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PREFACE

This book contains the refereed and edited versions of papers presented at the
IUTAM Symposium on Topological Design Optimization of Structures, Ma-
chines and Materials: Status and Perspectives, held at Rungstedgaard, near
Copenhagen, Denmark, October 26–29, 2005. The symposium was attended
by 74 scientists from 19 countries, and the programme was intensive and in-
cluded also two evenings for presentations and discussions.

It is now more than 15 years ago that the so-called homogenization method
was proposed as a basis for computational means to optimize the topology and
shape of continuum structures. From initially being capable mainly of treating
minimum compliance design we now see the basic material distribution idea
of the methodology applied to a wide range of structural and mechanical prob-
lems as well as to problems that couple structural response to other physical
responses. Also, the method has provided insight for micro-mechanical stud-
ies, meaning that the method has given feedback to the area which provided
impetus to the field of topological design optimization in its creation. Finally,
topological design is now an integral part of most FEM software systems and
it has become a standard industrial tool in some fields.

The IUTAM Symposium provided a forum for the exchange of ideas for fu-
ture developments in the area of topological design optimization. This encom-
passed the application to fluid-solid interaction problems, acoustics problems,
and to problems in biomechanics, as well as to other multiphysics problems.
New basic modelling paradigms, covering new geometry modelling such as
level-set methods and topological derivatives, as well as developments in com-
putational approaches were also focus areas.

Without the sponsorship from the International Union of Theoretical and
Applied Mechanics (IUTAM) and the International Society for Structural
and Multidisciplinary Optimization (ISSMO), and the financial support from
the Danish Center for Applied Mathematics and Mechanics (DCAMM), the
Villum Kann Rasmussen Foundation, and the Poul Due Jensen Foundation,
the symposium and this book would not have been possible. The financial sup-
port from the Department of Mechanical Engineering, Aalborg University, and
from the Department of Mathematics and the Department of Mechanical En-
gineering, Technical University of Denmark, is also gratefully acknowledged.
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The editors are indebted to the members of the Scientific Committee,
Professors Gregoire Allaire, Gengdong Cheng, Alejandro R. Diaz, Noboru
Kikuchi, Yoon Young Kim, Kurt Maute, and Helder C. Rodrigues, for their
advice and help in organizing the symposium. The organization of the sym-
posium was a shared effort between the Technical University of Denmark and
University of Aalborg, Denmark, and the smooth running of the production of
this volume is greatly attributed to the competent work of Jan Stegmann, Uni-
versity of Aalborg, and of Jolanda Karada, Karada Publishing Services. We
are also grateful to Ciro Soto who provided the picture of John E. Taylor.

Lyngby and Aalborg, December 2005

Martin P. Bendsøe
Niels Olhoff
Ole Sigmund
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COUPLING THE LEVEL SET METHOD
AND THE TOPOLOGICAL GRADIENT IN
STRUCTURAL OPTIMIZATION

Grégoire Allaire and François Jouve
Centre de Mathématiques Appliquées (UMR 7641), Ecole Polytechnique,
91128 Palaiseau, France

gregoire.allaire@polytechnique.fr, francois.jouve@polytechnique.fr

Abstract: A numerical coupling of two recent methods in shape and topology optimization
of structures is proposed. On the one hand, the level set method, based on the
shape derivative, is known to easily handle boundary propagation with topolo-
gical changes. However, in practice it does not allow for the nucleation of new
holes. On the other hand, the bubble or topological gradient method is precisely
designed for introducing new holes in the optimization process. Therefore, the
coupling of these two methods yields an efficient algorithm which can escape
from local minima. It have a low CPU cost since it captures a shape on a fixed
Eulerian mesh. The main advantage of our coupled algorithm is to make the
resulting optimal design more independent of the initial guess.

Keywords: Shape and topology optimization, level set method, topological gradient.

