to tokens
that occur below the top token on the stack and the term lookahead tokens
to refer to tokens that occur after the next token in the input sequence.
Figure 4.4 shows the notational conventions that will be used to refer to part-
of-speech features. By way of example, here are the values of a sample of
part-of-speech features for the configuration in figure 4.1:

p(σ0)(c14, Ax) = px(5) = NN
p(σ1)(c14, Ax) = px(3) = VBD
p(τ0)(c14, Ax) = px(9) = PU
p(τ1)(c14, Ax) = px(⊥) = ⊥

(4.22)

4.2.3 Dynamic Features

A dynamic feature function has the form d(a), where a is an address function
and d denotes the dependency type function dc that belong to the current
parser configuration c and that is updated dynamically during the parsing
process. One of the differences between the parsing methods investigated in
this book and many other approaches to dependency parsing is that the parser
produces labeled dependency graphs directly, rather than first producing an
unlabeled dependency graph and then assigning labels to dependency arcs.
This fact can be exploited when defining relevant feature functions, since the
labels of previously added arcs are available in the state of the function dc.
We call these features dependency type features, or dependency features for
short.

Figure 4.5 introduces the dependency features that will be used in our
experiments. There are three features defined in relation to the top token,

108 4 Inductive Dependency Parsing

Function Description

d(σ0) Dependency type of the top token

d(l(σ0)) Dependency type of the leftmost dependent of the top token

d(r(σ0)) Dependency type of the rightmost dependent of the top token

d(l(τ0)) Dependency type of the leftmost dependent of the next token

Fig. 4.5. Dependency features

extracting the dependency types relating this token to its head (d(σ0)), its
leftmost dependent (d(l(σ0))) and its rightmost dependent (d(r(σ0))). In addi-
tion, we consider the leftmost dependent of the next input token (d(l(τ0))). We
exemplify these dependency features by applying them to the configuration
in figure 4.1:

d(σ0)(c14, Ax) = d7(5) = OBJ
d(l(σ0))(c14, Ax) = d7(4) = NMOD
d(r(σ0))(c14, Ax) = d7(6) = NMOD
d(l(τ0))(c14, Ax) = d7(⊥) = ⊥

(4.23)

While dependency features are the only dynamic features used in this study,
it would also be possible to define features based on the function hc that
records the index of a token’s head. Although the exact numerical index is
unlikely to be a useful feature, the comparison of features could be used to
define distance-based features, which have been used with some success in
other data-driven approaches to syntactic parsing (Collins, 1999), although
these functions are seldom based on a purely quantitative notion of distance.
Moreover, features that compare the relative position of two tokens would
require a more complex definition of feature functions, and we will therefore
leave this as a possible topic for future research.

4.2.4 Feature Models

In this section, we have shown how the parameterization function Φ can be
defined by a sequence of feature functions Φ1,p = (φ1, . . . , φp), where each
feature function has the form f(a) for some address function a and attribute
function f ∈ {w, p, d}. Since each of the functions φi defines a feature of
the current parser parser condition, we will say that the complex function Φ
defines a feature model.

One of the questions posed in the experiments reported in chapter 5 is
how different features influence the performance of an inductive dependency
parser, with respect to accuracy as well as efficiency. We will address this
question by a series of experiments, where we vary the feature model Φ while

4.2 Features and Models 109

keeping other things constant. In this context, it is often convenient to be able
to define a complex model in terms of two or more simpler models. For this
purpose, we define the concatenation of two models in the obvious way:

Definition 4.8. Let Φ1 and Φ2 be two parameterization functions (or feature
models), defined by two sequences of feature functions Φ1

1,p = (φ1
1, . . . , φ

1
p) and

Φ2
1,q = (φ2

1, . . . , φ
2
q). The concatenation of Φ1 and Φ2, denoted Φ1 + Φ2, is the

function Φ defined by Φ1,p+q = (φ1
1, . . . , φ

1
p, φ

2
1, . . . , φ

2
q).

The models that will be examined in chapter 5 can be seen as concatenations
of three types of models, based on the three types of features discussed in this
section:

1. Part-of-speech models
2. Dependency models
3. Lexical models

Before we conclude the discussion of features and models in this chapter, we
will define the three types of models and introduce the notational conventions
that will be used to designate these models in the experiments in chapter 5.

