
<p><name type=org>The Ministry of
Truth</name>, — <p><name type=org
lang=newspeak>Minitrue</name>, in
<name>Newspeak</name><ptr target=N1
rend=asterisk> — was startlingly different
from any other object in sight. It was an enormous
pyramidal structure of glittering whiteconcrete,
soaring up, terrace after terrace,
<num>300</num> metres into the air. From
where <name type=person>Winston</name> stood
it was just possible to read, picked out on its white
face in elegant lettering, the three slogans of the
<name type=org>Party</name>: <q
rend=”centered caps” type=slogan> War is
peace</q> <q rend=”centered caps”
type=slogan>Freedom is slavery</q> <q
rend=centered caps” type=slogan>Ignorance is
strength.</q>
</p>
<note place=foot id=N1>
<name>Newspeak</name> was the official
language of <name type=palce>Oceania</name>.
For an account of its structure and etymology see
Appendix.</note>

INDUCTIVE DEPENDENCY
PARSING

By Joakim Nivre

T E X T , S P E E H

LA N D A N G U A G E

T E C H N O L O G Y

C

Inductive Dependency Parsing

Text, Speech and Language Technology

Series Editors

Nancy Ide, Vassar College, New York
Jean Véronis, Université de Provence and CNRS, France

Editorial Board

Harald Baayen, Max Planck Institute for Psycholinguistics, The Netherlands
Kenneth W. Church, AT & T Bell Labs, New Jersey, USA
Judith Klavans, Columbia University, New York, USA
David T. Barnard, University of Regina, Canada
Dan Tufis, Romanian Academy of Sciences, Romania
Joaquim Llisterri, Universitat Autonoma de Barcelona, Spain
Stig Johansson, University of Oslo, Norway
Joseph Mariani, LIMSI-CNRS, France

VOLUME 34

 by

Inductive Dependency
Parsing

Joakim Nivre
Växjö University, Sweden

A C.I.P. Catalogue record for this book is available from the Library of Congress.

Published by Springer,
P.O. Box 17, 3300 AA Dordrecht, The Netherlands.

Printed on acid-free paper

All Rights Reserved

and executed on a computer system, for exclusive use by the purchaser of the work.

Printed in the Netherlands

exception of any material supplied specifically for the purpose of being entered

No part of this work may be reproduced, stored in a retrieval system, or transmitted

recording or otherwise, without written permission from the Publisher, with the
in any form or by any means, electronic, mechanical, photocopying, microfilming,

© 2006 Springer

ISBN-10 1-4020-4888-2 (HB)

ISBN-10 1-4020-4889-0 (e-book)
ISBN-13 978-1-4020-4889-0 (e-book)

ISBN-13 978-1-4020-4888-3 (HB)

www.springer.com

To Elisabeth and Fredrik

Preface

This book is based on work carried out over a period of roughly three years
with the support of a number of people and organizations that deserve my
heartfelt gratitude. In the first place, I want to thank my PhD students Johan
Hall and Jens Nilsson, who have been involved in the project from the start.
I also want to thank all the people who are part of the research group in
computer science at Växjö University, for providing a stimulating environment
to work in, and the Swedish Research Council for a grant that supported part
of the work reported in this book (Vetenskapsr̊adet, 621-2002-4207).

Among the many people who have contributed, directly or indirectly, to the
ideas and results presented in the book, I specifically want to mention Eckhard
Bick, Sabine Buchholz, John Carroll, Atanas Chanev, Yuchang Cheng, Walter
Daelemans, Ralph Debusmann, Denys Duchier, Gülsen Eryiğit, Jason Eisner,
Kilian Foth, Kadri Hacioglu, Jan Hajič, Erhard Hinrichs, Tomáš Holan, Viggo
Kann, Matthias Trautner Kromann, Geert-Jan Kruijff, Sandra Kübler, Marco
Kuhlmann, Haitao Liu, Welf Löwe, Svetoslav Marinov, Erwin Marsi, Yuji
Matsumoto, Ryan McDonald, Pierre Nugues, Tomasz Obrȩbski, Guy de Pauw,
Aarne Ranta, Mario Scholz, Noah Smith, Antal van den Bosch, Hiroyasu
Yamada, Anssi Yli-Jyrä, and Daniel Zeman. I also want to thank my editor,
Jolanda Voogd, for practical assistance, and the series editors, Nancy Ide and
Jean Véronis, for promoting the publication of the book in the first place.

I owe a special debt to John Carroll, Walter Daelemans and Welf Löwe,
who scrutinized the first draft of the manuscript and suggested innumerable
improvements, and to Viggo Kann, who spotted an error in one of the proofs.
All remaining inadequacies are entirely my own responsibility.

Finally, I want to express my love and gratitude to my wife Elisabeth and
my son Fredrik for making my life such a wonderful experience.

Växjö, February 2006 Joakim Nivre

vii

Contents

1 Introduction . 1
1.1 Inductive Dependency Parsing . 1
1.2 The Need for Robust Disambiguation . 5
1.3 Outline of the Book . 6

2 Natural Language Parsing . 9
2.1 Syntactic Representations . 10
2.2 Two Notions of Parsing . 12

2.2.1 Grammar Parsing . 13
2.2.2 Text Parsing . 16
2.2.3 Competence and Performance . 19

2.3 Methods for Text Parsing . 20
2.3.1 Grammar-Driven Text Parsing . 20
2.3.2 Data-Driven Text Parsing . 27
2.3.3 Converging Approaches . 37
2.3.4 Inductive Dependency Parsing . 40

2.4 Evaluation Criteria . 41
2.4.1 Robustness . 41
2.4.2 Disambiguation . 41
2.4.3 Accuracy . 42
2.4.4 Efficiency . 43

3 Dependency Parsing . 45
3.1 Dependency Grammar . 46

3.1.1 The Notion of Dependency . 47
3.1.2 Varieties of Dependency Grammar 50

3.2 Parsing with Dependency Representations 55
3.2.1 Grammar-Driven Dependency Parsing 56
3.2.2 Data-Driven Dependency Parsing . 61
3.2.3 The Case for Dependency Parsing 66

x Contents

3.3 A Framework for Dependency Parsing . 67
3.3.1 Texts, Sentences and Tokens . 68
3.3.2 Dependency Graphs . 69
3.3.3 Dependency Parsing . 72

3.4 Parsing Algorithm . 72
3.4.1 Configurations . 72
3.4.2 Transitions . 74
3.4.3 Deterministic Parsing . 76
3.4.4 Algorithm Analysis . 79
3.4.5 Evaluation Criteria Revisited . 85

4 Inductive Dependency Parsing . 87
4.1 A Framework for Inductive Dependency Parsing 88

4.1.1 Data-Driven Text Parsing . 88
4.1.2 Inductive Inference . 89
4.1.3 History-Based Models . 90
4.1.4 Parsing Methods . 92
4.1.5 Learning Methods . 94
4.1.6 Oracle Parsing . 96

4.2 Features and Models . 100
4.2.1 Feature Functions . 101
4.2.2 Static Features . 105
4.2.3 Dynamic Features . 107
4.2.4 Feature Models . 108

4.3 Memory-Based Learning . 110
4.3.1 Memory-Based Learning and Classification 110
4.3.2 Learning Algorithm Parameters . 112
4.3.3 Memory-Based Language Processing 115

4.4 MaltParser . 117
4.4.1 Architecture . 118
4.4.2 Implementation . 120

5 Treebank Parsing . 121
5.1 Treebanks and Parsing . 122

5.1.1 Treebank Evaluation . 123
5.1.2 Treebank Learning . 128
5.1.3 Treebanks for Dependency Parsing 129

5.2 Experimental Methodology . 132
5.2.1 Treebank Data . 132
5.2.2 Models and Algorithms . 139
5.2.3 Evaluation . 140

5.3 Feature Model Parameters . 142
5.3.1 Part-of-Speech Context . 143
5.3.2 Dependency Structure . 145
5.3.3 Lexicalization . 147

Contents xi

5.3.4 Efficiency . 149
5.3.5 Learning Curves . 155

5.4 Learning Algorithm Parameters . 158
5.4.1 Neighbor Space and Distance Metric 159
5.4.2 Weighting Schemes . 161

5.5 Final Evaluation . 163
5.5.1 Accuracy and Efficiency . 163
5.5.2 Related Work . 168
5.5.3 Error Analysis . 171

6 Conclusion . 175
6.1 Main Contributions . 175
6.2 Future Directions . 179

References . 183

Index . 209

1

Introduction

The automatic analysis of syntactic structure, or parsing, is a core component
in many systems for natural language processing. This monograph explores the
framework of inductive dependency parsing as an efficient method for syntactic
parsing of unrestricted natural language text under the joint requirements of
robustness and disambiguation. That is, given as input a natural language
text, consisting of a sequence of sentences, we want the parser to assign to
every sentence at least one analysis (robustness) and at most one analysis
(disambiguation). Needless to say, we also want the single analysis assigned
to a sentence to be correct as often as possible (accuracy). Finally, we want the
computation for each sentence to take as little time and memory as possible
(efficiency). Maximizing accuracy and efficiency while maintaining robustness
and disambiguation is the problem that we have set ourselves. Finding out
whether inductive dependency parsing can provide a solution to this problem
is the topic of this book.

1.1 Inductive Dependency Parsing

In the framework of inductive dependency parsing, the syntactic analysis of a
sentence amounts to the derivation of a dependency structure, using inductive
machine learning to guide the parser at nondeterministic choice points. This
methodology combines a number of themes that are prominent in the recent
natural language processing literature, although the particular combination
of ideas embodied in the resulting framework appears to be original. More
precisely, inductive dependency parsing can be regarded as the simultaneous
instantiation of two notions that have played a more or less central role in
natural language parsing in recent years:

• Dependency-based parsing
• Data-driven parsing

2 1 Introduction

JJ
Economic

� �
�

nmod

NN
news

� �
�

sbj

VBD
had

JJ
little

� �
�

nmod

NN
effect

� �
�

obj

IN
on

� �
�

nmod

JJ
financial

� �
�

nmod

NNS
markets

� �
�

pmod

PU
.

�

� �p

Fig. 1.1. Dependency structure for English sentence from the Penn Treebank

The fundamental idea in dependency-based parsing is that parsing crucially
involves establishing binary relations between words in a sentence. This is
illustrated in figure 1.1, which depicts the analysis of a short sentence taken
from the Wall Street Journal section of the Penn Treebank (Marcus et al.,
1993, 1994). In this example, the syntactic structure is built up by recognizing
a subject relation (sbj) from the finite verb had to the noun news, a nominal
modifier relation (nmod) from news to the adjective Economic, an object
relation (obj) from had to the noun effect, and so on.

Dependency-based methods appear in many guises in the current litera-
ture on natural language parsing. On the one hand, we have what we may
call dependency parsing in a narrow sense, where the goal of the parsing
process is to build a dependency structure, i.e., a graph built from binary
dependency relations as in figure 1.1, and where the analysis more or less
closely adheres to the theoretical tradition of dependency grammar. Cases in
point are Hellwig (1980), Maruyama (1990), Harper and Helzerman (1995),
Tapanainen and Järvinen (1997), Menzel and Schröder (1998), and Duchier
(1999). On the other hand, we have approaches that can be characterized as
dependency-based parsing in a broader sense, where the syntactic analysis
may not take the form of a dependency structure, but where the construction
of the analysis nevertheless depends on finding syntactic relations between
lexical heads. In this category, we find the widely used link grammar parser
for English (Sleator and Temperley, 1993), as well as the influential proba-
bilistic parsers of Collins (1997, 1999) and Charniak (2000), but also a variety
of other lexicalized parsing models that can be subsumed under the general
notion of bilexical grammars (Eisner, 2000). The use of bilexical relations for
disambiguation has been a significant theme in research on natural language
parsing during the last decade, although the results are not completely unam-
biguous (Collins, 1999; Gildea, 2001; Klein and Manning, 2003; Bikel, 2004).

The framework we develop in this book falls under the more narrow defin-
ition of dependency parsing, at least in the sense that it assumes dependency
structures as the only form of syntactic representation. At the same time,
we will focus more on formal methods for constructing dependency struc-
tures than on details of linguistic analysis, which means that the discussion

1.1 Inductive Dependency Parsing 3

will remain rather agnostic with respect to different theoretical traditions of
dependency grammar. More precisely, we will define the task of dependency
parsing relative to a formal framework of dependency graphs, where only mini-
mal assumptions are made concerning the linguistic analysis, but where the
notions of robustness, disambiguation, accuracy and efficiency can be given
precise definitions.

Although our formal characterization of dependency parsing is compatible
with different parsing strategies, we will limit our attention in this study to
deterministic methods, which means that we derive a single analysis for each
input sentence in a monotonic fashion with no redundancy or backtracking.
Historically, deterministic parsing of natural language has been investigated
with a view to modeling human sentence processing in a psychologically plau-
sible way, as in the work by Marcus (1980) and Shieber (1983), but it has also
been explored as a way of improving the robustness and efficiency of natural
language parsing, especially in various approaches to partial parsing using
finite-state methods (Ejerhed, 1983; Koskenniemi, 1990; Abney, 1991, 1996).

In the present framework, we want to apply deterministic methods to full
parsing, insofar as we want to derive a complete dependency structure for
each input sentence. In this way, we hope to combine the gains in efficiency
with a deeper analysis of syntactic structure. The parsing algorithm that we
use was first presented in Nivre (2003), with a partial analysis of its com-
plexity and robustness properties. It has also been shown that the algorithm
favors incremental processing, something that may be desirable both for cer-
tain applications, such as language modeling for speech recognition, and for
the kind of psycholinguistic modeling that inspired early research on deter-
ministic parsing (Nivre, 2004a). In this book, we will for the first time provide
a comprehensive analysis of the parsing algorithm with respect to robustness,
disambiguation and complexity.

The second essential component of our methodology is a commitment to
data-driven parsing, understood in a broad sense to include all approaches
that make essential use of empirical data, in particular treebanks or parsed
corpora (Abeillé, 2003b; Nivre, forthcoming), in the development of parsing
systems for natural language. Research during the last ten to fifteen years has
shown rather conclusively that an empirical approach is necessary in order to
achieve accurate disambiguation as well as robustness in parsing unrestricted
text, regardless of whether the parser uses a traditional grammar or a more
radically data-driven model. In the former case, exemplified by broad-coverage
deep parsers such as Riezler et al. (2002) and Toutanova et al. (2002), treebank
data are used to tune and optimize the parser, in particular by constructing a
statistical model for parse selection. In the latter case, represented by proba-
bilistic parsers such as Collins (1997, 1999) and Charniak (2000), the grammar
is replaced by a statistical model, the parameters of which are derived from
treebank data using machine learning techniques.

An even more radical approach is to replace the statistical model by the
treebank itself, and to reuse fragments of previously encountered syntactic

4 1 Introduction

structures to construct new ones during parsing, as in the framework of Data-
Oriented Parsing (DOP) (Bod, 1995, 1998; Bod, Scha and Sima’an, 2003).
The DOP model can be seen as an instantiation of the paradigm of memory-
based learning, or lazy learning, which is based on the idea that learning is the
simple storage of experiences in memory and that new problems are solved by
reusing solutions from similar old problems (Daelemans, 1999; Daelemans and
Van den Bosch, 2005). Memory-based learning has been successfully applied to
a wide variety of problems in natural language processing, such as grapheme-
to-phoneme conversion, part-of-speech tagging, prepositional phrase attach-
ment, and chunking (Daelemans et al., 2002). Memory-based approaches to
syntactic parsing, in addition to the DOP framework, include Veenstra and
Daelemans (2000), Buchholz (2002), De Pauw (2003) and Kübler (2004).

In this book, we will explore a memory-based approach to dependency
parsing, using classifiers that predict the next parsing action based on the
current state of the parser and a database of previously encountered parser
states. Since the state of the parser results from a sequence of previous actions,
this can also be seen as a form of history-based parsing (Black et al., 1992;
Jelinek et al., 1994; Magerman, 1995), although we prefer the term inductive
dependency parsing for the general idea of using inductive machine learning
to predict the actions of a dependency parser.

An early version of this idea, with a simple probabilistic classifier, was
reported in Nivre (2004b). The memory-based version was first presented in
Nivre et al. (2004), with an evaluation on Swedish treebank data, and later in
Nivre and Scholz (2004), with results from the Wall Street Journal section of
the Penn Treebank. This book provides a comprehensive analysis of inductive
dependency parsing, including a general characterization of the history-based
model and a formal framework for the specification of model parameters.
For the deterministic memory-based instantiation of this framework, we also
present a detailed discussion of feature selection, and a thorough empirical
evaluation of different models using treebank data from both Swedish and
English that goes far beyond previously published results.

The framework developed in this book is implemented in a system called
MaltParser, which is used in all the experiments reported below. MaltParser
can be described as a language-independent parser-generator. When applied
to a dependency-based treebank, the system generates a dependency parser
for the language represented in the treebank. The memory-based version of
this system uses the TiMBL software package (Daelemans et al., 2004) and
supports a variety of options with respect to linguistic features as well as
learning parameters. A version of MaltParser is freely available for research
and educational purposes.1

1 URL: http://www.msi.vxu.se/users/nivre/research/MaltParser.html

1.2 The Need for Robust Disambiguation 5

1.2 The Need for Robust Disambiguation

The usefulness of parsing in different language technology applications is a
point of some controversy. For example, in speech recognition, syntax-based
language models have had a hard time improving on the results obtained with
probabilistic n-gram models (Rosenfeld, 2000). Similarly, attempts at improv-
ing accuracy in information retrieval by incorporating syntactic information
have met with very limited success (Tzoukermann et al., 2003). If we move
to applications that require some kind of semantic analysis of individual sen-
tences, the role of parsing becomes more evident. For instance, information
extraction normally involves at least partial parsing (Cowie and Wilks, 2000),
and question answering systems often rely on semantic role labeling, for which
full syntactic parsing has been shown to give a substantial improvement over
partial parsing (Gildea and Palmer, 2002; Carreras and Màrquez, 2004). In
machine translation, parsing has always been a core component of transfer-
based systems, but syntax-based models are becoming more prominent also
in statistical approaches (Yamada and Knight, 2001; Charniak et al., 2003).

At the end of the day, few researchers would question the relevance of
syntactic analysis for the ultimate goal of building computer systems capable
of full natural language understanding — however we define this — but there
is still no consensus on what form the analysis should take and which methods
should be used to derive it. In this book, we will focus on the development of
a particular framework for natural language parsing, and even though we will
sometimes draw on requirements from applications to motivate certain design
choices, we will not be able to demonstrate that these choices actually improve
applications, and the potential usefulness of parsing as such will simply have
to be taken for granted.

The emphasis on robustness, disambiguation and efficiency in the context
of natural language parsing may also need some further motivation. Starting
with robustness, we see this as a fundamental requirement in any application
of natural language parsing that deals with (more or less) unrestricted text,
where the range of permissible inputs cannot be sharply delimited. Even if the
likelihood of a correct analysis decreases as the input deviates more and more
from our expectations, we want to have a system that degrades gracefully and
always delivers some kind of analysis.

Disambiguation is a more controversial requirement, given that part of the
information needed to choose between alternative analyses, such as word sense
information and extra-sentential context, may be missing at parsing time. This
observation leads naturally to the assumption that the parser should simply
pass on all analyses that are compatible with the given input and leave the
final decision to another component, typically a semantic or pragmatic inter-
preter. However, the same observation can be made about almost any kind
of input analysis, from tokenization and sentence segmentation to semantic
and pragmatic analysis. So, unless we adopt a completely holistic integration
of all processing levels, there will be decisions at each level that are based on

6 1 Introduction

incomplete information. Moreover, the requirement of robustness will often
lead to a relaxation of syntactic constraints to the point where the number
of analyses compatible with a given input becomes prohibitively large. This
means that some degree of pruning is necessary in any case, even though the
search space may only be reduced to the n best candidates rather than to
a single analysis. Finally, the capacity for disambiguation can be very useful
in applications where the parser is not used as part of a processing chain
but rather is used to generate features for another kind of analysis. A typical
case in point is the use of parse tree information in semantic role labeling
referred to earlier. Thus, without wanting to claim that robust disambigua-
tion is the solution to every syntactic analysis problem, we believe that it is
useful in many situations, and it will be adopted as a basic requirement for
the methods investigated in this book.

Efficiency, finally, is a non-functional requirement for parsers to be usable
in practical applications, especially in systems working under hard time con-
straints, such as speech-based user interfaces, or dealing with large volumes
of data, such as information retrieval and extraction systems. In many cases,
there is a trade-off between efficiency and accuracy, and although we often
give priority to accuracy over efficiency, it is nevertheless a joint optimization
problem, since we cannot reduce efficiency to the point where parsers become
unusable in practical applications.

The framework developed in this book is the result of a conscious strategy
to adopt methods for parsing and disambiguation that are provably robust
and efficient, in a sense yet to be made precise, and to work systematically
towards higher accuracy while maintaining robustness, disambiguation and (as
far as possible) efficiency. Needless to say, this is only one of many conceivable
strategies, and it may not be the one that ultimately gives us the highest
accuracy, although it should provide us with highly efficient methods with
sufficient accuracy for certain applications.

From a scientific point of view, it is also interesting to see how far we can
get by adopting an extreme approach and pushing it to its limits. At the very
least, this may give a new perspective on results achieved in other frameworks
using other strategies. More importantly, however, by concentrating on the
systematic study of a few simple ideas and techniques, we may hope to gain
a deeper understanding of the way in which they can contribute to improved
methods for natural language parsing in general.

1.3 Outline of the Book

In this introductory chapter, we have tried to outline the aims of the study
and to motivate the general research directions. The remainder of the book is
structured as follows.

1.3 Outline of the Book 7

Chapter 2
Natural Language Parsing

Chapter 2 discusses the problem of parsing unrestricted natural language
text, relating it to other notions of parsing, in particular the one associated
with grammars in formal language theory. We compare different strategies
for achieving robust disambiguation and define evaluation criteria for the key
concepts of robustness, disambiguation, efficiency and accuracy.

Chapter 3
Dependency Parsing

Chapter 3 starts with a review of dependency grammar and its use in syntactic
parsing. We then introduce a formal framework for dependency parsing, based
on a general definition of labeled dependency graphs with a further character-
ization of properties such as connectedness, single-headedness, acyclicity, and
projectivity. Finally, we present a deterministic parsing algorithm for projec-
tive dependency graphs, with proofs of complexity and properties related to
robustness and disambiguation.

Chapter 4
Inductive Dependency Parsing

Chapter 4 extends the framework of dependency parsing to incorporate the use
of inductive machine learning to guide the parser at nondeterministic choice
points. We derive a history-based model of dependency parsing and show
how this can be combined with the deterministic parsing algorithm presented
in chapter 3 and with discriminative learning methods that induce classifiers
from treebank data. We define a formal method for the specification of feature
models, we introduce memory-based learning and classification as a method
for solving the inductive learning problem defined by the parsing method, and
we briefly describe the implemented MaltParser system.

Chapter 5
Treebank Parsing

Chapter 5 contains an empirical evaluation of the parsing methodology with
respect to accuracy and efficiency, based on data from Talbanken, a small
Swedish treebank, and the Penn Treebank of American English. The chapter
starts with a general discussion of treebanks and their use in syntactic parsing,
moves on to a description of the evaluation framework and the experimental
setup, and concludes with a discussion of the results in relation to previous
work on treebank parsing, in particular dependency-based parsing.

8 1 Introduction

Chapter 6
Conclusion

Chapter 6 summarizes the main results of the study and points to promising
directions for future research, such as the extension to non-projective depen-
dency structures, which may be needed for languages with more flexible word
order; the introduction of mild forms of nondeterminism and stochastic dis-
ambiguation; the exploration of alternative learning methods, including an
integration of inductive and deductive learning; and the use of more refined
evaluation methods.

2

Natural Language Parsing

Research on natural language parsing has over a period of several decades
produced a wealth of knowledge concerning different methods for automatic
syntactic analysis. Most of the results, however, concern formal grammars
and algorithms that are only indirectly related to the more practical problem
of analyzing syntactic structure in naturally occurring texts. This has led to
a somewhat paradoxical situation where, despite the increase in knowledge
about the complexity of problems and algorithms for formal grammars, we
know relatively little about the formal properties of text parsing. In fact, it is
still not clear that there is a well-defined parsing problem for natural language
text that is computable in the strict sense.

In this chapter, we will begin by contrasting the two notions of parsing,
the well-defined parsing problem for formal grammars, familiar from both
computer science and computational linguistics, and the more open-ended
problem of parsing unrestricted text in natural language, which is the focus
of the investigations in this book. We will then review different strategies
for text parsing, including both grammar-driven and data-driven approaches,
and discuss the different kinds of problems that arise with different methods.
On the basis of this discussion, we will then define the basic requirements of
robustness, disambiguation, accuracy and efficiency, which are central to the
investigations of text parsing in this book, and discuss evaluation criteria for
each of the requirements.

The primary goal of this chapter is to set the scene for the exploration of
inductive dependency parsing in later chapters, by defining the basic problems
and evaluation criteria, but in doing so we will also have reason to review some
of the more important trends in recent research on natural language parsing.
First of all, however, we need to say a few words about the desired output of
the parsing process, i.e., about syntactic representations for natural language
sentences.

10 2 Natural Language Parsing

JJ

Economic

��
NN

news

��

�
�

�
�

�
�

�
�

�
�

��

NP

VBD

had

�
�

�
�

�
�

�
VP

S

JJ

little

��
NN

effect

��

�
�

�
�

�

��

NP

NP

IN

on

�
�

�

��
PP

JJ

financial

��
NNS

markets

��

��
NP PU

.

�
�

�
�

�
�

�
�

�
�

��

Fig. 2.1. Constituent structure for English sentence from the Penn Treebank

2.1 Syntactic Representations

The type of syntactic representation that has been dominant during the last
fifty years, both in theoretical linguistics and in natural language processing,
is based on the notion of constituency. In this representation, a sentence is
recursively decomposed into smaller segments, called constituents or phrases,
which are typically categorized according to their internal structure into noun
phrases, verb phrases, etc. Constituency analysis comes from the structuralist
tradition represented by Bloomfield (1933) and was formalized in the 1950s in
the model of phrase structure grammar, or context-free grammar (Chomsky,
1956). Figure 2.1 shows a typical constituency representation of an English
sentence, taken from the Wall Street Journal section of the Penn Treebank
(Marcus et al., 1993, 1994).1

A wide range of different theories about natural language syntax are based
on constituency representations. In addition to the theoretical tradition of
Chomsky (1957, 1965, 1981, 1995), this includes frameworks that are promi-
nent in computational linguistics, such as Lexical Functional Grammar (LFG)
(Kaplan and Bresnan, 1982; Bresnan, 2000), Generalized Phrase Structure
Grammar (GPSG) (Gazdar et al., 1985), Tree Adjoining Grammar (TAG)
(Joshi, 1985, 1997), and Head-Driven Phrase Structure Grammar (HPSG)
(Pollard and Sag, 1987, 1994).

Another type of syntactic representation, which has a long tradition in
descriptive linguistics especially in Europe, is instead based on the notion
of dependency. In this representation, a sentence is analyzed by connecting
its words by binary asymmetrical relations, called dependencies, which are

1 The representation is equivalent to the treebank annotation except that the part-
of-speech category ‘.’ has been replaced by PU (for punctuation) to avoid a name
clash with the terminal ‘.’. This will simplify exposition later on.

2.1 Syntactic Representations 11

JJ
Economic

� �
�

nmod

NN
news

� �
�

sbj

VBD
had

JJ
little

� �
�

nmod

NN
effect

� �
�

obj

IN
on

� �
�

nmod

JJ
financial

� �
�

nmod

NNS
markets

� �
�

pmod

PU
.

�

� �p

Fig. 2.2. Dependency structure for English sentence (same as figure 1.1)

typically categorized according to their functional role into subject, object,
etc. Figure 1.1, repeated here for convenience as figure 2.2, shows a typical
dependency representation of the same sentence as in figure 2.1.

According to some scholars, dependency analysis can be traced back to
Antiquity (Kruijff, 2002), but the start of the modern tradition is usually
taken to be the work of Tesnière (1959). Linguistic theories that are based on
dependency representations include Word Grammar (Hudson, 1984, 1990),
Functional Generative Description (Sgall et al., 1986), Lexicase (Starosta,
1988), and Meaning-Text Theory (Mel’čuk, 1988).

A third kind of syntactic representation is found in categorial grammar,
which connects syntactic (and semantic) analysis to inference in a logical cal-
culus. The syntactic representations used in categorial grammar are essentially
proof trees, which cannot be reduced to constituency or dependency repre-
sentations, although they have affinities with both. The categorial grammar
tradition goes back to Ajdukiewicz (1935), was taken up in the 1950s by Bar-
Hillel (1953) and Lambek (1958), and was used by Montague (1970, 1973)
in his influential work on model-theoretic semantics. More recent frameworks
that are prominent in the literature on syntactic parsing includes Combina-
tory Categorial Grammar (CCG) (Steedman, 2000), Type-Logical Grammar
(Morrill, 1994, 2000), and Grammatical Framework (Ranta, 2004; Ljunglöf,
2004).

One final type of representation that is widely used in modern syntactic
theories is the notion of a feature structure, or attribute-value representation
(Johnson, 1988; Carpenter, 1992), which is usually formalized as a directed
acyclic graph. Theories that make use of feature structures are often said to
be unification-based (Shieber, 1986), since unification is the major operation
used to combine information from different structures. Feature structures are
often combined with constituency representations, either by decorating tree
nodes with feature structures, as in GPSG (Gazdar et al., 1985), or by adding
new layers of representation over and above the constituency representation,
as in LFG (Kaplan and Bresnan, 1982), or by using feature structure repre-
sentations to encode all aspects of linguistic structure, including constituency,

12 2 Natural Language Parsing

as in HPSG (Pollard and Sag, 1994). However, feature structures are also
found in dependency-based theories, such as Dependency Unification Gram-
mar (DUG) (Hellwig, 2003), and in categorial grammar frameworks, such
as Categorial Unification Grammar (CUG) (Uszkoreit, 1986) and Unification
Categorial Grammar (UCG) (Zeevat et al., 1991).

Throughout this book, we will mainly be concerned with dependency rep-
resentations, which will be discussed in more depth in chapter 3. However, in
this chapter we will try to abstract away from the particular representations
used and concentrate on issues in natural language parsing that cut across
different frameworks. Thus, when we speak about syntactic parsing as the
problem of assigning an analysis to an input string, it will be understood that
the analysis is a syntactic representation as defined by the relevant framework.
To some extent, this means that we will be comparing apples and oranges,
since the problems involved in parsing are not independent of the nature of
syntactic representations. Still, we feel that different frameworks have enough
in common to make a general discussion fruitful, although we will also make
reference to different syntactic representations when this is relevant.

2.2 Two Notions of Parsing

The term parsing, derived from the Latin pars orationis (parts of speech),
was originally used to denote the grammatical explication of sentences, as
practiced in elementary schools. The term was then borrowed by linguistics
and computer science, where it has acquired a specialized sense in connection
with the theory of formal languages and grammars. However, in practical
applications of natural language processing, the term is also used to denote
the syntactic analysis of sentences in text, without reference to any particular
formal grammar, a sense which is in many ways quite close to the original
grammar school sense.

In other words, there are at least two distinct notions of parsing that can
be found in the current literature on natural language processing, notions that
are not always clearly distinguished. Although we are certainly not the first
to notice this ambiguity, we feel that it has not been given the attention that
it deserves. While it is true that there are intimate connections between the
two notions, they are nevertheless independent notions with quite different
properties in some respects. In order to highlight these differences, we will
now proceed to a contrastive examination of the notions of grammar parsing
and text parsing.2

2 The term text in text parsing is not meant to exclude spoken language, but rather
to emphasize the relation to naturally occurring language use. Although we will
have nothing to say about the parsing of spoken utterances in this book, we
want the notion of text parsing to encompass both written texts and spoken
dialogues. An alternative term would be discourse parsing, but this would give
rise to misleading associations of a different kind.

2.2 Two Notions of Parsing 13

S → NP VP PU JJ → Economic
VP → VP PP JJ → little
VP → VBD NP JJ → financial
NP → NP PP NN → news
NP → JJ NN NN → effect
NP → JJ NNS NNS → markets
PP → IN NP VBD → had
PU → . IN → on

Fig. 2.3. Context-free grammar for a fragment of English

2.2.1 Grammar Parsing

The notion of grammar parsing is intimately tied to the notion of a formal
grammar G defining a formal language L(G) over some (terminal) alphabet Σ.
Formally, an alphabet Σ is a set of elementary symbols, and a formal language
over Σ is a subset of the set Σ∗ of all strings formed from symbols in Σ.
A grammar G is a formal system for deriving strings over some alphabet Σ,
and the language L(G) defined by G is the set of all strings x derivable in G.
Moreover, each (canonical) derivation of a string x corresponds to a syntactic
analysis of x according to G. The parsing problem can then be defined as
follows:

Given a grammar G and an input string x ∈ Σ∗, derive some or all of
the analyses assigned to x by G.

This is sometimes called the universal parsing problem for grammars of a
certain type. It is also possible to define the parsing problem relative to
a particular grammar G of some type, although this is usually considered
less interesting (Barton et al., 1987). The analysis of formal grammars and
their parsing problems goes back to the pioneering work of Noam Chomsky
and others in the 1950s and continues to be a very active area of research.
A classic introduction to the field is Hopcroft and Ullman (1979), which re-
cently appeared in a new and revised edition (Hopcroft et al., 2001).

The most widely used type of formal grammar, in computer science as well
as computational linguistics, is the context-free grammar (CFG) of Chomsky
(1956), which is equivalent to the independently defined Backus-Naur Form
(BNF) (Backus, 1959). Figure 2.3 shows a context-free grammar defining a
fragment of English including the sentence analyzed in figure 2.1. One of the
analyses assigned to this sentence by the grammar is the parse tree depicted
in figure 2.1, which corresponds to a canonical derivation of the word string.3

3 Without the restriction to some canonical form of derivation (e.g., a leftmost or
a rightmost derivation), there is generally more than one derivation of the same
parse tree.

14 2 Natural Language Parsing

Over the years, a variety of formal grammars have been introduced, many
of which are more expressive than context-free grammar and motivated by the
desire to provide a more adequate analysis of natural language syntax. This
development started with the transformational grammars of Chomsky (1957,
1965) and has continued with many of the theoretical frameworks mentioned
in the previous section, such as LFG and HPSG. In recent years, there has
been a special interest in so-called mildly context-sensitive grammars (Joshi,
1985), exemplified by TAG and CCG, which appear to strike a good balance
between linguistic adequacy and computational complexity.

Solving the universal parsing problem for a particular type of grammar
requires a parsing algorithm, i.e., an algorithm that computes analyses for a
string x relative to a grammar G. Throughout the years a number of parsing
algorithms for different classes of grammars have been proposed and ana-
lyzed. For context-free grammar, some of the more well-known algorithms are
the Cocke-Kasami-Younger (CKY) algorithm (Kasami, 1965; Younger, 1967),
Earley’s algorithm (Earley, 1970), and the left corner algorithm (Rosenkrantz
and Lewis, 1970). These algorithms all make use of tabulation to store partial
results, which potentially allows exponential reductions of the search space
and thereby provides a way of coping with ambiguity. In the computational
linguistics literature, this technique is best known as chart parsing (Kay, 1980;
Thompson, 1981). This type of method, which constitutes a form of dynamic
programming (Cormen et al., 1990), can also be generalized to more expressive
grammar formalisms.

Deterministic parsing algorithms, such as LR parsing (Knuth, 1965), can
only handle restricted subsets of context-free grammars and have their main
use in compilers for programming languages. However, deterministic parsing
techniques based on shift-reduce parsing (Aho et al., 1986) have also been
applied to natural language parsing, often with the ambition to model human
sentence processing (Marcus, 1980; Shieber, 1983). In addition, the general-
ized LR (GLR) parsing algorithm proposed by Tomita (1987) can handle
arbitrary context-free grammars and avoids exponential search by using a
graph-structured stack and tabulation of partial results.

Traditional methods for parsing can be described as constructive in the
sense that they analyze sentences by constructing syntactic representations
in accordance with the rules of a given grammar. An alternative is to use an
eliminative parsing method, which treats the grammar as a set of constraints
and views parsing as a constraint satisfaction problem, which can be solved
by successively eliminating analyses that violate constraints until only valid
analyses remain. This strategy presupposes a compact representation of the
space of possible analyses and has therefore mainly been used with syntactic
representations that are reducible to an assignment of categories or structural
attachments to word tokens, as in Constraint Grammar (CG) (Karlsson, 1990;
Karlsson et al., 1995), Constraint Dependency Grammar (CDG) (Maruyama,
1990; Harper and Helzerman, 1995; Menzel and Schröder, 1998), and Topo-
logical Dependency Grammar (TDG) (Duchier, 1999). In special cases, this

2.2 Two Notions of Parsing 15

parsing strategy can also be implemented using finite state techniques, as in
Parallel Constraint Grammar (Koskenniemi, 1990, 1997). Besides constructive
and eliminative parsing methods, we may also distinguish a transformational
approach, where parsing starts from some kind of default representation and
applies grammatical rules that transform this to an output representation
(Brill, 1993; Foth et al., 2004).

We will make no attempt to review the vast literature on grammar parsing
here but will limit ourselves to a few observations concerning the properties
of the parsing problem and the methods used to solve it.4 First of all, it is
worth noting that the parsing problem for a class of grammars is a well-defined
abstract problem in the sense of algorithm theory (Cormen et al., 1990), i.e.,
a relation between a set I of inputs, which in this case are pairs consisting
of a grammar G and a string x, and a set O of outputs, which are syntactic
representations of strings in L(G). A parsing algorithm provides a solution to
this problem by computing the mapping from arbitrary inputs to outputs.

Secondly, the parsing problem for formal grammars is intimately tied to
the corresponding recognition problem, i.e., the problem of deciding whether
the string x is in L(G). It is only strings in L(G) that receive an analysis in
the parsing process, and most parsing algorithms in fact solve the recognition
problem simultaneously.

Thirdly, we note that the analyses to be assigned to a particular input
string x are completely defined by the grammar G itself. For example, if G is
a context-free grammar, we may be interested in the set of distinct parse trees
that result from derivations of x from the start symbol S of G. In principle, this
means that the correctness of a parsing algorithm can be established without
considering any particular input strings, since the set of all input-output pairs
are given implicitly by the grammar G itself.

The abstract nature of the grammar parsing problem is reflected in the
evaluation criteria that are usually applied to parsing methods in this context.
For example, a parsing algorithm is said to be consistent if, for any grammar
G and input string x, it only derives analyses for x that are licensed by G; it
is said to be complete if, for any G and x, it derives all analyses for x that
are licensed by G. For example, the grammar in figure 2.3 is ambiguous and
assigns to our example sentence not only the analysis in figure 2.1 but also
the analysis in figure 2.4. Thus, a complete parsing algorithm must compute
both these analyses, while a consistent algorithm must not compute any other
analysis. However, both consistency and completeness of an algorithm can
be proven without considering any particular grammar G or input string x,
given the formal definition of the class of grammars and the relevant notions
of derivation and representation.

The same goes for considerations of efficiency, where proofs of complexity,
either for particular parsing algorithms or for classes of grammars, provide the

4 For general overviews of grammar parsing techniques, with special reference to
natural language parsing, see Samuelsson and Wirén (2000) and Carroll (2003).

16 2 Natural Language Parsing

JJ

Economic

��
NN

news

��

�
�

�
�

�
�

�
�

�
�

��

NP

VBD

had

�
�

��

VP

S

JJ

little

��
NN

effect

��

��

					

NP

VP

IN

on

�
�

�

����

PP

JJ

financial

��
NNS

markets

��

��
NP PU

.

�
�

�
�

�
�

�
�

�
�

��

Fig. 2.4. Alternative constituent structure for English sentence (cf. figure 2.1)

most relevant tools for evaluation. Research on the complexity of linguistically
motivated classes of grammars was pioneered by Barton et al. (1987) and
has been followed by a large number of subsequent studies. For a context-
free grammar G, parsing can be performed in O(n3) time, where n is the
length of the input string x, using one of the dynamic programming algorithms
mentioned earlier. For mildly context-sensitive grammars, parsing complexity
is still polynomial — typically O(n6) — while for more expressive formalisms
running time becomes exponential in the worst case.

Although complexity results often need to be supplemented by practical
running time experiments, as shown for example by Carroll (1994), the role of
empirical evaluation is rather limited in grammar parsing, especially as far as
correctness is concerned. This follows from the fact that grammar parsing, as
defined here, is an abstract and mathematically well-defined problem, which
can be studied using formal methods only. One setting where such studies have
been performed very fruitfully is within the framework known as deductive
parsing (Shieber et al., 1995).

2.2.2 Text Parsing

The notion of text parsing applies to concrete manifestations of a language L,
where we do not necessarily assume that L is a formal language. In particular,
we are interested in the case where L is a natural language, or possibly a
restricted subset of a natural language. We assume that a text in a language
L is a sequence T = (x1, . . . , xn) of sentences xi, and we characterize the text
parsing problem as follows:

Given a text T = (x1, . . . , xn) in the language L, derive the correct
analysis for every sentence xi ∈ T .

2.2 Two Notions of Parsing 17

The term sentence should be understood here in the sense of text sentence
rather than system sentence (Lyons, 1977), i.e., it refers to a segment of text
without any specific assumptions about syntactic completeness or other struc-
tural properties. What constitutes a sentence in this sense may differ from one
language to the other and may not always be completely clear-cut. For the
time being we will simply disregard this problem, although it is well-known
that the problem of sentence segmentation in text processing is far from trivial
(Palmer, 2000). It is also worth pointing out that the concept of a text as a
sequence of sentences is an abstraction in the sense that it ignores all
aspects of non-sequential structure that resides, e.g., in the graphical layout
of printed texts. This seems like an appropriate abstraction for written text,
which is what we are concerned with in this study, but we will probably need a
different abstraction for spoken dialogue, where different principles of struc-
tural organization are at play and where the notion of sentence has a more
unclear status.

To exemplify the notion of text parsing, let us return again to the example
sentence from figure 2.1. In its original context, which is a text taken from
the Wall Street Journal and included in the Penn Treebank, this sentence has
an interpretation that corresponds to the analysis in figure 2.1 — rather than
the alternative analysis in figure 2.4. Therefore, the former analysis is the one
and only correct analysis in the context of text parsing.

Let us now return to the observations made concerning grammar parsing
in the previous section and see in what respects text parsing is different. First
of all, it is not clear that text parsing is a well-defined abstract problem in
the same sense as grammar parsing, especially not when we consider texts
in a natural language. It is true that text parsing has the structure of a
mapping problem, but in the absence of a formal definition for the language
L, there is no precise delimitation of the input set. Moreover, even if we can
agree on the formal properties of output representations, there is no formal
grammar defining the correct mapping from inputs to outputs. For example,
the syntactic representation in figure 2.1 is clearly of the kind that can be
defined by a context-free grammar. But according to our conception of the
text parsing problem, there is no specific instance of this formal grammar that
defines the mapping from an input string to a specific representation. In other
words, despite a superficial similarity to the definition of grammar parsing,
our characterization of the text parsing problem is not a formal definition
at all.

One way of looking at the problem is instead to say that it is an empirical
approximation problem, where we try to approximate the correct mapping
given increasingly large but finite samples of the mapping relation. Needless
to say, this is a view that fits very well with the data-driven approach to text
parsing, which will be discussed in a later section. However, the main point
right now is simply that, unlike grammar parsing, the problem of text parsing
lacks a precise definition in formal terms.

18 2 Natural Language Parsing

Secondly, text parsing lacks the connection between parsing and recogni-
tion that we observed for grammar parsing. This is a direct consequence of
the fact that the input language is not formally defined, which means that
recognition is not a well-defined problem. Therefore, we can no longer require
that an input string be part of the language to be analyzed. In most cases, we
instead have to assume that any text sentence is a valid input string. And if
we want to be able to reject some input strings as ill-formed, then we cannot
refer to a formal language definition but must appeal to some other criterion.

Thirdly, while there is no reference to a grammar in the definition of text
parsing, there is instead a reference to the sequence of sentences that provide
the textual context for each sentence to be analyzed. This is based on the
assumption that text parsing deals with language use, and that the analysis
assigned to a sentence is sensitive to the context in which it occurs. In particu-
lar, we assume that each text sentence has a single correct analysis, even if the
string of words realizing the sentence may be found with other interpretations
in other contexts. In other words, text parsing entails disambiguation.

However, the absence of a formal grammar also means that we need some
external criterion for deciding what is the correct analysis for a given sen-
tence in context. For natural languages, the obvious criterion to use is human
performance, meaning that an analysis is correct if it coincides with the in-
terpretation of competent users of the language in question. This leads to the
notion of an empirical gold standard, i.e., a reference corpus of texts, where
each relevant text segment has been assigned its correct analysis by a human
expert. In the case of syntactic parsing, the relevant segments are sentences
and the corpus will normally be a treebank (Abeillé, 2003b; Nivre, forthcom-
ing). Thus, our reason for saying that the analysis given in figure 2.1 is correct
is simply that this is the analysis found in the Penn Treebank.

The use of treebank data to establish a gold standard for text parsing is
problematic in many ways, and we will return to this problem in chapter 5.
For the time being, we will simply note that even if a gold standard treebank
can be established, it will only provide us with a finite sample of input-output
pairs, which means that any generalization to an infinite language will have to
rely on statistical inference. This is in marked contrast to the case of grammar
parsing, where the consistency and completeness of parsing algorithms, for any
grammar and any input, can be established using formal proofs.

The empirical nature of the text parsing problem is reflected also in the
evaluation criteria that are applied to parsing methods in this context. Since
notions of consistency and completeness are meaningless in the absence of a
formal grammar, the central evaluation criterion is instead the empirical no-
tion of accuracy, which is standardly operationalized as agreement with gold
standard data and which will be discussed in detail later on. However, it is
important to remember that, even though it is often difficult to apply formal
methods to the text parsing problem itself given its open-ended nature, the
parsing methods we develop to deal with this problem can of course be sub-
jected to the same rigorous analysis as algorithms for grammar parsing. Thus,

2.2 Two Notions of Parsing 19

if we are interested in the efficiency of different methods, we may use results
about theoretical complexity of algorithms as well as empirical running time
experiments. Formal methods can also be used to study aspects of robustness
and disambiguation, as we shall see later on. However, for the central notion of
accuracy, there seems to be no alternative but to rely on empirical evaluation
methods, at least not given the current state of our knowledge.

2.2.3 Competence and Performance

The discussion of grammar parsing and text parsing leads naturally to a con-
sideration of the well-known distinction between competence and performance
in linguistic theory (Chomsky, 1965).5 It may be tempting to assume that
grammar parsing belongs to the realm of competence, while text parsing is
concerned with performance. After all, the whole tradition of generative gram-
mar in linguistics is built on the idea of using formal grammars to model
linguistic competence, starting with Chomsky (1957, 1965). The idea that
natural languages can be modeled as formal languages unites theorists as dif-
ferent as Chomsky and Montague (1970), although it is much less prominent
in recent formulations of Chomsky’s theory (Chomsky, 1981, 1995). Within
this tradition, it might be natural to view the study of grammar parsing,
when applied to natural language, as the study of idealized human sentence
processing.

The traditional notion of linguistic competence has recently been called
into question, and it has been suggested that many of the properties typically
associated with linguistic performance, such as frequency effects and proba-
bilistic category structure, also belong to our linguistic competence (Bod, Hay
and Jannedy, 2003). We will not pursue these complex and controversial issues
here, and the nature of linguistic competence, fascinating as it is, falls outside
the scope of this study.

On the other hand, it seems quite clear that text parsing is concerned
with linguistic performance, at least if we want to use text parsing methods
to build practical systems that can handle naturally occurring texts. This
means that a model of linguistic competence is of use to us only if it can be
coupled with an appropriate model of performance. So, regardless of whether
grammar parsing is a good model of linguistic competence or not, it is still
an open question what role it has to play in text parsing (cf. Jensen, 1988;
Chanod, 2001).

This question will be discussed in detail in the next section, but before we
leave the topic of grammar parsing as such, it should be emphasized that this
is in any case a very fruitful area of research. Investigations of the complexity
of formal grammars and their parsing algorithms have applications in many

5 Before Chomsky, similar distinctions had been proposed by De Saussure (1916),
between langue and parole, and by Hjelmslev (1943), between system and process,
among others.

20 2 Natural Language Parsing

areas of computer science, and work on the complexity of linguistically moti-
vated formalisms has had a profound influence on the development of natural
language parsing, including the approach investigated in this book.

2.3 Methods for Text Parsing

The main conclusion from the preceding section is that grammar parsing
and text parsing are in many ways radically different problems and there-
fore require different methods. In particular, grammar parsing is an abstract
problem, which can be studied using formal methods and internal evaluation
criteria, while text parsing is an empirical problem, where formal methods
need to be combined with experimental methods and external evaluation cri-
teria. In this section, we will go on to discuss methods that have been proposed
for text parsing, which is the problem that concerns us here. Some of these
methods crucially involve grammar parsing; others do not.

Following Carroll (2000), we distinguish two broad types of strategy: the
grammar-driven approach and the data-driven approach. However, we want to
emphasize at the outset that these types are in a sense stereotypes, represent-
ing extreme strategies, which means that many existing approaches actually
combine elements of both. In fact, at the end of this section we will even go
so far as to suggest that recent developments in the field can be seen as signs
of convergence between these apparently opposite strategies. Nevertheless, we
believe that it is instructive to start out by considering them as alternative
methods, since this will highlight the way they tackle the different problems
that arise in parsing unrestricted natural language text.

By necessity, any method for text parsing must rely on an approximation,
where a well-defined abstract problem is used as a model of the real practical
text parsing problem. By computing a solution to the abstract model problem,
we can approximate a solution to the real problem. But the adequacy of this
approximation can only be assessed through empirical evaluation. The main
difference between the grammar-driven and the data-driven approach lies in
the type of abstract problem that is chosen to model the text parsing problem.

2.3.1 Grammar-Driven Text Parsing

In the grammar-driven approach, text parsing is modeled by the abstract
problem of grammar parsing. Hence, a formal grammar G is used to define
the language L(G) that can be parsed and the class of analyses to be returned
for each string in the language. A grammar parsing algorithm is then used to
compute the analyses of a given input string, as described in section 2.2.1. The
grammar may be hand-crafted or it may be wholly or partially induced from
corpus data. It may be coupled with a statistical model for parse selection,
and it may allow partial analyses to achieve robustness. But the essence of

2.3 Methods for Text Parsing 21

the grammar-driven approach, as understood here, is that it is based on a
grammar G defining a formal language L(G).

Given our characterization of text parsing in section 2.2.2, it is clear that
the grammar-driven approach is based on a crucial assumption, namely that
the formal language L(G) is a reasonable approximation of the language L
that we want to process. In practice, it is arguably the case that most if not
all of the formal grammars that have been developed for natural languages
to date fail to meet this assumption, and the formal language L(G) is at best
a restricted subset of the natural language L. This does not undermine the
grammar-driven approach in principle, since it is always possible to argue that
advances in linguistic theory will lead to successively better approximations,
but it does create important problems for practical applications of grammar-
driven text parsing in the meantime. Many of the research directions in natural
language parsing during the last two decades can be seen as motivated by the
desire to overcome these problems.

An analogy with syntactic parsing in compilers for programming languages
may be illuminating at this point. In a way, parsing computer programs is
also a kind of text parsing, but there is a crucial difference in that we know
from the start that the approximation L(G) = L can be made perfect, simply
because the programming language L is itself a formal language with a precise
syntax definition. Moreover, this definition is usually expressible in a carefully
restricted subclass of context-free grammar. This does not necessarily mean
that compilers always use grammar-driven parsers in practice, or that they
use a grammar G such that L(G) exactly coincides with L, but it means that
it is always possible to find out whether the approximation is perfect or not.
For natural languages, this is unfortunately not the case.

One of the hardest problems for the grammar-driven approach has tradi-
tionally been to achieve robustness, where robustness can be defined as the
capacity of a system to analyze any input sentence. Alternatively, we may view
robustness as a matter of degree and say that a system is more robust if it can
adequately handle a larger proportion of the input data. In either case, the
shortcomings of grammar-driven systems in this respect can be traced back
to the fact that some input sentences xi in a text T are not in the language
L(G) defined by the formal grammar G.

Theoretically speaking, it is possible to distinguish two problematic cases
where xi �∈ L(G). In the first case, xi is a perfectly well-formed sentence of the
language L and should therefore also be in L(G) but is not. This is sometimes
referred to as the problem of coverage, since it should be eliminated by in-
creasing the coverage of the grammar. In the second case, xi is considered not
to be part of L, and should therefore not be in L(G) either, but nevertheless
has a reasonable syntactic analysis. This can then be called the problem of
robustness proper. Examples of the latter type include sentences where some
word is misspelled or even omitted, but where it is nevertheless possible to
analyze the syntactic structure of (the rest of) the sentence.

22 2 Natural Language Parsing

For example, if our example sentence from figure 2.1 had contained the
token impact or the token effact, instead of the token effect, then the sentence
would not have been included in the language defined by the grammar in
figure 2.3. In the first case, this would be a problem of coverage, since impact
is a real English word, which can occur in the same structural position as
effect. In the second case, it would be a problem of robustness, since effact is
not a word of English.

However, even though there are many clear-cut examples like these, there
are also many cases where it is difficult to decide whether a sentence that is
not in L(G) is in L, at least without making appeal to a prescriptive gram-
mar for the natural language L. For certain practical applications, such as
grammar checking, it is obviously both relevant and necessary to use this
kind of information, but it can be problematic in the general case. Moreover,
since it is difficult to apply the distinction between coverage and robustness
to approaches that are not grammar-driven, we will not try to maintain this
distinction in general but simply treat all failures to analyze input sentences
as problems of robustness.6

As pointed out by Samuelsson and Wirén (2000), there are essentially two
methods that have been proposed to overcome the robustness problem for
grammar-driven systems. The first is to relax the grammatical constraints of G
in such a way that a sentence outside L(G) can be assigned a complete analysis
(Jensen and Heidorn, 1983; Mellish, 1989). This method has the potential
drawback that the number of relaxation alternatives that are compatible with
analyses of the complete input may become extremely large, and this in turn
will aggravate the problem of disambiguation to be discussed below.

The second method is to maintain the constraints of G but to recover
as much structure as possible from well-formed fragments of the sentence.
This leads to the notion of partial parsing, which has been explored within
many different frameworks such as deterministic parsing (Hindle, 1989, 1994),
chart parsing (Lang, 1988), finite state parsing (Ejerhed, 1983; Koskenniemi,
1990, 1997; Abney, 1991, 1996; Oflazer, 2003), and Constraint Grammar (CG)
parsing (Karlsson, 1990; Karlsson et al., 1995), and which nowadays includes
not only recovery techniques but also approaches that never attempt to build
a complete syntactic structure. Compared to constraint relaxation, partial
parsing has the advantage of hiding ambiguity instead of increasing it, since
a partial syntactic analysis can be viewed as an underspecified representation
of a complete analysis and therefore fails to exhibit some of the ambiguities
that distinguish non-equivalent complete analyses. For example, a chunking
analysis can be viewed as a partial, underspecified constituency analysis, and
a CG analysis as a partial dependency analysis.

In this way, partial parsing can be seen as a way to sacrifice completeness
and depth of analysis to improve robustness and efficiency (Abney, 1997).

6 For a more extensive discussion of robustness in natural language parsing, see
Menzel (1995), Junqua and Van Noord (2001) and Basili and Zanzotto (2002).

2.3 Methods for Text Parsing 23

This may be useful especially in applications that do not require a complete
syntactic analysis. However, it is also possible to view partial parsing as a
way to break down the complex parsing problem into subproblems that may
be easier to manage. This leads to the notion of cascaded partial parsing
(Abney, 1996), where full parsing is achieved through a sequence of partial
parsers, where each parser takes as input the output of the preceding one.
A variant of this approach is the use of supertagging, pioneered by Bangalore
and Joshi (1999), where the words of a sentence are annotated with rich
structural or functional categories in order to facilitate the derivation of a
syntactic structure in a second step (Joshi and Sarkar, 2003). In a similar vein,
the framework of Functional Dependency Grammar (FDG) (Tapanainen and
Järvinen, 1997; Järvinen and Tapanainen, 1998) uses CG parsing as a form
of supertagging for the construction of dependency structures.

Although we have made a distinction between constraint relaxation and
partial parsing as two strategies for achieving robustness in grammar-based
text parsing, it should be pointed out that practical implementations often
combine the two techniques. For example, in a CG parser that constructs
a partial analysis by applying constraints in an eliminative fashion, there is
usually a mechanism to prevent the elimination of the last analysis, which is
in fact a general mechanism for constraint relaxation that guarantees that the
system will output an analysis even if there is no analysis that satisfies all the
constraints of the grammar.

Another major problem for grammar-driven text parsing is the problem
of disambiguation, which is caused by the fact that the number of analyses
assigned to a sentence xi by the grammar G can be very large, while text
parsing requires that a small number of analyses (preferably a single one)
are selected as appropriate in the context of the text T . For example, the
grammar in figure 2.3 assigns two different analyses to our example sentence
(cf. figure 2.1 and figure 2.4), which means that a text parsing system using
this grammar must incorporate a mechanism for selecting one of them as
correct in the given context.7

Again, we can make a theoretical distinction between two reasons that
the grammar parser outputs more than one analysis for a given string. On
the one hand, we have cases of true ambiguity, i.e., where xi admits of more
than one syntactic analysis in the language L, even though only one of them
is appropriate in the textual context, and where the grammar G captures
this by assigning several analyses to xi. On the other hand, it may be the
case that the grammar G contains rules that license analyses for xi that are
never encountered in L. The latter problem is sometimes called the leakage
problem, in allusion to Sapir’s famous statement that ‘[a]ll grammars leak’
(Sapir, 1921, 39), or simply overgeneration. Although one might argue that it

7 For this particular sentence, it is not clear that the syntactic ambiguity makes
a difference in meaning. In fact, it could even be argued that have little effect is
a light verb construction and that the analysis in figure 2.4 is more appropriate.

24 2 Natural Language Parsing

is only the former problem that relates to disambiguation proper, it is again
very difficult in practice to draw a sharp distinction between problems of
leakage and problems of disambiguation, and we will therefore use the term
disambiguation for the process of reducing the number of analyses assigned to
a string, whether the analyses should be licensed by an underlying grammar
or not.

Early work related to the ambiguity problem used specialized grammars
for different domains of text. Even though this will not lead to complete
disambiguation in all cases, it can drastically reduce the number of analyses
assigned to a given string, compared to broad-coverage domain-independent
grammars. A more sophisticated variant of this approach, which also allows
grammar resources to be reused across domains, is to use machine learning
techniques to specialize a grammar to a new domain (Grishman et al., 1984;
Samuelsson and Rayner, 1991).

A different approach to disambiguation in grammar-driven text parsing is
to use deterministic processing and try to ensure that, as far as possible, a
correct decision is made at each nondeterministic choice point corresponding
to an ambiguity (Marcus, 1980; Shieber, 1983). As mentioned earlier, this line
of research has often been motivated by a desire to model human sentence
processing, which is assumed to use deterministic disambiguation in com-
bination with backtracking if necessary. An early version of the framework
investigated in this book used a simple grammar together with hand-crafted
heuristics to achieve deterministic dependency parsing (Nivre, 2003).

Disambiguation is not independent of the basic parsing methodology, and
it could be argued that eliminative and transformational methods are more
geared towards disambiguation than traditional constructive methods. In an
eliminative framework, parsing and disambiguation can be said to coincide,
since parsing is performed by successively eliminating candidate analyses, as
in the CG framework or its descendant FDG. On the other hand, this kind of
eliminative parsing presupposes that we construct a compact representation
of the space of possible analyses, which means that it can also be viewed as
a very simple and efficient form of constructive parsing followed by elimina-
tive disambiguation. In the transformational approach, parsing is instead the
successive transformation of a single representation, which means that there
is only one analysis available at any point in time. This technique has been
used for disambiguation in transformation-based parsing (Brill, 1993) and
Weighted Constraint Dependency Grammar (WCDG) (Foth et al., 2004).

However, the most common approach to disambiguation in recent years
has been the use of statistical information about the text language L to rank
multiple competing analyses (n-best parsing) or to select a single preferred
analysis. There are several ways in which statistical information can be in-
tegrated into the grammar-driven approach, but the most straightforward
approach is to use a stochastic extension of a formal grammar, the most well-
known example being probabilistic context-free grammar (PCFG). In a PCFG,
every context-free production is associated with a probability p in such a way

2.3 Methods for Text Parsing 25

S → NP VP PU 1.0 JJ → Economic 0.3
VP → VP PP 0.3 JJ → little 0.5
VP → VBD NP 0.7 JJ → financial 0.2
NP → NP PP 0.2 NN → news 0.4
NP → JJ NN 0.5 NN → effect 0.6
NP → JJ NNS 0.3 NNS → markets 1.0
PP → IN NP 1.0 VBD → had 1.0
PU → . 1.0 IN → on 1.0

Fig. 2.5. Probabilistic context-free grammar for a fragment of English

that the probabilities of all productions with the same left-hand side sum to
1. Thus, the probability of a production A → ω is the conditional probability
P (ω |A) of the right-hand side ω given the left-hand side A. The probability of
a parse tree is then the product of probabilities of all the productions used to
construct it (Booth and Thompson, 1973), which amounts to assuming that
all production probabilities are mutually independent.

Figure 2.5 shows a PCFG based on the CFG in figure 2.3. Although the
actual probabilities assigned to the different rules are completely unrealistic
because of the very limited coverage of the grammar, it nevertheless serves to
illustrate the notion of a probabilistic grammar. According to this grammar,
the probability of the parse tree in figure 2.1 is 0.0000756, while the probability
of the parse tree in figure 2.4 is 0.0001134. In other words, using this PCFG
for disambiguation, we would prefer the second analysis, which attaches the
PP on financial markets to the verb had, rather than to the noun effect.
According to the annotation in the Penn Treebank, this would not be the
correct choice.

Early work on PCFG parsing used unsupervised machine learning, in par-
ticular the Inside-Outside algorithm (Baker, 1979), applied to text corpora to
estimate the probabilistic parameters of hand-crafted context-free grammars
(Fusijaki et al., 1989; Pereira and Schabes, 1992). But given a treebank with
context-free syntactic representations, it is also possible to extract produc-
tions directly from the analyses in the treebank and to use frequency counts
to estimate probabilistic parameters in a supervised fashion, which results in
a so-called treebank grammar (Charniak, 1996).

