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Abstract: The topological derivative allow us to quantify the sensitivity of a given cost
function when the domain of definition of the problem is perturbed by intro-
ducing a hole or an inclusion. This concept has been successfully applied in
the context of topology design and inverse problems. In order to find close ex-
pressions for the topological derivative several methods can be achieved in the
literature. In particular, we have proposed the Topological-Shape Sensitivity
Method, whose main feature is that all mathematical framework (and results),
already developed for shape sensitivity analysis, can be used in the calculation
of the topological derivative. In this paper we present the Topological-Shape
Sensitivity Method and use it as a systematic methodology for computing the
topological derivative for holes and inclusions in problems governed by Pois-
son’s and Navier’s equations.
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1. INTRODUCTION

The topological derivative [3, 5, 15] has been recognized as a promising tool
to solve topology optimization problems (see [4] and references therein). In
addition, extension of the topological sensitivity in order to include arbitrary
shaped holes and its applications to Laplace, Poisson, Helmoltz, Navier, Stokes
and Navier–Stokes equations were developed by Masmoudi and his co-workers
and by Sokolowsky and his co-workers (see, for instance, [11]).

Although the topological sensitivity is extremely general, this concept may
become restrictive due to mathematical difficulties involved in its calculation.
However, several approaches to compute the topological derivative may be
found in the literature [3, 14, 15]. In particular, we have proposed an altern-
ative approach, called Topological-Shape Sensitivity Method [12], which is
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based on classical shape sensitivity analysis. On the other hand, the topolo-
gical derivative (TD) concept is wider. In fact, this same idea can also be used
to calculate the sensitivity of the problem when, instead of a hole, a small in-
clusion is introduced at a point in the domain. In this last case, no topology
change occurs, then we have called it as configurational derivative (CD). Des-
pite the conceptual difference between TD and CD, we will show that this last
one can also be computed using the Topological-Shape Sensitivity Method.

In this paper, we firstly present a brief description of the Topological-Shape
Sensitivity Method. Next we apply this approach to obtain the TD for Poisson’s
(considering both homogeneous and non-homogeneous Neumann and Dirich-
let and also Robin boundary conditions on the hole) and Navier’s (plane-stress,
plane-strain and three-dimensional linear elasticity problems) equations . Fur-
thermore, we compute the CD for steady-state heat conduction and plane-stress
linear elasticity. Finally, it is also shown that in general the CD cannot be used
to obtain the TD for homogeneous Neumann boundary condition on the hole
simply taking the limit when the material property associated to the inclusion
vanishes.

2. TOPOLOGICAL-SHAPE SENSITIVITY METHOD

Let us consider an open bounded domain � ⊂ R
N (N = 2, 3) with a smooth

boundary ∂�. If the domain � is perturbed by introducing a small hole Bε of
radius ε at an arbitrary point x̂ ∈ �, we have a new domain �ε = � − Bε,
whose boundary is denoted by ∂�ε = ∂� ∪ ∂Bε. Then, considering a cost
function ψ defined in both domains, its topological derivative for holes is given
in [3], for f (ε) > 0, such that f (ε) → 0 with ε → 0+, as

DT

(
x̂
) = lim

ε→0

ψ (�ε)− ψ (�)

f (ε)
. (1)

We have proposed in [12] an alternative procedure to compute the topolo-
gical derivative called Topological-Shape Sensitivity Method. This approach
makes use of the whole mathematical framework (and results) developed for
shape sensitivity analysis (see, for instance, the pioneer work of Murat and Si-
mon [10]). The main result obtained in [12] is given by the following theorem:

Theorem 1 Let f (ε) be a function chosen in order to 0 <
∣∣DT

(
x̂
)∣∣ < ∞,

then the topological derivative given by Equation (1) can be written as

DT

(
x̂
) = lim

ε→0

1

f ′ (ε)
d

dε
ψ (�ε) , (2)

where the derivative of the cost function with respect to the parameter ε may
be seen as its classical shape sensitivity analysis.
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In general the cost function ψ(�) := J�(u) may depends explicitly and im-
plicitly on the domain �. This last dependence comes from the solution of a
variational problem associated to �: find u ∈ U(�), such that

a (u,η) = l (η) ∀η ∈ V(�) , (3)

where U(�) and V(�) respectively are the sets of admissible functions and
admissible variations defined on � and a (·, ·) : U × V → R is a bilinear
form and l (·) : V → R is a linear functional, which will be characterized
later according to the problem under analysis. Likewise, the state equation
written in the original configuration � (without hole) may also be satisfied in
the perturbed configuration �ε (with the introduction of a hole at point x̂ ∈ �).
Therefore, we have the following variational problem associated to function
�ε: find uε ∈ Uε(�ε), such that

aε (uε,η) = lε (η) ∀η ∈ Vε(�ε) , (4)

where aε (·, ·) : Uε×Vε → R, lε (·) : Vε → R and Uε(�ε) and Vε(�ε) respect-
ively are the sets of admissible functions and admissible variations defined on
�ε, which will be also defined later according to the problem under analysis
and the boundary condition on the hole.

Formally, the shape derivative of the cost function ψ(�ε) := J�ε
(uε) in

relation to the parameter ε reads{
Calculate :

d

dε
J�ε

(uε)

Subject to : aε (uε, η) = lε(η) ∀ η ∈ Vε(�ε)
. (5)

Let us relax the constraint of the above problem, given by the state equation
(Equation 5), by Lagrangian multipliers. Therefore, the Lagrangian is written
as

Lε (v, µ) = J�ε (v)+aε (v, µ)−lε (µ) ∀µ ∈ Vε(�ε) and v ∈ Uε(�ε) . (6)

Then, we have the following well-known result

d

dε
J�ε

(uε) = ∂

∂ε
Lε(v, µ)

∣∣∣∣v=uε
µ=λε

, (7)

where uε is the solution of the state equation (Equation 4) and λε is the solution
of the adjoint equation given by: find λε ∈ Vε(�ε), such that

aε (λε, η) = −
〈
∂

∂uε
J�ε

(uε), η

〉
∀η ∈ Vε(�ε) . (8)

It should be observed that only the part of the boundary ∂�ε associated
to ∂Bε is submitted to a perturbation (a uniform expansion of the ball Bε in
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this case). Therefore, the shape derivative of the cost function results in an
integral on the boundary ∂Bε. In addition, considering the result of Theorem 1
(Equation 2), the topological derivative becomes

DT

(
x̂
) = −lim

ε→0

1

f ′ (ε)

∫
∂Bε

�εn · n , (9)

where tensor �ε, that depends on uε and λε, can be interpreted as a general-
ization of the Eshelby energy-momentum tensor [6]. As a consequence, this
tensor plays a central role in the Topological-Shape Sensitivity Method and
should be clearly identified according to the problem under consideration.

Finally, we need to calculate the limit ε → 0 in Equation (9). Thus, we
should know the behavior of the solutions uε and λε when ε → 0, which may
be obtained from an asymptotic analysis around the neighborhood of the hole.
For that, we can define a new function wε such as uε = u + wε and, after
making y = x/ε, we need to solve an exterior boundary value problem (define
in R

N −B1, where B1 is a unit ball) associated to wε. At least for linear cases,
this problem may be solved using separation of variables. From this result,
we can choose a function f (ε) in order to take the limit ε → 0, obtaining
the final expression of the topological derivative. Therefore, the Topological-
Shape Sensitivity Method may be summarized in the following steps:

1. choose the cost function ψ(�) := J�(u), where u is the solution of the
state equation associated to the original domain �;

2. define the associated cost function ψ(�ε) := J�ε
(uε), where uε is the

solution of the state equation defined in the perturbed domain �ε;

3. compute the shape derivative of the cost function J�ε
(uε) using the Lag-

rangian Method, identifying tensor �ε and writing the sensitivity expres-
sion as a boundary integral only defined on ∂Bε;

4. use the result of Theorem 1;

5. make an asymptotic analysis around the neighborhood of the hole Bε in
order to know the behavior of the solutions uε and λε when ε → 0;

6. finally, choose function f (ε) and compute the final expression of the
topological derivative taking the limit ε → 0.

Now, let us apply the above method to compute the topological (holes) and
configurational (inclusions) sensitivities for some classical problems.