Part-of-speech models will be designated Φp
ij (i, j ≥ 0). All part-of-speech

models include the features p(σ0) and p(τ0). The parameter i specifies how
many successive stack tokens will be included in addition to the top token.
That is, every feature p(σn), for n ≤ i, is included. In a similar fashion,
the parameter j specifies how many lookahead tokens will be included over
and above the next input token. Thus, every feature p(τn), for n ≤ j, is
included. We illustrate this class of models by applying the model Φp

01 to the
configuration in figure 4.1:

Φp
01(c14, Ax) = (p(σ0)(c14, Ax), p(τ0)(c14, Ax), p(τ1)(c14, Ax))

= (NN,PU,⊥)
(4.24)

Dependency models will be designated Φd
ijk (i, j, k ∈ {0, 1}). All dependency

models include the feature d(σ0). In addition, it may include some or all of the
features d(l(σ0)), d(r(σ0)) and d(l(τ0)), and the indices i, j and k are basically
boolean variables indicating the presence or absence of these features (in the
order just listed). We illustrate this class of models by applying the model
Φd

011 to the configuration in figure 4.1:

Φd
011(c14, Ax) = (d(σ0)(c14, Ax), d(r(σ0))(c14, Ax), d(l(τ0))(c14, Ax))

= (OBJ,NMOD,⊥)
(4.25)

Lexical models, finally, will be designated Φw
ij (i, j ≥ 0). The parameter i

specifies how many lexical features are extracted from the stack, starting with
the top token (i ≥ 1) and possibly including the head of the top token (i = 2).
The parameter j specifies how many successive input tokens will be included,
starting with the next input token (i ≥ 1) and possibly adding an extra

110 4 Inductive Dependency Parsing

lookahead token (j = 2). We illustrate this class of models by applying the
model Φw

11 to the configuration in figure 4.1:

Φw
11(c14, Ax) = (w(σ0)(c14, Ax), w(τ0)(c14, Ax))

= (effect, .)
(4.26)

4.3 Memory-Based Learning

In the deterministic version of inductive dependency parsing investigated in
this book, the central learning problem is to induce a mapping from parser
states to parser transitions. This problem can be solved using memory-based
learning, a discriminative machine learning method that has been successfully
applied to a wide range of problems in natural language processing (Daele-
mans and Van den Bosch, 2005). Although the general approach of inductive
dependency parsing is not directly committed to any particular method for
inductive learning, memory-based learning seems well suited for the task, with
a local approximation of the target function that is potentially sensitive to
subregularities and exceptional instances (Daelemans et al., 2002).

In this section we introduce the basic concepts of memory-based learning
and discuss the different algorithms and parameters that can be used in the
implementation of this approach. For the experiments reported in chapter 5
we rely on the software package TiMBL (Tilburg Memory-Based Learner)
developed by Walter Daelemans, Antal van den Bosch and their colleagues at
Tilburg University and the University of Antwerp (Daelemans et al., 2004),
and our presentation of memory-based learning is deeply influenced by their
work, which is presented comprehensively in Daelemans and Van den Bosch
(2005). We close the section by relating our use of memory-based learning in
dependency parsing to previous work on memory-based language processing,
in particular memory-based parsing.

4.3.1 Memory-Based Learning and Classification

Memory-based learning and problem solving is based on two fundamental
principles: learning is the simple storage of experiences in memory, and solv-
ing a new problem is achieved by reusing solutions from similar previously
solved problems (Daelemans and Van den Bosch, 2005). It is inspired by the
nearest neighbor approach in statistical pattern recognition and artificial intel-
ligence (Fix and Hodges, 1952), as well as the analogical modeling approach in
linguistics (Skousen, 1989, 1992). In machine learning terms, it can be charac-
terized as a lazy learning method, since it defers processing of input until
needed and processes input by combining stored data (Aha, 1997).3

3 Memory-based learning is also known as instance-based learning, exemplar-based
learning and case-based learning.

4.3 Memory-Based Learning 111

In contrast to eager learning methods, such as the family of generative
probabilistic methods that are used in many data-driven parsers, memory-
based learning performs generalization without abstraction. In addition, it
uses similarity-based reasoning as an implicit smoothing method to deal with
low-frequency events (Daelemans and Van den Bosch, 2005). Both of these
properties make the method potentially well suited for problems in natural
language processing, which are often characterized by distributions contain-
ing a long tail of low-frequency events, where it is notoriously difficult to
distinguish noise from significant exceptions (Daelemans et al., 2002).