1. INTRODUCTION

Numerical methods of shape and topology optimization based on the level set
representation and on shape differentiation make possible topology changes
during the optimization process. But they do not solve the inherent problem
of ill-posedness of shape optimization which manifests itself in the existence
of many local minima, usually having different topologies. The reason is that
the level set method can easily remove holes but can not create new holes in
the middle of a shape. In practice, this effect can be checked by varying the
initialization which yields different optimal shapes with different topologies.
This absence of a nucleation mechanism is an inconvenient mostly in 2-d: in
3-d, it is less important since holes can appear by pinching two boundaries.

In [2] we have proposed, as a remedy, to couple our previous method with
the topological gradient method (cf. [9–11, 20, 21]). Roughly speaking it
amounts to decide whether or not it is favorable to nucleate a small hole in

3
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G. Allaire and F. Jouve

a given shape. Creating a hole changes the topology and is thus one way of
escaping local minima. Our coupled method of topological and shape gradi-
ents in the level set framework is therefore much less prone to finding local,
nonglobal, optimal shapes. For most of our 2-d numerical examples of com-
pliance minimization, the expected global minimum is attained from the trivial
full domain initialization.

We provide a new 2-d numerical example showing that the level set method
coupled to the topological gradient can reach an optimum of the objective func-
tion, very close to the one obtained by the homogenization method, starting
from a trivial initial state. Then a new 3-d example is proposed. Although its
solution has a rather complicated topology, it is obtained by the regular level
set method, with different initializations, as well as by the coupled method.
Thus the introduction of the topological gradient is not useful to reach such a
complex 3-d solution.

2. SETTING OF THE PROBLEM

We restrict ourselves to linear elasticity. A shape is a bounded open set� ⊂ R
d

(d = 2 or 3) with a boundary made of two disjoint parts �N and �D , submitted
to respectively Neumann and Dirichlet boundary conditions. All admissible
shapes � are required to be a subset of a working domain D ⊂ R

d . The shape
� is occupied by a linear isotropic elastic material with Hooke’s lawA defined,
for any symmetric matrix ξ , by Aξ = 2µξ + λ(Tr ξ) Id, where µ and λ are
the Lamé moduli. The displacement field u is the solution of the linearized
elasticity system ⎧⎨⎩

−div (A e(u)) = f in �
u = 0 on �D(

Ae(u)
)
n = g on �N,

(1)

where f ∈ L2(D)d and g ∈ H 1(D)d are the volume forces and the surface
loads. If �D �= ∅, (1) admits a unique solution in u ∈ H 1(�)d . The object-
ive function is denoted by J (�). In this paper, only the compliance will be
considered:

J (�) =
∫
�

f · u dx +
∫
�N

g · u ds =
∫
�

Ae(u) · e(u) dx. (2)

To avoid working on a problem with a volume constraint, we introduce a
Lagrange multiplier � and consider the minimization

inf
�⊂DL(�) = J (�)+ �|�|. (3)

4



Level Set Method and Topological Gradient

3. SHAPE DERIVATIVE

To apply a gradient method to the minimization of (3) we recall the classical
notion of shape derivative (see e.g. [15, 17, 19, 22]). Starting from a smooth
open set �, we consider domains of the type �θ = ( Id + θ)(�), with Id the
identity mapping of R

d and θ a vector field in W 1,∞(Rd,Rd). For small θ ,
( Id + θ) is a diffeomorphism in R

d .

Definition: The shape derivative of J at � is defined as the Fréchet derivative
at 0 of the application θ → J (( Id + θ)(�)), i.e.

J
(
( Id + θ)(�)

) = J (�)+ J ′(�)(θ)+ o(θ) with lim
θ→0

|o(θ)|
‖θ‖ = 0 ,

where J ′(�) is a continuous linear form on W 1,∞(Rd,Rd).
We recall the following classical result (see [4] and references therein).

