
2

Natural Language Parsing

Research on natural language parsing has over a period of several decades
produced a wealth of knowledge concerning different methods for automatic
syntactic analysis. Most of the results, however, concern formal grammars
and algorithms that are only indirectly related to the more practical problem
of analyzing syntactic structure in naturally occurring texts. This has led to
a somewhat paradoxical situation where, despite the increase in knowledge
about the complexity of problems and algorithms for formal grammars, we
know relatively little about the formal properties of text parsing. In fact, it is
still not clear that there is a well-defined parsing problem for natural language
text that is computable in the strict sense.

In this chapter, we will begin by contrasting the two notions of parsing,
the well-defined parsing problem for formal grammars, familiar from both
computer science and computational linguistics, and the more open-ended
problem of parsing unrestricted text in natural language, which is the focus
of the investigations in this book. We will then review different strategies
for text parsing, including both grammar-driven and data-driven approaches,
and discuss the different kinds of problems that arise with different methods.
On the basis of this discussion, we will then define the basic requirements of
robustness, disambiguation, accuracy and efficiency, which are central to the
investigations of text parsing in this book, and discuss evaluation criteria for
each of the requirements.

The primary goal of this chapter is to set the scene for the exploration of
inductive dependency parsing in later chapters, by defining the basic problems
and evaluation criteria, but in doing so we will also have reason to review some
of the more important trends in recent research on natural language parsing.
First of all, however, we need to say a few words about the desired output of
the parsing process, i.e., about syntactic representations for natural language
sentences.

10 2 Natural Language Parsing

JJ

Economic

��
NN

news

��

�
�

�
�

�
�

�
�

�
�

��

NP

VBD

had

�
�

�
�

�
�

�
VP

S

JJ

little

��
NN

effect

��

�
�

�
�

�

��

NP

NP

IN

on

�
�

�

��
PP

JJ

financial

��
NNS

markets

��

��
NP PU

.

�
�

�
�

�
�

�
�

�
�

��

Fig. 2.1. Constituent structure for English sentence from the Penn Treebank

2.1 Syntactic Representations

The type of syntactic representation that has been dominant during the last
fifty years, both in theoretical linguistics and in natural language processing,
is based on the notion of constituency. In this representation, a sentence is
recursively decomposed into smaller segments, called constituents or phrases,
which are typically categorized according to their internal structure into noun
phrases, verb phrases, etc. Constituency analysis comes from the structuralist
tradition represented by Bloomfield (1933) and was formalized in the 1950s in
the model of phrase structure grammar, or context-free grammar (Chomsky,
1956). Figure 2.1 shows a typical constituency representation of an English
sentence, taken from the Wall Street Journal section of the Penn Treebank
(Marcus et al., 1993, 1994).1

A wide range of different theories about natural language syntax are based
on constituency representations. In addition to the theoretical tradition of
Chomsky (1957, 1965, 1981, 1995), this includes frameworks that are promi-
nent in computational linguistics, such as Lexical Functional Grammar (LFG)
(Kaplan and Bresnan, 1982; Bresnan, 2000), Generalized Phrase Structure
Grammar (GPSG) (Gazdar et al., 1985), Tree Adjoining Grammar (TAG)
(Joshi, 1985, 1997), and Head-Driven Phrase Structure Grammar (HPSG)
(Pollard and Sag, 1987, 1994).

Another type of syntactic representation, which has a long tradition in
descriptive linguistics especially in Europe, is instead based on the notion
of dependency. In this representation, a sentence is analyzed by connecting
its words by binary asymmetrical relations, called dependencies, which are

1 The representation is equivalent to the treebank annotation except that the part-
of-speech category ‘.’ has been replaced by PU (for punctuation) to avoid a name
clash with the terminal ‘.’. This will simplify exposition later on.

2.1 Syntactic Representations 11

JJ
Economic

� �
�

nmod

NN
news

� �
�

sbj

VBD
had

JJ
little

� �
�

nmod

NN
effect

� �
�

obj

IN
on

� �
�

nmod

JJ
financial

� �
�

nmod

NNS
markets

� �
�

pmod

PU
.

�

� �p

Fig. 2.2. Dependency structure for English sentence (same as figure 1.1)

typically categorized according to their functional role into subject, object,
etc. Figure 1.1, repeated here for convenience as figure 2.2, shows a typical
dependency representation of the same sentence as in figure 2.1.

According to some scholars, dependency analysis can be traced back to
Antiquity (Kruijff, 2002), but the start of the modern tradition is usually
taken to be the work of Tesnière (1959). Linguistic theories that are based on
dependency representations include Word Grammar (Hudson, 1984, 1990),
Functional Generative Description (Sgall et al., 1986), Lexicase (Starosta,
1988), and Meaning-Text Theory (Mel’čuk, 1988).

A third kind of syntactic representation is found in categorial grammar,
which connects syntactic (and semantic) analysis to inference in a logical cal-
culus. The syntactic representations used in categorial grammar are essentially
proof trees, which cannot be reduced to constituency or dependency repre-
sentations, although they have affinities with both. The categorial grammar
tradition goes back to Ajdukiewicz (1935), was taken up in the 1950s by Bar-
Hillel (1953) and Lambek (1958), and was used by Montague (1970, 1973)
in his influential work on model-theoretic semantics. More recent frameworks
that are prominent in the literature on syntactic parsing includes Combina-
tory Categorial Grammar (CCG) (Steedman, 2000), Type-Logical Grammar
(Morrill, 1994, 2000), and Grammatical Framework (Ranta, 2004; Ljunglöf,
2004).

One final type of representation that is widely used in modern syntactic
theories is the notion of a feature structure, or attribute-value representation
(Johnson, 1988; Carpenter, 1992), which is usually formalized as a directed
acyclic graph. Theories that make use of feature structures are often said to
be unification-based (Shieber, 1986), since unification is the major operation
used to combine information from different structures. Feature structures are
often combined with constituency representations, either by decorating tree
nodes with feature structures, as in GPSG (Gazdar et al., 1985), or by adding
new layers of representation over and above the constituency representation,
as in LFG (Kaplan and Bresnan, 1982), or by using feature structure repre-
sentations to encode all aspects of linguistic structure, including constituency,

12 2 Natural Language Parsing

as in HPSG (Pollard and Sag, 1994). However, feature structures are also
found in dependency-based theories, such as Dependency Unification Gram-
mar (DUG) (Hellwig, 2003), and in categorial grammar frameworks, such
as Categorial Unification Grammar (CUG) (Uszkoreit, 1986) and Unification
Categorial Grammar (UCG) (Zeevat et al., 1991).

Throughout this book, we will mainly be concerned with dependency rep-
resentations, which will be discussed in more depth in chapter 3. However, in
this chapter we will try to abstract away from the particular representations
used and concentrate on issues in natural language parsing that cut across
different frameworks. Thus, when we speak about syntactic parsing as the
problem of assigning an analysis to an input string, it will be understood that
the analysis is a syntactic representation as defined by the relevant framework.
To some extent, this means that we will be comparing apples and oranges,
since the problems involved in parsing are not independent of the nature of
syntactic representations. Still, we feel that different frameworks have enough
in common to make a general discussion fruitful, although we will also make
reference to different syntactic representations when this is relevant.

2.2 Two Notions of Parsing

The term parsing, derived from the Latin pars orationis (parts of speech),
was originally used to denote the grammatical explication of sentences, as
practiced in elementary schools. The term was then borrowed by linguistics
and computer science, where it has acquired a specialized sense in connection
with the theory of formal languages and grammars. However, in practical
applications of natural language processing, the term is also used to denote
the syntactic analysis of sentences in text, without reference to any particular
formal grammar, a sense which is in many ways quite close to the original
grammar school sense.

In other words, there are at least two distinct notions of parsing that can
be found in the current literature on natural language processing, notions that
are not always clearly distinguished. Although we are certainly not the first
to notice this ambiguity, we feel that it has not been given the attention that
it deserves. While it is true that there are intimate connections between the
two notions, they are nevertheless independent notions with quite different
properties in some respects. In order to highlight these differences, we will
now proceed to a contrastive examination of the notions of grammar parsing
and text parsing.2

2 The term text in text parsing is not meant to exclude spoken language, but rather
to emphasize the relation to naturally occurring language use. Although we will
have nothing to say about the parsing of spoken utterances in this book, we
want the notion of text parsing to encompass both written texts and spoken
dialogues. An alternative term would be discourse parsing, but this would give
rise to misleading associations of a different kind.

2.2 Two Notions of Parsing 13

S → NP VP PU JJ → Economic
VP → VP PP JJ → little
VP → VBD NP JJ → financial
NP → NP PP NN → news
NP → JJ NN NN → effect
NP → JJ NNS NNS → markets
PP → IN NP VBD → had
PU → . IN → on

Fig. 2.3. Context-free grammar for a fragment of English

2.2.1 Grammar Parsing

The notion of grammar parsing is intimately tied to the notion of a formal
grammar G defining a formal language L(G) over some (terminal) alphabet Σ.
Formally, an alphabet Σ is a set of elementary symbols, and a formal language
over Σ is a subset of the set Σ∗ of all strings formed from symbols in Σ.
A grammar G is a formal system for deriving strings over some alphabet Σ,
and the language L(G) defined by G is the set of all strings x derivable in G.
Moreover, each (canonical) derivation of a string x corresponds to a syntactic
analysis of x according to G. The parsing problem can then be defined as
follows:

Given a grammar G and an input string x ∈ Σ∗, derive some or all of
the analyses assigned to x by G.

This is sometimes called the universal parsing problem for grammars of a
certain type. It is also possible to define the parsing problem relative to
a particular grammar G of some type, although this is usually considered
less interesting (Barton et al., 1987). The analysis of formal grammars and
their parsing problems goes back to the pioneering work of Noam Chomsky
and others in the 1950s and continues to be a very active area of research.
A classic introduction to the field is Hopcroft and Ullman (1979), which re-
cently appeared in a new and revised edition (Hopcroft et al., 2001).

The most widely used type of formal grammar, in computer science as well
as computational linguistics, is the context-free grammar (CFG) of Chomsky
(1956), which is equivalent to the independently defined Backus-Naur Form
(BNF) (Backus, 1959). Figure 2.3 shows a context-free grammar defining a
fragment of English including the sentence analyzed in figure 2.1. One of the
analyses assigned to this sentence by the grammar is the parse tree depicted
in figure 2.1, which corresponds to a canonical derivation of the word string.3

3 Without the restriction to some canonical form of derivation (e.g., a leftmost or
a rightmost derivation), there is generally more than one derivation of the same
parse tree.