The probabilistic model associated with PCFGs has turned out to be a
rather blunt tool for disambiguation, because its independence assumptions
are such that it misses dependencies that seem to be important for correct dis-
ambiguation. For example, bilexical dependencies, i.e., dependencies between
word pairs, are outside the reach of the basic model. This has led people to
explore various kinds of lexicalized stochastic grammars, either based on the
PCFG model or on other formal grammars such as Lexical Tree Adjoining
Grammar (LTAG) (Schabes et al., 1988), for which stochastic versions have
been defined by Schabes (1992) and Resnik (1992). In fact, most of the ad-
vances in text parsing during the last decade can be traced to the development

26 2 Natural Language Parsing

of better statistical methods for disambiguation. This often results in a
combination of the grammar-driven and data-driven approaches, and we will
postpone our discussion of these methods until the next section, where they
will be treated together with other data-driven methods for text parsing.

The problems of robustness and disambiguation cannot be studied in iso-
lation from the problem of accuracy. If robustness and disambiguation have
traditionally been considered the stumbling blocks for grammar-driven text
parsing, it is often assumed that this approach has an advantage with respect
to accuracy, since the grammar G is meant to guarantee that the analysis
assigned to a sentence xi in a text T is linguistically adequate. However, even
if we disregard the leakage problem, this argument is only tenable as long
as we do not require robustness and disambiguation. As we have seen above,
robustness may require the analysis of strings that are not in the language
L(G) defined by the grammar. And disambiguation normally entails discard-
ing most of the analyses assigned to a string by the grammar. All other things
being equal, these requirements will decrease the likelihood that a given string
xi ∈ T is assigned the contextually correct analysis by the parsing system.
This means that we need to consider the joint optimization of robustness, dis-
ambiguation and accuracy, even if we can decide to prioritize them differently.

The need for joint optimization also includes the final problem that we will
consider, namely efficiency, which can be a more or less serious problem for the
grammar-driven approach depending on the expressivity and complexity of the
formal grammars used. For many linguistically motivated frameworks, such as
LFG and GPSG, the parsing problem has been shown to be computationally
intractable (Barton et al., 1987).8 It should be remembered, though, that these
results concern the theoretically worst case, which for many frameworks occurs
only under very special circumstances. Therefore, exponential time algorithms
can often be used in practical parsing systems, possibly in combination with
special mechanisms to limit the computational effort when the worst-case
exponential behavior is encountered (Kaplan et al., 2004). Another approach,
which is less common in practice, is to make use of context-free approximations
of the full-fledged grammar (Torisawa et al., 2000).

But even for grammars that allow parsing in polynomial time and space,
efficiency can be a problem in practical applications. This is the case for many
of the mildly context-sensitive grammar formalisms that have been proposed
for natural language syntax, such as Tree Adjoining Grammar (TAG) (Joshi,
1985, 1997) and Combinatory Categorial Grammar (CCG) (Steedman, 2000),
where the time complexity for parsing is O(n6) relative to the length n of the
input string. Moreover, the requirements of robustness and disambiguation
can easily compromise efficiency. Enforcing robustness by relaxing constraints
may lead to a combinatorial explosion in the number of possible analyses,

8 LFG parsing is NP hard, which means that it is probably not computable in poly-
nomial time; GPSG parsing is EXP-POLY hard, which means that it is certainly
not computable in polynomial time (Barton et al., 1987).

2.3 Methods for Text Parsing 27

and disambiguation may require the enumeration of an exponential number of
analyses from the compact tabular representation computed during parsing. In
addition, both time and space complexity are normally dependent on the size
of the grammar, as well as the degree of lexical ambiguity, factors that may in
fact dominate the time and space consumption as grammar size grows with the
increased coverage required by robustness. However, important progress has
been made in recent years to speed up parsing for highly expressive grammar
frameworks, as reported, e.g., in Malouf et al. (2000); Oepen and Carroll
(2000); Riezler et al. (2002); Miyao et al. (2003); Kaplan et al. (2004); Clark
and Curran (2004); Curran and Clark (2004).

Finally, it is worth noting that the most efficient methods for grammar-
driven text parsing are those that are based on deterministic algorithms,
whether they apply to context-free grammars (Hindle, 1989, 1994), to finite
state models (Ejerhed, 1983; Koskenniemi, 1990, 1997; Abney, 1991, 1996;
Roche, 1997; Oflazer, 2003), or to automatically induced finite state approxi-
mations of context-free grammars (Pereira and Wright, 1997; Nederhof, 1998,
2000; Mohri and Nederhof, 2001).

2.3.2 Data-Driven Text Parsing

In the data-driven approach to text parsing, a formal grammar is no longer a
necessary component of the parsing system. Instead, the mapping from input
strings to output analyses is defined by an inductive mechanism applying to a
text sample Tt = (x1, . . . , xn) from the language L to be analyzed. Hence, the
abstract problem used to approximate text parsing in this case is a problem
of inductive inference, which may or may not be constrained by a formal
grammar. In general, we can distinguish three essential components in a data-
driven text parser:

1. A formal model M defining permissible analyses for sentences in L.
2. A sample of text Tt = (x1, . . . , xn) from L, with or without the correct

analyses At = (y1, . . . , yn).
3. An inductive inference scheme I defining actual analyses for the sentences

of any text T = (x1, . . . , xn) in L, relative to M and Tt (and possibly At).

This may not be the most familiar way to describe data-driven text parsing,
but we believe that this characterization provides a useful abstraction over
many existing approaches and furthermore allows a fruitful comparison to the
grammar-driven approach.9

The first thing to note is that the formal model M may in fact be a formal
grammar G, in which case permissible representations will be restricted to
strings of the formal language L(G). For example, in the standard PCFG
model the permissible analyses are defined by a context-free grammar G. But

9 For a somewhat different but largely compatible view, see Collins (1999); cf. also
Manning and Schütze (2000).

28 2 Natural Language Parsing

it can also be a model that provides constraints on representations without
defining a string language in the process. A simple example would be a model
that allows any context-free parse tree whose nonterminal nodes are labeled
with symbols from a given set N but whose terminal nodes are labeled with
arbitrary word tokens occurring in text sentences of L. As pointed out by
Bod (1998), such a model is not a grammar in the formal sense but a dynamic
system, since the set of accepted strings cannot be defined independently of
the input to the system.

The sample of text Tt, which will normally be called the training data,
may or may not be annotated with representations satisfying the constraints
of M , i.e., it may or may not be extracted from a treebank of the language L.
If Tt is a treebank sample, then there also exists a corresponding sequence of
analyses At = (y1, . . . , yn), where yi is the correct analysis of xi according to
the treebank annotation. Then the inductive inference scheme I will typically
be based on a form of supervised machine learning (Mitchell, 1997; Hastie
et al., 2001). A typical example is the induction of a PCFG by extracting all
context-free productions encountered in the treebank and using the relative
frequency of each production to estimate its probability, a so-called treebank
grammar (Charniak, 1996). If Tt is a raw text sample, there is no sequence of
analyses given, but unsupervised learning may be used. Thus, early work on
PCFG parsing applied the Inside-Outside algorithm to raw text corpora in
order to estimate the probabilistic parameters of a hand-crafted context-free
grammar (Fusijaki et al., 1989; Pereira and Schabes, 1992). However, since the
accuracy obtained with unsupervised methods remains inferior to supervised
approaches, the latter have dominated the field in recent years.

The inductive inference scheme I, which defines the actual analyses of
a given string x, relative to the model M and the sample Tt, can often be
decomposed into three distinct components:

1. A parameterized stochastic model MΘ assigning a score S(x, y) to each
permissible analysis y of a sentence x, relative to a set of parameters Θ.

2. A parsing method, i.e., a method for computing the best analysis y for a
sentence x according to S(x, y) (given an instantiation of Θ).

3. A learning method, i.e., a method for instantiating Θ based on inductive
inference from the training sample Tt.

In the PCFG model, the parameters in Θ are the probabilities associated
with the rules of the context-free grammar, while the score S(x, y) is the joint
probability P (x, y), which can be computed by multiplying rule probabilities
according to the normal independence assumptions. As we have already seen,
this score can be used to rank alternative analyses and select the optimal
analysis according to the model. As parsing method, we can use one of the
standard context-free parsing algorithms extended to PCFG parsing, such
as the CKY algorithm (Ney, 1991) or Earley’s algorithm (Stolcke, 1995). As
learning method, it is common to use some form of maximum likelihood esti-
mation, either based on relative frequencies from a treebank, or based on the

2.3 Methods for Text Parsing 29

unsupervised Inside-Outside algorithm. In any case, it is important to note
that one and the same parameterized stochastic model MΘ can be combined
with different parsing methods as well as different learning methods, and that
parsing methods and learning methods are largely independent of each other.

It is worth emphasizing that in order for the system to be usable in prac-
tice, there must be effective ways to implement parsing and learning methods,
so that the actual analyses for a sentence can be computed with reasonable
efficiency. Usually, this computation is divided into a training phase, where the
learning method is applied once to the training sample Tt in order to estimate
the parameters of the model MΘ, and a parsing phase, where analyses are
constructed and scored for individual sentences, although the exact division
of labor between the phases depends on the methods involved. As noted in
relation to the PCFG model, parsing methods in the data-driven approach are
often closely related to grammar parsing algorithms, especially if the model
M is a formal grammar or some other model with a closely related structure.
However, for certain types of models it may not be possible to use standard
grammar parsing methods, because the search space defined by the stochastic
model is too complex. We will return to this problem when we discuss the
efficiency problem for the data-driven approach.

In the previous section, we observed that grammar-based text parsing
rests on the assumption that the text language L can be approximated by
a formal language L(G) defined by a grammar G. The data-driven approach
is also based on an approximation, but this approximation is of an entirely
different kind. While the grammar-based approximation in itself only defines
permissible analyses for sentences and has to rely on other mechanisms for
textual disambiguation, the data-driven approach tries to approximate the
function of textual disambiguation directly. And while the grammar-based
approximation is an essentially deductive approach, the data-driven approach
is based on inductive inference from a finite sample Tt = (x1, . . . , xn) to the
infinite language L.

It is a fundamental property of inductive inference that without making
any a priori assumptions we have no rational basis for choosing one hypothesis
over the other. For instance, there is an infinite number of languages L that
are compatible with any finite text sample Tt. Thus, in order to support any
kind of generalization beyond the training sample Tt, the inference scheme
I must introduce an inductive bias, which can be defined as a minimal set
of assertions B such that our inferences are entailed by B together with (a
logical description of) the sample Tt (Mitchell, 1997). The bias of a particular
model will in general depend both on the stochastic model MΘ and on the
learning method used.

Choosing the right inductive bias is essential for a good approximation, and
research on machine learning of natural language during the last ten to fifteen
years has produced many results about what bias may be appropriate for
different problems in natural language processing. We will review some of this
research later in this chapter, when we discuss the problem of disambiguation

30 2 Natural Language Parsing

in data-driven parsing. For the time being, we will simply observe that whereas
the grammar-driven approach depends on a more or less satisfactory language
approximation, the data-driven approach depends on inductive inference from
a more or less representative language sample using a more or less appropriate
inductive bias. These different starting points explain why problems such as
robustness, disambiguation, accuracy and efficiency may appear quite different
in the two extreme approaches. Let us now proceed to an examination of these
problems in the context of data-driven text parsing.

If the grammar-based approach is sometimes characterized as being strong
with respect to accuracy, but weaker with respect to robustness, disambigua-
tion and efficiency, the reverse is often said to be true for the data-driven
approach. In both cases, this is at best an oversimplification. Starting with
robustness, there is no reason that the data-driven approach should be in-
herently more robust than the grammar-based approach. It all depends on
properties of the formal model M as well as the inference scheme I used for
generalization to unseen sentences. However, it is a contingent fact about most
existing data-driven systems for text parsing that these components are de-
fined in such a way that any possible input string x is assigned at least one
analysis, which means that the robustness problem is eliminated.

This kind of absolute robustness can be illustrated by the framework of
Data-Oriented Parsing (DOP) (Bod, 1995, 1998; Bod, Scha and Sima’an,
2003). More precisely, we will consider the model DOP3 in (Bod, 1998), which
can be described as follows:

1. The formal model M defines as a permissible analysis for a string x any
parse tree that can be composed from subtrees of trees in the text sample,
using leftmost node substitution and allowing the insertion of words from
x (even if these do not occur in the training sample).

2. The text sample Tt = (x1, . . . , xn) is a sample of sentences from a treebank
containing the corresponding context-free parse trees At = (y1, . . . , yn).

3. The inductive inference scheme I is based on a stochastic model MΘ that
defines the probability P (x, y) to be the sum of the probabilities P (Di),
for every derivation Di of y for x, which in turn is defined as the product
of the probabilities P (tj), for every subtree tj used in Di.

It is a fundamental property of this model that, since any subtree has a
non-zero probability, and since parse trees can be composed from arbitrary
subtrees, any input string x can be assigned an analysis y with a non-zero
probability P (x, y). This in turn means that, provided that the model can be
paired with efficient learning and parsing methods, the robustness problem is
eliminated.

A consequence of the extreme robustness is that these data-driven parsers
will analyze strings that are probably not in the text language L under any
characterization. If we compare this to the grammar-driven language approxi-
mation, where the robustness problem arises from the fact that some sentences
in L are not in the language L(G) defined by the grammar, we can say that

2.3 Methods for Text Parsing 31

the data-driven approach avoids the robustness problem by a kind of superset
approximation, i.e., any sentence in L is a string that can be analyzed by the
parser, but not necessarily vice versa.

Another consequence is that the number of analyses assigned to each input
string will usually be very large. In this way, the development from PCFGs
to robust DOP models can be seen as an extreme form of constraint relax-
ation, which is one of the methods used to alleviate the robustness problem
in grammar-driven parsing but which can easily lead to an explosion in the
number of analyses assigned to a sentence (cf. section 2.2.1). However, given
a proper stochastic model, this is a rather controlled form of constraint re-
laxation, since all the different analyses can be ranked with respect to their
score, which also means that we have a method for pruning the search space
in a principled way, which is often necessary for reasons of efficiency.

Given the way in which the data-driven approach normally eliminates
the robustness problem, there is little use for the second main technique to
handle robustness in the grammar-driven approach, namely partial parsing.
However, this does not mean that data-driven methods cannot be used to
achieve partial parsing, e.g., chunking, as shown very early by Church (1988),
using probabilistic methods, and later on by Ramshaw and Marcus (1995),
using transformation-based learning. Other learning methods that have been
used for data-driven partial parsing include memory-based learning (Veen-
stra, 1998; Tjong Kim Sang and Veenstra, 1999) and support vector machines
(Kudo and Matsumoto, 2000). A collection of data-driven methods applied
to partial parsing can be found in Cardie et al. (2000) and a survey of the
field in Hammerton et al. (2002). Data-driven methods have also been used to
construct cascaded partial parsers that approximate full parsing, e.g., using
Hidden Markov Models (Brants, 1999) or memory-based partial parsing and
grammatical relation finding (Argamon et al., 1998; Daelemans et al., 1999;
Tjong Kim Sang and Veenstra, 2001; Buchholz, 2002).

As already noted, the problem of disambiguation can in many cases be even
more severe in data-driven text parsing than for traditional grammar-driven
systems, since the improved robustness that is the result of extreme con-
straint relaxation comes at the expense of massive overgeneration or leakage.
However, this is compensated by the fact that the inductive inference scheme
provides a mechanism for disambiguation, either by associating a score with
each analysis, intended to reflect some optimality criterion, or by implicitly
maximizing this criterion in a deterministic selection. In general, inductive
learning methods can be grouped into three groups according to the type of
mechanism they provide for ranking or selection (Jebara, 2004):

1. Generative models score analyses with the joint probability P (x, y) of the
string x and the analysis y.

2. Conditional models score analyses with the conditional probability P (y |x)
of the analysis y given the string x.

32 2 Natural Language Parsing

3. Discriminative models select the analysis y that maximizes the conditional
probability P (y |x) (without computing it).

Conditional and discriminative models are not always distinguished in the
literature, and the term discriminative is often used to cover all models that
attempt to maximize the conditional probability P (y |x). It is also impor-
tant to distinguish the structure of the model and the probability that is
maximized, which is what we are concerned with here, from the method of
parameter estimation, which may also be classified as generative, conditional
or discriminative (Klein and Manning, 2002; Henderson, 2004). We will return
to this distinction later on.

In the previous section, we discussed some of the early work on data-
driven disambiguation, based on the generative PCFG model. The relatively
poor parsing accuracy achieved with this model is usually attributed to two
major weaknesses: the lack of sensitivity to lexical dependencies and the lack of
sensitivity to structural preferences (Collins, 1999).10 The first observation has
motivated a wide range of experiments with lexicalized probabilistic models
(Hindle and Rooth, 1991; Schabes, 1992; Resnik, 1992; Collins and Brooks,
1995; Charniak, 1997a). And even though the significance of lexicalization
has later been called into question by Klein and Manning (2003), it is striking
that virtually all current models for data-driven disambiguation make use of
lexical information. Many of these models, which are based on binary relations
between lexical items, can be subsumed under the notion of bilexical grammar
(Eisner, 2000). Bilexical relations are especially important in models based on
dependency representations of syntactic structure, such as those of Eisner
(1996a,b), Yamada and Matsumoto (2003), and the models investigated in
this book (Nivre et al., 2004; Nivre and Scholz, 2004).

The second weakness of the PCFG model is the lack of sensitivity to struc-
tural preferences, such as the preference for right-branching or left-branching
structures in different languages (Collins, 1999). In order to capture such
preferences, we need a different parameterization of syntactic structures, with
more flexible independence assumptions, so that the probability of a certain
structure can be conditioned on the most significant parts of the surrounding
structure. This was the main motivation for the development of history-based
models of natural language processing, which were first introduced by Black
et al. (1992) and have been used extensively both for tagging and parsing.
The idea is to map each pair (x, y) of an input string x and an analysis y
to a sequence of decisions D = (d1, . . . , dn). In a generative model, the joint
probability P (x, y) can then be expressed using the chain rule of probabilities
as follows:

P (x, y) = P (d1, . . . , dn) =
n∏

i=1

P (di | d1, . . . , di−1) (2.1)

10 Further problems with the PCFG model are discussed by Briscoe and Carroll
(1993); cf. also Klein and Manning (2003).

2.3 Methods for Text Parsing 33

The conditioning context for each di, (d1, . . . , di−1), is referred to as the history
and usually corresponds to some partially built structure. In order to get a
tractable learning problem, histories are then grouped into equivalence classes
by a function Φ (Black et al., 1992):

P (x, y) = P (d1, . . . , dn) =
n∏

i=1

P (di |Φ(d1, . . . , di−1)) (2.2)

Early versions of this scheme were integrated into grammar-driven systems.
For example, Black et al. (1993) used a standard PCFG but could improve
parsing performance considerably by using a history-based model for bottom-
up construction of leftmost derivations. Briscoe and Carroll (1993) instead
started from a unification-based grammar and employed LR parsing, using
supervised learning to assign probabilities to transitions in an LALR(1) parse
table constructed from the context-free backbone of the original grammar (cf.
also Carroll and Briscoe, 1996).

Generative history-based models are most well-known from the influen-
tial work of Collins (1997, 1999) and Charniak (2000). These models are
based on a stochastic process generating parse trees top-down, where the
children of a given node are generated, not by complete productions as in the
PCFG model, but by Markov processes generating one child at a time, condi-
tioned on some partially built structure. Charniak (1997b) uses the popular
term Markov grammar for this kind of model, although these models are not
strictly speaking grammar-driven, since they will normally accept any input
string in the same way as the DOP model considered earlier. The Collins
and Charniak models are also similar in that they make heavy use of lexical
dependencies, a property inherited from their earlier models (Collins, 1996;
Charniak, 1997a). Generative models of a similar kind have also been proposed
for dependency-based syntactic representations, e.g., by Eisner (1996a,b) and
Wang and Harper (2004).

The various models proposed within the DOP framework (Bod, 1995, 1998;
Bod, Scha and Sima’an, 2003) are usually not considered to be history-based,
although they are normally generative models. However, it is not hard to
relate them to the history-based approach. The first difference is that the DOP
model assumes a many-to-one relationship between derivations and analyses,
which means that the probability P (x, y) has to be computed as a sum over
all derivations Di = (d1, . . . , dni

) of the analysis y for the input string x
(assuming that D1, . . . , Dm are all the derivations of analysis y for input x):

P (x, y) =
m∑

i=1

P (d1, . . . , dni
) =

m∑
i=1

ni∏
j=1

P (dj |Φ(d1, . . . , dj−1)) (2.3)

The second difference is that derivations are defined only in terms of which
fragments are used to build the analysis, where fragments are assumed to be
independent of each other:

34 2 Natural Language Parsing

P (x, y) =
m∑

i=1

P (d1, . . . , dni
) =

m∑
i=1

ni∏
j=1

P (dj) (2.4)

The idea of summing over all derivations appears to be good for disambigua-
tion but makes parsing intractable (Bod, 1998, chapter 4), a problem to which
we will return later in this section. The DOP models have a lot in common
with the stochastic version of LTAG parsing, which is also based on a sum-of-
products model, albeit in combination with a grammar-based approach where
permissible fragments and composition operations are defined by the LTAG
formalism (Joshi and Sarkar, 2003).

History-based models can also be used to define conditional models, where
the pair (x, y) is still modeled as a sequence of decisions but where the input
string x is a conditioning variable:

P (y |x) = P (d1, . . . , dn |x) =
n∏

i=1

P (di |Φ(d1, . . . , di−1, x)) (2.5)

Conditional history-based models were used by Jelinek et al. (1994), in the first
system that did not make use of a hand-crafted grammar but extracted all the
necessary information from treebank data, and by Magerman (1995), in the
first system that showed a significant improvement over systems based on the
standard PCFG model. While both these systems used probabilistic decision
trees for parameter estimation, later versions of the conditional history-based
approach are mostly based on maximum entropy models (Berger et al., 1996;
Della Pietra et al., 1997), also known as exponential or log-linear models, as
pioneered by Ratnaparkhi (1997, 1999). Conditional history-based models for
dependency-based representations have been investigated in Eisner (1996a,b).

Whereas the early conditional models, including that of Ratnaparkhi
(1997, 1999), only scored individual parsing decisions in isolation, later work
has extended the idea to models that score complete analyses. These models
are often used to rerank a small set of analyses produced by another model,
typically a generative model, as in the work of Johnson et al. (1999); Collins
(2000); Collins and Duffy (2002); Collins and Koo (2005); Charniak and John-
son (2005). This type of model has also been used very successfully for parse
selection in grammar-driven frameworks based on linguistic theories such as
LFG (Riezler et al., 2002), HPSG (Toutanova et al., 2002; Miyao et al., 2003),
and CCG (Clark and Curran, 2004).

Conditional models, such as the maximum entropy model, are normally
combined with conditional parameter estimation, i.e., estimation procedures
that try to maximize the conditional likelihood of the training data. But con-
ditional estimation can also be used with generative models. Thus, Johnson
(2001) obtained a small (non-significant) improvement for a standard PCFG
model, using maximum conditional likelihood estimation instead of the tradi-
tional maximum joint likelihood estimation. More recently, Henderson (2004)
has shown that a history-based generative model based on left-corner parsing,

2.3 Methods for Text Parsing 35

combined with conditional parameter estimation, outperforms both the gene-
rative model with joint estimation and a conditional model with conditional
estimation. These results are in line with the argument of Klein and Manning
(2002) to the effect that whereas conditional estimation methods often have
an advantage over joint estimation, conditional model structure may in fact be
harmful in many cases (although the empirical results in their article concern
part-of-speech tagging rather than parsing).

There are also purely discriminative versions of the history-based model,
i.e., models that implicitly try to maximize the conditional probability of
each parsing decision without actually computing it. These models are usu-
ally combined with deterministic processing, since discriminative learning
does not support a probabilistic scoring and ranking of complete analyses.
In this category, we find most data-driven methods for partial parsing based
on discriminative learning and deterministic left-to-right processing discussed
earlier (Argamon et al., 1998; Daelemans et al., 1999; Kudo and Matsumoto,
2000; Tjong Kim Sang and Veenstra, 2001; Buchholz, 2002). Although these
methods are seldom associated with the notion of history-based parsing in
the literature, they do in fact implement a history-based strategy, classifying
segments from left-to-right while basing their decisions on a combination of
input features and previously classified segments.

Discriminative history-based methods for full parsing have been proposed
for dependency-based representations by Yamada and Matsumoto (2003), who
use a form of shift-reduce parsing for dependency-based representations in
combination with support vector machines (Vapnik, 1995). Within the frame-
work investigated in this book, Nivre et al. (2004) and Nivre and Scholz (2004)
use a similar parsing algorithm but rely on memory-based learning (Daele-
mans and Van den Bosch, 2005) to predict parser actions. These frameworks
are similar to early conditional parsing models, such as Ratnaparkhi (1997,
1999), in that inductive learning applies to individual parsing actions in iso-
lation. A more holistic discriminative approach to full parsing can be found
in the memory-based framework of Kübler (2004), where new analyses are
constructed from arbitrarily large fragments of analyses for similar sentences
in the training data, in a way which has close affinities with the DOP frame-
work. Another close relative of DOP based on memory-based learning can be
found in De Pauw (2003).

The problem of accuracy has been implicit throughout the discussion of
disambiguation in this section. Since the data-driven approach, as defined
here, always provides a mechanism for disambiguation, whether stochastic or
deterministic, it is usually trivial to fulfill the requirement of disambiguation
as such. Hence, research in this area during the last ten to fifteen years has
mainly been focused on improving the accuracy of disambiguation. However,
it is also worth noting that, because the data-driven approach incorporates an
optimization criterion in the training phase, whether explicitly or implicitly,
it is possible to optimize models for different criteria of accuracy. The rela-
tionship between estimation objectives and evaluation metrics has been the

36 2 Natural Language Parsing

subject of several studies (Goodman, 1996, 1998; Johnson, 2001; Klein and
Manning, 2002; Sima’an, 2003).

With respect to the final problem of efficiency, the conventional wisdom
seems to be that the data-driven approach is superior to the grammar-driven
approach, but often at the expense of less adequate output representations
(Kaplan et al., 2004). However, in reality we find as much variation among
data-driven approaches as among grammar-driven approaches, and the overall
picture is in fact very similar.

At one end of the scale, we find frameworks where the parsing problem is
computationally intractable, such as the original DOP model (Sima’an, 1996a,
1999). Research on efficient parsing within the DOP framework has therefore
focused on finding efficient approximations that preserve the advantage gained
in disambiguation by considering several derivations of the same analysis.
While early work focused on a kind of randomized search strategy called
Monte Carlo disambiguation (Bod, 1995, 1998), the dominant strategy has
now become the use of different kinds of PCFG reductions (Sima’an, 1996b;
Goodman, 1996; Bod, 2001, 2003).

At the other end of the scale, we find highly efficient methods that perform
parsing in linear time, such as the various deterministic methods for partial
parsing. However, linear-time processing is achievable also for full parsing,
either as a theoretical worst case (Nivre, 2003) or as an empirical average
case (Ratnaparkhi, 1997, 1999).

In between, we find parsers based on history-based probabilistic models,
whether generative or conditional, where parsing in principle consists in
deriving all the possible analyses for a given input string and selecting the
optimal analysis with respect to the probabilistic model. In this case, there
is often a trade-off between accuracy in disambiguation and efficiency in pro-
cessing. Broadly speaking, the more sophisticated models proposed in recent
years have generally led to more accurate disambiguation but less efficient
processing.

For example, with the standard PCFG model all possible analyses can be
constructed in O(n3) time using a standard algorithm for context-free parsing.
Moreover, given the independence assumptions of this model, the selection of
the most probable analysis can be integrated into the parsing process using
Viterbi optimization (Viterbi, 1967), as shown for the CKY algorithm by Ney
(1991) and for Earley’s algorithm by Stolcke (1995).

With the more complex history-based models, such as Collins (1997, 1999)
and Charniak (2000), parsing becomes less efficient for two reasons. First, the
drastic constraint relaxation leads to an explosion in the number of possible
analyses for any given input string. Secondly, the more complex probability
model does not allow the same reduction of the search space as the standard
Viterbi algorithm for PCFGs. This means that, even if parsing does not be-
come intractable, the time complexity may be such that an exhaustive search
of the analysis space is no longer practical. For example, the complexity of the
parsing algorithm used in Collins (1999) is O(n5). In practice, most systems

2.3 Methods for Text Parsing 37

of this kind only apply the full probabilistic model to a subset of all possible
analyses, resulting from a first pass based on an efficient approximation of
the full model. This first pass is normally implemented as some kind of chart
parsing with beam search, using an estimate of the final probability to prune
the search space (Caraballo and Charniak, 1998). Another strategy for reduc-
ing the set of candidate analyses is to rely on an initial supertagging phase,
as in the grammar-driven CCG approach (Clark and Curran, 2004; Curran
and Clark, 2004).

Finally, for data-driven approaches the time required for training, although
less critical than parsing time, should also be taken into consideration when
discussing efficiency. For instance, learning methods that rely on numerical
optimization, such as maximum entropy modeling, may require repeatedly
reparsing the training corpus with the current model to determine the para-
meter updates that will improve the training criterion. In this respect, lazy
learning methods such as memory-based learning have a clear advantage, since
they reduce learning to the efficient storage of training instances. However,
this of course means that more processing has to take place at parsing time,
which may limit the advantage.

2.3.3 Converging Approaches

We have now considered two different strategies for text parsing, the grammar-
driven approach and the data-driven approach. Although these strategies have
different points of departure, we have seen that they in practice often lead to
similar solutions when confronted with the mutually interacting requirements
of robustness, disambiguation, accuracy and efficiency. In fact, our character-
ization of the two approaches is such that many contemporary frameworks
for text parsing instantiate both. As illustrated in figure 2.6, we can distin-
guish approaches that are grammar-driven but not data-driven, such as CG
(Karlsson, 1990; Karlsson et al., 1995) and its descendant FDG (Tapanainen
and Järvinen, 1997; Järvinen and Tapanainen, 1998), and approaches that
are data-driven but not grammar-driven, such as different varieties of history-
based parsing (Ratnaparkhi, 1997, 1999; Collins, 1997, 1999; Charniak, 2000),
as well as most incarnations of Data-Oriented Parsing (Bod, 1995, 1998; Bod,
Scha and Sima’an, 2003). But we also find many frameworks that combine the
use of formal grammars with data-driven methods to achieve robustness and
disambiguation, such as broad-coverage parsers based on PCFG (Black et al.,
1993), LTAG (Bangalore and Joshi, 1999), LFG (Riezler et al., 2002), HPSG
(Toutanova et al., 2002; Miyao et al., 2003), and CCG (Clark and Curran,
2004).

Before we close the discussion of grammar-driven and data-driven text
parsing, it may be useful to relate these concepts to a few other conceptual
distinctions that are often made in the literature on natural language parsing.
The first is the distinction between deep parsing and shallow parsing, which

38 2 Natural Language Parsing

�

�

�

�

�

�

�

�

Grammar-Driven

Data-Driven

PCFG
LTAG

CCG
HPSG
LFG

FDG
CG DOP

HBP

Fig. 2.6. Convergence of grammar-driven and data-driven text parsing

has to do with the amount of information contained in the syntactic represen-
tations produced by the parser, where deep parsing typically refers to the kind
of representations found in linguistic theories like LFG (Kaplan and Bresnan,
1982), HPSG (Pollard and Sag, 1994) or CCG (Steedman, 2000), while shallow
parsing can be exemplified with the skeletal constituent structures found in
the first version of the Penn Treebank annotation scheme (Marcus et al., 1993)
or the partial specification of grammatical functions in CG (Karlsson, 1990;
Karlsson et al., 1995). In other words, this is a distinction between different
kinds of syntactic representations and should not be confused with a distinc-
tion between different parsing methods. While it is true that most systems
for deep parsing are grammar-based, there also exist data-driven approaches
to deep parsing, such as the LFG-DOP model (Bod and Kaplan, 1998). And
shallow parsing can be performed with grammar-driven as well as data-driven
methods.

The second distinction is that between full parsing and partial parsing,
which we have already touched upon several times. This distinction, which is
sometimes confused with the previous distinction between deep and shallow
parsing, has to do with the completeness of the analysis and can therefore only
be defined relative to a specific target representation. Thus, a segmentation of
the input string into base chunks can be regarded as a partial specification of a
constituent analysis, and an assignment of grammatical functions to individual
word tokens can be seen as a partial specification of a dependency structure.
This means that both deep and shallow parsing can be implemented as full or
partial parsing and that either grammar-driven or data-driven methods may
be used in the realization.11

The third and final distinction is the distinction between rule-based
and example-based (or analogical) language processing, which has to do with
whether the analysis of new sentences is based on abstract rules (in a wide

11 There is a further complication in that the term partial parsing is used both about
fallback strategies adopted to cope with the robustness problem in full parsing
(cf. section 2.3.1) and about approaches where the final goal is always a partial
analysis, such as chunking. It is only partial parsing in the latter sense that is
sometimes referred to as shallow parsing.

2.3 Methods for Text Parsing 39

sense) or on concrete representations (as found in an annotated corpus).
Whereas grammar-driven approaches are by necessity rule-based, data-driven
approaches can involve more or less abstraction. Thus, most probabilistic pars-
ing models are similar to grammars in that they are abstract generalizations
over sets of concrete representations. This is true not only of models that in-
volve a formal grammar, like the PCFG model, but also of most history-based
models for parsing, which use training data to estimate the parameters of an
abstract probabilistic model.12 This is in contrast to the DOP framework,
where concrete examples in the training corpus are stored as is and used as
the raw material for constructing new analyses during processes, thus imple-
menting an example-based approach to syntactic parsing. The same is true of
memory-based approaches to parsing, such as Kübler (2004).

One of the conclusions that we want to draw from the discussion in this
chapter is that the partly conflicting requirements of robustness, disambigua-
tion, accuracy and efficiency give rise to a complex optimization problem,
which we can try to solve in different ways but which always requires a joint
optimization. The wide variety of different methods for text parsing can to
a large extent be said to result from different optimization strategies and
different goals.

The grammar-driven approach, in its purest form, starts from a system
with optimal accuracy, in the sense that only sentences for which the correct
analysis can be derived are covered, and gradually seeks to improve the system
with respect to robustness and disambiguation. However, this development
may compromise efficiency, which therefore has to be optimized together with
robustness and disambiguation.

By contrast, the data-driven approach, in its most radical form, starts
from a system with optimal robustness and disambiguation, in the sense that
every sentence gets exactly one analysis, and gradually seeks to improve the
system with respect to accuracy. Again, this may lead to problems of efficiency,
which therefore has to be optimized together with accuracy. In both cases, we
may furthermore put more or less priority on efficiency in relation to other
optimization requirements.

When evaluating different strategies, we are of course interested in whether
they lead to optimal performance overall. However, because of the interaction
between different requirements, we can only define the optimum with respect
to a given prioritization. It is true that accuracy is of prime importance, but
if optimal accuracy leads to computational intractability, its practical interest
is limited. Moreover, from a scientific point of view, we need to increase our
knowledge about the complex interaction of conflicting requirements, which
means that studies based on different goals and strategies can be valuable,

12 The term Markov grammar for this type of model (Charniak, 1997b) is motivated
by this similarity, even though the model normally does not involve a grammar
in the formal sense (cf. section 2.3.2).

40 2 Natural Language Parsing

even if they do not always advance the state of the art in terms of raw per-
formance (on any of the dimensions considered here).

2.3.4 Inductive Dependency Parsing

It seems appropriate to conclude this discussion of methods for text parsing
by situating the framework of inductive dependency parsing in the wider land-
scape of different parsing methods, grammar-driven and data-driven, deep and
shallow, full and partial, rule-based and example-based.

Inductive dependency parsing is an instance of the data-driven approach
to text parsing, which in this study is combined with a rather extreme opti-
mization strategy. The first step in this strategy is to construct a framework
that is provably optimal with respect to robustness, disambiguation and effi-
ciency. The second step is to use inductive learning to gradually improve
parsing accuracy without sacrificing robustness, disambiguation or efficiency.
The first step will be taken in chapter 3, while the second step will occupy us
throughout chapters 4–5.

Robustness will be achieved with the kind of radical constraint relaxation
found in many other data-driven approaches, which means that some analysis
will be assigned to every input string. However, we will not resort to partial
parsing but instead construct complete dependency representations for every
input string, even though these representations will normally be rather shallow
syntactic representations. Our task could therefore be characterized as full
parsing with shallow dependency representations.

The use of dependency representations, which is a central element of the
framework, will be discussed in more detail in chapter 3. It will be argued
that, over and above any other motivation for using these representations,
dependency structures provide the right level of underspecification to allow
robust and efficient full parsing.

Disambiguation will be performed by deterministic processing in combi-
nation with discriminative learning, using a history-based model for parsing
decisions. Although the general approach is compatible with many different
learning methods, we will concentrate in this book on the use of memory-
based learning of parsing decisions, which means that the approach can also
be described as example-based, or analogical, rather than rule-based.

Efficiency in parsing is gained mainly through the use of deterministic
processing, which means that parsing can be performed in linear time, which
is arguably optimal since any reasonable parsing method will at least have to
scan the input from start to end. Moreover, the use of a lazy learning method
also gives good efficiency in training.

Given our overall optimization strategy, it is important to have precise
evaluation criteria for the basic requirements of robustness, disambiguation,
accuracy and efficiency. The last section of this chapter will be devoted to the
definition of such criteria.

2.4 Evaluation Criteria 41

2.4 Evaluation Criteria

Most of the discussion in this chapter applies to natural language parsing in
general and not only to the particular framework investigated in this book.
However, when we come to concrete evaluation criteria, it is important that
these reflect the general strategy underlying our research efforts. We will there-
fore concentrate in this section on evaluation criteria that are relevant for the
version of inductive dependency parsing developed in this book, criteria that
may in some respects be less suitable for other approaches to text parsing.

2.4.1 Robustness

Following the discussion in sections 2.3.1–2.3.2, we regard robustness in text
parsing as the capacity of a system to analyze any input sentence. In other
words, we do not attempt to draw any distinction between (lack of) coverage
and (lack of) robustness. In this respect, we agree with Chanod (2001) that
robustness is about exploring all constructions humans actually produce in
natural language texts, ‘be they grammatical, conformant to formal models,
frequent or not’ (Chanod, 2001, 188). This is admittedly a rather weak notion
of robustness, which is easy to achieve in itself, but which can be considered a
prerequisite for the optimization of other criteria. Stronger notions of robust-
ness discussed in the literature, which relate to the degradation of accuracy
with increasingly ill-formed input (Menzel, 1995; Basili and Zanzotto, 2002),
can be regarded as additional requirements on top of the basic requirement
of producing some analysis for every input.

Since we want the requirement of robustness to be independent of other
requirements, in particular the requirement of disambiguation, we propose the
following definition:

Definition 2.1. A system P for parsing texts in language L satisfies the
requirement of robustness if and only if, for any text T = (x1, . . . , xn) in
L, P assigns at least one analysis to every text sentence xi ∈ T .

Given our optimization strategy, we want to treat robustness as an absolute
requirement, which means that we will require formal proofs of this property.
In other frameworks, where robustness is an optimization criterion rather
than an absolute requirement, it may be more relevant to perform an empirical
evaluation of the degree to which robustness can be achieved for representative
input texts.

2.4.2 Disambiguation

Disambiguation in text parsing implies the selection of a single analysis for
every text sentence from all the analyses that are compatible with the input
string according to the formal framework adopted. From this perspective, it
is irrelevant whether the input string is genuinely ambiguous or whether the

42 2 Natural Language Parsing

fact that there are several candidate analyses is due to the so-called leakage
problem. It is also irrelevant whether the selection is achieved through an n-
best ranking of a large space of candidate analyses or through a deterministic
procedure that only constructs a single analysis for a given input sentence.
More precisely, we define the requirement of disambiguation in the following
way:

Definition 2.2. A system P for parsing texts in language L satisfies the
requirement of disambiguation if and only if, for any text T = (x1, . . . , xn) in
L, P assigns at most one analysis to every text sentence xi ∈ T .

Since we want disambiguation to be an absolute requirement for our parsing
methods, in the same way as robustness, we will require formal proofs of this
property as well. In another context, it would be possible to regard disam-
biguation as a desideratum rather than a hard requirement, and to perform an
empirical evaluation of a system’s capacity for disambiguation when applied
to representative samples of text.

The requirements of robustness and disambiguation are independent of
each other, but any system satisfying both requirements must assign exactly
one analysis to every text sentence. This is the notion of robust disambigua-
tion that we will adopt as an absolute requirement for inductive dependency
parsing.

2.4.3 Accuracy

Requiring a single analysis for every sentence in a text is obviously of limited
interest unless we also require the analysis to be correct. According to the
characterization of text parsing in section 2.2.2, we assume that there exists
a single correct analysis for each sentence in a text. An absolute requirement
of accuracy could therefore be stated as follows:13

Definition 2.3. A system P for parsing texts in language L satisfies the
requirement of accuracy if and only if, for any text T = (x1, . . . , xn) in L,
P assigns the correct analysis to every text sentence xi ∈ T .

However, given the state of the art in natural language parsing, complete
accuracy has to be regarded as an asymptotic goal, impossible to attain in
practice for any non-trivial domain of natural language text, and especially in
combination with robustness and disambiguation. Moreover, even if perfectly
accurate parsing were possible, there would be no formal method for proving
that a system satisfies this requirement, since the language L is not a formal
language. This means that we must always rely on empirical evaluations using
representative samples of text from the given language L.
13 In a context where it is not assumed that every sentence has exactly one correct

analysis, an alternative would be to replace ‘the correct analysis’ with ‘at least one
correct analysis’. In this study, the two formulations are practically equivalent,
given the absolute requirement of robust disambiguation.

2.4 Evaluation Criteria 43

Given the optimization strategy adopted in this study, accuracy should be
treated as an optimization criterion, where the goal is to maximize accuracy
while maintaining robustness and disambiguation. We will adopt the standard
methodology for evaluating accuracy in text parsing, which is to treat samples
of treebank data for the language L as an empirical gold standard and use
inferential statistics to generalize the results to arbitrary texts in L. As noted
in section 2.2.2, this methodology is problematic in several ways, but we will
postpone a discussion of these problems until chapter 5. There we will also
define the different evaluation metrics that will be used for the evaluation of
accuracy.

2.4.4 Efficiency

Finally, in order for methods to be usable in practical applications, they must
allow tractable computation, which leads to the requirement of efficiency. As
is customary, we will restrict ourselves to the computational resources of time
and (to a lesser extent) space. In theory, tractability is usually taken to mean
computable in deterministic polynomial time and space (relative to the size of
the input), but many practical applications put higher demands on efficiency.
Our strategy for optimization implies that we employ parsing algorithms with
optimal complexity, which means that both time and space complexity should
be linear in the size of the input. Thus:

Definition 2.4. A system P for parsing texts in language L satisfies the
requirement of efficiency if and only if, for any text T = (x1, . . . , xn) in
L, P processes every text sentence xi ∈ T in time and space that is linear in
the length of xi.

Although the theoretical complexity of an algorithm can be proven formally,
practical efficiency also depends on other factors and is therefore another
optimization criterion that can be maximized while maintaining robustness
and disambiguation. As discussed in section 2.3.2, there is often a tradeoff
between accuracy and efficiency in text parsing, which means that we need to
explore the joint optimization of accuracy and efficiency.

Given our strategy for optimization, we need to evaluate efficiency in two
different ways. On the one hand, we will provide formal proofs of time and
space complexity, establishing asymptotic bounds on worst-case running time
and memory requirements. On the other hand, we will perform empirical
experiments using treebank data, measuring actual running time and memory
consumption.

3

Dependency Parsing

Despite a long and venerable tradition in descriptive linguistics, dependency
grammar has until quite recently played a fairly marginal role both in theoret-
ical linguistics and in natural language processing. The increasing interest in
dependency-based representations in natural language parsing in recent years
appears to be motivated both by the potential usefulness of bilexical relations
in disambiguation and by the gains in efficiency that result from the more
constrained parsing problem for these representations.

In this chapter, we define a formal framework for parsing with dependency
representations and present a parsing algorithm that is provably optimal with
respect to the requirements of robustness, disambiguation and efficiency, as
defined in the previous chapter. More precisely, we show that, for any input
string, the algorithm constructs exactly one dependency structure in time
that is linear in the length of the input. The significance of these results
follows from the optimization strategy explored in this study, which is to
start from optimal robustness, disambiguation and efficiency and gradually
improve accuracy without sacrificing other requirements.

Before we turn to the formal framework and the analysis of the parsing
algorithm, we will review some previous work on dependency grammar and
parsing. Starting with the theoretical foundations of dependency grammar,
we move on to consider both grammar-driven and data-driven methods for
dependency parsing. In this chapter, we will limit our attention to systems
for dependency parsing in a narrow sense, i.e., systems where the analysis
assigned to an input sentence takes the form of a dependency structure. This
means that we will not discuss systems that exploit dependency relations for
the construction of another type of representation, such as the head-driven
parsing models of Collins (1997, 1999). Moreover, we will restrict ourselves to
systems for full parsing, which means that we will not deal with systems that
produce a partial or underspecified representation of dependency structure,
such as Constraint Grammar parsers.

46 3 Dependency Parsing

JJ
Economic

� �
�

nmod

NN
news

� �
�

sbj

VBD
had

JJ
little

� �
�

nmod

NN
effect

� �
�

obj

IN
on

� �
�

nmod

JJ
financial

� �
�

nmod

NNS
markets

� �
�

pmod

PU
.

�

� �p

Fig. 3.1. Dependency structure for English sentence (same as figures 1.1 and 2.2)

3.1 Dependency Grammar

Although its roots may be traced back to Pān. ini’s grammar of Sanskrit several
centuries before the Common Era (Kruijff, 2002) and to medieval theories of
grammar (Covington, 1984), dependency grammar has largely developed as a
form for syntactic representation used by traditional grammarians, especially
in Europe, and particularly in Classical and Slavic domains (Mel’čuk, 1988).
This grammatical tradition can be said to culminate with the seminal work
of Tesnière (1959), which is also the starting point of the modern theoretical
tradition of dependency grammar.

This tradition comprises a large and fairly diverse family of grammatical
theories and formalisms that share certain basic assumptions about syntactic
structure, in particular the assumption that syntactic structure consists of
lexical elements linked by binary asymmetrical relations called dependencies.
Thus, the common formal property of dependency structures, as compared to
representations based on constituency is the lack of phrasal nodes. This can
be seen by contrasting the dependency representation in figures 1.1 and 2.2,
repeated again for convenience in figure 3.1, with the constituency represen-
tation in figure 2.1 (cf. also section 2.1).

Among the more well-known theories of dependency grammar, besides the
theory of structural syntax developed by Tesnière (1959), we find Word Gram-
mar (WG) (Hudson, 1984, 1990), Functional Generative Description (FGD)
(Sgall et al., 1986), Dependency Unification Grammar (DUG) (Hellwig, 1986,
2003), Meaning-Text Theory (MTT) (Mel’čuk, 1988), and Lexicase (Starosta,
1988). Constraint-based theories of dependency grammar have a strong tradi-
tion, represented by Constraint Dependency Grammar (CDG) (Maruyama,
1990; Harper and Helzerman, 1995; Menzel and Schröder, 1998) and its
descendant Weighted Constraint Dependency Grammar (WCDG) (Schröder,
2002), Functional Dependency Grammar (FDG) (Tapanainen and Järvinen,
1997; Järvinen and Tapanainen, 1998), largely developed from Constraint
Grammar (CG) (Karlsson, 1990; Karlsson et al., 1995), and finally Topo-
logical Dependency Grammar (TDG) (Duchier and Debusmann, 2001), later
evolved into Extensible Dependency Grammar (XDG) (Debusmann et al.,

3.1 Dependency Grammar 47

2004). A synthesis of dependency grammar and categorial grammar is found
in the framework of Dependency Grammar Logic (DGL) (Kruijff, 2001).

We will make no attempt at reviewing all these theories here. Instead, we
will try to characterize their common core of assumptions, centered upon the
notion of dependency, and discuss major points of divergence, such as the
issue of projective versus non-projective representations.

3.1.1 The Notion of Dependency

The fundamental notion of dependency is based on the idea that the syntactic
structure of a sentence consists of binary asymmetrical relations between the
words of the sentence. The idea is expressed in the following way in the opening
chapters of Tesnière (1959):

La phrase est un ensemble organisé dont les éléments constituants
sont les mots. [1.2] Tout mot qui fait partie d’une phrase cesse par lui-
même d’être isolé comme dans le dictionnaire. Entre lui et ses voisins,
l’esprit aperçoit des connexions, dont l’ensemble forme la charpente de
la phrase. [1.3] Les connexions structurales établissent entre les mots
des rapports de dépendance. Chaque connexion unit en principe un
terme supérieur à un terme inférieur. [2.1] Le terme supérieur reçoit
le nom de régissant. Le terme inférieur reçoit le nom de subordonné.
Ainsi dans la phrase Alfred parle [. . .], parle est le régissant et Alfred
le subordonné. [2.2] (Tesnière, 1959, 11–13, emphasis in the original)1

In the terminology used in this book, a dependency relation holds between
a head and a dependent. Alternative terms found in the literature are gover-
nor and regent for head (cf. Tesnière’s régissant) and modifier for dependent
(cf. Tesnière’s subordonné).

Criteria for establishing dependency relations, and for distinguishing
the head and the dependent in such relations, are obviously of central im-
portance for dependency grammar. Such criteria have been discussed not
only in the dependency grammar tradition, but also within other frameworks
where the notion of syntactic head plays an important role, including all
constituency-based frameworks that subscribe to some version of X-bar the-
ory (Chomsky, 1970; Jackendoff, 1977). Here are some of the criteria that have

1 English translation (by the author): ‘The sentence is an organized whole, the con-
stituent elements of which are words. [1.2] Every word that belongs to a sentence
ceases by itself to be isolated as in the dictionary. Between the word and its neigh-
bors, the mind perceives connections, the totality of which forms the structure
of the sentence. [1.3] The structural connections establish dependency relations
between the words. Each connection in principle unites a superior term and an
inferior term. [2.1] The superior term receives the name governor. The inferior
term receives the name subordinate. Thus, in the sentence Alfred parle [. . .], parle
is the governor and Alfred the subordinate. [2.2]’

48 3 Dependency Parsing

been proposed for identifying a syntactic relation between a head H and a
dependent D in a construction C (Zwicky, 1985; Hudson, 1990):

1. H determines the syntactic category of C and can often replace C.
2. H determines the semantic category of C; D gives semantic specification.
3. H is obligatory; D may be optional.
4. H selects D and determines whether D is obligatory or optional.
5. The form of D depends on H (agreement or government).
6. The linear position of D is specified with reference to H.

It is clear that this list contains a mix of different criteria, some syntactic and
some semantic, and one may ask whether there is in fact a single coherent
notion of dependency corresponding to all the different criteria. This has led
some theorists, such as Hudson (1990), to suggest that the concept of head
has a prototype structure, i.e., that typical instances of this category satisfy
all or most of the criteria while more peripheral instances satisfy fewer. Other
authors have emphasized the need to distinguish different kinds of depen-
dency relations. According to Mel’čuk (1988), the word forms of a sentence
can be linked by three types of dependencies: morphological, syntactic and
semantic. According to Nikula (1986), we must distinguish between syntactic
dependency in endocentric and exocentric constructions (Bloomfield, 1933).

Thus, in figure 3.1, the nmod relation holding between the noun markets
and the adjective financial is an endocentric construction, where the head can
replace the whole without disrupting the syntactic structure:

Economic news had little effect on [financial] markets. (3.1)

Endocentric constructions may satisfy all of the criteria listed above, although
number 4 is usually considered less relevant, since dependents in endocentric
constructions are taken to be optional and not selected by their heads. By
contrast, the pmod relation holding between the preposition on and the noun
markets is an exocentric construction, where the head cannot readily replace
the whole:

Economic news had little effect on [markets]. (3.2)

Exocentric constructions, by their definition, fail on criterion number 1, at
least with respect to substitutability of the head for the whole, but may satisfy
the remaining criteria. Considering the rest of the relations exemplified in
figure 3.1, the sbj and obj relations are clearly exocentric, and the nmod

relation from the noun news to the adjective Economic clearly endocentric,
while the remaining nmod relations (effect → little, effect → on) have a less
clear status.

The distinction between endocentric and exocentric constructions is also
related to the distinction between head-complement and head-modifier (or
head-adjunct) relations found in many contemporary syntactic theories, since
head-complement relations are exocentric while head-modifier relations are

3.1 Dependency Grammar 49

endocentric. Many theories also recognize a third kind of relation, the head-
specifier relation, typically exemplified by the determiner-noun relation, which
is exocentric like the head-complement relation, but where there is no clear
selection of the dependent element by the head.

The distinction between complements and modifiers is often defined in
terms of valency, which is a central notion in the theoretical tradition of depen-
dency grammar. Although the exact characterization of this notion differs
from one theoretical framework to the other, valency is usually related to
the semantic predicate-argument structure associated with certain classes of
lexemes, in particular verbs but sometimes also nouns and adjectives. The
idea is that the verb imposes requirements on its syntactic dependents that
reflect its interpretation as a semantic predicate. Dependents that correspond
to arguments of the predicate can be obligatory or optional in surface syntax
but can only occur once with each predicate instance. By contrast, dependents
that do not correspond to arguments can have more than one occurrence with
a single predicate instance and tend to be optional. The valency frame of the
verb is normally taken to include argument dependents, but some theories
also allow obligatory non-arguments to be included (Sgall et al., 1986).

The notion of valency will not play a central role in the investigations in
this book, but we will sometimes use the terms valency-bound and valency-free
to make a rough distinction between dependents that are more or less closely
related to the semantic interpretation of the head. Returning to figure 3.1, the
subject and the object would normally be treated as valency-bound depen-
dents of the verb had, while the adjectival modifiers of the nouns news and
markets would be considered valency-free. The prepositional modification of
the noun effect may or may not be treated as valency-bound, depending on
whether the entity undergoing the effect is supposed to be an argument of the
noun effect or not.

While most head-complement and head-modifier structures have a straight-
forward analysis in dependency grammar, there are also many constructions
that have a relatively unclear status. This group includes constructions that
involve grammatical function words, such as articles, complementizers and
auxiliary verbs, but also structures involving prepositional phrases. For these
constructions, there is no general consensus in the tradition of dependency
grammar as to whether they should be analyzed as head-dependent relations
at all and, if so, what should be regarded as the head and what should be
regarded as the dependent. For example, some theories regard auxiliary verbs
as heads taking lexical verbs as dependents; other theories make the opposite
assumption; and yet other theories assume that verb chains are connected by
relations that are not dependencies in the usual sense.

Another kind of construction that is problematic for dependency grammar
(as for most theoretical traditions) is coordination. According to Bloomfield
(1933), coordination is an endocentric construction, since it contains not only
one but several heads that can replace the whole construction syntactically.
However, this characterization raises the question of whether coordination can

50 3 Dependency Parsing

be analyzed in terms of binary asymmetrical relations holding between a head
and a dependent. Again, this question has been answered in different ways by
different theories within the dependency grammar tradition.

In conclusion, the theoretical tradition of dependency grammar is united
by the assumption that an essential part of the syntactic structure of sentences
resides in binary asymmetrical relations holding between lexical elements.
Moreover, there is a core of syntactic constructions for which the analysis
given by different frameworks agree in all important respects. However, there
are also important differences with respect to whether dependency analysis
is assumed to cover all aspects of syntactic analysis, and with respect to the
analysis of certain types of syntactic constructions. We will now turn to a
discussion of some of the more important points of divergence in this tradition.

3.1.2 Varieties of Dependency Grammar

Perhaps the most fundamental open question in the tradition of dependency
grammar is whether the notion of dependency is assumed to be not only
necessary but also sufficient for the analysis of syntactic structure in natural
language. This assumption is not made in the theory of Tesnière (1959), which
is based on the three complementary concepts of connection (connexion),
junction (jonction) and transfer (translation), where connection corresponds
to dependency (cf. the quotation on page 47) but where junction and transfer
are other kinds of relations that can hold between the words of a sentence.
More precisely, junction is the relation that holds between coordinated items
that are dependents of the same head or heads of the same dependent, while
transfer is the relation that is relevant for a function word or other element
that changes the syntactic category of a lexical element so that it can enter
into different dependency relations. An example of the latter is the relation
holding between the preposition de and Pierre in the construction le livre de
Pierre (Pierre’s book), where the preposition de allows the proper name Pierre
to modify a noun, a dependency relation otherwise reserved for adjectives.
Another way in which theories may depart from a pure dependency analysis
is to allow a restricted form of constituency analysis, so that dependencies
can hold between strings of words rather than single words. This possibility
is exploited, to different degrees, in the frameworks of Hellwig (1986, 2003),
Mel’čuk (1988) and Hudson (1990), notably in connection with coordination.

A second dividing line is that between mono-stratal and multi-stratal
frameworks, i.e., between theories that rely on a single syntactic represen-
tation and theories that posit several layers of representation. In fact, most
theories of dependency grammar, in contrast to frameworks for dependency
parsing that will be discussed in section 3.2, are multi-stratal, at least if
semantic representations are considered to be a stratum of the theory. Thus,
in FGD (Sgall et al., 1986) there is both an analytical layer, which can be
characterized as a surface syntactic representation, and a tectogrammatical

3.1 Dependency Grammar 51

layer, which can be regarded as a deep syntactic (or shallow semantic) repre-
sentation. In a similar fashion, MTT (Mel’čuk, 1988) recognizes both surface
syntactic and deep syntactic representations (in addition to representations
of deep phonetics, surface morphology, deep morphology and semantics). By
contrast, Tesnière (1959) uses a single level of syntactic representation, the
so-called stemma, which on the other hand includes junction and transfer
in addition to syntactic connection.2 The framework of XDG (Debusmann
et al., 2004) can be seen as a compromise in that it allows multiple layers
of dependency-based linguistic representations but requires that all layers, or
dimensions as they are called in XDG, share the same set of nodes. This is in
contrast to theories like FGD, where, e.g., function words are present in the
analytical layer but not in the tectogrammatical layer.

The different requirements of XDG and FGD point to another issue,
namely what can constitute a node in a dependency structure. Although most
theories agree that dependency relations hold between lexical elements, rather
than phrases, they can make different assumptions about the nature of these
elements. The most straightforward view is that the nodes of the dependency
structure are simply the word forms occurring in the sentence, which is the
view adopted in most parsing systems based on dependency grammar. But it is
also possible to construct dependency structures involving more abstract enti-
ties, such as lemmas or lexemes, especially in deeper syntactic representations.
Another variation is that the elements may involve several word forms, con-
stituting a dissociate nucleus (nucléus dissocié) in the terminology of Tesnière
(1959), or alternatively correspond to smaller units than word forms, as in the
morphological dependencies of Mel’čuk (1988).

A fourth dimension of variation concerns the inventory of specific depen-
dency types posited by different theories, i.e., functional categories like sbj,
obj and nmod that are used to label dependency arcs in the representation in
figure 3.1. Broadly speaking, most theories either assume a set of more surface-
oriented grammatical functions, such as subject, object, adverbial, etc., with
a more or less elaborate subclassification, or a set of more semantically ori-
ented role types, such as agent, patient, goal, etc., belonging to the tradition of
case roles or thematic roles (Fillmore, 1968; Jackendoff, 1972; Dowty, 1989).3

Multi-stratal theories often combine the two relation types. Thus, FGD (Sgall
et al., 1986) uses grammatical functions in the analytical layer and semantic
roles in the tectogrammatical layer. An alternative scheme of representation,
which is found in MTT (Mel’čuk, 1988), is to use numerical indices for valency-
bound dependents to reflect a canonical ordering of arguments (argument 1,

2 Tesnière’s representations also include anaphors, which are described as supple-
mentary semantic connections without corresponding syntactic connections.

3 The notion of a semantic role can be traced back to Pān. ini’s kānaka theory (Misra,
1966), which is sometimes also seen as the earliest manifestation of dependency
grammar. The notion of a grammatical function also has a long history that
extends at least to the work of Appolonius Dyscolus in the second century of the
Common Era (Robins, 1967).

52 3 Dependency Parsing

2, 3, etc.) and to use descriptive labels only for valency-free dependents. Fi-
nally, it is also possible to use unlabeled dependency structures, although this
is more common in practical parsing systems than in linguistic theories.

There are several open issues in dependency grammar that have to do
with formal properties of representations. Since a dependency representation
consists of lexical elements linked by binary asymmetrical relations, it can be
defined as a labeled directed graph, where the set of nodes (or vertices) is the
set of lexical elements (as defined by the particular framework), and the set
of labeled arcs represent dependency relations from heads to dependents. In
order to provide a complete syntactic analysis of a sentence, the graph must
also be connected so that every node is related to at least one other node
(Mel’čuk, 1988). Again, we refer to figure 3.1 as an illustration of this rep-
resentation, where the nodes are the word tokens of the sentence (annotated
with parts-of-speech) and the arcs are labeled with grammatical functions.4

Given this general characterization, which will be properly formalized in
section 3.3, we may then impose various additional conditions on these graphs.
Two basic constraints that are assumed in most versions of dependency gram-
mar are the single-head constraint, i.e., the assumption that each node has
at most one head, and the acyclicity constraint, i.e., the assumption that the
graph should not contain cycles. These two constraints, together with connect-
edness, imply that the graph should be a rooted tree, with a single root node
that is not a dependent of any other node. For example, the representation in
figure 3.1 is a rooted tree with the verb had as the root node. Although these
constraints are assumed in most versions of dependency grammar, there are
also frameworks that allow multiple heads as well as cyclic graphs, such as
WG (Hudson, 1984, 1990). Another issue that arises for multi-stratal theories
is whether each level of representation has its own set of nodes, as in most
theories, or whether they only define different arc sets on top of the same set
of nodes, as in XDG (Debusmann et al., 2004).

However, the most important and hotly debated issues concerning formal
representations have to do with the relationship between dependency structure
and word order. According to Tesnière (1959), dependency relations belong
to the structural order (l’ordre structural), which is different from the linear
order (l’ordre linéaire) of a spoken or written string of words, and structural
syntax is based on the relations that exist between these two dimensions. Most
versions of dependency grammar follow Tesnière in assuming that the nodes of
a dependency structure are not linearly ordered in themselves but only relative
to a particular surface realization of this structure. A notable exception to
this generalization is FGD, where the representations of both the analytical
4 There seems to be no general consensus in the literature on dependency gram-

mar as to whether the arcs representing dependency relations should be drawn
pointing from heads to dependents or vice versa (or indeed with arrowheads at
all). We have chosen to adopt the former alternative, both because it seems to
be the most common representation in the literature and because it is consistent
with standard practice in graph theory.