Remark 1 For the sake of simplicity, we will choose a cost function that
depends only implicitly on the domain of definition of the problem through
the solution of the state equation. Therefore ψ (�) := J (u) and ψ (�ε) :=
J (uε), where u is the solution of Equation (3), associated to �, and uε is the
solution of Equation (4), associated to �ε.
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3. TOPOLOGICAL DERIVATIVE (HOLES)

In this section we will compute the topological derivative for steady-state heat
conduction (considering both homogeneous and non-homogeneous Neumann
and Dirichlet and also Robin boundary conditions on the hole) and linear elasti-
city (plane-stress, plane-strain and three-dimensional problems).

3.1 Steady-State Heat Conduction

Let us state the following variational problem associated to the original domain
�: given a constant excitation b in � and a Dirichlet data ū on ∂�, find the
temperature field u∈ U(�), such that∫

�

k∇u · ∇η =
∫
�

bη ∀η ∈ V(�) , (10)

where k is a material property and U(�) and V(�) are given, respectively, by

U = {
u ∈ H 1 (�) : u|∂� = ū

}
, V = {η ∈ H 1

0 (�)} . (11)

Now, let us state a new variational problem associated to the perturbed domain
�ε: considering that on ∂Bε we have Dirichlet, Neumann or Robin boundary
conditions, find the temperature field uε ∈ Uε(�ε), such that∫

�ε

k∇uε ·∇η+γ
∫
∂Bε

uεη =
∫
�ε

bη+(β + γ )

∫
∂Bε

hη ∀η ∈ Vε(�ε) , (12)

where Uε(�ε) and Vε(�ε) are given, respectively, by

Uε = {
uε ∈ U(�ε) : α(uε|∂Bε − h) = 0

}
, (13)

Vε = {
η ∈ V(�ε) : α η|∂Bε = 0

}
, (14)

and α, β, γ ∈ {0, 1}, with α + β + γ = 1. This notation should be interpreted
as follows: when α = 1, uε = h and η = 0 on ∂Bε, and when α = 0, uε and η
are free on ∂Bε, where h is a data. Considering Remark 1, the shape derivative
of the cost function becomes

d

dε
J (uε) = −

∫
∂Bε

(
�εn · n − 1

ε
(γ (uε − h)− βh) λε

)
, where (15)

�ε = (k∇uε · ∇λε − bλε) I − k (∇uε ⊗ ∇λε + ∇λε ⊗ ∇uε) . (16)

Finally, from an asymptotic analysis of uε and λε, we can choose function
f (ε) depending on each type of boundary condition on ∂Bε, which allow us to
compute the limit ε → 0 in Equation (15). This procedure leads to the results
presented in Table 1, where u and λ are the solutions of the state and adjoint
equations, respectively, both defined in the original domain � (without hole).

See [12] for applications of the results shown in Table 1. We also observe
that the exceptional case h = h∗ appears in the Saint-Venant theory of torsion
of elastic shafts.
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Table 1. Topological derivatives for Poisson’s problem in 2D domains.

Boundary conditions f (ε) DT (x̂)
β = 1, α = γ = 0 and h = 0 πε2 −2k∇u · ∇λ+ bλ

β = 1, α = γ = 0 and h �= 0 2πε −hλ
γ = 1, α = β = 0 2πε (u− h) λ

α = 1, β = γ = 0 and h = h∗ πε2 2k∇u · ∇λ
α = 1, β = γ = 0 and h �= h∗ − 2π

log(ε) (u− h) λ

3.2 Linear Elasticity

The mechanical model associated to linear elasticity problem can be stated
in its variational formulation as following: find the displacement vector field
u ∈ U(�), such that∫

�

T(u) · E(η) =
∫
�N

q̄ · η ∀η ∈ V(�) , (17)

where U(�) and V(�) are given by

U = {u ∈ H 1 (�) : u|�D = u}, V = {η ∈ H 1 (�) : η|�D = 0} (18)

and � represents a deformable body submitted to a set of surface forces q̄ on
the Neumann boundary �N and displacement constraints ū on the Dirichlet
boundary �D. In addition, E(u) is the linearized Green deformation tensor and
T(u) is the Cauchy stress tensor respectively given by