14 2 Natural Language Parsing

Over the years, a variety of formal grammars have been introduced, many
of which are more expressive than context-free grammar and motivated by the
desire to provide a more adequate analysis of natural language syntax. This
development started with the transformational grammars of Chomsky (1957,
1965) and has continued with many of the theoretical frameworks mentioned
in the previous section, such as LFG and HPSG. In recent years, there has
been a special interest in so-called mildly context-sensitive grammars (Joshi,
1985), exemplified by TAG and CCG, which appear to strike a good balance
between linguistic adequacy and computational complexity.

Solving the universal parsing problem for a particular type of grammar
requires a parsing algorithm, i.e., an algorithm that computes analyses for a
string x relative to a grammar G. Throughout the years a number of parsing
algorithms for different classes of grammars have been proposed and ana-
lyzed. For context-free grammar, some of the more well-known algorithms are
the Cocke-Kasami-Younger (CKY) algorithm (Kasami, 1965; Younger, 1967),
Earley’s algorithm (Earley, 1970), and the left corner algorithm (Rosenkrantz
and Lewis, 1970). These algorithms all make use of tabulation to store partial
results, which potentially allows exponential reductions of the search space
and thereby provides a way of coping with ambiguity. In the computational
linguistics literature, this technique is best known as chart parsing (Kay, 1980;
Thompson, 1981). This type of method, which constitutes a form of dynamic
programming (Cormen et al., 1990), can also be generalized to more expressive
grammar formalisms.

Deterministic parsing algorithms, such as LR parsing (Knuth, 1965), can
only handle restricted subsets of context-free grammars and have their main
use in compilers for programming languages. However, deterministic parsing
techniques based on shift-reduce parsing (Aho et al., 1986) have also been
applied to natural language parsing, often with the ambition to model human
sentence processing (Marcus, 1980; Shieber, 1983). In addition, the general-
ized LR (GLR) parsing algorithm proposed by Tomita (1987) can handle
arbitrary context-free grammars and avoids exponential search by using a
graph-structured stack and tabulation of partial results.

Traditional methods for parsing can be described as constructive in the
sense that they analyze sentences by constructing syntactic representations
in accordance with the rules of a given grammar. An alternative is to use an
eliminative parsing method, which treats the grammar as a set of constraints
and views parsing as a constraint satisfaction problem, which can be solved
by successively eliminating analyses that violate constraints until only valid
analyses remain. This strategy presupposes a compact representation of the
space of possible analyses and has therefore mainly been used with syntactic
representations that are reducible to an assignment of categories or structural
attachments to word tokens, as in Constraint Grammar (CG) (Karlsson, 1990;
Karlsson et al., 1995), Constraint Dependency Grammar (CDG) (Maruyama,
1990; Harper and Helzerman, 1995; Menzel and Schröder, 1998), and Topo-
logical Dependency Grammar (TDG) (Duchier, 1999). In special cases, this

2.2 Two Notions of Parsing 15

parsing strategy can also be implemented using finite state techniques, as in
Parallel Constraint Grammar (Koskenniemi, 1990, 1997). Besides constructive
and eliminative parsing methods, we may also distinguish a transformational
approach, where parsing starts from some kind of default representation and
applies grammatical rules that transform this to an output representation
(Brill, 1993; Foth et al., 2004).

We will make no attempt to review the vast literature on grammar parsing
here but will limit ourselves to a few observations concerning the properties
of the parsing problem and the methods used to solve it.4 First of all, it is
worth noting that the parsing problem for a class of grammars is a well-defined
abstract problem in the sense of algorithm theory (Cormen et al., 1990), i.e.,
a relation between a set I of inputs, which in this case are pairs consisting
of a grammar G and a string x, and a set O of outputs, which are syntactic
representations of strings in L(G). A parsing algorithm provides a solution to
this problem by computing the mapping from arbitrary inputs to outputs.

Secondly, the parsing problem for formal grammars is intimately tied to
the corresponding recognition problem, i.e., the problem of deciding whether
the string x is in L(G). It is only strings in L(G) that receive an analysis in
the parsing process, and most parsing algorithms in fact solve the recognition
problem simultaneously.

Thirdly, we note that the analyses to be assigned to a particular input
string x are completely defined by the grammar G itself. For example, if G is
a context-free grammar, we may be interested in the set of distinct parse trees
that result from derivations of x from the start symbol S of G. In principle, this
means that the correctness of a parsing algorithm can be established without
considering any particular input strings, since the set of all input-output pairs
are given implicitly by the grammar G itself.

The abstract nature of the grammar parsing problem is reflected in the
evaluation criteria that are usually applied to parsing methods in this context.
For example, a parsing algorithm is said to be consistent if, for any grammar
G and input string x, it only derives analyses for x that are licensed by G; it
is said to be complete if, for any G and x, it derives all analyses for x that
are licensed by G. For example, the grammar in figure 2.3 is ambiguous and
assigns to our example sentence not only the analysis in figure 2.1 but also
the analysis in figure 2.4. Thus, a complete parsing algorithm must compute
both these analyses, while a consistent algorithm must not compute any other
analysis. However, both consistency and completeness of an algorithm can
be proven without considering any particular grammar G or input string x,
given the formal definition of the class of grammars and the relevant notions
of derivation and representation.

The same goes for considerations of efficiency, where proofs of complexity,
either for particular parsing algorithms or for classes of grammars, provide the

4 For general overviews of grammar parsing techniques, with special reference to
natural language parsing, see Samuelsson and Wirén (2000) and Carroll (2003).

16 2 Natural Language Parsing

JJ

Economic

��
NN

news

��

�
�

�
�

�
�

�
�

�
�

��

NP

VBD

had

�
�

��

VP

S

JJ

little

��
NN

effect

��

��

					

NP

VP

IN

on

�
�

�

����

PP

JJ

financial

��
NNS

markets

��

��
NP PU

.

�
�

�
�

�
�

�
�

�
�

��

Fig. 2.4. Alternative constituent structure for English sentence (cf. figure 2.1)

most relevant tools for evaluation. Research on the complexity of linguistically
motivated classes of grammars was pioneered by Barton et al. (1987) and
has been followed by a large number of subsequent studies. For a context-
free grammar G, parsing can be performed in O(n3) time, where n is the
length of the input string x, using one of the dynamic programming algorithms
mentioned earlier. For mildly context-sensitive grammars, parsing complexity
is still polynomial — typically O(n6) — while for more expressive formalisms
running time becomes exponential in the worst case.

Although complexity results often need to be supplemented by practical
running time experiments, as shown for example by Carroll (1994), the role of
empirical evaluation is rather limited in grammar parsing, especially as far as
correctness is concerned. This follows from the fact that grammar parsing, as
defined here, is an abstract and mathematically well-defined problem, which
can be studied using formal methods only. One setting where such studies have
been performed very fruitfully is within the framework known as deductive
parsing (Shieber et al., 1995).

2.2.2 Text Parsing

The notion of text parsing applies to concrete manifestations of a language L,
where we do not necessarily assume that L is a formal language. In particular,
we are interested in the case where L is a natural language, or possibly a
restricted subset of a natural language. We assume that a text in a language
L is a sequence T = (x1, . . . , xn) of sentences xi, and we characterize the text
parsing problem as follows:

Given a text T = (x1, . . . , xn) in the language L, derive the correct
analysis for every sentence xi ∈ T .

2.2 Two Notions of Parsing 17

The term sentence should be understood here in the sense of text sentence
rather than system sentence (Lyons, 1977), i.e., it refers to a segment of text
without any specific assumptions about syntactic completeness or other struc-
tural properties. What constitutes a sentence in this sense may differ from one
language to the other and may not always be completely clear-cut. For the
time being we will simply disregard this problem, although it is well-known
that the problem of sentence segmentation in text processing is far from trivial
(Palmer, 2000). It is also worth pointing out that the concept of a text as a
sequence of sentences is an abstraction in the sense that it ignores all
aspects of non-sequential structure that resides, e.g., in the graphical layout
of printed texts. This seems like an appropriate abstraction for written text,
which is what we are concerned with in this study, but we will probably need a
different abstraction for spoken dialogue, where different principles of struc-
tural organization are at play and where the notion of sentence has a more
unclear status.

To exemplify the notion of text parsing, let us return again to the example
sentence from figure 2.1. In its original context, which is a text taken from
the Wall Street Journal and included in the Penn Treebank, this sentence has
an interpretation that corresponds to the analysis in figure 2.1 — rather than
the alternative analysis in figure 2.4. Therefore, the former analysis is the one
and only correct analysis in the context of text parsing.

Let us now return to the observations made concerning grammar parsing
in the previous section and see in what respects text parsing is different. First
of all, it is not clear that text parsing is a well-defined abstract problem in
the same sense as grammar parsing, especially not when we consider texts
in a natural language. It is true that text parsing has the structure of a
mapping problem, but in the absence of a formal definition for the language
L, there is no precise delimitation of the input set. Moreover, even if we can
agree on the formal properties of output representations, there is no formal
grammar defining the correct mapping from inputs to outputs. For example,
the syntactic representation in figure 2.1 is clearly of the kind that can be
defined by a context-free grammar. But according to our conception of the
text parsing problem, there is no specific instance of this formal grammar that
defines the mapping from an input string to a specific representation. In other
words, despite a superficial similarity to the definition of grammar parsing,
our characterization of the text parsing problem is not a formal definition
at all.

One way of looking at the problem is instead to say that it is an empirical
approximation problem, where we try to approximate the correct mapping
given increasingly large but finite samples of the mapping relation. Needless
to say, this is a view that fits very well with the data-driven approach to text
parsing, which will be discussed in a later section. However, the main point
right now is simply that, unlike grammar parsing, the problem of text parsing
lacks a precise definition in formal terms.

18 2 Natural Language Parsing

Secondly, text parsing lacks the connection between parsing and recogni-
tion that we observed for grammar parsing. This is a direct consequence of
the fact that the input language is not formally defined, which means that
recognition is not a well-defined problem. Therefore, we can no longer require
that an input string be part of the language to be analyzed. In most cases, we
instead have to assume that any text sentence is a valid input string. And if
we want to be able to reject some input strings as ill-formed, then we cannot
refer to a formal language definition but must appeal to some other criterion.

Thirdly, while there is no reference to a grammar in the definition of text
parsing, there is instead a reference to the sequence of sentences that provide
the textual context for each sentence to be analyzed. This is based on the
assumption that text parsing deals with language use, and that the analysis
assigned to a sentence is sensitive to the context in which it occurs. In particu-
lar, we assume that each text sentence has a single correct analysis, even if the
string of words realizing the sentence may be found with other interpretations
in other contexts. In other words, text parsing entails disambiguation.