3.1 Dependency Grammar 53

layer and the tectogrammatical layer are linearly ordered in order to capture
aspects of information structure (Sgall et al., 1986). In addition, there are
frameworks, such as TDG (Duchier and Debusmann, 2001), where the linear
order is represented by means of a linearly ordered dependency structure, the
Linear Precedence (LP) tree, while the proper dependency representation, the
Immediate Dominance (ID) tree, is unordered.

However, whether dependency relations introduce a linear ordering or not,
there may be constraints relating dependency structures to linear realiza-
tions. The best-known example is the constraint of projectivity, first discussed
by Lecerf (1960), Hays (1964) and Marcus (1965), which is related to the
contiguity constraint for constituency representations. A dependency graph
satisfies the constraint of projectivity with respect to a particular linear order
of the nodes if, for every arc h → d and node w, w occurs between h and d in
the linear order only if w is dominated by h (where dominates is the reflexive
and transitive closure of the arc relation). For example, the representation in
figure 3.1 is an example of a projective dependency graph, given the linear
order imposed by the word order of the sentence.

The distinction between projective and non-projective dependency gram-
mar often made in the literature thus refers to the issue of whether this
constraint is assumed or not. Broadly speaking, we can say that whereas
most practical systems for dependency parsing do assume projectivity, most
dependency-based linguistic theories do not. More precisely, most theoretical
formulations of dependency grammar regard projectivity as the norm but also
recognize the need for non-projective representations of certain linguistic con-
structions, e.g., long-distance dependencies (Mel’čuk, 1988; Hudson, 1990). It
is also often assumed that the constraint of projectivity is too rigid for the
description of languages with free or flexible word order.

Some multi-stratal theories allow non-projective representations in some
layers but not in others. For example, FGD assumes that tectogrammatical
representations are projective while analytical representations are not (Sgall
et al., 1986). Similarly, TDG (Duchier and Debusmann, 2001) assume projec-
tivity for LP trees but not for ID trees. Sometimes a weaker condition called
planarity is assumed, which allows a node w to occur between a head h and
a dependent d without being dominated by h only if w is a root (Sleator and
Temperley, 1993).5 Further relaxations of these constraints are discussed in
Kahane et al. (1998) and Yli-Jyrä (2003).

The points of divergence considered up till now have all been concerned
with aspects of representation. However, as mentioned at the end of the pre-
vious section, there are also a number of points concerning the substantive
linguistic analysis where different frameworks of dependency grammar make
different assumptions, in the same way that theories differ also within other
traditions. We will limit ourselves to a brief discussion of two such points.

5 This constraint is related to but not equivalent to the standard notion of planarity
in graph theory (see, e.g., Grimaldi, 2004).

54 3 Dependency Parsing

The first point concerns the issue of syntactic versus semantic heads. As
noted in section 3.1.1, the criteria for identifying heads and dependents invoke
both syntactic and semantic properties. In many cases, these criteria give the
same result, but in others they diverge. A typical example is found in so-called
case marking prepositions, exemplified in the following sentence:

I believe in the system. (3.3)

According to syntactic criteria, it is natural to treat the preposition in as
a dependent of the verb believe and the noun system as a dependent of the
preposition. According to semantic criteria, it is more natural to regard system
as a direct dependent of believe and to treat in as a dependent of system (cor-
responding to a case marking affix in some other languages).6 Most versions of
dependency grammar treat the preposition as the head of the noun, but there
are also theories that make the opposite assumption. Similar considerations
apply to many constructions involving one function word and one content
word, such as determiner-noun and complementizer-verb constructions. An
elegant solution to this problem is provided by the theory of Tesnière (1959),
according to which the function word and the content word form a dissociate
nucleus (nucléus dissocié), united by a relation of transfer (translation). In
multi-stratal theories, it is possible to treat the function word as the head
only in more surface-oriented layers. For example, to return to example (3.3),
FGD would assume that the preposition takes the noun as a dependent in the
analytical layer, but in the tectogrammatical layer the preposition would be
absent and the noun would instead depend directly on the verb.

The second point concerns the analysis of coordination, which presents
problems for any syntactic theory but which seems to be especially hard to
reconcile with the idea that syntactic constructions should be analyzed in
terms of binary head-dependent relations. Consider the following example:

They operate ships and banks. (3.4)

It seems clear that the phrase ships and banks functions as a direct object
of the verb operate, but it is not immediately clear how this phrase can be
given an internal analysis that is compatible with the basic assumptions of
dependency analysis, since the two nouns ships and banks seem to be equally
good candidates for being heads. One alternative is to treat the conjunction
as the head, as shown in figure 3.2 (top), an analysis that may be motivated
on semantic grounds and is adopted in FGD. Another alternative, advocated
by Mel’čuk (1988), is to treat the conjunction as the head only of the second
conjunct and analyze the conjunction as a dependent of the first conjunct,
as shown in figure 3.2 (bottom). The arguments for this analysis are essen-
tially the same as the arguments for an asymmetric right-branching analy-
sis in constituency-based frameworks. A third option is to give up a pure
6 A third alternative is to treat both in and system as dependents of believe, since

it is the verb that selects the preposition and takes the noun as an argument.

3.2 Parsing with Dependency Representations 55

PRP
They

� �
�

sbj

VBP
operate

NNS
ships

� �
�

obj

CC
and

� �
�

co

NNS
banks

� �
�

cj

PU
.

�

� �p

PRP
They

� �
�

sbj

VBP
operate

NNS
ships

� �
�

obj

CC
and

� �
�

cj

NNS
banks

� �
�

cj

PU
.

�

� �p

Fig. 3.2. Two analyses of coordination

dependency analysis and allow a limited form of phrase structure, as in WG
(Hudson, 1990). A fourth and final variant is the analysis of Tesnière (1959),
according to which both ships and banks are dependents of the verb, while the
conjunction marks a relation of junction (jonction) between the two nouns.

3.2 Parsing with Dependency Representations

So far in this chapter, we have reviewed the theoretical tradition of dependency
grammar, focusing on the common core of assumptions as well as major points
of divergence, rather than on individual instantiations of this tradition. We will
now turn to what is the main topic of this chapter, namely the computational
implementation of syntactic analysis based on dependency representations,
i.e., representations involving lexical nodes, connected by dependency arcs,
possibly labeled with dependency types.

Such implementations may be intimately tied to a particular theory, such
as the PLAIN system based on DUG (Hellwig, 1980, 2003), the implementa-
tion of Word Grammar by Fraser (1989, 1993), or the FDG parsing system
(Tapanainen and Järvinen, 1997; Järvinen and Tapanainen, 1998).7 On the
whole, however, the connections between theoretical frameworks and com-
putational systems are often rather indirect for dependency-based analysis,
probably more so than for theories and parsers based on constituency analysis.
This may be due to the relatively lower degree of formalization of dependency
grammar theories in general, and this is also part of the reason why the topic

7 Nowadays also known as Machinese Syntax (cf. Järvinen, 2003).

56 3 Dependency Parsing

of this section is described as parsing with dependency representations, rather
than parsing with dependency grammar.

In discussing dependency-based systems for syntactic parsing, we will
adopt the division made in chapter 2 between grammar-driven and data-
driven approaches, although these approaches are, as we have already had
reason to observe, not mutually exclusive. We will conclude this section with
a brief discussion of some of the potential advantages of using dependency
representations in syntactic parsing.

3.2.1 Grammar-Driven Dependency Parsing

The earliest work on parsing with dependency representations was intimately
tied to formalizations of dependency grammar that were very close to context-
free grammar, such as the proposals of Hays (1964) and Gaifman (1965). In
the formulation of Gaifman (1965) a dependency system contains three sets
of rules:8

1. LI: Rules of the form X(Y1 · · ·Yi ∗ Yi+1 · · ·Yn), where i may equal 0 and/or
n, which say that the category X may occur with categories Y1, . . . , Yn as
dependents, in the order given (with X in position ∗).

2. LII: Rules giving for every category X the list of words belonging to it
(where each word may belong to more than one category).

3. LIII: A rule giving the list of all categories the occurrence of which may
govern a sentence.

A sentence consisting of words w1, . . ., wn is analyzed by assigning to it a
sequence of categories X1, . . .,Xn and a relation of dependency d between
occurrences of words such that the following conditions hold (where d∗ is the
transitive closure of d):

1. For no wi, d∗(wi, wi).
2. For every wi, there is at most one wj such that d(wi, wj).
3. If d∗(wi, wj) and wk is between wi and wj , then d∗(wk, wj).
4. The whole set of word occurrences is connected by d.
5. If w1, . . . , wi are left dependents and wi+1, . . . , wn right dependents of

some word, then X(X1 · · ·Xi ∗ Xi+1 · · ·Xn) is a rule of LI, where
X1, . . . , Xi,Xi+1, . . . , Xn are the categories of w1, . . . , wi, wi+1, . . . , wn.

6. The word occurrence wi that governs the sentence belongs to a category
listed in LIII.

Gaifman remarks that 1–4 are general structure requirements that can be
made on any relation defined on a finite linearly ordered set whether it is a
set of categories or not, while 5–6 are requirements which relate the relation
to the specific grammar given by the three sets of rules LI–LIII. Referring
back to the discussion of graph conditions in section 3.1.2, we may first of all

8 The formulation of Hays (1964) is slightly different but equivalent.

3.2 Parsing with Dependency Representations 57

note that Gaifman defines dependency relations to hold from dependent to
head, rather than the other way round which is more common in the recent
literature. Secondly, we see that condition 2 corresponds to the single-head
constraint and condition 3 to the projectivity constraint. Conditions 1, 2 and 4
jointly entail that the graph is a rooted tree, which is presupposed in condition
6. Finally, it should be pointed out that this kind of dependency system only
gives an unlabeled dependency analysis, since there are no dependency types
used to label dependency relations.

Gaifman (1965) proves several equivalence results relating his dependency
systems to context-free grammars. In particular, he demonstrates that the two
systems are weakly equivalent, i.e., they both characterize the class of context-
free languages. However, he also shows that whereas any dependency system
can be converted to a strongly equivalent context-free grammar (modulo a
specific mapping between dependency trees and context-free parse trees), the
inverse construction is only possible for a restricted subset of context-free
grammar (roughly grammars where all productions are lexicalized).

These results have been invoked to explain the relative lack of interest in
dependency grammar within natural language processing for the subsequent
twenty-five years or so, based on the erroneous conclusion that dependency
grammar is only a restricted variant of context-free grammar (Järvinen and
Tapanainen, 1998).9 This conclusion is erroneous simply because the results
only concern the specific version of dependency grammar formalized by Hays
and Gaifman, which for one thing is restricted to projective dependency struc-
tures. However, it also worth emphasizing that with the increasing importance
of problems like robustness and disambiguation, issues of (limited) generative
capacity have lost some of their significance in the context of text parsing.
Nevertheless, it seems largely true to say that, except for isolated studies of
dependency grammar as an alternative to context-free grammar as the basis
for transformational grammar (Robinson, 1970), dependency grammar has
played a marginal role both in syntactic theory and in natural language pars-
ing until fairly recently.

The close relation to context-free grammar in the formalization of depen-
dency grammar by Hays and Gaifman means that essentially the same parsing
methods can be used for both types of system. Hence, the parsing algorithm
outlined in Hays (1964) is a bottom-up dynamic programming algorithm very
similar to the CKY algorithm proposed for context-free parsing at about the
same time (Kasami, 1965; Younger, 1967). The use of dynamic programming
algorithms that are closely connected to context-free parsing algorithms such
as CKY and Earley’s algorithm (Earley, 1970) is a prominent trend also in
more recent grammar-driven approaches to dependency parsing. One well-
known example is the link grammar parser of Sleator and Temperley (1991,

9 A similar lack of interest seems to have affected categorial grammar after the weak
equivalence of a restricted type of categorial grammar with context-free grammar
was proven by Bar-Hillel et al. (1960).

58 3 Dependency Parsing

1993), which uses a dynamic programming algorithm implemented as a top-
down recursive algorithm with memoization to achieve parsing in O(n3) time.
Link grammar is not considered an instance of dependency grammar by its
creators, and it departs from the traditional view of dependency by using
undirected links, but the representations used in link grammar parsing are
similar to dependency representations in that they consist of words linked by
binary relations. Other examples include a modification of the CKY algorithm
(Holan et al., 1997) and an Earley-type algorithm with left-corner filtering in
the prediction step (Lombardo and Lesmo, 1996; Barbero et al., 1998).

A common property of all frameworks that implement dependency pars-
ing as a form of lexicalized context-free parsing is that they are restricted
to the derivation of projective dependency structures, although some of the
frameworks allow post-processing that may introduce non-projective struc-
tures (Sleator and Temperley, 1991, 1993). Many of these frameworks can be
subsumed under the notion of bilexical grammar introduced by Eisner (2000).
In Eisner’s formulation, a bilexical grammar consists of two elements:

1. A vocabulary Σ of terminal symbols (words), containing a distinguished
symbol root.

2. For each word w ∈ Σ, a pair of deterministic finite-state automata lw and
rw. Each automaton accepts some regular subset of Σ∗.

The language L(G) defined by a bilexical dependency grammar G is defined
as follows:

1. A dependency tree is a rooted tree whose nodes are labeled with words
from Σ, and where the root node is labeled with the special symbol root.
The children of a node are ordered with respect to each other and the
node itself, so that the node has both left children that precede it and
right children that follow it.

2. A dependency tree is grammatical according to G if and only if for every
word token w that appears in the tree, lw accepts the (possibly empty) se-
quence of w’s left children (from right to left), and rw accepts the sequence
of w’s right children (from left to right).

3. A string x ∈ Σ∗ is generated by G with analysis y if y is a grammatical
dependency tree according to G and listing the node labels of y in infix
order yields the string x followed by root; x is called the yield of y.

4. The language L(G) is the set of all strings generated by G.

The general parsing algorithm proposed by Eisner for bilexical grammar is
again a dynamic programming algorithm, which proceeds by linking spans
(substrings where roots occur either leftmost or rightmost or both) instead
of constituents, thereby reducing the time complexity from O(n5) to O(n3).
More precisely, the running time is O(n3g3t), where g is an upper bound on
the number of possible senses (lexical entries) of a single word, and t is an
upper bound on the number of states of a single automaton.

3.2 Parsing with Dependency Representations 59

Eisner shows how the framework of bilexical grammar, and the cubic-time
parsing algorithm, can be modified to capture a number of different frame-
works and approaches such as Milward’s (mono)lexical dependency grammar
(Milward, 1994), Alshawi’s head automata (Alshawi, 1996), Sleator and Tem-
perley’s link grammar (Sleator and Temperley, 1991, 1993), and Eisner’s own
probabilistic dependency models that will be discussed below in section 3.2.2
(Eisner, 1996b,a).

Eisner’s algorithm can be viewed as a method for finding a projective
spanning tree in a directed graph. Generalizing this idea, McDonald, Pereira,
Ribarov and Hajič (2005) show how non-projective dependency parsing can
be performed by finding a spanning tree that is not required to be projective,
using the Chu-Liu-Edmonds algorithm (Chu and Liu, 1965; Edmonds, 1967).
This algorithm runs in O(n2) time, which means that non-projective parsing
can in fact be performed more efficiently than projective parsing using this
approach.

The second main tradition in grammar-driven dependency parsing is based
on the notion of eliminative parsing, where sentences are analyzed by succes-
sively eliminating representations that violate constraints until only valid
representations remain (cf. section 2.2.1). One of the first parsing systems
based on this idea is the CG framework (Karlsson, 1990; Karlsson et al.,
1995), which uses underspecified dependency structures represented as syn-
tactic tags and disambiguated by a set of constraints intended to exclude
ill-formed analyses. In CDG (Maruyama, 1990), this technique is extended
to complete dependency structures by generalizing the notion of tag to pairs
consisting of a syntactic label and an identifier of the head node. This kind of
representation is fundamental for many different approaches to dependency
parsing, since it provides a way to reduce the parsing problem to a tagging
or classification problem. Other typical representatives of this tradition are
the extended CDG framework of Harper and Helzerman (1995) and FDG
(Tapanainen and Järvinen, 1997; Järvinen and Tapanainen, 1998), where the
latter is a development of CG that combines eliminative parsing with a non-
projective dependency grammar inspired by Tesnière (1959).

In the eliminative approach, parsing is viewed as a constraint satisfaction
problem, where any analysis satisfying all the constraints of the grammar
is a valid analysis. Constraint satisfaction in general is NP complete, which
means that special care must be taken to ensure reasonable efficiency in prac-
tice. Early versions of this approach used procedures based on local consis-
tency (Maruyama, 1990; Harper et al., 1995), which attain polynomial worst
case complexity by only considering local information in the application of
constraints. In the more recently developed TDG framework (Duchier, 1999,
2003), the problem is confronted head-on by using constraint programming
to solve the satisfaction problem defined by the grammar for a given input
string. The TDG framework also introduces several levels of representation
(cf. section 3.1.2), arguing that constraints can be simplified by isolating diffe-
rent aspects of the grammar such as Immediate Dominance (ID) and Linear

60 3 Dependency Parsing

Precedence (LP) and using constraints that relate different levels to each other
(Duchier and Debusmann, 2001; Debusmann, 2001). This view is taken to its
logical extension in the most recent version of the framework called Extensible
Dependency Grammar (XDG), where any number of levels, or dimensions, can
be defined in the grammatical framework (Debusmann et al., 2004)

From the point of view of text parsing, parsing as constraint satisfaction
can be problematic in two ways. First, for a given input string, there may be
no analysis satisfying all constraints, which leads to the robustness problem.
Secondly, there may be more than one analysis, which leads to the problem of
disambiguation. Menzel and Schröder (1998) extends the CDG framework of
Maruyama (1990) with graded, or weighted, constraints, by assigning a weight
w (0.0 ≤ w ≤ 1.0) to each constraint indicating how serious the violation
of this constraint is (where 0.0 is the most serious). In this extended frame-
work, later developed into WCDG (Schröder, 2002), the best analysis for a
given input string is the analysis that minimizes the total weight of violated
constraints. While early implementations of this system used an eliminative
approach to parsing (Menzel and Schröder, 1998), the more recent versions
instead use a transformation-based approach, which successively tries to im-
prove the analysis by transforming one solution into another guided by the
observed constraint violations in the current solution. One advantage of this
heuristic approximation strategy is that it can be combined with arbitrarily
complex constraints, whereas standard eliminative procedures usually require
constraints to be binary for efficiency reasons (Foth et al., 2004).

So far, we have distinguished two main trends in grammar-driven depen-
dency parsing. The first is based on a formalization of dependency grammar
that is closely related to context-free grammar, and therefore usually restricted
to projective dependency structures, using standard techniques from context-
free parsing to obtain good efficiency in the presence of massive ambiguity, in
particular dynamic programming or memoization. The second is based on a
formalization of dependency grammar in terms of constraints, not necessarily
limited to projective structures, where parsing is naturally viewed as a con-
straint satisfaction problem which can be addressed using eliminative parsing
methods, although the exact parsing problem is often intractable.

In addition to these two traditions, which both involve fairly complex
grammars and parsing algorithms, there is a third tradition which is based on
a simpler notion of dependency grammar together with a deterministic parsing
strategy (possibly with limited backtracking). As in other parsing paradigms,
the study of deterministic parsing can be motivated either by a wish to model
human sentence processing or by a desire to make syntactic parsing more
efficient (or possibly both). According to Covington (2001), these methods
have been known since the 1960s without being presented systematically in
the literature. The fundamental parsing strategy comes in different versions
but we will concentrate here on the left-to-right (or incremental) version,
which is formulated in the following way by Covington (2001):

3.2 Parsing with Dependency Representations 61

Accept words one by one starting at the beginning of the sentence, and
try linking each word as head or dependent of every previous word.

This parsing strategy is compatible with many different grammar formula-
tions. All that is required is that a grammar G defines a boolean function fG

that, for any two words w1 and w2, returns true if w1 can be the head of w2

according to G (and false otherwise).10 Covington (2001) demonstrates how
this parsing strategy can be used to produce dependency structures satisfying
different conditions such as uniqueness (single head) and projectivity simply
by imposing different constraints on the linking operation. Covington has also
shown in previous work how this parsing strategy can be adapted to languages
with free, flexible or rigid word order (Covington, 1990a,b, 1994). The time
complexity of Covington’s algorithm is O(n2) in the deterministic version.

The parsing algorithm investigated in this book can actually be derived
as a special case of Covington’s algorithm, although we will not give this
formulation here, and our very first experiments used a simple grammar of
the kind presupposed by Covington to perform unlabeled dependency parsing
(Nivre, 2003). A similar approach can be found in Obrȩbski (2003), although
this system is nondeterministic and derives a compact representation of all
permissible dependency trees in the form of a directed acyclic graph. Yet an-
other framework that shows affinities with the deterministic grammar-driven
approach is that of Kromann (2004), although it is based on a more sophis-
ticated notion of grammar called Discontinuous Grammar. Parsing in this
framework is essentially deterministic but subject to repair mechanisms that
are associated with local cost functions derived from the grammar.

Before we close the discussion of grammar-driven dependency parsing,
we should also mention the work of Oflazer (2003), which is an extended
finite-state approach to dependency parsing similar to the cascaded partial
parsers used for constituency-based parsing by Abney (1996) and Roche
(1997). Oflazer’s system allows violable constraints for robust parsing and
uses total link length to rank alternative analyses, as proposed by Lin (1996).

3.2.2 Data-Driven Dependency Parsing

As for natural language parsing in general, the first attempts at data-driven
dependency parsing were also grammar-driven in that they relied on a formal
dependency grammar and used corpus data to induce a probabilistic model
for disambiguation (cf. section 2.3.1). Thus, Carroll and Charniak (1992) es-
sentially use a PCFG model, where the context-free grammar is restricted to
be equivalent to a Hays/Gaifman type dependency grammar. They report ex-
periments trying to induce such a probabilistic grammar using unsupervised

10 In this formulation, the parsing strategy is limited to unlabeled dependency
graphs. In principle, it is possible to perform labeled dependency parsing by
returning a set of permissible dependency types instead of true, but this makes
the process nondeterministic in general.

62 3 Dependency Parsing

learning on an artificially created corpus but with relatively poor results. On
the whole, unsupervised learning for dependency parsing is a relatively unex-
plored area of research, with a few notable exceptions such as Yuret (1998)
and Klein and Manning (2004).

A more successful and more influential approach was developed by Eisner
(1996a,b), who defined several probabilistic models for dependency parsing
and evaluated them using supervised learning with data from the Wall Street
Journal section of the Penn Treebank. In later work, Eisner (2000) has shown
how these models can be subsumed under the general notion of a bilexical
grammar (BG), which means that parsing can be performed efficiently as
discussed briefly in section 3.2.1. Eisner (2000) defines the notion of a weighted
bilexical grammar (WBG) in terms of BG as follows (cf. section 3.2.1):

1. A weighted DFA A is a deterministic finite automaton that associates a
real-valued weight with each arc and each final state. Each accepting path
through A is assigned a weight, namely the sum of all arc weights on the
path and the weight of the final state. Each string x accepted by A is
assigned the weight of its accepting path.

2. A WBG G is a BG in which all the automata lw and rw are weighted DFAs.
The weight of a dependency tree y under G is defined as the sum, over all
word tokens w in y, of the weight with which lw accepts w’s sequence of
left children plus the weight with which rw accepts w’s sequence of right
children.

Eisner (1996b) presents three different probabilistic models for dependency
parsing, which can be reconstructed as different weighting schemes within the
framework of WBG. However, the first two models (models A and B) require
that we distinguish between an underlying string x ∈ Σ∗, described by the
WBG, and a surface string x′, which results from a possibly nondeterministic,
possibly weighted finite-state transduction R on x. The surface string x′ is
then grammatical with analysis (y, p) if y is a grammatical dependency tree
whose yield x is transduced to x′ along an accepting path p in R. To avoid the
distinction between underlying strings and surface strings, we will restrict our
attention to model C, which was found to perform significantly better than
the other two models in the experiments reported in Eisner (1996a).

First of all, it should be pointed out that all the models in Eisner (1996b)
involve part-of-speech tags, in addition to word tokens and (unlabeled) depen-
dency relations, and define the joint probability of words, tags and dependency
relations (called links in this context). Model C is defined as follows:

P (tw(1), . . ., tw(n), links) =
n∏

i=1

P (lc(i) | tw(i))P (rc(i) | tw(i)) (3.5)

where n is the number of words, tw(i) is the ith tagged word, and lc(i) and
rc(i) are the left and right children of the ith word, respectively. The proba-
bility of generating each child is conditioned on the tagged head word and the

3.2 Parsing with Dependency Representations 63

tag of the preceding child (left children being generated from right to left):

P (lc(i) | tw(i)) =
m∏

j=1

P (tw(lcj(i)) | t(lcj−1(i)), tw(i)) (3.6)

P (rc(i) | tw(i)) =
m∏

j=1

P (tw(rcj(i)) | t(rcj−1(i)), tw(i)) (3.7)

where m is the number of children on one side, lcj(i) is the jth left child of the
ith word, and t(lcj−1(i)) is the tag of the preceding left child (and analogously
rcj(i) and t(rcj−1(i)) for right children). This model can be implemented in
the WBG framework by letting the automata lw and rw have weights on their
arcs corresponding to the log of the probability of generating a particular left
or right child given the tag of the preceding child. In this way, the weight
assigned to a dependency tree y will be the log of P (tw(1), . . ., tw(n), links)
as defined above (Eisner, 2000).

Eisner’s work on data-driven dependency parsing has been influential in
two ways. First, it showed that generative probabilistic modeling and super-
vised learning could be applied to dependency representations to achieve a
parsing accuracy comparable to the best results reported for constituency-
based parsing at the time, although the evaluation metrics used in the two
cases are not strictly comparable. Secondly, it showed how these models could
be coupled with efficient parsing techniques that exploit the special properties
of dependency structures. The importance of the second aspect can be seen
in recent work by McDonald, Crammer and Pereira (2005), applying discrim-
inative estimation methods to probabilistic dependency parsing. Thanks to
the more efficient parsing methods offered by Eisner’s methods for bilexical
parsing, training can be performed without pruning the search space, which is
impossible for efficiency reasons when using lexicalized constituency represen-
tations with comparable lexical dependencies. This approach can be extended
to non-projective dependency parsing by combining the discriminative esti-
mation methods with the Chu-Liu-Edmonds algorithm for finding a maximum
spanning tree in a directed graph, without requiring the tree to be projective,
as shown in McDonald, Pereira, Ribarov and Hajič (2005).

Collins et al. (1999) apply the generative probabilistic parsing models
of Collins (1997, 1999) to dependency parsing, using data from the Prague
Dependency Treebank. This requires preprocessing to transform dependency
structures into flat phrase structures for the training phase and postprocess-
ing to extract dependency structures from the phrase structures produced by
the parser. The parser of Charniak (2000) has been adapted and applied to
the Prague Dependency Treebank in a similar fashion, although this work
remains unpublished.

Samuelsson (2000) proposes a probabilistic model for dependency grammar
that goes beyond the models considered so far by incorporating labeled depen-
dencies and allowing non-projective dependency structures. In this model,

64 3 Dependency Parsing

dependency representations are generated by two stochastic processes: one
top-down process generating the tree structure y and one bottom-up process
generating the surface string x given the tree structure, defining the joint
probability as P (x, y) = P (y)P (x | y). Samuelsson suggests that the model
can be implemented using a bottom-up dynamic programming approach, but
the model has unfortunately never been implemented and evaluated.

Another probabilistic approach to dependency parsing that incorporates
labeled dependencies is the stochastic CDG parser of Wang and Harper (2004),
which extends the CDG model with a generative probabilistic model. Parsing
is performed in two steps, where the first step assigns to each word a set of
so-called SuperARVs, representing constraints on possible heads and depen-
dents, and where the second step determines actual dependency links given
the SuperARV assignment. Although the basic model and parsing algorithm
is limited to projective structures, the system allows non-projective structures
for certain wh-constructions. The system has been evaluated on data from the
Wall Street Journal section of the Penn Treebank and achieves state-of-the-art
performance using a dependency-based evaluation metric (Wang and Harper,
2004).

The first step in the parsing model of Wang and Harper (2004) can be
seen as a kind of supertagging, which has turned out to be a crucial element
in many recent approaches to statistical parsing, e.g., in LTAG (Joshi and
Sarkar, 2003; Bangalore, 2003) and CCG (Clark and Curran, 2004; Curran and
Clark, 2004). A similar two-step process is used in the statistical dependency
parser of Bangalore (2003), which uses elementary LTAG trees as supertags
in order to derive a dependency structure in the second step. Supertagging
is performed using a standard HMM trigram tagger, while dependency struc-
tures are derived using a heuristic deterministic algorithm that runs in linear
time. Another data-driven dependency parser based on supertagging is Nasr
and Rambow (2004), where supertags are derived from a lexicalized extended
context-free grammar and the most probable analysis is derived using a modi-
fied version of the CKY algorithm.

Most of the systems described in this section are based on a formal depen-
dency grammar in combination with a generative probabilistic model, which
means that parsing conceptually consists in the derivation of all analyses that
are permissible according to the grammar and the selection of the most prob-
able analysis according to the generative model. This is in contrast to the
framework developed in this book, which does not involve a formal grammar,
and where we will focus on purely discriminative models of inductive learning
in combination with a deterministic parsing strategy.

The deterministic discriminative approach was first proposed by Kudo
and Matsumoto (2002) and Yamada and Matsumoto (2003), using support
vector machines (Vapnik, 1995) to train classifiers that predict the next action
of a deterministic parser constructing unlabeled dependency structures. The
parsing algorithm used in these systems implements a form of shift-reduce

3.2 Parsing with Dependency Representations 65

parsing with three possible parse actions that apply to two neighboring words
referred to as target words:11

1. A Shift action adds no dependency construction between the target words
wi and wi+1 but simply moves the point of focus to the right, making wi+1

and wi+2 the new target words.
2. A Right action constructs a dependency relation between the target words,

adding the left node wi as a child of the right node wi+1 and reducing the
target words to wi+1, making wi−1 and wi+1 the new target words.

3. A Left action constructs a dependency relation between the target words,
adding the right node wi+1 as a child of the left node wi and reducing the
target words to wi, making wi−1 and wi the new target words.

The parser processes the input from left to right repeatedly as long as new
dependencies are added, which means that up to n − 1 passes over the input
may be required to construct a complete dependency tree, giving a worst
case time complexity of O(n2), although the worst case seldom occurs in
practice. The features used to predict the next parse action are the word forms
and part-of-speech tags of the target words, of their left and right children,
and of their left and right string context (in the reduced string). Yamada and
Matsumoto (2003) evaluate the system using the standard data set from the
Wall Street Journal section of the Penn Treebank and show that deterministic
discriminative dependency parsing can achieve an accuracy that is close to the
state-of-the-art with respect to dependency accuracy. Further improvements
with this model are reported in Isozaki et al. (2004).

The framework of inductive dependency parsing investigated in this book
has many properties in common with the system of Yamada and Matsumoto
(2003), but there are three main differences. The first and most important dif-
ference is that our system constructs labeled dependency representations, i.e.,
representations where dependency arcs are labeled with dependency types.
This also means that dependency type information can be exploited in the
feature model used to predict the next parse action. The second difference is
that the algorithm described below in section 3.4 is a head-driven arc-eager
algorithm that constructs a complete dependency tree in a single pass over
the data. The third and final difference is that our system, in its current in-
carnation, uses memory-based learning to induce classifiers for predicting the
next parsing action based on conditional features, whereas Yamada and Mat-
sumoto (2003) use support vector machines. However, as pointed out by Kudo
and Matsumoto (2002), in a deterministic discriminative parser the learning
method is largely independent of the rest of the system.

11 The parser described in Kudo and Matsumoto (2002) is applied to Japanese,
where dependencies are assumed to be strictly head-final, which means that only
the actions Shift and Right are required.

66 3 Dependency Parsing

3.2.3 The Case for Dependency Parsing

As noted several times already, dependency-based syntactic representations
have played a fairly marginal role in the history of linguistic theory as well as
that of natural language processing. Saying that there is increasing interest
in dependency-based approaches to syntactic parsing may therefore not be
saying very much, but it is hard to deny that the notion of dependency has
become more prominent in the literature on syntactic parsing during the last
decade or so.

At this point, it seems appropriate to ask what are the potential benefits
of using dependency-based representations in syntactic parsing, as opposed
to the more traditional representations based on constituency. According to
Covington (2001), dependency parsing offers three prima facie advantages:

• Dependency links are close to the semantic relationships needed for the
next stage of interpretation; it is not necessary to ‘read off’ head-modifier
or head-complement relations from a tree that does not show them directly.

• The dependency tree contains one node per word. Because the parser’s job
is only to connect existing nodes, not to postulate new ones, the task of
parsing is in some sense more straightforward. [...]

• Dependency parsing lends itself to word-at-a-time operation, i.e., parsing
by accepting and attaching words one at a time rather than by waiting for
complete phrases. [...]

To this it is sometimes added that dependency-based parsing allows a more
adequate treatment of languages with variable word order, where discontinu-
ous syntactic constructions are more common than in languages like English
(Mel’čuk, 1988; Covington, 1990b). However, this argument is only plausible
if the formal framework allows non-projective dependency structures, which
is not the case for most dependency parsers that exist today.

For us, the first two advantages identified by Covington seem to be the
most important. Having a more constrained representation, where the number
of nodes is fixed by the input string itself, should enable conceptually simpler
and computationally more efficient methods for parsing. At the same time,
it is clear that a more constrained representation is a less expressive repre-
sentation and that dependency representations are necessarily underspecified
with respect to certain aspects of syntactic structure. For example, as pointed
out by Mel’čuk (1988), it is impossible to distinguish in a pure dependency
representation between an element modifying the head of a phrase and the
same element modifying the entire phrase. However, this is precisely the kind
of ambiguity that is notoriously hard to disambiguate correctly in syntactic
parsing anyway, so it might be argued that this kind of underspecification
is actually beneficial. And as long as the syntactic representation encodes
enough of the structural relations that are relevant for semantic interpreta-
tion, then we are only happy if we can constrain the problem of deriving these
representations.

3.3 A Framework for Dependency Parsing 67

In general, there is a tradeoff between the expressivity of syntactic rep-
resentations and the complexity of syntactic parsing, and we believe that
dependency representations are a good compromise in this respect. They are
less expressive than most constituency-based representations but compensate
for this by providing a relatively direct encoding of predicate-argument struc-
ture, which is relevant for semantic interpretation, and by being composed
of bilexical relations, which are potentially beneficial for disambiguation. In
this way, dependency structures are sufficiently expressive to be useful in nat-
ural language processing systems and at the same time sufficiently restricted
to allow full parsing with high accuracy and efficiency under constraints of
robustness and disambiguation. At least, this is our working hypothesis.

The remainder of this book will be devoted to the second half of this
hypothesis, exploring the tradeoff between accuracy and efficiency under the
constraints of robustness and disambiguation. By contrast, the first half of the
hypothesis, the potential usefulness of dependency representations for different
natural language applications, will have to remain an untested assumption.
Although we can hope that the increasing interest in dependency parsing
is indicative of their usefulness, any serious discussion of these issues would
require an investigation taking us far beyond the scope of this book.

3.3 A Framework for Dependency Parsing

Having reviewed both grammar-driven and data-driven approaches to depen-
dency parsing and motivated our choice of syntactic representation, it is now
time to define the formal framework that will serve us in the investigation
of inductive dependency parsing. Before we come to the formal definitions, it
may be a good idea to position our approach with respect to the open issues
in dependency grammar discussed in section 3.1.2. The following properties
are characteristic:

• The syntactic analysis is limited to dependency structure only, although
we allow word tokens to be pre-tagged with, e.g., parts-of-speech.

• The syntactic analysis is mono-stratal, which means that we assign a single
dependency representation to each input string.

• The nodes of the dependency structure are the tokens of the input string.
• The labels of the dependency structure are not prescribed by the frame-

work but are normally taken to be surface-oriented grammatical functions.
• The dependency graphs are rooted and connected; normally they are also

taken to satisfy the single-head, acyclicity and projectivity constraints.
• The framework does not prescribe a specific analysis of problematic con-

structions such as coordination, disjoint syntactic and semantic heads, etc.

It is important to keep in mind that this is a framework for text parsing,
where the input consists of tokenized text sentences and where each token,
including punctuation, constitutes a node in the dependency representation.

68 3 Dependency Parsing

It follows that the dependency analysis will normally be surface oriented.
However, the constraints given by the framework are purely formal and do
not concern the substantive side of the linguistic analysis. This is in harmony
with the data-driven approach to text parsing, where the framework has to be
compatible with whatever linguistic analysis is provided in the training data
set, as long as it satisfies the formal conditions. In the empirical experiments
reported in chapter 5 we will see that the same formal machinery can deal
with fairly different assumptions about linguistic structure derived from the
different data sets used.

3.3.1 Texts, Sentences and Tokens

Recapitulating parts of the characterization of text parsing from section 2.2.2,
we make the following assumptions about texts, sentences and tokens:

Definition 3.1. A text is a sequence T = (x1, . . . , xn) of sentences.

Definition 3.2. A sentence is a sequence x = (w1, . . . , wn) of tokens.

Definition 3.3. A token is a sequence w = (c1, . . . , cn) of characters.

Tokens will normally be word forms, punctuation marks and other units that
are recognized as the basic elements of text sentences. However, the exact
nature of the tokenization process is not prescribed by the formal frame-
work, which means that a tokenization that groups several word forms into
multi-word units, or segments a single word form into several tokens (e.g., by
compound splitting) is perfectly compatible with our definition of a sentence.
As pointed out in section 2.2.2, this is a notion of text sentence, rather than
system sentence (Lyons, 1977), since we make no assumptions about syntactic
completeness or well-formedness. Readers who are unhappy with this use of
the term sentence are welcome to use the more neutral term string instead,
although it is important to remember that, since we accept as a token any
string of characters that comes out of the tokenization process, our sentences
are not strings over a well-defined alphabet.

Given a sentence x = (w1, . . ., wn), we define a function wx that maps
indices to tokens as follows:

wx(i) =
{

wi if 1 ≤ i ≤ n
undefined otherwise (3.8)

We will normally drop the subscript and simply write w(i) when it is clear
from the context which sentence is indicated. In order to represent annotation
of tokens that result from preprocessing, we also allow additional functions
that map each index to the appropriate annotation label. For example, we use
a function px to represent a part-of-speech tagging (p1, . . ., pn) of x as follows:

px(i) =
{

pi if 1 ≤ i ≤ n
undefined otherwise (3.9)

3.3 A Framework for Dependency Parsing 69

Economic1 news2 had3 little4 effect5 on6 financial7 markets8 .9

w(1) = Economic p(1) = JJ
w(2) = news p(2) = NN
w(3) = had p(3) = VBD
w(4) = little p(4) = JJ
w(5) = effect p(5) = NN
w(6) = on p(6) = IN
w(7) = financial p(7) = JJ
w(8) = markets p(8) = NNS
w(9) = . p(9) = PU

Fig. 3.3. English sentence (cf. figure 3.1)

Although part-of-speech tagging is the only kind of annotation that will be
considered in this book, one could also imagine annotation functions for
lemmatization, morphological analysis or word sense disambiguation. We will
use the term annotation function generally for any function over tokens that
is available in a given setting, including the obligatory function w, and we will
use the symbol Ax = {wx, . . .} to denote the set of annotation functions for the
string x. The functional notation is exemplified in figure 3.3, which represents
the sentence from figure 3.1 using the w and p functions, i.e., Ax = {wx, px}.

3.3.2 Dependency Graphs

A dependency graph is a labeled directed graph, the nodes of which are indices
corresponding to the tokens of a sentence. Formally:

Definition 3.4. Given a set R of dependency types, a dependency graph for
a sentence x = (w1, . . . , wn) is a labeled directed graph G = (V,E,L), where:

1. V = Zn+1

2. E ⊆ V × V
3. L : E → R

Definition 3.5. A dependency graph G is well-formed if and only if:

1. The node 0 is a root (Root).
2. G is connected (Connectedness).12

The set V of nodes (or vertices) is the set Zn+1 = {0, 1, 2, . . . , n} (n ∈ Z+),
i.e., the set of non-negative integers up to and including n (Grimaldi, 2004).

12 Strictly speaking, we require the graph to be weakly connected, which entails that
the corresponding undirected graph is connected, whereas a strongly connected
graph has a directed path between any pair of nodes.

70 3 Dependency Parsing

This means that every token index i of the sentence is a node (1 ≤ i ≤ n) and
that there is a special node 0, which does not correspond to any token of the
sentence and which will always be a root of the dependency graph (normally
the only root).

Using position indices, rather than word forms, to represent tokens has
certain practical advantages (Maruyama, 1990), one of which is that the rela-
tion of linear precedence is naturally represented by the arithmetic less-than
relation, i.e., a node i precedes a node j if and only if i < j. In the following,
we will reserve the term token node for a node that corresponds to a token
of the sentence, and we will use the symbol V + to denote the set of token
nodes of a sentence for which the set of nodes is V , i.e., V + = V −{0}. When
necessary, we will write Vx and V +

x to indicate that V and V + are the nodes
corresponding to a particular sentence x = (w1, . . . , wn). Note, however, that
the only requirement imposed by x is that the number of nodes match the
length of x, i.e., |V +| = n and |V | = n + 1.

The use of a special root node is common in the literature on dependency
parsing and simplifies many definitions (Collins et al., 1999; Böhmová et al.,
2003). For example, it is in many cases possible to assume that the dependency
graph is a tree, even though the analysis scheme adopted does not require one
of the tokens of the sentence to dominate every other token.

The set E of arcs (or edges) is a set of ordered pairs (i, j), where i and
j are nodes. Since arcs are used to represent dependency relations, we will
generally say that i is the head and j is the dependent of the arc (i, j).13 As
usual, we will use the notation i → j to mean that there is an arc connecting
i and j (i.e., (i, j) ∈ E) and we will use the notation i →∗ j for the reflexive
and transitive closure of the arc relation E (i.e., i →∗ j if and only if i = j or
there is a path of arcs connecting i to j).

The function L assigns a dependency type (arc label) r ∈ R to every arc
e ∈ E. We will use the notation i

r→ j to mean that there is an arc labeled r
connecting i to j (i.e., (i, j) ∈ E and L((i, j)) = r).

Figure 3.4 shows how the dependency structure assigned to the example
sentence from figure 3.1 can be represented as a dependency graph in the
formal sense. Note that we take the set R of dependency types to include a
special label ROOT, which is used to label arcs from the special root node 0.
We will assume that every set R of dependency types includes such a label,
which will be denoted r0 when referring to arbitrary sets R.

The only conditions we have imposed on dependency graphs so far is that
the special node 0 is a root (which is a pure technicality) and that the graph
should be connected, which is a reasonable assumption given that the graph

13 Unfortunately, this terminology is partially inconsistent with the terminology
found in some textbooks, according to which j is the head and i is the tail of
the arc (i, j) (Aho and Ullman, 1995). Other terms found in the literature are
predecessor, origin and source for i, and successor and terminus for j (Aho and
Ullman, 1995; Grimaldi, 2004).

3.3 A Framework for Dependency Parsing 71

0 3

2

5

9

1

4

6 8 7

 �
�

�
��

�

�
�

�

�

�
�

�

root

sbj

obj

p

nmod

nmod

nmod

pmod nmod

R = {ROOT, SBJ, OBJ, NMOD, PMOD, P, . . .}

V = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

E = {(0, 3), (3, 2), (3, 5), (3, 9), (2, 1), (5, 4), (5, 6), (6, 8), (8, 7)}

L((0, 3)) = ROOT
L((3, 2)) = SBJ
L((3, 5)) = OBJ
L((3, 9)) = P
L((2, 1)) = NMOD
L((5, 4)) = NMOD
L((5, 6)) = NMOD
L((6, 8)) = PMOD
L((8, 7)) = NMOD

Fig. 3.4. Dependency graph for English sentence (cf. figures 3.1 and 3.3)

should represent a coherent analysis of a sentence. In most cases, we want to
impose further restrictions on well-formed dependency graphs, although we
want the formal framework to be compatible with different views of depen-
dency structures (cf. section 3.1.2). Thus, for the remainder of this book we
will restrict our attention to the class of projective dependency graphs:

Definition 3.6. A projective dependency graph is a well-formed dependency
graph satisfying the following additional conditions:

3. Every node has at most one head, i.e., if i → j then there is no node k
such that k �= i and k → j (Single-Head).

4. The graph G is acyclic, i.e., if i → j then not j →∗ i (Acyclicity).
5. The graph G is projective, i.e., if i → j then i →∗ k, for every node k

such that i < k < j or j < k < i (Projectivity).

If we compare the graph conditions discussed in this section to those of Gaif-
man (1965) (cf. section 3.2.1, page 56), we see that our conditions 2, 3, 4 and 5
correspond directly to Gaifman’s conditions 4, 2, 1 and 3, respectively. Thus,

72 3 Dependency Parsing

the only difference is that we have no conditions corresponding to Gaifman’s
conditions 5 and 6, which relate the analysis to a particular grammar.14 This
is natural given that we are defining a framework for text parsing, where we
do not require (nor preclude) the use of a formal grammar. Although we will
assume all of conditions 1–5 for the investigations in this book, we will leave
open the possibility of relaxing these constraints in other versions of inductive
dependency parsing. We will return to this issue in chapter 6.

3.3.3 Dependency Parsing

Having defined text sentences and dependency graphs, we can now define
the problem of dependency parsing as the mapping of text sentences to well-
formed dependency graphs (relative to some set of graph conditions). Given
our previous characterization of text parsing, we require this mapping to be
a function and we assume that the correct mapping for each text sentence
is defined by an independent criterion of accuracy (e.g., an empirical gold
standard). In other words:

Given a text T = (x1, . . . , xn) in language L, derive the single correct
dependency graph Gi for every sentence xi ∈ T .

In the last section of this chapter we will describe an algorithm that solves
this problem with optimal efficiency, given an oracle that always chooses the
correct action. The rest of the book will then be devoted to the approximation
of this oracle using inductive inference, in particular memory-based learning.

3.4 Parsing Algorithm

The parsing algorithm described in this section was first presented in Nivre
(2003), with a partial analysis of time complexity and robustness properties,
although the algorithm was at that time restricted to unlabeled dependency
graphs. It was extended to labeled dependency graphs in Nivre (2004b) and
further analyzed with respect to incrementality in Nivre (2004a). We specify
the algorithm by means of a transition system, which is nondeterministic
in itself but which can be made deterministic by introducing an oracle that
resolves nondeterministic choice points. The formulation in this book differs
in some details from that in previous publications but it is equivalent in all
important respects.

3.4.1 Configurations

We begin by defining a parser configuration for a sentence x = (w1, . . . , wn),
relative to a set R of dependency types (including a special symbol r0 for
dependents of the root):
14 One might see our condition 1 as a degenerate version of Gaifman’s condition 5,

since the special root node 0 will in most cases be the only permissible root node.

3.4 Parsing Algorithm 73

Definition 3.7. Given a set R = {r0, r1, . . . rm} of dependency types and
a sentence x = (w1, . . . , wn), a parser configuration for x is a quadruple
c = (σ, τ, h, d), where:

1. σ is a stack of token nodes i (1 ≤ i ≤ j for some j ≤ n).
2. τ is a sorted sequence of token nodes i (j < i ≤ n).
3. h : V +

x → Vx is a function from token nodes to nodes.
4. d : V +

x → R is a function from token nodes to dependency types.
5. For every token node i ∈ V +

x , h(i) = 0 if and only if d(i) = r0.

The idea is that the sequence τ represents the remaining input tokens in a
left-to-right pass over the input sentence x; the stack σ contains partially
processed nodes that are still candidates for dependency arcs, either as heads
or dependents; and the functions h and d represent the (partially constructed)
dependency graph for the input sentence x.

Representing the graph by means of two functions in this way is possible if
we assume the Single-Head constraint. Since, for every token node j, there
is at most one arc (i, j), we can represent this arc by letting h(j) = i. Strictly
speaking, h should be a partial function, to allow the possibility that there is
no arc (i, j) for a given node j, but we will avoid this complication by assuming
that every node j for which there is no token node i such that i → j is headed
by the special root node 0, i.e., h(j) = 0. In this way, it is easy to ensure
that the graph is connected at all times. Given the Single-Head constraint,
we can also let the labeling function assign dependency types to dependent
nodes, rather than to arcs. Thus, if i

r→ j then h(j) = i and d(j) = r, with
h(j) = 0 and d(j) = r0 as a special case for a token that is not dependent
on another token. Note that both h and d are defined only for token nodes,
i.e., positive integers up to and including n (V + = Zn+1 − {0}), whereas the
range of h also includes the root node 0 (V = Zn+1). Formally, we establish
the connection between configurations and dependency graphs as follows:

Definition 3.8. A configuration c = (σ, τ, h, d) for x = (w1, . . . , wn) defines
the dependency graph Gc = (Vx, Ec, Lc), where:

1. Ec = {(i, j) |h(j) = i}
2. Lc = {((i, j), r) |h(j) = i, d(j) = r}

In section 3.4.4 we will prove that, in the transition system described below,
this always defines a well-formed projective dependency graph according to
the definition in section 3.3.

We will use the following notational conventions for the components of a
configuration:

1. Both the stack σ and the sequence of input tokens τ will be represented
as lists, although the stack σ will have its head (or top) to the right for
reasons of perspicuity. Thus, σ|i represents a stack with top i and tail σ,
while j|τ represents a list of input tokens with head j and tail τ , and the
operator | is taken to be left-associative for the stack and right-associative

74 3 Dependency Parsing

for the input list. We use the symbols σ− and τ− to denote the tail of
a non-empty σ and τ , i.e., σ = σ−|i and τ = j|τ− (for some i and j).
Finally, we use ε to represent the empty list/stack.

2. For the functions h and d, we will use the notation f [x �→ y], given a
specific function f , to denote the function g such that g(x) = y and
g(z) = f(z) for all z �= x. Formally:

f [x �→ y](z) =
{

y if z = x
f(z) otherwise

Finally, we will refer to the token on top of the stack as the top token, the next
input token as the next token, and the top token and the next token together
as the target tokens.

Initial and terminal parser configurations are defined in the following way:

Definition 3.9. A configuration c for x = (w1, . . . , wn) is initial if and only
if it has the form c = (ε, (1, . . . , n), h0, d0), where:

1. h0(i) = 0 for every i ∈ V +
x .

2. d0(i) = r0 for every i ∈ V +
x .

Definition 3.10. A configuration c for x = (w1, . . . , wn) is terminal if and
only if it has the form c = (σ, ε, h, d) (for arbitrary σ, h and d).

In other words, we initialize the parser with an empty stack, with all the token
nodes of the sentences remaining to be processed, and with a dependency
graph where all token nodes are dependents of the special root node 0 and all
arcs are labeled with the special label r0, and we terminate whenever the list
of input tokens is empty. As we will see, this happens when we have completed
one left-to-right pass over the sentence.

We will use the following notation to refer to different classes of configu-
rations, with or without reference to a specific sentence x = (w1, . . . , wn):

1. C (Cx) is the set of all possible configurations (for x).
2. C0 (C0

x) is the set of initial configurations (for x).
3. Cε (Cε

x) is the set of terminal configurations (for x).
4. Cn (Cn

x) is the set of non-terminal configurations (for x), i.e., Cn = C−Cε

(Cn
x = Cx − Cε

x).

It can be noted that C0
x, for a given sentence x = (w1, . . . , wn), is always a

singleton set C0
x = {(ε, (1, . . . , n), h0, d0)}.

3.4.2 Transitions

A transition is a partial function t : Cn → C. In other words, a transition maps
non-terminal configurations to new configurations but may be undefined for
some non-terminal configurations. The parsing algorithm uses four transitions,
two of which are parameterized by a dependency type r ∈ R. Formally:

3.4 Parsing Algorithm 75

Definition 3.11. A transition is a partial function t : Cn → C.

Definition 3.12. Given a set of dependency types R, the following transitions
are possible for every r ∈ R:

1. Left-Arc(r):
(σ|i, j|τ, h, d) → (σ, j|τ, h[i �→ j], d[i �→ r])
if h(i) = 0

2. Right-Arc(r):
(σ|i, j|τ, h, d) → (σ|i|j, τ, h[j �→ i], d[j �→ r])
if h(j) = 0

3. Reduce:

(σ|i, τ, h, d) → (σ, τ, h, d)
if h(i) �= 0

4. Shift:

(σ, i|τ, h, d) → (σ|i, τ, h, d)

The transition Left-Arc(r) (LA(r)) makes the top token i a (left) dependent
of the next token j with dependency type r, i.e., j

r→ i, and immediately pops
the stack. This transition can apply only if h(i) = 0, i.e., if the top token
is previously attached to the root 0. The node i is popped from the stack
because it must be complete with respect to left and right dependents at this
point (given the assumption of projectivity).

The transition Right-Arc(r) (RA(r)) makes the next token j a (right)
dependent of the top token i with dependency type r, i.e., i

r→ j, and immedi-
ately pushes j onto the stack. This transition can apply only if h(j) = 0, i.e.,
if the next token is previously attached to the root 0.15 The node j is pushed
onto the stack since it must be complete with respect to its left dependents at
this point, but it cannot be popped because it may still need new dependents
to the right.

The transition Reduce (RE) pops the stack. This transition can apply
only if h(i) �= 0, i.e., if the top token i is already attached to a token node. This
transition is needed for popping a node that was pushed in a Right-Arc(r)
transition and which has since found all its right dependents.

The transition Shift (SH) pushes the next token i onto the stack. This
transition can apply unconditionally as long as there are input tokens remain-
ing. It is needed for processing nodes that have their heads to the right, as
well as nodes that are to remain attached to the special root node.

The transitions Left-Arc(r) and Reduce have in common that they
reduce the size of the stack by 1 without affecting the length of the input
sequence. We will therefore call these transitions Pop-transitions. In a similar

15 This condition is in fact superfluous, since it is impossible for the next input token
to be attached to any other node, but it is included for symmetry.

76 3 Dependency Parsing

fashion, Right-Arc(r) and Shift have in common that they reduce the
length of the input sequence by 1 while increasing the size of the stack by 1
and will therefore be called Push-transitions.

We will use the symbol TR to refer to the set of possible transitions for a
given set R of dependency types. Thus, for the parsing algorithm defined here,
TR = {LA(r),RA(r),RE,SH | r ∈ R}. Since transitions are functions, we will
also use the notation t(c) = c′ to signify that transition t maps configuration
c to c′. (If t is undefined for c, we write t(c) = ⊥ instead.)

Having defined configurations and transitions, we can now define transition
sequences in the obvious way:

Definition 3.13. A transition sequence is a sequence of configurations
C0,m = (c0, c1, . . . , cm), where:

1. The first configuration c0 is an initial configuration (c0 ∈ C0).
2. For every i > 0, there is a transition t ∈ TR such that ci = t(ci−1).

Definition 3.14. A transition sequence C0,m is terminating if and only if it
ends in a terminal configuration, i.e., C0,m = (c0, c1, . . . , cm) and cm ∈ Cε.

Finally, we need to connect transition sequences to sentences and dependency
graphs. The basic idea is that a transition sequence corresponds to the analysis
of a sentence if its initial configuration has the token nodes of the sentence as
its input sequence. Moreover, if the transition sequence is terminating then
the dependency graph G = (V,E,L) defined by the terminal configuration is
the dependency graph assigned to the sentence. In formal terms:

Definition 3.15. A transition sequence C0,m = (c0, c1, . . . , cm) corresponds
to a sentence x if and only if c0 ∈ C0

x, i.e., c0 = (ε, (1, . . . , n), h0, d0).

Definition 3.16. A terminating transition sequence C0,m = (c0, c1, . . . , cm)
corresponding to a sentence x assigns to x the dependency graph Gm =
(Vx, Em, Lm) defined by cm.

Note that we simplify the notation by writing Gm = (Vx, Em, Lm), rather
than Gcm

= (Vx, Ecm
, Lcm

), when the defining configuration is indexed by
a transitition sequence (cf. definition 3.8). Figure 3.5 shows a terminating
transition sequence that corresponds to the example sentence from figure 3.1.
The dependency graph assigned to the sentence is the one described formally
in figure 3.4.

3.4.3 Deterministic Parsing

The transition system defined in the previous section is nondeterministic in
itself, since there is normally more than one transition applicable to a given
configuration. More precisely, the system can be characterized as follows:

3.4 Parsing Algorithm 77

(ε, (1, . . . , 9), h0, d0)
SH→ ((1), (2, . . . , 9), h0, d0)

LA(nmod)→ (ε, (2, . . . , 9), h1 = h0[1 �→ 2], d1 = d0[1 �→ nmod])
SH→ ((2), (3, . . . , 9), h1, d1)

LA(sbj)→ (ε, (3, . . . , 9), h2 = h1[2 �→ 3], d2 = d1[2 �→ sbj])
SH→ ((3), (4, . . . , 9), h2, d2)
SH→ ((3, 4), (5, . . . , 9), h2, d2)

LA(nmod)→ ((3), (5, . . . , 9), h3 = h2[4 �→ 5], d3 = d2[4 �→ nmod])
RA(obj)→ ((3, 5), (6, . . . , 9), h4 = h3[5 �→ 3], d4 = d3[5 �→ obj])

RA(nmod)→ ((3, 5, 6), (7, 8, 9), h5 = h4[6 �→ 5], d5 = d4[6 �→ nmod])
SH→ ((3, . . . , 7), (8, 9), h5, d5)

LA(nmod)→ ((3, 5, 6), (8, 9), h6 = h5[7 �→ 8], d6 = d5[7 �→ nmod])
RA(pmod)→ ((3, . . . , 8), (9), h7 = h6[8 �→ 6], d7 = d6[8 �→ pmod])

RE→ ((3, 5, 6), (9), h7, d7)
RE→ ((3, 5), (9), h7, d7)
RE→ ((3), (9), h7, d7)

RA(p)→ ((3, 9), ε, h8 = h7[9 �→ 3], d8 = d7[9 �→ p])

Fig. 3.5. Transition sequence for English sentence (cf. figures 3.1 and 3.4)

1. If the stack is empty then the only possible transition is Shift.
2. If the stack is non-empty then the possible transitions are Right-Arc(r),

Shift and one of the following:
a) Left-Arc(r) if the token i on top of the stack is attached to the root

(h(i) = 0).
b) Reduce if the token i on top of the stack is attached to a non-root

(h(i) �= 0).
3. For the transitions Left-Arc(r) and Right-Arc(r) there is always a

nondeterministic choice of the dependency type r ∈ R.

In order to perform deterministic parsing, the transition system needs to be
supplemented with a mechanism for predicting the next transition at each
nondeterministic choice point, as well as choosing a dependency type r for
the transitions Left-Arc(r) and Right-Arc(r). Such a mechanism can be
called an oracle (Kay, 2000). Strictly speaking, an oracle always makes the
correct prediction, an ideal that we can only hope to approximate in practice,
and the term guide is therefore often used to denote an (imperfect) approxi-
mation of an oracle (Boullier, 2003). In this study, we will use the term guide
for any function that satisfies the formal conditions required to resolve the
nondeterminism of our transition system, and reserve the term oracle for the
special case of an infallible guide. In predicting the next transition, a guide
may take into account not only the current configuration c but also the anno-
tation functions Ax for the given sentence x. Hence, we define a guide to be a
function of two arguments, a configuration c and a set of annotation functions
Ax, using the symbol Af to denote the set of possible annotation functions.

78 3 Dependency Parsing

Definition 3.17. A guide is a function g : (Cn × 2Af) → TR (where Cn is
the set of non-terminal configurations, 2Af is the set of all sets of annotation
functions, and TR the set of possible transitions) satisfying the condition that
g(c,Ax) is a transition applicable to c (for every c ∈ Cn

x), that is:

1. If g(c,Ax) ∈ {LA(r),RA(r),RE} then c has a non-empty stack σ|i.
2. If g(c,Ax) = LA(r) and the stack of c is σ|i, then h(i) = 0.
3. If g(c,Ax) = RE and the stack of c is σ|i, then h(i) �= 0.
4. If g(c,Ax) = RA(r) and the input of c is j|τ , then h(j) = 0.

Definition 3.18. An oracle is a guide o such that, if c is a configuration for
the sentence x, o(c,Ax) = t if and only if t is the transition out of c that leads
to the correct analysis of x.

For practical purposes, an oracle is an idealized notion that we can only try
to approximate. In chapters 4–5 we will explore a data-driven approach to
guided parsing, inducing classifiers from treebank data. But guides can also
be constructed using a grammar-driven approach, e.g., by combining grammar
rules with hand-crafted heuristics (Nivre, 2003).

However, for the analysis of the parsing algorithm it is irrelevant which
kind of guide (or oracle) we are using. For the remainder of this chapter we
will therefore make the idealized assumption that there exists an oracle o that
determines the correct transition given a non-terminal configuration. For the
analysis of time complexity, we will also assume that the oracle function can
be computed in constant time. Moreover, we will assume for the time being
that the transition from one configuration to the next is also a constant-time
operation.

Assuming that we have an oracle o satisfying the conditions stated
above, the algorithm for deterministic dependency parsing is very simple and
straightforward:

Parse(x = (w1, . . . , wn))
1 c ← (ε, (1, . . . , n), h0, d0)
2 while c = (σ, τ, h, d) is not terminal
3 if σ = ε
4 c ← Shift(c)
5 else
6 c ← [o(c,Ax)](c)
7 G ← (Vx, Ec, Lc)
8 return G

As long as the parser is in a non-terminal configuration, it applies the Shift

transition if the stack is empty and otherwise the transition o(c,Ax) predicted
by the oracle. When a terminal configuration is reached, the dependency graph
defined by this configuration is returned.

3.4 Parsing Algorithm 79

3.4.4 Algorithm Analysis

In this section we will prove two theorems about the parsing algorithm defined
in the preceding sections. We will also state a third theorem that is relevant
here but which will not be proven until the next chapter. The first theorem
says that every sentence has a terminating transition sequence whose length
is directly proportional to the length of the sentence; the second theorem says
that every such terminating transition sequence results in a projective depen-
dency graph; and the third theorem says that every projective dependency
graph has a corresponding terminating transition sequence. In section 3.4.5
we will argue that this means that the algorithm is optimal with respect to
the evaluation criteria for robustness, disambiguation and efficiency defined
in section 2.4. However, before we turn to discuss the implications of our
theorems, we will also give a brief informal analysis of the way in which the
algorithm is related to other algorithms for dependency parsing that can be
found in the literature.

Theorem 3.19 establishes two crucial properties of the parsing algorithm.
First, there exists a terminating transition sequence corresponding to every
sentence. Secondly, any terminating transition sequence corresponding to a
sentence x = (w1, . . . , wn) consists of at most 2n− 1 configurations. Together
these results imply that parsing can be performed in linear time, given that
oracle predictions and transitions can be performed in constant time.