E(u) = 1

2

(∇u + ∇uT
) := ∇us and T(u) = CE(u) , (19)

where C = CT is the elasticity tensor for linear elastic isotropic material. The
problem stated in the original domain � can also be written in the domain
�ε with a hole Bε. Therefore, assuming null forces on the hole, we have the
following variational problem: find the displacement vector field uε ∈ Uε (�ε),
such that ∫

�ε

Tε(uε) · Eε(η) =
∫
�N

q̄ · η ∀η ∈ Vε (�ε) . (20)

where Uε (�ε) = U (�ε) and Vε (�ε) = V (�ε). Observe that in accordance
with the variational problem given by Equation (20), the natural boundary con-
dition on ∂Bε is Tε(uε)n = 0 (homogeneous Neumann condition). Consider-
ing Remark 1, the shape derivative of the cost function becomes

d

dε
J (uε) = −

∫
∂Bε

�εn · n , where (21)
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�ε = (Tε(uε) · Eε(λε)) I − (∇λε)
T Tε(uε)− (∇uε)T Tε(λε) . (22)

Finally, taking into account homogeneous Neumann boundary condition on
the hole and considering a classical stress distribution around the void, we can
choose function f (ε) and take the limit ε → 0 in Equation (21) to obtain the
final expression for the topological derivative. Thus, for u and λ solutions of
the direct and adjoint problems, respectively, both associated to the original
domain � (without hole) and with ν being the Poisson’s ratio, we have the
following results (see also [8] and [9]):

• plane-stress linear elasticity, f (ε) = πε2

DT (x̂) = − 4

1 + ν
T(u) · E(λ)+ 1 − 3ν

1 − ν2
trT(u) trE(λ); (23)

• plane-strain linear elasticity, f (ε) = πε2

DT (x̂) = −4(1− ν)T(u) ·E(λ)+ (1 − 4ν)(1 − ν)

1 − 2ν
trT(u) trE(λ); (24)

• three-dimensional linear elasticity, f (ε) = (4/3)πε3

DT (x̂) = −3

2

1 − ν

7 − 5ν

[
10T(u) · E(λ)− 1 − 5ν

1 − 2ν
trT(u) trE (λ)

]
. (25)

For applications of these results, see [7] for 2D and [13] for 3D problems.

4. CONFIGURATIONAL DERIVATIVE (INCLUSIONS)

In this section we will compute the configurational derivative in steady-state
heat conduction and plane-stress linear elasticity. Therefore, let us consider
that the domain � is now perturbed by introducing, instead a hole, a small
inclusion represented by Bε. Therefore, we have a perturbed domain �ε ∪ Bε,
where �ε = � − Bε. Thus, considering a cost function ψ defined in both
domains � and �ε ∪ Bε, its configurational derivative is defined as

DC

(
x̂
) = lim

ε→0

ψ (�ε ∪ Bε)− ψ (�)

|Bε| , (26)

where |Bε| is the Lebesgue measure of the inclusion. It is important to observe
that all the mathematical framework introduced in section 2 can also be applied
in this context. See also [1] and references therein.

475



A.A. Novotny et al.

4.1 Steady-State Heat Conduction

Let us consider again the Poisson’s equation. Therefore, the problem formula-
tion associated to the original domain � is given by Equation (10) and the state
equation associated to the domain �ε∪Bε is given by the following variational
problem: find the temperature field uε ∈ Uε(�ε ∪ Bε), such that∫

�ε∪Bε
kδ∇uε · ∇η =

∫
�ε∪Bε

bη ∀η ∈ Vε(�ε ∪ Bε) , (27)

where, according to definitions of the set U(�) and the space V(�) given by
Equation (11), we have Uε(�ε ∪ Bε) = U(�ε ∪ Bε) and Vε(�ε ∪ Bε) =
V(�ε ∪ Bε). In addition, the material property kδ is defined, for δ ∈ R

+, as

kδ = k ∀x ∈ �ε and kδ = δk ∀x ∈ Bε . (28)