However, the absence of a formal grammar also means that we need some
external criterion for deciding what is the correct analysis for a given sen-
tence in context. For natural languages, the obvious criterion to use is human
performance, meaning that an analysis is correct if it coincides with the in-
terpretation of competent users of the language in question. This leads to the
notion of an empirical gold standard, i.e., a reference corpus of texts, where
each relevant text segment has been assigned its correct analysis by a human
expert. In the case of syntactic parsing, the relevant segments are sentences
and the corpus will normally be a treebank (Abeillé, 2003b; Nivre, forthcom-
ing). Thus, our reason for saying that the analysis given in figure 2.1 is correct
is simply that this is the analysis found in the Penn Treebank.

The use of treebank data to establish a gold standard for text parsing is
problematic in many ways, and we will return to this problem in chapter 5.
For the time being, we will simply note that even if a gold standard treebank
can be established, it will only provide us with a finite sample of input-output
pairs, which means that any generalization to an infinite language will have to
rely on statistical inference. This is in marked contrast to the case of grammar
parsing, where the consistency and completeness of parsing algorithms, for any
grammar and any input, can be established using formal proofs.

The empirical nature of the text parsing problem is reflected also in the
evaluation criteria that are applied to parsing methods in this context. Since
notions of consistency and completeness are meaningless in the absence of a
formal grammar, the central evaluation criterion is instead the empirical no-
tion of accuracy, which is standardly operationalized as agreement with gold
standard data and which will be discussed in detail later on. However, it is
important to remember that, even though it is often difficult to apply formal
methods to the text parsing problem itself given its open-ended nature, the
parsing methods we develop to deal with this problem can of course be sub-
jected to the same rigorous analysis as algorithms for grammar parsing. Thus,

2.2 Two Notions of Parsing 19

if we are interested in the efficiency of different methods, we may use results
about theoretical complexity of algorithms as well as empirical running time
experiments. Formal methods can also be used to study aspects of robustness
and disambiguation, as we shall see later on. However, for the central notion of
accuracy, there seems to be no alternative but to rely on empirical evaluation
methods, at least not given the current state of our knowledge.

2.2.3 Competence and Performance

The discussion of grammar parsing and text parsing leads naturally to a con-
sideration of the well-known distinction between competence and performance
in linguistic theory (Chomsky, 1965).5 It may be tempting to assume that
grammar parsing belongs to the realm of competence, while text parsing is
concerned with performance. After all, the whole tradition of generative gram-
mar in linguistics is built on the idea of using formal grammars to model
linguistic competence, starting with Chomsky (1957, 1965). The idea that
natural languages can be modeled as formal languages unites theorists as dif-
ferent as Chomsky and Montague (1970), although it is much less prominent
in recent formulations of Chomsky’s theory (Chomsky, 1981, 1995). Within
this tradition, it might be natural to view the study of grammar parsing,
when applied to natural language, as the study of idealized human sentence
processing.

The traditional notion of linguistic competence has recently been called
into question, and it has been suggested that many of the properties typically
associated with linguistic performance, such as frequency effects and proba-
bilistic category structure, also belong to our linguistic competence (Bod, Hay
and Jannedy, 2003). We will not pursue these complex and controversial issues
here, and the nature of linguistic competence, fascinating as it is, falls outside
the scope of this study.

On the other hand, it seems quite clear that text parsing is concerned
with linguistic performance, at least if we want to use text parsing methods
to build practical systems that can handle naturally occurring texts. This
means that a model of linguistic competence is of use to us only if it can be
coupled with an appropriate model of performance. So, regardless of whether
grammar parsing is a good model of linguistic competence or not, it is still
an open question what role it has to play in text parsing (cf. Jensen, 1988;
Chanod, 2001).

This question will be discussed in detail in the next section, but before we
leave the topic of grammar parsing as such, it should be emphasized that this
is in any case a very fruitful area of research. Investigations of the complexity
of formal grammars and their parsing algorithms have applications in many

5 Before Chomsky, similar distinctions had been proposed by De Saussure (1916),
between langue and parole, and by Hjelmslev (1943), between system and process,
among others.

20 2 Natural Language Parsing

areas of computer science, and work on the complexity of linguistically moti-
vated formalisms has had a profound influence on the development of natural
language parsing, including the approach investigated in this book.

2.3 Methods for Text Parsing

The main conclusion from the preceding section is that grammar parsing
and text parsing are in many ways radically different problems and there-
fore require different methods. In particular, grammar parsing is an abstract
problem, which can be studied using formal methods and internal evaluation
criteria, while text parsing is an empirical problem, where formal methods
need to be combined with experimental methods and external evaluation cri-
teria. In this section, we will go on to discuss methods that have been proposed
for text parsing, which is the problem that concerns us here. Some of these
methods crucially involve grammar parsing; others do not.

Following Carroll (2000), we distinguish two broad types of strategy: the
grammar-driven approach and the data-driven approach. However, we want to
emphasize at the outset that these types are in a sense stereotypes, represent-
ing extreme strategies, which means that many existing approaches actually
combine elements of both. In fact, at the end of this section we will even go
so far as to suggest that recent developments in the field can be seen as signs
of convergence between these apparently opposite strategies. Nevertheless, we
believe that it is instructive to start out by considering them as alternative
methods, since this will highlight the way they tackle the different problems
that arise in parsing unrestricted natural language text.

By necessity, any method for text parsing must rely on an approximation,
where a well-defined abstract problem is used as a model of the real practical
text parsing problem. By computing a solution to the abstract model problem,
we can approximate a solution to the real problem. But the adequacy of this
approximation can only be assessed through empirical evaluation. The main
difference between the grammar-driven and the data-driven approach lies in
the type of abstract problem that is chosen to model the text parsing problem.

2.3.1 Grammar-Driven Text Parsing

In the grammar-driven approach, text parsing is modeled by the abstract
problem of grammar parsing. Hence, a formal grammar G is used to define
the language L(G) that can be parsed and the class of analyses to be returned
for each string in the language. A grammar parsing algorithm is then used to
compute the analyses of a given input string, as described in section 2.2.1. The
grammar may be hand-crafted or it may be wholly or partially induced from
corpus data. It may be coupled with a statistical model for parse selection,
and it may allow partial analyses to achieve robustness. But the essence of

2.3 Methods for Text Parsing 21

the grammar-driven approach, as understood here, is that it is based on a
grammar G defining a formal language L(G).

Given our characterization of text parsing in section 2.2.2, it is clear that
the grammar-driven approach is based on a crucial assumption, namely that
the formal language L(G) is a reasonable approximation of the language L
that we want to process. In practice, it is arguably the case that most if not
all of the formal grammars that have been developed for natural languages
to date fail to meet this assumption, and the formal language L(G) is at best
a restricted subset of the natural language L. This does not undermine the
grammar-driven approach in principle, since it is always possible to argue that
advances in linguistic theory will lead to successively better approximations,
but it does create important problems for practical applications of grammar-
driven text parsing in the meantime. Many of the research directions in natural
language parsing during the last two decades can be seen as motivated by the
desire to overcome these problems.

An analogy with syntactic parsing in compilers for programming languages
may be illuminating at this point. In a way, parsing computer programs is
also a kind of text parsing, but there is a crucial difference in that we know
from the start that the approximation L(G) = L can be made perfect, simply
because the programming language L is itself a formal language with a precise
syntax definition. Moreover, this definition is usually expressible in a carefully
restricted subclass of context-free grammar. This does not necessarily mean
that compilers always use grammar-driven parsers in practice, or that they
use a grammar G such that L(G) exactly coincides with L, but it means that
it is always possible to find out whether the approximation is perfect or not.
For natural languages, this is unfortunately not the case.

One of the hardest problems for the grammar-driven approach has tradi-
tionally been to achieve robustness, where robustness can be defined as the
capacity of a system to analyze any input sentence. Alternatively, we may view
robustness as a matter of degree and say that a system is more robust if it can
adequately handle a larger proportion of the input data. In either case, the
shortcomings of grammar-driven systems in this respect can be traced back
to the fact that some input sentences xi in a text T are not in the language
L(G) defined by the formal grammar G.

Theoretically speaking, it is possible to distinguish two problematic cases
where xi �∈ L(G). In the first case, xi is a perfectly well-formed sentence of the
language L and should therefore also be in L(G) but is not. This is sometimes
referred to as the problem of coverage, since it should be eliminated by in-
creasing the coverage of the grammar. In the second case, xi is considered not
to be part of L, and should therefore not be in L(G) either, but nevertheless
has a reasonable syntactic analysis. This can then be called the problem of
robustness proper. Examples of the latter type include sentences where some
word is misspelled or even omitted, but where it is nevertheless possible to
analyze the syntactic structure of (the rest of) the sentence.

22 2 Natural Language Parsing

For example, if our example sentence from figure 2.1 had contained the
token impact or the token effact, instead of the token effect, then the sentence
would not have been included in the language defined by the grammar in
figure 2.3. In the first case, this would be a problem of coverage, since impact
is a real English word, which can occur in the same structural position as
effect. In the second case, it would be a problem of robustness, since effact is
not a word of English.

However, even though there are many clear-cut examples like these, there
are also many cases where it is difficult to decide whether a sentence that is
not in L(G) is in L, at least without making appeal to a prescriptive gram-
mar for the natural language L. For certain practical applications, such as
grammar checking, it is obviously both relevant and necessary to use this
kind of information, but it can be problematic in the general case. Moreover,
since it is difficult to apply the distinction between coverage and robustness
to approaches that are not grammar-driven, we will not try to maintain this
distinction in general but simply treat all failures to analyze input sentences
as problems of robustness.6

As pointed out by Samuelsson and Wirén (2000), there are essentially two
methods that have been proposed to overcome the robustness problem for
grammar-driven systems. The first is to relax the grammatical constraints of G
in such a way that a sentence outside L(G) can be assigned a complete analysis
(Jensen and Heidorn, 1983; Mellish, 1989). This method has the potential
drawback that the number of relaxation alternatives that are compatible with
analyses of the complete input may become extremely large, and this in turn
will aggravate the problem of disambiguation to be discussed below.