Theorem 3.19. Given a sentence x = (w1, . . . , wn), the deterministic parsing
algorithm terminates after at most 2n − 1 transitions.16

Proof. We first show that a transition sequence starting in an initial configu-
ration c0 = (ε, (1, . . . , n), h0, d0) can contain at most n Push-transitions and
that such a sequence must be terminating:

1. Push-transitions have as a precondition that the input sequence τ is non-
empty and decreases its length by 1. Since τ has length n in c0 and there
are no transitions that increase the length of τ , the maximum number of
Push-transitions in a transition sequence starting in c0 is n. For the same
reason, a transition sequence C0,m = (c0, . . . , cm) containing n Push-
transitions must end in a configuration cm = (σ, ε, h, d) which is terminal.

We then show that a transition sequence containing n Push-transitions can
contain at most n − 1 Pop-transitions:

2. Pop-transitions have as a precondition that the stack σ is non-empty and
have as an effect that the size of σ is decreased by 1. Since σ is empty in
the initial configuration c0 and the only transitions that increase the size

16 2n − 1 transitions corresponds to 2n − 1 iterations of the while loop in the
deterministic algorithm. This means that the resulting transition sequence will
contain 2n configurations including the initial configuration.

80 3 Dependency Parsing

of σ are Push-transitions, of which there can be no more than n instances,
it follows that the maximum number of Pop-transitions in a transition
sequence starting in c0 cannot be greater than n. In fact, since the nth
Push-transition results in a terminal configuration, the maximum number
of Pop-transitions is n − 1.

Given that the number of Pop-transitions is bounded by the number of Push-
transitions, and given that at least one Push-transition (Shift) is applicable
to every non-terminal configuration ci, we conclude that, for every initial con-
figuration c0 = (ε, (1, . . . , n), h0, d0) there is at least one transition sequence
C0,m = (c0, . . . , cm) containing exactly n Push-transitions and at most n− 1
Pop-transitions, leading to a terminal configuration cm = (σ, ε, h, d).
�

Theorem 3.19 implies that the running time of the deterministic parsing algo-
rithm defined in section 3.4.3 is O(n), where n is the length of the input
sentence, provided that the time required for line 4 and 6 is O(1). An inspec-
tion of the transitions defined in section 3.4.2 shows that the application of
a transition t to a configuration ci, to derive the next transition ci+1 = t(ci),
only requires the following operations:

1. Pushing or popping the stack σ.
2. Deleting the head of the input list τ .
3. Updating the function h to h[i �→j] (given i and j).
4. Updating the function d to d[i �→r] (given i and r).

All of these operations can be performed in constant time with an appropriate
choice of data structures, e.g., using arrays to store h and d and any standard
implementation of lists for σ and τ .17 This leaves the computation of the
oracle function o(ci, Ax) = t, which must also be performed in constant time.
We will return to this issue in chapter 4, where we will discuss the different
types of guides needed for inductive dependency parsing and show that they
can be implemented to run in O(1) time.

A consideration of the data structures needed for parsing, again disregard-
ing the implementation of the oracle, indicates that the space complexity of
the deterministic parsing algorithm is also O(n), although we will not formally
prove this. Since parsing is deterministic, only one configuration c needs to be
stored at any time (cf. section 3.4.3). The four components of a configuration
c = (σ, τ, h, d) all require space that is proportional to the length n of the
sentence times the space needed to store the information about an individual
token. Since the latter only amounts to a token index (for σ, τ and h) or a
dependency type (for d), it is evident that the overall space requirement is
O(n).

17 We also need to make sure that these data structures can accomodate arbitrarily
large inputs, since there is no upper bound on the length of a sentence, although
any given sentence is of course finite.

3.4 Parsing Algorithm 81

Let us turn now to theorem 3.21, which concerns properties of the depen-
dency graph defined by a terminating transition sequence. More precisely, it
says that every terminating transition sequence defines a projective depen-
dency graph according to definition 3.6. Together with theorem 3.19, this
guarantees that the parsing algorithm satisfies the requirements of robust-
ness and disambiguation, a topic to which we will return in section 3.4.5.
First of all, we introduce a simple lemma, which will be used in the proof of
theorem 3.21 and again in chapter 4.

Lemma 3.20. If C0,m is a terminating transition sequence for a sentence x =
(w1, . . . , wn) then, for every configuration cp = (σp, τp, hp, dp) (0 < p < m)
and token j, if hp(j) �= 0 then hq(j) = hp(j) for every q > p.

Proof. The lemma follows directly from the conditions associated with the
transitions Left-Arc(r) and Right-Arc(r), which require that h(j) = 0 for
the potential dependent (definition 3.12).

Theorem 3.21. Every terminating transition sequence C0,m =(c0, c1, . . . , cm)
corresponding to a sentence x defines a dependency graph Gm = (Vx, Em, Lm)
satisfying the following five conditions (cf. section 3.3.2):

1. Root

2. Connectedness

3. Single-Head

4. Acyclicity

5. Projectivity

Proof. The proof consists of five parts, one for each of the five conditions:

1. Root: This condition follows directly from the definition of the arc rela-
tion Em = {(i, j) |hm(j) = i} (cf. section 3.4.2). Since hm is not defined
for the node 0, there can be no arc (i, 0) ∈ Em.

2. Connectedness: In order to prove that Gm is connected, we begin by
observing that the graph G0 defined by the initial configuration c0 is
connected, since every node except 0 is a dependent of 0. We then show
that every transition tk, where ck = tk(ck−1) and 1 ≤ k ≤ m, preserves
this property. Since neither Reduce nor Shift modifies the h function, we
can concentrate on Left-Arc(r) and Right-Arc(r), which both modify
the graph by replacing an arc of the form (0, j) with an arc of the form
(i, j). This means that the resulting graph Gk will be connected if Gk−1

is connected and there is a path from 0 to i in Gk−1 (i.e., 0 →∗ i), since
i will then belong to the same connected component before and after
the transition. To prove that 0 →∗ i in Gk−1, we consider the two cases
separately:

82 3 Dependency Parsing

a) If tk = Left-Arc(r) then i ∈ τk−1, which entails that (0, i) ∈ Ek−1

(since both Left-Arc(r) and Right-Arc(r) have as a postcondition
that the dependent token is not a member of the input sequence).
Hence, 0 →∗ i in Gk−1.

b) If tk = Right-Arc(r), then i ∈ σk−1 and either (0, i) ∈ Ek−1, if i was
pushed in a Shift transition, or there is some node i′ ∈ σk−1 such
that 0 < i′ < i and (i′, i) ∈ Ek−1. Since the same holds for any token
on the stack (including i′), there must be a path from 0 to i which is
maximally of length i. Hence, 0 →∗ i in Gk−1.

We conclude that Gm is connected.

3. Single-Head: This condition also follows from the definition of the arc
relation Em = {(i, j) |hm(j) = i} (cf. section 3.4.2). Since hm is a (total)
function with domain V + there is exactly one node i such that (i, j) ∈ E
for every token node j.

4. Acyclicity: To prove that G is acyclic we make use of a theorem from
graph theory saying that for a loop-free undirected graph G = (V,E) the
following two claims are equivalent (Grimaldi, 2004, theorem 12.5):

a) G is connected and |V | = |E| + 1.
b) G contains no cycles and |V | = |E| + 1.

Since we have already proven Connectedness, we only have to show
that |Vx| = |Em| + 1 and that Gm is loop-free, i.e., that Em contains no
arcs of the form (i, i). The first property again follows from the definition
of the arc relation Em = {(i, j) |hm(j) = i}, which defines exactly one arc
for every node except 0. The second property follows from the observa-
tion that G0 is loop-free together with the fact that every transition that
modifies hk to hk+1 adds an arc between two distinct nodes i and j.

5. Projectivity: We need to prove that if i
r→ j then, for every node k

such that i < k < j or i > k > j, i →∗ k. Given Lemma 3.20, there exists
a unique configuration cp = (σp, τp, hp, dp) such that either σp = σp− |i,
τp = j|τp− and tp+1 = Right-Arc(r) (for the case i < j) or σp = σp− |j,
τp = i|τp− and tp+1 = Left-Arc(r) (for the case j < i). In either case,
the desired result follows if we can show that, according to hp, every k
such that i < k < j (first case) or i > k > j (second case) is dominated by
i or j, i.e., i →∗ k or j →∗ k. Since the two cases are exactly symmetrical,
we only prove the claim for the first case, using a proof by induction over
the length lij of the token sequence x(i,j) = (i, . . . , j).

• Basis: If lij = 2, then x(i,j) = (i, j) and the claim holds vacuously.

• Induction: Assume the claim holds for lij ≤ l (for some l ≥ 2) and
assume lij = l + 1. It follows that j > i + 1, which means that the
transition tp from cp−1 to cp must be a Pop-transition. (After a Push-

3.4 Parsing Algorithm 83

transition, j = i + 1 by definition.) Hence, there is some node k′ such
that σp−1 = σp− |i|k′ and τp−1 = τp = j|τp− . Since both lik′ ≤ l and
lk′j ≤ l, we can use the inductive hypothesis twice to infer:
a) For every k such that i < k < k′, i →∗ k or k′ →∗ k.
b) For every k such that k′ < k < j, j →∗ k or k′ →∗ k.
We know that tp is a Pop-transition. If tp = Left-Arc(r′), then
j → k′. If tp = Reduce, there must be an earlier transition tp−q =
Right-Arc(r′), where σp−q−1 = σp−q−1− |i and τp−q−1 = k′|τp−q−1− ,
which implies i → k′. In both cases, we can conclude that, for every k
such that i < k < j, i →∗ k or j →∗ k.

This concludes the proof of theorem 3.21.
�

Theorem 3.21 is in a sense the equivalent of a consistency proof for a grammar
parsing algorithm, since it guarantees that the transition system only derives
analyses that are licensed by the formal model. Theorem 3.22 establishes that
any analysis permitted by the formal model can be derived in the transition
system, thus corresponding to the completeness proof for a grammar parsing
algorithm.

Theorem 3.22. For every projective dependency graph Gm = (Vx, Em, Lm)
for a sentence x, there is a terminating transition sequence C0,m that assigns
Gm to x.

Proof. We will postpone the demonstration of theorem 3.22 to section 4.1.6,
where we give a constructive proof in the form of an algorithm that actually
computes a corresponding transition sequence for any projective dependency
graph. By proving the correctness of this algorithm, we prove theorem 3.22
as a corollary.

The importance given to theorems 3.19, 3.21 and 3.22 in this investigation is
motivated by the evaluation criteria defined in section 2.4. However, before we
turn to a discussion of these criteria again, we will make a few observations on
our parsing algorithm in relation to other work on natural language parsing,
in particular dependency parsing.

As observed in Nivre (2004a), the algorithm is in many ways similar to
that of Yamada and Matsumoto (2003). The most important difference is
that, whereas the algorithm of Yamada and Matsumoto (2003) corresponds
directly to a strict bottom-up shift-reduce parser for a context-free grammar
in Chomsky Normal Form (Chomsky, 1959), our algorithm uses an arc-eager
strategy where left dependents are processed bottom-up while right depen-
dents are processed top-down.18 In addition, Yamada and Matsumoto (2003)

18 To say that right dependents are processed top-down is true insofar as the arc
from the head to the right dependent is added before the dependent is complete.
However, the absence of nonterminal nodes in dependency parsing means that
there is no top-down prediction taking place.

84 3 Dependency Parsing

allow multiple passes over the input, whereas our algorithm is restricted to a
single left-to-right pass.

One advantage of the left-to-right arc-eager parsing strategy is that it
is optimal with respect to incrementality, in the sense that it minimizes the
number of unattached words on the stack (where words attached to the special
root are regarded as unattached), a result that is shown both theoretically
and experimentally in Nivre (2004a). In this way, our algorithm can be seen
as a special case of Covington’s incremental strategy for dependency parsing
(Covington, 2001), although we do not define it here as a strict word-at-a-time
operation. However, it is possible to show that the work done to integrate
a new word wi in Covington’s algorithm corresponds to a continuous sub-
sequence ck, . . . , cl of the transition sequence for our algorithm, where ck is
the first configuration where τ = (i, . . . , n) and cl is the first configuration
where i is on the top of the stack σ. Moreover, by exploiting the properties
of a projective dependency graph, our algorithm achieves a time complexity
of O(n), whereas the algorithm defined by Covington (2001) is O(n2) in its
deterministic version.

Finally, it may be interesting to relate our algorithm to methods for
context-free parsing. Comparing methods for dependency parsing and con-
stituency parsing is not completely straightforward, since the mapping from
dependency representations to constituency representations is one-to-many.
Let us therefore consider a specific mapping to lexicalized constituent trees,
which is only defined for the case where there is a single node i attached to the
special root 0.19 If D(i) is the (unlabeled) dependency tree rooted at i, then
there is a corresponding constituent tree T = δ(D(i)), where the mapping δ
is defined recursively as follows:

If D(i) has the form

i
� � � �

� �� � � �� �
D(l1) . . . D(lm) D(r1) . . . D(rn)

then δ(D(i)) =

p(i)

i
�

�
�

��

����������

�
�

�

����������
δ(D(l1)) . . . δ(D(lm)) δ(D(r1)) . . . δ(D(rn))

where p(i) is the part-of-speech of the token i.

19 This is essentially the mapping from dependency to constituency used by Carroll
and Charniak (1992).

3.4 Parsing Algorithm 85

JJ

Economic

��

news
�

�
��

�
�

�
�

�
�

�
�

�
�

�
�

NN

had
�

�
�

�
�

�
�

�
�

�
�

��
VBD

JJ

little effect
�
�
�
�
�
�
�

�
�

�
�

�
�

�
�
�
�

NN

on
�
�
�
�
�

��
IN

JJ

financial

��

markets
�

�
��

��
NNS PU

.

�
�

�
�

�
�

�
�

�
�

Fig. 3.6. Derived constituent structure for English sentence

Figure 3.6 shows the constituency tree corresponding to the dependency analy-
sis of our example sentence from figure 3.1, which includes fewer nonterminal
nodes than the constituent analysis of this sentence given in figure 2.1. Given
this mapping, our parsing algorithm corresponds quite closely to an arc-eager
head-corner algorithm (Kay, 1989; Van Noord, 1997), where each constituent
with head i is built inside out from the head by adding children in the order
i, lm, . . . , l1, r1, . . . , rn. The fact that the algorithm is arc-eager (Abney and
Johnson, 1991) in this context means that children to the right of the head
may be added before they are complete. A more precise investigation of the
relation to constituency-based parsing is an interesting topic in itself but is
outside the scope of this study.

3.4.5 Evaluation Criteria Revisited

The optimization strategy underlying our approach to dependency-based text
parsing requires a framework that is provably optimal with respect to robust-
ness, disambiguation and efficiency, within which we can gradually improve
parsing accuracy without sacrificing other properties (cf. section 2.3.4). It is
now time to verify that the formal framework and parsing algorithm developed
in this chapter satisfy these requirements.

According to the evaluation criteria defined in section 2.4, both robust-
ness and disambiguation are taken to be absolute requirements, which jointly
entail that exactly one analysis is assigned to every text sentence. In virtue of
theorem 3.19, we know that our parsing algorithm, given an oracle, constructs
exactly one dependency graph for every sentence. And given theorem 3.21, we
know that this dependency graph is a well-formed representation according to
the framework defined in section 3.3. In this sense, the methods are provably
optimal with respect to robustness and disambiguation.

86 3 Dependency Parsing

Whether the single well-formed representation assigned to each text sen-
tence is also the correct analysis of that sentence is of course an entirely differ-
ent question. But this is the problem of accuracy, which will be the focus of our
attention in the next two chapters, where we will attempt to construct guides,
approximating oracles, by applying inductive machine learning techniques to
treebank data. However, theorem 3.22, although still assumed without proof,
at least guarantees that the correct analysis is reachable in the search space
of the parsing algorithm. Alternatively, we may conclude from theorem 3.22
that our parsing algorithm satisfies the absolute criterion of accuracy in the
presence of an oracle (cf. section 2.4.3).

Theorem 3.19, together with certain assumptions about the implementa-
tion of oracles and transitions, entails that the time complexity of determi-
nistic parsing in the present framework is O(n), where n is the length of the
input sentence. This result is arguably theoretically optimal as well, since any
reasonable method for parsing natural language sentences will at least have
to scan the sequence of tokens once, which means that linear time is a lower
bound on parsing time. The space complexity is also O(n), although we have
only given an informal argument to support this claim, which means that the
parsing algorithm satisfies the criterion of efficiency stated in section 2.4.4.
However, as discussed in chapter 2, the optimization of accuracy may easily
compromise efficiency, which means that the two notions must be optimized
together. In the empirical experiments in chapter 5, we will therefore need to
evaluate efficiency as well as accuracy. Moreover, since we will adopt a data-
driven approach, we need to consider efficiency in training as well as efficiency
in parsing.

4

Inductive Dependency Parsing

Machine learning based on various forms of inductive inference has been used
for a wide range of problems in natural language processing, with syntactic
parsing being one of the more prominent problems during the last decade.
In particular, methods for parsing unrestricted natural language text under
requirements of robustness and disambiguation have to an increasing extent
been characterized by the data-driven approach, sometimes in combination
with a grammar-based strategy.

In this chapter, we will examine how the parsing methods developed in
the previous chapter can be combined with the data-driven approach using
a form of guided parsing. In this scheme, we use inductive machine learning
to construct parser guides from treebank data. These guides are essentially
classifiers that predict the next transition given the current configuration at
each nondeterministic choice point. In this way, we can maintain the high
efficiency of deterministic processing while developing more and more accurate
guides in order to improve parsing accuracy.

An empirical evaluation of this methodology, with respect to accuracy as
well as efficiency, will be presented in chapter 5. Here we will focus instead
on the model of inductive inference, which belongs to the class of conditional
history-based models, and the way in which this model can be combined with
a deterministic parsing strategy and with discriminative machine learning. We
will also discuss the different kinds of contextual features that can be used as
a basis for prediction, and we will introduce memory-based learning, which is
the learning method that will be used in the experiments reported in the next
chapter. Finally, we will give a very brief description of the implementation
of all these elements in a system called MaltParser, which has been used to
carry out all the experiments reported in this book.

88 4 Inductive Dependency Parsing

4.1 A Framework for Inductive Dependency Parsing

In order to situate our approach within the larger context of data-driven
parsing methods, we begin by recapitulating our analysis of the data-driven
approach in terms of inductive inference based on a formal model of syntactic
representations and a representative sample of the relevant text language (cf.
section 2.3.2). We then define our model of inductive inference as a conditional
history-based model, combine it with a deterministic parsing strategy and
derive a learning problem that can be solved using discriminative classifier
induction. Finally, we show how training data for this learning problem can be
derived from a treebank using a variant of the deterministic parsing algorithm.

4.1.1 Data-Driven Text Parsing

In the data-driven approach to text parsing, the mapping from input strings
to output analyses is defined by an inductive mechanism applied to a text
sample Tt = (x1, . . . , xn) from the language L to be analyzed. As explained in
section 2.3.2, we can generally understand a data-driven text parsing system
as consisting of three essential components:

1. A formal model M defining permissible analyses for sentences in L.
2. A sample of text Tt = (x1, . . . , xn) from L, with or without the correct

analyses At = (y1, . . . , yn).
3. An inductive inference scheme I defining actual analyses for the sentences

of any text T = (x1, . . . , xn) in L, relative to M and Tt (and possibly At).

The model M may be a formal grammar, defining an exact string language,
in which case permissible representations will be restricted to this language.
In our case, the model M is given by the formal framework for dependency
parsing defined in section 3.3, which does not impose any restriction on the
strings being analyzed. Given a set of dependency types R, the permissible
representations for a sentence x = (w1, . . . , wn) is the set of all well-formed
projective dependency graphs G = (Vx, E, L) with node set Vx = Zn+1 and
labeling function L : E → R. Alternatively, in terms of the parsing method
defined in section 3.4, we can characterize the permissible representations as
the set of dependency graphs defined by some terminating transition sequence
corresponding to x. Since the only requirement is that the set of token nodes
in V +

x are in a one-to-one mapping with the tokens in the sentence, and that
the dependency type labels are restricted to a given set R, it is clear that this
imposes no restriction on the set of strings that can be parsed by the system.
Hence, this is not a grammar-driven approach to text parsing.

The sample of text Tt, which is our basis for inductive generalization,
will normally be called the training corpus. Although there exist unsupervised
learning methods that apply to raw, unannotated text, such as the Inside-
Outside algorithm for estimating the parameters of a PCFG, we will follow
the mainstream tradition in data-driven parsing and use supervised learning,

4.1 A Framework for Inductive Dependency Parsing 89

which requires the text sample to be annotated with representations defined
by the model M . This means that the training corpus will be a treebank of the
language L, i.e., a text corpus where each sentence is annotated with its correct
analysis relative to the given model M (Abeillé, 2003b; Nivre, forthcoming).
There are several methodological problems connected to the use of treebank
data for inductive learning, having to do with the representativity of the data,
the validity and reliability of the annotation, and the problem of converting
annotations from one type of representation to another. These problems will
be dealt with in chapter 5, where we report the experiments performed to
evaluate the framework of inductive dependency parsing. For the remainder
of this chapter, we will simply assume that we have available a sample of text
Tt = (x1, . . . , xn) from the language L that we want to analyze and that every
sentence xi ∈ Tt has been annotated with its correct analysis yi ∈ At, where
yi is a well-formed dependency graph as defined in the preceding chapter.

While the formal model M has been described in detail in chapter 3 and
problems connected to the training sample Tt will be dealt with in chapter 5,
the inductive inference scheme I is the central topic of this chapter. This is
the heart of the data-driven approach to text parsing, since it defines the way
in which a parsing system can generalize from sentences found in the training
corpus Tt to previously unseen sentences encountered in new texts.

4.1.2 Inductive Inference

As seen in section 2.3.2, an inductive inference scheme can be conceptualized
and implemented in many different ways but can generally be decomposed
into three main elements:

1. A parameterized stochastic model MΘ assigning a score S(x, y) to each
permissible analysis y of a sentence x, relative to a set of parameters Θ.

2. A parsing method, i.e., a method for computing the best analysis y for a
sentence x according to S(x, y) (given an instantiation of Θ).

3. A learning method, i.e., a method for instantiating Θ based on inductive
inference from the training sample Tt.

It is important to remember that this is a conceptual decomposition, which
does not always correspond to system components or temporal processes. For
example, while it is usually possible to divide the work done by the learning
method and the parsing method into a training phase, which is applied once
to the training corpus, and a parsing phase, which is applied to every new
sentence without reprocessing the training corpus, the exact division of labor
between these phases is dependent on the learning strategy. With an eager
learning method, all the inference is performed during the training phrase;
with a lazy learning method, most of the inductive inference is postponed
until the parsing phase.

For the time being we will disregard the practical implementation of both
parsing and learning and concentrate on the characterization of models and

90 4 Inductive Dependency Parsing

parameters for inductive dependency parsing. We will return to the parsing
problem in section 4.1.4 and to the learning problem in section 4.1.5.

4.1.3 History-Based Models

The general approach of inductive dependency parsing is compatible with a
variety of different models and parameterizations, but in this book we will
limit our attention to conditional history-based models (cf. section 2.3.2),
which are easily combined with the parsing methods developed in the previous
chapter. In a history-based model, the parameterization essentially involves
three steps (cf. Collins, 1999):

1. Define a one-to-one mapping between syntactic analyses y and decision
sequences D = (d1, . . . , dm) such that D is a canonical derivation of y.

2. Define the score S(x, y), for every sentence x and analysis y, in terms of
each decision di in the corresponding decision sequence D = (d1, . . . , dm),
conditioned on the history H = (d1, . . . , di−1).

3. Define a function Φ that groups histories (and decision sequences) into
equivalence classes, thereby reducing the number of parameters in Θ to
make the learning problem manageable.

In a conditional history-based model, the score S(x, y) defined by the model
is the conditional probability P (y |x) of the analysis y given the sentence
x, which means that the input sentence is a conditioning variable for each
decision in the decision sequence:

P (y |x) = P (d1, . . . , dm |x) =
m∏

i=1

P (di | d1, . . . , di−1, x) (4.1)

In order to get a manageable learning problem, it is normally necessary to
introduce a function Φ, which defines an equivalence relation among histories.
This gives us the final form of the parameterized model:

P (y |x) = P (d1, . . . , dm |x) =
m∏

i=1

P (di |Φ(d1, . . . , di−1, x)) (4.2)

The parameters of this model are simply the conditional probabilities P (d |H),
for all possible decisions d and non-equivalent histories H.

In the framework investigated in this book, the mapping from analyses to
decision sequences is given by the transition system defined in section 3.4.2,
where every terminating transition sequence C0,m = (c0, . . . , cm) defines ex-
actly one dependency graph G (definition 3.16). The inverse mapping from
dependency graphs to transition sequences will be discussed in section 4.1.5
below, because it will be needed to derive training instances for the induc-
tive learner, and we will also demonstrate that any well-formed dependency

4.1 A Framework for Inductive Dependency Parsing 91

graph can be mapped to a transition sequence. It is important to remem-
ber that, although we will only consider deterministic parsing strategies in
this book, the transition system itself is nondeterministic, which means that
it associates a set of transition sequences, and dependency graphs, with any
given sentence. And other parsing strategies might explore a larger part of
this space of alternatives.

Given that an analysis in our framework is a dependency graph G defined
by a transition sequence C0,m = (c0, . . . , cm), where the transition ti defines
the mapping from configuration ci−1 to ci, i.e., ci = ti(ci−1), the conditional
history-based model can now be expressed as follows:

P (G |x) = P (c0, . . . , cm |x) =
m∏

i=1

P (ti | c0, . . . , ci−1, x) (4.3)

However, when considering the input sentence x as a conditioning variable, we
want to be able to take into account not only the sequence of tokens but any
information that is available about the sentence as a result of preprocessing.
Therefore, we replace x with the set of annotation functions Ax, which also
includes the function wx mapping string positions to tokens (cf. section 3.3.1):

P (G |Ax) = P (c0, . . . , cm |Ax) =
m∏

i=1

P (ti | c0, . . . , ci−1, Ax) (4.4)

In order to reduce the number of model parameters, we first group together all
histories that end in the same configuration. In other words, we make a kind
of Markov assumption to the effect that the probability of a transition from
configuration ci is independent of all earlier configurations in the transition
sequence. However, this assumption is not as drastic as it may seem, since
a configuration c = (σ, τ, h, d) records almost all relevant information about
the preceding transition sequence in the state of σ, τ , h and d. Therefore,
we simply use the function Φ to define equivalence classes of pairs (c,Ax),
consisting of a configuration c and an input sentence x represented by its
annotation functions Ax:

P (G |Ax) = P (c0, . . . , cm |Ax) =
m∏

i=1

P (ti |Φ(ci−1, Ax)) (4.5)

We will use the term parser condition to refer to a pair of the form (c,Ax),
where c is a parser configuration and Ax is the set of annotation functions for
a sentence x, and we will use the term parser state for an equivalence class
of parser conditions defined by the function Φ. We will also say that Φ is a
function from parser conditions to parser states, although we will continue
to write Φ as a function of two arguments, one configuration and one set of
annotation functions.

The model parameters are the conditional probabilities P (t |Φ(c,Ax)), for
all possible transitions t ∈ TR and distinct parser states Φ(c,Ax). The car-
dinality of the parameter set therefore depends on two factors. The first is

92 4 Inductive Dependency Parsing

the number of distinct transitions, which is |TR| = 2|R| + 2 (where |R| is the
number of distinct dependency types), since there are |R| different instances
of Left-Arc(r) and Right-Arc(r) plus Reduce and Shift. The second is
the number of distinct parser states Φ(c,Ax), which depends on the definition
of Φ but which will normally be many orders of magnitude greater than |TR|.

In section 4.2 we will show how the parameterization Φ can be defined by
a set of feature functions {φ1, . . . , φp} that extract relevant features from the
current parser condition. The definition of these feature functions will in turn
determine the exact number of parser states and model parameters.

4.1.4 Parsing Methods

Given a conditional history-based model, the conditional probability P (yj |x)
of analysis yj given input x can be used to rank a set of alternative analyses
{y1, . . . , yk} of the input sentence x, derived by a nondeterministic parser.
If the model allows a complete search of the analysis space, we can in this
way be sure to find the analysis yj that maximizes the probability P (yj |x)
according to the model:

arg max
yj

P (yj |x) = arg max
(d1,...,dm)

m∏
i=1

P (di |Φ(d1, . . . , di−1, x)) (4.6)

With a deterministic parsing strategy, we instead try to find the most probable
analysis yj without exploring more than one decision sequence, based on the
following approximation:

arg max
yj

P (yj |x) ≈ (d∗1, . . . , d
∗
m) : d∗i = arg max

di

P (di|Φ(d1, . . . , di−1, x)) (4.7)

A deterministic parsing strategy is in this context a greedy algorithm, making
a locally optimal choice in the hope that this will lead to a globally optimal
solution (Cormen et al., 1990). The main problem with the greedy strategy
is that it may not lead to a globally optimal solution. The main advantage
is that it improves parsing efficiency by avoiding an exhaustive search of the
analysis space. An additional advantage is that it reduces the effective number
of parameters of the stochastic model, since only the mode of the distribu-
tion P (di |Φ(d1, . . . , di−1, x)) needs to be estimated for each distinct condition
Φ(d1, . . . , di−1, x). This also means that a larger class of learning methods can
be used, including discriminative methods as well as methods for estimating
generative and conditional probability models.

In section 3.4.3, we gave the following specification of the deterministic
algorithm for dependency parsing:

4.1 A Framework for Inductive Dependency Parsing 93

Parse(x = (w1, . . . , wn))
1 c ← (ε, (1, . . . , n), h0, d0)
2 while c = (σ, τ, h, d) is not terminal
3 if σ = ε
4 c ← Shift(c)
5 else
6 c ← [o(c,Ax)](c)
7 G ← (Vx, Ec, Lc)
8 return G

This algorithm assumes the existence of an oracle function o predicting the
next transition for a given nondeterministic configuration c in the correct
transition sequence for the sentence x (cf. section 3.4.3). In inductive depen-
dency parsing, we replace the oracle o with a guide g, which predicts the next
transition for a given configuration c, based on the parser state Φ(c,Ax). This
is a form of guided parsing (Boullier, 2003), where the parser is guided by the
function g at each nondeterministic choice point, which gives us the following
parsing algorithm:

Guided-Parse(x = (w1, . . . , wn))
1 c ← (ε, (1, . . . , n), h0, d0)
2 while c = (σ, τ, h, d) is not terminal
3 if σ = ε
4 c ← Shift(c)
5 else
6 c ← [g(c,Ax)](c)
7 G ← (Vx, Ec, Lc)
8 return G

The only difference with respect to the original algorithm is that we have
replaced the oracle function o(c,Ax) with a guide function g(c,Ax), which
means that we no longer assume that the guide always returns the correct
answer. In inductive dependency parsing, as opposed to other forms of guided
dependency parsing, we use inductive machine learning to construct the guide.
Given training data from a dependency treebank, we induce a classifier g that
maps every distinct parser state Φ(c,Ax) to a transition. We overload notation
by using the symbol g to refer both to the classifier, which is a function from
parser states to transitions, and for the guide, which is a function from parser
conditions to transitions and which respects the condition that the transition
returned is applicable to the configuration included in the parser condition.
More precisely, the guide g returns the transition returned by the classifier g
if this is a permissible transition, but returns Shift otherwise (since Shift is
applicable to any non-terminal transition). Formally:

g(c,Ax) =
{

g(Φ(c,Ax)) if g(Φ(c,Ax)) is applicable to c
Shift otherwise (4.8)

where g(Φ(c,Ax)) is the value of the classifier for the parser state Φ(c,Ax).

94 4 Inductive Dependency Parsing

Given the conditional history-based model underlying our parsing strategy,
the optimal classifier g can be characterized as follows:

g(Φ(c,Ax)) = arg max
ti

P (ti |Φ(c,Ax)) (4.9)

Since there is no guarantee that the most probable transition, given Φ(c,Ax),
is also the transition required by the correct analysis of x, it may be the case
that g(Φ(c,Ax)) �= o(c,Ax), which means that the guide g defined in terms of
the optimal classifier is not a true oracle even in theory. In practice, we will
have to use an estimated approximation ĝ of the optimal classifier g, which
means that it may also be the case that ĝ(Φ(c,Ax)) �= g(Φ(c,Ax)). Thus,
finding the best possible estimate ĝ for the optimal classifier g, given a sample
Tt of treebank data with analyses At, is the central learning problem in this
framework.

Going back to our characterization of the inductive inference scheme for
history-based models, we can say that choosing a deterministic form of guided
parsing as our parsing method reduces the complexity of the model MΘ in
two ways. First of all, the parameter set Θ only contains the modes of the
conditional distributions P (ti|Φ(c,Ax)):

Θ = {ti | arg max
ti

P (ti|Φ(c,Ax))} (4.10)

Secondly, the score S(x, y) assigned to an analysis y of sentence x by the
model MΘ is binary:

S(x, y) =
{

1 if y = Guided-Parse(x)
0 otherwise (4.11)

However, it is important to remember that the history-based model defined
in section 4.1.3 is also compatible with many other parsing methods, which
do not reduce the model complexity in this way.

Before we turn from parsing methods to learning methods, it is worth
noting that the linear time complexity of the deterministic parsing algorithm
is based on the assumption that computing the oracle function o(c,Ax) is a
constant-time operation. If we want to preserve this complexity for inductive
dependency parsing, we therefore have to ensure that the computation of the
guide function g(c,Ax) can also be performed in constant time. We will return
to this issue when we discuss the definition of feature functions in section 4.2.

4.1.5 Learning Methods

The learning problem that we have derived from the conditional history-based
model, in combination with the deterministic parsing algorithm, consists in
the induction of a classifier that can be used to construct a guide, as defined
in the previous section. In terms of machine learning, this is an instance

4.1 A Framework for Inductive Dependency Parsing 95

of function approximation (Mitchell, 1997), where the target function is the
optimal classifier g while the learned function ĝ is an approximation of g.

There are many different learning methods that could be used to solve
this problem. Since the target function g is defined in terms of a conditional
probability, it may seem natural to use a probabilistic learning method. In
a generative model we could estimate the joint probability P (Φ(c,Ax), t), for
every parser state Φ(c,Ax) and transition t ∈ TR, and then derive the required
conditional probability by conditioning and marginalizing:1

P̂ (t |Φ(c,Ax)) =
P̂ (Φ(c,Ax), t)∑

ti∈TR
P̂ (Φ(c,Ax), ti)

(4.12)

When only the conditional probability is needed, we may be able to make more
efficient use of the training data by estimating the conditional distribution
P (t |Φ(c,Ax)) directly. Thus, an early version of inductive dependency pars-
ing was based on conditional maximum likelihood estimation (Nivre, 2004b).
However, given that it is only the mode of the conditional distribution that is
needed, i.e., the transition t that maximizes P (t |Φ(c,Ax)), we can take this
argument one step further and argue that a discriminative learning method
might be even more efficient.

One way of relating discriminative learning to our conditional model
is to say that, instead of estimating the complete conditional distribution
P (t |Φ(c,Ax)), discriminative methods try to optimize the mapping from in-
puts Φ(c,Ax) to outputs t by only estimating the mode of this distribution
(Jebara, 2004). For example, memory-based learning tries to find the opti-
mal output by extrapolating from the most similar inputs seen previously,
but without explicitly estimating a conditional probability (Daelemans and
Van den Bosch, 2005). Other discriminative learning methods are artificial
neural networks (Bishop, 1996) and support vector machines (Vapnik, 1995).

Using a discriminative learning method means that we can formulate
the learning problem as a pure classification problem, where an input in-
stance is a parser state Φ(c,Ax) and an output class is a transition t ∈ TR.
Using a supervised learning method, our task is then to induce a classifier ĝ
given a set of training instances Dt. Ideally, we would like the training set to
be a sample of the function that we want to approximate:

Dg = {(Φ(c,Ax), t) | g(Φ(c,Ax)) = t} (4.13)

However, since the function g is not known, it is not clear how such a sample
could be established. What we have instead is a training corpus Tt, from
which we can obtain a sample of training instances defined in terms of the
oracle function o and the parameterization function Φ. For every sentence
x = (w1, . . . , wn), let Co,x

0,m = (c0, . . . , cm) be the unique transition sequence
such that c0 = (ε, (1, . . . , n), h0, d0) and ci = [o(ci−1, Ax)](ci−1) (for i > 0).
The sample of training instances for Φ given Tt is:
1 We use the notation P̂ (·) to denote an estimate of P (·).

96 4 Inductive Dependency Parsing

DΦ = {(Φ(c,Ax), t) | o(c,Ax) = t, c ∈ Co,x
0,m, x ∈ Tt} (4.14)

This set can be defined in a two-step process, where we first extract a set of
pairs (c, t) from the training corpus Tt:

Dt = {(c, t) | o(c,Ax) = t, c ∈ Co,x
0,m, x ∈ Tt} (4.15)

This set is independent of the parameterization function Φ and can be reused
with different parameterizations to define proper training sets:

DΦ = {(Φ(c,Ax), t) | (c, t) ∈ Dt} (4.16)

In order to construct a specific instance of the inductive dependency parser,
we therefore have to solve three independent subproblems:

1. Derive the set Dt from the training corpus Tt.
2. Define the parameterization Φ and derive the training set DΦ from Dt.
3. Induce a classifier ĝ from the training set DΦ using inductive learning.

The first problem can be solved using a form of guided parsing, using an oracle
defined by the gold standard dependency graph from the treebank, as we will
show in the next section. The second problem will be the topic of section 4.2,
where we discuss the way in which different types of features can be defined in
terms of parser conditions. The third problem will be addressed in section 4.3,
where we introduce memory-based learning, which is the family of learning
methods that will be used in the experiments reported in chapter 5.

4.1.6 Oracle Parsing

Given a training corpus Tt = (x1, . . . , xn), we want to extract the set of
training instances Dt = {(c, t) | o(c,Ax) = t, c ∈ Co,x

0,m, x ∈ Tt}. If we let
Dx be the set of instances derived from a particular sentence x, i.e., Dx =
{(c, t) | o(c,Ax) = t, c ∈ Co,x

0,m}, then we can construct Dt by taking the union
of Dx for all the sentences x ∈ Tt:

Dt =
⋃

x∈Tt

Dx (4.17)

For each sentence x ∈ Tt, let Gg = (Vx, Eg, Lg) be the dependency graph
assigned to x by the gold standard annotation, and let hg : V +

x → Vx and
dg : V +

x → R be defined as follows:

1. hg(i) = j if and only if (j, i) ∈ Eg

2. dg(i) = r if and only if ∃j : ((j, i), r) ∈ Lg

We can then derive the set Dx of instances for each sentence x by the following
algorithm, which is a variant of the deterministic parsing algorithm defined
in section 3.4.3:

4.1 A Framework for Inductive Dependency Parsing 97

Oracle-Parse(x = (w1, . . . , wn), hg, dg)
1 c ← (ε, (1, . . . , n), h0, d0)
2 Dx ← ∅
3 while c = (σ, τ, h, d) is not terminal
4 if σ = ε
5 c ← Shift(c)
6 else
7 t ← Oracle(c, hg, dg)
8 D ← Dx ∪ (c, t)
9 c ← t(c)

10 return Dx

The main difference, apart from the fact that we accumulate pairs (c, t) in the
variable Dx, is that the oracle function o is replaced by a call to the function
Oracle, which predicts the next transition using the gold standard functions
hg and dg:

Oracle(c = (σ|i, j|τ, h, d), hg, dg)
1 if hg(i) = j
2 return Left-Arc(dg(i))
3 else if hg(j) = i
4 return Right-Arc(dg(j))
5 else if ∃k ∈ σ (hg(j) = k or hg(k) = j)
6 return Reduce

7 else
8 return Shift

For any configuration c = (σ, τ, h, d) that is passed as an argument to the
function Oracle, we know that both the stack σ and the input sequence τ
are non-empty, because c is non-terminal (τ) and nondeterministic (σ). Hence,
we can always assume that there is a token i on top of the stack σ and a token
j at the head of the input list τ . Now, if i and j are linked by a dependency
arc according to hg, then the correct transition is Left-Arc(r) or Right-

Arc(r), with the dependency type r specified by dg. If there is no arc between
i and j, then Reduce is the correct choice if and only if j is linked to a token
to the left of i (below i in the stack σ); otherwise, the correct transition is
Shift.

To check whether j is linked to a token to the left of i, we need to check if
there is a token k ∈ σ that is either the head of j (hg(j) = k) or a dependent of
j (hg(k) = j). The first of these conditions can be checked simply by inspecting
hg(j), since it holds if and only if 0 < hg(j) < i. The second condition may in
a naive implementation require searching the entire stack σ. However, if there
is a token k to the left of i such that hg(k) = j, then we must already have
encountered k in a previous configuration. And if we use an auxiliary stack to
store tokens that have their head to the right, according to hg, then we only
need to compare the top of this stack with j.

98 4 Inductive Dependency Parsing

It is worth pointing out that, whereas every transition sequence C0,m =
(c1, . . . , cm) for a sentence x defines a unique dependency graph Gm =
(Vx, Em, Lm), the inverse relation is strictly speaking not a function, since
there are a limited number of situations where two distinct transition se-
quences define the same dependency graph. This happens in configurations
where the smallest arc, according to the gold standard graph Gg, that spans
both the top token i and the next token j does not involve either i or j but
tokens k and l, such that k < i and j < l. In this case, both i and j must be
popped from the stack before the arc connecting k and l can be added, but
the order in which i and j are reduced is immaterial. In other words, either
Reduce or Shift is a possible transition and both of them will lead to the
correct dependency graph. The algorithm defined above always prefers Shift

in this situation, which means that j will be reduced before i. In other words,
the Oracle-Parse algorithm constructs a canonical transition sequence for
every dependency graph, consistently choosing Shift in cases of harmless
Shift-Reduce conflicts.

We conclude the discussion of oracle parsing with a correctness proof for
the algorithm Oracle-Parse. Theorem 4.1 says that the functions hm and
dm derived by the algorithm are identical to the input functions hg and dg

for any sentence x and projective dependency graph Gg = (Vx, Eg, Lg), which
entails that the transition sequence C0,m used to construct the training data
set Dx assigns Gg to x. As promised in section 3.4.4, this indirectly proves also
theorem 3.22, since we can use Oracle-Parse to constructively prove that
there exists a corresponding transition sequence for any projective dependency
graph.

Theorem 4.1. For every sentence x = (w1, . . . , wn) with dependency graph
Gg = (Vx, Eg, Lg), if cm = (σm, ε, hm, dm) is the terminal configuration in the
computation of Oracle-Parse(x, hg, dg), then hg = hm and dg = dm.

Proof. We need to show that hg(i) = hm(i) and dg(i) = dm(i) for every
i ∈ V +

x . We begin by noting that the following conditions hold for every token
i ∈ V +

x , in virtue of the transition system used by Oracle-Parse:

1. In the initial configuration c0, h0(i) = 0 and d0(i) = r0 (definition 3.9).

2. Before the terminal configuration cm is reached, i must be shifted onto
the stack, i.e., there exist p (0 ≤ p < m) and q (p < q ≤ m) such that
cp = (σp, i|τp− , hp, dp) and cq = (σq− |i, τp− , hq, dq) (definition 3.10).

3. The values of h(i) and d(i) can only change in a transition from a configu-
ration c where i occurs at the head of the input list, i.e., c = (σ, i|τ, h, d),
or on top of the stack, i.e., c = (σ|i, τ, h, d). In the former case, h(i) and
d(i) are modified only by a Right-Arc(r) transition; in the latter case,
only by a Left-Arc(r) transition (definition 3.12).

There are three cases to consider, based on the value of hg(i):2

2 Line numbers in this proof refer to the Oracle algorithm defined on page 97.

4.1 A Framework for Inductive Dependency Parsing 99

1. If hg(i) = 0 (and dg(i) = r0), we only need to show that h0(i) = hm(i)
and d0(i) = hm(i), i.e., that i cannot be involved as the dependent in a
Left-Arc(r) or Right-Arc(r) transition. Given condition 3 above, this
reduces to two subcases:

a) In a configuration c = (σ|i, τ, h, d), Left-Arc(r) is excluded because
hg(i) = 0 (contradicting the condition in line 1).

b) In a configuration c = (σ, i|τ, h, d), Right-Arc(r) is excluded because
hg(i) = 0 (contradicting the condition in line 3).

We conclude that hg(i) = h0(i) = hm(i) and dg(i) = d0(i) = dm(i).

2. If hg(i) �= 0 and hg(i) < i, we need to show that there is some transi-
tion where h(i) and d(i) are changed from h0(i) and d0(i) to hg(i) and
dg(i). (Together with Lemma 3.20, this entails that hg(i) = hm(i) and
dg(i) = dm(i).) In virtue of condition 2 above, we know that there exists
a configuration cp = (σp, i|τp− , hp, dp). There are three cases to consider
for the transition out of this configuration:

a) If cp = (σp− |j, i|τp− , hp, dp), hg(j) = i and dg(j) = r, Oracle returns
Left-Arc(r), so cp+1 = (σp− , i|τp− , hp[j �→ i], dp[j �→ r]) (line 1–2).

b) If cp = (σp− |j, i|τp− , hp, dp), hg(i) = j and dg(i) = r, Oracle returns
Right-Arc(r), so cp+1 = (σp− |j|i, τp− , hp[i �→j], dp[i �→r]) (line 3–4).

c) If cp = (σp− |j, i|τp− , hp, dp), hg(i) �= j, hg(j) �= i and hg(i) ∈ σp− ,
Oracle returns Reduce, so cp+1 = (σp− , i|τp− , hp, dp) (line 5–6).

In case (b), the goal has been reached. In cases (a) and (c), i remains at the
head of the input list, while the size of the stack decreases by 1. Hence,
as long as hg(i) ∈ σp− , there will eventually be a configuration cq−1 =
(σq−1− |hg(i), i|τp− , hq−1, dq−1) followed by a Right-Arc(r) transition,
where dg(i)=r. Assume hg(i) �∈ σp− . Then hg(i) must have been popped
from the stack in an earlier transition, which entails that there is a node
k such that hg(i) < k < i and either hg(hg(i)) = k (if hg(i) was popped
in a Left-Arc(r′) transition) or there is a token l such that l < hg(i)
and k is linked to l (if hg(i) was popped in a Reduce transition). But
in either case this is a contradiction, since Gg is projective. Hence, we
may conclude that hg(i) ∈ σp− . It follows that hg(i) = hq(i) = hm(i) and
dg(i) = dq(i) = dm(i).

3. If hg(i) > i, we again need to show that there is some transition where h(i)
and d(i) are changed from h0(i) and d0(i) to hg(i) and dg(i). In virtue
of condition 2 above, we know that there exists a configuration cq =
(σq− |i, τp− , hq, dq). Moreover, since hg(i) > i, hq(i) = 0 and dq(i) = r0.
We know that hg(i) ∈ τp− (since hg(i) > i) and that hg(i) must eventually
be pushed onto the stack (condition 2). We now show that this can only
happen in a configuration where h(i) = hg(i) and d(i) = dg(i) (which

100 4 Inductive Dependency Parsing

together with Lemma 3.20 entails that hg(i) = hm(i) and dg(i) = dm(i)).
More precisely, this follows from the following two propositions:

a) The node i can only be popped from the stack in a configuration of
the form cr = (σq− |i, j|τr− , hr, dr) (r ≥ q), where hg(i) = j. Assume
hg(i) �= j. Then Left-Arc(r) is obviously excluded (line 1). And
Reduce is excluded because this would entail that there exists some
k such that hg(j) = k or hg(k) = j and k < i < j < hg(i) (line 5),
which contradicts the assumption that Gg is projective.

b) The node hg(i) can only be pushed onto the stack in a configuration
of the form cs = (σs, hg(i)|τs− , hs, ds) (s > q), where i �∈ σs. Assume
i ∈ σs. Then Shift is excluded because there exists some k (namely
i) such that k ∈ σs and hg(k) = hg(i) (line 5). And Right-Arc(r)
is excluded because this would entail that there exists some k such
that k = hg(hg(i)) and i < k < hg(i) (line 3), which contradicts the
assumption that Gg is projective.

Hence, hg(i) = hr+1(i) = hm(i) and dg(i) = dr+1(i) = dm(i).

This concludes the proof of theorem 4.1.
�

4.2 Features and Models

One of the key elements in the model of inductive dependency parsing defined
in the previous section is the function Φ that defines an equivalence relation on
the set of parser conditions and thereby defines what properties of a condition
are relevant for the prediction of the next transition. This is reflected in the
definition of the learning problem, where the set of possible input instances is
simply the range of the function Φ, which we call the set of parser states.

In this section, we will discuss how Φ can be defined in terms of a set
of feature functions, each of which extracts a relevant feature of the current
parser condition. We will begin by defining a formal model for the specification
of feature functions and move on to discuss the specific feature functions that
will be used in the experiments reported in chapter 5. Finally, we will introduce
the concept of a feature model, which corresponds to an instantiation of the
function Φ, defined by a specific set of feature functions.

The formalization of feature functions is necessary for the implementation
of feature models in the MaltParser system, described briefly in section 4.4,
but it is not essential for the experimental study of memory-based inductive
dependency parsing reported in chapter 5, where only a subset of the definable
features will be used. Readers who are not interested in the formal aspects
of feature functions can therefore skip most of the technical discussion in
section 4.2.1 without missing anything that will be important later on.

4.2 Features and Models 101

4.2.1 Feature Functions

The role of the function Φ in our model is to determine which properties
of a parser condition are relevant for the prediction of the next transition.
In general, Φ can be defined by a set of simpler functions φi, which we call
feature functions. Although the order of these functions is normally irrelevant,
we will assume that they are ordered in a sequence Φ1,p = (φ1, . . . , φp), which
will save us the trouble of introducing a special name for each feature function
φi, since it can be identified by its position in the sequence.

If Φ1,p = (φ1, . . . , φp), then each function φi corresponds to a feature, or
attribute, of a parser condition (c,Ax). Applying Φ to (c,Ax) is equivalent
to applying each feature function φi to (c,Ax) in turn, which means that
Φ(c,Ax) = (v1, . . . , vp) if and only if φi(c,Ax) = vi for every φi ∈ Φ. In this
way, the value of Φ(c,Ax) corresponds to the standard representation of an
instance as a sequence of features, often called a feature vector, which is widely
used in machine learning (Mitchell, 1997).

Recall from section 3.3.1 that every function f in the set Ax of annotation
functions for a sentence x = (w1, . . . , wn) is a function from the set of token
nodes V + = {1, . . . , n} to some set of values Vf , where Vw is the set of
possible word forms and Vp is the set of permissible part-of-speech categories,
etc. Using Af to denote the set of possible annotation functions, the notion
of a feature function can be characterized as follows:

Definition 4.2. Given a set of configurations C, a set of annotation functions
Af , and a set of values Vφ, a feature function is a function φ : (C×2Af) → Vφ.

We can then define parameterization functions in terms of feature functions:

Definition 4.3. Given a sequence of feature functions Φ1,p = (φ1, . . . , φp),
the corresponding parameterization function is the function Φ : (C × 2Af) →
(Vφ1 ×· · ·×Vφp

) such that Φ(c,Ax) = (v1, . . . , vp) if and only if φi(c,Ax) = vi

(for 1 ≤ i ≤ p, c ∈ C and Ax ∈ 2Af).

The number of distinct parser states Φ(c,Ax) can now be defined as |VΦ| =
|Vφ1 | · . . . · |Vφp

|, and the total number of model parameters in MΘ is |Θ| =
|TR| · |VΦ| for the general model and |Θ| = |VΦ| for the reduced model with
a deterministic parsing strategy (cf. section 4.1.4). But even for the general
model, it is normally the case that |Θ| is O(|VΦ|).

The definition of a feature function is very general and compatible with
many different ways of specifying such functions. In this study, we will restrict
our attention to feature functions φ that can be defined in terms of the the
composition of two simpler functions aφ and fφ as follows:

φ(c,Ax) = v ⇔ [fφ ◦ aφ](c) = v (4.18)

where aφ and fφ satisfy the following conditions:

aφ : C → V + (4.19)
fφ ∈ Ax ∪ {dc} (4.20)

102 4 Inductive Dependency Parsing

The basic idea is that aφ is an address function, mapping the configuration
c to a specific token i ∈ V +, and that fφ is an attribute function, picking
out a specific attribute v of i. This attribute may be given by one of the
annotation functions in Ax or by the dependency type function dc. Note that
the function dc is parameterized for the current configuration c, since this
function is updated dynamically from one configuration to the next, whereas
the annotation functions in Ax remain constant during the analysis of a given
sentence x.

The reason for restricting the class of feature functions in this way is
twofold. First, we want to ensure that feature functions can be computed effi-
ciently, so that overall parsing efficiency is not compromised. Computing the
value of each feature function must be done for every new parser condition,
both in the construction of training instances during the training phase (cf.
section 4.1.5) and in the construction of instances for the classifier during the
parsing phase (cf. section 4.1.4). Secondly, we want to define a formal speci-
fication language for feature functions, so that implementations of inductive
dependency parsing do not need to rely on hard-coded feature functions but
can allow users to specify arbitrary feature functions within the space of per-
missible functions. The MaltParser system described in section 4.4 implements
this functionality.

In the remainder of this section we will discuss the formal specification of
feature functions, in particular the specification of the address function aφ.
Part of this discussion will be rather technical, but we will try to illustrate all
the formal definitions with concrete examples. We will use a configuration from
the transition sequence in figure 3.5 as our running example, more precisely
the configuration c14, resulting from a Reduce transition. Figure 4.1 shows
the relevant properties of this configuration, together with the annotation
functions wx and px for the sentence in question (cf. figure 3.3).

First of all, we define functions that extract a token from the stack σc or
the input sequence τc of the current configuration.

Definition 4.4. For every configuration c = (σc, τc, hc, dc) and i ≥ 0:

1. σi(c) = σc[i]
2. τi(c) = τc[i]

where x[i] returns the ith element of the list x (starting from 0).

Note that σi and τi (for i ≥ 0) are partial functions, which are undefined if the
length of the relevant list is less than or equal to i. For example, the function
σ0, when applied to a configuration c, returns the top token (if any), while the
function τ1 returns the token following the next token in the input sequence
τc (if τc has length two or more). For our example in figure 4.1, σ0(c14) = 5,
while τ1(c14) = ⊥ (because τ14 has length one).

Given the basic functions σi and τi, we can construct complex address
functions by composition with functions that map tokens to tokens according
to their relations in the dependency graph, as defined by the function hc in

4.2 Features and Models 103

c14 = ((3, 5), (9), h7, d7)
σ14 = (3, 5)
τ14 = (9)

h7(1) = 2 d7(1) = NMOD wx(1) = Economic px(1) = JJ
h7(2) = 3 d7(2) = SBJ wx(2) = news px(2) = NN
h7(3) = 0 d7(3) = ROOT wx(3) = had px(3) = VBD
h7(4) = 5 d7(4) = NMOD wx(4) = little px(4) = JJ
h7(5) = 3 d7(5) = OBJ wx(5) = effect px(5) = NN
h7(6) = 5 d7(6) = NMOD wx(6) = on px(6) = IN
h7(7) = 8 d7(7) = NMOD wx(7) = financial px(7) = JJ
h7(8) = 6 d7(8) = PMOD wx(8) = markets px(8) = NNS
h7(9) = 0 d7(9) = ROOT wx(9) = . px(9) = PU

Fig. 4.1. Configuration c14 with functions wx and px (cf. figures 3.3 and 3.5)

the current configuration. To this end we define three higher-order functions,
that map an arbitrary address function to a new address function by com-
posing it with a function returning the head, leftmost dependent or rightmost
dependent of a token.

Definition 4.5. For every function a : C → V +:

1. h(a) = hc ◦ a
2. l(a) = lc ◦ a
3. r(a) = rc ◦ a

where lc(i) and rc(i) are partial functions returning the leftmost and rightmost
dependent, respectively, of a token i ∈ V +.

Equipped with the basic functions σi and τi and the higher-order functions
h, l and r, we can now give an inductive definition of the class of address
functions.

Definition 4.6. The set of address functions is the smallest set A satisfying
the following conditions:

1. For every i ≥ 0, σi, τi ∈ A.
2. For every a ∈ A, h(a), l(a), r(a) ∈ A.

It is worth pointing out again that all address functions are partial and fail
to return a token as soon as one of the underlying functions (σi, τi, hc, lc or
rc) is undefined.

In order to exemplify the use of complex address functions, we consider the
functions h(σ0) and r(r(h(σ0))), which return the head of the top token and
the rightmost dependent of the rightmost dependent of the head of the top
token, respectively. For the example in figure 4.1, these functions return the

104 4 Inductive Dependency Parsing

Function Description

σ0 The top token

σn(n > 0) The nth stack token (not counting the top token)

τ0 The next token

τn(n > 0) The nth input token (not counting the next token)

h(σ0) The head of the top token

l(σ0) The leftmost dependent of the top token

r(σ0) The rightmost dependent of the top token

l(τ0) The leftmost dependent of the next token

Fig. 4.2. Commonly used address functions

tokens 3 and 6, respectively, since h(σ0)(c14) = h7(σ0(c14)) = h7(5) = 3 and
r(r(h(σ0)))(c14)=r7(r7(h7(σ0(c14))))=r7(r7(h7(5)))=r7(r7(3))=r7(5)=6.

Although the framework allows address specifications of almost arbitrary
complexity, most of the features considered in this study will be based on a
relatively small number of functions, in combination with different attribute
functions. The most commonly used address functions are listed with expla-
nations in figure 4.2. The list does not include the functions h(τ0) and r(τ0),
since the parsing algorithm precludes the possibility of the next token having
a head (other than 0) or a right dependent in the current configuration.

Having considered the construction of address functions at some length,
we are now in a position to define a set of feature functions, using higher-
order functions that map an address function a to a new function φ from
parser conditions (c,Ax) to values v of an attribute function f , such that
φ(c,Ax) = f(a(c)). Formally:

Definition 4.7. If a is an address function, then for any configuration c and
set of annotation functions Ax:

1. f(a)(c,Ax) = fx(a(c)) for every fx ∈ Ax

2. d(a)(c,Ax) = dc(a(c))

The attribute function is either one of the annotation functions fx ∈ Ax

(including the token function wx) or the function dc belonging to the current
configuration c. In the former case, we have a static feature, since the value
of the attribute function fx(i), for a given token i, remains constant during
the parsing of a sentence x. In the latter case, we have a dynamic feature,
because dc(i) will change dynamically between the different configurations of
a transition sequence. Static features will be discussed further in section 4.2.2
below, while dynamic features are treated in section 4.2.3.

Finally, a short note on the implementation of feature functions. As noted
in section 4.1.4, the linear time complexity of the inductive parsing algorithm

4.2 Features and Models 105

is dependent on the assumption that the guide function g(c,Ax) can be com-
puted in constant time. A naive implementation of the functions lc and rc,
using only the function hc in the current configuration c, would require an
exhaustive search of the set of input tokens to find the leftmost or rightmost
dependent. However, this can easily be avoided by adding an explicit represen-
tation of the functions lc and rc. These functions can be updated in constant
time for any transition t as follows:

• If t = Left-Arc(r) and c = (σ|i, j|τ, h, d) then lc(j) ← i.
• If t = Right-Arc(r) and c = (σ|i, j|τ, h, d) then rc(i) ← j.
• If t = Reduce or t = Shift then no update is needed.

Given these functions, any component function of a complex address function
can be computed in constant time. We can therefore conclude that an address
function constructed from k component functions can be computed in time
which is O(k) regardless of the length of the input sentence. Moreover, since
the application of an attribute function to the value returned by the address
function is a constant time operation, it is clear that the time required to
compute a feature function is constant in the length of the input.

4.2.2 Static Features

A static feature function has the form f(a), where a is an address function
and f refers to one of the annotation functions in Ax. In other words, static
features are based on information available as input, which remains constant
throughout the parsing process. On the other hand, since the address defined
by a is relative and not absolute, the actual value of a static feature function
will of course vary in the course of a transition sequence.

One important class of static features are those with the attribute function
wx, which we call lexical features, since they are defined in terms of the actual
word form wi of a token i, where wx(i) = wi. As discussed in section 2.3.2,
the importance of lexical features for disambiguation has been a dominant
theme in research on natural language parsing over the last ten to fifteen
years. And despite studies such as Gildea (2001), Dubey and Keller (2003),
Klein and Manning (2003) and Bikel (2004), which can be taken to show
that the significance of lexicalization has been overstated, it remains a fact
that all state-of-the-art systems for robust disambiguation make use of lexical
information in some way. The benefit of using lexical features in the inductive
dependency parsing was demonstrated in Nivre et al. (2004) and is further
investigated in the experiments in chapter 5.

In the previous section, we introduced the most commonly occurring ad-
dress functions. In a similar fashion, figure 4.3 introduces the lexical features
that will be used in the experiments later on. The most central features are
w(σ0) and w(τ0), which extract the word form of the top token and the next
token, respectively. But we will also make use of lexical features for lookahead

106 4 Inductive Dependency Parsing

Function Description

w(σ0) Word form of the top token

w(τ0) Word form of the next token

w(τn)(n > 0) Word form of the nth input token

w(h(σ0)) Word form of the head of the top token

Fig. 4.3. Lexical features

tokens, i.e., tokens occurring n positions after the next token, denoted by
w(τn), and for the head of the top token, symbolized by w(h(σ0)).

Returning to our example configuration in figure 4.1, we get the following
values for some of the features defined in figure 4.3:

w(σ0)(c14, Ax) = wx(5) = effect
w(τ0)(c14, Ax) = wx(9) = .
w(τ1)(c14, Ax) = wx(⊥) = ⊥

w(h(σ0))(c14, Ax) = wx(3) = had

(4.21)

Besides lexical features, static features can be defined in terms of any kind
of annotation introduced as a result of preprocessing and encoded in a func-
tion f : V + → Vf included in Ax. The only kind of preprocessing that will
be used in our experiments is part-of-speech tagging, which means that the
only annotation function that will be used in features is the function px that
maps each token to its part-of-speech (as defined by the part-of-speech tagger
applied in preprocessing). We call these features part-of-speech features.

If the role of lexicalization in syntactic parsing has recently been the matter
of some debate, the role of part-of-speech tagging is even more of a moot point.
In early work on treebank parsing it was more or less standard practice to have
a separate tagging phase prior to parsing proper (Charniak, 1996), but with
the emergence of lexicalized models it was found that better parsing accuracy
could often be obtained if the part-of-speech analysis was integrated in the
parsing process (Charniak, 1997a; Collins, 1997). More recently, it has been
argued that the main reason for using parts-of-speech in data-driven parsing is
that they provide a back-off model for lexical features and thereby counteract
the sparse data problem (Charniak, 2000; Van den Bosch and Buchholz, 2002).

