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Abstract: This paper presents an intermediate approach between parametric shape optim-
ization and topology optimization. It is based on using the recent Level Set
description of the geometry and the novel eXtended Finite Element Method (X-
FEM). The method takes benefit of the fixed mesh work using X-FEM and of
the curves smoothness of the Level Set description. Design variables are shape
parameters of basic geometric features. The number of design variables of this
formulation is small whereas various global and local constraints can be con-
sidered. The Level Set description allows to modify the connectivity of the
structure as geometric features can merge or separate from each other. How-
ever no new entity can be introduced. A central problem that is investigated
here is the sensitivity analysis and the way it can be carried out efficiently. Nu-
merical applications revisit the classical elliptical hole benchmark from shape
optimization.
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1. INTRODUCTION

Topology optimization has experienced an incredible soar since the seminal
work of Bendsøe and Kikuchi [2] and is now available within several com-
mercial packages and finite element codes. It is used with great success in
industrial applications. Practically, one major advantage of the optimal ma-
terial distribution formulation is to be able to work on a fixed regular mesh.
The drawback is that this formulation comes to very large scale optimization
problems, so that one generally considers very simple design problems as the
minimum compliance problem with a single volume constraint. Introducing
local constraints can lead to very huge problems difficult to handle, whereas
controlling geometrical constraints, which are mainly related to manufacturing
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considerations, requires some sophistications. Finally the optimal structure
picture needs to be interpreted to construct a parametric CAD model.

Meanwhile, shape optimization, which had received attention since the be-
ginning of the eighties, has been quite unsuccessful in industrial applications.
However, shape optimization of internal and external boundaries is of great
interest to improve the detailed design of structures against many criteria as
restricted displacements, various kinds of stress criteria, buckling, etc. The
shape optimization introduces a few design variables since the design problem
is formulated on the parameterized CAD model level. The major difficulty is
related to the mesh management problems coming from the large shape modi-
fications. Mesh distorsions and Finite Element errors can be reduced using
remeshing between two iterations and mesh adaptation tools. However a ma-
jor technical problem stems also from the sensitivity analysis that requires the
calculation of the so-called velocity field. It turns out that shape optimization
remains generally quite fragile and delicate to use in industrial context.

In order to circumvent the technical difficulties of the moving mesh prob-
lems, a couple of researches have tried to formulate shape optimization with
fixed mesh analyses using fictitious domains as in [5], based on fixed grid fi-
nite elements in [7] or more recently using projection methods as in [9]. The
present work relies on the novel eXtended Finite Element Method (X-FEM)
that has been proposed as an alternative to remeshing methods (see [8] or
[3] for instance). The X-FEM method is naturally associated with the Level
Set [11] description of the geometry to provide a very efficient treatment of dif-
ficult problems involving discontinuities and propagations. Up to now the X-
FEM method has been mostly developed for crack propagation problems [8],
but the potential interest of the X-FEM and the level set description for other
problems like topology optimization was identified very early in Belytschko et
al. [4], Wang et al. [14] or Allaire et al. [1].

The authors see the X-FEM and the Level Set description as an elegant way
to fill the gap between topology and shape optimization. The method can be
qualified as generalized shape optimization as it has smooth boundary descrip-
tions while allowing topology modifications as holes can merge and disap-
pear. X-FEM enables working on a fixed mesh, as in topology optimization,
circumventing the technical difficulties of shape optimization. The structural
shape description uses basic level set features (circles, rectangles, etc.) that
can be freely combined to generate any shapes. The design variables are para-
meters of the Level Set features, while constraints can, in principle, be either
global (compliance, volume) or local (stress) responses as in shape optimiza-
tion. A key issue of the problem is the sensitivity analysis. A semi analytical
approach has been developed. The work presents clearly validated solutions
and still open questions and difficulties. For the numerical applications a com-
plete solution of shape optimization using Level Set description and X-FEM
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has been implemented in the object oriented software, OOFELIE (Open Object
Finite Element Lead by Interactive User) [10].

The layout of the paper is thus the following. The Extended Finite Element
Method and the Level Set representation are reminded in Sections 2 and 3. Sec-
tion 4 states the generalized shape optimization problem with X-FEM and the
Level Set description. Sensitivity analysis is addressed in Section 5. Finally,
in Section 6 an academic applications of shape optimization is reinvestigated
to illustrate the proposed extended finite elements and their application to gen-
eralized shape optimization.