The second method is to maintain the constraints of G but to recover
as much structure as possible from well-formed fragments of the sentence.
This leads to the notion of partial parsing, which has been explored within
many different frameworks such as deterministic parsing (Hindle, 1989, 1994),
chart parsing (Lang, 1988), finite state parsing (Ejerhed, 1983; Koskenniemi,
1990, 1997; Abney, 1991, 1996; Oflazer, 2003), and Constraint Grammar (CG)
parsing (Karlsson, 1990; Karlsson et al., 1995), and which nowadays includes
not only recovery techniques but also approaches that never attempt to build
a complete syntactic structure. Compared to constraint relaxation, partial
parsing has the advantage of hiding ambiguity instead of increasing it, since
a partial syntactic analysis can be viewed as an underspecified representation
of a complete analysis and therefore fails to exhibit some of the ambiguities
that distinguish non-equivalent complete analyses. For example, a chunking
analysis can be viewed as a partial, underspecified constituency analysis, and
a CG analysis as a partial dependency analysis.

In this way, partial parsing can be seen as a way to sacrifice completeness
and depth of analysis to improve robustness and efficiency (Abney, 1997).

6 For a more extensive discussion of robustness in natural language parsing, see
Menzel (1995), Junqua and Van Noord (2001) and Basili and Zanzotto (2002).

2.3 Methods for Text Parsing 23

This may be useful especially in applications that do not require a complete
syntactic analysis. However, it is also possible to view partial parsing as a
way to break down the complex parsing problem into subproblems that may
be easier to manage. This leads to the notion of cascaded partial parsing
(Abney, 1996), where full parsing is achieved through a sequence of partial
parsers, where each parser takes as input the output of the preceding one.
A variant of this approach is the use of supertagging, pioneered by Bangalore
and Joshi (1999), where the words of a sentence are annotated with rich
structural or functional categories in order to facilitate the derivation of a
syntactic structure in a second step (Joshi and Sarkar, 2003). In a similar vein,
the framework of Functional Dependency Grammar (FDG) (Tapanainen and
Järvinen, 1997; Järvinen and Tapanainen, 1998) uses CG parsing as a form
of supertagging for the construction of dependency structures.

Although we have made a distinction between constraint relaxation and
partial parsing as two strategies for achieving robustness in grammar-based
text parsing, it should be pointed out that practical implementations often
combine the two techniques. For example, in a CG parser that constructs
a partial analysis by applying constraints in an eliminative fashion, there is
usually a mechanism to prevent the elimination of the last analysis, which is
in fact a general mechanism for constraint relaxation that guarantees that the
system will output an analysis even if there is no analysis that satisfies all the
constraints of the grammar.

Another major problem for grammar-driven text parsing is the problem
of disambiguation, which is caused by the fact that the number of analyses
assigned to a sentence xi by the grammar G can be very large, while text
parsing requires that a small number of analyses (preferably a single one)
are selected as appropriate in the context of the text T . For example, the
grammar in figure 2.3 assigns two different analyses to our example sentence
(cf. figure 2.1 and figure 2.4), which means that a text parsing system using
this grammar must incorporate a mechanism for selecting one of them as
correct in the given context.7

Again, we can make a theoretical distinction between two reasons that
the grammar parser outputs more than one analysis for a given string. On
the one hand, we have cases of true ambiguity, i.e., where xi admits of more
than one syntactic analysis in the language L, even though only one of them
is appropriate in the textual context, and where the grammar G captures
this by assigning several analyses to xi. On the other hand, it may be the
case that the grammar G contains rules that license analyses for xi that are
never encountered in L. The latter problem is sometimes called the leakage
problem, in allusion to Sapir’s famous statement that ‘[a]ll grammars leak’
(Sapir, 1921, 39), or simply overgeneration. Although one might argue that it

7 For this particular sentence, it is not clear that the syntactic ambiguity makes
a difference in meaning. In fact, it could even be argued that have little effect is
a light verb construction and that the analysis in figure 2.4 is more appropriate.

24 2 Natural Language Parsing

is only the former problem that relates to disambiguation proper, it is again
very difficult in practice to draw a sharp distinction between problems of
leakage and problems of disambiguation, and we will therefore use the term
disambiguation for the process of reducing the number of analyses assigned to
a string, whether the analyses should be licensed by an underlying grammar
or not.

Early work related to the ambiguity problem used specialized grammars
for different domains of text. Even though this will not lead to complete
disambiguation in all cases, it can drastically reduce the number of analyses
assigned to a given string, compared to broad-coverage domain-independent
grammars. A more sophisticated variant of this approach, which also allows
grammar resources to be reused across domains, is to use machine learning
techniques to specialize a grammar to a new domain (Grishman et al., 1984;
Samuelsson and Rayner, 1991).

A different approach to disambiguation in grammar-driven text parsing is
to use deterministic processing and try to ensure that, as far as possible, a
correct decision is made at each nondeterministic choice point corresponding
to an ambiguity (Marcus, 1980; Shieber, 1983). As mentioned earlier, this line
of research has often been motivated by a desire to model human sentence
processing, which is assumed to use deterministic disambiguation in com-
bination with backtracking if necessary. An early version of the framework
investigated in this book used a simple grammar together with hand-crafted
heuristics to achieve deterministic dependency parsing (Nivre, 2003).

Disambiguation is not independent of the basic parsing methodology, and
it could be argued that eliminative and transformational methods are more
geared towards disambiguation than traditional constructive methods. In an
eliminative framework, parsing and disambiguation can be said to coincide,
since parsing is performed by successively eliminating candidate analyses, as
in the CG framework or its descendant FDG. On the other hand, this kind of
eliminative parsing presupposes that we construct a compact representation
of the space of possible analyses, which means that it can also be viewed as
a very simple and efficient form of constructive parsing followed by elimina-
tive disambiguation. In the transformational approach, parsing is instead the
successive transformation of a single representation, which means that there
is only one analysis available at any point in time. This technique has been
used for disambiguation in transformation-based parsing (Brill, 1993) and
Weighted Constraint Dependency Grammar (WCDG) (Foth et al., 2004).

However, the most common approach to disambiguation in recent years
has been the use of statistical information about the text language L to rank
multiple competing analyses (n-best parsing) or to select a single preferred
analysis. There are several ways in which statistical information can be in-
tegrated into the grammar-driven approach, but the most straightforward
approach is to use a stochastic extension of a formal grammar, the most well-
known example being probabilistic context-free grammar (PCFG). In a PCFG,
every context-free production is associated with a probability p in such a way

2.3 Methods for Text Parsing 25

S → NP VP PU 1.0 JJ → Economic 0.3
VP → VP PP 0.3 JJ → little 0.5
VP → VBD NP 0.7 JJ → financial 0.2
NP → NP PP 0.2 NN → news 0.4
NP → JJ NN 0.5 NN → effect 0.6
NP → JJ NNS 0.3 NNS → markets 1.0
PP → IN NP 1.0 VBD → had 1.0
PU → . 1.0 IN → on 1.0

Fig. 2.5. Probabilistic context-free grammar for a fragment of English

that the probabilities of all productions with the same left-hand side sum to
1. Thus, the probability of a production A → ω is the conditional probability
P (ω |A) of the right-hand side ω given the left-hand side A. The probability of
a parse tree is then the product of probabilities of all the productions used to
construct it (Booth and Thompson, 1973), which amounts to assuming that
all production probabilities are mutually independent.

Figure 2.5 shows a PCFG based on the CFG in figure 2.3. Although the
actual probabilities assigned to the different rules are completely unrealistic
because of the very limited coverage of the grammar, it nevertheless serves to
illustrate the notion of a probabilistic grammar. According to this grammar,
the probability of the parse tree in figure 2.1 is 0.0000756, while the probability
of the parse tree in figure 2.4 is 0.0001134. In other words, using this PCFG
for disambiguation, we would prefer the second analysis, which attaches the
PP on financial markets to the verb had, rather than to the noun effect.
According to the annotation in the Penn Treebank, this would not be the
correct choice.

Early work on PCFG parsing used unsupervised machine learning, in par-
ticular the Inside-Outside algorithm (Baker, 1979), applied to text corpora to
estimate the probabilistic parameters of hand-crafted context-free grammars
(Fusijaki et al., 1989; Pereira and Schabes, 1992). But given a treebank with
context-free syntactic representations, it is also possible to extract produc-
tions directly from the analyses in the treebank and to use frequency counts
to estimate probabilistic parameters in a supervised fashion, which results in
a so-called treebank grammar (Charniak, 1996).

The probabilistic model associated with PCFGs has turned out to be a
rather blunt tool for disambiguation, because its independence assumptions
are such that it misses dependencies that seem to be important for correct dis-
ambiguation. For example, bilexical dependencies, i.e., dependencies between
word pairs, are outside the reach of the basic model. This has led people to
explore various kinds of lexicalized stochastic grammars, either based on the
PCFG model or on other formal grammars such as Lexical Tree Adjoining
Grammar (LTAG) (Schabes et al., 1988), for which stochastic versions have
been defined by Schabes (1992) and Resnik (1992). In fact, most of the ad-
vances in text parsing during the last decade can be traced to the development

26 2 Natural Language Parsing

of better statistical methods for disambiguation. This often results in a
combination of the grammar-driven and data-driven approaches, and we will
postpone our discussion of these methods until the next section, where they
will be treated together with other data-driven methods for text parsing.

The problems of robustness and disambiguation cannot be studied in iso-
lation from the problem of accuracy. If robustness and disambiguation have
traditionally been considered the stumbling blocks for grammar-driven text
parsing, it is often assumed that this approach has an advantage with respect
to accuracy, since the grammar G is meant to guarantee that the analysis
assigned to a sentence xi in a text T is linguistically adequate. However, even
if we disregard the leakage problem, this argument is only tenable as long
as we do not require robustness and disambiguation. As we have seen above,
robustness may require the analysis of strings that are not in the language
L(G) defined by the grammar. And disambiguation normally entails discard-
ing most of the analyses assigned to a string by the grammar. All other things
being equal, these requirements will decrease the likelihood that a given string
xi ∈ T is assigned the contextually correct analysis by the parsing system.
This means that we need to consider the joint optimization of robustness, dis-
ambiguation and accuracy, even if we can decide to prioritize them differently.

The need for joint optimization also includes the final problem that we will
consider, namely efficiency, which can be a more or less serious problem for the
grammar-driven approach depending on the expressivity and complexity of the
formal grammars used. For many linguistically motivated frameworks, such as
LFG and GPSG, the parsing problem has been shown to be computationally
intractable (Barton et al., 1987).8 It should be remembered, though, that these
results concern the theoretically worst case, which for many frameworks occurs
only under very special circumstances. Therefore, exponential time algorithms
can often be used in practical parsing systems, possibly in combination with
special mechanisms to limit the computational effort when the worst-case
exponential behavior is encountered (Kaplan et al., 2004). Another approach,
which is less common in practice, is to make use of context-free approximations
of the full-fledged grammar (Torisawa et al., 2000).