Introducing the notation [[·]] := (·)|e − (·)|i , where (·)|e is associated to the
bulk material e, represented by �ε, and (·)|i is associated to the inclusion i,
represented by Bε. Then the shape derivative of the cost function, according to
Remark 1, results in

d

dε
J (uε) = −

∫
∂Bε

[[�εn]] · n , (29)

where tensor �ε is given by Equation (16) for k = kδ . Using the jump con-
ditions associated to the normal derivatives of solutions uε and λε, we can
compute the limit ε → 0 to get the configurational derivative, that is

DC

(
x̂
) = −2k

1 − δ

1 + δ
∇u · ∇λ , (30)

where u and λ are the solutions of the state and adjoint equations, respectively,
both defined in the original domain � (without inclusion).

4.2 Plane-Stress Linear Elasticity

In this section we compute the configurational derivative in plane-stress linear
elasticity problem, whose variational formulation, associated to the original
domain �, is given by Equation (17). On the other hand, the mechanical model
associated to the domain �ε∪Bε is given by the following variational problem:
find the displacement vector field uε ∈ Uε(�ε ∪ Bε), such that∫

�ε∪Bε
Tε(uε) · Eε(η) =

∫
�N

q̄ · η ∀η ∈ Vε(�ε ∪ Bε) . (31)

where, according to definitions of the set U(�) and the space V(�) given by
Equation (18), we have Uε(�ε ∪ Bε) = U(�ε ∪ Bε) and Vε(�ε ∪ Bε) =
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V(�ε ∪ Bε). In addition, the elasticity tensor is now defined, for δ ∈ R
+, as

Cδ = C ∀x ∈ �ε and Cδ = δC ∀x ∈ Bε . (32)

From Remark 1, the shape derivative of the cost function results in

d

dε
Jε(uε) = −

∫
∂Bε

[[�εn]] · n , (33)

remembering that [[·]] := (·)|e − (·)|i and that �ε is the generalized Eshelby
tensor, given in by Equation (22) for C = Cδ. Finally, taking into account the
jump condition on the boundary of the inclusion, we find f (ε) = πε2 and the
configurational derivative, for α = (3 − ν)/(1 + ν), becomes

DT

(
x̂
) = −1 − δ

2

1 + α

1 + δα

[
2T (u) · E(λ)− (1 − δ)(α − 2)

2δ + α − 1
trT (u) trE(λ)

]
,

(34)
where u and λ are solutions of the direct and adjoint problems, respectively,
both associated to the original domain � (without inclusion).

5. FINAL REMARKS

In this paper, we have applied the Topological-Shape Sensitivity Method as a
systematic procedure to compute the topological (holes) and configurational
(inclusions) sensitivities for some classical problems in continuum mechanics.

We have observed that the CD in general doesn’t converge in the limit case
(for δ = 0) to the TD for homogeneous Neumann boundary condition on the
holes. In order to illustrate this issue, let us consider a cost function that also
depends explicitly on the domain � as follows

ψ(�) := J�(u) =
∫
�

w(u− u∗)2 , (35)

where u is the solution of Equation (10), u∗ is a target temperature and w is a
weighting factor defined, for a given subset & ⊂ �, as w = 1 if x ∈ & and
w = 0 if x ∈ � − & . From the Topological-Shape Sensitivity Method, we
have respectively obtained the following results for holes and inclusions:

DT

(
x̂
) = −w(u− u∗)2 − 2k∇u · ∇λ+ bλ , (36)

DC

(
x̂
) = −2k

1 − δ

1 + δ
∇u · ∇λ . (37)

Observe that the result given by Equation (36) cannot be obtained taking the
limit δ → 0 in Equation (37). Therefore, this fact suggests that in general
the CD cannot be used to compute the TD for homogeneous Neumann bound-
ary condition on the hole simply taking the limit when the material property
associated to the inclusion vanishes.
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Finally, we would like to point out that this paper only deals with linear
problems. In addition, only linear problems or when the nonlinear term is
a compact perturbation of the principal part of the operator have been con-
sidered in the current literature [2]. Therefore, we are now interested in the
applications of the topological sensitivity for the cases in that the nonlinear
term involves the principal part of the operator, like the p-Poisson’s equation,
plasticity, finite deformations and so on.
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