Conceptually, memory-based learning algorithms can be seen as variants
of the k-nearest neighbor algorithm (k-NN) (Cover and Hart, 1967; Devijver
and Kittler, 1982; Aha et al., 1991). Given the task of inducing a classifier
ĝ : S → T from a set of training instances Dt = {(s1, t1), . . . (sn, tn)}, where
si ∈ S is an input instance and ti ∈ T is its class, this type of algorithm can
be described as follows:

• Learning consists in storing the set Dt of training instances in memory.
• Classifying a new instance r is performed in two steps:

1. Compare r to every stored input instance si ((si, ti) ∈ Dt):
a) Compute the distance ∆(r, si) between r and si.
b) Update the set of k closest instances (nearest neighbors).

2. Take the majority class t of the k nearest neighbors as the class of r.

Even though the basic memory-based strategy remains the same, there are
many parameters that can be varied to modify the resulting classifier. The
most obvious parameter is perhaps the value of k, which can be varied from
1 to n (where n is the number of training instances in Dt). A small k value
leads to a very local approximation of the function g, which is more sensitive
to local exceptions and subregularities but also less robust when faced with
noisy data. A large k value gives a more global approximation, which is less
sensitive to local variations, whether due to noise or to significant exceptions.
For the task of predicting the next parser transitions, a k value of about 5
has turned out to be optimal for many feature models (Nivre et al., 2004),
although this is something that is investigated further in the experiments
reported in chapter 5.

Another important parameter is the distance metric ∆, which can be varied
in many different ways. For example, feature weighting can be used to give
different weights to features in the representation of instances; value weighting
can be used to differentiate penalties for mismatches between feature values;
and exemplar weighting can be used to weight stored instances differently.
Exemplar weighting will not be exploited in the investigations in this book, but
both feature weighting and value weighting will be discussed in section 4.3.2
below and studied experimentally in chapter 5. A third kind of parameter is
the voting procedure, where the main alternative to a simple majority vote is
to use a weighting scheme that gives more weight to closer instances, using
so-called distance-weighted class voting (Dudani, 1976).

112 4 Inductive Dependency Parsing

In the following section we will discuss the parameters of memory-based
learning that are relevant to our study of inductive dependency parsing and to
the experiments reported in chapter 5. We will focus on the way that these pa-
rameters are implemented in TiMBL, since this is the software that is used in
all our experiments. On the other hand, we will only deal with a small subset
of all the features that are available in this software package. For more infor-
mation about TiMBL, see the TiMBL Reference Guide (Daelemans et al.,
2004); see also Daelemans and Van den Bosch (2005).

4.3.2 Learning Algorithm Parameters

Let Dt = {(s1, t1), . . . , (sn, tn)} be the set of training instances, where each
input instance is represented as a vector of feature values si = (si

1, . . . , s
i
p) and

each output ti is a class taken from some set T . We recall that in the case of
inductive dependency parsing, an input instance is a parser state Φ(c,Ax) =
(φ1(c,Ax), . . . , φp(c,Ax)) = (v1, . . . , vp) while the output class is a transition
t ∈ TR. We will assume that all features are symbolic, i.e., that their values
are not numeric, a restriction that holds for all the features considered in this
book, where feature values are word forms, parts-of-speech or dependency
types. However, memory-based learning as such is not restricted to symbolic
features.

We will begin by discussing the implementation of the k-NN algorithm
in TiMBL, which differs in two ways from the standard formulation (Aha
et al., 1991). First of all, the TiMBL version of k-NN considers the k nearest
distances, rather than the k nearest instances. Since the training set may
contain several instances at the same distance from a given instance, the
number m of instances included by TiMBL may therefore be greater than k.

The second difference concerns the method used for tie-breaking, i.e., for
deciding which class to choose in case there is no majority class in the nearest
neighbor set. The default method in TiMBL, which will be used in all the
experiments in chapter 5, is to use a three-step procedure:

1. Increase the value of k by 1 and choose the majority class in the larger
neighbor set, if such a class exists.

2. Otherwise, choose the majority class in the entire training set Dt, if such
a class exists.

3. Otherwise, choose the class t1 of the first instance (s1, t1) encountered in
the training set Dt.

The next parameter to discuss is the choice of the distance metric ∆. When
dealing with symbolic features, the most straightforward metric is the Overlap
metric, also referred to as Hamming distance, Manhattan metric, city-block
distance, and L1 metric (Daelemans and Van den Bosch, 2005). The distance
between two input instances r = (r1, . . . , rp) and s = (s1, . . . , sp) according
to this metric is simply the number of mismatching features. Formally:

