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Abstract: A numerical coupling of two recent methods in shape and topology optimization
of structures is proposed. On the one hand, the level set method, based on the
shape derivative, is known to easily handle boundary propagation with topolo-
gical changes. However, in practice it does not allow for the nucleation of new
holes. On the other hand, the bubble or topological gradient method is precisely
designed for introducing new holes in the optimization process. Therefore, the
coupling of these two methods yields an efficient algorithm which can escape
from local minima. It have a low CPU cost since it captures a shape on a fixed
Eulerian mesh. The main advantage of our coupled algorithm is to make the
resulting optimal design more independent of the initial guess.
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1. INTRODUCTION

Numerical methods of shape and topology optimization based on the level set
representation and on shape differentiation make possible topology changes
during the optimization process. But they do not solve the inherent problem
of ill-posedness of shape optimization which manifests itself in the existence
of many local minima, usually having different topologies. The reason is that
the level set method can easily remove holes but can not create new holes in
the middle of a shape. In practice, this effect can be checked by varying the
initialization which yields different optimal shapes with different topologies.
This absence of a nucleation mechanism is an inconvenient mostly in 2-d: in
3-d, it is less important since holes can appear by pinching two boundaries.

In [2] we have proposed, as a remedy, to couple our previous method with
the topological gradient method (cf. [9–11, 20, 21]). Roughly speaking it
amounts to decide whether or not it is favorable to nucleate a small hole in
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a given shape. Creating a hole changes the topology and is thus one way of
escaping local minima. Our coupled method of topological and shape gradi-
ents in the level set framework is therefore much less prone to finding local,
nonglobal, optimal shapes. For most of our 2-d numerical examples of com-
pliance minimization, the expected global minimum is attained from the trivial
full domain initialization.

We provide a new 2-d numerical example showing that the level set method
coupled to the topological gradient can reach an optimum of the objective func-
tion, very close to the one obtained by the homogenization method, starting
from a trivial initial state. Then a new 3-d example is proposed. Although its
solution has a rather complicated topology, it is obtained by the regular level
set method, with different initializations, as well as by the coupled method.
Thus the introduction of the topological gradient is not useful to reach such a
complex 3-d solution.

2. SETTING OF THE PROBLEM

We restrict ourselves to linear elasticity. A shape is a bounded open set� ⊂ R
d

(d = 2 or 3) with a boundary made of two disjoint parts �N and �D , submitted
to respectively Neumann and Dirichlet boundary conditions. All admissible
shapes � are required to be a subset of a working domain D ⊂ R

d . The shape
� is occupied by a linear isotropic elastic material with Hooke’s lawA defined,
for any symmetric matrix ξ , by Aξ = 2µξ + λ(Tr ξ) Id, where µ and λ are
the Lamé moduli. The displacement field u is the solution of the linearized
elasticity system ⎧⎨⎩

−div (A e(u)) = f in �
u = 0 on �D(

Ae(u)
)
n = g on �N,

(1)

where f ∈ L2(D)d and g ∈ H 1(D)d are the volume forces and the surface
loads. If �D �= ∅, (1) admits a unique solution in u ∈ H 1(�)d . The object-
ive function is denoted by J (�). In this paper, only the compliance will be
considered:

J (�) =
∫
�

f · u dx +
∫
�N

g · u ds =
∫
�

Ae(u) · e(u) dx. (2)

To avoid working on a problem with a volume constraint, we introduce a
Lagrange multiplier � and consider the minimization

inf
�⊂DL(�) = J (�)+ �|�|. (3)
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3. SHAPE DERIVATIVE

To apply a gradient method to the minimization of (3) we recall the classical
notion of shape derivative (see e.g. [15, 17, 19, 22]). Starting from a smooth
open set �, we consider domains of the type �θ = ( Id + θ)(�), with Id the
identity mapping of R

d and θ a vector field in W 1,∞(Rd,Rd). For small θ ,
( Id + θ) is a diffeomorphism in R

d .

Definition: The shape derivative of J at � is defined as the Fréchet derivative
at 0 of the application θ → J (( Id + θ)(�)), i.e.

J
(
( Id + θ)(�)

) = J (�)+ J ′(�)(θ)+ o(θ) with lim
θ→0

|o(θ)|
‖θ‖ = 0 ,

where J ′(�) is a continuous linear form on W 1,∞(Rd,Rd).
We recall the following classical result (see [4] and references therein).

Theorem 1 (shape derivative for the compliance): Let � be a smooth
bounded open set and θ ∈ W 1,∞(Rd;R

d). If f ∈ H 1(�)d , g ∈ H 2(�)d ,
u ∈ H 2(�)d , then the shape derivative of (2) is

J ′(�)(θ) =
∫
�N

(
2

[
∂(g · u)
∂n

+Hg · u+ f · u
]

− Ae(u) · e(u)
)
θ · n ds

+
∫
�D

Ae(u) · e(u) θ · n ds,

where H is the mean curvature defined by H = div n.

