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Abstract: The paper concerns distribution of the force fields within Michell cantilevers
supported on a segment of a straight line. The allowable yield stresses for tension
and compression are not necessarily equal. The paper puts emphasis on checking
the final results for the optimal weight by computing the weight in two manners:
as a virtual work or, alternatively, by finding the force fields, the density of fibres
and then by summing up the weights of all the parts of the optimal cantilever, i.e.
the weights of the reinforcing bars and the weights of all the fibrous domains. If
this duality gap vanishes, the solution is correct.
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1. INTRODUCTION

The Michell problem can be expressed in terms of average stress fields as
a minimum weight problem or in terms of displacements as a maximization
problem, see Strang and Kohn (1983). The latter problem can be interpreted
as an equilibrium problem of a body with locking, see Golay and Seppecher
(2001), Lewiński and Telega (2001). The known analytical solutions were
found just within the framework of this formulation. In particular, the Michell
(1904) cantilever supported on a circle (see Hemp, 1973) was found by guess-
ing the kinematically admissible virtual displacements realizing the optimality
conditions εI = 1, εII = −1 concerning the principal values of the tensor of
virtual strains in the problem in which the allowable yield local stresses for
tension (σT ) and compression (σC) are equal: σT = σC . The weight of the
optimal cantilever is equal up to a factor to the value of the work of the point
load applied to a joint on the displacement of this joint. Let us emphasize here

55

Martin P. Bendsøe et al. (eds), IUTAM Symposium on Topological Design Optimization of
Structures, Machines and Materials: Status and Perspectives, 55–65.
© 2006 Springer. Printed in the Netherlands.



C. Graczykowski and T. Lewiński

that this displacement is finite since the reinforcing bars connected at this joint
transmit the point load thus eliminating possible stress singularities. We see
that having the virtual displacements the computation of the weight becomes
straightforward. On the other hand, computation of this weight within the
average stress-based formulation is more complex. Note that none of the avail-
able exact solutions to the Michell problem was solved with using the stress-
based formulation. This would require finding the minimizer of the weight
(expressed in terms of average stresses) among all candidates which are stat-
ically admissible. This is not an easy task, since this set is affine and hard
to parameterize. It is easier to recover the average stress fields upon finding
the Hencky net, the latter being featured by the displacement-based optimality
criteria (see Hemp, 1973, sec. 4.3). The average stresses found this manner
should be correlated with longitudinal forces in the reinforcing bars. For in-
stance, the weight of the cantilever supported on a circle is equal to the sum of
weights of the reinforcing bars and the fibrous interior. The weight computed
this manner is exactly equal to the virtual work of the applied point load. The
relevant analytical proof has been only recently published, see Graczykowski
and Lewiński (2005a). This problem has been solved under the condition of
σT = σC , its generalization to the case of unequal permissible stresses being
unsolved till now, see Rozvany’s (1997) criticism on a part of Michell’s (1904)
work.

Note here that the most advanced numerical results have been recently ob-
tained by Gilbert et al. (2005) by the truss approximation method.

The main feature of Michell trusses is their discrete-continuous structure:
the mass is concentrated along the edge lines connecting the point load with
the support. The lines where the mass is concentrated are interpreted as bars,
i.e. usual bars of finite cross sections. They are subjected to tension or com-
pression. Optimization removes bending and transverse shearing. The volume
of the optimum structure is a sum of the volume occupied by the material form-
ing the bars and the volume of fibres in the interior part. In the present paper
we consider Michell cantilevers supported along a straight segment, lying in-
side a domain bounded by half-lines starting from the ends of the segment. The
results of the papers by Lewiński et al. (1994) can be generalized to the case
of unequal permissible local stresses, cf. Graczykowski and Lewiński (2005b).
Our aim here is to consider average stresses within such optimal cantilevers,
perform the local and global analyses of equilibrium. Other cases of position
of the point load are discussed in Graczykowski and Lewiński (2006).
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2. STRESS FIELDS WITHIN PRAGER–HILL
CANTILEVERS