But even for grammars that allow parsing in polynomial time and space,
efficiency can be a problem in practical applications. This is the case for many
of the mildly context-sensitive grammar formalisms that have been proposed
for natural language syntax, such as Tree Adjoining Grammar (TAG) (Joshi,
1985, 1997) and Combinatory Categorial Grammar (CCG) (Steedman, 2000),
where the time complexity for parsing is O(n6) relative to the length n of the
input string. Moreover, the requirements of robustness and disambiguation
can easily compromise efficiency. Enforcing robustness by relaxing constraints
may lead to a combinatorial explosion in the number of possible analyses,

8 LFG parsing is NP hard, which means that it is probably not computable in poly-
nomial time; GPSG parsing is EXP-POLY hard, which means that it is certainly
not computable in polynomial time (Barton et al., 1987).

2.3 Methods for Text Parsing 27

and disambiguation may require the enumeration of an exponential number of
analyses from the compact tabular representation computed during parsing. In
addition, both time and space complexity are normally dependent on the size
of the grammar, as well as the degree of lexical ambiguity, factors that may in
fact dominate the time and space consumption as grammar size grows with the
increased coverage required by robustness. However, important progress has
been made in recent years to speed up parsing for highly expressive grammar
frameworks, as reported, e.g., in Malouf et al. (2000); Oepen and Carroll
(2000); Riezler et al. (2002); Miyao et al. (2003); Kaplan et al. (2004); Clark
and Curran (2004); Curran and Clark (2004).

Finally, it is worth noting that the most efficient methods for grammar-
driven text parsing are those that are based on deterministic algorithms,
whether they apply to context-free grammars (Hindle, 1989, 1994), to finite
state models (Ejerhed, 1983; Koskenniemi, 1990, 1997; Abney, 1991, 1996;
Roche, 1997; Oflazer, 2003), or to automatically induced finite state approxi-
mations of context-free grammars (Pereira and Wright, 1997; Nederhof, 1998,
2000; Mohri and Nederhof, 2001).

2.3.2 Data-Driven Text Parsing

In the data-driven approach to text parsing, a formal grammar is no longer a
necessary component of the parsing system. Instead, the mapping from input
strings to output analyses is defined by an inductive mechanism applying to a
text sample Tt = (x1, . . . , xn) from the language L to be analyzed. Hence, the
abstract problem used to approximate text parsing in this case is a problem
of inductive inference, which may or may not be constrained by a formal
grammar. In general, we can distinguish three essential components in a data-
driven text parser:

1. A formal model M defining permissible analyses for sentences in L.
2. A sample of text Tt = (x1, . . . , xn) from L, with or without the correct

analyses At = (y1, . . . , yn).
3. An inductive inference scheme I defining actual analyses for the sentences

of any text T = (x1, . . . , xn) in L, relative to M and Tt (and possibly At).

This may not be the most familiar way to describe data-driven text parsing,
but we believe that this characterization provides a useful abstraction over
many existing approaches and furthermore allows a fruitful comparison to the
grammar-driven approach.9

The first thing to note is that the formal model M may in fact be a formal
grammar G, in which case permissible representations will be restricted to
strings of the formal language L(G). For example, in the standard PCFG
model the permissible analyses are defined by a context-free grammar G. But

9 For a somewhat different but largely compatible view, see Collins (1999); cf. also
Manning and Schütze (2000).

28 2 Natural Language Parsing

it can also be a model that provides constraints on representations without
defining a string language in the process. A simple example would be a model
that allows any context-free parse tree whose nonterminal nodes are labeled
with symbols from a given set N but whose terminal nodes are labeled with
arbitrary word tokens occurring in text sentences of L. As pointed out by
Bod (1998), such a model is not a grammar in the formal sense but a dynamic
system, since the set of accepted strings cannot be defined independently of
the input to the system.

The sample of text Tt, which will normally be called the training data,
may or may not be annotated with representations satisfying the constraints
of M , i.e., it may or may not be extracted from a treebank of the language L.
If Tt is a treebank sample, then there also exists a corresponding sequence of
analyses At = (y1, . . . , yn), where yi is the correct analysis of xi according to
the treebank annotation. Then the inductive inference scheme I will typically
be based on a form of supervised machine learning (Mitchell, 1997; Hastie
et al., 2001). A typical example is the induction of a PCFG by extracting all
context-free productions encountered in the treebank and using the relative
frequency of each production to estimate its probability, a so-called treebank
grammar (Charniak, 1996). If Tt is a raw text sample, there is no sequence of
analyses given, but unsupervised learning may be used. Thus, early work on
PCFG parsing applied the Inside-Outside algorithm to raw text corpora in
order to estimate the probabilistic parameters of a hand-crafted context-free
grammar (Fusijaki et al., 1989; Pereira and Schabes, 1992). However, since the
accuracy obtained with unsupervised methods remains inferior to supervised
approaches, the latter have dominated the field in recent years.

The inductive inference scheme I, which defines the actual analyses of
a given string x, relative to the model M and the sample Tt, can often be
decomposed into three distinct components:

1. A parameterized stochastic model MΘ assigning a score S(x, y) to each
permissible analysis y of a sentence x, relative to a set of parameters Θ.

2. A parsing method, i.e., a method for computing the best analysis y for a
sentence x according to S(x, y) (given an instantiation of Θ).

3. A learning method, i.e., a method for instantiating Θ based on inductive
inference from the training sample Tt.

In the PCFG model, the parameters in Θ are the probabilities associated
with the rules of the context-free grammar, while the score S(x, y) is the joint
probability P (x, y), which can be computed by multiplying rule probabilities
according to the normal independence assumptions. As we have already seen,
this score can be used to rank alternative analyses and select the optimal
analysis according to the model. As parsing method, we can use one of the
standard context-free parsing algorithms extended to PCFG parsing, such
as the CKY algorithm (Ney, 1991) or Earley’s algorithm (Stolcke, 1995). As
learning method, it is common to use some form of maximum likelihood esti-
mation, either based on relative frequencies from a treebank, or based on the

2.3 Methods for Text Parsing 29

unsupervised Inside-Outside algorithm. In any case, it is important to note
that one and the same parameterized stochastic model MΘ can be combined
with different parsing methods as well as different learning methods, and that
parsing methods and learning methods are largely independent of each other.

It is worth emphasizing that in order for the system to be usable in prac-
tice, there must be effective ways to implement parsing and learning methods,
so that the actual analyses for a sentence can be computed with reasonable
efficiency. Usually, this computation is divided into a training phase, where the
learning method is applied once to the training sample Tt in order to estimate
the parameters of the model MΘ, and a parsing phase, where analyses are
constructed and scored for individual sentences, although the exact division
of labor between the phases depends on the methods involved. As noted in
relation to the PCFG model, parsing methods in the data-driven approach are
often closely related to grammar parsing algorithms, especially if the model
M is a formal grammar or some other model with a closely related structure.
However, for certain types of models it may not be possible to use standard
grammar parsing methods, because the search space defined by the stochastic
model is too complex. We will return to this problem when we discuss the
efficiency problem for the data-driven approach.

In the previous section, we observed that grammar-based text parsing
rests on the assumption that the text language L can be approximated by
a formal language L(G) defined by a grammar G. The data-driven approach
is also based on an approximation, but this approximation is of an entirely
different kind. While the grammar-based approximation in itself only defines
permissible analyses for sentences and has to rely on other mechanisms for
textual disambiguation, the data-driven approach tries to approximate the
function of textual disambiguation directly. And while the grammar-based
approximation is an essentially deductive approach, the data-driven approach
is based on inductive inference from a finite sample Tt = (x1, . . . , xn) to the
infinite language L.

It is a fundamental property of inductive inference that without making
any a priori assumptions we have no rational basis for choosing one hypothesis
over the other. For instance, there is an infinite number of languages L that
are compatible with any finite text sample Tt. Thus, in order to support any
kind of generalization beyond the training sample Tt, the inference scheme
I must introduce an inductive bias, which can be defined as a minimal set
of assertions B such that our inferences are entailed by B together with (a
logical description of) the sample Tt (Mitchell, 1997). The bias of a particular
model will in general depend both on the stochastic model MΘ and on the
learning method used.

Choosing the right inductive bias is essential for a good approximation, and
research on machine learning of natural language during the last ten to fifteen
years has produced many results about what bias may be appropriate for
different problems in natural language processing. We will review some of this
research later in this chapter, when we discuss the problem of disambiguation

30 2 Natural Language Parsing

in data-driven parsing. For the time being, we will simply observe that whereas
the grammar-driven approach depends on a more or less satisfactory language
approximation, the data-driven approach depends on inductive inference from
a more or less representative language sample using a more or less appropriate
inductive bias. These different starting points explain why problems such as
robustness, disambiguation, accuracy and efficiency may appear quite different
in the two extreme approaches. Let us now proceed to an examination of these
problems in the context of data-driven text parsing.

If the grammar-based approach is sometimes characterized as being strong
with respect to accuracy, but weaker with respect to robustness, disambigua-
tion and efficiency, the reverse is often said to be true for the data-driven
approach. In both cases, this is at best an oversimplification. Starting with
robustness, there is no reason that the data-driven approach should be in-
herently more robust than the grammar-based approach. It all depends on
properties of the formal model M as well as the inference scheme I used for
generalization to unseen sentences. However, it is a contingent fact about most
existing data-driven systems for text parsing that these components are de-
fined in such a way that any possible input string x is assigned at least one
analysis, which means that the robustness problem is eliminated.

This kind of absolute robustness can be illustrated by the framework of
Data-Oriented Parsing (DOP) (Bod, 1995, 1998; Bod, Scha and Sima’an,
2003). More precisely, we will consider the model DOP3 in (Bod, 1998), which
can be described as follows:

1. The formal model M defines as a permissible analysis for a string x any
parse tree that can be composed from subtrees of trees in the text sample,
using leftmost node substitution and allowing the insertion of words from
x (even if these do not occur in the training sample).

2. The text sample Tt = (x1, . . . , xn) is a sample of sentences from a treebank
containing the corresponding context-free parse trees At = (y1, . . . , yn).

3. The inductive inference scheme I is based on a stochastic model MΘ that
defines the probability P (x, y) to be the sum of the probabilities P (Di),
for every derivation Di of y for x, which in turn is defined as the product
of the probabilities P (tj), for every subtree tj used in Di.