In a study of memory-based shallow parsing, Van den Bosch and Buchholz
(2002) showed that a model incorporating words but no parts-of-speech, while
inferior with small training data sets, outperforms a model involving parts-
of-speech but no words for training sets over a certain size (which in their
experiments was around 50 000 sentences). However, it was still the case that
a model incorporating both words and parts-of-speech gave the best overall

4.2 Features and Models 107

Function Description

p(σ0) Part-of-speech of the top token

p(σn)(n > 0) Part-of-speech of the nth stack token

p(τ0) Part-of-speech of the next token

p(τn)(n > 0) Part-of-speech of the nth input token

Fig. 4.4. Part-of-speech features

performance, which indicates that the smoothing effect obtained by including
parts-of-speech is beneficial also with large training sets.

In the experiments reported in the next chapter we make use of part-of-
speech features for the two target tokens, i.e., the top token and the next
token, as well as neighboring tokens both on the stack and in the sequence
of remaining input tokens. We use the term stack tokens to refer to tokens
that occur below the top token on the stack and the term lookahead tokens
to refer to tokens that occur after the next token in the input sequence.
Figure 4.4 shows the notational conventions that will be used to refer to part-
of-speech features. By way of example, here are the values of a sample of
part-of-speech features for the configuration in figure 4.1:

p(σ0)(c14, Ax) = px(5) = NN
p(σ1)(c14, Ax) = px(3) = VBD
p(τ0)(c14, Ax) = px(9) = PU
p(τ1)(c14, Ax) = px(⊥) = ⊥

(4.22)

4.2.3 Dynamic Features

A dynamic feature function has the form d(a), where a is an address function
and d denotes the dependency type function dc that belong to the current
parser configuration c and that is updated dynamically during the parsing
process. One of the differences between the parsing methods investigated in
this book and many other approaches to dependency parsing is that the parser
produces labeled dependency graphs directly, rather than first producing an
unlabeled dependency graph and then assigning labels to dependency arcs.
This fact can be exploited when defining relevant feature functions, since the
labels of previously added arcs are available in the state of the function dc.
We call these features dependency type features, or dependency features for
short.

Figure 4.5 introduces the dependency features that will be used in our
experiments. There are three features defined in relation to the top token,

108 4 Inductive Dependency Parsing

Function Description

d(σ0) Dependency type of the top token

d(l(σ0)) Dependency type of the leftmost dependent of the top token

d(r(σ0)) Dependency type of the rightmost dependent of the top token

d(l(τ0)) Dependency type of the leftmost dependent of the next token

Fig. 4.5. Dependency features

extracting the dependency types relating this token to its head (d(σ0)), its
leftmost dependent (d(l(σ0))) and its rightmost dependent (d(r(σ0))). In addi-
tion, we consider the leftmost dependent of the next input token (d(l(τ0))). We
exemplify these dependency features by applying them to the configuration
in figure 4.1:

d(σ0)(c14, Ax) = d7(5) = OBJ
d(l(σ0))(c14, Ax) = d7(4) = NMOD
d(r(σ0))(c14, Ax) = d7(6) = NMOD
d(l(τ0))(c14, Ax) = d7(⊥) = ⊥

(4.23)

While dependency features are the only dynamic features used in this study,
it would also be possible to define features based on the function hc that
records the index of a token’s head. Although the exact numerical index is
unlikely to be a useful feature, the comparison of features could be used to
define distance-based features, which have been used with some success in
other data-driven approaches to syntactic parsing (Collins, 1999), although
these functions are seldom based on a purely quantitative notion of distance.
Moreover, features that compare the relative position of two tokens would
require a more complex definition of feature functions, and we will therefore
leave this as a possible topic for future research.

4.2.4 Feature Models

In this section, we have shown how the parameterization function Φ can be
defined by a sequence of feature functions Φ1,p = (φ1, . . . , φp), where each
feature function has the form f(a) for some address function a and attribute
function f ∈ {w, p, d}. Since each of the functions φi defines a feature of
the current parser parser condition, we will say that the complex function Φ
defines a feature model.

One of the questions posed in the experiments reported in chapter 5 is
how different features influence the performance of an inductive dependency
parser, with respect to accuracy as well as efficiency. We will address this
question by a series of experiments, where we vary the feature model Φ while

4.2 Features and Models 109

keeping other things constant. In this context, it is often convenient to be able
to define a complex model in terms of two or more simpler models. For this
purpose, we define the concatenation of two models in the obvious way:

Definition 4.8. Let Φ1 and Φ2 be two parameterization functions (or feature
models), defined by two sequences of feature functions Φ1

1,p = (φ1
1, . . . , φ

1
p) and

Φ2
1,q = (φ2

1, . . . , φ
2
q). The concatenation of Φ1 and Φ2, denoted Φ1 + Φ2, is the

function Φ defined by Φ1,p+q = (φ1
1, . . . , φ

1
p, φ

2
1, . . . , φ

2
q).

The models that will be examined in chapter 5 can be seen as concatenations
of three types of models, based on the three types of features discussed in this
section:

1. Part-of-speech models
2. Dependency models
3. Lexical models

Before we conclude the discussion of features and models in this chapter, we
will define the three types of models and introduce the notational conventions
that will be used to designate these models in the experiments in chapter 5.

Part-of-speech models will be designated Φp
ij (i, j ≥ 0). All part-of-speech

models include the features p(σ0) and p(τ0). The parameter i specifies how
many successive stack tokens will be included in addition to the top token.
That is, every feature p(σn), for n ≤ i, is included. In a similar fashion,
the parameter j specifies how many lookahead tokens will be included over
and above the next input token. Thus, every feature p(τn), for n ≤ j, is
included. We illustrate this class of models by applying the model Φp

01 to the
configuration in figure 4.1:

Φp
01(c14, Ax) = (p(σ0)(c14, Ax), p(τ0)(c14, Ax), p(τ1)(c14, Ax))

= (NN,PU,⊥)
(4.24)

Dependency models will be designated Φd
ijk (i, j, k ∈ {0, 1}). All dependency

models include the feature d(σ0). In addition, it may include some or all of the
features d(l(σ0)), d(r(σ0)) and d(l(τ0)), and the indices i, j and k are basically
boolean variables indicating the presence or absence of these features (in the
order just listed). We illustrate this class of models by applying the model
Φd

011 to the configuration in figure 4.1:

Φd
011(c14, Ax) = (d(σ0)(c14, Ax), d(r(σ0))(c14, Ax), d(l(τ0))(c14, Ax))

= (OBJ,NMOD,⊥)
(4.25)

Lexical models, finally, will be designated Φw
ij (i, j ≥ 0). The parameter i

specifies how many lexical features are extracted from the stack, starting with
the top token (i ≥ 1) and possibly including the head of the top token (i = 2).
The parameter j specifies how many successive input tokens will be included,
starting with the next input token (i ≥ 1) and possibly adding an extra

110 4 Inductive Dependency Parsing

lookahead token (j = 2). We illustrate this class of models by applying the
model Φw

11 to the configuration in figure 4.1:

Φw
11(c14, Ax) = (w(σ0)(c14, Ax), w(τ0)(c14, Ax))

= (effect, .)
(4.26)

4.3 Memory-Based Learning

In the deterministic version of inductive dependency parsing investigated in
this book, the central learning problem is to induce a mapping from parser
states to parser transitions. This problem can be solved using memory-based
learning, a discriminative machine learning method that has been successfully
applied to a wide range of problems in natural language processing (Daele-
mans and Van den Bosch, 2005). Although the general approach of inductive
dependency parsing is not directly committed to any particular method for
inductive learning, memory-based learning seems well suited for the task, with
a local approximation of the target function that is potentially sensitive to
subregularities and exceptional instances (Daelemans et al., 2002).

In this section we introduce the basic concepts of memory-based learning
and discuss the different algorithms and parameters that can be used in the
implementation of this approach. For the experiments reported in chapter 5
we rely on the software package TiMBL (Tilburg Memory-Based Learner)
developed by Walter Daelemans, Antal van den Bosch and their colleagues at
Tilburg University and the University of Antwerp (Daelemans et al., 2004),
and our presentation of memory-based learning is deeply influenced by their
work, which is presented comprehensively in Daelemans and Van den Bosch
(2005). We close the section by relating our use of memory-based learning in
dependency parsing to previous work on memory-based language processing,
in particular memory-based parsing.

4.3.1 Memory-Based Learning and Classification

Memory-based learning and problem solving is based on two fundamental
principles: learning is the simple storage of experiences in memory, and solv-
ing a new problem is achieved by reusing solutions from similar previously
solved problems (Daelemans and Van den Bosch, 2005). It is inspired by the
nearest neighbor approach in statistical pattern recognition and artificial intel-
ligence (Fix and Hodges, 1952), as well as the analogical modeling approach in
linguistics (Skousen, 1989, 1992). In machine learning terms, it can be charac-
terized as a lazy learning method, since it defers processing of input until
needed and processes input by combining stored data (Aha, 1997).3

3 Memory-based learning is also known as instance-based learning, exemplar-based
learning and case-based learning.

4.3 Memory-Based Learning 111

In contrast to eager learning methods, such as the family of generative
probabilistic methods that are used in many data-driven parsers, memory-
based learning performs generalization without abstraction. In addition, it
uses similarity-based reasoning as an implicit smoothing method to deal with
low-frequency events (Daelemans and Van den Bosch, 2005). Both of these
properties make the method potentially well suited for problems in natural
language processing, which are often characterized by distributions contain-
ing a long tail of low-frequency events, where it is notoriously difficult to
distinguish noise from significant exceptions (Daelemans et al., 2002).

Conceptually, memory-based learning algorithms can be seen as variants
of the k-nearest neighbor algorithm (k-NN) (Cover and Hart, 1967; Devijver
and Kittler, 1982; Aha et al., 1991). Given the task of inducing a classifier
ĝ : S → T from a set of training instances Dt = {(s1, t1), . . . (sn, tn)}, where
si ∈ S is an input instance and ti ∈ T is its class, this type of algorithm can
be described as follows:

• Learning consists in storing the set Dt of training instances in memory.
• Classifying a new instance r is performed in two steps:

1. Compare r to every stored input instance si ((si, ti) ∈ Dt):
a) Compute the distance ∆(r, si) between r and si.
b) Update the set of k closest instances (nearest neighbors).

2. Take the majority class t of the k nearest neighbors as the class of r.

Even though the basic memory-based strategy remains the same, there are
many parameters that can be varied to modify the resulting classifier. The
most obvious parameter is perhaps the value of k, which can be varied from
1 to n (where n is the number of training instances in Dt). A small k value
leads to a very local approximation of the function g, which is more sensitive
to local exceptions and subregularities but also less robust when faced with
noisy data. A large k value gives a more global approximation, which is less
sensitive to local variations, whether due to noise or to significant exceptions.
For the task of predicting the next parser transitions, a k value of about 5
has turned out to be optimal for many feature models (Nivre et al., 2004),
although this is something that is investigated further in the experiments
reported in chapter 5.

Another important parameter is the distance metric ∆, which can be varied
in many different ways. For example, feature weighting can be used to give
different weights to features in the representation of instances; value weighting
can be used to differentiate penalties for mismatches between feature values;
and exemplar weighting can be used to weight stored instances differently.
Exemplar weighting will not be exploited in the investigations in this book, but
both feature weighting and value weighting will be discussed in section 4.3.2
below and studied experimentally in chapter 5. A third kind of parameter is
the voting procedure, where the main alternative to a simple majority vote is
to use a weighting scheme that gives more weight to closer instances, using
so-called distance-weighted class voting (Dudani, 1976).

112 4 Inductive Dependency Parsing

In the following section we will discuss the parameters of memory-based
learning that are relevant to our study of inductive dependency parsing and to
the experiments reported in chapter 5. We will focus on the way that these pa-
rameters are implemented in TiMBL, since this is the software that is used in
all our experiments. On the other hand, we will only deal with a small subset
of all the features that are available in this software package. For more infor-
mation about TiMBL, see the TiMBL Reference Guide (Daelemans et al.,
2004); see also Daelemans and Van den Bosch (2005).

4.3.2 Learning Algorithm Parameters

Let Dt = {(s1, t1), . . . , (sn, tn)} be the set of training instances, where each
input instance is represented as a vector of feature values si = (si

1, . . . , s
i
p) and

each output ti is a class taken from some set T . We recall that in the case of
inductive dependency parsing, an input instance is a parser state Φ(c,Ax) =
(φ1(c,Ax), . . . , φp(c,Ax)) = (v1, . . . , vp) while the output class is a transition
t ∈ TR. We will assume that all features are symbolic, i.e., that their values
are not numeric, a restriction that holds for all the features considered in this
book, where feature values are word forms, parts-of-speech or dependency
types. However, memory-based learning as such is not restricted to symbolic
features.

We will begin by discussing the implementation of the k-NN algorithm
in TiMBL, which differs in two ways from the standard formulation (Aha
et al., 1991). First of all, the TiMBL version of k-NN considers the k nearest
distances, rather than the k nearest instances. Since the training set may
contain several instances at the same distance from a given instance, the
number m of instances included by TiMBL may therefore be greater than k.

The second difference concerns the method used for tie-breaking, i.e., for
deciding which class to choose in case there is no majority class in the nearest
neighbor set. The default method in TiMBL, which will be used in all the
experiments in chapter 5, is to use a three-step procedure:

1. Increase the value of k by 1 and choose the majority class in the larger
neighbor set, if such a class exists.

2. Otherwise, choose the majority class in the entire training set Dt, if such
a class exists.

3. Otherwise, choose the class t1 of the first instance (s1, t1) encountered in
the training set Dt.

The next parameter to discuss is the choice of the distance metric ∆. When
dealing with symbolic features, the most straightforward metric is the Overlap
metric, also referred to as Hamming distance, Manhattan metric, city-block
distance, and L1 metric (Daelemans and Van den Bosch, 2005). The distance
between two input instances r = (r1, . . . , rp) and s = (s1, . . . , sp) according
to this metric is simply the number of mismatching features. Formally:

4.3 Memory-Based Learning 113

∆(r, s) =
p∑

i=1

δ(ri, si) (4.27)

The δ function in this definition is a 0-1 mismatch function:

δ(ri, si) =
{

0 if ri = si

1 if ri �= si
(4.28)

More sophisticated distance metrics can usually be understood as variations
on the Overlap metric. One common variation is to associate a weight wi with
each feature φi and calculate the distance as a sum of weighted mismatches:

∆(r, s) =
p∑

i=1

wi δ(ri, si) (4.29)

Although it is possible to assign weights to features manually, based on some
kind of a priori knowledge, it is much more common to derive weights auto-
matically from training data using information-theoretic concepts which are
also used in decision tree learning. Thus, Information Gain (IG) weighting
considers the average amount of information about the correct class label
contributed by each feature:

wi = H(T) −
∑
v∈Vi

P (v)H(T |v) (4.30)

In this equation, T is the set of class labels, Vi is the set of values for feature
φi, and H(T) and H(T |v) is the entropy of the class labels, a priori and
conditioned on the value v, respectively:

H(T) = −
∑
t∈T

P (t) log2 P (t) (4.31)

H(T |v) = −
∑
t∈T

P (t, v) log2 P (t|v) (4.32)

One problem with IG weighting is that it tends to overestimate the relevance
of features with large value sets. Quinlan (1986) has therefore introduced
a normalized version, called Gain Ratio (GR), where IG is divided by the
entropy of the value set:

wi =
H(T) −

∑
v∈Vi

P (v)H(T |v)
H(Vi)

(4.33)

Although GR weighting still has a bias towards features with large value sets,
it often gives good performance in practice. Other weighting schemes, which
attempt to correct the bias of IG and GR, have been proposed based on the
χ2 statistic (White and Liu, 1994).

114 4 Inductive Dependency Parsing

Another way of modifying the Overlap metric is to use a more sophisti-
cated mismatch function, which differentiates the penalty of a mismatch based
on the similarity of the feature values involved. This is the idea behind the
(Modified) Value Difference Metric (MVDM), proposed by Stanfill and Waltz
(1986) and refined by Cost and Salzberg (1993), which quantifies the distance
between two feature values vj and vk belonging to the same value set Vi by
considering their cooccurrence with target classes:

δ(vj , vk) =
∑
t∈T

|P (t|vj) − P (t|vk)| (4.34)

Although MVDM introduces a kind of value weighting, rather than feature
weighting, it will also have an indirect feature weighting effect, since δ(vj , vk)
will on average be larger for informative features that have a more skewed
conditional class distributions than for less informative features with more
uniform distributions (Daelemans and Van den Bosch, 2005). One problem
with MVDM is that it is sensitive to sparse data. TiMBL therefore offers the
possibility of setting a frequency threshold l, so that MVDM is applied only
if both of the values compared occur at least l times in the training data;
otherwise the 0-1 mismatch function is used instead.

All of the modifications to the distance metric considered so far have the
potential drawback that they increase the complexity of distance computa-
tions and thereby compromise the efficiency of classification. However, in the
TiMBL implementation both feature weights wi (for 1 ≤ i ≤ p) and value
distances δ(vj , vk) (for vj , vk ∈ Vi) can be computed and stored at learning
time, which means that only table lookup is required at classification time.

In addition to feature weighting and value weighting, a weighting scheme
can also be applied in the voting procedure that determines the majority class.
Dudani (1976) proposed a voting rule in which the vote of each instance si is
weighted by a function wi of its distance to the new instance r:

wi =
{

dk−di

dk−d1
if dk �= d1

1 if dk = d1
(4.35)

In this equation, di is the distance of si to r, d1 is the distance of the nearest
neighbor, and dk is the distance of the most distant instance in the neighbor
set. In addition to this inverse-linear (IL) weighting scheme, Dudani (1976)
proposed the inverse distance (ID) weight:

wi =
1
di

if di �= 0 (4.36)

In order to make the weighting applicable also to neighbors with zero distance,
it is customary to add a small constant ε to the denominator (Wettschereck,
1994):

wi =
1

di + ε
(4.37)

4.3 Memory-Based Learning 115

In chapter 5 we will investigate how the different parameters of memory-
based learning affect the performance of inductive dependency parsing. The
parameters that will be varied are the following:

1. Number of nearest distances: k
2. Distance metric: Overlap or MVDM (with frequency threshold l)
3. Feature weighting: IG, GR, or none
4. Distance-weighted class voting: IL, ID, or none

In experiments where other parameters are varied, such as feature models or
training sets, we will usually keep the learning algorithm parameters constant.
However, rather than using the default values of the TiMBL system, which
usually gives suboptimal performance, we will use the following settings, which
have been shown to give good performance in previous experiments (Nivre
et al., 2004; Nivre and Scholz, 2004):

1. Number of nearest distances: k = 5
2. Distance metric: MVDM with l = 3
3. Feature weighting: None
4. Distance-weighted class voting: ID

Finally, a remark on the efficiency of memory-based learning and classifica-
tion. Given the lazy learning approach, training a memory-based classifier is
usually very efficient, given that this basically consists in storing instances
in memory, in a so-called instance base, and precomputing metrics such as
feature weights and value distances for MVDM. By contrast, classification is
less efficient, with a worst-case complexity of O(n), where n is the number of
instances in the instance base. The TiMBL software package implements a
tree-based indexing scheme that speeds up classification in practice, although
the worst-case complexity remains the same. It also offers the possibility of
compressing the instance base, e.g., by constructing a decision tree based on
feature weights. This decision tree yields an approximation of the exhaustive
k-NN search, which improves efficiency but usually has a negative effect on
classification accuracy. TiMBL also offers several hybrid solutions, that ex-
ploit the trade-off between efficiency and accuracy in different ways. These
alternative algorithms will not be explored in this book, mainly because pre-
vious experiments have shown that classification performance degrades con-
siderably especially for more complex feature models. We refer the reader to
the TiMBL Reference Guide for more information on the tree-based indexing
used by TiMBL as well as alternatives to the k-NN algorithm.

4.3.3 Memory-Based Language Processing

Memory-based learning and classification has been applied to a wide range of
problems in natural language processing, exemplified in the following list (see
also Daelemans and Van den Bosch, 2005):

116 4 Inductive Dependency Parsing

• Hyphenation and syllabification (Daelemans and Van den Bosch, 1992)
• Assignment of word stress (Daelemans et al., 1994)
• Grapheme-to-phoneme conversion (Stanfill and Waltz, 1986; Lehnert,

1987; Weijters, 1991; Daelemans and Van den Bosch, 1996)
• Morphological analysis (Van den Bosch and Daelemans, 1999)
• Part-of-speech tagging (Cardie, 1993; Daelemans et al., 1996; Zavrel and

Daelemans, 1997)
• Prepositional phrase attachment (Zavrel et al., 1997)
• Word sense disambiguation (Ng and Lee, 1996; Fujii et al., 1998; Dagan

et al., 1999; Veenstra and Daelemans, 2000; Escudero et al., 2000)
• Named entity recognition (De Meulder and Daelemans, 2003; Hendrickx

and Van den Bosch, 2003)
• Semantic role labeling (Van den Bosch et al., 2004; Kouchnir, 2004)
• Text categorization and filtering (Masand et al., 1992; Yang and Chute,

1994; Riloff and Lehnert, 1994)

Most of these problems have a natural formulation as a classification problem,
where some kind of linguistic entity, such as a grapheme, a syllable, a word,
or an entire document, is mapped to a finite set of discrete categories. This
formulation of the problem makes memory-based learning a natural choice.

However, syntactic parsing is prima facie not a classification problem of
this kind, especially not if we consider full parsing. Even though the input
is a linguistic entity such as a sentence, the output usually comes from an
infinite set of complex structures, such as constituency trees or dependency
graphs. In order to apply the memory-based approach to syntactic parsing,
it is therefore necessary to reformulate the problem so that it can be solved
using discriminative learning. Broadly speaking, there are three different re-
formulations that have been proposed in the literature, which we may call
holistic parsing, cascaded partial parsing, and history-based parsing.

The holistic approach is in a way the most straightforward application
of the memory-based approach to full syntactic parsing and is based on the
idea of storing complete sentences with their analyses in the instance base.
Parsing a new sentence is performed by finding the most similar sentences
in the instance base and adapting their analyses to the input sentence, pos-
sibly backing off to smaller fragments if necessary. This approach is most
clearly exemplified in the work of Streiter (2001a,b) and Kübler (2004), but
the DOP framework (Bod, 1995, 1998, 2003) is essentially based on the same
idea, especially in its non-probabilistic incarnation where priority is given to
analyses composed of large fragments (Bod, 2000). A variation on this theme
is De Pauw (2003), who uses a memory-based model to score analyses in a
parse forest derived using a grammar-driven parsing method.

The cascaded approach starts from a partial parsing or chunking ana-
lysis, which can be cast as a classification problem using the so-called BIO

4.4 MaltParser 117

representation4 (Ramshaw and Marcus, 1995) and which has been performed
successfully with memory-based methods by, among others, Veenstra (1998)
and Tjong Kim Sang and Veenstra (1999). One way of extending this partial
analysis to a more complete syntactic analysis is to use a cascade of partial
parsers, where the input of each parser includes the output of previous parsers,
in combination with methods for identifying grammatical relations holding
between chunks. Memory-based approaches to cascaded partial parsing and
grammatical relation finding include Argamon et al. (1998), Buchholz et al.
(1999), Daelemans et al. (1999), Krymolowski and Dagan (2000), Kübler and
Hinrichs (2001), Buchholz (2002) and Dagan and Krymolowski (2003).

The history-based approach is the most indirect way of performing parsing
through classification, since the input instances are not linguistic entities but
states of some parsing system, and the classes are not linguistic categories
or structures but actions of this parsing system (cf. sections 2.3.2 and 4.1.3).
In this way, Veenstra and Daelemans (2000) used memory-based learning to
predict the actions of a shift-reduce parser, although this method was only
tested on an artificially created corpus. Inductive dependency parsing using
memory-based learning to guide a deterministic parser is exactly the same
idea, although combined with a different kind of syntactic representation and
a different parsing algorithm.

4.4 MaltParser

Using memory-based learning and classification to guide a deterministic parser
is one instantiation of the general approach of inductive dependency parsing.
In this section, we describe a system called MaltParser, which has been used
to perform all the experiments on memory-based dependency parsing reported
in chapter 5, but which is designed as a more general framework for inductive
dependency parsing.

The system can be described as a data-driven parser-generator framework.
While a traditional parser generator constructs a parser given a grammar, a
data-driven parser generator constructs a parser given a treebank. However,
MaltParser also takes as input the specification of a feature model, as defined
in section 4.2, which means that different parsers can be induced from the
same treebank without recompiling the system. Moreover, the design of the
system is intended to facilitate the variation not only of feature models but
also of parsing algorithms and learning methods, although these parameters
will be kept constant in the experiments reported in this book.

4 For a given phrase or chunk type, each token is tagged as Beginning, being Inside,
or being Outside a constituent of that type.

118 4 Inductive Dependency Parsing

Parser(τ, hg, dg)

ti+1 = o(ci, hg, dg)

ci+1 = ti+1(ci)

Guide(Ax, Φ)

si = Φ(ci, Ax)

Learner(L)

Di+1=Di∪{(si,ti+1)}
ĝ = L(Dt)

(ci, ti+1)
(si, ti+1)

Fig. 4.6. Architecture for training

4.4.1 Architecture

In the data-driven approach to text parsing, we can usually distinguish two
different phases, the training phase and the parsing phase (cf. section 4.1.2).
Although these phases are different in nature, they can often be decomposed
into very similar or even identical subtasks. For the framework investigated
in this book, the training phase consists of two steps. The first step involves
parsing every sentence x of the training corpus Tt using the oracle parsing
algorithm, extracting the feature vector Φ(ci, Ax) for every nondeterministic
configuration ci, and storing the pair (Φ(ci, Ax), ti+1) in the set of training
instances Dt. The second step is the induction of a classifier ĝ from Dt using a
particular learning method. The parsing phase consists in parsing every sen-
tence x of the input text T using the inductive parsing algorithm, extracting
the feature vector Φ(ci, Ax) for every nondeterministic configuration ci, and
querying the classifier for ĝ(Φ(ci, Ax)) = ti+1.

Comparing these two phases, we note that the extraction of feature vectors
is performed in exactly the same way during training and parsing, although
the vectors are used for learning in one case and for prediction in the other.
Moreover, we have previously seen that the parsing algorithms used for train-
ing and parsing differ only minimally from each other. This suggests that a
data-driven parsing system should be designed in such a way that the same
basic components for parsing and feature extraction can be used both in the
training phase and in the parsing phase. In addition, since we want to be able
to vary parsing methods, feature models and learning methods independently
of each other, these components should be encapsulated and separated from
each other. This gives rise to an architecture with three main components (in
addition to input/output modules and overall control structure):

1. Parser
2. Guide
3. Learner

In this architecture, the Parser constructs dependency graphs by applying
transitions to parser configurations, the Guide extracts feature vectors from

4.4 MaltParser 119

Parser(τ)

ci+1 = ti+1(ci)

Guide(Ax, Φ)

si = Φ(ci, Ax)

Learner(ĝ)

ti+1 = ĝ(si)

ci
si

�ti+1 �ti+1

Fig. 4.7. Architecture for parsing

parser conditions and passes data between the Parser and Learner, and the
Learner handles the mapping from feature vectors to transitions. In practice,
the Learner will normally be an interface to a standard machine learning
package such as TiMBL.

Figure 4.6 depicts the data flow in the architecture during the training
phase. For a given sentence xi ∈ Tt, the Parser takes as input the token
sequence τ and the gold standard functions (hg, dg). If the current configu-
ration ci is nondeterministic, the Parser derives the correct transition ti+1

from (hg, dg) using the oracle function o, passes (ci, ti+1) to the Guide as a
training instance, and derives the next configuration ci+1 by applying ti+1 to
ci. The Guide takes as input a feature model Φ (constant for all the sentences
of the training corpus) and the annotation functions Ax corresponding to the
current sentence x. When receiving the instance (ci, ti+1) from the Parser,
the Guide uses the feature model Φ to extract the parser state si, represented
as a feature vector, and passes the training instance (si, ti+1) to the Learner.
The Learner, parameterized by an inductive learning algorithm L, collects
instances in the training set Dt and finally applies L to induce a classifier ĝ
when the entire training corpus has been parsed.

Figure 4.7 shows the data flow during the parsing phase. In this case,
there is no gold standard analysis to guide the Parser, which only takes the
input sequence as input. If the current configuration ci is nondeterministic,
the Parser requests a prediction of the next transition by passing ci to the
Guide. However, once the predicted transition ti+1 is returned by the Guide,
the Parser applies ti+1 to the current configuration ci in exactly the same
way as during training. Furthermore, the Guide extracts the parser state si =
Φ(ci, Ax) in exactly the same way during parsing and training, using the model
Φ defined by the current feature specification sφ. The only difference is that,
instead of passing an instance (si, ti+1) to the Learner as training data, during
parsing it sends the state si and receives the predicted transition ti+1, which is
then passed on to the Parser. The Learner, finally, uses the function ĝ, induced
in the training phase, to map the state si to the transition ti+1 = ĝ(si).

One of the advantages of this architecture is that parsing is completely
separated from learning, which makes it possible to vary parsing methods

120 4 Inductive Dependency Parsing

and learning methods independently. The Parser has no knowledge of the fea-
ture model Φ and behaves in exactly the same way regardless of which features
are used for learning and prediction. The Learner only has to learn a mapping
from feature vectors to transitions, without knowing either how the features
are extracted or how the transitions are to be used. Finally, the Guide has no
knowledge about either parsing algorithms or learning algorithms, but only
handles the abstraction from configuration to states and passes data between
the Parser and the Learner. The Learner can also encapsulate the interface
to an external machine learning package, converting the feature vector con-
structed by the Guide to whatever special format is required by the external
module. In this way, different machine learning packages can be plugged in
without modifying the Guide module.

4.4.2 Implementation

The architecture presented above is realized in MaltParser (Nivre and Hall,
2005), a version of which is freely available for research and educational pur-
poses, together with a suite of tools for data conversion and evaluation.5 The
version of MaltParser used for the experiments in this book supports the
following functionality:

• Parser: The Parser implements the deterministic parsing algorithm in two
versions: Oracle-Parse for training and Guided-Parse for parsing.

• Guide: The Guide accepts specifications of arbitrary feature models, but
features are limited to dependency features, part-of-speech features and
lexical features.

• Learner: The Learner supports memory-based learning via an interface
to TiMBL.

The most recent version of the system extends this functionality by providing
alternative parsing algorithms, notably Covington’s incremental algorithms
for non-projective dependency parsing (Covington, 2001), and alternative
learning methods, such as support vector machines using the LIBSVM tools
(Wu et al., 2004).

5 URL: http://www.msi.vxu.se/users/nivre/research/MaltParser.html

5

Treebank Parsing

The problem of parsing unrestricted natural language text has been defined
in this study as the problem of assigning to each sentence in a text its correct
syntactic analysis. Conceived in this fashion, text parsing is essentially an
empirical problem and the accuracy of a text parsing system can only be
evaluated by comparing the analysis produced by the system to some kind of
gold standard. The standard method for carrying out this kind of evaluation
is to apply the system to a sample of text taken from a treebank, i.e., from
a corpus where each sentence is annotated with its correct analysis. In the
data-driven approach to text parsing, treebank data may also be used in
the training corpus, i.e., in the sample of text on which we base our inductive
inference. Using treebank data for training and evaluation is what we normally
understand by the term treebank parsing.

This chapter presents an experimental evaluation of inductive dependency
parsing based on treebank parsing. We use treebank data to train parser
guides, as described in the preceding chapter, and we use treebank data to
evaluate the quality of the resulting parsers, with respect to accuracy as well
as efficiency. Before we turn to the evaluation, we briefly discuss treebanks
and their use in research on syntactic parsing more generally, touching on
some of the methodological problems that arise in using treebank data for
parser evaluation. We then describe our experimental methodology, including
the data sets used, the models and algorithms evaluated, and the evaluation
metrics used to assess performance. The main part of the chapter is devoted
to the presentation and discussion of experimental results, focusing on the
influence of different kinds of parameters related to the feature model and to
the learning algorithm. We conclude the chapter with a final evaluation of the
best models and a comparison with related results in the literature.

122 5 Treebank Parsing

5.1 Treebanks and Parsing

A treebank can be defined as a linguistically annotated corpus that includes
some kind of syntactic analysis over and above part-of-speech tagging. The
term treebank appears to have been coined by Geoffrey Leech (Sampson, 2003)
and obviously alludes to the fact that the most common way of representing
the syntactic analysis is by means of a tree structure. However, in current
usage, the term is in no way restricted to corpora annotated with tree-shaped
representations, but applies to all kinds of syntactically analyzed corpora
(Abeillé, 2003a; Nivre, forthcoming).

Treebanks have been around in some shape or form at least since the
1970s. One of the earliest efforts to produce a syntactically annotated corpus
was made by Ulf Teleman and colleagues at Lund University, resulting in
more than 300,000 words of both written and spoken Swedish, annotated
manually with grammatical functions and a limited form of phrase structure,
an impressive achievement at the time but unfortunately documented only in
Swedish (Teleman, 1974; Einarsson, 1976a,b; Nivre, 2002). This treebank will
be reused in the experiments below.

However, it is only in the last ten to fifteen years that treebanks have been
produced on a large scale for a wide range of languages, usually by combining
automatic processing with manual annotation or post-editing. A fairly rep-
resentative overview of available treebanks for a number of languages can be
found in Abeillé (2003b), together with a discussion of certain methodological
issues. This volume is well complemented by the proceedings of the annual
workshops on Treebanks and Linguistic Theories (TLT) (Hinrichs and Simov,
2002; Nivre and Hinrichs, 2003; Kübler et al., 2004; Civit et al., 2005).

While corpus linguistics provided most of the early motivation for devel-
oping treebanks and continues to be one of the most important usage areas,
the use of treebanks in natural language parsing has increased dramatically
in recent years and has probably become the primary driving force behind
the development of new treebanks. Broadly speaking, we can distinguish two
main uses of treebanks in this area. The first is the use of treebank data in
the evaluation of syntactic parsers, which will be discussed in section 5.1.1.
The second is the application of inductive machine learning to treebank data,
exemplified by the majority of data-driven approaches to text parsing. These
two uses are in principle independent of each other, and the use of treebank
data in evaluation is not limited to data-driven parsing systems. However,
the data-driven method for research and development normally involves an
iterative training-evaluation cycle, which makes not only inductive inference
but also empirical evaluation an integral part of the methodology. This gives
rise to certain methodological problems, which will be treated in section 5.1.2.
Finally, in section 5.1.3 we will address the specific requirements on treebank
data for dependency parsing.

5.1 Treebanks and Parsing 123

5.1.1 Treebank Evaluation

Empirical evaluation of systems and components for natural language process-
ing is currently a very active field. With respect to syntactic parsing there are
essentially two types of data that are used for evaluation. On the one hand,
we have so-called test suites, i.e., collections of sentences that are compiled in
order to cover a particular range of syntactic phenomena without consider-
ation of their frequency of occurrence (Lehmann et al., 1996). On the other
hand, we have treebank samples, which are extracted to be representative
with respect to the frequency of different phenomena. Both types of data are
clearly relevant for the evaluation of syntactic parsers, but it is also clear that
the resulting evaluation will focus on different properties. Test suite evaluation
typically measures the coverage of a syntactic parser in terms of the number of
constructions that it can handle, without considering the relative frequency of
these constructions, although it can also give diagnostic information on issues
such as overgeneration and overacceptance (cf. Oepen and Flickinger, 1998).
Treebank evaluation, on the other hand, measures the average performance
that we can expect from the parser when applied to naturally distributed data
from the same source as the evaluation corpus. Given the view of text parsing
adopted in this study, it is clear that treebank evaluation is the most relevant
form of empirical evaluation.

Parser evaluation may focus on several different dimensions. For instance,
robustness (or coverage) can be evaluated by calculating how large a pro-
portion of the input sentences receive an analysis, and disambiguation (or
leakage) can be evaluated by computing the average number of analyses as-
signed to a sentence, normalized with respect to sentence length (Black et al.,
1993). For this kind of evaluation it is not even necessary to have annotated
treebank data. However, as noted by Carroll et al. (1998), these measures
are very weak in themselves, unless they are complemented by some kind of
qualitative evaluation of the analyses assigned to a given sentence. For the
investigations in this book, they are even less interesting, since our parsing
methods guarantee exactly one analysis per sentence for any input text.

Another dimension that can in principle be evaluated without annotated
treebank data is efficiency. Measuring time or memory consumption during
parsing and relating it to the size of the input only requires a sample of text.
Again, however, it is clear that this is a very weak form of evaluation, unless it
is combined with an assessment of analysis quality. In the case of dependency
parsing, it is trivial to construct an optimally efficient parser that simply
analyzes each word as a dependent of the preceding word.

This brings us to the evaluation of accuracy, which is clearly the most
important aspect of treebank evaluation. First, as we have just seen, it is often
a necessary condition for the interpretation of other forms of evaluation. In
most cases, it is simply not meaningful to compare two systems with respect to
robustness, disambiguation or efficiency unless we have some way of comparing
their respective accuracy. More importantly, however, the notion of empirical

124 5 Treebank Parsing

accuracy is at the very heart of the notion of text parsing, as defined in
this study. Whereas grammar parsing can be evaluated in terms of formal
notions such as consistency and completeness, there is simply no alternative
to an empirical evaluation of accuracy for text parsing. And the standard
methodology for this kind of evaluation is to use a sample of treebank data
as an empirical gold standard.

The basic idea is straightforward. If the treebank sample is representative
of the text language that we want to analyze, then applying the parser to the
text and comparing the output of the parser to the original annotation will
allow us to estimate the average accuracy of the parser when applied to an
arbitrary text taken from the same population. In the same fashion, comparing
the output of two different parsers applied to the same sample should allow us
to test the hypothesis that their average accuracy is different. On the face of
it, this is a standard application of statistical inference to experimental data.
In reality, there are a number of problems that arise in connection with this
evaluation method, problems related to data selection, to treebank annotation
and to evaluation metrics.

Starting with the problems of data selection, it is worth remembering that
any application of statistical inference is based on the assumption that we
have a random sample of the variable under consideration, or at least a set of
independent and identically distributed (i.i.d.) variables (Lindgren, 1993). To
what extent a treebank sample satisfies these conditions depends on a number
of factors, some of which are not under the control of the researcher wishing
to perform evaluation, such as the sampling procedure used when collecting
the data for the treebank in the first place. Even if data for the treebank
has been collected by means of a sampling procedure, this sampling is usually
performed on the level of text blocks, such as documents or paragraphs, which
means that the sampling conditions are not satisfied on the level of individual
sentences. This problem becomes even more serious if we measure accuracy
on the word or phrase level, as is the case for many accuracy metrics, since it
is quite obvious that the individual words or phrases of a single sentence are
not i.i.d. variables. By taking these factors into account when selecting data
for evaluation, we can mitigate the effects of statistical dependence between
measurements and avoid the overestimation of statistical significance, even if
we can never in practice attain the ideal situation of having a strict random
sample.

Besides problems having to do with the sampling procedure itself, we must
also ask ourselves which population we are sampling from. Throughout this
study we have referred to the problem of parsing unrestricted natural language
text, but it is highly questionable whether we can ever sample this population
by selecting data from existing treebanks. Many treebanks are limited to a
single genre of text, usually newspaper text which is easily accessible, with
the Wall Street Journal section of the Penn Treebank (Marcus et al., 1993)
being the most well-known example in parser evaluation. And even so-called
balanced corpora usually draw their data from a limited set of text types,

5.1 Treebanks and Parsing 125

often including newspaper text, literary works, and various forms of technical
and scientific writing, as in the influential Brown Corpus (Kucera and Francis,
1967). Although this is not literally unrestricted natural language text, it is
still the best we can get if we want to perform a statistical evaluation of
accuracy in text parsing. But we have to keep in mind that our results will
only be valid for the population from which our data have been sampled, and
that the delimitation of this population is often far from clear-cut.

Another way in which treebank data depart from the ideal of unrestricted
natural language text is that it has already been tokenized and segmented
into sentences. Although our definition of text parsing presupposes that a
text consists of a sequence of sentences, and that a sentence consists of a
sequence of tokens, it is a non-trivial problem to segment naturally occurring
text into sentences and tokens (Palmer, 2000), which means that we are bound
to overestimate parsing accuracy when using test samples that are tokenized
and segmented into sentences. Still, unless we are specifically interested in
the influence of tokenization and sentence segmentation on parsing accuracy,
this is a reasonable idealization in practice, which also has the advantage that
it makes it easier to compare different parsers on exactly the same set of
sentences and tokens.

A more serious problem is the role of the gold standard annotation in the
evaluation process. The basic assumption in treebank evaluation of accuracy
is that the gold standard provides the correct analysis for each sentence. In
practice, this assumption is problematic for several reasons. First of all, any
annotated corpus is bound to contain plain errors in the annotation, which
means that in some cases the gold standard will provide an incorrect analysis
of the sentence in question. If errors are rare and randomly distributed, this
can be regarded as a minor problem.

Secondly, we may question the assumption that every sentence in a text has
a single correct analysis, even relative to a fixed model of syntactic representa-
tion. Besides sentences that are genuinely ambiguous even in context, there is
the problem of syntactic indeterminacy (Matthews, 1981), which means that
more than one syntactic analysis may be compatible with an unambiguous
semantic interpretation of a sentence and that one of these analyses therefore
has to be chosen more or less arbitrarily. This may in turn lead to inconsistent
annotation of the same syntactic construction, a problem that is supposed to
be eliminated by detailed annotation guidelines, but which nevertheless exists
in practice, as shown by Dickinson and Meurers (2003).

Finally, when using treebank data for evaluation it is often necessary to
convert the annotation from one type of representation to another in order to
fit the output of the parsers to be evaluated. Thus, many treebank annotation
schemes include empty categories, which are normally removed when evaluat-
ing parsers that do not include such elements. Another relevant example is the
conversion of constituency-based representations to dependency-based repre-
sentations, which is necessary in the experiments reported below. This kind
of conversion can seldom be performed with perfect accuracy, which means

126 5 Treebank Parsing

that the converted annotation will contain a larger proportion of questionable
analyses than the original one.

Despite all these problems, however, an annotated treebank can in most
cases be regarded as a reasonable approximation to a gold standard, or at
least as a sufficiently objective standard for the evaluation of accuracy in text
parsing. The final methodological issue to be discussed concerning treebank
evaluation is how to measure the correspondence between the output of a
parser and the gold standard annotation, i.e., the choice of evaluation metric.
Given a test sample Te = (x1, . . . , xn), with the corresponding gold standard
annotation Ag = (yg

1 , . . . , yg
n) and the output Ap = (yp

1 , . . . , yp
n) of some parser

p, an obvious metric to use is the proportion of sentences where the parser
output completely matches the gold standard annotation, usually referred to
as the exact match (EM) criterion (where δ is the so-called Kronecker’s δ that
has value 1 if the two arguments are identical and 0 otherwise):

EM =
1
n

n∑
i=1

δ(yg
i , yp

i) (5.1)

The EM metric has the advantage that the variables observed are sentences,
rather than words or phrases, which makes statistical independence assump-
tions somewhat less problematic. At the same time, it is a rather crude metric,
since an error in the analysis of a single word or constituent has exactly the
same impact on the result as the failure to produce any analysis whatsoever.

Consequently, the most widely used evaluation metrics today are based
on various kinds of partial correspondence between the parser output and
the gold standard parse. The most well-known of these evaluation metrics are
the PARSEVAL measures (Black et al., 1991; Grishman et al., 1992), which
consider the number of matching constituents between the parser output and
the gold standard, and which have been widely used in parser evaluation, in
particular using data from the Penn Treebank. By comparing the number m of
matching constituents to the number p of constituents produced by the parser
and the number c of constituents in the gold standard analysis, we can measure
the bracketed precision (m

p) and the bracketed recall (m
c). Only considering the

bracketing has the advantage that it enables comparisons between parsers that
use different sets of categories to label constituents. However, if constituent
labels are also taken into account, we get labeled precision and labeled recall
instead. Finally, it is common to include statistics on the mean number of
crossing brackets per sentence (or the proportion of sentences that have zero
crossing brackets), where a crossing bracket occurs if a parser constituent
overlaps a gold standard constituent without one being properly contained in
the other.

Although the PARSEVAL measures make very few assumptions about the
form of syntactic representations, they do presuppose that representations
are constituency-based. For dependency-based representations, the closest
correspondent to these metrics is the attachment score (AS) (Eisner, 1996a,b;

5.1 Treebanks and Parsing 127

Collins et al., 1999), which measures the proportion of words in a sentence
that are attached to the correct head according to the gold standard. If we
let hg denote the gold standard assignment of dependents to heads for the
sentence x = (w1, . . . , wk) and let hp denote the assignment produced by the
parser p, then we can define the unlabeled attachment score (ASU) of p with
respect to x as follows:

ASU (x) =
1
k

k∑
i=1

δ(hg(i), hp(i)) (5.2)

If we also take dependency labels into account, as proposed by Lin (1995),
we get a labeled version of the attachment score (ASL), which is applicable
to parsers that produce labeled dependency graphs (using dg and dp for the
assignment of dependency labels to words by analogy with hg and hp):

ASL(x) =
1
k

k∑
i=1

δ(hg(i), hp(i)) · δ(dg(i), dp(i)) (5.3)

When calculating the attachment score for the entire test sample, we may
either calculate the mean per sentence (sometimes called the macro-average)
or the mean per word (the micro-average). Although it can be argued that
the former is more natural, the latter is more common in the literature. One
good reason for this is that the sentence score for very short sentences can
only assume a discrete set of values, which may distort the overall scores.

The PARSEVAL measures have been criticized for being too permissive
in some situations while sometimes penalizing the same error more than once
(Lin, 1995; Carroll and Briscoe, 1996; Carpenter and Manning, 1997; Car-
roll and Briscoe, 1996). Regardless of these problems, however, the PAR-
SEVAL measures and the attachment scores for dependency representations
have the disadvantage that they are only applicable to one kind of represen-
tation. As an alternative to these metrics, several researchers have therefore
proposed evaluation schemes based on dependency structure, where both the
treebank annotation and the parser output, whether constituency-based or
dependency-based, are converted into sets of more abstract dependency rela-
tionships (Lin, 1995, 1998; Carroll et al., 1998; Kübler and Telljohann, 2002;
Carroll et al., 2003). Recently, this has led to the development of dependency
banks for parser evaluation (Carroll et al., 2003; King et al., 2003; Forst et al.,
2004). Having more abstract representations also makes the scheme less sen-
sitive to the indeterminacy problem in annotation. The only drawback with
this methodology is the overhead involved in converting parser representa-
tions to the more abstract dependency relationships and the possible errors
that may be introduced in this process. In situations where only one kind of
representation is relevant, it may therefore still be justified to use the more
representation-dependent metrics. Thus, in the experiments reported below
we will mainly use metrics based on exact match and attachment scores for
dependency-based representations.

128 5 Treebank Parsing

5.1.2 Treebank Learning

In the data-driven approach to text parsing, treebank data is crucial not only
for the evaluation but also for the development of parsing systems, since the
core component of this approach is the application of inductive inference to
a representative sample of data in the training phase. In principle, the use of
treebank data in the training phase is independent of its use in evaluation,
but in practice they are intimately connected since the development of a data-
driven parser normally involves an iterative training-evaluation cycle, where
different parameters are varied systematically to improve overall performance.

During both development and final evaluation, it is essential that the data
used for evaluation is distinct from the data used for training. In both cases,
we are interested in estimating the expected accuracy, i.e., the accuracy that
we can expect on average when applying the parser to an independent test set,
and training set accuracy is in general a very poor estimate of this quantity.
Training set accuracy increases consistently with model complexity, but a
model with very high training set accuracy often overfits the training data
and does not generalize well (Hastie et al., 2001).

However, repeatedly using the same test set for evaluation will produce a
similar effect, which means that the test set accuracy may substantially over-
estimate the expected accuracy on unseen data. It is important in this context
to distinguish two different but related problems: model selection and model
assessment (Hastie et al., 2001). Model selection is the problem of estimating
the performance of different models in order to choose the (approximate) best
one; model assessment is the problem of estimating the expected accuracy of
the finally selected model.

In a data-rich situation, the standard solution is to randomly divide the
available data into three parts: a training set, a validation set, and a test set.
The training set is used for inductive inference; the validation set is used
(repeatedly) to estimate accuracy for model selection; and the test set is
used for the assessment of the accuracy of the final chosen model. A well-
known example of this methodology is the standard split of the Wall Street
Journal section of the Penn Treebank into sections 02–21 for training, one of
the sections 00, 22 and 24 for validation, and section 23 for final testing.

In a data-poor situation, there are various techniques that can be used
to approximate the validation step without having a separate validation set,
either by analytical methods, such as Bayesian Information Criterion (BIC)
or Minimum Description Length (MDL), or by efficient sample re-use, such as
cross-validation and bootstrap methods (Hastie et al., 2001). Although these
techniques can also to some extent be used for model assessment, it is more
common to combine them with an independent test set for the final evaluation.

Whether treebank parsing should be considered a data-rich or a data-poor
situation depends to some extent on which languages we are interested in. For
English, there are several treebanks of reasonable size available, which explains
the standard training-validation-test setup usually applied to the Wall Street

5.1 Treebanks and Parsing 129

Journal data. However, it is also worth pointing out that, even if section 23
is only used once in every published study based on this data set, it has over
the years been used repeatedly by the same and different research groups,
which in fact amounts to a kind of repeated testing, albeit at a higher level
of abstraction. Thus, the value of this data set as a basis for estimation of
expected accuracy is by now highly dubious, and it is probably better regarded
today as a benchmark set.

For a language like Swedish, which is of special interest in this study,
the availability of treebank data is rather limited, which motivates the use
of cross-validation for model selection, reserving a separate test set for the
final evaluation. Finally, it is worth remembering that for most languages of
the world, there are simply no treebank data available at all, which rules out
supervised learning methods completely.

5.1.3 Treebanks for Dependency Parsing

When the data-driven approach to text parsing is combined with supervised
learning methods, training data must be annotated with the same kind of syn-
tactic representations that are used in the parsing system. In our case, this
means that we require treebanks that are annotated with dependency graphs.
The availability of such treebanks has increased substantially in recent years.
In addition to the Prague Dependency Treebank of Czech (Hajič, 1998; Hajič
et al., 2001), which is probably the most well-known treebank of this kind,
we find the METU Treebank of Turkish (Oflazer et al., 2003), the Danish
Dependency Treebank (Kromann, 2003), the Eus3LB Corpus of Basque
(Aduriz et al., 2003), the Turin University Treebank of Italian (Bosco and
Lombardo, 2004), and the parsed corpus of Japanese described in Kurohashi
and Nagao (2003). Furthermore, there are hybrid treebanks, which include
both constituency and dependency annotation, such as the TIGER Treebank
of German (Brants et al., 2002) and the Alpino Treebank of Dutch (Van der
Beek et al., 2002).

In fact, whereas many of the early large-scale treebank projects, such as
the Lancaster Parsed Corpus (Garside et al., 1992) and the original Penn Tree-
bank (Marcus et al., 1993), were based on constituency annotation only, most
annotation schemes today include some kind of functional analysis that can be
regarded as a partial dependency analysis. This is true of the Penn Treebank
II annotation scheme (Bies et al., 1995), which adds functional tags to the
original phrase structure annotation, and similar combinations of constituent
structure and grammatical functions are found in the SUSANNE annotation
scheme (Sampson, 1995), in the ICE-GB Corpus of British English (Nelson
et al., 2002), and in the adaptations of the Penn Treebank II schemes that
have been developed for Chinese (Xue et al., 2004), Korean (Han et al., 2002),
Arabic (Maamouri and Bies, 2004) and Spanish (Moreno et al., 2003).

Constituency-based treebanks, with or without functional annotation, can
in principle be converted to dependency treebanks. As shown by Gaifman
(1965), it is straightforward to convert a constituency tree to an unlabeled

130 5 Treebank Parsing

dependency tree, provided that every constituent c has a unique head child
ch. The dependency tree is obtained by recursively letting the head d of each
non-head child cd of c be a dependent to the head h of the head child ch

of c (where a terminal node ch = h is its own head) (cf. Xia and Palmer,
2001). This method has been used in several studies to convert constituency-
based treebank annotations to dependency structures, notably using data from
the Penn Treebank (Collins, 1996, 1997, 1999; Xia and Palmer, 2001; Xia,
2001; Yamada and Matsumoto, 2003; Nivre and Scholz, 2004), but also from
the German treebanks TüBa-D (Kübler and Telljohann, 2002) and TIGER
(Bohnet, 2003; Ule and Kübler, 2004).

In practice, there are normally a number of factors that interact to make
some of the converted dependency representations less than optimal. Besides
problems that are inherent in the dependency-based approach to syntactic
representations, such as the existence of constructions that are not readily
analyzed as single-headed, the main problem is that it may be difficult to
identify the head child in a constituency representation even when such a child
exists, since most constituency-based annotation schemes do not mark heads
explicitly. The standard solution to this problem is to use head percolation
tables (Magerman, 1995; Collins, 1996, 1999) that provide heuristic rules for
identifying the head child in a constituent of a specific type. Figure 5.1 shows
the head percolation table used by Yamada and Matsumoto (2003) and Nivre
and Scholz (2004). The first column contains the constituent labels found in
the Penn Treebank. For each constituent label, the second column specifies
the direction of search (from the right [R] or from the left [L]) and the second
column gives a list of potential head child categories, partially ordered by
descending priority (with the vertical bar | symbolizing equal priority). For
example, for a constituent of type NP, we start searching from the right for
a child of type POS, NN, NNP, NNPS or NNS. The first child matching this
condition is chosen as the head. If no child matching this condition is found,
we proceed to search for a child of type NX, etc. If the entire list is exhausted,
the first child encountered when searching in the specified direction is chosen
as the head.

When applied to the Penn Treebank, a head percolation table of this kind
gives a quite reasonable conversion to dependency structures for the majority
of constituent types. However, for certain types of constituents, such as com-
plex noun phrases involving coordination, it is extremely difficult to devise
a set of rules that guarantees an adequate conversion in all cases. The most
elaborate scheme in this respect is probably the rules used by Collins (1999),
where the head percolation table is supplemented by special rules for noun
phrases and coordination (cf. also Bikel, 2004).

The problem of identifying head children in constituency representations
is mitigated if an extensive functional annotation is present. Thus, in convert-
ing the Swedish treebank Talbanken (Einarsson, 1976a,b) to a dependency
treebank, the problem of identifying head children can be solved almost com-
pletely by only considering the functional annotation (Nilsson et al., 2005).

5.1 Treebanks and Parsing 131

NP R POS|NN|NNP|NNPS|NNS NX JJR CD JJ JJS RB QP NP
ADJP R NNS QP NN $ ADVP JJ VBN VBG ADJP JJR NP JJS DT

FW RBR RBS SBAR RB
ADVP L RB RBR RBS FW ADVP TO CD JJR JJ IN NP JJS NN

CONJP L CC RB IN
FRAG L
INTJ R
LST L LS :
NAC R NN|NNS|NNP|NNPS NP NAC EX $ CD QP PRP VBG JJ

JJS JJR ADJP FW
PP L IN TO VBG VBN RP FW

PRN R
PRT L RP
QP R $ IN NNS NN JJ RB DT CD NCD QP JJR JJS

RRC L VP NP ADVP ADJP PP
S R TO IN VP S SBAR ADJP UCP NP

SBAR R WHNP WHPP WHADVP WHADJP IN DT S SQ SINV
SBAR FRAG

SBARQ R SQ S SINV SBARQ FRAG
SINV R VBZ VBD VBP VB MD VP S SINV ADJP NP

SQ R VBZ VBD VBP VB MD VP SQ
UCP L

VP L VBD VBN MD VBZ VB VBG VBP VP ADJP NN NNS NP
WHADJP R CC WRB JJ ADJP
WHADVP L CC WRB

WHNP R WDT WP WP$ WHADJP WHPP WHNP
WHPP L IN TO FW

NX R POS|NN|NNP|NNPS|NNS NX JJR CD JJ JJS RB QP NP
X R

Fig. 5.1. Head percolation table for the Penn Treebank

However, the presence of functional annotation is even more crucial if we
want to convert constituent representations to labeled dependency graphs,
since dependency type labels can normally be inferred from the functional
annotation but only indirectly from the constituency annotation.

The experiments presented in this chapter are based on data from Swedish
and English. The choice of these languages does not reflect the availability of
dependency treebanks but rather a desire to develop better parsing systems
for Swedish, on the one hand, and to compare the performance of the system
to available benchmarks for English, on the other hand. An unfortunate con-
sequence of this choice is that the experiments will in both cases be performed
on dependency treebanks that are the result of conversion from another kind
of annotation. Experiments on genuine dependency treebanks, notably the
Prague Dependency Treebank and the Danish Dependency Treebank, have
also been performed but will not be reported here. The main reason is that

132 5 Treebank Parsing

Genom PR AAPR

skattereformen NNDDSS AA

införs VVPSSMPA FV

individuell AJ SSAT

beskattning VN SS

av PR SSETPR

arbetsinkomster NN SS SSET

. IP IP

Fig. 5.2. Swedish sentence annotated according to MAMBA

this requires special treatment of non-projective dependency graphs, which
would take us too far afield in this study. Preliminary results on the use of
inductive dependency parsing in combination with graph transformation tech-
niques to capture non-projective structures are reported by Nivre and Nilsson
(2005).

5.2 Experimental Methodology

As noted above, the experimental evaluation of the deterministic and memory-
based version of inductive dependency parsing is based on data from two
languages, Swedish and English. We will systematically vary parameters of
the feature model and the learning algorithm in order to study their influence
on parsing accuracy and efficiency. We will also compare the results to relevant
previous research. In this methodological section, we first describe the data
sets used in the experiments, the parameters varied in the experiments, and
the metrics used to evaluate parsing accuracy and efficiency.

5.2.1 Treebank Data

The Swedish data for the experiments come from Talbanken (Einarsson,
1976a,b), a syntactically annotated corpus of written and spoken Swedish,
created in a series of projects at the University of Lund in the 1970s. In
this study, we use the Professional Prose section, containing informative and
argumentative text from brochures, newspapers, and books. The syntactic an-
notation follows the MAMBA scheme (Teleman, 1974), which is described by
its creators as an eclectic combination of constituent structure, dependency
structure and topological field analysis. Figure 5.2 shows an example of the
MAMBA annotation applied to a Swedish sentence taken from Talbanken.1

1 Word-by-word gloss: ‘Through tax-reform-def introduce-past-passive individual
taxation of work-income-plur.’ Translation: ‘Through the tax reform individual
taxation of work incomes is introduced.’

5.2 Experimental Methodology 133

The annotation consists of two layers, the first being a lexical analysis,
consisting of part-of-speech information including morphological features, and
the second being a syntactic analysis, in terms of grammatical functions. Both
layers are flat in the sense that they consist of tags assigned to individual
word tokens, but the syntactic layer also gives information about constituent
structure, as exemplified with respect to the grammatical subject in figure 5.2.
All the words belonging to the subject noun phrase individuell beskattning av
arbetsinkomster (individual taxation of work incomes) are annotated with
the tag SS for subject, but the head noun beskattning (taxation) is marked
as such by having only this tag, while the pre-modifying adjective individuell
(individual) is also tagged AT for adjectival modifier and the words of the
post-modifying prepositional phrase av arbetsinkomster (of work incomes)
are tagged ET for nominal post-modifier. Within the prepositional phrase,
the noun arbetsinkomster (work incomes) is marked as the head, while the
preposition av (of) gets an additional tag PR for the prepositional function.

The constituent structure recognized in MAMBA is rather flat, especially
on the clause level where the analysis to a large extent is modeled after the
topological field analysis proposed by Diderichsen (1946) for the Scandinavian
languages. The main constituents recognized in the clause are the following:

• Verb (–V)
• Subject (–S)
• Object (–O)
• Predicative (–P)
• Adverbial (–A)

A more fine-grained classification of these constituents is obtained by varying
the first letter of the two-letter tag. Thus, finite verbs are tagged FV, non-
finite verbs IV; logical subjects are tagged ES, formal subjects FS, and other
subjects SS, etc. In addition to the constituents recognized in Diderichsen’s
topological field model, there is a limited phrase structure analysis of noun
phrases, prepositional phrases, adjective phrases, and subordinate clauses,
with special tags for internal grammatical functions. Altogether, there are
42 distinct grammatical function tags in the MAMBA annotation scheme
(Teleman, 1974).

Thanks to the rich functional annotation it is relatively straightforward to
convert the MAMBA annotation to dependency graphs. For the majority of
phrases, the syntactic head is explicitly marked and the function tags assigned
to other constituents can be used to label dependency arcs. However, there are
two types of structures that require special treatment. The first is the clause
structure, where there is no explicit indication of a syntactic head, and where
the following categories are considered as candidate heads in descending order
of priority:

1. The leftmost finite verb (FV).
2. The leftmost non-finite verb (IV).

134 5 Treebank Parsing

ADV Adverbial modifier
APP Apposition
ATT Attribute (adnominal modifier)
CC Coordination (conjunction or second conjunct)
DET Determiner
ID Non-first element of multi-word expression (idiom)
IM Infinitive dependent on infinitive marker
INF Infinitival complement
IP Punctuation
OBJ Object
PR Complement of preposition
PRD Predicative complement
ROOT Dependent of special root node
SUB Subject
UK Head verb of subordinate clause dependent on complementizer
VC Verb chain (nonfinite verb dependent on other verb)
XX Unclassifiable dependent

Fig. 5.3. Dependency types in Swedish treebank

3. The head of the leftmost predicative complement (–P).
4. The head of the leftmost subject, object or adverbial (–S, –O, –A).
5. The leftmost word.

The second type of structure is coordination, where the MAMBA annotation
treats every conjunct as a head. In our conversion to dependency structure, we
adopt a Mel’čuk style analysis of coordination and treat the leftmost conjunct
as the head (cf. section 3.1.2).

After the initial conversion to dependency graphs, we apply two types of
transformations to these graphs. The first is related to some of the traditional
open issues in dependency grammar, where we prefer a different analysis than
the one assumed in the MAMBA annotation. More precisely:

1. Prepositional phrases are headed by the preposition, which takes the head
noun of the nominal complement as a dependent.

2. Subordinate clauses with an overt complementizer (except relative clauses)
are headed by the complementizer, which takes the finite verb of the sub-
ordinate clause as a dependent.

3. Infinitival verb phrases with an overt infinitive marker are headed by the
infinitive marker, which takes the infinitive verb as a dependent.