We tackle the problem of transmitting the force P applied at point P to the
support RN by a plane structure lying within the infinite domain bounded by
the half-lines RR1 and NN1 and byRN , cf. Figure 1. The axial stress σ should
be bounded: −σC ≤ σ ≤ σT . The aim is to find the lightest structure satisfying
the above conditions. A graphical solutions to this problem were sketched by
Prager (1959) and Rozvany (1997). The analytical construction of the net of
fibres within ABDC and the relevant virtual displacement fields satisfying the
desired optimality conditions:

ε̄I = 1, ε̄I I = −κ (1)

with κ = σT /σC , were published recently, see Graczykowski and Lewiński
(2005b). Let us recall that if �NRA = γ2, �RNA = γ1, we have tanγ1 = κ1/2

and tanγ2 = κ−1/2. Thus r2 = κ1/2r1, where r1 = |NA|, r2 = |RA|. see
Rozvany (1997). We introduce notation: θ1 = �ANC, θ2 = �BRA. The
circular domains BRA, ANC are called fans; they are filled up with infinitely
thin radial bars, called fibres. The boundary bars RB and NC have finite cross
sections – they are typical truss members. The domain ABDC is parameter-
ized with a special curvilinear system (α, β). The units of α and β are radi-
ans. The vertices of ABDC have the coordinates: A(0, 0), B(0, θ2), C(θ1, 0),
D(θ1, θ2). This system is orthogonal; its Lamé coefficients A(α, β), B(α, β)
are also radii of curvatures of the parametric lines. The parametric lines (α, β)
are determined by Cartesian coordinates x(α, β), y(α, β) measured along the
(x, y) axes, as in Figure 1.

The formulae for x(α, β), y(α, β), A(α, β), B(α, β) were published in
Graczykowski and Lewiński (2005b). Let us mention only that the Hencky
net in ABDC is characterized by φ(α, β) = β−α; here φ represents an angle
between a tangent to the α-line at point (α, β) and the x axis, see Hemp (1973),
where this notation is explained in detail.

The conditions (1) determine the virtual displacement field ū = (u, v); u
and v represent displacements along α and β lines. The integration technique
explained in Hemp (1973) makes it possible to find the integral formula for
u(α, β) and v(α, β). However, to make these formulae useful for further ana-
lysis of longer cantilevers one should put them in terms of known special func-
tions. It turns out that the functions introduced by Chan (1975, Appendix) and
named Gn(α, β), Fn(α, β) in Lewiński et al. (1994) suffice to express all the
unknowns explicitly, not only A, B, u, v within ABDC but also their exten-
sions as well as stress fields.

These functions satisfy the hyperbolic equation LHn = 0, where H = G or
F and L = ∂2

∂α∂β
− 1. Just this equation governs the behavior of Lamé coeffi-
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Figure 1. Prager–Hill cantilever. The feasible domain is determined by RN and the angles
�R1RN , �N1NR.

cients, rotated coordinate functions x̄, ȳ defined by x̄+iȳ = exp(−iφ)(x+iy)

as well as the auxiliary displacement fields

u0(α, β) = u(α, β)− (κ + 1)αA(α, β),

v0(α, β) = v(α, β)+ (κ + 1)βB(α, β).
(2)

In the present paper we show that the force fields associated with the Hencky
net of the ABDC domain, caused by a point load P at point P = P(αp, βp),
lying within ABDC, can also be expressed in terms of Chan’s functions Gn.
The optimal cantilever occupies the domain RB ′PC ′N , see Figure 1. Having
found the force fields we can compute the volume by direct integration over the
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fibrous domains RB ′A, NAC ′ and AB ′PC ′ and along the lines of reinforcing
bars RB ′P and NC ′P . It turns out that the volume computed this manner
confirms the correctness of the whole solution. The problem of finding force
fields in the cantilever of Figure 1 has never been discussed till now.