It is a fundamental property of this model that, since any subtree has a
non-zero probability, and since parse trees can be composed from arbitrary
subtrees, any input string x can be assigned an analysis y with a non-zero
probability P (x, y). This in turn means that, provided that the model can be
paired with efficient learning and parsing methods, the robustness problem is
eliminated.

A consequence of the extreme robustness is that these data-driven parsers
will analyze strings that are probably not in the text language L under any
characterization. If we compare this to the grammar-driven language approxi-
mation, where the robustness problem arises from the fact that some sentences
in L are not in the language L(G) defined by the grammar, we can say that

2.3 Methods for Text Parsing 31

the data-driven approach avoids the robustness problem by a kind of superset
approximation, i.e., any sentence in L is a string that can be analyzed by the
parser, but not necessarily vice versa.

Another consequence is that the number of analyses assigned to each input
string will usually be very large. In this way, the development from PCFGs
to robust DOP models can be seen as an extreme form of constraint relax-
ation, which is one of the methods used to alleviate the robustness problem
in grammar-driven parsing but which can easily lead to an explosion in the
number of analyses assigned to a sentence (cf. section 2.2.1). However, given
a proper stochastic model, this is a rather controlled form of constraint re-
laxation, since all the different analyses can be ranked with respect to their
score, which also means that we have a method for pruning the search space
in a principled way, which is often necessary for reasons of efficiency.

Given the way in which the data-driven approach normally eliminates
the robustness problem, there is little use for the second main technique to
handle robustness in the grammar-driven approach, namely partial parsing.
However, this does not mean that data-driven methods cannot be used to
achieve partial parsing, e.g., chunking, as shown very early by Church (1988),
using probabilistic methods, and later on by Ramshaw and Marcus (1995),
using transformation-based learning. Other learning methods that have been
used for data-driven partial parsing include memory-based learning (Veen-
stra, 1998; Tjong Kim Sang and Veenstra, 1999) and support vector machines
(Kudo and Matsumoto, 2000). A collection of data-driven methods applied
to partial parsing can be found in Cardie et al. (2000) and a survey of the
field in Hammerton et al. (2002). Data-driven methods have also been used to
construct cascaded partial parsers that approximate full parsing, e.g., using
Hidden Markov Models (Brants, 1999) or memory-based partial parsing and
grammatical relation finding (Argamon et al., 1998; Daelemans et al., 1999;
Tjong Kim Sang and Veenstra, 2001; Buchholz, 2002).

As already noted, the problem of disambiguation can in many cases be even
more severe in data-driven text parsing than for traditional grammar-driven
systems, since the improved robustness that is the result of extreme con-
straint relaxation comes at the expense of massive overgeneration or leakage.
However, this is compensated by the fact that the inductive inference scheme
provides a mechanism for disambiguation, either by associating a score with
each analysis, intended to reflect some optimality criterion, or by implicitly
maximizing this criterion in a deterministic selection. In general, inductive
learning methods can be grouped into three groups according to the type of
mechanism they provide for ranking or selection (Jebara, 2004):

1. Generative models score analyses with the joint probability P (x, y) of the
string x and the analysis y.

2. Conditional models score analyses with the conditional probability P (y |x)
of the analysis y given the string x.

32 2 Natural Language Parsing

3. Discriminative models select the analysis y that maximizes the conditional
probability P (y |x) (without computing it).

Conditional and discriminative models are not always distinguished in the
literature, and the term discriminative is often used to cover all models that
attempt to maximize the conditional probability P (y |x). It is also impor-
tant to distinguish the structure of the model and the probability that is
maximized, which is what we are concerned with here, from the method of
parameter estimation, which may also be classified as generative, conditional
or discriminative (Klein and Manning, 2002; Henderson, 2004). We will return
to this distinction later on.

In the previous section, we discussed some of the early work on data-
driven disambiguation, based on the generative PCFG model. The relatively
poor parsing accuracy achieved with this model is usually attributed to two
major weaknesses: the lack of sensitivity to lexical dependencies and the lack of
sensitivity to structural preferences (Collins, 1999).10 The first observation has
motivated a wide range of experiments with lexicalized probabilistic models
(Hindle and Rooth, 1991; Schabes, 1992; Resnik, 1992; Collins and Brooks,
1995; Charniak, 1997a). And even though the significance of lexicalization
has later been called into question by Klein and Manning (2003), it is striking
that virtually all current models for data-driven disambiguation make use of
lexical information. Many of these models, which are based on binary relations
between lexical items, can be subsumed under the notion of bilexical grammar
(Eisner, 2000). Bilexical relations are especially important in models based on
dependency representations of syntactic structure, such as those of Eisner
(1996a,b), Yamada and Matsumoto (2003), and the models investigated in
this book (Nivre et al., 2004; Nivre and Scholz, 2004).

The second weakness of the PCFG model is the lack of sensitivity to struc-
tural preferences, such as the preference for right-branching or left-branching
structures in different languages (Collins, 1999). In order to capture such
preferences, we need a different parameterization of syntactic structures, with
more flexible independence assumptions, so that the probability of a certain
structure can be conditioned on the most significant parts of the surrounding
structure. This was the main motivation for the development of history-based
models of natural language processing, which were first introduced by Black
et al. (1992) and have been used extensively both for tagging and parsing.
The idea is to map each pair (x, y) of an input string x and an analysis y
to a sequence of decisions D = (d1, . . . , dn). In a generative model, the joint
probability P (x, y) can then be expressed using the chain rule of probabilities
as follows:

P (x, y) = P (d1, . . . , dn) =
n∏

i=1

P (di | d1, . . . , di−1) (2.1)

10 Further problems with the PCFG model are discussed by Briscoe and Carroll
(1993); cf. also Klein and Manning (2003).

2.3 Methods for Text Parsing 33

The conditioning context for each di, (d1, . . . , di−1), is referred to as the history
and usually corresponds to some partially built structure. In order to get a
tractable learning problem, histories are then grouped into equivalence classes
by a function Φ (Black et al., 1992):

P (x, y) = P (d1, . . . , dn) =
n∏

i=1

P (di |Φ(d1, . . . , di−1)) (2.2)

Early versions of this scheme were integrated into grammar-driven systems.
For example, Black et al. (1993) used a standard PCFG but could improve
parsing performance considerably by using a history-based model for bottom-
up construction of leftmost derivations. Briscoe and Carroll (1993) instead
started from a unification-based grammar and employed LR parsing, using
supervised learning to assign probabilities to transitions in an LALR(1) parse
table constructed from the context-free backbone of the original grammar (cf.
also Carroll and Briscoe, 1996).

Generative history-based models are most well-known from the influen-
tial work of Collins (1997, 1999) and Charniak (2000). These models are
based on a stochastic process generating parse trees top-down, where the
children of a given node are generated, not by complete productions as in the
PCFG model, but by Markov processes generating one child at a time, condi-
tioned on some partially built structure. Charniak (1997b) uses the popular
term Markov grammar for this kind of model, although these models are not
strictly speaking grammar-driven, since they will normally accept any input
string in the same way as the DOP model considered earlier. The Collins
and Charniak models are also similar in that they make heavy use of lexical
dependencies, a property inherited from their earlier models (Collins, 1996;
Charniak, 1997a). Generative models of a similar kind have also been proposed
for dependency-based syntactic representations, e.g., by Eisner (1996a,b) and
Wang and Harper (2004).

The various models proposed within the DOP framework (Bod, 1995, 1998;
Bod, Scha and Sima’an, 2003) are usually not considered to be history-based,
although they are normally generative models. However, it is not hard to
relate them to the history-based approach. The first difference is that the DOP
model assumes a many-to-one relationship between derivations and analyses,
which means that the probability P (x, y) has to be computed as a sum over
all derivations Di = (d1, . . . , dni

) of the analysis y for the input string x
(assuming that D1, . . . , Dm are all the derivations of analysis y for input x):

P (x, y) =
m∑

i=1

P (d1, . . . , dni
) =

m∑
i=1

ni∏
j=1

P (dj |Φ(d1, . . . , dj−1)) (2.3)

The second difference is that derivations are defined only in terms of which
fragments are used to build the analysis, where fragments are assumed to be
independent of each other:

34 2 Natural Language Parsing

P (x, y) =
m∑

i=1

P (d1, . . . , dni
) =

m∑
i=1

ni∏
j=1

P (dj) (2.4)

The idea of summing over all derivations appears to be good for disambigua-
tion but makes parsing intractable (Bod, 1998, chapter 4), a problem to which
we will return later in this section. The DOP models have a lot in common
with the stochastic version of LTAG parsing, which is also based on a sum-of-
products model, albeit in combination with a grammar-based approach where
permissible fragments and composition operations are defined by the LTAG
formalism (Joshi and Sarkar, 2003).

History-based models can also be used to define conditional models, where
the pair (x, y) is still modeled as a sequence of decisions but where the input
string x is a conditioning variable:

P (y |x) = P (d1, . . . , dn |x) =
n∏

i=1

P (di |Φ(d1, . . . , di−1, x)) (2.5)

Conditional history-based models were used by Jelinek et al. (1994), in the first
system that did not make use of a hand-crafted grammar but extracted all the
necessary information from treebank data, and by Magerman (1995), in the
first system that showed a significant improvement over systems based on the
standard PCFG model. While both these systems used probabilistic decision
trees for parameter estimation, later versions of the conditional history-based
approach are mostly based on maximum entropy models (Berger et al., 1996;
Della Pietra et al., 1997), also known as exponential or log-linear models, as
pioneered by Ratnaparkhi (1997, 1999). Conditional history-based models for
dependency-based representations have been investigated in Eisner (1996a,b).

Whereas the early conditional models, including that of Ratnaparkhi
(1997, 1999), only scored individual parsing decisions in isolation, later work
has extended the idea to models that score complete analyses. These models
are often used to rerank a small set of analyses produced by another model,
typically a generative model, as in the work of Johnson et al. (1999); Collins
(2000); Collins and Duffy (2002); Collins and Koo (2005); Charniak and John-
son (2005). This type of model has also been used very successfully for parse
selection in grammar-driven frameworks based on linguistic theories such as
LFG (Riezler et al., 2002), HPSG (Toutanova et al., 2002; Miyao et al., 2003),
and CCG (Clark and Curran, 2004).