4.3 Memory-Based Learning 113

∆(r, s) =
p∑

i=1

δ(ri, si) (4.27)

The δ function in this definition is a 0-1 mismatch function:

δ(ri, si) =
{

0 if ri = si

1 if ri �= si
(4.28)

More sophisticated distance metrics can usually be understood as variations
on the Overlap metric. One common variation is to associate a weight wi with
each feature φi and calculate the distance as a sum of weighted mismatches:

∆(r, s) =
p∑

i=1

wi δ(ri, si) (4.29)

Although it is possible to assign weights to features manually, based on some
kind of a priori knowledge, it is much more common to derive weights auto-
matically from training data using information-theoretic concepts which are
also used in decision tree learning. Thus, Information Gain (IG) weighting
considers the average amount of information about the correct class label
contributed by each feature:

wi = H(T) −
∑
v∈Vi

P (v)H(T |v) (4.30)

In this equation, T is the set of class labels, Vi is the set of values for feature
φi, and H(T) and H(T |v) is the entropy of the class labels, a priori and
conditioned on the value v, respectively:

H(T) = −
∑
t∈T

P (t) log2 P (t) (4.31)

H(T |v) = −
∑
t∈T

P (t, v) log2 P (t|v) (4.32)

One problem with IG weighting is that it tends to overestimate the relevance
of features with large value sets. Quinlan (1986) has therefore introduced
a normalized version, called Gain Ratio (GR), where IG is divided by the
entropy of the value set:

wi =
H(T) −

∑
v∈Vi

P (v)H(T |v)
H(Vi)

(4.33)

Although GR weighting still has a bias towards features with large value sets,
it often gives good performance in practice. Other weighting schemes, which
attempt to correct the bias of IG and GR, have been proposed based on the
χ2 statistic (White and Liu, 1994).

114 4 Inductive Dependency Parsing

Another way of modifying the Overlap metric is to use a more sophisti-
cated mismatch function, which differentiates the penalty of a mismatch based
on the similarity of the feature values involved. This is the idea behind the
(Modified) Value Difference Metric (MVDM), proposed by Stanfill and Waltz
(1986) and refined by Cost and Salzberg (1993), which quantifies the distance
between two feature values vj and vk belonging to the same value set Vi by
considering their cooccurrence with target classes:

δ(vj , vk) =
∑
t∈T

|P (t|vj) − P (t|vk)| (4.34)

Although MVDM introduces a kind of value weighting, rather than feature
weighting, it will also have an indirect feature weighting effect, since δ(vj , vk)
will on average be larger for informative features that have a more skewed
conditional class distributions than for less informative features with more
uniform distributions (Daelemans and Van den Bosch, 2005). One problem
with MVDM is that it is sensitive to sparse data. TiMBL therefore offers the
possibility of setting a frequency threshold l, so that MVDM is applied only
if both of the values compared occur at least l times in the training data;
otherwise the 0-1 mismatch function is used instead.

All of the modifications to the distance metric considered so far have the
potential drawback that they increase the complexity of distance computa-
tions and thereby compromise the efficiency of classification. However, in the
TiMBL implementation both feature weights wi (for 1 ≤ i ≤ p) and value
distances δ(vj , vk) (for vj , vk ∈ Vi) can be computed and stored at learning
time, which means that only table lookup is required at classification time.

In addition to feature weighting and value weighting, a weighting scheme
can also be applied in the voting procedure that determines the majority class.
Dudani (1976) proposed a voting rule in which the vote of each instance si is
weighted by a function wi of its distance to the new instance r:

wi =
{

dk−di

dk−d1
if dk �= d1

1 if dk = d1
(4.35)

In this equation, di is the distance of si to r, d1 is the distance of the nearest
neighbor, and dk is the distance of the most distant instance in the neighbor
set. In addition to this inverse-linear (IL) weighting scheme, Dudani (1976)
proposed the inverse distance (ID) weight:

wi =
1
di

if di �= 0 (4.36)

In order to make the weighting applicable also to neighbors with zero distance,
it is customary to add a small constant ε to the denominator (Wettschereck,
1994):

wi =
1

di + ε
(4.37)

4.3 Memory-Based Learning 115

In chapter 5 we will investigate how the different parameters of memory-
based learning affect the performance of inductive dependency parsing. The
parameters that will be varied are the following:

1. Number of nearest distances: k
2. Distance metric: Overlap or MVDM (with frequency threshold l)
3. Feature weighting: IG, GR, or none
4. Distance-weighted class voting: IL, ID, or none

In experiments where other parameters are varied, such as feature models or
training sets, we will usually keep the learning algorithm parameters constant.
However, rather than using the default values of the TiMBL system, which
usually gives suboptimal performance, we will use the following settings, which
have been shown to give good performance in previous experiments (Nivre
et al., 2004; Nivre and Scholz, 2004):

1. Number of nearest distances: k = 5
2. Distance metric: MVDM with l = 3
3. Feature weighting: None
4. Distance-weighted class voting: ID

Finally, a remark on the efficiency of memory-based learning and classifica-
tion. Given the lazy learning approach, training a memory-based classifier is
usually very efficient, given that this basically consists in storing instances
in memory, in a so-called instance base, and precomputing metrics such as
feature weights and value distances for MVDM. By contrast, classification is
less efficient, with a worst-case complexity of O(n), where n is the number of
instances in the instance base. The TiMBL software package implements a
tree-based indexing scheme that speeds up classification in practice, although
the worst-case complexity remains the same. It also offers the possibility of
compressing the instance base, e.g., by constructing a decision tree based on
feature weights. This decision tree yields an approximation of the exhaustive
k-NN search, which improves efficiency but usually has a negative effect on
classification accuracy. TiMBL also offers several hybrid solutions, that ex-
ploit the trade-off between efficiency and accuracy in different ways. These
alternative algorithms will not be explored in this book, mainly because pre-
vious experiments have shown that classification performance degrades con-
siderably especially for more complex feature models. We refer the reader to
the TiMBL Reference Guide for more information on the tree-based indexing
used by TiMBL as well as alternatives to the k-NN algorithm.

4.3.3 Memory-Based Language Processing

Memory-based learning and classification has been applied to a wide range of
problems in natural language processing, exemplified in the following list (see
also Daelemans and Van den Bosch, 2005):

116 4 Inductive Dependency Parsing

• Hyphenation and syllabification (Daelemans and Van den Bosch, 1992)
• Assignment of word stress (Daelemans et al., 1994)
• Grapheme-to-phoneme conversion (Stanfill and Waltz, 1986; Lehnert,

1987; Weijters, 1991; Daelemans and Van den Bosch, 1996)
• Morphological analysis (Van den Bosch and Daelemans, 1999)
• Part-of-speech tagging (Cardie, 1993; Daelemans et al., 1996; Zavrel and

Daelemans, 1997)
• Prepositional phrase attachment (Zavrel et al., 1997)
• Word sense disambiguation (Ng and Lee, 1996; Fujii et al., 1998; Dagan

et al., 1999; Veenstra and Daelemans, 2000; Escudero et al., 2000)
• Named entity recognition (De Meulder and Daelemans, 2003; Hendrickx

and Van den Bosch, 2003)
• Semantic role labeling (Van den Bosch et al., 2004; Kouchnir, 2004)
• Text categorization and filtering (Masand et al., 1992; Yang and Chute,

1994; Riloff and Lehnert, 1994)

Most of these problems have a natural formulation as a classification problem,
where some kind of linguistic entity, such as a grapheme, a syllable, a word,
or an entire document, is mapped to a finite set of discrete categories. This
formulation of the problem makes memory-based learning a natural choice.

However, syntactic parsing is prima facie not a classification problem of
this kind, especially not if we consider full parsing. Even though the input
is a linguistic entity such as a sentence, the output usually comes from an
infinite set of complex structures, such as constituency trees or dependency
graphs. In order to apply the memory-based approach to syntactic parsing,
it is therefore necessary to reformulate the problem so that it can be solved
using discriminative learning. Broadly speaking, there are three different re-
formulations that have been proposed in the literature, which we may call
holistic parsing, cascaded partial parsing, and history-based parsing.

The holistic approach is in a way the most straightforward application
of the memory-based approach to full syntactic parsing and is based on the
idea of storing complete sentences with their analyses in the instance base.
Parsing a new sentence is performed by finding the most similar sentences
in the instance base and adapting their analyses to the input sentence, pos-
sibly backing off to smaller fragments if necessary. This approach is most
clearly exemplified in the work of Streiter (2001a,b) and Kübler (2004), but
the DOP framework (Bod, 1995, 1998, 2003) is essentially based on the same
idea, especially in its non-probabilistic incarnation where priority is given to
analyses composed of large fragments (Bod, 2000). A variation on this theme
is De Pauw (2003), who uses a memory-based model to score analyses in a
parse forest derived using a grammar-driven parsing method.