We shall use notation of a classical plate theory. The average stress result-
ants referred to the (α, β) system will be denoted by NI , NII since α and β

lines are lines of principal directions of tensor N . We do not use notation: σI ,
σII to distinguish between average and local stresses. Let us recall that the dif-
ferential equations of equilibrium referred to the (α, β) system have here the
form

−∂(BNI )

∂α
+ ∂B

∂α
NII = 0, −∂(ANII )

∂β
+ ∂A

∂β
NI = 0. (3)

These equations are identical with the first two differential equations of mem-
branes parameterized by an orthogonal curvilinear system. It is Hemp (1973)
who discovered that equations (3) can be simplified by changing the unknowns
T1 = BNI , T2 = ANII . By using the differential constraints linking A and B
we reduce (3) to the form

T2 = ∂T1

∂α
, T1 = ∂T2

∂β
(4)

not involving Lamé coefficients. Thus we see that LT1 = 0, LT2 = 0, which
makes it possible to apply the Riemann method, already used for finding the
Hencky net (α, β). Note that T1, T2 are of force dimension. They measure the
forces per unit angles and not per unit lengths. From mechanics point of view
these fields have similar meaning to axial forces in truss members. If we put
(4) in the variational form∫∫ [

T1

(
∂ū

∂α
+ v̄

)
+ T2

(
∂v̄

∂β
+ ū

)]
dα dβ =

∫
α=const

T̂1ū dβ +
∫

β=const

T̂2v̄ dα

(5)
for all kinematically admissible ū, v̄ we note that (5) can be discretized to the
variational equilibrium equation of a truss. Here T̂1 (T̂2) are given loadings
normal to the edges α = const (β = const). We write (5) symbolically as∫∫

T1 dβ(dū + v̄dα)+
∫∫

T2 dα(dv̄ + ūdβ) = L̄ext, (6)

where L̄ext represents the virtual work of given loading. Note that

dū+ v̄dα = (A dα)ε̄I , dv̄ + ūdβ = (B dβ)ε̄II (7)

represent elongations of α and β fibres of lengths Adα and B dβ, respectively.
We remember that T1dβ is a longitudinal force in the strip of width B dβ along
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the α-line and T2dα is such a force in the strip of width Adα along the β-
line. The associated elongations of these strips are �̄α = Adαε̄I , �̄β =
B dβε̄II . Let us imagine that the Hencky net (α, β) is replaced by a net of finite
number of α and β lines constructed from straight segments, treated further as
members of a certain truss. We imagine that the forces T1dβ and T2dα are now
concentrated along the members. These forces are now treated as axial forces
Zα
K , Zβ

L in the truss; here K, L index the members. They do a virtual work on
elongations �̄K

α and �̄L
β . Thus Equation (6) is replaced with∑
K

Zα
K�̄

K
α +

∑
L

Z
β

L�̄
L
β = L̄ext (8)

and if the independent virtual displacements of nodes are denoted by
q̄1, . . . , q̄s , then L̄ext is replaced by q̄TQ with Q being the vector of effective
nodal forces. To note that (8) represents equations of nodes of the approx-
imating truss we should put Zα

K , Zβ

L into one column Z, put elongations �̄K
α ,

�̄L
β into one column �̄ and correlate them with nodal virtual displacements by

linear equations: �̄ = Bq̄, B being a geometry matrix. Thus Equation (8)

implies �̄
T
Z = q̄TQ hence BTZ = Q, because q̄ is arbitrary. We conclude

that Equation (6) can be approximated by truss equilibrium equations, with
arbitrary accuracy.