The second type of transformation concerns three kinds of structure that do
not have a clear-cut dependency analysis, namely idioms (including multi-
word proper names and compound function words), verb chains and coordi-
nate structures. By analogy with Tesnière’s notion of dissociate nuclei, these

5.2 Experimental Methodology 135

PP
Genom

(Through

� �
�

adv

NN
skattereformen
the-tax-reform

� �
�

pr

VB
införs

is-introduced

JJ
individuell

individual

� �
�

att

NN
beskattning

taxation

� �
�

sub

PP
av
of

� �
�

att

NN
arbetsinkomster

work-incomes

� �
�

pr

MAD
.
.)

�

� �ip

Fig. 5.4. Dependency graph for Swedish sentence, converted from Talbanken

constructions are treated as left-headed chains, where each subsequent ele-
ment is a dependent of the immediately preceding one, and where left and
right dependents of the entire unit are attached to the leftmost and rightmost
element, respectively (and internal dependents to the leftmost element). In the
case of verb chains, this means that left dependents will formally be treated
as dependents of the leftmost verb (normally the finite verb in Swedish), while
right dependents will be attached to the rightmost verb (possibly a non-finite
verb).

The final thing to note about the conversion of the MAMBA annotation
is the set R of dependency types used as arc labels. On the one hand, we have
collapsed some of the finer distinctions in the original set of grammatical func-
tions, where no less than twelve different types of adverbials are distinguished.
On the other hand, we have added a few dependency types for relations that
are not marked explicitly in the MAMBA annotation, notably for verb chains
and coordination. This gives us a set R of 17 dependency labels (including
the special root label r0 = ROOT), which are listed with explanations in
figure 5.3.

The part-of-speech tags included in the original annotation of Talbanken
have not been used in the experiments, mainly because there is no part-of-
speech tagger available for this tagset. Since we want to be able to apply
the parsing system to new texts, we have therefore used a statistical tagger
trained on the much larger Stockholm-Ume̊a Corpus (Ejerhed and Källgren,
1997), using a tagset consisting of 150 tags, to preprocess the Swedish data
both for training and for evaluation. The estimated accuracy of the tagger,
when evaluated on held-out data from the Stockholm-Ume̊a Corpus is 94.4%.
Figure 5.4 shows the result of converting the sentence in figure 5.2 using the
procedure described in this section and tagging it with the statistical part-of-
speech tagger (although the morphological features of the part-of-speech tags
have been suppressed for readability reasons).

The dependency treebank obtained by converting the Professional Prose
section of Talbanken consists of 6316 sentences and 97623 tokens (including
punctuation), which gives a mean sentence length of 15.46 tokens. For previous
experiments, the sentences of this treebank have been randomly divided into

136 5 Treebank Parsing

((S

(NP-SBJ (JJ Economic) (NN news))

(VP (VBD had)

(NP

(NP (JJ little) (NN effect))

(PP (IN on)

(NP (JJ financial) (NNS markets)))))

(. .)))

Fig. 5.5. English sentence annotated according to Penn Treebank II

ten equally large sections, numbered 0–9, where sections 1–8 have been used as
training data and section 9 as validation data, saving section 0 for later studies
(Nivre et al., 2004; Nivre and Nilsson, 2004; Nivre, 2004a). In this study, we
instead use nine-fold cross-validation on sections 1–9 for model selection, and
use section 0 as the test set for the final model assessment. The data set used
for cross-validation consists of 5685 sentences and 87757 tokens, while the
final test set consists of 631 sentences and 9841 tokens.

The English data are taken from the Penn Treebank (Marcus et al., 1993),
which has been the most widely used treebank for parser evaluation over
the last decade. In this study, we use the Wall Street Journal section of the
treebank, with the Penn Treebank II annotation scheme (Bies et al., 1995),
which combines constituency analysis with a limited functional annotation.
Figure 5.5 repeats the example sentence used in chapters 1–4, this time in the
original annotation format using the full node labels, composed of bracketing
labels and grammatical function labels.

We assume that the Penn Treebank II annotation scheme is familiar to
most readers and proceed directly to a discussion of the way in which this
annotation can be converted to dependency graphs. For the unlabeled depen-
dency graphs we rely on the standard method described in section 5.1.3, using
the head percolation table of Yamada and Matsumoto (2003), which is a
slight modification of the rules used by Collins (1999). Using this conversion
scheme permits us to make exact comparisons with the parser of Yamada
and Matsumoto (2003), as well as the parsers of Collins (1997) and Charniak
(2000), which are evaluated on the same data set in Yamada and Matsumoto
(2003). The head percolation table can be found in figure 5.1.

In addition to the structural conversion, we also have to derive dependency
types to use as arc labels. Compared to the Swedish treebank, the functional
annotation in the Penn Treebank is much less comprehensive, which makes
this a non-trivial problem. Given an arc i → j, derived from a local constituent
tree where wi is the head of the head child h and wj is the head of a non-
head child d, let M , H and D be the original labels on the mother node,
head child h and child d, respectively, except that H and D are replaced by

5.2 Experimental Methodology 137

AMOD Modifier of adjective or adverb (phrase adverbial)
DEP Other dependent (default label)
NMOD Modifier of noun (including complement)
OBJ Object
P Punctuation
PMOD Modifier of preposition (including complement)
PRD Predicative complement
ROOT Dependent of special root node
SBAR Head verb of subordinate clause dependent on complementizer
SBJ Subject
VC Verb chain (nonfinite verb dependent on other verb)
VMOD Modifier of verb (sentence or verb phrase adverbial)

Fig. 5.6. Dependency types in English treebank

TAG if they are part-of-speech tags. The labels M , H and D, stripped of
their function tags, have been used by Collins (1999) to construct complex
dependency labels (M,H,D, dir), where dir is L or R (for left and right
dependency, respectively). In our experiments, we instead use these labels
to formulate a set of rules for choosing the arc label r, i

r→ j. In order of
descending priority, the rules are as follows:

1. If D is a punctuation category, r = P.
2. If D contains the function tag SBJ, r = SBJ.
3. If D contains the function tag PRD, r = PRD.
4. If M = VP, H = TAG and D = NP (without any function tag), r = OBJ.
5. If M = VP, H = TAG and D = VP, r = VC.
6. If M = SBAR and D = S, r = SBAR.
7. If M = VP, S, SQ, SINV or SBAR, r = VMOD.
8. If M = NP, NAC, NX or WHNP, r = NMOD.
9. If M = ADJP, ADVP, QP, WHADJP or WHADVP, r = AMOD.

10. If M = PP or WHPP, r = PMOD.
11. Otherwise, r = DEP.

The complete set R of dependency types, including the root label r0 = ROOT,
is listed in figure 5.6. The explanations given reflect the intended interpreta-
tion of each category, although it is clear that the rules for choosing depen-
dency types will also cover cases that do not fit the descriptions. A notoriously
difficult problem is the treatment of complex noun phrases, which have a very
flat structure in the Penn Treebank. For example, coordinated noun phrases
will often be analyzed as structures where the last conjunct is the head, while
preceding conjuncts as well as the coordinating conjunction are analyzed as
dependents of the NMOD type. Similar problems can be identified for most of
the rules and categories. However, having a set of dependency types that are

138 5 Treebank Parsing

JJ
Economic

� �
�

nmod

NN
news

� �
�

sbj

VBD
had

JJ
little

� �
�

nmod

NN
effect

� �
�

obj

IN
on

� �
�

nmod

JJ
financial

� �
�

nmod

NNS
markets

� �
�

pmod

PU
.

�

� �p

Fig. 5.7. Dependency graph for English sentence, converted from the Penn Treebank
(cf. figures 1.1, 2.2 and 3.1)

Table 5.1. Data sets for training, validation and test; Sec: section, W: number of
tokens, S: number of sentences, W/S: mean number of tokens per sentence

Swedish English
Data set Sec W S W/S Sec W S W/S

Training 1–9 87757 5685 15.44 01-21 950028 39832 23.85
Validation – – – – 00 46451 1921 24.18
Test 0 9841 631 15.60 23 56684 2416 23.46

similar in nature and cardinality to the Swedish set will make results more
comparable.

As regards part-of-speech tagging, we use the gold standard tags from the
Penn Treebank for training, and a statistical tagger trained on section 2-21 for
validation and final testing. The tagger has an accuracy of 96.1% on section
23. In the final evaluation, we will also evaluate the parser on gold standard
tags to see how large proportion of the errors can be attributed to tagging
errors. Figure 5.7 shows the result of converting the sentence in figure 5.5
using the procedure described in this section (with the gold standard tags
from the treebank).

The dependency treebank obtained by converting the Wall Street Journal
section of the Penn Treebank consists of 49208 sentences and 1173766 tokens,
which gives a mean sentence length of 23.85 words. We use sections 2-21 for
training (39832 sentences, 950028 tokens), section 00 for validation and model
selection (1921 sentences, 46451 tokens), and section 23 for the final model
assessment (2416 sentences, 56684 tokens).

Table 5.1 gives an overview of all the data sets used in the experiments.
There is no separate validation data set for Swedish, given that we use cross-
validation for model selection.

5.2 Experimental Methodology 139

5.2.2 Models and Algorithms

As emphasized on several occasions, the parsing methods evaluated in these
experiments are only one possible instantiation of the general framework of
inductive dependency parsing. This means that, although the experiments will
involve a systematic study of the influence of different variables on accuracy
and efficiency, there are also many factors that will be kept constant. This
holds in particular for the parsing algorithm, which will in all cases be the
deterministic arc-eager algorithm presented and analyzed in section 3.4. But
it also holds for the learning method, in the sense that we will only consider
memory-based learning algorithms, as described in section 4.3, although we
will explore many variants of this general approach to machine learning.

The first part of the experiment, presented in section 5.3, will be devoted to
parameters of the feature model, exploring different combinations of the three
types of features discussed in section 4.2: part-of-speech features, dependency
features, and lexical features. We will begin with simple models based only
on part-of-speech features and gradually increase model complexity by adding
first dependency features and then lexical features. The different models will
mainly be evaluated with respect to parsing accuracy, but a selected subset
will also be evaluated for efficiency. Finally, we will consider the learning
curves of different models, i.e., parsing accuracy as a function of the size of
the training corpus. Throughout the first part, the parameters of the learning
algorithm will be kept constant. As described in section 4.3.2, we will use the
following settings for the k-NN classification provided by the memory-based
learner:

1. Number of nearest distances: k = 5
2. Distance metric: MVDM with l = 3
3. Feature weighting: None
4. Distance-weighted class voting: ID weighting.

In terms of the TiMBL system, this corresponds to the following parameter
settings: -k 5 -m M -L 3 -w 0 -d ID (cf. Daelemans et al., 2004).

The second part of the experiment, presented in section 5.4, will explore
some of the options provided by TiMBL for the memory-based learning and
classification. In particular, we will consider the influence of different k values
and distance metrics, in interaction with different schemes for feature weight-
ing and distance-weighted voting. Throughout the second part, the parameters
of the feature model will in principle be kept constant, but we will consider
two different feature models, one that is lexicalized and one that is not.

The first two parts of the experiment constitute the validation or model
selection phase, in the terminology of section 5.1.2. The third and final part
of the experiment is the final evaluation or model assessment phase, where
we apply the best models with the best settings to a test data set that has
not been used in the validation phase. However, it is important to keep in
mind that, because of the complex interaction of feature models, learning

140 5 Treebank Parsing

algorithm parameters and properties of the data sets, there is no guarantee
that the models and settings selected for the final evaluation are in fact truly
optimal even for the given data sets.

5.2.3 Evaluation

We will use two different metrics to evaluate parsing accuracy, attachment
score (AS) and exact match (EM). AS measures the proportion of tokens
that are correctly analyzed, while EM measures the proportion of sentences
that are assigned a completely correct dependency graph. Both metrics come
in an unlabeled version, which only considers the attachment of dependents
to head, and a labeled version, which also takes the dependency type labels
into account.

Definition 5.1. Given a test sample Te = (x1, . . . , xm), consisting of m sen-
tences, where each sentence xi = (w1, . . . , wk) consists of ki tokens, and
the total number of tokens in the sample is n (i.e., n =

∑m
i=1 ki). Let

Ag = (Gg
1, . . . , G

g
m) be the dependency graphs of the gold standard anno-

tation, let Ap = (Gp
1, . . . , G

p
m) be the dependency graphs produced by parser

p, let Gg
i = (Vxi

, Eg
i , Lg

i) and Gp
i = (Vxi

, Ep
i , Lp

i), and let hg
i , dg

i , hp
i and dp

i be
the following functions:

hg
i (j) = l ⇔ (l, j) ∈ Eg

i

dg
i (j) = r ⇔ ∃l : ((l, j), r) ∈ Lg

i

hp
i (j) = l ⇔ (l, j) ∈ Ep

i

dp
i (j) = r ⇔ ∃l : ((l, j), r) ∈ Lp

i

The unlabeled attachment score ASU of p with respect to Te and Ag is:

ASU =
1
n

m∑
i=1

ki∑
j=1

δ(hg
i (j), h

p
i (j))

The labeled attachment score ASL of p with respect to Te and Ag is:

ASL =
1
n

m∑
i=1

ki∑
j=1

δ(hg
i (j), h

p
i (j)) · δ(d

g
i (j), d

p
i (j))

The unlabeled exact match EMU of p with respect to Te and Ag is:

EMU =
1
m

m∑
i=1

δ(hg
i , h

p
i)

The labeled exact match EML of p with respect to Te and Ag is:

EML =
1
m

m∑
i=1

δ(hg
i , h

p
i) · δ(d

g
i , d

p
i)

5.2 Experimental Methodology 141

In the final evaluation in section 5.5, we will also provide a breakdown of the
attachment score for different dependency types, which will be computed as
unlabeled attachment score, (labeled) precision, (labeled) recall and (labeled)
Fβ measure (β = 1) for each dependency type r.

Definition 5.2. Let Te be a test sample and let hg
i , dg

i , hp
i and dp

i be defined
as in definition 5.1. The unlabeled attachment score ASU (r) of dependency
type r for parser p with respect to Te and Ag is:

ASU (r) =
|{wj ∈Te | dg

i (j)=r, hg
i (j)=hp

i (j)}|
|{wj ∈Te | dg

i (j)=r}|

The precision P(r) of r for p with respect to Te and Ag is:

P(r) =
|{wj ∈Te | dp

i (j)=dg
i (j)=r, hg

i (j)=hp
i (j)}|

|{wj ∈Te | dp
i (j)=r}|

The recall R(r) of r for p with respect to Te and Ag is:

R(r) =
|{wj ∈Te | dp

i (j)=dg
i (j)=r, hg

i (j)=hp
i (j)}|

|{wj ∈Te | dg
i (j)=r}|

The F measure F(r) of r for p with respect to Te and Ag is:

F(r) =
2 · P(r) · R(r)
P(r) + R(r)

While the ASU (r) score only measures how often a dependent of type r is
assigned the correct head (regardless of the assigned label), the P(r) score
tells us how often the parser is completely correct when using the label r and
the R(r) score how often a dependent of type r is parsed completely correctly,
while F(r) is the harmonic mean of P(r) and R(r).

In all scores reported for evaluation metrics concerning accuracy, punctua-
tion tokens will be omitted from the counts. Figure 5.8 lists the parts-of-speech
that are counted as punctuation categories in the two treebanks.

Efficiency will be evaluated by the following three metrics:

1. Training time: The time required to construct the instance base for the
memory-based classifier, including the parsing of the training corpus using
the gold standard parsing algorithm and the precomputation of metrics
by TiMBL.

2. Parsing time: The time required to parse one sentence of the test corpus,
excluding the initialization of the parser.

3. Memory consumption: The amount of memory allocated for parsing the
test corpus.

Although parsing time is measured for each individual sentence, the results
will mostly be presented in aggregated form, as the total parsing time for

142 5 Treebank Parsing

Swedish English

MAD Major delimiter . Sentence-final punctuation

MID Minor delimiter , Comma
: Colon, semi-colon

PAD Paired delimiter -LRB- Left bracket character
-RRB- Right bracket character

" Straight double quote
‘ Left open single quote
“ Left open double quote
’ Right close single quote
” Right close double quote

Pound sign
$ Dollar sign

Fig. 5.8. Punctuation categories in Swedish and English treebank

a given test corpus, as the mean parsing time per sentence, or as the mean
number of words parsed per second (cf. table 5.1 for quantitative proper-
ties of the data sets). Time is measured using standard system calls, with
measurements reported in seconds (s) or milliseconds (ms), while memory
consumption is measured through the UNIX command top and reported in
number of megabytes (MB). All experiments are run on a SunBlade 2000 with
one 1.2GHz UltraSPARC-III processor and 1GB of memory.

The results presented in section 5.3–5.4 are based on the cycle of training
and validation for model selection. For the smaller Swedish data set, validation
is performed by means of nine-fold cross-validation on sections 1–9, and all
results presented are the arithmetic mean of the results from the nine folds.
For the larger English data set, we consistently use sections 02–21 for training
and section 00 for validation. The results presented in section 5.5 are the
final results for model assessment, which involve training on sections 1–9 and
testing on section 0 for Swedish, training on sections 02-21 and testing on
section 23 for English. For the final evaluation, we use McNemar’s test to
assess the statistical significance of differences in accuracy (both attachment
score and exact match).

5.3 Feature Model Parameters

We start our investigation of different feature models from a baseline model,
where the only features used to predict the next transition are the parts-of-
speech of the top token and the next token. In the notation introduced in
section 4.2.4, the baseline is written Φp

00, and its two features p(σ0) and p(τ0).
In the next three sections, we will gradually increase the complexity of the
model by adding a larger part-of-speech context, dependency features, and

5.3 Feature Model Parameters 143

Table 5.2. Accuracy as a function of part-of-speech context only; AS: attachment
score, EM: exact match; U: unlabeled, L: labeled; Swedish (cross-validation), English
(section 00)

Swedish English
Model AS EM AS EM

U L U L U L U L

Φp
00 71.0 64.5 15.6 12.3 58.4 56.2 3.7 3.1

Φp
01 73.8 67.5 17.8 13.8 75.9 73.1 8.5 6.8

Φp
10 74.8 67.8 23.4 15.5 60.5 58.0 5.0 4.0

Φp
11 77.9 70.9 27.2 18.0 77.7 74.8 13.4 10.2

Φp
21 78.4 71.0 28.4 18.6 77.7 74.8 14.2 10.7

Φp
31 78.0 70.0 28.1 18.4 77.1 74.2 13.6 10.0

Φp
12 77.4 70.1 26.6 17.8 79.0 76.1 14.4 10.0

Φp
13 77.1 69.7 26.1 17.3 78.8 75.9 13.6 9.5

Φp
14 77.1 69.7 26.3 17.3 78.8 75.9 14.6 10.2

Φp
15 77.0 69.7 26.0 17.3 78.5 75.5 14.1 9.6

Φp
16 77.0 69.6 25.9 17.2 78.7 75.7 14.3 9.3

lexical features. Finally, we will evaluate a subset of the models with respect
to efficiency and also investigate their learning curves.

5.3.1 Part-of-Speech Context

The role of part-of-speech features in data-driven approaches to parsing is far
from clear-cut, as noted in section 4.2.2, but they are nevertheless used in most
models and appear to have a positive effect especially by providing a backoff
model for lexical features (Charniak, 2000; Van den Bosch and Buchholz,
2002).

Table 5.2 shows the accuracy obtained for Swedish and English with fea-
ture models that differ only with respect to the number of tokens included in
the part-of-speech context. Remember that Φp

mn is a model that includes the
m+1 top tokens on the stack and the n+1 next input tokens (cf. section 4.2.4).

Our first observation is that the baseline model achieves a very modest
parsing accuracy, both with respect to attachment score and exact match,
especially for English. We see that adding a lookahead of just one token (Φp

01)
makes a tremendous difference for English, and is clearly beneficial for Swedish
as well. We see that adding one more token from the stack (Φp

10) also has a
positive effect, although in this case the difference is greater for Swedish, where
it has an especially strong effect on the exact match evaluation. For English,
the strong positive effect on the exact match evaluation shows up only when
the extra stack token is combined with an extra input token (Φp

11).

144 5 Treebank Parsing

PM
Sveriges

(Sweden’s

JJ
Meteorologiska
Meteorological

� �
�

id

KN
och
and

� �
�

id

JJ
Hydrologiska
Hydrological

� �
�

id

NN
Institut

Institute)

� �
�

id

DT
the

� �

�

nmod

NNP
New

� �
�

nmod

NNP
York

� �
�

nmod

NNP
Stock

� �
�

nmod

NNP
Exchange

Fig. 5.9. Nominal compounds and multi-word names in English and Swedish

Considering the results at a superficial level, it seems that looking forward
is more important for English, while looking backwards is more important
for Swedish. However, this difference can to a very large extent be explained
by the proliferation of nominal compounds in English, in combination with
the particular dependency analysis inherited from the converted phrase struc-
ture annotation and the deterministic parsing strategy used. To illustrate this
phenomenon, let us consider a typical example from the Wall Street Journal
data:

the New York Stock Exchange (5.4)

Apart from the determiner the, this noun phrase consists of four consecutive
words, which in the Penn Treebank annotation are all tagged as proper nouns
(NNP). According to the head percolation table, a noun phrase of this kind
is always headed by the rightmost noun, in this case the noun Exchange, with
all the preceding words as dependents. In order to parse such a structure
correctly, the parser must keep shifting until the head noun is the next input
token and then perform a series of Left-Arc(nmod) transitions until all
the dependents have been attached to the noun. However, without any form
of lookahead it will be very hard to predict when the last noun has been
encountered, especially with a feature model that only includes part-of-speech
features.

The same problem does not arise with the Swedish data. First of all,
Swedish compounds are normally written as single words, which means that
nominal compounds will not be encountered as syntactic units in the Swedish
data. Moreover, in structures similar to the English example, such as multi-
word proper names, the Swedish annotation marks the leftmost element as the

5.3 Feature Model Parameters 145

head and treats each subsequent element as a dependent of the immediately
preceding element. Therefore, the problem of predicting when the head has
been found does not occur when parsing Swedish. The difference between
the two styles of analysis are illustrated in figure 5.9, which contrast the
annotation of English nominal compounds in the converted Penn Treebank
with the annotation of Swedish multi-word units in Talbanken.

Moving on to the middle section of table 5.2, we see that adding a second
extra stack token (Φp

21) gives a marginal increase in accuracy, especially with
respect to exact match, but that adding a third token (Φp

31) gives a decrease
across the board. In the lower section, we see essentially the same pattern with
respect to lookahead, although with a differentiation between languages. For
English, adding a second lookahead token (Φp

12) is beneficial but extending the
context even further is not. For Swedish, accuracy starts to go down already
with the second lookahead token. However, we will see later that the effect of
increasing the part-of-speech context is also sensitive to the presence of other
features.

Summarizing the results for part-of-speech features only, it seems that the
model Φp

21 gives the best performance for Swedish, while the model Φ12 is
optimal for English. In addition, the model Φp

11 gives reasonable performance
for both languages (and even outperforms Φp

12 with respect to labeled exact
match for English). We will therefore keep all three models when we go on to
add dependency features in the next section.

5.3.2 Dependency Structure

The use of dynamic dependency type features for making parsing decisions is
largely unchartered territory in the literature, which is due to the fact that
data-driven dependency parsers normally do not construct labeled dependency
graphs and therefore do not have access to dependency type labels during
parsing. In this section, we investigate the effect of adding to the part-of-
speech models the previously assigned dependency types of the top token
(d(σ0)), its leftmost and rightmost dependents (d(l(σ0)), d(r(σ0))), and the
leftmost dependent of the next token (d(l(τ0))) (cf. section 4.2.4). The results
are shown in table 5.3.

The most important observation is that adding the dependency type of
the top token (Φd

000) gives a substantial increase in parsing accuracy across
the board, for both languages, all part-of-speech models, and all evaluation
metrics. Adding information about other dependencies has a more marginal
impact, and the leftmost dependent of the top token even has a negative effect
on attachment score for English. By and large, however, the models that
incorporate all dependency features (Φd

111) are the best performing models
for both languages, regardless of part-of-speech context, a result that holds
without exception for the exact match criterion.

These results can be related to research on constituency-based parsing in
the following way. The positive effect of including the dependency type of

146 5 Treebank Parsing

Table 5.3. Accuracy as a function of dependency type features; AS: attachment
score, EM: exact match; U: unlabeled, L: labeled; Swedish (cross-validation), English
(section 00)

Swedish English
Model AS EM AS EM

U L U L U L U L

Φp
11 77.9 70.9 27.2 18.0 77.7 74.8 13.4 10.2

Φp
11 + Φd

000 80.3 72.5 29.2 19.0 80.9 77.7 16.3 11.7

Φp
11 + Φd

100 80.3 72.8 29.6 20.3 80.5 77.5 16.3 11.8

Φp
11 + Φd

010 81.2 73.4 31.6 19.9 81.2 78.1 18.1 12.9

Φp
11 + Φd

001 81.6 73.9 31.1 19.8 81.8 78.8 18.9 13.9

Φp
11 + Φd

111 82.3 74.9 33.6 22.6 81.6 78.7 19.5 15.0

Φp
21 78.4 71.0 28.4 18.6 77.7 74.8 14.2 10.7

Φp
21 + Φd

000 80.3 72.4 30.0 19.3 80.6 77.3 16.6 12.0

Φp
21 + Φd

100 80.2 72.6 29.5 20.0 80.3 77.2 16.4 12.1

Φp
21 + Φd

010 81.4 73.5 32.0 20.2 81.2 77.9 19.0 13.4

Φp
21 + Φd

001 81.6 73.8 31.6 20.0 81.3 78.3 19.2 14.4

Φp
21 + Φd

111 82.2 74.8 33.4 22.1 81.5 78.5 19.8 15.2

Φp
12 77.4 70.1 26.6 17.8 79.0 76.1 14.4 10.0

Φp
12 + Φd

000 80.4 72.4 29.2 18.9 82.4 79.2 18.4 12.4

Φp
12 + Φd

100 80.5 72.8 29.1 19.7 82.3 79.3 19.2 14.1

Φp
12 + Φd

010 81.5 73.6 31.9 19.9 83.1 80.0 20.5 14.7

Φp
12 + Φd

001 81.8 73.9 31.4 20.0 83.5 80.5 21.2 15.0

Φp
12 + Φd

111 82.5 75.1 33.5 22.2 83.4 80.5 21.9 17.0

the top token mirrors the observation that grandparent nodes are important
in phrase structure parsing (Collins, 1999; Charniak, 2000). Both types con-
tribute to disambiguation by clarifying the grammatical function of the node
in question. For example, observing that the top token has the dependency
type subject or object can be helpful in exactly the same way as knowing that
a particular NP is immediately dominated by an S node or a VP node in
phrase structure parsing. The mixed evidence concerning dependents of the
target nodes, in particular the rightmost dependent of the top token and the
leftmost dependent of the next token, has bearing on the issue of whether it
is relevant to consider sibling nodes in phrase structure parsing. For instance,
while Charniak (2000) conditions on up to four preceding siblings, Collins
(1997, 1999) achieves similar accuracy without including any information of
this kind.

Comparing the different part-of-speech models, we see that the model Φp
12

still gives the highest accuracy for English. However, after the addition of

5.3 Feature Model Parameters 147

Table 5.4. Accuracy as a function of part-of-speech context (with dependency type
features); AS: attachment score, EM: exact match; U: unlabeled, L: labeled; Swedish
(cross-validation), English (section 00)

Swedish English
Model AS EM AS EM

U L U L U L U L

Φp
12 + Φd

111 82.5 75.1 33.5 22.2 83.4 80.5 21.9 17.0

Φp
13 + Φd

111 82.4 74.9 33.2 21.9 83.8 80.8 22.6 17.1

Φp
14 + Φd

111 82.1 74.5 32.5 21.3 83.6 80.7 23.0 17.3

Φp
15 + Φd

111 82.0 74.5 31.6 20.9 83.5 80.6 22.8 17.2

Φp
16 + Φd

111 82.0 74.4 31.4 20.5 83.7 80.8 22.7 17.0

the dependency type features, this model also gives the highest accuracy for
Swedish with respect to attachment score. And with respect to exact match,
it is now the model Φp

11, not Φp
21, that gets the top score. This result can

probably be explained by the fact that the head of the top token, if present in
a given configuration, is always identical to the second topmost token on the
stack, which means that there is considerable redundancy in the information
given by the features p(σ1) and d(σ0). In order to further investigate the
interaction of part-of-speech features and dependency type features, we have
also repeated part of the experiment presented in table 5.2, increasing the
lookahead with respect to part-of-speech features, but this time in the presence
of all dependency type features. The results are given in table 5.4.

For English, it is no longer detrimental to increase the lookahead. The best
performing models now include three (Φp

13) or four (Φp
14) extra input tokens,

and it is possible to increase the lookahead up to six tokens without more than
marginal degradation. This seems to indicate that the positive effect of an
increased lookahead is dependent on having a more richly articulated feature
model to start from. For Swedish, we can observe similar results, although
the best performing model is still limited to two lookahead tokens, and the
degradation with increasing lookahead is somewhat steeper. This can probably
be explained as a problem of sparse data, since the Swedish training corpus is
one order of magnitude smaller than the English one. On the whole, however,
we see very small differences as a function of varying the lookahead above one
token.

5.3.3 Lexicalization

Lexicalization is usually considered a necessary condition for accurate disam-
biguation in data-driven parsing. Table 5.5 shows the result of adding lexical
features to a subset of the models considered in previous sections. The upper

148 5 Treebank Parsing

Table 5.5. Accuracy as a function of lexical features (with part-of-speech context
and dependency features); AS: attachment score, EM: exact match; U: unlabeled,
L: labeled; Swedish (cross-validation), English (section 00)

Swedish English
Model AS EM AS EM

U L U L U L U L

Φp
12 + Φd

111 82.5 75.1 33.5 22.2 83.4 80.5 21.9 17.0

Φp
12 + Φd

111 + Φw
10 83.7 78.5 34.9 26.3 85.2 83.2 25.7 22.5

Φp
12 + Φd

111 + Φw
01 84.6 78.7 37.2 25.3 85.0 82.5 25.7 20.2

Φp
12 + Φd

111 + Φw
11 85.6 81.5 39.1 30.2 86.6 84.8 29.9 26.2

Φp
12 + Φd

111 + Φw
21 85.7 81.5 39.4 30.3 86.9 85.1 30.1 26.4

Φp
12 + Φd

111 + Φw
12 85.9 81.7 39.4 30.1 87.3 85.4 30.1 26.2

Φp
12 + Φd

111 + Φw
22 85.9 81.6 39.8 30.4 87.3 85.6 31.1 27.7

Φp
11 + Φd

111 + Φw
22 85.9 81.7 39.5 30.4 86.3 84.6 28.8 25.7

Φp
12 + Φd

111 + Φw
22 85.9 81.6 39.8 30.4 87.3 85.6 31.1 27.7

Φp
13 + Φd

111 + Φw
22 85.8 81.5 39.6 30.0 87.6 85.8 31.2 27.3

Φp
14 + Φd

111 + Φw
22 85.7 81.4 39.1 29.6 87.5 85.7 31.0 27.0

Φp
15 + Φd

111 + Φw
22 85.5 81.1 39.0 29.4 87.5 85.7 31.0 26.8

Φp
16 + Φd

111 + Φw
22 85.4 80.9 38.6 29.0 87.4 85.7 30.2 26.3

part of the table is based on the model Φp
12 + Φd

111, incorporating all depen-
dency type features and a lookahead of two tokens, and shows the effect of
adding the word form of the top token (feature w(σ0), model Φw

10), the word
form of the next token (feature w(τ0), model Φw

01), and the word forms of both
target tokens (model Φw

11), followed by the further addition of the head of the
top token (feature w(h(σ0)), model Φw

21), one lookahead token (feature w(τ1),
model Φw

12), and both of these tokens (model Φw
22) (cf. section 4.2.4).

First of all, we see that the benefit of lexicalization is evident for inductive
dependency parsing as well as for other data-driven approaches. With very
few exceptions, parsing accuracy increases steadily with the addition of each
lexical feature, although the magnitude of the improvement quickly decreases.
However, there is a clear difference in this respect between Swedish, where
improvement is marginal for any features after the first two, and English,
where accuracy increases more steadily, especially with respect to the exact
match metrics. Again, this difference can probably be explained by reference
to data sparseness for Swedish, which is even more sensitive for lexical features
than for part-of-speech features.

The lower part of table 5.5 again explores the variation of lookahead, while
keeping the number of lexical features constant at the maximum (Φw

22). We
see that increasing the lookahead to three tokens is beneficial for English but

5.3 Feature Model Parameters 149

not for Swedish, while decreasing it to one has a strong negative effect for
English but is barely noticeable for Swedish, where the labeled attachment
score even goes up. These results give further support to the assumption that
the Swedish data is too sparse to make effective use of the discriminative
power of a more complex feature model.

Let us summarize the results concerning the influence of the feature model
on parsing accuracy. For part-of-speech features, it is essential to include a
context of at least one token in each direction, in addition to the top token
and the next token. Increasing the context further on the stack side appears to
give no improvement, while increasing the lookahead is beneficial to the extent
that there are sufficient quantities of training data available. Dependency type
features have a positive influence on parsing accuracy, especially with respect
to the exact match metrics, and the dependency type of the top token is
the single most important feature. Lexicalization, finally, has a substantial
positive effect on parsing accuracy, but the addition of lexical features over
and above the word form of the target tokens is dependent on the availability
of large quantities of training data.

Given the results so far, we will now restrict our attention to a subset
of the models considered, which will be evaluated with respect to efficiency
and learning curves. In section 5.4, an even smaller subset will be used as a
basis for the exploration of learning algorithm parameters. Altogether, we will
consider five models, in order of increasing complexity:

B = Φp
00

P = Φp
12

D = Φp
12 + Φd

111

L2 = Φp
12 + Φd

111 + Φw
11

L4 = Φp
12 + Φd

111 + Φw
22

The first model (B) is the baseline model, where the only features included
are the parts-of-speech of the target tokens. The second model (P) is the best
pure part-of-speech model for English, with a context of one stack token and
two lookahead tokens. The third model (D) is the model obtained by adding
all dependency type features to the P model. The last two models (L2 and
L4) are lexicalized models, based on the D model, and incorporating two and
four lexical features, respectively. Note that L4 is not the best performing
model for English, where the model Φp

13 + Φd
111 + Φw

22 has a higher accuracy
on the validation set. We will return to this model in the final evaluation in
section 5.5. Table 5.6 gives an overview of the accuracy of the five selected
models.

5.3.4 Efficiency

One of the the main tenets of this study is that, even though accuracy is
the single most important evaluation criterion in natural language parsing,

150 5 Treebank Parsing

Table 5.6. Accuracy as a function of feature model (selection); AS: attachment
score, EM: exact match; U: unlabeled, L: labeled; Swedish (cross-validation), English
(section 00)

Swedish English
Model AS EM AS EM

U L U L U L U L

B 71.0 64.5 15.6 12.3 58.4 56.2 3.7 3.1

P 77.4 70.1 26.6 17.8 79.0 76.1 14.4 10.0

D 82.5 75.1 33.5 22.2 83.4 80.5 21.9 17.0

L2 85.6 81.5 39.1 30.2 86.6 84.8 29.9 26.2

L4 85.9 81.6 39.8 30.4 87.3 85.6 31.1 27.7

it cannot be regarded in isolation from other requirements, such as robust-
ness, disambiguation and efficiency. We have chosen to treat robustness and
disambiguation as absolute requirements, but we still have to consider the
trade-off between accuracy and efficiency. Increasing model complexity tends
to correlate positively with parsing accuracy (if overfitting can be avoided) but
negatively with efficiency. It is therefore important to see how the differences
in accuracy observed so far correlate with differences in efficiency.

Table 5.7 shows the evaluation of our five selected models with respect to
the efficiency metrics defined in section 5.1.1. The first column reports training
time (T); the next three columns show parsing time, expressed as total parsing
time (P), mean parsing time per sentence (S), and mean number of words
parsed per second (W); the fifth column gives the memory consumption (M).
Time is expressed in seconds for T and P, milliseconds for S, and memory
consumption is reported in megabytes. It should be remembered that the size
of both training and test corpora are about one order of magnitude larger for
English than for Swedish (cf. table 5.1). (The results for Swedish are as usual
the mean score of a nine-fold cross-validation.)

Starting with the training time, we see that the memory-based approach is
very efficient, as can be expected, with training times of three to four minutes
for the most complex models on section 2-21 of the Wall Street Journal section
of the Penn Treebank. We also see that training time scales very well, with
an approximately linear growth both with respect to the number of features
(2, 5, 9, 11, and 13 for the selected models) and with respect to the size of
the training corpus (one order of magnitude difference between Swedish and
English).

With respect to parsing efficiency, the memory-based approach has a draw-
back in that all training instances have to be kept in memory during parsing.
Even with the optimized storing and indexing provided by TiMBL, this is
bound to show up in the measurements of time and memory consumption.
Nevertheless, we see that although the English parsers generally require more

5.3 Feature Model Parameters 151

Table 5.7. Efficiency as a function of feature model; T: training time (s), P: parsing
time (s), S: mean parsing time per sentence (ms), W: mean number of words parsed
per second, M: memory requirements during parsing (MB)

Model Swedish English
T P S W M T P S W M

B 4.1 3.4 5.4 2753.7 4 42.5 16.3 8.5 2844.5 4

P 7.0 5.3 8.4 1771.7 14 73.6 63.4 33.0 732.8 61

D 9.9 11.3 17.9 831.7 19 109.7 72.2 37.6 643.1 96

L2 14.8 158.7 251.5 59.2 42 178.2 971.8 505.9 47.8 298

L4 18.2 549.3 870.5 17.1 56 226.8 2861.3 1489.5 16.2 420

memory than the Swedish ones, the ratio is always less than 10:1 for the same
feature model. And with respect to parsing time, there is very little difference
at all when considering the mean number of words per second, except for
the model P , which is surprisingly slow for English. The difference in parsing
time per sentence can largely be explained by the fact that the mean sentence
length is longer for English, and the difference in total parsing time of course
by the different sizes of the test corpora.

The picture that clearly emerges from table 5.7 is that model complexity is
the most important factor with respect to parsing time. For both languages, we
see that parsing speed drops by one order of magnitude with the introduction
of lexical features. Comparing total parsing times, the ratio between L2 and
D is about 14:1 for both languages. The crucial difference between lexicalized
and non-lexicalized models is not the number of features, but the number
of values per feature. Whereas both part-of-speech features and dependency
features have value sets with a cardinality ranging from about 10 to 50, the
number of values for lexical features are in the order of 104–105. Adding
more lexical features slows down parsing even further, as can be seen in the
difference between L4 and L2, which is about 3:1 and which is caused by the
addition of two more lexical features. This can be compared with the difference
between D and P , which is about 2:1 for Swedish and barely noticeable for
English, despite the addition of four new features.

The decrease in efficiency with increasing model complexity has to be seen
in relation to the gain in accuracy. Going back to table 5.6, we note that
the addition of four dependency features from the P model to the D model
gives a gain in accuracy of 4–5 percentage points for attachment score, and
even more for exact match, with less than a 50% drop in parsing speed. By
contrast, the addition of two more lexical features from the L2 model to the L4

model improves attachment score by 0.1–0.8 percentage points while reducing
parsing speed by about 70%. Whether we are willing to pay this price or not
is dependent on the requirements of our applications, which may put different
constraints on the lowest acceptable accuracy or efficiency, but it illustrates

152 5 Treebank Parsing

Fig. 5.10. Parsing time (ms) as a function of sentence length (number of words);
Model B; Swedish, section 9 (630 data points)

the inevitable trade-off between accuracy and efficiency in data-driven parsing
and the consequent need for joint optimization.

To complete the analysis of efficiency, we will consider the relation between
sentence length and parsing time. In section 3.4, we established that the time
complexity of the parsing algorithm is O(n), where n is the number of words
in the sentence, provided that transitions can be performed in constant time.
Using a memory-based classifier to predict the next transition allows us to
perform transitions in time that is constant in the number of words for a
given feature model and training data set, but the size of this constant clearly
depends on the complexity of the feature model and the size of the training
data set. Moreover, because of the optimized storage and indexing techniques
used in TiMBL, classifying a new instance may or may not require an ex-
haustive search of the instance base, which means that we can expect a larger
variation in classification time for more complex models.

Figures 5.10–5.12 show a plot of parsing time (ms) as a function of sentence
length for the models B, D and L2 applied to section 9 of the Swedish treebank
(after training on sections 1–8). The plot is based on 630 data points, each
point representing one sentence. Figures 5.13–5.15 show the same plots for
section 00 of the English treebank (after training on section 02–21 as usual),
this time including 1920 sentences.

The linear behavior of the parser is most clearly discernible for the B
model, where the time spent on classification is relatively small but also rela-
tively constant given the very simple feature model. With increasing model
complexity, the correlation between sentence length and parsing time becomes

5.3 Feature Model Parameters 153

Fig. 5.11. Parsing time (ms) as a function of sentence length (number of words);
Model D; Swedish, section 9 (630 data points)

Fig. 5.12. Parsing time (ms) as a function of sentence length (number of words);
Model L2; Swedish, section 9 (630 data points)

154 5 Treebank Parsing

Fig. 5.13. Parsing time (ms) as a function of sentence length (number of words);
Model B; English, section 00 (1920 data points)

Fig. 5.14. Parsing time (ms) as a function of sentence length (number of words);
Model D; English, section 00 (1920 data points)

5.3 Feature Model Parameters 155

Fig. 5.15. Parsing time (ms) as a function of sentence length (number of words);
Model L2; English, section 00 (1920 data points)

increasingly noisy, as classification time begins to dominate parsing time. Even
though the plots for some of the more complex models do not quite resemble
straight lines, the data is very sparse for high values of the sentence length
variable, and there are no grounds to reject the assumption that parsing time
remains linearly related to sentence length even for more complex models,
although the variance clearly increases due to the increased variance in classi-
fication time.

5.3.5 Learning Curves

The final aspect of feature models that will be considered in this evaluation is
their sensitivity to the amount of training data available, which can be assessed
by considering their learning curves. Figures 5.16–5.17 plot the accuracy of the
feature models D and L2 for Swedish as a function of the size of the training
corpus. Figure 5.16 depicts the development of attachment score (labeled and
unlabeled), while figure 5.17 shows exact match (labeled and unlabeled). The
training corpus varies from 1 to 8 sections, and the values depicted are the
mean of a nine-fold cross-validation as usual. Figures 5.18–5.19 give the same
type of information for English, except that each increment of the training
corpus represents two sections, i.e., one tenth of the entire training corpus,
and measurements are only based on the validation set, section 00.

First of all, we may note that the lexicalized L2 model generally has a
steeper learning curve than the non-lexicalized D model, which is only to
be expected given that the data is much more sparse for lexical features than

156 5 Treebank Parsing

Fig. 5.16. Learning curve for attachment score; ASU (dashed) and ASL (dotted);
models D (•) and L2 (◦); Swedish

Fig. 5.17. Learning curve for exact match; EMU (dashed) and EML (dotted);
models D (•) and L2 (◦); Swedish

5.3 Feature Model Parameters 157

Fig. 5.18. Learning curve for attachment score; ASU (dashed) and ASL (dotted);
models D (•) and L2 (◦); English

Fig. 5.19. Learning curve for exact match; EMU (dashed) and EML (dotted);
models D (•) and L2 (◦); English

158 5 Treebank Parsing

for part-of-speech and dependency features. At the same time, it is worth
pointing out that the L2 model outperforms the D model at all data points,
i.e., even when only training on a single section of the Swedish treebank, which
only contains about 600 sentences and 10,000 tokens. This indicates that the
analogy-based smoothing provided by the memory-based learner works well
even for sparse data sets.

If we compare the two types of evaluation metrics, we see that exact match
has a steeper learning curve than attachment score, which might be taken to
show that the former is a more discriminative metric. Especially the L2 model
shows a steady increase in exact match accuracy for both languages.

Comparing the two languages, finally, it is evident that the curves are
steeper for Swedish than for English. This is a direct reflection of the different
sizes of the data sets involved, where the complete training corpus for Swedish
is of about the same size as the smallest fraction considered for the English.
In this way, the Swedish curves could almost be considered as a zoom-in of
the first data point of the English curves. Some of the curves for English are
really very flat, especially for attachment score and the D model. This is both
good news and bad news. It is good news in the sense that (almost) optimal
accuracy can often be obtained with only half of the training data, which can
make parsing more efficient. But it is bad news in the sense that accuracy
is unlikely to improve with the addition of more training data. The picture
is somewhat different for the exact match metrics, where especially the L2

model continues to improve up until the maximum size of the training corpus.

5.4 Learning Algorithm Parameters

Having examined the influence of different feature models on both accuracy
and efficiency, we will now turn to the role of the learning algorithm, which in
our case means exploring the parameter space of memory-based learning and
classification, as provided by the TiMBL system. It is important to remember
that feature selection and parameter optimization can be highly dependent on
each other (Daelemans and Hoste, 2002; Daelemans et al., 2003). In principle,
we should therefore explore the combined space of feature models and learning
algorithm parameters in order to arrive at a truly optimal combination. In
practice, this is often impossible because of the combinatorial effect, and the
standard approach is therefore to keep one factor constant while varying the
other systematically, which is also the methodology adopted in this study.
However, because the factors are not independent, we need to make sure that
the factor kept constant has a nearly optimal value, or the results can be
highly misleading. This is the reason that we did not use the default settings
of TiMBL when exploring different feature models in the preceding section,
but instead used parameter settings that had been found optimal in previous
studies. By the same reasoning, we will not use arbitrary feature models as our
basis for parameter optimization in this section, but will limit our attention

5.4 Learning Algorithm Parameters 159

to two of the best models. More precisely, we will study the D model, which
was the best performing non-lexicalized model in the preceding section, and
the L2 model, which was a model that gave close to optimal performance for
both Swedish and English and that strikes a good balance between accuracy
and efficiency.

5.4.1 Neighbor Space and Distance Metric

Two fundamental parameters of the k-NN classification provided by memory-
based learning are the number k of nearest neighbors (distances) taken into
account and the metric used to compute the distance between instances. In
our first experiment, we compare the Overlap and MVDM metrics, while
varying the value of k from 1 to 9 in increments of 2.2 The results are shown
in table 5.8.

Starting with the Overlap metric, we see that performance is reasonable
but not optimal with a k value of 1 but degrades drastically as the k value
increases. The reason for this behavior is that, with the simple Overlap metric,
there will typically be an abundance of ties in nearest neighbor position, and
increasing the k value will lead to larger and larger portions of the instance
base being used to classify each instance (Daelemans and Van den Bosch,
2005). This means that the set of local neighborhood approximations will
eventually give way to a globally defined approximation, which simply assigns
the overall majority class to every instance.

In terms of dependency parsing, this means that the parser will select
the Shift transition in every configuration, constructing a dependency graph
where every token is attached to the special root node. The attachment score
of such a parser is simply the proportion of tokens attached to the special
root node in the gold standard treebank, which happens to be 7.0% for the
Swedish treebank and 4.7% for the English treebank. The non-lexicalized D
model, which has fewer features and fewer values per feature, reaches this
stage already at k = 7, while the lexicalized L2 model degrades at a slightly
slower pace. The degradation is accelerated by the fact that TiMBL uses the
k nearest distances, rather than the k nearest neighbors, but the result will
eventually be the same anyway.

Using the more sophisticated MVDM metric gives a completely different
picture. Increasing the k value from 1 to 3 has a positive effect for both
models with respect to all metrics, but further changes have very little effect
overall. The highest accuracy is found at k = 3 for the D model in both
languages. For the L2 model, the optimum appears to be k = 5 for Swedish
and k = 7 for English, although the differences are generally small. In the
following experiments, we will therefore use k = 3 for the D model but use
both k = 5 and k = 7 for the L2 model.

2 In order to avoid ties, it is recommended to use odd integers as values of k.

160 5 Treebank Parsing

Table 5.8. Accuracy as a function of distance metric (Overlap, MVDM) and k
value; AS: attachment score, EM: exact match; U: unlabeled, L: labeled; Swedish
(cross-validation), English (section 00)

Swedish English
Model Metric k AS EM AS EM

U L U L U L U L

D Overlap 1 78.4 70.0 29.6 20.0 81.9 78.8 20.4 15.4

3 63.0 52.4 18.4 12.0 65.4 61.1 7.1 4.5

5 31.7 24.1 7.4 4.9 37.7 34.3 1.2 1.0

7 7.0 7.0 3.8 3.8 4.7 4.7 0.4 0.4

9 7.0 7.0 3.8 3.8 4.7 4.7 0.4 0.4
MVDM 1 80.8 72.7 31.8 20.9 82.9 79.9 20.9 16.1

3 82.5 75.0 33.1 21.5 83.4 80.5 21.9 17.1

5 82.5 75.1 32.8 20.7 83.1 80.1 21.8 16.5

7 82.5 75.1 33.0 21.0 82.8 79.8 21.7 16.1

9 82.2 74.8 32.3 20.7 82.7 79.6 20.9 15.0

L2 Overlap 1 82.2 76.2 34.3 24.7 85.2 83.0 27.0 22.5

3 72.5 63.5 22.8 14.8 74.1 71.1 12.0 9.0

5 44.9 34.8 11.2 6.7 51.0 47.5 2.7 1.5

7 9.5 8.9 4.0 3.8 19.7 18.4 0.5 0.4

9 7.0 7.0 3.8 3.8 4.7 4.7 0.4 0.4
MVDM 1 83.1 78.6 34.9 26.0 85.1 83.2 26.2 23.4

3 84.7 80.6 37.2 28.6 86.2 84.5 29.2 25.8

5 84.8 80.8 37.6 29.1 86.3 84.5 29.7 25.2

7 84.7 80.7 37.4 29.0 86.3 84.6 29.7 26.3

9 84.7 80.6 37.1 28.8 86.2 84.4 29.6 26.0

While the MVDM metric is in most cases superior to the Overlap metric
already at k = 1 and improves with larger k values, it is also more sensitive
to data sparseness. TiMBL therefore provides a back-off from MVDM to
Overlap through a frequency threshold l, which means that the distance metric
switches from MVDM to Overlap whenever one or both values compared occur
less than l times in the training data. Table 5.9 shows the effect of increasing
this threshold from 1 to 5 in increments of 1 for the D model with k = 3 and
the L2 model with k = 5 and k = 7. We see that the D model is completely
insensitive to this parameter, with identical results for all settings, indicating
that data sparseness is not a problem for the non-lexicalized D model, not
even for Swedish. For the L2 model, we see a small but steady improvement
with a higher threshold, especially for Swedish with a more limited amount
of training data. For k = 5 the optimal threshold appears to be 3 for both

5.4 Learning Algorithm Parameters 161

Table 5.9. Accuracy as a function of switching threshold l (MVDM to Overlap);
AS: attachment score, EM: exact match; U: unlabeled, L: labeled; Swedish (cross-
validation), English (section 00)

Swedish English
Model k l AS EM AS EM

U L U L U L U L

D 3 1 82.5 75.0 33.7 21.5 83.4 80.5 21.9 17.1

2 82.5 75.0 33.7 21.5 83.4 80.5 21.9 17.1

3 82.5 75.0 33.7 21.5 83.4 80.5 21.9 17.1

4 82.5 75.0 33.7 21.5 83.4 80.5 21.9 17.1

5 82.5 75.0 33.7 21.5 83.4 80.5 21.9 17.1

L2 5 1 84.8 80.8 37.6 29.1 86.3 84.5 29.7 25.9

2 85.2 81.1 38.4 29.3 86.5 84.7 29.9 26.1

3 85.3 81.2 38.8 29.7 86.5 84.8 29.9 25.9

4 85.4 81.1 38.8 29.6 86.5 84.7 30.0 26.0

5 85.3 81.0 38.5 29.3 86.5 84.7 30.0 25.8
7 1 84.7 80.7 37.4 29.0 86.3 84.6 29.7 26.3

2 85.0 80.9 38.2 29.1 86.5 84.7 29.9 26.5

3 85.1 81.0 38.4 29.2 86.6 84.8 29.9 26.3

4 85.2 81.0 38.5 29.2 86.6 84.6 29.9 26.2

5 85.1 80.9 38.3 29.2 86.6 84.8 30.0 26.2

languages, which confirms earlier experiments (Nivre et al., 2004; Nivre and
Scholz, 2004). For k = 7 the best results are obtained with a threshold of 5 for
English, whereas for Swedish accuracy is consistently worse than for k = 5.
In the following, we will therefore consider k = 5, l = 3 to be optimal for
Swedish but consider both k = 5, l = 3 and k = 7, l = 5 for English.

5.4.2 Weighting Schemes

In addition to distance metric and k value, the k-NN classification may be
tuned by different weighting schemes. In this section, we will consider two
types of weighting. On the one hand, we have applied feature weighting with
Information Gain (IG) and Gain Ratio (GR). On the other hand, we have used
distance-weighted class voting with inverse distance (ID) and inverse-linear
(IL) weighting. The results of these experiments are reported in table 5.10.

The overall tendency is that these weighting schemes have a negative influ-
ence on parsing accuracy. One possible explanation is that the MVDM metric
in itself has a feature weighting effect, as observed in section 4.3, and that
additional weighting will therefore result in overfitting. For the D model, the
best results are obtained with IG feature weighting, which gives marginally

162 5 Treebank Parsing

Table 5.10. Accuracy as a function of weighting scheme; FW: feature weighting
(GR: gain ratio, IG: information gain); DWCV: distance weighted class voting (ID:
inverse distance, IL: inverse linear); AS: attachment score, EM: exact match; U:
unlabeled, L: labeled; Swedish (cross-validation), English (section 00)

Swedish English
Model k l FW DWCV AS EM AS EM

U L U L U L U L

D 3 1 – – 82.5 75.0 33.7 21.5 83.4 80.5 21.9 17.1

GR – 82.1 74.9 32.9 22.3 83.0 80.1 21.7 17.0

IG – 82.2 75.1 33.0 21.5 83.4 80.5 22.0 17.1

– ID 82.0 74.4 33.3 21.8 83.4 80.4 21.7 17.1

– IL 81.0 73.0 32.2 21.3 82.9 79.9 21.5 16.6

L2 5 3 – – 85.3 81.2 38.8 29.7 86.5 84.8 29.9 25.9

GR – 84.6 80.4 37.1 28.7 86.0 84.1 29.0 25.5

IG – 83.8 79.8 34.6 26.7 86.0 84.5 27.3 24.4

– ID 85.6 81.5 39.1 30.2 86.6 84.8 29.9 26.2

– IL 85.0 80.6 38.1 28.9 86.0 84.2 28.3 25.0
7 5 – – – – – – 86.6 84.8 30.0 26.2

GR – – – – – 85.7 83.8 28.2 24.9

IG – – – – – 86.0 84.5 27.5 24.9

– ID – – – – 86.8 85.0 30.3 26.9

– IL – – – – 86.5 84.7 29.4 26.0

higher ASL for Swedish and EMU for English, but also lower ASU and EMU

for Swedish. By an appeal to Occam’s razor we will therefore conclude that
the optimal parameter settings for non-lexicalized models are as follows:

1. Number of nearest distances: k = 3
2. Distance metric: MVDM with l = 1
3. Feature weighting: None
4. Distance-weighted class voting: None

Turning to L2, we find that distance-weighted class voting with ID weighting
has a consistent positive effect, whereas all the other weighting schemes are
detrimental. We also see that, with the addition of ID weighting, k = 7 and
l = 5 gives better performance than k = 5 and l = 3 for English. Hence, we
conclude that the following settings are optimal for our lexicalized models:

1. Number of nearest distances: k = 5 (Swedish), k = 7 (English)
2. Distance metric: MVDM with l = 3 (Swedish), l = 5 (English)
3. Feature weighting: None
4. Distance-weighted class voting: ID

5.5 Final Evaluation 163

With the exception of the higher k and l values for English, these are also the
settings that were used in the validation of feature models, and which have
been found optimal in previous studies (Nivre et al., 2004; Nivre and Scholz,
2004).

5.5 Final Evaluation

In this section, we will assess the quality of the feature models and parameter
settings that produced the best results during validation by applying them
to an independent test set. In this way, we can hope to get a more unbiased
estimate of the expected accuracy and efficiency with respect to new data.
However, it is important to remember that, even though the test sets have
not been used in the validation phase, they are nevertheless sampled from the
same treebanks as the respective training and validation sets. Our estimates
will therefore be valid for text that belongs to the same population, but not
for text from other sources in Swedish or English.

We will also compare the performance of the best models to the state of
the art in dependency-based parsing. This will raise certain questions about
the sources of parsing errors, and we will try to tease apart the influence
of three such sources: errors in part-of-speech tagging, errors in the function
approximation, and errors due to the greedy, deterministic parsing strategy.

5.5.1 Accuracy and Efficiency

Table 5.11 shows the accuracy obtained on the test sets for the best lexical-
ized and non-lexicalized models, using the optimal parameter settings of the
learning algorithm. We have included both the best models from section 5.3
and the models used as the basis for parameter optimization in section 5.4.
This yields five models altogether, since the best non-lexicalized model for
Swedish from section 5.3 is identical to the D model used in section 5.4. We
use the notation D′ and L′

4 to denote the models that are exactly like D and
L4 except that they include a part-of-speech lookahead of three tokens instead
of two.

If we compare the results to those obtained during validation, they are
comparable in all cases, which indicates that the models have not been over-
fitted to the training and validation data. Differences between validation scores
and test scores are generally less than one percentage point for attachment
scores, whereas the exact match scores show a variation of up to two per-
centage points (with a decrease in accuracy for Swedish and an increase for
English). This is only natural, given that the number of observations is one
order of magnitude greater for the attachment scores, which are word-based,
than for the exact match scores, which are sentence-based.

As for the comparison between feature models, the only differences that
are statistically significant for Swedish are those between the non-lexicalized

164 5 Treebank Parsing

Table 5.11. Final evaluation: accuracy; AS: attachment score, EM: exact match;
U: unlabeled, L: labeled; Swedish (section 0), English (section 23)

Swedish English

Model AS EM AS EM

U L U L U L U L

D = Φp
12 + Φd

111 83.2 75.8 33.4 20.2 83.5 80.5 23.2 17.3

D′ = Φp
13 + Φd

111 83.3 75.7 31.8 19.2 83.6 80.7 23.5 18.0

L2 = Φp
12 + Φd

111 + Φw
11 86.3 82.0 37.7 29.6 87.4 85.7 30.8 26.8

L4 = Φp
12 + Φd

111 + Φw
22 86.1 81.8 37.3 29.8 87.8 86.0 32.7 28.7

L′
4 = Φp

13 + Φd
111 + Φw

22 86.3 82.0 39.2 30.8 88.1 86.3 32.8 28.4

models D and D′, on the one hand, and the lexicalized models L2, L4 and L′
4,

on the other. Between these groups, the difference is statistically significant
beyond the 0.01 level for all metrics (McNemar’s test).3 Within the groups,
however, there are no significant differences.4 For English we find basically
the same pattern, but in addition to the differences between non-lexicalized
and lexicalized models, which are all significant beyond the 0.0001 level, there
are also significant differences between the model with two lexical features
(L2) and the models with four lexical features (L4 and L′

4) with p < 0.01
for all metrics. Comparing L4 and L′

4, finally, the differences appear to be
significant for the attachment scores but not for the exact metrics. However,
this result should be taken with a pinch of salt, since the attachment scores
are based on observations of word tokens, which are very far from being in-
dependent of each other. Therefore, the lack of a significant difference in the
sentence-based exact match comparison throws serious doubt on the value
of the differences in attachment score. In conclusion, it therefore seems fair
to say that the difference in accuracy between lexicalized and non-lexicalized
models is statistically significant for both languages, and that the addition of
two extra lexical features makes a significant difference for English, with the
larger data sets, but not for Swedish. Any conclusions beyond these are not
clearly warranted by the experimental results.

In order to get a more fine-grained picture of accuracy, we will now con-
sider the accuracy for different dependency types. Table 5.12 gives unlabeled
attachment score (ASU), labeled precision (P), recall (R) and F measure (F)
for the top scoring model L′

4 on the Swedish test set. Broadly speaking, we
can divide dependency types according to accuracy into three sets. In the
high-accuracy set, with a labeled F measure from 84% to 98%, we find all

3 For EMU p = 0.01; for the other three metrics p < 0.0001.
4 It is worth remembering that the Swedish test set only contains 631 sentences,

which means that the difference between 29.6% and 29.8% in the EML score for
L2 and L4 is the difference of a single sentence.

5.5 Final Evaluation 165

Table 5.12. Final evaluation: attachment score (ASU), precision (P), recall (R) and
F measure per dependency type: Swedish (model L′

4)

Label n ASU P R F

ADV 1607 79.8 75.8 76.8 76.3
APP 42 23.8 38.1 19.0 25.4
ATT 950 81.3 79.9 78.5 79.2
CC 963 82.5 78.1 79.8 78.9

DET 947 92.6 88.9 90.2 89.5
ID 254 72.0 72.5 58.3 64.6
IM 133 98.5 98.5 98.5 98.5
INF 10 100.0 100.0 30.0 46.2
OBJ 585 88.0 78.2 77.3 77.7
PR 985 94.2 88.6 92.7 90.6

PRD 244 90.6 76.7 77.0 76.8
ROOT 607 91.3 84.6 91.3 87.8
SUB 957 89.8 86.7 82.5 84.5
UK 213 85.0 89.4 83.6 86.4
VC 238 93.7 82.1 90.6 86.1
XX 29 82.8 85.7 20.7 33.3

Total 8782 86.3 82.0 82.0 82.0

dependency types where the head is a closed class word: IM (marker → infini-
tive), PR (preposition → noun), UK (complementizer → verb) and VC (aux-
iliary verb → main verb). We also find the type DET (noun → determiner),
which has similar characteristics although the determiner is not treated as
the head in the Swedish annotation. The high-accuracy set also includes the
central dependency types ROOT and SUB, which normally identify the finite
verb of the main clause and the grammatical subject, respectively.

In the medium-accuracy set, with a labeled F measure in the range of
75–80%, we find the remaining major dependency types, ADV (adverbial),
ATT (nominal modifier), CC (coordination), OBJ (object) and PRD (predi-
cative). However, this set can be divided into two subsets, the first consisting
of ADV, ATT and CC, which have an unlabeled attachment score not too
much above the labeled F measure, indicating that parsing errors are mainly
due to incorrect attachment. This is plausible also because ADV and ATT are
the dependency types typically involved in modifier attachment ambiguities,
and coordination is a source of attachment ambiguities as well. The second
subset contains OBJ and PRD, which both have an unlabeled attachment
score close to 90%, which means that they are often correctly attached but
may be incorrectly labeled. This is again plausible, since these types identify
nominal arguments of the verb (other than the subject), which can often occur
in the same syntactic contexts.