Conditional models, such as the maximum entropy model, are normally
combined with conditional parameter estimation, i.e., estimation procedures
that try to maximize the conditional likelihood of the training data. But con-
ditional estimation can also be used with generative models. Thus, Johnson
(2001) obtained a small (non-significant) improvement for a standard PCFG
model, using maximum conditional likelihood estimation instead of the tradi-
tional maximum joint likelihood estimation. More recently, Henderson (2004)
has shown that a history-based generative model based on left-corner parsing,

2.3 Methods for Text Parsing 35

combined with conditional parameter estimation, outperforms both the gene-
rative model with joint estimation and a conditional model with conditional
estimation. These results are in line with the argument of Klein and Manning
(2002) to the effect that whereas conditional estimation methods often have
an advantage over joint estimation, conditional model structure may in fact be
harmful in many cases (although the empirical results in their article concern
part-of-speech tagging rather than parsing).

There are also purely discriminative versions of the history-based model,
i.e., models that implicitly try to maximize the conditional probability of
each parsing decision without actually computing it. These models are usu-
ally combined with deterministic processing, since discriminative learning
does not support a probabilistic scoring and ranking of complete analyses.
In this category, we find most data-driven methods for partial parsing based
on discriminative learning and deterministic left-to-right processing discussed
earlier (Argamon et al., 1998; Daelemans et al., 1999; Kudo and Matsumoto,
2000; Tjong Kim Sang and Veenstra, 2001; Buchholz, 2002). Although these
methods are seldom associated with the notion of history-based parsing in
the literature, they do in fact implement a history-based strategy, classifying
segments from left-to-right while basing their decisions on a combination of
input features and previously classified segments.

Discriminative history-based methods for full parsing have been proposed
for dependency-based representations by Yamada and Matsumoto (2003), who
use a form of shift-reduce parsing for dependency-based representations in
combination with support vector machines (Vapnik, 1995). Within the frame-
work investigated in this book, Nivre et al. (2004) and Nivre and Scholz (2004)
use a similar parsing algorithm but rely on memory-based learning (Daele-
mans and Van den Bosch, 2005) to predict parser actions. These frameworks
are similar to early conditional parsing models, such as Ratnaparkhi (1997,
1999), in that inductive learning applies to individual parsing actions in iso-
lation. A more holistic discriminative approach to full parsing can be found
in the memory-based framework of Kübler (2004), where new analyses are
constructed from arbitrarily large fragments of analyses for similar sentences
in the training data, in a way which has close affinities with the DOP frame-
work. Another close relative of DOP based on memory-based learning can be
found in De Pauw (2003).

The problem of accuracy has been implicit throughout the discussion of
disambiguation in this section. Since the data-driven approach, as defined
here, always provides a mechanism for disambiguation, whether stochastic or
deterministic, it is usually trivial to fulfill the requirement of disambiguation
as such. Hence, research in this area during the last ten to fifteen years has
mainly been focused on improving the accuracy of disambiguation. However,
it is also worth noting that, because the data-driven approach incorporates an
optimization criterion in the training phase, whether explicitly or implicitly,
it is possible to optimize models for different criteria of accuracy. The rela-
tionship between estimation objectives and evaluation metrics has been the

36 2 Natural Language Parsing

subject of several studies (Goodman, 1996, 1998; Johnson, 2001; Klein and
Manning, 2002; Sima’an, 2003).

With respect to the final problem of efficiency, the conventional wisdom
seems to be that the data-driven approach is superior to the grammar-driven
approach, but often at the expense of less adequate output representations
(Kaplan et al., 2004). However, in reality we find as much variation among
data-driven approaches as among grammar-driven approaches, and the overall
picture is in fact very similar.

At one end of the scale, we find frameworks where the parsing problem is
computationally intractable, such as the original DOP model (Sima’an, 1996a,
1999). Research on efficient parsing within the DOP framework has therefore
focused on finding efficient approximations that preserve the advantage gained
in disambiguation by considering several derivations of the same analysis.
While early work focused on a kind of randomized search strategy called
Monte Carlo disambiguation (Bod, 1995, 1998), the dominant strategy has
now become the use of different kinds of PCFG reductions (Sima’an, 1996b;
Goodman, 1996; Bod, 2001, 2003).

At the other end of the scale, we find highly efficient methods that perform
parsing in linear time, such as the various deterministic methods for partial
parsing. However, linear-time processing is achievable also for full parsing,
either as a theoretical worst case (Nivre, 2003) or as an empirical average
case (Ratnaparkhi, 1997, 1999).

In between, we find parsers based on history-based probabilistic models,
whether generative or conditional, where parsing in principle consists in
deriving all the possible analyses for a given input string and selecting the
optimal analysis with respect to the probabilistic model. In this case, there
is often a trade-off between accuracy in disambiguation and efficiency in pro-
cessing. Broadly speaking, the more sophisticated models proposed in recent
years have generally led to more accurate disambiguation but less efficient
processing.

For example, with the standard PCFG model all possible analyses can be
constructed in O(n3) time using a standard algorithm for context-free parsing.
Moreover, given the independence assumptions of this model, the selection of
the most probable analysis can be integrated into the parsing process using
Viterbi optimization (Viterbi, 1967), as shown for the CKY algorithm by Ney
(1991) and for Earley’s algorithm by Stolcke (1995).

With the more complex history-based models, such as Collins (1997, 1999)
and Charniak (2000), parsing becomes less efficient for two reasons. First, the
drastic constraint relaxation leads to an explosion in the number of possible
analyses for any given input string. Secondly, the more complex probability
model does not allow the same reduction of the search space as the standard
Viterbi algorithm for PCFGs. This means that, even if parsing does not be-
come intractable, the time complexity may be such that an exhaustive search
of the analysis space is no longer practical. For example, the complexity of the
parsing algorithm used in Collins (1999) is O(n5). In practice, most systems

2.3 Methods for Text Parsing 37

of this kind only apply the full probabilistic model to a subset of all possible
analyses, resulting from a first pass based on an efficient approximation of
the full model. This first pass is normally implemented as some kind of chart
parsing with beam search, using an estimate of the final probability to prune
the search space (Caraballo and Charniak, 1998). Another strategy for reduc-
ing the set of candidate analyses is to rely on an initial supertagging phase,
as in the grammar-driven CCG approach (Clark and Curran, 2004; Curran
and Clark, 2004).

Finally, for data-driven approaches the time required for training, although
less critical than parsing time, should also be taken into consideration when
discussing efficiency. For instance, learning methods that rely on numerical
optimization, such as maximum entropy modeling, may require repeatedly
reparsing the training corpus with the current model to determine the para-
meter updates that will improve the training criterion. In this respect, lazy
learning methods such as memory-based learning have a clear advantage, since
they reduce learning to the efficient storage of training instances. However,
this of course means that more processing has to take place at parsing time,
which may limit the advantage.

2.3.3 Converging Approaches

We have now considered two different strategies for text parsing, the grammar-
driven approach and the data-driven approach. Although these strategies have
different points of departure, we have seen that they in practice often lead to
similar solutions when confronted with the mutually interacting requirements
of robustness, disambiguation, accuracy and efficiency. In fact, our character-
ization of the two approaches is such that many contemporary frameworks
for text parsing instantiate both. As illustrated in figure 2.6, we can distin-
guish approaches that are grammar-driven but not data-driven, such as CG
(Karlsson, 1990; Karlsson et al., 1995) and its descendant FDG (Tapanainen
and Järvinen, 1997; Järvinen and Tapanainen, 1998), and approaches that
are data-driven but not grammar-driven, such as different varieties of history-
based parsing (Ratnaparkhi, 1997, 1999; Collins, 1997, 1999; Charniak, 2000),
as well as most incarnations of Data-Oriented Parsing (Bod, 1995, 1998; Bod,
Scha and Sima’an, 2003). But we also find many frameworks that combine the
use of formal grammars with data-driven methods to achieve robustness and
disambiguation, such as broad-coverage parsers based on PCFG (Black et al.,
1993), LTAG (Bangalore and Joshi, 1999), LFG (Riezler et al., 2002), HPSG
(Toutanova et al., 2002; Miyao et al., 2003), and CCG (Clark and Curran,
2004).

Before we close the discussion of grammar-driven and data-driven text
parsing, it may be useful to relate these concepts to a few other conceptual
distinctions that are often made in the literature on natural language parsing.
The first is the distinction between deep parsing and shallow parsing, which

38 2 Natural Language Parsing

�

�

�

�

�

�

�

�

Grammar-Driven

Data-Driven

PCFG
LTAG

CCG
HPSG
LFG

FDG
CG DOP

HBP

Fig. 2.6. Convergence of grammar-driven and data-driven text parsing

has to do with the amount of information contained in the syntactic represen-
tations produced by the parser, where deep parsing typically refers to the kind
of representations found in linguistic theories like LFG (Kaplan and Bresnan,
1982), HPSG (Pollard and Sag, 1994) or CCG (Steedman, 2000), while shallow
parsing can be exemplified with the skeletal constituent structures found in
the first version of the Penn Treebank annotation scheme (Marcus et al., 1993)
or the partial specification of grammatical functions in CG (Karlsson, 1990;
Karlsson et al., 1995). In other words, this is a distinction between different
kinds of syntactic representations and should not be confused with a distinc-
tion between different parsing methods. While it is true that most systems
for deep parsing are grammar-based, there also exist data-driven approaches
to deep parsing, such as the LFG-DOP model (Bod and Kaplan, 1998). And
shallow parsing can be performed with grammar-driven as well as data-driven
methods.

The second distinction is that between full parsing and partial parsing,
which we have already touched upon several times. This distinction, which is
sometimes confused with the previous distinction between deep and shallow
parsing, has to do with the completeness of the analysis and can therefore only
be defined relative to a specific target representation. Thus, a segmentation of
the input string into base chunks can be regarded as a partial specification of a
constituent analysis, and an assignment of grammatical functions to individual
word tokens can be seen as a partial specification of a dependency structure.
This means that both deep and shallow parsing can be implemented as full or
partial parsing and that either grammar-driven or data-driven methods may
be used in the realization.11

The third and final distinction is the distinction between rule-based
and example-based (or analogical) language processing, which has to do with
whether the analysis of new sentences is based on abstract rules (in a wide

11 There is a further complication in that the term partial parsing is used both about
fallback strategies adopted to cope with the robustness problem in full parsing
(cf. section 2.3.1) and about approaches where the final goal is always a partial
analysis, such as chunking. It is only partial parsing in the latter sense that is
sometimes referred to as shallow parsing.