Let us come back to the problem of equilibrium of the cantilever of Fig-
ure 1. We should decompose it into two reinforcing bars B ′P (in tension,
FT > 0) and C ′P (in compression, FC < 0), the node P subjected to three
forces of magnitudes: FT (P ), FC(P ), P , the fibrous domain B ′PC ′A, the
fans RB ′A, NAC ′ with edge bars RB ′, NC ′ and the rectangle RAN is empty.
Kinematic consideration starts from RAN domain and moves to the right. On
the contrary, static analysis starts from equilibrium of node P and moves left.
The net is already found (see Graczykowski and Lewiński (2005b)) so we
know the angle ψ between tangent to C ′P at P and the vertical line RN :
ψ = γ1 + αp − βp . Angle ϕ is directed counterclockwise, see Figure 1a.

Note first that the longitudinal forces FT and FC do not vary along B ′P and
C ′P , since no tangent loading is applied. Thus FT = FT (P ) and FC = FC(P ).
The magnitudes of forces FT (P ), FC(P ) found from equilibrium equations of
node P

FC(P ) = −P cos(ψ + ϕ), FT (P ) = P sin(ψ + ϕ) (9)

determine the longitudinal forces in the bars B ′P and C ′P . Since B ′R (C ′N)
is a smooth extension of B ′P (C ′P ) at B ′ (C ′) the axial forces in RB ′ (and
NC ′) are still equal to FT (P ) (and FC(P )). Note that the bar RB ′P works like
a cord, since it slides along B ′P . The bar PC ′ is compressed with no buckling
allowed. The equilibrium equations of both the bars determine the magnitude
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of the normal loading Nn. Since Lamé coefficients are equal here to the radii
of curvatures we obtain

Nn = −FC(P ) for α = αp, Nn = −FT (P ) for β = βp, (10)

see Figure 1b. These formulae provide the boundary conditions

T1(αp, β) = −FC(P ), T2(α, βp) = −FT (P ) (11)

We can apply now Riemann’s method, as explained in Lewiński et al. (1994,
equation (17)) and find

T1(α, β) = −FCG0(αp − α, βp − β)+ FTG1(αp − α, βp − β),

T2(α, β) = −FTG0(αp − α, βp − β)+ FCG1(βp − β, αp − α).
(12)

Having found T1, T2 we can compute their boundary values along AB ′ and
AC ′, which determines force fields within the circular fans RB ′A, NAC ′. It
occurs that the circumferential stresses vanish and the radial stresses are con-
stant along the radii. Now we know the force fields T1, T2 within the whole
structure and we know the axial forces in the ribs. The last step is to com-
pute the reactions: HR, VR, HN , VN by considering equilibrium conditions of
nodes R and N . The concentrated forces at R, N and P should give zero total
vector and zero total moment around an arbitrary point (say, P ). These three
algebraic equations should confirm that the whole static analysis has been done
correctly.

3. EQUIVALENCE OF TWO FORMULAE FOR THE
WEIGHT OF THE OPTIMAL PRAGER–HILL
CANTILEVER

Virtual work of the force P determines the volume of the optimal cantilever:

V = P

σT
[u(P ) sin(ϕ + ψ)− v(P ) cos(ϕ + ψ)] , (13)

where P = P(αp, βp); the functions u, v being given in section 9 of
Graczykowski and Lewiński (2005b). Both the fields u and v are expressed
in terms of Chan functions. To be sure that this result is correct we shall com-
pute this volume directly by summing up the volumes of all the parts of the
structure. Density of fibres within AB ′PC ′ is given by

h(α, β) = T1(α, β)

σTB(α, β)
− T2(α, β)

σCA(α, β)
. (14)

We know that T2 < 0. For the NAC ′ fan the formula for density h does not
contain the first term. For the RB ′A fan the function h is expressed by the first
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term. To compute the integral

VAB ′PC ′ =
∫ αp

0

∫ βp

0
h(α, β)A(α, β)B(α, β) dα dβ, (15)

with h being given by (14), T1, T2 given by (12) and A, B given by (4) in
Graczykowski and Lewiński (2005b) one should apply the integration rules
(31)–(36) of Lewiński et al. (1994).