2. THE EXTENDED FINITE ELEMENT METHOD

The eXtended Finite Element Method [3, 8] is a recent method that has been
firstly developed for the simulation and the analysis of structures presenting
moving boundaries. The main strength of this method is its ability to include
discontinuities inside the finite elements. Hence, this method enables to in-
clude geometric boundaries, material or phase changes that are not coincident
with the mesh.

2.1 The Basis of the Method

In order to allow any types of discontinuities inside the elements and therefore
to be able to represent discontinuities in the physics fields, it is necessary to
add special shape functions to the finite element approximation. For example,
in the case of cracked structures, the displacement field is discontinuous and
to model the discontinuity, one has to add discontinuous shape functions. The
classical finite element approximation used is then extended to embed the dis-
continuous shape function as in the following equation:

u(x) =
∑
i

uiNi(x)+
∑
j

ajNj(x)H(x), (1)

where Ni(x) are the classical shape functions associated to degrees of free-
dom ui . The Nj (x)H (x) are the discontinuous shape functions constructed by
multiplying a classical Nj (x) shape function with a Heaviside function H(x)
(presenting a switch value where the discontinuity lies). These extended shape
functions are supported only by the enriched (extended) degrees of freedom aj .
Note that, usually, only the elements near the discontinuity support extended
shape functions whereas the other elements remain unchanged. The modific-
ation of the displacement field approximation does not introduce a new form
of the discretised finite element equilibrium equation but leads to an enlarged
problem to solve (see [3] for details):

K · q = g ⇔
[
Kuu Kua

Kau Kaa

] [
u

a

]
=

[
f ext
u

f ext
a

]
. (2)
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As the elements can now present discontinuous shape functions, the numer-
ical integration scheme has to be modified in order to take care of the dis-
continuity. In our implementation, the elements embedding a singularity are
divided into sub-triangular elements aligned with this discontinuity over which
an integration is processed.

2.2 Representing Holes

The modeling of material-void interfaces with X-FEM [12] is slightly different
from the cracked structure case. For void inclusions and holes, the displace-
ment field is approximated by:

u(x) =
∑
i

uiNi(x)V (x), (3)

where V (x) takes value ‘1’ if the node lies inside the material and ‘0’ other-
wise. The elements lying outside the material are removed from the system of
equations, whereas the partially filled elements are integrated using the X-FEM
integration procedure over solid sub-domain. Modeling holes with the X-FEM
is a very appealing method for the shape optimization but also for the topo-
logy optimization as no remeshing is needed and no approximation is done on
the nature of the voids in opposition to the power penalization of intermediate
densities (SIMP) method used in topology optimization.

3. THE LEVEL SET DESCRIPTION

The explicit representation of the structural shape of parametric CAD repres-
entation forbids deep boundary or topological changes such as creation or fu-
sion of holes. This limitation is one of the main reasons of the low perform-
ance generally associated to the shape optimization. Conversely, the Level Set
method developed by Sethian [11] which consists of representing the boundary
of the structure with an implicit method allows this kind of deep changes.

The Level Set method is a numerical technique first developed to track mov-
ing interfaces. It is based upon the idea of representing implicitly the interfaces
as a Level Set curve of a higher dimension function ψ(x, t). The boundaries of
the structure is then conventionally represented by the zero level, i.e. ψ(x, t)=0
of this function ψ , whereas the filled region is attached to the positive part of
the ψ function. In practice, this function is approximated on a fixed mesh by a
discrete function which is usually the signed distance function to the curve �:

ψ(x, t) = ± min
x�∈�(t)

‖x − x�‖ . (4)

The sign is positive (negative) if x is inside (outside) the boundary defined
by �(t). Applied to the X-FEM framework, the Level Set is defined on the
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structural mesh and a geometrical degree of freedom representing its Level Set
function value is associated at each finite element node. The Level Set is then
interpolated on the whole design domain with the classical shape function of
the finite element approximation:

ψ(x, t) =
∑
i

ψiNi(x). (5)

The combination of different level sets is also one of the appealing character-
istic of this method. This property allows easy treatment of merging interfaces
and connectivity modifications.