4. TOPOLOGICAL DERIVATIVE

One drawback of the method of shape derivative is that no nucleation of holes
inside the domain are allowed. Numerical methods based on the shape deriv-
ative may therefore fall into a local minimum. A remedy to this inconvenience
has been proposed as the bubble method, or topological asymptotic method
[10, 11, 21]. The main idea is to test the optimality of a domain to topology
variations by removing a small hole with appropriate boundary conditions.

We give a brief review of this method that we shall call in the sequel topolo-
gical gradient method. Consider an open set � ⊂ R

d and a point x0 ∈ �. In-
troduce a fixed model hole ω ⊂ R

d , a smooth open bounded subset containing
the origin. For ρ > 0 we define the translated and rescaled hole ωρ = x0 + ρω

and the perforated domain �ρ = � \ ω̄ρ . The goal is to study the variations of
the objective function J (�ρ) as ρ → 0.
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Definition: If the objective function admits the following so-called topological
asymptotic expansion for small ρ > 0

J (�ρ) = J (�)+ ρdDT J (x0)+ o(ρd),

then DT J (x0) is called the topological derivative at point x0.

If the model hole ω is the unit ball, the following result gives the expression of
the topological derivative for the compliance J (�) with Neumann boundary
conditions on the hole (see [11, 21]).

Theorem 2: Let ω be the unit ball of R
d . If f = 0, g ∈ H 2(�)d and u ∈

H 2(�)d , then ∀x ∈ � ⊂ R
2, if C2 = π(λ+ 2µ)/(2µ(λ+ µ)),

DT J (x) = C2
{
4µAe(u) · e(u)+ (λ− µ)tr(Ae(u))tr(e(u))

}
(x),

and ∀x ∈ � ⊂ R
3, if C3 = π(λ+ 2µ)/(µ(9λ+ 14µ)),

DT J (x) = C3
{
20µAe(u) · e(u)+ (3λ− 2µ)tr(Ae(u))tr(e(u))

}
(x).

The above expressions are nonnegative. This means that, for compliance
minimization, there is no interest in nucleating holes if there is no volume
constraint. However, if a volume constraint is imposed, the topological de-
rivative may have negative values due to the addition of the term −�|ω|.
For the minimization problem (3), the corresponding topological gradient is
DTL(x) = DT J (x) − �|ω|. At the points x where DTL(x) < 0, holes are
introduced into the current domain.

5. LEVEL SET METHOD FOR SHAPE
OPTIMIZATION

Consider D ⊂ R
d a bounded domain in which all admissible shapes � are

included, i.e. � ⊂ D. Following the idea of Osher and Sethian [16], the
boundary of � is represented by means of a level set function ψ such that
ψ(x) < 0 ⇔ x ∈ �. The normal n to the shape � is recovered as ∇ψ/|∇ψ |
and the mean curvature H is given by div(∇ψ/|∇ψ |).

During the optimization process, the shape �(t) is going to evolve accord-
ing to a fictitious time parameter t > 0 which corresponds to descent stepping.
The evolution of the level set function is governed by the following Hamilton–
Jacobi transport equation [16]

∂ψ

∂t
+ V |∇ψ | = 0 in D, (4)
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where V (t, x) is the normal velocity of the shape’s boundary. The choice V is
based on the shape derivative computed in Theorem 1

L′(�)(θ) =
∫
∂�

v θ · n ds, (5)

where the integrand v(u, n,H) depends on the state u, the normal n and the
mean curvature H . The simplest choice is to take the steepest descent θ =
−vn. This yields a normal velocity for the shape’s boundary V = −v. Another
choice consists in smoothing the velocity field vn by applying the Neumann-
to-Dirichlet map to −vn (see e.g. [4, 7, 14]). The method described in detail
in [12] is used in all the numerical computations below.

The main point is that the Lagrangian evolution of the boundary ∂� is
replaced by the Eulerian solution of a transport equation in the whole fixed
domain D. Likewise the elasticity equations for the state u are extended to
the whole domain D by using the so-called “ersatz material” approach. The
Hamilton–Jacobi equation (4) is solved by an explicit upwind scheme (see e.g.
[18]) on a Cartesian grid with a time stepping satisfying a CFL condition. To
regularize the level set function (which may become too flat or too steep), it is
periodically reinitialized by solving another Hamilton–Jacobi equation which
admits, as a stationary solution, the signed distance to the initial interface [18].