2.3 Methods for Text Parsing 39

sense) or on concrete representations (as found in an annotated corpus).
Whereas grammar-driven approaches are by necessity rule-based, data-driven
approaches can involve more or less abstraction. Thus, most probabilistic pars-
ing models are similar to grammars in that they are abstract generalizations
over sets of concrete representations. This is true not only of models that in-
volve a formal grammar, like the PCFG model, but also of most history-based
models for parsing, which use training data to estimate the parameters of an
abstract probabilistic model.12 This is in contrast to the DOP framework,
where concrete examples in the training corpus are stored as is and used as
the raw material for constructing new analyses during processes, thus imple-
menting an example-based approach to syntactic parsing. The same is true of
memory-based approaches to parsing, such as Kübler (2004).

One of the conclusions that we want to draw from the discussion in this
chapter is that the partly conflicting requirements of robustness, disambigua-
tion, accuracy and efficiency give rise to a complex optimization problem,
which we can try to solve in different ways but which always requires a joint
optimization. The wide variety of different methods for text parsing can to
a large extent be said to result from different optimization strategies and
different goals.

The grammar-driven approach, in its purest form, starts from a system
with optimal accuracy, in the sense that only sentences for which the correct
analysis can be derived are covered, and gradually seeks to improve the system
with respect to robustness and disambiguation. However, this development
may compromise efficiency, which therefore has to be optimized together with
robustness and disambiguation.

By contrast, the data-driven approach, in its most radical form, starts
from a system with optimal robustness and disambiguation, in the sense that
every sentence gets exactly one analysis, and gradually seeks to improve the
system with respect to accuracy. Again, this may lead to problems of efficiency,
which therefore has to be optimized together with accuracy. In both cases, we
may furthermore put more or less priority on efficiency in relation to other
optimization requirements.

When evaluating different strategies, we are of course interested in whether
they lead to optimal performance overall. However, because of the interaction
between different requirements, we can only define the optimum with respect
to a given prioritization. It is true that accuracy is of prime importance, but
if optimal accuracy leads to computational intractability, its practical interest
is limited. Moreover, from a scientific point of view, we need to increase our
knowledge about the complex interaction of conflicting requirements, which
means that studies based on different goals and strategies can be valuable,

12 The term Markov grammar for this type of model (Charniak, 1997b) is motivated
by this similarity, even though the model normally does not involve a grammar
in the formal sense (cf. section 2.3.2).

40 2 Natural Language Parsing

even if they do not always advance the state of the art in terms of raw per-
formance (on any of the dimensions considered here).

2.3.4 Inductive Dependency Parsing

It seems appropriate to conclude this discussion of methods for text parsing
by situating the framework of inductive dependency parsing in the wider land-
scape of different parsing methods, grammar-driven and data-driven, deep and
shallow, full and partial, rule-based and example-based.

Inductive dependency parsing is an instance of the data-driven approach
to text parsing, which in this study is combined with a rather extreme opti-
mization strategy. The first step in this strategy is to construct a framework
that is provably optimal with respect to robustness, disambiguation and effi-
ciency. The second step is to use inductive learning to gradually improve
parsing accuracy without sacrificing robustness, disambiguation or efficiency.
The first step will be taken in chapter 3, while the second step will occupy us
throughout chapters 4–5.

Robustness will be achieved with the kind of radical constraint relaxation
found in many other data-driven approaches, which means that some analysis
will be assigned to every input string. However, we will not resort to partial
parsing but instead construct complete dependency representations for every
input string, even though these representations will normally be rather shallow
syntactic representations. Our task could therefore be characterized as full
parsing with shallow dependency representations.

The use of dependency representations, which is a central element of the
framework, will be discussed in more detail in chapter 3. It will be argued
that, over and above any other motivation for using these representations,
dependency structures provide the right level of underspecification to allow
robust and efficient full parsing.

Disambiguation will be performed by deterministic processing in combi-
nation with discriminative learning, using a history-based model for parsing
decisions. Although the general approach is compatible with many different
learning methods, we will concentrate in this book on the use of memory-
based learning of parsing decisions, which means that the approach can also
be described as example-based, or analogical, rather than rule-based.

Efficiency in parsing is gained mainly through the use of deterministic
processing, which means that parsing can be performed in linear time, which
is arguably optimal since any reasonable parsing method will at least have to
scan the input from start to end. Moreover, the use of a lazy learning method
also gives good efficiency in training.

Given our overall optimization strategy, it is important to have precise
evaluation criteria for the basic requirements of robustness, disambiguation,
accuracy and efficiency. The last section of this chapter will be devoted to the
definition of such criteria.

2.4 Evaluation Criteria 41

2.4 Evaluation Criteria

Most of the discussion in this chapter applies to natural language parsing in
general and not only to the particular framework investigated in this book.
However, when we come to concrete evaluation criteria, it is important that
these reflect the general strategy underlying our research efforts. We will there-
fore concentrate in this section on evaluation criteria that are relevant for the
version of inductive dependency parsing developed in this book, criteria that
may in some respects be less suitable for other approaches to text parsing.

2.4.1 Robustness

Following the discussion in sections 2.3.1–2.3.2, we regard robustness in text
parsing as the capacity of a system to analyze any input sentence. In other
words, we do not attempt to draw any distinction between (lack of) coverage
and (lack of) robustness. In this respect, we agree with Chanod (2001) that
robustness is about exploring all constructions humans actually produce in
natural language texts, ‘be they grammatical, conformant to formal models,
frequent or not’ (Chanod, 2001, 188). This is admittedly a rather weak notion
of robustness, which is easy to achieve in itself, but which can be considered a
prerequisite for the optimization of other criteria. Stronger notions of robust-
ness discussed in the literature, which relate to the degradation of accuracy
with increasingly ill-formed input (Menzel, 1995; Basili and Zanzotto, 2002),
can be regarded as additional requirements on top of the basic requirement
of producing some analysis for every input.

Since we want the requirement of robustness to be independent of other
requirements, in particular the requirement of disambiguation, we propose the
following definition:

Definition 2.1. A system P for parsing texts in language L satisfies the
requirement of robustness if and only if, for any text T = (x1, . . . , xn) in
L, P assigns at least one analysis to every text sentence xi ∈ T .

Given our optimization strategy, we want to treat robustness as an absolute
requirement, which means that we will require formal proofs of this property.
In other frameworks, where robustness is an optimization criterion rather
than an absolute requirement, it may be more relevant to perform an empirical
evaluation of the degree to which robustness can be achieved for representative
input texts.

2.4.2 Disambiguation

Disambiguation in text parsing implies the selection of a single analysis for
every text sentence from all the analyses that are compatible with the input
string according to the formal framework adopted. From this perspective, it
is irrelevant whether the input string is genuinely ambiguous or whether the

42 2 Natural Language Parsing

fact that there are several candidate analyses is due to the so-called leakage
problem. It is also irrelevant whether the selection is achieved through an n-
best ranking of a large space of candidate analyses or through a deterministic
procedure that only constructs a single analysis for a given input sentence.
More precisely, we define the requirement of disambiguation in the following
way:

Definition 2.2. A system P for parsing texts in language L satisfies the
requirement of disambiguation if and only if, for any text T = (x1, . . . , xn) in
L, P assigns at most one analysis to every text sentence xi ∈ T .

Since we want disambiguation to be an absolute requirement for our parsing
methods, in the same way as robustness, we will require formal proofs of this
property as well. In another context, it would be possible to regard disam-
biguation as a desideratum rather than a hard requirement, and to perform an
empirical evaluation of a system’s capacity for disambiguation when applied
to representative samples of text.

The requirements of robustness and disambiguation are independent of
each other, but any system satisfying both requirements must assign exactly
one analysis to every text sentence. This is the notion of robust disambigua-
tion that we will adopt as an absolute requirement for inductive dependency
parsing.

2.4.3 Accuracy

Requiring a single analysis for every sentence in a text is obviously of limited
interest unless we also require the analysis to be correct. According to the
characterization of text parsing in section 2.2.2, we assume that there exists
a single correct analysis for each sentence in a text. An absolute requirement
of accuracy could therefore be stated as follows:13

Definition 2.3. A system P for parsing texts in language L satisfies the
requirement of accuracy if and only if, for any text T = (x1, . . . , xn) in L,
P assigns the correct analysis to every text sentence xi ∈ T .

However, given the state of the art in natural language parsing, complete
accuracy has to be regarded as an asymptotic goal, impossible to attain in
practice for any non-trivial domain of natural language text, and especially in
combination with robustness and disambiguation. Moreover, even if perfectly
accurate parsing were possible, there would be no formal method for proving
that a system satisfies this requirement, since the language L is not a formal
language. This means that we must always rely on empirical evaluations using
representative samples of text from the given language L.
13 In a context where it is not assumed that every sentence has exactly one correct

analysis, an alternative would be to replace ‘the correct analysis’ with ‘at least one
correct analysis’. In this study, the two formulations are practically equivalent,
given the absolute requirement of robust disambiguation.

2.4 Evaluation Criteria 43

Given the optimization strategy adopted in this study, accuracy should be
treated as an optimization criterion, where the goal is to maximize accuracy
while maintaining robustness and disambiguation. We will adopt the standard
methodology for evaluating accuracy in text parsing, which is to treat samples
of treebank data for the language L as an empirical gold standard and use
inferential statistics to generalize the results to arbitrary texts in L. As noted
in section 2.2.2, this methodology is problematic in several ways, but we will
postpone a discussion of these problems until chapter 5. There we will also
define the different evaluation metrics that will be used for the evaluation of
accuracy.

2.4.4 Efficiency

Finally, in order for methods to be usable in practical applications, they must
allow tractable computation, which leads to the requirement of efficiency. As
is customary, we will restrict ourselves to the computational resources of time
and (to a lesser extent) space. In theory, tractability is usually taken to mean
computable in deterministic polynomial time and space (relative to the size of
the input), but many practical applications put higher demands on efficiency.
Our strategy for optimization implies that we employ parsing algorithms with
optimal complexity, which means that both time and space complexity should
be linear in the size of the input. Thus:

Definition 2.4. A system P for parsing texts in language L satisfies the
requirement of efficiency if and only if, for any text T = (x1, . . . , xn) in
L, P processes every text sentence xi ∈ T in time and space that is linear in
the length of xi.

Although the theoretical complexity of an algorithm can be proven formally,
practical efficiency also depends on other factors and is therefore another
optimization criterion that can be maximized while maintaining robustness
and disambiguation. As discussed in section 2.3.2, there is often a tradeoff
between accuracy and efficiency in text parsing, which means that we need to
explore the joint optimization of accuracy and efficiency.

Given our strategy for optimization, we need to evaluate efficiency in two
different ways. On the one hand, we will provide formal proofs of time and
space complexity, establishing asymptotic bounds on worst-case running time
and memory requirements. On the other hand, we will perform empirical
experiments using treebank data, measuring actual running time and memory
consumption.