4. PROBLEM FORMULATION

The formulation of the optimization problem is similar to a shape optimization
problem, but its solution is greatly simplified thanks to the use of the X-FEM
and Level Set description.

The geometry and the material layout are specified using Level Sets repres-
entations. The user has a library of basic geometric features (in Level Sets)
that can be combined to create almost any structural geometry. The available
features are circles, ellipsis, squares, triangles, etc. The design variables are
chosen among the geometric parameters of these features.

The optimization problem aims at finding the best shape to minimize a given
objective function while satisfying mechanical and geometrical design restric-
tions. The mechanical constraints can either be global responses (e.g. com-
pliance) or local ones as displacements or stress constraints. However, in this
preliminary study only static criteria are available.

The number of design variables is generally small as in shape optimization.
However the number of constraints may be large if a lot of local stress restric-
tions, e.g. stress constraints are considered. Nonetheless, large scale problems
as in topology optimization are avoided.

The design problem is stated as a general constrained optimization problem:

min
x

g0(x)

s.t.: gj (x) ≤ gmax
j j = 1 . . . m

xi ≤ xi ≤ xi i = 1 . . . n.

(6)

The solution to this problem is carried out using the so-called sequential convex
programming. At each iteration, the X-FEM analysis problem is solved and a
sensitivity analysis is performed. The solution of the optimization problem is
then found by using a CONvex LINearization, CONLIN [6]. The new design
point is evaluated and if necessary the procedure is repeated until convergence.

Because of the X-FEM, the geometry has not to coincide with the mesh and
the generalized shape optimization problem is carried out on a fixed mesh. This
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circumvents the mesh perturbation problems of classical shape optimization.
Sensitivity analysis does not require anymore the velocity field. The present
formulation is then, up to a certain point, simpler. However, some technical
difficulties can be encountered if a finite difference or a semi-analytical scheme
is used for sensitivity analysis as explained in the next section. Basically, the
problem is that the perturbation must not change the number of degrees of
freedom of the X-FEM approximation.

The Level Set approach is very convenient to modify the geometry because
the level sets (and so the holes) can penetrate each other or disappear. Creation
of new holes is more problematic since it leads to a non smooth problem. To-
pological derivatives have then to be used to treat rigorously the problem. This
capability is not yet implemented in the present work.

5. THE SENSITIVITY ANALYSIS METHOD

As in classical shape optimization, the sensitivity analysis of mechanical re-
sponses (such as compliance, displacement, stress . . .) is carried out using a
semi-analytic approach. In this approach the derivatives of stiffness matrix
and load vectors are calculated by finite differences after perturbation of the
level set parameter by δx:

∂K
∂x

� K(x + δx)− K(x)
δx

and
∂f
∂x

� f(x + δx)− f(x)
δx

. (7)

In the classical shape optimization, the computing complexity of the stiff-
ness matrix sensitivity is due to the modifications of the mesh associated to
the perturbation δx and to the velocity field calculation. In the present X-FEM
based approach, one has not to bother with the mesh perturbations as one works
on a fixed grid. However, this method exhibits a different drawback with re-
spect to the general shape optimization as the number of elements may vary.
The critical situation happens (see Figure 1) when a boundary is very close to
a node. Thus, during the perturbation δx of the level set, new elements, pre-
viously empty, could become partly filled with material and then appear into
the formulation. Thus the number of degrees of freedom would change and
the dimension of the stiffness matrix would be modified between the level set
perturbation.

The strategy that is implemented presently to circumvent the difficulty is
the following. As one has only the displacement (ui) for the elements that
are present in the reference configuration, only these elements are taken into
account while the contributions coming from the new partly filled elements are
ignored. Hence, no new elements are introduced and the size of the stiffness
matrix remains unchanged.

This strategy obviously involves an error because it ignores the contribu-
tions related to new elements. However, practically the contribution of these
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Figure 1. Sensitivity difficulty with semi-analytic approach.

elements is so small that the neglected contribution does not alter the preci-
sion of the sensitivity. The quality of the approximation is illustrated in the
application section with the elliptical hole problem.