6. OPTIMIZATION ALGORITHM

For the minimization problem (3) we propose an iterative coupling of the level
set method and of the topological gradient method. Both methods are gradient-
type algorithms, so our coupled method can be thought of as an alternate dir-
ections descent algorithm.

The level set method relies on the shape derivative L′(�)(θ) of Section 3,
while the topological gradient method is based on the topological derivative
DTL(x) of Section 4. These two types of derivative define independent descent
directions that we simply alternate as follows.

In a first step, the level set function ψ is advected according to the velocity
−v. Then, holes are introduced into the current domain � where the topolo-
gical derivative DTL(x) is minimum and negative.

In practice, it is better to perform more level set steps than topological gradi-
ent steps. Therefore, the main parameter of our coupled algorithm is an integer
nopt which is the number of gradient steps between two successive applications
of the topological gradient. Our proposed algorithm is structured as follows:

1. Initialization of the level set function ψ0 corresponding to an initial guess
�0 (usually the full working domain D).

2. Iteration until convergence, for k ≥ 0:
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(a) Elasticity analysis. Computation of the state uk solving a problem
of linear elasticity on �k. This yields the shape derivative, the
velocity vk and the topological gradient.

(b) Shape gradient. If mod (k, ntop) < ntop, the current shape �k,
characterized by the level set function ψk, is deformed into a new
shape �k+1, characterized by ψk+1 which is the solution of the
Hamilton–Jacobi equation (4) after a time interval �tk with the
initial condition ψk and a velocity −vk. �tk is chosen such that
L(�k+1) ≤ L(�k).

(c) Topological gradient. If mod (k, ntop) = 0, nucleation step:
�k+1 is obtained by inserting new holes into �k according to the
topological gradient.

For details about the shape gradient step and the topological gradient step,
we refer to our previous works [2–4].

7. A NUMERICAL EXAMPLE IN 2-D

It is a variation of the classical cantilever, but its optimal solution seems to have
a more complex topology. It consists in a rectangular domain of dimensions
10 × 8 with a square hole whose boundaries are submitted to an homogeneous
Dirichlet boundary condition. The domain is meshed with a regular 150 ×
120 grid. Figure 1 shows the composite and penalized solutions obtained by
the homogenization method (see [1, 5, 6]). Since the composite solution is
a global optimum of the problem, it will be used as a reference. Figure 2
shows the solution obtained by the algorithm coupling shape and topological
sensitivity, starting from the full domain, with 1 step of topological gradient
every 10 iterations. Figure 4 shows different solutions obtained by the level set
algorithm (without topological gradient) for different numbers of initial holes,
ranging from 0 to 160.

The convergence history of Figure 6 gives some hints on the efficiency of
the level set method without topological gradient: first, it confirms that a “to-

Figure 1. Homogenization method: composite (left) and penalized (right) solutions.
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Figure 2. The initial configuration (full domain) and the solution obtained by the level set
method with topological gradient.

Figure 3. Convergence history of the homogenization method, the level set method with
topological gradient (full domain initialization), and the plain level set method with 4 different
initial states.

pologically poor” initialization cannot convergence to a good solution; second,
it shows that initializing with “many holes” is not a good idea too. The good
strategy lies in between, but it is generally not easy to find. The topological
gradient allows the convergence to a good solution, starting from the full do-
main, without the need of adjusting any tricky numerical parameters. Remark
that the solution computed from initialization 3 (22 holes) is also good, but it
has been reached after an history where it had to escape from many local min-
ima, using the tolerance of the algorithm to small increases of the objective
function.

8. A NUMERICAL EXAMPLE IN 3-D

We propose and test-case that have a very topologically complex solution. It is
defined by Figure 5 (left). The bottom face is submitted to a uniform Dirichlet
boundary condition.

The domain is meshed with 10976 hexaedral elements. The coupled
method, level set plus topological gradient every 5 iterations, has been com-
pared to the nominal level set method starting from two initial states (full do-

9



G. Allaire and F. Jouve

Figure 4. Four solutions obtained by the plain level set method (right) with four different
initializations (left): full domain, 12 holes, 22 holes and 160 holes.

main and 8 holes uniformly distributed). The 3 solutions obtained cannot be
distinguished on a picture. Figure 5 shows 3 views of the solution and Figure 6
confirms that the objective functions of the converged solutions are very close.

As suspected in [2], the topological gradient seems not to be as efficient and
useful in 3-d as it is in 2-d.
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Figure 5. Three different views of the optimal shape obtained for the problem defined on the
left.

Figure 6. Convergence history of the 3d problem for the plain level set method with two
different initializations, and the level set method with topological gradient.
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[20] Sokołowski, J. and Żochowski, A., On the topological derivative in shape optimization,
SIAM J. Control Optim., 37, 1251–1272 (1999).
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