166 5 Treebank Parsing

Table 5.13. Final evaluation: attachment score (ASU), precision (P), recall (R) and
F measure per dependency type: English (model L′

4)

Label n ASU P R F

AMOD 2072 78.2 80.7 73.0 76.7
DEP 259 42.9 56.5 30.1 39.3

NMOD 21002 91.2 91.1 90.8 91.0
OBJ 1960 86.5 78.9 83.5 81.1

PMOD 5593 90.2 87.7 89.5 88.6
PRD 832 90.0 75.9 71.8 73.8

ROOT 2401 86.4 78.8 86.4 82.4
SBAR 1195 86.0 87.1 85.1 86.1
SBJ 4108 90.0 90.6 88.1 89.3
VC 1771 98.8 93.4 96.6 95.0

VMOD 8175 80.3 76.5 77.1 76.8

Total 49368 88.1 86.3 86.3 86.3

Finally, we have a low-accuracy set, with a labeled F measure below 70%,
where the common denominator is mainly that these dependency types are
rare: INF (infinitive complements), APP (appositions), XX (unclassifiable).
The only exception to this generalization is the type ID (idiom constituent),
which is not that rare but which is rather special for other reasons. All types
in this set except APP have a relatively high unlabeled attachment score,
but their labels are seldom used correctly. An extreme case is INF, which has
both an unlabeled attachment score and a labeled precision of 100%, although
there are only 10 instances in total in the test set, but which has a much lower
labeled recall (30%). The dependency type APP, finally, is used for a family
of loosely connected modifiers of either nouns or verbs, which apparently are
very difficult to attach correctly.

Table 5.13 gives the same kind of breakdown across dependency types
for the top scoring model L′

4 on the English test set, where we can distin-
guish a similar division into three sets according to accuracy level. In the
high-accuracy set, with a labeled F measure from 86% to 95%, we find SBJ
(subject) and three dependency types where the head is a closed class word:
PMOD (preposition → complement/modifier), VC (auxiliary verb → main
verb) and SBAR (complementizer → verb). In addition, this set includes the
type NMOD, which includes the noun-determiner relation as an important
subtype.

In the medium-accuracy set, with a labeled F measure from 74% to 82%, we
find the types AMOD, VMOD, OBJ, PRD and ROOT. The former two depen-
dency types mostly cover adverbial functions, and have a labeled accuracy not
too far below their unlabeled attachment score, which is an indication that
the main difficulty lies in finding the correct head. By contrast, the argument
functions OBJ and PRD have a much better unlabeled attachment score,

5.5 Final Evaluation 167

which shows that they are often attached to the correct head but misclassified.
This tendency is especially pronounced for the PRD type, where the difference
is more than 15 percentage points, which can probably be explained by the
fact that this type is relatively infrequent in the annotated English data.

The low-accuracy set for English only includes the default classification
DEP. The very low accuracy for this dependency type can be explained by the
fact that it is both a heterogeneous category and the least frequent dependency
type in the data.

If we compare the results across languages, we can distinguish the following
general patterns:

• Dependents of closed class words have high accuracy, labeled as well as
unlabeled. This includes the following construction types:
1. Preposition → Noun (Swedish PR, English PMOD5)
2. Complementizer → Verb (Swedish UK, English SBAR)
3. Auxiliary verb → Main verb (Swedish and English VC)

• Core arguments of the verb have high unlabeled accuracy. This includes:
1. Subjects (Swedish SUB, English SBJ)
2. Objects (Swedish and English OBJ)
3. Predicative complements (Swedish and English PRD)
Subjects also have high labeled accuracy, whereas objects and predicative
complements are more easily confused with each other.

• Modifiers generally have medium accuracy, both labeled and unlabeled.
• Atypical, heterogeneous and rare dependency types have low accuracy,

especially when labels are taken into account.

One apparent difference between the languages is that nominal modifiers
(NMOD) have a very high accuracy for English (90.5% ASU , 90.4% F),
whereas the closest corresponding dependency type for Swedish (ATT) has
both unlabeled and labeled accuracy below 80%. However, this can prob-
ably be explained by the fact that the English category NMOD contains two
prominent subcategories that contribute significantly to the overall result.
These subcategories are determiners, which have a very high accuracy also in
Swedish (91.5% ASU , 89.6% F), and constituents of noun-noun compounds,
which can usually be identified relatively easily but which are absent in the
Swedish data because of different orthographic conventions.

Another difference is that the type ROOT, which normally identifies the
finite verb of the main clause, has a considerably higher accuracy for Swedish,
where it belongs to the high-accuracy set, than for English, where it is found
in the middle set. This is probably related to the greater sentence complexity
in the English data set, where a greater mean sentence length can be expected
to correlate with a greater mean number of clauses per sentence, which tends
to make the identification of the main clause more difficult.

5 The PMOD type also contains modifiers of prepositions but is heavily dominated
by nominal complements.

168 5 Treebank Parsing

Table 5.14. Final evaluation: efficiency; T: training time (s), P: parsing time (s), S:
mean parsing time per sentence (ms), W: mean number of words parsed per second,
M: memory requirements during parsing (MB)

Model Swedish English

T P S W M T P S W M

D = Φp
12 + Φd

111 9.5 10.1 16.0 974.4 19 102.8 71.7 29.7 790.6 96

D′ = Φp
13 + Φd

111 12.0 13.6 21.6 723.6 26 118.9 93.7 38.8 605.0 155

L2 = Φp
12 + Φd

111 + Φw
11 16.0 167.0 264.7 58.9 45 171.0 1140.5 472.1 49.7 295

L4 = Φp
12 + Φd

111 + Φw
22 18.0 574.0 909.7 17.1 57 217.9 3327.8 1380.0 17.0 416

L′
4 = Φp

13 + Φd
111 + Φw

22 20.9 661.2 1050.0 14.9 66 234.6 3641.8 1510.0 15.6 457

Finally, it is worth remembering that the two data sets differ in the treat-
ment of coordination, which falls under a separate dependency type (CC) for
Swedish, which is comparable in accuracy to the modifier constructions. For
English, coordination is not analyzed as a separate category, which means
that coordinate structures can be present in any category, although most in-
stances are likely to be found in the VMOD and NMOD categories. Since the
analysis assigned to coordinate structures in this way is often linguistically
inadequate, it is fair to say that the accuracy results for English give a too
optimistic estimate of the true accuracy for parsing unrestricted text.

To complete the picture on model assessment, we also present an evalu-
ation of efficiency on the training and test sets. The results are presented in
table 5.14. As can be expected, there are no significant deviations from the
results obtained during validation. The higher absolute parsing times (P) for
English are due to the fact that the test set is larger than the validation set,
but the mean number of words parsed per second is very similar. Relating
efficiency to accuracy, we may note that for Swedish the L4 and L′

4 models
more than triple the parsing time without a statistically significant improve-
ment in accuracy, which makes the L2 model appear as the best choice for
a joint optimization of accuracy and efficiency. For English, the addition of
two more lexical features gives a significant improvement in accuracy, which
means that the more complex models will be optimal for applications where
we can accept the decrease in parsing speed. Finally, it is worth pointing out
that the differences observed between Swedish and English in this respect are
more probably related to the size of the data sets than anything else.

5.5.2 Related Work

In this section, we will try to relate the results from the final evaluation to the
state of the art in dependency-based text parsing. For Swedish this is rather
difficult, since there is no comparable evaluation reported in the literature, let
alone based on the same data. Most of the parsers developed for Swedish use

5.5 Final Evaluation 169

constituency-based representations, either for full parsing (S̊agvall Hein, 1982)
or partial parsing (Kokkinakis and Johansson Kokkinakis, 1999; Megyesi,
2002; Bigert, 2005). Voutilainen (2001) presents a partial and informal evalua-
tion of a Swedish FDG parser, based on manually checked parses of about 400
sentences from newspaper text, and reports F measures of 95% for subjects
and 92% for objects. These results clearly indicate a higher level of accuracy
than that attained in the experiments reported here, but without knowing
the details of the data selection and evaluation procedure it is very difficult to
draw any precise conclusions. In any case, the results reported in this study
may serve as a benchmark for future evaluations of Swedish dependency pars-
ing. The results are encouraging, given the limited amount of data available
for training, but it must also be kept in mind that the Swedish data set does
not exhibit the same level of complexity as the English one.

For English there is much more relevant work to compare with. The first
large-scale evaluation of dependency parsing on the Wall Street Journal data
was performed by Eisner (1996b,a). However, Eisner excluded certain types of
sentences from the evaluation, in particular sentences involving coordination,
which means that the results are not strictly comparable. The same goes for
the evaluations of grammar-driven parsers such as the statistical CDG parser
of Wang and Harper (2004), the XLE LFG parser of Kaplan et al. (2004) and
the CCG parser of Clark and Curran (2004), which are all based on different
ways of extracting dependencies from the Penn Treebank data, the latter two
using the PARC 700 Dependency Bank (King et al., 2003) and the CCGbank
(Hockenmaier, 2003a), respectively.

By contrast, the results reported by Yamada and Matsumoto (2003) and
Isozaki et al. (2004) are based on exactly the same data samples and conversion
methods (except that they only consider unlabeled dependencies). In addition,
Yamada and Matsumoto (2003) derive comparable results for the parsers of
Collins (1997) and Charniak (2000), by applying the same conversion to the
output of these parsers. More recently, the same data sets have also been used
by McDonald, Crammer and Pereira (2005). Table 5.15 presents a comparison
of our results with those obtained with the other systems, limited to unlabeled
accuracy metrics. In addition to the usual metrics ASU and EMU , we also
break down the attachment score into dependency accuracy (DA), which is
the attachment score for all tokens not attached to the special root node, and
root accuracy (RA), which is the attachment score for all tokens attached to
the special root node. Given the conversion of the Penn Treebank annotation
to dependency graphs, there is exactly one token per sentence attached to the
special root node in the gold standard.

It is clear that, with respect to unlabeled accuracy, our parser does not
quite reach state-of-the-art performance, even if we limit the competition to
deterministic methods such as those of Yamada and Matsumoto (2003) and
Isozaki et al. (2004). We believe that there may be three different reasons for
this. First of all, the part-of-speech tagger used for preprocessing in our experi-
ments has a lower accuracy than the one used by Yamada and Matsumoto

170 5 Treebank Parsing

Table 5.15. Comparison with related work; ASU : unlabeled attachment score, DAU :
dependency accuracy, RAU : root accuracy, EMU : unlabeled exact match

Study ASU DAU RAU EMU

Collins (1997) (Model 3) 91.7 91.5 95.2 43.3
Charniak (2000) 92.2 92.1 95.2 45.2
Yamada and Matsumoto (2003) 90.4 90.3 91.6 38.4
Isozaki et al. (2004) 91.4 91.2 95.7 40.7
McDonald, Crammer and Pereira (2005) 91.0 90.9 94.2 37.5
This study 88.1 88.2 86.4 32.8

(2003) (96.1% vs. 97.1%).6 Although this is not a very interesting explanation,
it undoubtedly accounts for part of the difference. We will return to this in
our error analysis in the next section.

A more important factor is the relatively low root accuracy of our parser,
which may reflect a weakness in the one-pass parsing strategy with respect to
the global structure of complex sentences. Although the systems of Yamada
and Matsumoto (2003) and Isozaki et al. (2004) are also deterministic, they
perform multiple passes over the input, building the structures bottom-up. In
the case of Isozaki et al. (2004), parsing is also preceded by a separate root
detection phase, which explains the improved root accuracy of this system
over Yamada and Matsumoto (2003).

It is noteworthy that our parser has lower root accuracy than dependency
accuracy, whereas the inverse holds for all the other parsers. The problem
becomes even more visible when we compare dependency and root accuracy
for sentences of different lengths, as shown in table 5.16. Here we see that for
really short sentences (up to 10 words) root accuracy is indeed higher than
dependency accuracy, but while dependency accuracy degrades very gracefully
with sentence length, the root accuracy drops more drastically (which also
very clearly affects the exact match score). It is also interesting to compare
with the results for Swedish, where the mean sentence length is considerably
smaller, and where root accuracy is indeed as high as 91.3% (cf. table 5.12).
This may be taken to suggest that some kind of preprocessing in the form of
clausing or root detection could improve overall parsing accuracy.

Although it seems clear that the inferior root accuracy is primarily related
to the single-pass deterministic parsing strategy, it is less clear whether the
lower dependency accuracy is due to the parsing strategy or to lower prediction
accuracy of the classifiers involved. Whereas our system uses memory-based
learning and classification, the systems of Yamada and Matsumoto (2003)
and Isozaki et al. (2004) are based on support vector machines. In a recent
study by Sagae and Lavie (2005), using data from the Penn Treebank and

6 Isozaki et al. (2004) apparently used the tags provided by the Collins parser,
although this is not entirely clear from the description in the paper.

5.5 Final Evaluation 171

Table 5.16. Accuracy in relation to sentence length; ASU : unlabeled attachment
score, DAU : unlabeled dependency accuracy, RAU : root accuracy, EMU : unlabeled
exact match

Length ASU DAU RAU EMU

≤ 10 93.8 93.4 95.5 85.4
11 ≤ 20 89.4 89.3 90.0 43.4
21 ≤ 30 87.7 87.9 84.4 22.4
31 ≤ 40 87.5 87.7 83.1 11.1
41 ≤ ∞ 86.8 87.1 73.7 5.3

a parsing methodology very similar to ours albeit with constituency-based
representations, it is found that support vector machines give consistently
higher accuracy than memory-based learning. We will return to this issue in
the error analysis in the next section.

Turning finally to the assessment of labeled accuracy, we are not aware of
any strictly comparable results, but Blaheta and Charniak (2000) report an
F measure of 98.9% for the assignment of grammatical role labels to phrases
that were correctly parsed by the parser described in Charniak (2000), using
the same data set. If null labels are excluded, the F score drops to 95.6%.
The corresponding F measures for our system, based on the labeled preci-
sion and recall for tokens that are assigned the correct head, are 98.0% and
97.8%, treating the default label DEP as the equivalent of a null label. The
experiments are not strictly comparable, since they involve different sets of
functional categories (where only the labels SBJ and PRD are equivalent) and
one is based on phrase structure and the other on dependency structure, but
it nevertheless seems fair to conclude that the labeling accuracy of our parser
is close to the state of the art, even if its capacity to derive correct structures
is not. It should also be kept in mind that the labeling here is performed in the
same deterministic one-pass parsing process as the derivation of the structure,
whereas Blaheta and Charniak (2000) apply an elaborate probabilistic model
to the output of a probabilistic parser.

To make the comparison complete, it should also be pointed out that, if
the memory-based deterministic approach dependency parsing does not quite
reach the state of the art in terms of accuracy, it is highly competitive in terms
of efficiency. This holds both with respect to parsing time, with a linear time
parsing algorithm, and with respect to training time, where the memory-based
approach vastly outperforms, e.g., support vector machines.

5.5.3 Error Analysis

Although we will not be able to present a detailed error analysis, we will try
to tease apart some of the error sources involved in deterministic memory-
based dependency parsing. More precisely, we will consider the influence of

172 5 Treebank Parsing

Table 5.17. Accuracy as a function of tagging accuracy (English, model L′
4); AS:

attachment score, EM: exact match; U: unlabeled, L: labeled

AS EM
Tagging Accuracy U L U L

Gold standard 100.0 89.7 88.3 36.0 31.8
Nakagawa et al. (2002) 97.1 88.7 87.1 34.4 29.8
Hall (2003) 96.1 88.1 86.3 32.8 28.4

part-of-speech tagging errors and the role of the inductively defined parser
guide in relation to the deterministic parsing strategy.

Table 5.17 presents the parsing accuracy obtained with the best model for
the English data, with three different ways of assigning part-of-speech tags in
the preprocessing. The first uses the gold standard tags in the Penn Treebank
annotation; the second uses the output of the tagger described in Nakagawa
et al. (2002), based on revision learning with support vector machines and used
in the parsing experiments of Yamada and Matsumoto (2003);7 the third uses
the output of the tagger described in Hall (2003), based on hidden Markov
models with suffix probabilities and used in all the experiments of this study.

We see that there is a substantial improvement in parsing accuracy when
using the gold standard tags, ranging from 1.6 percentage points for unlabeled
attachment accuracy to 3.4 percentage points for labeled exact match. A more
detailed look at different dependency types (not shown in the table) reveals
that the greatest improvement is found for the argument types OBJ and PRD,
where the labeled F measure increases by 4.1 (OBJ) and 3.2 (PRD) percentage
points. This indicates that a significant proportion of the cases where these
two types are confused during parsing are due to tagging errors. Using gold
standard tags also improves the root accuracy of the parser from 86.4% to
90.0%, which is a very substantial difference.

Using the tagger of Nakagawa et al. (2002) instead of our own HMM tagger
also makes a significant difference. In fact, although the error reduction in
tagging is only about 25%, the error reduction in parsing is roughly 40% when
compared to the scores obtained with gold standard tags, and as much as 50%
for unlabeled exact match. It thus seems that the tagging errors avoided by the
better tagger are of a kind that are important for syntactic parsing. However,
without a detailed analysis of the differences between the taggers, it is difficult
to say anything more precise than this.

The second kind of error analysis that we will present is an attempt to
distinguish the influence of prediction errors, caused by errors in the learned
approximation of the guide function, and errors that are the combined effect
of previous prediction errors and the greedy, deterministic parsing strategy.

7 Special thanks to Hiroyasu Yamada for supplying us with the output of this tagger
for section 23 of the Wall Street Journal section of the Penn Treebank.

5.5 Final Evaluation 173

Table 5.18. Classification accuracy, number of instances, and number of exact
matches (model L′

4); Swedish (section 0), English (section 23)

Data set Accuracy Instances Exact

Swedish 90.7 16714 1064
English tagged 94.4 102419 15185
English gold 95.2 102419 15962

Table 5.18 presents the pure classification accuracy of the best memory-based
models for learning and classification when tested on the set of instances
derived from a gold standard parse of the respective test sets, section 0 of
the Swedish treebank and section 23 of the English treebank. This proportion
tells us how often the estimated guide prediction ĝ(Φ(c,Ax)) coincides with
the true oracle prediction o(c,Ax) for the given data sets. The table also
gives the number of instances in each test set (equivalent to the number of
nondeterministic parser configurations in parsing the test set) and the number
of parser states that had an exact match in the instance base.

First, we may note that the number of exact matches in the instance base
is relatively low, about 6% for Swedish and about 15% for English. The higher
proportion for English is expected, since the training data set is one order of
magnitude larger. With a low percentage of exact matches it is crucial to
have an adequate smoothing model, and it seems that the similarity-based
smoothing built into the memory-based classification solves this problem very
well, with classification accuracy above 90% for all conditions. For English
we can also observe that tagging errors have a relatively small impact on
classification accuracy as such, although the effect is magnified in parsing
because of subsequent errors caused by the initial prediction error.

Comparing classification accuracy and parsing accuracy is not completely
straightforward, but the most relevant metric is labeled attachment score,
since the transitions chosen in the classification task are parameterized for
dependency types. For Swedish, a classification accuracy of 90.7% corresponds
to a labeled attachment score of 82.0%, which indicates a drop in accuracy
of about 9% because of the greedy parsing strategy. For English with noisy
tagging, a classification accuracy of 94.4% corresponds to a labeled attach-
ment score of 86.3%, which is roughly 8% deterioration. For English with gold
standard tags, there is only a 7% drop from 95.2% to 88.3%. As expected, the
drop in accuracy from pure classification to parsing is smaller the better the
classification accuracy, since a lower probability of prediction errors also leads
to a lower probability of errors caused by earlier prediction errors. As a first
approximation, we can predict the labeled attachment accuracy to be the
square of the classification accuracy (CA) (treating both ASL and CA as
proportions ranging from 0 to 1):

ASL = CA
2 (5.5)

174 5 Treebank Parsing

This prediction overestimates the parsing accuracy more for English than
for Swedish. This can probably be explained by the fact that the English
sentences are generally longer and more complex, which by itself increases the
probability of errors being caused by previous prediction errors. In order to
more accurately predict the parsing accuracy from the classification accuracy,
we therefore need to introduce a constant c related to the complexity of the
text samples being parsed:

ASL = c · CA
2 (5.6)

In our experiments, the value of c appears to be approximately 0.97 for English
and almost 1.0 for Swedish. Since the negative effect of error propagation is
likely to increase with sentence length, we might be able to predict the value
of c from the mean sentence length in the test corpus. For the test sets used
here, a good approximation can be obtained by setting c = 1− 0.003(n− 15),
where n is the mean number of words per sentence. Whether a model of this
kind can be generalized to other languages and data sets is a question that
can only be answered by further research.

In conclusion, it seems that the classification accuracy attained by the
memory-based approach to learning is sufficient for highly accurate parsing,
especially if sufficient amounts of training data are available, as indicated by
the significantly higher accuracy for the English data sets. However, in order
to convert this potential into state-of-the-art parsing accuracy, the parsing
process clearly needs to be improved. This improvement may take the form
of enhanced preprocessing, as suggested by the results of Isozaki et al. (2004),
or it may require abandoning the strictly deterministic parsing strategy. We
will return to these issues in the concluding chapter.

6

Conclusion

In this book we have explored the framework of inductive dependency parsing
as a methodology for accurate and efficient syntactic parsing of unrestricted
natural language text. Starting from the basic requirements of robustness and
disambiguation, as they appear in our definition of the text parsing problem,
we have sought to develop methods where accuracy and efficiency can be
jointly optimized. The basic ingredients are dependency-based parsing and
inductive machine learning, restricted in this study to deterministic parsing
supported by memory-based learning and classification.

As is customary, we will use the concluding chapter of the book to look
forward as well as backward. In the first part of the chapter, we will outline
what we take to be our main contributions to the study of natural language
parsing in general and data-driven dependency parsing in particular. In the
second part, we will point to some important directions for future research,
motivated by the desire to improve inductive dependency parsing as well as by
the need to increase our knowledge about natural language parsing in general.

6.1 Main Contributions

The contributions of this study can be divided into four broad categories,
roughly corresponding to chapters 2–5. The first is a conceptual analysis of
the problems and methods involved in natural language parsing (chapter 2).
The second is a formal analysis of dependency parsing and of a particular
deterministic algorithm for projective dependency parsing (chapter 3). The
third is a general model for inductive dependency parsing and an instantiation
of this model through memory-based learning and classification (chapter 4).
The fourth is an empirical evaluation of inductive dependency parsing, in its
deterministic memory-based version, based on treebank data from Swedish
and English (chapter 5).

One of the main points made in the conceptual discussion in chapter 2 is
that text parsing, the problem of parsing unrestricted natural language text, is

176 6 Conclusion

in many ways radically different from grammar parsing, the problem of parsing
strings according to a formal grammar. While grammar parsing is an abstract
and mathematically well-defined problem, which can be studied using formal
methods, text parsing is an essentially empirical problem, where the central
requirement of accuracy can only be evaluated by statistical inference based
on representative text samples. This makes it an open question whether and to
what extent methods for grammar parsing have a role to play in text parsing.
We are certainly not the first to notice this ambiguity in the application of the
term parsing to natural language, but we feel that it has perhaps not been
given the attention it deserves in the literature. And even though we only
consider one specific formulation of the text parsing problem, which may not
be accepted by everyone, and only discuss a subset of the problems involved
in this task, we hope that this discussion can make some small contribution
to our scientific understanding of natural language parsing.

Another distinction that is well-known in the literature, but which may
also be in need of some conceptual clarification, is the distinction between the
grammar-driven and the data-driven approach to text parsing. First of all,
we have emphasized that the two approaches are not incompatible and are
actually combined in many contemporary parsing systems. Secondly, we have
proposed that a fruitful way of understanding the distinction is to view the
two approaches as different strategies for handling the complex optimization
of robustness, disambiguation, accuracy and efficiency. The grammar-driven
approach is based on a formal language approximation, which provides a solid
basis for accurate parsing, but which needs to be complemented with tech-
niques for handling robustness and disambiguation. The data-driven approach
is instead based on inductive inference for disambiguation, which makes a
formal language characterization superfluous and thereby favors robustness.
Whether used alone or in combination, both strategies also have to deal with
the trade-off between robust and accurate disambiguation, on the one hand,
and efficiency, on the other. In this book, we have only exploited the data-
driven approach to dependency parsing, but the general framework is com-
patible also with a grammar-driven approach, a topic that we will return to
later in this chapter.

Chapter 3 presents a formalization of dependency-based text parsing,
which provides the formal framework for the study of specific methods in
later chapters. Given a text, composed of a sequence of sentences, the parsing
problem consists in assigning to each sentence a labeled dependency graph,
using the tokens of the sentence as nodes, and using typed syntactic relations
as arcs. Since tokens are represented by string positions, rather than actual
word forms, the framework separates the structural analysis of a sentence,
represented by the graph structure, from its surface realization, represented
by the word string, possibly with additional annotation. Dependency graphs
are assumed to be rooted and connected, but additional requirements such
as single-headedness, acyclicity and projectivity are optional. Moreover, no
specific assumptions are made concerning the form of the syntactic analysis,

6.1 Main Contributions 177

over and above the fact that it can be represented as a labeled dependency
graph. In this way, we hope to provide a framework that is general enough
to encompass different instantiations of dependency-based text parsing and
thereby provide a basis for comparative studies, although such investigations
are beyond the scope of this study.

The main contribution of chapter 3 is the specification and analysis of an
efficient algorithm for projective dependency parsing, based on a head-driven
arc-eager parsing strategy. The algorithm is defined in terms of a nondeter-
ministic transition system, which requires an oracle, or guide, to predict the
next transition at each nondeterministic choice point. Guided parsing can
be implemented in a variety of ways, using the grammar-driven or the data-
driven approach, without changing the fundamental properties of the parsing
algorithm.

We prove three theorems about the parsing algorithm. Theorem 3.19 says
that any sentence of length n is parsed in at most 2n − 1 transitions. This
means that time complexity is linear in the length of the input, provided that
transitions can be performed in constant time. Theorem 3.21 says that the
dependency graph given at termination, for any input sentence, satisfies the
formal conditions Root, Connectedness, Single-Head, Acyclicity and
Projectivity. This means that any sentence can be assigned a well-formed
dependency analysis. Taken together, these results guarantee that the parsing
algorithm is optimal with respect to robustness and disambiguation, since any
input sentence is assigned exactly one well-formed dependency graph. More-
over, time complexity is also optimal, since the single well-formed dependency
graph is constructed in linear time.

While theorems 3.19 and 3.21 have no bearing on accuracy, i.e., on whether
the single well-formed dependency graph assigned to a given sentence is the
correct analysis or not, theorem 3.22 establishes that any projective depen-
dency graph has a corresponding transition sequence, which means that, given
an oracle that predicts the next transition, the parsing algorithm will always
derive the correct analysis for a given input sentence. In the second half of the
book, we investigate to what extent it is possible to approximate oracles using
inductive machine learning and to achieve accurate and efficient parsing by
combining the deterministic parsing algorithm with a data-driven approach
to text parsing.

There are three essential components in the data-driven approach: a for-
mal model defining permissible syntactic representations; an empirical sample
of text constituting the basis for generalization; and an inductive inference
scheme for assigning syntactic representations to new sentences (based on the
formal model and the empirical text sample). In chapter 4, we show how
the framework for dependency parsing developed in chapter 3 can be used as
the formal model in a data-driven system, and we go on to define a history-
based inductive inference scheme, which is parameterized by a feature model,
a parsing method and a learning method. We show how the deterministic
parsing algorithm can be used as the parsing method, implementing a greedy

178 6 Conclusion

search for the optimal analysis according to the history-based model, and how
memory-based learning and classification can be used to solve the inductive
learning problem defined by the history-based model in combination with the
deterministic parsing strategy. We also demonstrate how a variation of the
parsing algorithm can be used to generate training data for the learner, given
a training corpus with gold standard dependency annotations. The correct-
ness proof for this algorithm, theorem 4.1, is of central importance insofar as
it also constitutes a constructive proof of theorem 3.22.

The feature model, which defines equivalence classes of histories, can be
defined by a sequence of feature functions, each of which is equivalent to the
composition of an address function and an attribute function. This formaliza-
tion forms the basis of a description language for feature models, which is used
in the implemented MaltParser system to allow the specification of arbitrary
feature models without recompiling the system. To a large extent, the speci-
fication of feature models is independent of both the parsing method and the
learning method used. At the end of chapter 4, we briefly describe the archi-
tecture of the MaltParser system, which is based on a strict modularization
of parsing method, feature model, and learning method.

Given the empirical view of text parsing, evaluation by necessity requires
empirical experiments. Chapter 5 presents a fairly exhaustive evaluation of
inductive dependency parsing, based on deterministic parsing and memory-
based learning, using treebank data from Swedish and English. The evaluation
focuses on the influence of different parameters of the feature model and the
learning algorithm on accuracy, but the evaluation also takes efficiency into
account.

The experiments confirm the importance of proper feature selection for
data-driven parsing, evident from many previous studies. By and large, we
can say that accuracy increases with model complexity until it is affected
by data sparseness, which in our experiments happens sooner for Swedish
than for English. At the same time, parsing efficiency decreases with model
complexity, as the time needed to predict the next transition increases, which
means that accuracy and efficiency must be jointly optimized, although the
optimal point may vary from one context to the other.

The experimental results corroborate the importance of lexicalization for
accurate disambiguation, both for Swedish and for English, which is in line
with previous studies on data-driven parsing, although conflicting results exist
(Klein and Manning, 2003; Dubey and Keller, 2003; Arun and Keller, 2005).
Another conclusion that can be drawn is that dynamically defined dependency
type features have a positive influence on parsing accuracy, a result which has
not been reported in the literature before, although it can probably be related
to results for structurally defined features in constituency-based parsing.

The experiments also demonstrate the importance of optimizing para-
meters of the learning algorithm, confirming the results of previous stud-
ies of data-driven natural language processing. For memory-based learning
and classification, a relatively large k value in combination with the MVDM

6.2 Future Directions 179

distance metric has previously been found to work well for higher-level tasks
such as parsing (Daelemans and Van den Bosch, 2005), a finding that is also
supported by the experimental results reported in this study.

For Swedish, the final evaluation establishes a new benchmark, since no
large-scale evaluation of dependency parsing has previously been performed
for this language. The results indicate that reasonable parsing accuracy can be
achieved with fairly limited amounts of training data, given a suitable depen-
dency annotation. For English, the final evaluation shows that the accuracy
obtained is not quite state-of-the-art, which can be explained by the combined
effect of classification errors and a greedy, deterministic parsing strategy. It
is also possible that the learner suffers from the fact that the labeled depen-
dency graphs used for training are derived from a constituency-based annota-
tion with only limited functional annotation. On the other hand, the parser
compares well with other systems in terms of efficiency, both in training and
in parsing. In any case, the results are significant in that they show what kind
of accuracy can be achieved using a deterministic one-pass strategy in combi-
nation with a purely discriminative strategy for inductive learning, imposing
hard constraints on robustness and disambiguation, and maintaining a high
level of efficiency.

6.2 Future Directions

The dependency-based system for text parsing evaluated in chapter 5 is only
one instantiation of a more general approach to inductive dependency parsing.
This instantiation is the result of making specific decisions at a number of
points, such as which conditions to impose on dependency graphs, what kind
of parsing algorithm to use, and what kind of learning methods to employ.
Our suggestions for future research can to a large extent be understood as the
exploration of different choices at each of these points.

Although the framework of dependency parsing defined in chapter 3 only
requires dependency graphs to be rooted and connected, we have restricted
our attention in this study to projective dependency graphs. Given that the
data sets used for training and evaluation in chapter 5 only contain projective
structures, this restriction may seem well motivated, but it is problematic in
a more general context. For example, it is sometimes claimed that one of the
advantages of dependency grammar over approaches based on constituency
is that it allows a more adequate treatment of languages with variable word
order, where discontinuous syntactic constructions are more common than in
languages like English (Mel’čuk, 1988; Covington, 1990b). But this argument
is really only plausible if the formal framework allows non-projective depen-
dency structures. From the point of view of computational implementation
this can be problematic, since the inclusion of non-projective structures makes
the parsing problem more complex and therefore compromises efficiency and

180 6 Conclusion

in practice also accuracy and robustness, which is why most robust depen-
dency parsers are restricted to projective structures.

This is in contrast to dependency treebanks, exemplified by the Prague
Dependency Treebank (Hajič et al., 2001), the Danish Dependency Treebank
(Kromann, 2003), and the METU Treebank of Turkish (Oflazer et al., 2003),
which generally allow sentences to be annotated with non-projective depen-
dency structures in order to capture discontinuous constructions. The fact
that projective dependency parsers can never exactly reproduce the analyses
found in non-projective treebanks is often neglected because of the relative
scarcity of problematic constructions. While the proportion of sentences con-
taining non-projective dependencies is often 15–25%, the total proportion of
non-projective arcs is normally only 1–2% (Nivre and Nilsson, 2005). As long
as the main evaluation metric is attachment score per word, with state-of-the-
art accuracy mostly below 90%, the penalty for not handling non-projective
constructions is almost negligible, especially since these constructions are hard
to parse correctly in the first place. Still, from a theoretical point of view, pro-
jective parsing of non-projective structures has the drawback that it rules out
perfect accuracy even as an asymptotic goal.

Developing methods that can handle non-projective dependency struc-
tures accurately and efficiently is a very important goal of future research.
However, it is still an open question whether this is best achieved by intro-
ducing more complex parsing algorithms, that can construct non-projective
dependency graphs directly, or by combining projective parsing with dif-
ferent kinds of pre- or post-processing to derive non-projective structures.
Thus, Nivre and Nilsson (2005) show how the deterministic memory-based
parsing method evaluated in chapter 5 can be combined with graph transfor-
mation techniques to give a significant improvement of parsing accuracy for
the Prague Dependency Treebank. Since non-projective constructions often
involve long-distance dependencies, this line of research is closely related to
recent work on the recovery of empty categories and non-local dependencies in
constituency-based parsing (Johnson, 2002; Dienes and Dubey, 2003; Hock-
enmaier, 2003b; Jijkoun and De Rijke, 2004; Cahill et al., 2004; Levy and
Manning, 2004; Campbell, 2004).

Another kind of decision concerns the parsing algorithm, in particular the
choice between deterministic and nondeterministic parsing strategies. The em-
pirical evaluation indicates that the greedy optimization strategy inherent in
deterministic parsing puts an upper bound on the accuracy that can be at-
tained. An obvious option to explore in the future is therefore to introduce
a mild form of nondeterminism, which could improve parsing accuracy with-
out sacrificing efficiency. However, this also requires a mechanism for scoring
candidate analyses, which means that we could then no longer rely on purely
discriminative learning methods.

This leads directly to a third decision point, namely the choice of learn-
ing method. If we want to derive more than one analysis in order to select
the most likely candidate, we need a learning method that can estimate the

6.2 Future Directions 181

conditional probabilities associated with the history-based model, and not just
the mode of each conditional distribution. Although memory-based classifi-
cation can give information about the distance of the nearest neighbors, and
about the conditional distribution in the neighbor space, it is not straight-
forward to derive comparable probability estimates for events from different
neighbor spaces. This suggests that Bayesian inference, and other methods
for estimating probabilities, may be worth exploring instead. However, even
if we stick to the deterministic parsing algorithm investigated in this book,
it may be interesting to compare alternative learning methods, such as sup-
port vector machines or maximum entropy modeling. Regardless of learning
method, it may also be possible to improve results through the use of active
learning (Cohn et al., 1994; Thompson et al., 1999; Tang et al., 2002). For
Swedish, where the available data is relatively sparse, active learning can be
used to select new sentences for annotation. For English, where the learning
curves are relatively flat when using random sampling, it may be possible to
improve accuracy by a more efficient use of the available data.

A fourth direction for future research is to provide a synthesis of the data-
driven and the grammar-driven approach to text parsing. Even though the
data-driven approach is fundamental to inductive dependency parsing, there
is nothing that prevents us from integrating grammatical constraints, either to
guide the inductive learning itself, or to filter out predictions that violate the
constraints. However, this must be done in such a way that the robustness of
the data-driven approach is maintained. Combining inductive and deductive
learning is very hard in general, but it could potentially be a way to enhance
existing data-driven methods and to get an optimal mix of the two strategies.

Another research topic that has received increased attention lately is the
notion of incremental parsing. One of the interesting properties of the deter-
ministic arc-eager parsing algorithm, which has not been discussed in detail
in this study, is that it appears to be optimal with respect to incrementality
as well as time complexity (Nivre, 2004a), in the sense that it minimizes the
number of unattached tokens on the stack. However, in order to make parsing
really incremental, we need to eliminate the need for preprocessing in the form
of part-of-speech tagging. This can be done either by integrating tagging into
the parsing process or by eliminating part-of-speech features from our feature
models. The latter option is explored in Nivre (2005).

In order to gain a better understanding of different methods for syntactic
parsing of unrestricted natural language text, it is very important that the
empirical basis for evaluation is widened to as many languages as possible. In
this book, we have evaluated our approach to inductive dependency parsing on
Swedish and English, but there are also results available for Czech (Nivre and
Nilsson, 2005), Bulgarian (Marinov and Nivre, 2005), Danish (Nivre and Hall,
2005) and Italian (Chanev, 2005), as well as ongoing work on Arabic, Chinese,
Dutch, Japanese, German, Portuguese, Slovene, Spanish and Turkish. Com-
paring the performance of inductive dependency parsing across a wide range of
languages will show to what extent the methodology is language-independent.

182 6 Conclusion

Finally, empirical evaluation not only requires data from more languages
but also more diversified evaluation methods. In this study, we have tried to
get a more complete picture by using both attachment score and exact match
metrics to evaluate accuracy, but we are also aware that these measures do
not tell the whole story. In the future, we therefore want to apply other evalu-
ation schemes, in particular the more abstract dependency-based evaluation
discussed briefly in chapter 5 (cf. Lin, 1998; Carroll et al., 1998, 2003). This
leads naturally to more semantically oriented evaluation schemes, focusing on
the recovery of predicate-argument structure and other aspects of semantic
analysis. After all, syntactic parsing is in most applications only a preliminary
to semantic interpretation, even though it is a fascinating problem in itself.

References

Abeillé, A. (2003a). Introduction. In Abeillé, A. (ed.), Treebanks: Building
and Using Parsed Corpora, Kluwer Academic Publishers, pp. xiii–xxvi.

Abeillé, A. (ed.) (2003b). Treebanks: Building and Using Parsed Corpora.
Kluwer Academic Publishers.

Abney, S. (1991). Parsing by chunks. In Berwick, R., Abney, S. and Tenny, C.
(eds), Principle-Based Parsing, Kluwer Academic Publishers, pp. 257–278.

Abney, S. (1996). Partial parsing via finite-state cascades. Journal of Natural
Language Engineering 2: 337–344.

Abney, S. (1997). Part-of-speech tagging and partial parsing. In Young, S.
and Bloothooft, G. (eds), Corpus-Based Methods in Language and Speech
Processing, Kluwer Academic Publishers, pp. 118–136.

Abney, S. and Johnson, M. (1991). Memory requirements and local ambigui-
ties of parsing strategies. Journal of Psycholinguistic Research 20: 233–250.

Aduriz, I., Aranzabe, M. J., Arriola, J. M., Atutxa, A., Dı́az de Ilarraza,
A., Garmendia, A. and Oronoz, M. (2003). Construction of a Basque de-
pendency treebank. In Nivre, J. and Hinrichs, E. (eds), Proceedings of
the Second Workshop on Treebanks and Linguistic Theories (TLT), Växjö
University Press, pp. 201–204.

Aha, D. (ed.) (1997). Lazy Learning. Kluwer Academic Publishers.
Aha, D. W., Kibler, D. and Albert, M. (1991). Instance-based learning algo-

rithms. Machine Learning 6: 37–66.
Aho, A. V., Sethi, R. and Ullman, J. D. (1986). Compilers: Principles, Tech-

niques, and Tools. Addison-Wesley.
Aho, A. V. and Ullman, J. D. (1995). Foundations of Computer Science.

Computer Science Press.
Ajdukiewicz, K. (1935). Die syntaktische Konnexität. Studia Philosophica

1: 1–27.
Alshawi, H. (1996). Head automata and bilingual tiling: Translation with

minimal representations. Proceedings of the 34th Annual Meeting of the
Association for Computational Linguistics (ACL), pp. 167–176.

184 References

Argamon, S., Dagan, I. and Krymolowski, Y. (1998). A memory-based ap-
proach to learning shallow natural language patterns. Proceedings of the
36th Annual Meeting of the Association for Computational Linguistics and
the 17th International Conference on Computational Linguistics (ACL-
COLING), pp. 67–73.

Arun, A. and Keller, F. (2005). Lexicalization in crosslinguistic probabilistic
parsing: The case of French. Proceedings of the 43rd Annual Meeting of the
Association for Computational Linguistics (ACL), pp. 302–313.

Backus, J. W. (1959). The syntax and semantics of the proposed international
algebraic language of the Zürich ACM-GAMM conference. Proceedings of
the International Conference on Information Processing, pp. 125–132.

Baker, J. (1979). Trainable grammars for speech recognition. Speech Commu-
nication Papers for the 97th Meeting of the Acoustical Society of America,
pp. 547–550.

Bangalore, S. (2003). Localizing dependencies and supertagging. In Bod, R.,
Scha, R. and Sima’an, K. (eds), Data-Oriented Parsing, CSLI Publications,
University of Chicago Press, pp. 283–298.

Bangalore, S. and Joshi, A. K. (1999). Supertagging: An approach to almost
parsing. Computational Linguistics 25: 237–267.

Bar-Hillel, Y. (1953). A quasi-arithmetical notation for syntactic description.
Language 29: 47–58.

Bar-Hillel, Y., Gaifman, C. and Shamir, E. (1960). On categorial and phrase-
structure grammars. Bulletin of the Research Council of Israel 9F: 1–16.

Barbero, C., Lesmo, L., Lombardo, V. and Merlo, P. (1998). Integration of
syntactic and lexical information in a hierarchical dependency grammar. In
Kahane, S. and Polguère, A. (eds), Proceedings of the Workshop on Process-
ing of Dependency-Based Grammars (ACL-COLING), pp. 58–67.

Barton, G. E., Berwick, R. C. and Ristad, E. S. (1987). Computational Com-
plexity and Natural Language. MIT Press.

Basili, R. and Zanzotto, F. M. (2002). Parsing engineering and empirical
robustness. Natural Language Engineering 8: 97–120.

Berger, A., Della Pietra, S. A. and Della Pietra, V. J. (1996). A maximum en-
tropy approach to natural language processing. Computational Linguistics
22: 39–71.

Bies, A., Ferguson, M., Katz, K. and MacIntyre, R. (1995). Bracketing guide-
lines for Treebank II style, Penn Treebank project. University of Pennsyl-
vania, Philadelphia.

Bigert, J. (2005). Automatic and Unsupervised Methods in Natural Language
Processing. PhD thesis, KTH, Stockholm.

Bikel, D. M. (2004). Intricacies of Collins’ parsing model. Computational
Linguistics 30: 479–511.

Bishop, C. M. (1996). Neural Networks for Pattern Recognition. Oxford
University Press.

Black, E., Abney, S., Flickinger, D., Gdaniec, C., Grishman, R., Harrison, P.,
Hindle, D., Ingria, R., Jelinek, F., Klavans, J., Liberman, M., Roukos, S.,

References 185

Santorini, B. and Strzalkowski, T. (1991). A procedure for quantitatively
comparing the syntactic coverage of English grammars. Proceedings of the
DARPA Speech and Natural Language Workshop, pp. 306–311.

Black, E., Garside, R. and Leech, G. (eds) (1993). Statistically-Driven Com-
puter Grammars of English: The IBM/Lancaster Approach. Rodopi.

Black, E., Jelinek, F., Lafferty, J., Magerman, D., Mercer, R. and Roukos,
S. (1992). Towards history-based grammars: Using richer models for
probabilistic parsing. Proceedings of the 5th DARPA Speech and Natural
Language Workshop, pp. 31–37.

Blaheta, D. and Charniak, E. (2000). Assigning function tags to parsed text.
Proceedings of the First Meeting of the North American Chapter of the
Association for Computational Linguistics (NAACL), pp. 234–240.

Bloomfield, L. (1933). Language. The University of Chicago Press.
Bod, R. (1995). Enriching Linguistics with Statistics: Performance Models of

Natural Language. PhD thesis, University of Amsterdam.
Bod, R. (1998). Beyond Grammar. CSLI Publications, University of Chicago

Press.
Bod, R. (2000). Parsing with the shortest derivation. Proceedings of the 18th

International Conference on Computational Linguistics (COLING),
pp. 69–75.

Bod, R. (2001). What is the minimal set of subtrees that achieves maximal
parse accuracy. Proceedings of the 39th Annual Meeting of the Association
for Computational Linguistics (ACL), pp. 66–73.

Bod, R. (2003). An efficient implementation of a new DOP model. Proceed-
ings of the 10th Conference of the European Chapter of the Association for
Computational Linguistics (EACL), pp. 19–26.

Bod, R., Hay, J. and Jannedy, S. (eds) (2003). Probabilistic Linguistics. MIT
Press.

Bod, R. and Kaplan, R. (1998). A probabilistic corpus-driven model for
lexical-functional analysis. Proceedings of the 36th Annual Meeting of the
Association for Computational Linguistics and the 17th International Con-
ference on Computational Linguistics (ACL-COLING), pp. 145–151.

Bod, R., Scha, R. and Sima’an, K. (eds) (2003). Data-Oriented Parsing. CSLI
Publications, University of Chicago Press.

Böhmová, A., Hajič, J., Hajičová, E. and Hladká, B. (2003). The Prague
Dependency Treebank: A three-level annotation scenario. In Abeillé, A.
(ed.), Treebanks: Building and Using Parsed Corpora, Kluwer Academic
Publishers, pp. 103–127.

Bohnet, B. (2003). Mapping phrase structures to dependency structures in the
case of free word order languages. Proceedings of The First International
Conference on Meaning-Text Theory, pp. 138–148.

Booth, T. and Thompson, R. (1973). Applying probability measures to
abstract languages. IEEE Transactions on Computers C-22: 442–450.

186 References

Bosco, C. and Lombardo, V. (2004). Dependency and relational structure in
treebank annotation. Proceedings of the Workshop on Recent Advances in
Dependency Grammar, pp. 9–16.

Boullier, P. (2003). Guided Earley parsing. In Van Noord, G. (ed.), Proceed-
ings of the 8th International Workshop on Parsing Technologies (IWPT),
pp. 43–54.

Brants, S., Dipper, S., Hansen, S., Lezius, W. and Smith, G. (2002). TIGER
treebank. In Hinrichs, E. and Simov, K. (eds), Proceedings of the First
Workshop on Treebanks and Linguistic Theories (TLT), pp. 24–42.

Brants, T. (1999). Cascaded Markov models. Proceedings of the Ninth
Conference of the European Chapter of the Association for Computational
Linguistics (EACL), pp. 118–125.

Bresnan, J. (2000). Lexical-Functional Syntax. Blackwell.
Brill, E. (1993). Transformation-based error-driven parsing. Proceedings of the

Third International Workshop on Parsing Technologies (IWPT), pp. 13–25.
Briscoe, E. and Carroll, J. (1993). Generalised probabilistic LR parsing of nat-

ural language (corpora) with unification-based grammars. Computational
Linguistics 19: 25–59.

Buchholz, S. (2002). Memory-Based Grammatical Relation Finding. PhD
thesis, Tilburg University.

Buchholz, S., Veenstra, J. and Daelemans, W. (1999). Cascaded grammati-
cal relation assignment. Proceedings of the Joint SIGDAT Conference on
Empirical Methods in NLP and Very Large Corpora, pp. 239–246.

Cahill, A., Burke, M., O’Donovan, R., Van Genabith, J. and Way, A.
(2004). Long-distance dependency resolution in automatically acquired
wide-coverage PCFG-based LFG approximations. Proceedings of the 42nd
Annual Meeting of the Association for Computational Linguistics (ACL),
pp. 320–327.

Campbell, R. (2004). Using linguistic principles to recover empty categories.
Proceedings of the 42nd Annual Meeting of the Association for Computa-
tional Linguistics (ACL), pp. 646–653.

Caraballo, S. A. and Charniak, E. (1998). New figures of merit for best-first
probabilistic chart parsing. Computational Linguistics 24: 275–298.

Cardie, C. (1993). Using decision trees to improve case-based learning.
Proceedings of the 10th International Conference on Machine Learning,
pp. 25–32.

Cardie, C., Daelemans, W. and Sang, E. T. K. (eds) (2000). Proceedings of the
Fourth Conference on Computational Natural Language Learning (CoNLL),
Association for Computational Linguistics.

Carpenter, B. (1992). The Logic of Typed Feature Structures. Cambridge
University Press.

Carpenter, B. and Manning, C. (1997). Probabilistic parsing using left corner
language models. Proceedings of the 5th International Workshop on Parsing
Technologies, pp. 147–158.

References 187

Carreras, X. and Màrquez, L. (2004). Introduction to the CoNLL-2004 shared
task: Semantic role labeling. In Ng, H. T. and Riloff, E. (eds), Proceedings of
the 8th Conference of Computational Natural Language Learning (CoNLL),
pp. 89–97.

Carroll, G. and Charniak, E. (1992). Two experiments on learning probabilis-
tic dependency grammars from corpora, Technical Report TR-92, Depart-
ment of Computer Science, Brown University.

Carroll, J. (1994). Relating complexity to practical performance in parsing
with wide-coverage unification grammars. Proceedings of the 32nd Annual
Meeting of the Association for Computational Linguistics (ACL), pp. 287–
294.

Carroll, J. (2000). Statistical parsing. In Dale, R., Moisl, H. and Somers, H.
(eds), Handbook of Natural Language Processing, Marcel Dekker, pp. 525–
543.

Carroll, J. (2003). Parsing. In Mitkov, R. (ed.), The Oxford Handbook of
Computational Linguistics, Oxford University Press, pp. 233–248.

Carroll, J. and Briscoe, E. (1996). Apportioning development effort in a prob-
abilistic LR parsing system through evaluation. Proceedings of the Con-
ference on Empirical Methods in Natural Language Processing (EMNLP),
pp. 92–100.

Carroll, J., Briscoe, E. and Sanfilippo, A. (1998). Parser evaluation: A survey
and a new proposal. Proceedings of the [First] International Conference on
Language Resources and Evaluation, pp. 447–454.

Carroll, J., Minnen, G. and Briscoe, E. (2003). Parser evaluation using a
grammatical relation annotation scheme. In Abeillé, A. (ed.), Treebanks,
Kluwer Academic Publishers, pp. 299–316.

Chanev, A. (2005). Portability of dependency parsing algorithms: An appli-
cation for Italian. Proceedings of the Fourth Workshop on Treebanks and
Linguistic Theories (TLT), pp. 29–40.

Chanod, J.-P. (2001). Robust parsing and beyond. In Junqua, J.-C. and
Van Noord, G. (eds), Robustness in Language and Speech Technology,
Kluwer Academic Publishers, pp. 187–204.

Charniak, E. (1996). Tree-bank grammars. Proceedings of AAAI/IAAI, pp.
1031–1036.

Charniak, E. (1997a). Statistical parsing with a context-free grammar and
word statistics. Proceedings of AAAI/IAAI, pp. 598–603.

Charniak, E. (1997b). Statistical techniques for natural language parsing. AI
Magazine 18: 33–44.

Charniak, E. (2000). A maximum-entropy-inspired parser. Proceedings of
the First Meeting of the North American Chapter of the Association for
Computational Linguistics (NAACL), pp. 132–139.

Charniak, E. and Johnson, M. (2005). Coarse-to-fine n-best parsing and Max-
Ent discriminative reranking. Proceedings of the 43rd Annual Meeting of
the Association for Computational Linguistics (ACL), pp. 173–180.

188 References

Charniak, E., Knight, K. and Yamada, K. (2003). Syntax-based language
models for machine translation. Proceedings of MT Summit IX, pp. 40–46.

Chomsky, N. (1956). Three models for the description of language. IRE
Transactions on Information Theory IT-2: 113–124.

Chomsky, N. (1957). Syntactic Structures. Mouton.
Chomsky, N. (1959). On certain formal properties of grammars. Information

and Control 2: 137–167.
Chomsky, N. (1965). Aspects of the Theory of Syntax. MIT Press.
Chomsky, N. (1970). Remarks on nominalization. In Jacobs, R. and Rosen-

baum, P. S. (eds), Readings in English Transformational Grammar, Ginn
and Co.

Chomsky, N. (1981). Lectures on Government and Binding. Foris Publications.
Chomsky, N. (1995). The Minimalist Program. MIT Press.
Chu, Y. J. and Liu, T. J. (1965). On the shortest arborescence of a directed

graph. Science Sinica 14: 1396–1400.
Church, K. (1988). A stochastic parts program and noun phrase parser for

unrestricted text. Proceedings of the Second Conference on Applied Natural
Language Processing, pp. 136–143.

Civit, M., Kübler, S. and Mart́ı, M. A. (eds) (2005). Proceedings of the Fourth
Workshop on Treebanks and Linguistic Theories (TLT).

Clark, S. and Curran, J. R. (2004). Parsing the WSJ using CCG and log-
linear models. Proceedings of the 42nd Annual Meeting of the Association
for Computational Linguistics (ACL), pp. 104–111.

Cohn, D., Atlas, L. and Ladner, R. (1994). Improving generalization with
active learning. Machine Learning 15: 201–221.

Collins, M. (1996). A new statistical parser based on bigram lexical depen-
dencies. Proceedings of the 34th Annual Meeting of the Association for
Computational Linguistics (ACL), pp. 184–191.

Collins, M. (1997). Three generative, lexicalised models for statistical parsing.
Proceedings of the 35th Annual Meeting of the Association for Computa-
tional Linguistics (ACL), pp. 16–23.

Collins, M. (1999). Head-Driven Statistical Models for Natural Language Pars-
ing. PhD thesis, University of Pennsylvania.

Collins, M. (2000). Discriminative reranking for natural language parsing.
Proceedings of the 17th International Conference on Machine Learning,
pp. 175–182.

Collins, M. and Brooks, J. (1995). Prepositional phrase attachment through a
backed-off model. Proceedings of the 3rd Workshop on Very Large Corpora,
pp. 27–38.

Collins, M. and Duffy, N. (2002). New ranking algorithms for parsing and
tagging: Kernels over discrete structures and the voted perceptron. Pro-
ceedings of the 40th Annual Meeting of the Association for Computational
Linguistics (ACL), pp. 263–270.

References 189

Collins, M., Hajič, J., Ramshaw, L. and Tillmann, C. (1999).
A statistical parser for Czech. Proceedings of the 37th Annual Meeting of
the Association for Computational Linguistics (ACL), pp. 505–512.

Collins, M. and Koo, T. (2005). Discriminative reranking for natural language
parsing. Computational Linguistics 31: 25–71.

Cormen, T. H., Leiserson, C. E. and Rivest, R. L. (1990). Introduction to
Algorithms. MIT Press.

Cost, S. and Salzberg, S. (1993). A weighted nearest neighbor algorithm for
learning with symbolic features. Machine Learning 10: 57–78.

Cover, T. M. and Hart, P. E. (1967). Nearest neighbor pattern classification.
IEEE Transactions on Information Theory 13: 21–27.

Covington, M. A. (1984). Syntactic Theory in the High Middle Ages. Cam-
bridge University Press.

Covington, M. A. (1990a). A dependency parser for variable-word-order
languages, Technical Report AI-1990-01, University of Georgia.

Covington, M. A. (1990b). Parsing discontinuous constituents in dependency
grammar. Computational Linguistics 16: 234–236.

Covington, M. A. (1994). Discontinuous dependency parsing of free and fixed
word order: Work in progress, Technical Report AI-1994-02, University of
Georgia.

Covington, M. A. (2001). A fundamental algorithm for dependency parsing.
Proceedings of the 39th Annual ACM Southeast Conference, pp. 95–102.

Cowie, J. and Wilks, Y. (2000). Information extraction. In Dale, R., Moisl,
H. and Somers, H. (eds), Handbook of Natural Language Processing, Marcel
Dekker, pp. 241–260.

Curran, J. R. and Clark, S. (2004). The importance of supertagging for wide-
coverage CCG parsing. Proceedings of the 20th International Conference
on Computational Linguistics (COLING), pp. 282–288.

Daelemans, W. (1999). Memory-based language processing: Introduction to
the special issue. Journal of Experimental and Theoretical Artificial Intel-
ligence 11: 287–292.

Daelemans, W., Buchholz, S. and Veenstra, J. (1999). Memory-based shal-
low parsing. Proceedings of the 3rd Conference on Computational Natural
Language Learning (CoNLL), pp. 77–89.

Daelemans, W., Durieux, G. and Gillis, S. (1994). The acquisition of stress.
Computational Linguistics 20: 421–451.

Daelemans, W. and Hoste, V. (2002). Evaluation of machine learning methods
for natural language processing tasks. Proceedings of the Third International
Conference on Language Resources and Evaluation (LREC), pp. 755–760.

Daelemans, W., Hoste, V., De Meulder, F. and Naudts, B. (2003). Combined
optimization of feature selection and algorithm parameter interaction in
machine learning of language. Proceedings of the 14th European Conference
on Machine Learning (ECML), pp. 84–95.

Daelemans, W. and Van den Bosch, A. (1992). Generalisation performance of
backpropagation learning on a syllabification task. In Drossaers, M. F. J.

190 References

and Nijholt, A. (eds), Proceedings of TWLT3: Connectionism and Natural
Language Processing, Springer, pp. 77–89.

Daelemans, W. and Van den Bosch, A. (1996). A language-independent data-
oriented grapheme-to-phoneme conversion. In Van Santen, J. P. H., Sproat,
R. W., Olive, J. P. and Hirschberg, J. (eds), Progress in Speech Synthesis,
Springer, pp. 77–89.

Daelemans, W. and Van den Bosch, A. (2005). Memory-Based Language
Processing. Cambridge University Press.

Daelemans, W., Van den Bosch, A. and Zavrel, J. (2002). Forgetting excep-
tions is harmful in language learning. Machine Learning 34: 11–43.

Daelemans, W., Zavrel, J., Berck, P. and Gillis, S. (1996). A memory-based
part of speech tagger generator. In Ejerhed, E. and Dagan, I. (eds), Pro-
ceedings of the Fourth Workshop on Very Large Corpora, pp. 14–27.

Daelemans, W., Zavrel, J., Van der Sloot, K. and Van den Bosch, A. (2004).
TiMBL: Tilburg Memory Based Learner, version 5.1, Reference Guide,
Technical Report ILK 04-02, Tilburg University (ILK) and University of
Antwerp (CNTS).

Dagan, I. and Krymolowski, Y. (2003). Compositional memory-based parsing.
In Bod, R., Scha, R. and Sima’an, K. (eds), Data-Oriented Parsing, CSLI
Publications, University of Chicago Press, pp. 169–188.

Dagan, I., Lee, L. and Pereira, F. (1999). Similarity-based models of word
cooccurrence. Machine Learning 34: 11–41.

De Meulder, F. and Daelemans, W. (2003). Memory-based named entity
recognition using unannotated data. Proceedings of the Seventh Conference
on Computational Natural Language Learning (CoNLL), pp. 208–211.

De Pauw, G. (2003). An approximation of DOP through memory-based learn-
ing. In Bod, R., Scha, R. and Sima’an, K. (eds), Data-Oriented Parsing,
CSLI Publications, University of Chicago Press, pp. 147–167.

De Saussure, F. (1916). Cours de linguistique générale. Payot.
Debusmann, R. (2001). A declarative grammar formalism for dependency

grammar, Master’s thesis, Computational Linguistics, Universität des Saar-
landes.

Debusmann, R., Duchier, D. and Kruijff, G.-J. M. (2004). Extensible depen-
dency grammar: A new methodology. Proceedings of the Workshop on
Recent Advances in Dependency Grammar, pp. 78–85.

Della Pietra, S., Della Pietra, V. and Lafferty, J. (1997). Inducing features
of random fields. IEEE Transactions on Pattern Analysis and Machine
Intelligence 19.

Devijver, P. A. and Kittler, J. (1982). Pattern Recognition: A Statistical
Approach. IEEE Computer Society Press.

Dickinson, M. and Meurers, W. D. (2003). Detecting inconsistencies in tree-
banks. In Nivre, J. and Hinrichs, E. (eds), Proceedings of the Second Work-
shop on Treebanks and Linguistic Theories (TLT), Växjö University Press,
pp. 45–56.

Diderichsen, P. (1946). Elementær dansk grammatik. Gyldendal.

References 191

Dienes, P. and Dubey, A. (2003). Deep syntactic processing by combining
shallow methods. Proceedings of the 41st Annual Meeting of the Association
for Computational Linguistics (ACL), pp. 431–438.

Dowty, D. (1989). On the semantic content of the notion of ‘thematic role’.
In Chierchia, G., Partee, B. H. and Turner, R. (eds), Properties, Types and
Meaning. Volume II: Semantic Issues, Reidel, pp. 69–130.

Dubey, A. and Keller, F. (2003). Probabilistic parsing for German using
sister-head dependencies. Proceedings of the 41st Annual Meeting of the
Association for Computational Linguistics (ACL), pp. 96–103.

Duchier, D. (1999). Axiomatizing dependency parsing using set constraints.
Proceedings of the Sixth Meeting on Mathematics of Language, pp. 115–126.

Duchier, D. (2003). Configuration of labeled trees under lexicalized constraints
and principles. Research on Language and Computation 1: 307–336.

Duchier, D. and Debusmann, R. (2001). Topological dependency trees:
A constraint-based account of linear precedence. Proceedings of the 39th
Annual Meeting of the Association for Computational Linguistics (ACL),
pp. 180–187.

Dudani, S. A. (1976). The distance-weighted k-nearest neighbor rule. IEEE
Transactions on Systems, Man, and Cybernetics SMC-6: 325–327.

Earley, J. (1970). En efficient context-free parsing algorithm. Communications
of the ACM 13: 94–102.

Edmonds, J. (1967). Optimum Branchings. Journal of Research of the
National Bureau of Standards 71B: 233–240.

Einarsson, J. (1976a). Talbankens skriftspr̊akskonkordans. Lund University,
Department of Scandinavian Languages.

Einarsson, J. (1976b). Talbankens talspr̊akskonkordans. Lund University,
Department of Scandinavian Languages.

Eisner, J. M. (1996a). An empirical comparison of probability models for
dependency grammar, Technical Report IRCS-96-11, Institute for Research
in Cognitive Science, University of Pennsylvania.

Eisner, J. M. (1996b). Three new probabilistic models for dependency pars-
ing: An exploration. Proceedings of the 16th International Conference on
Computational Linguistics (COLING), pp. 340–345.