The expressions for VNAC ′ and VRB ′A can be found by similar integration.
Now we compute the volume of the tension (T ) bar

VT = FT (P )

σT

(∫ αp

0
A(α, βp)dα + r2

)
. (16)

The formula for the volume Vc of the compression bar is similar.
This integration can be performed by using properties of Chan’s functions.

By summing up the volumes of material used for construction of fibrous do-
mains AB ′PC ′, NAC ′, RB ′A and of the ribs RB ′P , NC ′P we arrive at V
coinciding exactly with formula (13). We say that the duality gap between the
dual and primal formulations vanishes.

4. FAMILY OF CANTILEVERS DESIGNED WITHIN
A STRIP. BENCHMARK RESULTS

Let us consider the case of κ = 3, θ1 = π/6, θ2 = π/3. Then the feasible
domain is a strip, see Figure 2. The force P is assumed to act parallel to the
RN supporting line, or ϕ = 0, its application point P being on the midperpen-
dicular to RN at a distance d from RN . Let ξ = d/a, with a = |RN |. Thus
the family of problems is indexed by ξ . If ξ = √

2/2 the optimal structure is
composed of two bars and one circular fan. If ξ >

√
2/2, point P lies at the

right side of P0, where |RP0| = |RA| = a
√

3/2, |RO| = a/2. Let the volume
of the optimal cantilever be denoted by V and its non-dimensional counterpart
by V̄ = V/(Pa/σT ). The values of V̄ are set up in Table 1 for subsequent val-
ues of the distance d = ξa of the force P to the RN line. The same table gives
also the curvilinear coordinates (αp, βp) of subsequent position of point P .

The midperpendicular of RN crosses subsequent domains of kinematic di-
vision, as introduced in Graczykowski and Lewiński (2005b, 2006). Thus the
graph of the volume of Figure 3 refers not to one but to several types of the
cantilevers: for 0 � ξ �

√
3/6 the optimal structure is composed of two bars;

for
√

3/6 � ξ �
√

2/2 the optimal structure is composed of one circular fan
and two bars; for

√
2/2 � ξ � 1.522008 the solution is called Prager–Hill

cantilever; for 1.522008 � ξ � 2.036580 the solution includes additionally
one Chan-like domain; for 2.036580 � ξ � 3.028582 the solution includes
two Chan-like domains and one Hill-like domain more.
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Figure 2. Case of: κ = 3, θ1 = π/6, θ2 = π/3, ϕ = 0. Chan’s domains are indicated by
dashed lines.

Figure 3. Non-dimensional volume V̄ of the optimal cantilevers.

Nonetheless, the graph of the volume versus ξ is smooth, even at points
ξ = √

3/6,
√

2/2, 1.522008, 2.036580, 3.028582, where the structure of
the solution switches to a more complicated form.

The results set up in Table 1 are benchmark results for possible numerical
checks based on a ground structure method or other numerical-oriented basis.
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Table 1. Non-dimensional volume V̄ of the optimal cantilevers.

ξ αp βp V̄
0 – – 0
0.25 – – 0.86602540
0.5 – 0.26179939 1.88962418
0.75 0.03909955 0.45996378 3.18119647
1 0.23418873 0.61048885 4.77413280
1.25 0.38788355 0.73867388 6.68710224
1.5 0.51357763 0.84847879 8.86123302
1.75 0.66391239 0.94562854 11.27758404
2 0.80344224 1.03477767 13.93605154
2.25 0.93237717 1.16472612 16.83306684
2.5 1.05679215 1.29767843 19.99191059
2.75 1.17798254 1.42731919 23.40492241
3 1.29752093 1.55600661 27.06729757

5. FINAL REMARKS

Construction of Hencky nets within the trapezoidal domains, as outlined in
Graczykowski and Lewiński (2005b), is complemented here by the analysis
of force fields within the fibrous domains and in the reinforcing ribs. The
force fields and Lamé fields determine the density of fibers as well as the cross
sections of the ribs. Integration of the mass density confirms the values of
the volumes of the optimal cantilevers found previously by the Michell-like
kinematic formulae.
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