Of course the ultimate solution to the problem should resort to a fully ana-
lytical sensitivity of the stiffness matrix, but this would be rather restrictive for
industrial applications. On-going work is devoted to investigate two kinds of
other strategies to reduce the error of the semi-analytic approach:

(1) One can keep a narrow band (boundary layer) of elements with very
soft mechanical properties around the level set ψ = 0 in order to prevent the
variation of the total number of degrees of freedom.

(2) One could define a tolerance zone around the Level Set. If the discon-
tinuity in an element lies inside this zone, add the connected elements to the
set of cut ones.

These two alternative methods have the advantage of keeping the number of
degrees of freedom constant and then they do not create or remove elements
during the perturbation step. Hence, the computation of the sensitivity would
lead to a more accurate result as all elements are taken into account in the per-
turbated stiffness matrix. However, the presence of these elements will prob-
ably introduce a dependency upon the mechanical properties associated to the
narrow softening elements band like in topology optimization with the power
p coefficient in the SIMP law. Moreover, the use of this two methods does not
take fully advantage of the X-FEM as we re-introduce an approximation of the
void as a weak material.
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6. APPLICATIONS

6.1 Implementation

The X-FEM method and its Level Set description have been implemented in
an object oriented (C++) multiphysics finite element code, OOFELIE that is
commercialized by Open Engineering [10].

In OOFELIE, any mechanical result can be chosen as objective functions
and constraints that is: compliance and potential energy, all stress components,
displacements and geometric results. However in this study, solely compliance
minimization is used. Implementation of the X-FEM method is available in
2-D problems with a library of both quadrangle and triangle elements. The
CONLIN optimizer by Fleury [6] has also been coupled in the OOFELIE en-
vironment and an optimization framework has been created.

6.2 Plate with an Elliptical Hole

The plate with a hole is a classical benchmark from shape optimization. To
remind the reader, a large plate with a hole in the middle is subjected to a
biaxial stress field. The goal of the optimization problem is to find the optimal
shape to minimize the compliance of the structure with a constraint on the total
volume of the hole. From the analytical solution, we know that the solution is
an elliptical hole aligned with the principal stresses. Figure 2 left shows the
quarter of the initial design domain, an elliptic hole with a 45◦ orientation.

Here the particular values are considered. The dimensions of the plate are
2 × 2 × 1 m. The domain is covered with a transfinite mesh with 30 nodes
on each side. The applied biaxial stress field is σx=2σ0 and σy=σ0 and the
material properties associated are: Young modulus E = 1 N/m2, Poisson’s

Figure 2. Plate with a hole.
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Table 1. Validation of semi-analytical sensitivity analysis approximation.

Design variables Finite differences Semi-analytical approach Relative error (%)

a = 0.6 3698.0000 3691.3344 0, 1802
θ = π/4 478.0000 477.0641 0.1957

a = 0.6 783.8000 781.3920 0.3072
θ = 0 11.6239 11.6235 0.0029

ration ν = 0.3. The plane stress state is assumed. The variables are the angle
θ and the long axis a.

Three iterations with CONLIN optimizer are necessary to come to the solu-
tion, an ellipsis aligned with the principle stresses (see Figure 2(b)).

Let us remark the discretization of the geometry using the level set. The
boundaries are represented using the linear finite element shape functions, so
that the boundary is approximated using piecewise linear segments. This can
lead to discretization errors of the geometry as noted in [13].

The elliptical hole serves also to validate the approximated semi-analytical
sensitivity analysis that has been proposed in Section 5. Table 1 gives the
sensitivities of compliance calculated by finite differences and semi-analytical
approach for different combination of the design variables a and θ . The results
were obtained with a relative perturbation of the design variables of δ = 10−4.
The results show the quality of the proposed semi-analytical approximation.

7. CONCLUSION

An intermediate approach between shape and topology optimization has been
developed using extended finite elements and Level Set description. The
method combines the advantage of the fixed mesh approach of topology op-
timization and the smooth curve description of shape optimization. Obtained
results show that this new approach is promising and deserve further efforts.

The investigation of a semi-analytic sensitivity analysis with X-FEM and
Level Set is an original contribution of the paper. The problem of elements
becoming partially filled has been identified and a first strategy to circumvent
the problem has been validated. On-going work explores other alternative ap-
proaches.

The solution of 2-D problems is presently available. Future work is de-
voted to attack 3-D problems, dynamic problems, and multiphysic (electro-
mechanical) problems.
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