Eisner, J. M. (2000). Bilexical grammars and their cubic-time parsing algo-
rithms. In Bunt, H. and Nijholt, A. (eds), Advances in Probabilistic and
Other Parsing Technologies, Kluwer, pp. 29–62.

Ejerhed, E. (1983). Finite state parsing. In Karlsson, F. (ed.), Papers from
the Seventh Scandinavian Conference of Linguistics, pp. 410–432.

Ejerhed, E. and Källgren, G. (1997). Stockholm Ume̊a Corpus. Version 1.0.
Produced by Department of Linguistics, Ume̊a University and Department
of Linguistics, Stockholm University. ISBN 91-7191-348-3.

Escudero, G., Màrquez, L. and Rigau, G. (2000). Naive bayes and exemplar-
based approaches to word sense disambiguation revisited. Proceedings of
the 14th European Conference on Artificial Intelligence, pp. 421–425.

192 References

Fillmore, C. J. (1968). The case for case. In Bach, E. W. and Harms,
R. T. (eds), Universals in Linguistic Theory, Holt, Rinehart and Winston,
pp. 1–88.

Fix, E. and Hodges, J. (1952). Discriminatory analysis: Nonparametric dis-
crimination: Consistency properties, Technical Report 11, USAF School of
Aviation Medicine, Randolph Field, Texas.

Forst, M., Bertomeu, N., Crysmann, B., Fouvry, F., Hansen-Schirra, S. and
Kordoni, V. (2004). The TIGER dependency bank. Proceedings of the 5th
International Workshop on Linguistically Interpreted Corpora, pp. 31–37.

Foth, K., Daum, M. and Menzel, W. (2004). A broad-coverage parser for
German based on defeasible constraints. Proceedings of KONVENS 2004,
pp. 45–52.

Fraser, N. (1989). Parsing and dependency grammar. In Carston, R. (ed.),
UCL Working Papers in Linguistics 1, University College London, pp.
296–319.

Fraser, N. (1993). Dependency Parsing. PhD thesis, University of London.
Fujii, A., Inui, K., Tokunaga, T. and Tanaka, H. (1998). Selective sampling

for example-based word sense disambiguation. Computational Linguistics
24: 573–598.

Fusijaki, T., Jelinek, F., Cocke, J., Black, E. and Nishino, T. (1989). A prob-
abilistic method for sentence disambiguation. Proceedings of the 1st Inter-
national Workshop on Parsing Technologies, pp. 105–114.

Gaifman, H. (1965). Dependency systems and phrase-structure systems.
Information and Control 8: 304–337.

Garside, R., Leech, G. and Varadi, T. (1992). Lancaster Parsed Corpus. A
machine-readable syntactically analyzed corpus of 144,000 words, available
for distribution through ICAME. Bergen: The Norwegian Computing Cen-
tre for the Humanities.

Gazdar, G., Klein, E., Pullum, G. and Sag, I. (1985). Generalized Phrase
Structure Grammar. Blackwell.

Gildea, D. (2001). Corpus variation and parser performance. Proceedings of
the 2001 Conference on Empirical Methods in Natural Language Processing,
pp. 167–202.

Gildea, D. and Palmer, M. (2002). The necessity of syntactic parsing for
predicate argument recognition. Proceedings of the 40th Annual Meeting of
the Association for Computational Linguistics (ACL), pp. 239–246.

Goodman, J. (1996). Parsing algorithms and metrics. Proceedings of the 34th
Annual Meeting of the Association for Computational Linguistics (ACL),
pp. 177–183.

Goodman, J. (1998). Parsing Inside-Out. PhD thesis, Harvard University.
Grimaldi, R. P. (2004). Discrete and Combinatorial Mathematics. 5th edn,

Addison-Wesley.
Grishman, R., Macleod, C. and Sterling, J. (1992). Evaluating parsing strate-

gies using standardized parse files. Proceedings of the 3rd ACL Conference
on Applied Natural Language Processing, pp. 156–161.

References 193

Grishman, R., Thanh Nhan, N., Marsh, L. and Hirschman, L. (1984). Au-
tomated determination of sublanguage syntactic usage. Proceedings of
the 10th International Conference on Computational Linguistics (COL-
ING) and the 22nd Annual Meeting of the Association for Computational
Linguistics (ACL), pp. 96–100.

Hajič, J. (1998). Building a syntactically annotated corpus: The Prague
Dependency Treebank. Issues of Valency and Meaning, Karolinum, pp.
106–132.

Hajič, J., Vidova Hladka, B., Panevová, J., Hajičová, E., Sgall, P. and Pajas,
P. (2001). Prague Dependency Treebank 1.0. LDC, 2001T10.

Hall, J. (2003). A probabilistic part-of-speech tagger with suffix probabilities,
Master’s thesis, Växjö University.

Hammerton, J., Osborne, M., Armstrong, S. and Daelemans, W. (2002). Intro-
duction to special issue on machine learning approaches to shallow parsing.
Journal of Machine Learning Research 2: 551–558.

Han, C., Han, N. and Ko, S. (2002). Development and evaluation of a Korean
treebank and its application to NLP. Proceedings of the Third International
Conference on Language Resources and Evaluation (LREC), pp. 1635–1642.

Harper, M. P. and Helzerman, R. A. (1995). Extensions to constraint de-
pendency parsing for spoken language processing. Computer Speech and
Language 9: 187–234.

Harper, M. P., Helzermann, R. A., Zoltowski, C. B., Yeo, B. L., Chan, Y.,
Steward, T. and Pellom, B. L. (1995). Implementation issues in the deve-
lopment of the PARSEC parser. Software: Practice and Experience 25:
831–862.

Hastie, T., Tibshirani, R. and Friedman, J. (2001). The Elements of Statistical
Learning. Springer.

Hays, D. G. (1964). Dependency theory: A formalism and some observations.
Language 40: 511–525.

Hellwig, P. (1980). PLAIN – a program system for dependency analysis and
for simulating natural language inference. In Bolc, L. (ed.), Representation
and Processing of Natural Language, Hanser, pp. 195–198.

Hellwig, P. (1986). Dependency unification grammar. Proceedings of the
11th International Conference on Computational Linguistics (COLING),
pp. 195–198.

Hellwig, P. (2003). Dependency unification grammar. In Agel, V., Eichinger,
L. M., Eroms, H.-W., Hellwig, P., Heringer, H. J. and Lobin, H. (eds),
Dependency and Valency, Walter de Gruyter, pp. 593–635.

Henderson, J. (2004). Discriminative training of a neural network statistical
parser. Proceedings of the 42nd Annual Meeting of the Association for
Computational Linguistics (ACL), pp. 96–103.

Hendrickx, I. and Van den Bosch, A. (2003). Memory-based one-step named-
entity recognition: Effects of seed list features, classifier stacking, and unan-
notated data. Proceedings of the Seventh Conference on Computational
Natural Language Learning (CoNLL), pp. 176–179.

194 References

Hindle, D. (1989). Acquiring disambiguation rules from text. Proceedings of
the 27th Annual Meeting of the Association for Computational Linguistics
(ACL), pp. 118–125.

Hindle, D. (1994). A parser for text corpora. In Zampolli, A. (ed.), Compu-
tational Approaches to the Lexicon, Oxford University Press, pp. 103–151.

Hindle, D. and Rooth, M. (1991). Structural ambiguity and lexical relations.
Proceedings of the 29th Annual Meeting of the Association for Compu-
tational Linguistics (ACL), pp. 229–236.

Hinrichs, E. and Simov, K. (eds) (2002). Proceedings of the First Workshop
on Treebanks and Linguistic Theories (TLT).

Hjelmslev, L. (1943). Omkring sprogteoriens grundlæggelse. Akademisk forlag.
Hockenmaier, J. (2003a). Data and Models for Statistical Parsing with Com-

binatory Categorial Grammar. PhD thesis, University of Edinburgh.
Hockenmaier, J. (2003b). Parsing with generative models of predicate-

argument structure. Proceedings of the 41st Annual Meeting of the Associ-
ation for Computational Linguistics (ACL), pp. 359–366.

Holan, T., Kuboň, V. and Plátek, M. (1997). A prototype of a grammar
checker for Czech. Fifth Conference on Applied Natural Language Process-
ing, pp. 147–154.

Hopcroft, J. E., Motwani, R. and Ullman, J. D. (2001). Introduction to Au-
tomata Theory, Languages, and Computation. 2nd edn, Addison-Wesley.

Hopcroft, J. E. and Ullman, J. D. (1979). Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley.

Hudson, R. A. (1984). Word Grammar. Blackwell.
Hudson, R. A. (1990). English Word Grammar. Blackwell.
Isozaki, H., Kazawa, H. and Hirao, T. (2004). A deterministic word de-

pendency analyzer enhanced with preference learning. Proceedings of the
20th International Conference on Computational Linguistics (COLING),
pp. 275–281.

Jackendoff, R. (1972). Semantic Interpretation in Generative Grammar. MIT
Press.

Jackendoff, R. S. (1977). X Syntax: A Study of Phrase Structure. MIT Press.
Järvinen, T. (2003). Multi-layered annotation scheme for treebank annotation.

In Nivre, J. and Hinrichs, E. (eds), Proceedings of the Second Workshop
on Treebanks and Linguistic Theories (TLT), Växjö University Press, pp.
93–104.

Järvinen, T. and Tapanainen, P. (1998). Towards an implementable depen-
dency grammar. In Kahane, S. and Polguère, A. (eds), Proceedings of the
Workshop on Processing of Dependency-Based Grammars, pp. 1–10.

Jebara, T. (2004). Machine Learning: Discriminative and Generative. Kluwer
Academic Publishers.

Jelinek, F., Lafferty, J., Magerman, D., Mercer, R., Ratnaparkhi, A. and
Roukos, S. (1994). Decision tree parsing using a hidden derivation
model. Proceedings of the 1994 Human Language Technology Workshop, pp.
272–277.

References 195

Jensen, K. (1988). Why computational grammarians can be skeptical about
existing linguistic theories. Proceedings of the 12th International Conference
on Computational Linguistics (COLING), pp. 448–449.

Jensen, K. and Heidorn, G. E. (1983). The fitted parse: 100% parsing capabil-
ity in a syntactic grammar of English. Proceedings of the [First] Conference
on Applied Natural Language Processing, pp. 93–98.

Jijkoun, V. and De Rijke, M. (2004). Enriching the output of a parser using
memory-based learning. Proceedings of the 42nd Annual Meeting of the
Association for Computational Linguistics (ACL), pp. 312–319.

Johnson, M. (1988). Attribute-Value Logic and the Theory of Grammar. CSLI
Publications, University of Chicago Press.

Johnson, M. (2001). Joint and conditional estimation of tagging and parsing
models. Proceedings of the 39th Annual Meeting of the Association for
Computational Linguistics (ACL), pp. 314–321.

Johnson, M. (2002). A simple pattern-matching algorithm for recovering
empty nodes and their antecedents. Proceedings of the 40th Annual Meeting
of the Association for Computational Linguistics (ACL), pp. 136–143.

Johnson, M., Geman, S., Canon, S., Chi, Z. and Riezler, S. (1999). Estimators
for stochastic “unification-based” grammars. Proceedings of the 37th Annual
Meeting of the Association for Computational Linguistics (ACL), pp.
535–541.

Joshi, A. (1985). How much context-sensisitivity is necessary for charac-
terizing structural descriptions – tree adjoining grammars. In Dowty, D.,
Karttunen, L. and Zwicky, A. (eds), Natural Language Processing: Psy-
cholinguistic, Computational and Theoretical Perspectives, Cambridge Uni-
versity Press, pp. 206–250.

Joshi, A. K. (1997). Tree-adjoining grammars. In Rozenberg, G. and Salo-
maa, A. (eds), Handbook of Formal Languages. Volume 3: Beyond Words,
Springer, pp. 69–123.

Joshi, A. and Sarkar, A. (2003). Tree adjoining grammars and their appli-
cation to statistical parsing. In Bod, R., Scha, R. and Sima’an, K. (eds),
Data-Oriented Parsing, CSLI Publications, University of Chicago Press,
pp. 253–281.

Junqua, J.-C. and Van Noord, G. (eds) (2001). Robustness in Language and
Speech Technology. Kluwer Academic Publishers.

Kahane, S., Nasr, A. and Rambow, O. (1998). Pseudo-projectivity: A poly-
nomially parsable non-projective dependency grammar. Proceedings of
the 36th Annual Meeting of the Association for Computational Linguistics
and the 17th International Conference on Computational Linguistics, pp.
646–652.

Kaplan, R. and Bresnan, J. (1982). Lexical-Functional Grammar: A formal
system for grammatical representation. In Bresnan, J. (ed.), The Mental
Representation of Grammatical Relations, MIT Press, pp. 173–281.

Kaplan, R. M., Riezler, S., King, T. H., Maxwell III, J. T., Vasserman, A.
and Crouch, R. (2004). Speed and accuracy in shallow and deep stochastic

196 References

parsing. Proceedings of Human Language Technology and the Conference of
the North American Chapter of the Association for Computational Linguis-
tics (HLT-NAACL), pp. 97–104.

Karlsson, F. (1990). Constraint grammar as a framework for parsing running
text. In Karlgren, H. (ed.), Papers presented to the 13th International
Conference on Computational Linguistics (COLING), pp. 168–173.

Karlsson, F., Voutilainen, A., Heikkilä, J. and Anttila, A. (eds) (1995). Con-
straint Grammar: A language-independent system for parsing unrestricted
text. Mouton de Gruyter.

Kasami, T. (1965). An efficient recognition and syntax algorithm for context-
free languages, Technical Report AF-CRL-65-758, Air Force Cambridge
Research Laboratory.

Kay, M. (1980). Algorithm schemata and data structures in syntactic
processing, Technical Report CSL-80-12, Xerox PARC.

Kay, M. (1989). Head-driven parsing. Proceedings of the International Work-
shop on Parsing Technologies, pp. 52–62.

Kay, M. (2000). Guides and oracles for linear-time parsing. Proceedings of the
6th International Workshop on Parsing Technologies (IWPT), pp. 6–9.

King, T. H., Crouch, R., Riezler, S., Dalrymple, M. and Kaplan, R. M. (2003).
The PARC 700 dependency bank. Proceedings of the 4th International
Workshop on Linguistically Interpreted Corpora, pp. 1–8.

Klein, D. and Manning, C. D. (2002). Conditional structure versus conditional
estimation in NLP models. Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP), pp. 9–16.

Klein, D. and Manning, C. D. (2003). Accurate unlexicalized parsing. Pro-
ceedings of the 41st Annual Meeting of the Association for Computational
Linguistics (ACL), pp. 423–430.

Klein, D. and Manning, C. D. (2004). Corpus-based induction of syntactic
structure: Models of dependency and constituency. Proceedings of the 42nd
Annual Meeting of the Association for Computational Linguistics (ACL),
pp. 479–486.

Knuth, D. E. (1965). On the translation of languages from left to right.
Information and Control 8: 607–639.

Kokkinakis, D. and Johansson Kokkinakis, S. (1999). A cascaded finite-state
parser for syntactic analysis of Swedish. Proceedings of the Ninth Conference
of the European Chapter of the Association for Computational Linguistics
(EACL), pp. 245–248.

Koskenniemi, K. (1990). Finite-state parsing and disambiguation. In Karl-
gren, H. (ed.), Papers presented to the 13th International Conference on
Computational Linguistics (COLING), pp. 229–232.

Koskenniemi, K. (1997). Representations and finite-state components in
natural language. In Roche, E. and Schabes, Y. (eds), Finite State Lan-
guage Processing, MIT Press, pp. 99–116.

References 197

Kouchnir, B. (2004). A memory-based approach for semantic role labeling.
In Ng, H. T. and Riloff, E. (eds), Proceedings of the 8th Conference on
Computational Natural Language Learning, pp. 118–121.

Kromann, M. T. (2003). The Danish Dependency Treebank and the DTAG
treebank tool. In Nivre, J. and Hinrichs, E. (eds), Proceedings of the Second
Workshop on Treebanks and Linguistic Theories (TLT), Växjö University
Press, pp. 217–220.

Kromann, M. T. (2004). Optimality parsing and local cost functions in
Discontinuous Grammar. Electronic Notes of Theoretical Computer Sci-
ence 53: 163–179.

Kruijff, G.-J. M. (2001). A Categorial-Modal Logical Architecture of Informa-
tivity: Dependency Grammar Logic and Information Structure. PhD thesis,
Charles University.

Kruijff, G.-J. M. (2002). Formal and computational aspects of dependency
grammar: History and development of DG, Technical report, ESSLLI-2002.

Krymolowski, Y. and Dagan, I. (2000). Incorporating compositional evidence
in memory-based partial parsing. Proceedings of the 38th Annual Meeting
of the Association for Computational Linguistics, pp. 45–52.

Kübler, S. (2004). Memory-Based Parsing. John Benjamins.
Kübler, S. and Hinrichs, E. W. (2001). From chunks to function-argument

structure: A similarity-based approach. Proceedings of the 39th Annual
Meeting of the Association for Computational Linguistics (ACL), pp.
346–353.

Kübler, S., Nivre, J., Hinrichs, E. and Wunsch, H. (eds) (2004). Proceed-
ings of the Third Workshop on Treebanks and Linguistic Theories (TLT),
University of Tübingen.

Kübler, S. and Telljohann, H. (2002). Towards a dependency-based eval-
uation for partial parsing. Proceedings of the LREC-Workshop Beyond
PARSEVAL – Towards Improved Evaluation Measures for Parsing Systems,
pp. 9–16.

Kucera, H. and Francis, W. (1967). Computational Analysis of Present-Day
American English. Brown University Press.

Kudo, T. and Matsumoto, Y. (2000). Use of support vector learning for
chunk identification. In Cardie, C., Daelemans, W. and Tjong Kim Sang,
E. (eds), Proceedings of the 3rd Conference on Computational Natural Lan-
guage Learning (CoNLL), pp. 142–144.

Kudo, T. and Matsumoto, Y. (2002). Japanese dependency analysis using
cascaded chunking. Proceedings of the Sixth Workshop on Computational
Language Learning (CoNLL), pp. 63–69.

Kurohashi, S. and Nagao, M. (2003). Building a Japanese parsed corpus. In
Abeillé, A. (ed.), Treebanks: Building and Using Parsed Corpora, Kluwer
Academic Publishers, pp. 249–260.

Lambek, J. (1958). The mathematics of sentence structure. American Math-
ematical Monthly 65: 154–170.

198 References

Lang, B. (1988). Parsing incomplete sentences. Proceedings of the 12th Inter-
national Conference on Computational Linguistics (COLING), pp. 365–371.

Lecerf, Y. (1960). Programme des conflits, modèle des conflits. Bulletin
bimestriel de l’ATALA 1: (4): 11–18, (5): 17–36.

Lehmann, S., Oepen, S., Regnier-Prost, S., Netter, K., Lux, V., Klein, J.,
Falkedal, K., Fouvry, F., Estival, D., Dauphin, E., Compagnion, H., Baur,
J., Balkan, L. and Arnold, D. (1996). TSNLP – test suites for natural
language processing. Proceedings of the 16th International Conference on
Computational Linguistics (COLING), pp. 711–716.

Lehnert, W. (1987). Case-based problem solving with a large knowledge base
of learned cases. Proceedings of the Sixth National Conference on Artificial
Intelligence, pp. 301–306.

Levy, R. and Manning, C. (2004). Deep dependencies from context-free
statistical parsers: Correcting the surface dependency approximation. Pro-
ceedings of the 42nd Annual Meeting of the Association for Computational
Linguistics (ACL), pp. 328–335.

Lin, D. (1995). A dependency-based method for evaluating broad-coverage
parsers. Proceedings of IJCAI-95, pp. 1420–1425.

Lin, D. (1996). On the structural complexity of natural language sentences.
Proceedings of the 16th International Conference on Computational Lin-
guistics (COLING), pp. 729–733.

Lin, D. (1998). A dependency-based method for evaluating broad-coverage
parsers. Natural Language Engineering 4: 97–114.

Lindgren, B. W. (1993). Statistical Theory. Chapman and Hall.
Ljunglöf, P. (2004). Expressivity and Complexity of the Grammatical Frame-

work. PhD thesis, Chalmers University of Technology.
Lombardo, V. and Lesmo, L. (1996). An Earley-type recognizer for

dependency grammar. Proceedings of the 16th International Conference on
Computational Linguistics (COLING), pp. 723–728.

Lyons, J. (1977). Semantics. Cambridge University Press.
Maamouri, M. and Bies, A. (2004). Developing an Arabic treebank: Methods,

guidelines, procedures, and tools. Proceedings of the Workshop on Compu-
tational Approaches to Arabic Script-Based Languages, pp. 2–9.

Magerman, D. M. (1995). Statistical decision-tree models for parsing. Pro-
ceedings of the 33rd Annual Meeting of the Association for Computational
Linguistics (ACL), pp. 276–283.

Malouf, R., Carroll, J. and Copestake, A. (2000). Efficient feature structure
operations without compilation. Natural Language Engineering 6: 29–46.

Manning, C. D. and Schütze, H. (2000). Foundations of Statistical Natural
Language Processing. MIT Press.

Marcus, M. P. (1980). A Theory of Syntactic Recognition for Natural Lan-
guage. MIT Press.

Marcus, M. P., Santorini, B. and Marcinkiewicz, M. A. (1993). Building a
large annotated corpus of English: The Penn Treebank. Computational
Linguistics 19: 313–330.

References 199

Marcus, M. P., Santorini, B., Marcinkiewicz, M. A., MacIntyre, R., Bies, A.,
Ferguson, M., Katz, K. and Schasberger, B. (1994). The Penn Treebank:
Annotating predicate-argument structure. Proceedings of the ARPA Human
Language Technology Workshop, pp. 114–119.

Marcus, S. (1965). Sur la notion de projectivité. Zeitschrift für mathematische
Logik und Grundlagen der Mathematik 11: 181–192.

Marinov, S. and Nivre, J. (2005). A data-driven parser for Bulgarian. Proceed-
ings of the Fourth Workshop on Treebanks and Linguistic Theories (TLT),
pp. 89–100.

Maruyama, H. (1990). Structural disambiguation with constraint propaga-
tion. Proceedings of the 28th Meeting of the Association for Computational
Linguistics (ACL), pp. 31–38.

Masand, B., Linoff, G. and Waltz, D. (1992). Classifying news stories using
memory-based reasoning. Proceedings of SIGIR, pp. 59–65.

Matthews, P. H. (1981). Syntax. Cambridge University Press.
McDonald, R., Crammer, K. and Pereira, F. (2005). Online large-margin

training of dependency parsers. Proceedings of the 43rd Annual Meeting of
the Association for Computational Linguistics (ACL), pp. 91–98.

McDonald, R., Pereira, F., Ribarov, K. and Hajič, J. (2005). Non-projective
dependency parsing using spanning tree algorithms. Proceedings of the
Human Language Technology Conference and the Conference on Empirical
Methods in Natural Language Processing (HLT/EMNLP), pp. 523–530.

Megyesi, B. (2002). Data-Driven Syntactic Analysis: Methods and Applica-
tions for Swedish. PhD thesis, KTH: Department of Speech, Music and
Hearing.

Mel’čuk, I. (1988). Dependency Syntax: Theory and Practice. State University
of New York Press.

Mellish, C. S. (1989). Some chart-based techniques for parsing ill-formed
input. Proceedings of the 27th Annual Meeting of the Association for
Computational Linguistics (ACL), pp. 102–109.

Menzel, W. (1995). Robust processing of natural language. Proceedings of the
19th Annual German Conference on Artificial Intelligence, pp. 19–34.

Menzel, W. and Schröder, I. (1998). Decision procedures for dependency pars-
ing using graded constraints. In Kahane, S. and Polguère, A. (eds), Pro-
ceedings of the Workshop on Processing of Dependency-Based Grammars,
pp. 78–87.

Milward, D. (1994). Dynamic dependency grammar. Linguistics and Philos-
ophy 17: 561–605.

Misra, V. N. (1966). The Descriptive Technique of Panini. Mouton.
Mitchell, T. M. (1997). Machine Learning. McGraw-Hill.
Miyao, Y., Ninomiya, T. and Tsujii, J. (2003). Probabilistic modeling of

argument structures including non-local dependencies. Proceedings of the
International Conference on Recent Advances in Natural Language Process-
ing (RANLP), pp. 285–291.

200 References

Mohri, M. and Nederhof, M.-J. (2001). Regular approximation of context-
free grammars. In Junqua, J.-C. and Van Noord, G. (eds), Robustness
in Language and Speech Technology, Kluwer Academic Publishers, pp.
153–163.

Montague, R. (1970). Universal grammar. Theoria 36: 373–398.
Montague, R. (1973). The proper treatment of quantification in ordinary

English. In Hintikka, J., Moravcsik, J. M. E. and Suppes, P. (eds), Ap-
proaches to Natural Language: Proceedings of the 1970 Stanford Workshop
on Grammar and Semantics, Reidel, pp. 221–242.

Moreno, A., López, S., Sánchez, F. and Grishman, R. (2003). Developing
a Spanish treebank. In Abeillé, A. (ed.), Treebanks: Building and Using
Parsed Corpora, Kluwer Academic Publishers, pp. 149–163.

Morrill, G. (1994). Type-Logical Grammar. Kluwer Academic Publishers.
Morrill, G. (2000). Incremental processing and acceptability. Computational

Linguistics 26: 319–338.
Nakagawa, T., Kudoh, T. and Matsumoto, Y. (2002). Revision learning and

its application to part-of-speech tagging. Proceedings of the 40th Annual
Meeting of the Association for Computational Linguistics (ACL), pp. 497–
504.

Nasr, A. and Rambow, O. (2004). A simple string-rewriting formalism for
dependency grammar. Proceedings of the Workshop on Recent Advances in
Dependency Grammar, pp. 25–32.

Nederhof, M.-J. (1998). Context-free parsing through regular approximation.
Proceedings of the International Workshop on Finite State Methods in
Natural Language Processing, pp. 13–24.

Nederhof, M.-J. (2000). Practical experiments with regular approximations
of context-free languages. Computational Linguistics 26: 17–44.

Nelson, G., Wallis, S. and Aarts, B. (2002). Exploring Natural Language:
Working with the British Component of the International Corpus of English.
John Benjamins.

Ney, H. (1991). Dynamic programming parsing for context-free grammars
in continuous speech recognition. IEEE Transactions on Signal Processing
39: 336–340.

Ng, H. and Lee, H. (1996). Integrating multiple knowledge sources to disam-
biguate word sense: An exemplar-based approach. Proceedings of the 34th
Annual Meeting of the Association for Computational Linguistics (ACL),
pp. 40–47.

Nikula, H. (1986). Dependensgrammatik. Liber.
Nilsson, J., Hall, J. and Nivre, J. (2005). MAMBA meets TIGER: Recon-

structing a Swedish treebank from Antiquity. In Henrichsen, P. J. (ed.),
Proceedings of the NODALIDA Special Session on Treebanks.

Nivre, J. (2002). What kinds of trees grow in Swedish soil? A comparison of
four annotation standards for Swedish. In Hinrichs, E. and Simov, K. (eds),
Proceedings of the First Workshop on Treebanks and Linguistic Theories
(TLT), pp. 123–138.

References 201

Nivre, J. (2003). An efficient algorithm for projective dependency parsing.
In Van Noord, G. (ed.), Proceedings of the 8th International Workshop on
Parsing Technologies (IWPT), pp. 149–160.

Nivre, J. (2004a). Incrementality in deterministic dependency parsing. In
Keller, F., Clark, S., Crocker, M. and Steedman, M. (eds), Proceedings of
the Workshop on Incremental Parsing: Bringing Engineering and Cognition
Together (ACL), pp. 50–57.

Nivre, J. (2004b). Inductive dependency parsing, Technical Report 04070,
Växjö University, School of Mathematics and Systems Engineering.

Nivre, J. (2005). Bootstrapping lexical models for memory-based dependency
parsing. Proceedings of Promote IT 2005, Studentlitteratur, pp. 327–336.

Nivre, J. (forthcoming). Treebanks. In Kytö, M., Lüdeling, A. and McEnery,
T. (eds), Handbook of Corpus Linguistics, Mouton de Gruyter.

Nivre, J. and Hall, J. (2005). MaltParser: A language-independent system for
data-driven dependency parsing. Proceedings of the Fourth Workshop on
Treebanks and Linguistic Theories (TLT), pp. 137–148.

Nivre, J., Hall, J. and Nilsson, J. (2004). Memory-based dependency parsing.
In Ng, H. T. and Riloff, E. (eds), Proceedings of the 8th Conference on
Computational Natural Language Learning (CoNLL), pp. 49–56.

Nivre, J. and Hinrichs, E. (eds) (2003). Proceedings of the Second Workshop
on Treebanks and Linguistic Theories (TLT), Växjö University Press.

Nivre, J. and Nilsson, J. (2004). Multiword units in syntactic parsing. Pro-
ceedings of the Workshop on Methodologies and Evaluation of Multiword
Units in Real-World Applications (LREC), pp. 39–46.

Nivre, J. and Nilsson, J. (2005). Pseudo-projective dependency parsing. Pro-
ceedings of the 43rd Annual Meeting of the Association for Computational
Linguistics (ACL), pp. 99–106.

Nivre, J. and Scholz, M. (2004). Deterministic dependency parsing of English
text. Proceedings of the 20th International Conference on Computational
Linguistics (COLING), pp. 64–70.

Obrȩbski, T. (2003). Dependency parsing using dependency graph. In
Van Noord, G. (ed.), Proceedings of the 8th International Workshop on
Parsing Technologies (IWPT), pp. 217–218.

Oepen, S. and Carroll, J. (2000). Parser engineering and performance profiling.
Natural Language Engineering 6: 81–97.

Oepen, S. and Flickinger, D. (1998). Towards systematic grammar profil-
ing: Test suite technology ten years after. Computer Speech and Language
12: 411–435.

Oflazer, K. (2003). Dependency parsing with an extended finite-state
approach. Computational Linguistics 29: 515–544.

Oflazer, K., Say, B., Hakkani-Tür, D. Z. and Tür, G. (2003). Building a Turk-
ish treebank. In Abeillé, A. (ed.), Treebanks: Building and Using Parsed
Corpora, Kluwer Academic Publishers, pp. 261–277.

202 References

Palmer, D. M. (2000). Tokenisation and sentence segmentation. In Dale, R.,
Moisl, H. and Somers, H. (eds), Handbook of Natural Language Processing,
Marcel Dekker, pp. 11–35.

Pereira, F. C. N. and Wright, R. N. (1997). Finite-state approximation of
phrase-structure grammars. In Roche, E. and Schabes, Y. (eds), Finite-
State Language Processing, MIT Press, pp. 149–174.

Pereira, F. C. and Schabes, Y. (1992). Inside-outside reestimation from par-
tially bracketed corpora. Proceedings of the 30th Annual Meeting of the
Association for Computational Linguistics (ACL), pp. 128–135.

Pollard, C. and Sag, I. A. (1987). Information-Based Syntax and Semantics.
CSLI Publications, University of Chicago Press.

Pollard, C. and Sag, I. A. (1994). Head-Driven Phrase Structure Grammar.
CSLI Publications, University of Chicago Press.

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning
1: 81–206.

Ramshaw, L. A. and Marcus, M. P. (1995). Text chunking using trans-
formation-based learning. Proceedings of the Third Annual Workshop on
Very Large Corpora, pp. 82–94.

Ranta, A. (2004). Grammatical Framework, a type-theoretical grammar for-
malism. Journal of Functional Programming 14: 145–189.

Ratnaparkhi, A. (1997). A linear observed time statistical parser based on
maximum entropy models. Proceedings of the Second Conference on Em-
pirical Methods in Natural Language Processing (EMNLP), pp. 1–10.

Ratnaparkhi, A. (1999). Learning to parse natural language with maximum
entropy models. Machine Learning 34: 151–175.

Resnik, P. (1992). Probabilistic tree-adjoining grammar as a framework for
statistical natural language processing. Proceedings of the 15th Interna-
tional Conference on Computational Linguistics (COLING), pp. 418–424.

Riezler, S., King, M., Kaplan, R., Crouch, R., Maxwell, J. and Johnson, M.
(2002). Parsing the Wall Street Journal using a Lexical-Functional Gram-
mar and discriminative estimation techniques. Proceedings of the 40th
Annual Meeting of the Association for Computational Linguistics (ACL),
pp. 271–278.

Riloff, E. and Lehnert, W. (1994). Information extraction as a basis for high-
precision text classification. ACM Transactions on Information Systems
12: 296–333.

Robins, R. H. (1967). A Short History of Linguistics. Longman.
Robinson, J. J. (1970). Dependency structures and transformational rules.

Language 46: 259–285.
Roche, E. (1997). Parsing with finite state transducers. In Roche, E.

and Schabes, Y. (eds), Finite-State Language Processing, MIT Press, pp.
241–281.

Rosenfeld, R. (2000). Two decades of statistical language modeling: Where
do we go from here? Proceedings of the IEEE 88: 1270–1278.

References 203

Rosenkrantz, D. J. and Lewis, P. M. (1970). Deterministic left corner parsing.
Proceedings of the 11th Symposium on Switching and Automata Theory,
pp. 139–152.

Sagae, K. and Lavie, A. (2005). A classifier-based parser with linear run-
time complexity. Proceedings of the 9th International Workshop on Parsing
Technologies (IWPT), pp. 125–132.

S̊agvall Hein, A. (1982). An experimental parser. Proceedings of the Ninth
International Conference on Computational Linguistics (COLING),
pp. 121–126.

Sampson, G. (1995). English for the Computer: The SUSANNE Corpus and
Analytic Scheme. Oxford University Press.

Sampson, G. (2003). Thoughts on two decades of drawing trees. Treebanks:
Building and Using Parsed Corpora, Kluwer Academic Publishers, pp.
23–41.

Samuelsson, C. (2000). A statistical theory of dependency syntax. Proceedings
of the 18th International Conference on Computational Linguistics (COL-
ING).

Samuelsson, C. and Rayner, M. (1991). Quantitative evaluation of expla-
nation-based learning as an optimization tool for a large-scale natural lan-
guage system. Proceedings of the 12th International Joint Conference on
Artificial Intelligence.

Samuelsson, C. and Wirén, M. (2000). Parsing techniques. In Dale, R., Moisl,
H. and Somers, H. (eds), Handbook of Natural Language Processing, Marcel
Dekker, pp. 59–91.

Sapir, E. (1921). Language: An Introduction to the Study of Speech. Harcourt
Brace.

Schabes, Y. (1992). Stochastic lexicalized tree adjoining grammars. Pro-
ceedings of the 15th International Conference on Computational Linguistics
(COLING), pp. 426–432.

Schabes, Y., Abeillé, A. and Joshi, A. (1988). Parsing strategies with “lexi-
calized” grammars: Applications to tree adjoining grammars. Proceedings
of the 12th International Conference on Computational Linguistics (COL-
ING), pp. 578–583.

Schröder, I. (2002). Natural Language Parsing with Graded Constraints. PhD
thesis, Hamburg University.

Sgall, P., Hajičová, E. and Panevová, J. (1986). The Meaning of the Sentence
in Its Pragmatic Aspects. Reidel.

Shieber, S. M. (1983). Sentence disambiguation by a shift-reduce parsing tech-
nique. Proceedings of the 21st Conference on Association for Computational
Linguistics (ACL), pp. 113–118.

Shieber, S. M. (1986). An Introduction to Unification-Based Approaches to
Grammar. CSLI Publications, University of Chicago Press.

Shieber, S. M., Schabes, Y. and Pereira, F. C. N. (1995). Principles
and implementation of deductive parsing. Journal of Logic Programming
24: 3–36.

204 References

Sima’an, K. (1996a). Computational complexity of probabilistic disambigua-
tion by means of tree grammar. Proceedings of the 16th International Con-
ference on Computational Linguistics (COLING), pp. 1175–1180.

Sima’an, K. (1996b). An optimized algorithm for data-oriented parsing. In
Mitkov, R. and Nicolov, N. (eds), Recent Advances in Natural Language
Processing. Selected Papers from RANLP ’95, John Benjamins, pp. 35–47.

Sima’an, K. (1999). Learning Efficient Disambiguation. PhD thesis, University
of Amsterdam.

Sima’an, K. (2003). On maximizing metrics for syntactic disambiguation.
In Van Noord, G. (ed.), Proceedings of the 8th International Workshop on
Parsing Technologies (IWPT), pp. 183–194.

Skousen, R. (1989). Analogical Modeling of Language. Kluwer.
Skousen, R. (1992). Analogy and Structure. Kluwer.
Sleator, D. and Temperley, D. (1991). Parsing English with a link grammar,

Technical Report CMU-CS-91-196, Carnegie Mellon University, Computer
Science.

Sleator, D. and Temperley, D. (1993). Parsing English with a link grammar.
Third International Workshop on Parsing Technologies (IWPT), pp.
277–292.

Stanfill, C. and Waltz, D. (1986). Toward memory-based reasoning. Commu-
nications of the ACM 29: 1213–1228.

Starosta, S. (1988). The Case for Lexicase: An Outline of Lexicase Grammat-
ical Theory. Pinter Publishers.

Steedman, M. (2000). The Syntactic Process. MIT Press.
Stolcke, A. (1995). An efficient probabilistic context-free parsing algorithm

that computes prefix probabilities. Computational Linguistics 21: 165–202.
Streiter, O. (2001a). Memory-based parsing: Enhancing recursive top-

down fuzzy match with bottom-up chunking. Proceedings of the 19th
International Conference on Computer Processing of Oriental Languages
(ICCPOL), pp. 219–224.

Streiter, O. (2001b). Recursive top-down fuzzy match: New perspectives for
memory-based parsing. Proceedings of the 15th Pacific Asia Conference on
Language, Information and Computation (PACLIC), pp. 345–356.

Tang, M., Luo, X. and Roukos, S. (2002). Active learning for statistical natural
language parsing. Proceedings of the 40th Annual Meeting of the Association
for Computational Linguistics (ACL), pp. 406–414.

Tapanainen, P. and Järvinen, T. (1997). A non-projective dependency parser.
Proceedings of the 5th Conference on Applied Natural Language Processing,
pp. 64–71.

Teleman, U. (1974). Manual för grammatisk beskrivning av talad och skriven
svenska. Studentlitteratur.

Tesnière, L. (1959). Éléments de syntaxe structurale. Editions Klincksieck.
Thompson, C. A., Califf, M. E. and Mooney, R. J. (1999). Active learning

for natural language parsing and information extraction. Proceedings of

References 205

the Sixteenth International Conference on Machine Learning (ICML), pp.
406–414.

Thompson, H. S. (1981). Chart parsing and rule schemata in GPSG. Pro-
ceedings of the 19th Annual Meeting of the Association for Computational
Linguistics (ACL), pp. 167–172.

Tjong Kim Sang, E. F. and Veenstra, J. (1999). Representing text chunks.
Proceedings of the Ninth Conference of the European Chapter of the Asso-
ciation for Computational Linguistics (EACL), pp. 173–179.

Tjong Kim Sang, E. F. and Veenstra, J. (2001). Transforming a chunker to a
parser. In Daelemans, W., Sima’an, K., Veenstra, J. and Zavrel, J. (eds),
Computational Linguistics in the Netherlands 2000, pp. 177–188.

Tomita, M. (1987). An efficient augmented-context-free parsing algorithm.
Computational Linguistics 13: 31–46.

Torisawa, K., Nishida, K., Miyao, Y. and Tsujii, J. (2000). An HPSG parser
with CFG filtering. Natural Language Engineering 6: 63–80.

Toutanova, K., Manning, C. D., Shieber, S. M., Flickinger, D. and Oepen, S.
(2002). Parse disambiguation for a rich HPSG grammar. In Hinrichs, E.
and Simov, K. (eds), Proceedings of the First Workshop on Treebanks and
Linguistic Theories (TLT), pp. 253–263.

Tzoukermann, E., Klavans, J. L. and Strzalkowski, T. (2003). Information
retrieval. In Mitkov, R. (ed.), The Oxford Handbook of Computational
Linguistics, Oxford University Press, pp. 529–544.

Ule, T. and Kübler, S. (2004). From phrase structure to dependencies, and
back. Proceedings of the International Conference on Linguistic Evidence,
pp. 169–170.

Uszkoreit, H. (1986). Categorial unification grammars. Proceedings of the
5th International Conference on Computational Linguistics (COLING),
pp. 187–194.

Van den Bosch, A. and Buchholz, S. (2002). Shallow parsing on the basis of
words only: A case study. Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics (ACL), pp. 443–440.

Van den Bosch, A., Canisius, S., Daelemans, W., Hendrickx, I. and Tjong
Kim Sang, E. (2004). Memory-based semantic role labeling: Optimizing
features, algorithm, and output. In Ng, H. T. and Riloff, E. (eds), Proceed-
ings of the 8th Conference on Computational Natural Language Learning,
pp. 102–105.

Van den Bosch, A. and Daelemans, W. (1999). Memory-based morphological
analysis. Proceedings of the 37th Annual Meeting of the Association for
Computational Linguistics (ACL), pp. 285–292.

Van der Beek, L., Bouma, G., Malouf, R. and Van Noord, G. (2002). The
Alpino dependency treebank. In Theune, M., Nijholt, A. and Hondorp,
H. (eds), Language and Computers, Computational Linguistics in the
Netherlands 2001. Selected Papers from the Twelfth CLIN Meeting, Rodopi,
pp. 8–22.

206 References

Van Noord, G. (1997). An efficient implementation of the head-corner parser.
Computational Linguistics 23: 425–456.

Vapnik, V. N. (1995). The Nature of Statistical Learning Theory. Springer.
Veenstra, J. (1998). Fast NP chunking using memory-based learning tech-

niques. Proceedings of BENELEARN-98, pp. 71–79.
Veenstra, J. and Daelemans, W. (2000). A memory-based alternative for

connectionist shift-reduce parsing, Technical Report ILK-0012, Tilburg
University.

Viterbi, A. J. (1967). Error bounds for convolutional codes and an asymp-
totically optimum decoding algorithm. IEEE Transactions on Information
Theory IT-13: 1260–1269.

Voutilainen, A. (2001). Parsing Swedish. Extended Abstract for the 13th
Nordic Conference of Computational Linguistics, Uppsala University, May,
20–22, 2001.

Wang, W. and Harper, M. P. (2004). A statistical constraint dependency
grammar (CDG) parser. In Keller, F., Clark, S., Crocker, M. and Steedman,
M. (eds), Proceedings of the Workshop on Incremental Parsing: Bringing
Engineering and Cognition Together (ACL), pp. 29–42.

Weijters, A. J. M. M. (1991). A simple look-up procedure superior to
NETtalk? Proceedings of the International Conference on Artificial Neural
Networks (ICANN), pp. 1645–1648.

Wettschereck, D. (1994). A Study of Distance-Based Machine Learning Algo-
rithms. PhD thesis, Oregon State University.

White, A. P. and Liu, W. Z. (1994). Bias in information-based measures in
decision tree induction. Machine Learning 15: 321–329.

Wu, T.-F., Lin, C.-J. and Weng, R. C. (2004). Probability estimates for
multi-class classification by pairwise coupling. Journal of Machine Learning
Research 5: 975–1005.

Xia, F. (2001). Automatic Grammar Generation from Two Different Perspec-
tives. PhD thesis, University of Pennsylvania.

Xia, F. and Palmer, M. (2001). Converting dependency structures to phrase
structures. In Allan, J. (ed.), Proceedings of HLT 2001, First International
Conference on Human Language Technology Research.

Xue, N., Xia, F., Chiou, F.-D. and Palmer, M. (2004). The Penn Chinese
Treebank: Phase structure annotation of a large corpus. Natural Language
Engineering 11: 207–238.

Yamada, H. and Matsumoto, Y. (2003). Statistical dependency analysis with
support vector machines. In Van Noord, G. (ed.), Proceedings of the 8th
International Workshop on Parsing Technologies (IWPT), pp. 195–206.

Yamada, K. and Knight, K. (2001). A syntax-based statistical translation
model. Proceedings of the 39th Annual Meeting of the Association for Com-
putational Linguistics (ACL), pp. 523–530.

Yang, Y. and Chute, C. (1994). An example-based mapping method for text
classification and retrieval. ACM Transactions on Information Systems
12: 252–295.

References 207

Yli-Jyrä, A. (2003). Multiplanarity – a model for dependency structures in
treebanks. In Nivre, J. and Hinrichs, E. (eds), Proceedings of the Second
Workshop on Treebanks and Linguistic Theories (TLT), Växjö University
Press, pp. 189–200.

Younger, D. H. (1967). Recognition and parsing of context-free languages in
time n3. Information and Control 10: 189–208.

Yuret, D. (1998). Discovery of Linguistic Relations Using Lexical Attraction.
PhD thesis, Massachusetts Institute of Technology.

Zavrel, J. and Daelemans, W. (1997). Memory-based learning: Using similarity
for smoothing. Proceedings of the 35th Annual Meeting of the Association
for Computational Linguistics (ACL), pp. 436–442.

Zavrel, J., Daelemans, W. and Veenstra, J. (1997). Resolving PP attachment
ambiguities with memory-based learning. Proceedings of the Workshop on
Computational Natural Language Learning, pp. 136–144.

Zeevat, H., Klein, E. and Calder, J. (1991). Unification categorial grammar.
Lingua e Stile 26: 499–527.

Zwicky, A. M. (1985). Heads. Journal of Linguistics 21: 1–29.

Index

Abstract problem 15–17, 20, 27

Accuracy 1, 18–19, 39–40, 86, 178

criteria for 42–43

evaluation of 42–43, 123–127,
140–141, 143–149, 163–168

in data-driven text parsing 35–36

in grammar-driven text parsing 26

Active learning 181

Acyclicity 71, 81, 82

Address function 102–104, 178

Adjunct 48

Alpino Treebank 129

Analogical modeling 110

Annotation 125–126

Annotation function 68–69, 101, 104

set of (Ax) 69

Annotation scheme 125, 129

MAMBA 132–133

dependency conversion 133–135

Penn Treebank 38

Penn Treebank II 129, 136, 144

dependency conversion 136–138

SUSANNE 129

Approximation 78

in text parsing 17, 20–21, 27, 29, 30

of grammar 26, 27

Arabic 129, 181

Arc

in dependency structure 51

in labeled dependency graph 52, 70

Arc label see Dependency type

Arc-eager see Parsing algorithm

AS, ASU , ASL see Evaluation metric

Attachment score see Evaluation
metric

Attribute function 102, 104, 178

Basque 129
Bayesian inference 181
Bayesian Information Criterion 128
Beam search 37
BIC see Bayesian Information

Criterion
Bilexical grammar 2, 32, 58–59

weighted 62–63
Bootstrap 128
Brown Corpus 125
Bulgarian 181

CA see Evaluation metric
Categorial grammar 11, 47, 57
Categorial Unification Grammar 12
CCG see Combinatory Categorial

Grammar
CCGbank 169
CDG see Constraint Dependency

Grammar
CFG see Context-free grammar
CG see Constraint Grammar
Chart parsing 14, 22, 37
Chinese 129, 181
Chomsky 13, 19
Chomsky Normal Form 83
Chu-Liu-Edmonds 63
Chunking 22, 31, 38, 116
CKY see Parsing algorithm

210 Index

Classification
chunking as 116
in inductive dependency parsing 95
parsing as 59

Classification accuracy see Evaluation
metric

Classifier 4, 95
as guide 78, 93–94
in deterministic parsing 64, 65

CNF see Chomsky Normal Form
Combinatory Categorial Grammar 11,

14, 26, 34, 37, 38, 64, 169
Competence 19
Complement 48, 49
Completeness

of parsing algorithm 15, 18
Complexity 15–16, 43

in probabilistic parsing 36–37
of bilexical grammars 58
of constraint satisfaction 59
of deterministic dependency parsing

61, 65, 84, 86
of distance metric 114
of inductive dependency parsing 94,

104–105
of memory-based classification 115
of mildly context-sensitive grammars

26
Conditional model 31, 92
Configuration see Parser configuration
Connectedness 69, 81
Connection (fr. connexion) see

Dependency
Consistency

of parsing algorithm 15, 18
Constituency 10, 46, 178

in dependency grammar 50
Constraint Dependency Grammar 14,

46, 59, 60, 64
Constraint Grammar 14, 22–24, 37,

38, 46, 59
Constraint programming 59
Constraint relaxation 22, 23, 31
Constraint satisfaction 14, 59–60
Context-free grammar 10, 13–14, 16,

56–57, 64, 83
Coordination 168

in dependency grammar 49, 50,
54–55

Coverage 21–22

Covington 61
Cross-validation 128, 129

in Swedish experiments 136
CUG see Categorial Unification

Grammar
Czech 129, 181

DA see Evaluation metric
Daelemans 110
Danish 129, 180, 181
Danish Dependency Treebank 129,

131, 180
Data

for evaluation see Evaluation
for testing see Test data
for training see Training data
for validation see Validation data

Data-driven parsing see Parsing
Data-Oriented Parsing 4, 30, 33–37,

39, 116
DDT see Danish Dependency

Treebank
Deductive parsing see Parsing
Dependency 10–11, 40, 46–50

criteria for 47–48, 50
Dependency (type) feature see

Feature
Dependency accuracy see Evaluation

metric
Dependency bank 127
Dependency grammar 2, 46–55
Dependency Grammar Logic 47
Dependency graph 69–72, 177

constraints on 52–53, 56–57, 71
defined by parser configuration 73
defined by transition sequence 76
labeled directed 52
non-projective 132
projective 71

Dependency model see Feature model
Dependency parsing 1–3, 55–67,

176–177
advantages of 66–67
by dynamic programming 57–59
data-driven 61–65
definition of 72
deterministic 60–61, 64–65, 76–78,

92
discriminative 64–65

Index 211

eliminative 59–60
framework for 67–68
grammar-driven 56–61
non-projective 59, 63, 179–180
probabilistic 61–64
transformational 60

Dependency type 51–52
as arc label 70
grammatical function as 51
set of (R) 69, 70
thematic role as 51

Dependency type function see Parser
configuration

Dependency Unification Grammar 12,
46, 55

Dependent 47
of arc 70

DGL see Dependency Grammar Logic
Disambiguation 1, 5–6, 18, 39–40, 85

criteria for 41–42
evaluation of 42, 123
in data-driven text parsing 31–35
in grammar-driven text parsing

23–26
Discontinuous Grammar 61
Discriminative model 32
Distance metric 111–115, 159–162

Modified Value Difference Metric
(MVDM) 114, 159

Overlap 112–113, 159
Distance-weighted class voting 111,

114–115, 161–163
inverse distance (ID) 114–115, 161
inverse-linear (IL) 114, 161

DOP see Data-Oriented Parsing
DUG see Dependency Unification

Grammar
Dutch 129, 181
Dynamic programming 14, 57

Earley’s algorithm see Parsing
algorithm

Efficiency 1, 6, 39–40, 86
criteria for 43
evaluation of 43, 123, 141–142,

149–155, 168
in data-driven text parsing 36–37
in grammar-driven text parsing

26–27

in parsing 37, 40, 86

in training 37, 40, 86

Eisner 58–59, 63

EM, EMU , EML see Evaluation
metric

Endocentric construction 48

English 131, 181

Error analysis 171–174

Eus3LB Corpus 129

Evaluation 178–179

criteria for 41–43, 85–86

data for 124–125, 132–138

dependency-based 127, 182

empirical 18–20, 123

experimental methodology for
132–142

final 163–174

of feature model 139, 178

of learning algorithm 139–140

Evaluation metric 126–127, 140–142

attachment score (AS) 126, 140

labeled (ASL) 127, 140

unlabeled (ASU) 127, 140

classification accuracy (CA)
172–174

dependency accuracy (DA) 169, 170

exact match (EM) 126, 140

labeled (EML) 140

unlabeled (EMU) 140

F measure 141

memory consumption 141

PARSEVAL 126, 127

parsing time 141

precision 141

recall 141

root accuracy (RA) 169, 170

training time 141

Exact match see Evaluation metric

Exemplar weighting 111

Exocentric construction 48

Exponential model see Maximum
entropy model

Extensible Dependency Grammar 47,
51, 52, 60

F measure see Evaluation metric

FDG see Functional Dependency
Grammar

212 Index

Feature 101

dependency type as 107–108

distance-based 108

dynamic 104, 107–108

lexical 105–106

part-of-speech as 106–107

static 104–107

Feature function 92, 101–105, 178

implementation of 104–105

Feature model 108–110, 142–158, 178

baseline 142, 143, 149

concatenation of 109

notational conventions for 109–110

with dependency features 109,
145–147, 149

with lexical features 109–110,
147–149

with part-of-speech features 109,
143–149

Feature structure 11

Feature vector 101

Feature weighting 111, 113, 115,
161–163

Gain Ratio (GR) 113, 161

Information Gain (IG) 113, 161

FGD see Functional Generative
Description

Finite state parsing 22, 61

Function approximation 95, 110, 111,
159, 172

Function word

in dependency grammar 49, 50

Functional Dependency Grammar 23,
37, 46, 55

Functional Generative Description 11,
46, 50–53

Gaifman 56–57, 61, 71

Gain Ratio see Feature weighting

Generalized Phrase Structure Grammar
10, 11

Generative model 31, 92, 95

German 129, 130, 181

Gold standard 18, 96, 125–126

Governor 47

GPSG see Generalized Phrase
Structure Grammar

GR see Feature weighting

Grammar
context-free see Context-free

grammar
formal 13
mildly context-sensitive 14, 16, 26

Grammar parsing 12–16, 176
Grammatical Framework 11
Greedy algorithm 92
Guide 77–78, 93
Guided parsing see Parsing
Guided-Parse 93, 120

Hays 57, 61
Head 47, 48

of arc 70
syntactic vs. semantic 53–54

Head function see Parser configuration
Head percolation table 130
Head-Driven Phrase Structure

Grammar 10, 12, 34, 37, 38
Hidden Markov Model 31
History-based model 32–35, 40, 90–92

conditional 34–35, 90–92
discriminative 35
generative 32–34
parameterization of 90, 92

HMM see Hidden Markov Model
HPSG see Head-Driven Phrase

Structure Grammar

ICE-GB Corpus 129
IG see Feature weighting
IL see Distance-weighted class voting
Inductive bias 29
Inductive dependency parsing 1–4, 40,

88–100, 117, 177–178
Inductive inference 27–30, 88–90

learning method for 28, 89, 94–96,
180–181

parsing method for 28, 89, 92–94
stochastic model for 28, 89

Information Gain see Feature
weighting

Input sequence/list see Parser
configuration

Inside-Outside algorithm 29, 88
Inverse distance see Distance-weighted

class voting

Index 213

Inverse-linear see Distance-weighted
class voting

Italian 129

Japanese 65, 129, 181
Junction (fr. jonction) see

Coordination

k-NN see Nearest neighbor
classification

Korean 129

Labeled attachment score see
Evaluation metric

Labeled exact match see Evaluation
metric

Lancaster Parsed Corpus 129
Lazy learning see Machine learning
Leakage 23
Learning curve 155–158
Leech 122
Left corner parsing see Parsing

algorithm
Left-Arc(r) see Transition
Lexical feature see Feature
Lexical model see Feature model
Lexical Tree Adjoining Grammar 25,

64
Lexical-Functional Grammar 10, 11,

34, 37, 38, 169
Lexicalization 32, 147–148, 178
Lexicalized Tree Adjoining Grammar

34, 37
Lexicase 11, 46
LFG see Lexical-Functional Grammar
LIBSVM 120
Link grammar 2, 57–58
Log-linear model see Maximum

entropy model
Lookahead token see Token
LTAG see Lexical Tree Adjoining

Grammar

Machine learning
discriminative 35, 95, 110
eager 89, 111
inductive and deductive 181
lazy 4, 89, 110
probabilistic 95
supervised 25, 28, 88

unsupervised 25, 28, 88
Machinese Syntax 55
Macro-average 127
MaltParser 4, 102, 117–120

Guide 118–120
Learner 118–120
Parser 118–120

MAMBA see Annotation scheme
Markov grammar 33, 39
Maximum entropy model 34
Maximum likelihood estimation 28, 34

conditional 95
MBL see Memory-based learning
McNemar’s test 142, 164
MDL see Minimum Description

Length
Meaning-Text Theory 11, 46, 51
Memory consumption see Evaluation

metric
Memory-based learning 4, 31, 40, 95,

110–117, 120, 170
algorithm parameters 112–115,

158–163, 178
and classification 110–112
efficiency of 115
in language processing 115–117
in parsing 4, 31, 39, 116–117

cascaded partial 116–117
history-based deterministic 117
holistic 116

METU Treebank 129, 180
Micro-average 127
Minimum Description Length 128
MLE see Maximum likelihood

estimation
Model assessment 128–129
Model selection 128–129
Modified Value Difference Metric see

Distance metric
Modifier 47, 48
Monte Carlo disambiguation 36
MTT see Meaning-Text Theory
MVDM see Distance metric

Natural language parsing see Parsing
Nearest neighbor classification

110–111
in TiMBL 112
k value 111, 115, 159–162

214 Index

Neural network 95
Next token see Token
Node

in dependency structure 51
in labeled dependency graph 52, 69
root node 70
token node 70

Nominal compound 144

Optimization strategy 39–40, 85
Oracle 77–78, 93, 96, 97
Oracle 97
Oracle parsing 96–100
Oracle-Parse 96–100, 120
Overfitting 128
Overgeneration 23
Overlap see Distance metric

Pān. ini 46
Parallel Constraint Grammar 15
Parameter

of learning algorithm see Memory-
based learning

of stochastic model 28, 90–92, 94
Parameterization function 101

as feature model 108
PARC 700 Dependency Bank 169
Parse 78, 92–93

analysis of 79–85
completeness of 83
complexity of 80, 94
consistency of 83

Parse tree 13
Parser condition 91, 101
Parser configuration 72–74

dependency type function (d) 73,
104, 107

head function (h) 73, 108
initial 74
input sequence/list (τ) 73
notational conventions for 73–74
stack (σ) 73
terminal 74

Parser state 91, 101
as input instance 95

PARSEVAL see Evaluation metric
Parsing 1, 5–6, 12

constructive 14
data-driven 1, 3–4

deductive 16
deep vs. shallow 37–38
dependency-based see Dependency

parsing
deterministic 3, 14, 22, 24, 27, 35, 36,

40, 92, 117
eliminative 14, 24
full vs. partial 38
guided 93–94
history-based 4, 37, 117
incremental 84, 181
lexicalized 2, 32
n-best 24
nondeterministic 92, 180
partial 22–23, 31, 116–117
rule-based vs. example-based 38–39
transformational 15, 24

Parsing algorithm 14
arc-eager 65, 83–84
CKY 14, 28, 36, 57, 58, 64
Earley 14, 28, 36, 57, 58
for inductive dependency parsing

72–86, 177
GLR 14
head-driven 65
left corner 14, 34
LR 14, 33
shift-reduce 14, 65, 83

Parsing phase 29, 89
in MaltParser 119

Parsing time see Evaluation metric
Part-of-speech feature see Feature
Part-of-speech model see Feature

model
Part-of-speech tagging 68, 106

as error source 172
for English 138
for Swedish 135

Partial parsing see Parsing
PCFG see Probabilistic context-free

grammar
PDT see Prague Dependency

Treebank
Penn Treebank 2, 17, 62, 64, 65, 124,

128–130, 145, 169
Performance 19
PLAIN 55
Planarity 53
Portuguese 181

Index 215

Prague Dependency Treebank 63, 129,
131, 180

Precision see Evaluation metric
Predicate-argument structure 49, 67
Probabilistic context-free grammar

24–26, 28–29, 36, 37, 88
Projectivity 53
Projectivity 71, 81, 82
Punctuation

omitted in evaluation 141

RA see Evaluation metric
Recall see Evaluation metric
Recognition 15, 18
Reduce see Transition
Regent 47
Right-Arc(r) see Transition
Robustness 1, 5, 39–40, 85

criteria for 41
evaluation of 41, 123
in data-driven text parsing 30–31
in grammar-driven text parsing

21–23
Root 69, 81
Root accuracy see Evaluation metric
Root node see Node

Sanskrit 46
Sentence 16–17, 68
Sentence segmentation 17, 125
Shift see Transition
Shift-reduce parsing see Parsing

algorithm
Single-Head 71, 81, 82
Slovene 181
Spanish 129, 181
Specifier 49
Stack see Configuration
Stack token see Token
Statistical inference 18, 124
Statistical significance 142, 164
Stemma 51
Supertagging 23, 37, 64
Support vector machine 31, 64, 95,

120, 170
SUSANNE see Annotation scheme
SVM see Support vector machine
Swedish 130, 131, 181
Syntactic parsing see Parsing

Syntactic representation 10–12, 46
mono-stratal 50
multi-stratal 50, 53

TAG see Tree Adjoining Grammar
Tagging see Part-of-speech tagging
Talbanken 130, 132, 145
Target token see Token
TDG see Topological Dependency

Grammar
Teleman 122
Tesnière 47, 134
Test data 128–129

for English 138
for Swedish 136

Test suite 123
Text 16–17, 68
Text parsing 12, 16–19, 175–176

data-driven 20, 27–37, 88–89, 176
grammar-driven 20–27, 176

TIGER Treebank 129, 130
TiMBL 4, 110, 112, 115, 120, 139
Token 68

in configuration
lookahead token 107
next token 74
stack token 107
target token 74
top token 74

Token node see Node
Tokenization 68, 125
Top token see Token
Topological Dependency Grammar

14, 46, 53, 59
Training data 28, 128–129

corpus 88, 95–96
for classification 95–96

Training phase 29, 89
in MaltParser 119

Training time see Evaluation metric
Transfer (fr. translation) see Function

word
Transition 74–76

as output class 95
Left-Arc(r) 75
Pop-transition 75
Push-transition 75
Reduce 75
Right-Arc(r) 75

216 Index

set of (TR) 76
Shift 75

Transition sequence 76
corresponding to sentence 76
terminating 76

Tree Adjoining Grammar 10, 26
Treebank 3, 18, 28, 89, 122

conversion of 129–131
for dependency parsing 129–132
for evaluation 123–127
for learning 128–129

Treebank grammar 25, 28
Turin University Treebank 129
Turkish 129, 180, 181
TUT see Turin University Treebank
Type-Logical Grammar 11
TüBa-D 130

UCG see Unification Categorial
Grammar

Unification Categorial Grammar 12

Unlabeled attachment score see
Evaluation metric

Unlabeled exact match see Evaluation
metric

Valency 49
Validation data 128

for English 138
Van den Bosch 110
Viterbi optimization 36

WCDG see Weighted Constraint
Dependency Grammar

Weighted Constraint Dependency
Grammar 24, 46

WG see Word Grammar
Word Grammar 11, 46, 52, 55

X-bar theory 47
XDG see Extensible Dependency

Grammar