The cascaded approach starts from a partial parsing or chunking ana-
lysis, which can be cast as a classification problem using the so-called BIO

4.4 MaltParser 117

representation4 (Ramshaw and Marcus, 1995) and which has been performed
successfully with memory-based methods by, among others, Veenstra (1998)
and Tjong Kim Sang and Veenstra (1999). One way of extending this partial
analysis to a more complete syntactic analysis is to use a cascade of partial
parsers, where the input of each parser includes the output of previous parsers,
in combination with methods for identifying grammatical relations holding
between chunks. Memory-based approaches to cascaded partial parsing and
grammatical relation finding include Argamon et al. (1998), Buchholz et al.
(1999), Daelemans et al. (1999), Krymolowski and Dagan (2000), Kübler and
Hinrichs (2001), Buchholz (2002) and Dagan and Krymolowski (2003).

The history-based approach is the most indirect way of performing parsing
through classification, since the input instances are not linguistic entities but
states of some parsing system, and the classes are not linguistic categories
or structures but actions of this parsing system (cf. sections 2.3.2 and 4.1.3).
In this way, Veenstra and Daelemans (2000) used memory-based learning to
predict the actions of a shift-reduce parser, although this method was only
tested on an artificially created corpus. Inductive dependency parsing using
memory-based learning to guide a deterministic parser is exactly the same
idea, although combined with a different kind of syntactic representation and
a different parsing algorithm.

4.4 MaltParser

Using memory-based learning and classification to guide a deterministic parser
is one instantiation of the general approach of inductive dependency parsing.
In this section, we describe a system called MaltParser, which has been used
to perform all the experiments on memory-based dependency parsing reported
in chapter 5, but which is designed as a more general framework for inductive
dependency parsing.

The system can be described as a data-driven parser-generator framework.
While a traditional parser generator constructs a parser given a grammar, a
data-driven parser generator constructs a parser given a treebank. However,
MaltParser also takes as input the specification of a feature model, as defined
in section 4.2, which means that different parsers can be induced from the
same treebank without recompiling the system. Moreover, the design of the
system is intended to facilitate the variation not only of feature models but
also of parsing algorithms and learning methods, although these parameters
will be kept constant in the experiments reported in this book.

4 For a given phrase or chunk type, each token is tagged as Beginning, being Inside,
or being Outside a constituent of that type.

118 4 Inductive Dependency Parsing

Parser(τ, hg, dg)

ti+1 = o(ci, hg, dg)

ci+1 = ti+1(ci)

Guide(Ax, Φ)

si = Φ(ci, Ax)

Learner(L)

Di+1=Di∪{(si,ti+1)}
ĝ = L(Dt)

(ci, ti+1)
(si, ti+1)

Fig. 4.6. Architecture for training

4.4.1 Architecture

In the data-driven approach to text parsing, we can usually distinguish two
different phases, the training phase and the parsing phase (cf. section 4.1.2).
Although these phases are different in nature, they can often be decomposed
into very similar or even identical subtasks. For the framework investigated
in this book, the training phase consists of two steps. The first step involves
parsing every sentence x of the training corpus Tt using the oracle parsing
algorithm, extracting the feature vector Φ(ci, Ax) for every nondeterministic
configuration ci, and storing the pair (Φ(ci, Ax), ti+1) in the set of training
instances Dt. The second step is the induction of a classifier ĝ from Dt using a
particular learning method. The parsing phase consists in parsing every sen-
tence x of the input text T using the inductive parsing algorithm, extracting
the feature vector Φ(ci, Ax) for every nondeterministic configuration ci, and
querying the classifier for ĝ(Φ(ci, Ax)) = ti+1.

Comparing these two phases, we note that the extraction of feature vectors
is performed in exactly the same way during training and parsing, although
the vectors are used for learning in one case and for prediction in the other.
Moreover, we have previously seen that the parsing algorithms used for train-
ing and parsing differ only minimally from each other. This suggests that a
data-driven parsing system should be designed in such a way that the same
basic components for parsing and feature extraction can be used both in the
training phase and in the parsing phase. In addition, since we want to be able
to vary parsing methods, feature models and learning methods independently
of each other, these components should be encapsulated and separated from
each other. This gives rise to an architecture with three main components (in
addition to input/output modules and overall control structure):

1. Parser
2. Guide
3. Learner

In this architecture, the Parser constructs dependency graphs by applying
transitions to parser configurations, the Guide extracts feature vectors from

4.4 MaltParser 119

Parser(τ)

ci+1 = ti+1(ci)

Guide(Ax, Φ)

si = Φ(ci, Ax)

Learner(ĝ)

ti+1 = ĝ(si)

ci
si

�ti+1 �ti+1

Fig. 4.7. Architecture for parsing

parser conditions and passes data between the Parser and Learner, and the
Learner handles the mapping from feature vectors to transitions. In practice,
the Learner will normally be an interface to a standard machine learning
package such as TiMBL.

Figure 4.6 depicts the data flow in the architecture during the training
phase. For a given sentence xi ∈ Tt, the Parser takes as input the token
sequence τ and the gold standard functions (hg, dg). If the current configu-
ration ci is nondeterministic, the Parser derives the correct transition ti+1

from (hg, dg) using the oracle function o, passes (ci, ti+1) to the Guide as a
training instance, and derives the next configuration ci+1 by applying ti+1 to
ci. The Guide takes as input a feature model Φ (constant for all the sentences
of the training corpus) and the annotation functions Ax corresponding to the
current sentence x. When receiving the instance (ci, ti+1) from the Parser,
the Guide uses the feature model Φ to extract the parser state si, represented
as a feature vector, and passes the training instance (si, ti+1) to the Learner.
The Learner, parameterized by an inductive learning algorithm L, collects
instances in the training set Dt and finally applies L to induce a classifier ĝ
when the entire training corpus has been parsed.

Figure 4.7 shows the data flow during the parsing phase. In this case,
there is no gold standard analysis to guide the Parser, which only takes the
input sequence as input. If the current configuration ci is nondeterministic,
the Parser requests a prediction of the next transition by passing ci to the
Guide. However, once the predicted transition ti+1 is returned by the Guide,
the Parser applies ti+1 to the current configuration ci in exactly the same
way as during training. Furthermore, the Guide extracts the parser state si =
Φ(ci, Ax) in exactly the same way during parsing and training, using the model
Φ defined by the current feature specification sφ. The only difference is that,
instead of passing an instance (si, ti+1) to the Learner as training data, during
parsing it sends the state si and receives the predicted transition ti+1, which is
then passed on to the Parser. The Learner, finally, uses the function ĝ, induced
in the training phase, to map the state si to the transition ti+1 = ĝ(si).

One of the advantages of this architecture is that parsing is completely
separated from learning, which makes it possible to vary parsing methods

120 4 Inductive Dependency Parsing

and learning methods independently. The Parser has no knowledge of the fea-
ture model Φ and behaves in exactly the same way regardless of which features
are used for learning and prediction. The Learner only has to learn a mapping
from feature vectors to transitions, without knowing either how the features
are extracted or how the transitions are to be used. Finally, the Guide has no
knowledge about either parsing algorithms or learning algorithms, but only
handles the abstraction from configuration to states and passes data between
the Parser and the Learner. The Learner can also encapsulate the interface
to an external machine learning package, converting the feature vector con-
structed by the Guide to whatever special format is required by the external
module. In this way, different machine learning packages can be plugged in
without modifying the Guide module.

4.4.2 Implementation

The architecture presented above is realized in MaltParser (Nivre and Hall,
2005), a version of which is freely available for research and educational pur-
poses, together with a suite of tools for data conversion and evaluation.5 The
version of MaltParser used for the experiments in this book supports the
following functionality:

• Parser: The Parser implements the deterministic parsing algorithm in two
versions: Oracle-Parse for training and Guided-Parse for parsing.

• Guide: The Guide accepts specifications of arbitrary feature models, but
features are limited to dependency features, part-of-speech features and
lexical features.

• Learner: The Learner supports memory-based learning via an interface
to TiMBL.

The most recent version of the system extends this functionality by providing
alternative parsing algorithms, notably Covington’s incremental algorithms
for non-projective dependency parsing (Covington, 2001), and alternative
learning methods, such as support vector machines using the LIBSVM tools
(Wu et al., 2004).

5 URL: http://www.msi.vxu.se/users/nivre/research/MaltParser.html