Theorem 1 (shape derivative for the compliance): Let � be a smooth
bounded open set and θ ∈ W 1,∞(Rd;R

d). If f ∈ H 1(�)d , g ∈ H 2(�)d ,
u ∈ H 2(�)d , then the shape derivative of (2) is

J ′(�)(θ) =
∫
�N

(
2

[
∂(g · u)
∂n

+Hg · u+ f · u
]

− Ae(u) · e(u)
)
θ · n ds

+
∫
�D

Ae(u) · e(u) θ · n ds,

where H is the mean curvature defined by H = div n.

4. TOPOLOGICAL DERIVATIVE

One drawback of the method of shape derivative is that no nucleation of holes
inside the domain are allowed. Numerical methods based on the shape deriv-
ative may therefore fall into a local minimum. A remedy to this inconvenience
has been proposed as the bubble method, or topological asymptotic method
[10, 11, 21]. The main idea is to test the optimality of a domain to topology
variations by removing a small hole with appropriate boundary conditions.

We give a brief review of this method that we shall call in the sequel topolo-
gical gradient method. Consider an open set � ⊂ R

d and a point x0 ∈ �. In-
troduce a fixed model hole ω ⊂ R

d , a smooth open bounded subset containing
the origin. For ρ > 0 we define the translated and rescaled hole ωρ = x0 + ρω

and the perforated domain �ρ = � \ ω̄ρ . The goal is to study the variations of
the objective function J (�ρ) as ρ → 0.

5
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Definition: If the objective function admits the following so-called topological
asymptotic expansion for small ρ > 0

J (�ρ) = J (�)+ ρdDT J (x0)+ o(ρd),

then DT J (x0) is called the topological derivative at point x0.

If the model hole ω is the unit ball, the following result gives the expression of
the topological derivative for the compliance J (�) with Neumann boundary
conditions on the hole (see [11, 21]).

Theorem 2: Let ω be the unit ball of R
d . If f = 0, g ∈ H 2(�)d and u ∈

H 2(�)d , then ∀x ∈ � ⊂ R
2, if C2 = π(λ+ 2µ)/(2µ(λ+ µ)),

DT J (x) = C2
{
4µAe(u) · e(u)+ (λ− µ)tr(Ae(u))tr(e(u))

}
(x),

and ∀x ∈ � ⊂ R
3, if C3 = π(λ+ 2µ)/(µ(9λ+ 14µ)),

DT J (x) = C3
{
20µAe(u) · e(u)+ (3λ− 2µ)tr(Ae(u))tr(e(u))

}
(x).

The above expressions are nonnegative. This means that, for compliance
minimization, there is no interest in nucleating holes if there is no volume
constraint. However, if a volume constraint is imposed, the topological de-
rivative may have negative values due to the addition of the term −�|ω|.
For the minimization problem (3), the corresponding topological gradient is
DTL(x) = DT J (x) − �|ω|. At the points x where DTL(x) < 0, holes are
introduced into the current domain.

5. LEVEL SET METHOD FOR SHAPE
OPTIMIZATION

Consider D ⊂ R
d a bounded domain in which all admissible shapes � are

included, i.e. � ⊂ D. Following the idea of Osher and Sethian [16], the
boundary of � is represented by means of a level set function ψ such that
ψ(x) < 0 ⇔ x ∈ �. The normal n to the shape � is recovered as ∇ψ/|∇ψ |
and the mean curvature H is given by div(∇ψ/|∇ψ |).

During the optimization process, the shape �(t) is going to evolve accord-
ing to a fictitious time parameter t > 0 which corresponds to descent stepping.
The evolution of the level set function is governed by the following Hamilton–
Jacobi transport equation [16]

∂ψ

∂t
+ V |∇ψ | = 0 in D, (4)

6
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where V (t, x) is the normal velocity of the shape’s boundary. The choice V is
based on the shape derivative computed in Theorem 1

L′(�)(θ) =
∫
∂�

v θ · n ds, (5)

where the integrand v(u, n,H) depends on the state u, the normal n and the
mean curvature H . The simplest choice is to take the steepest descent θ =
−vn. This yields a normal velocity for the shape’s boundary V = −v. Another
choice consists in smoothing the velocity field vn by applying the Neumann-
to-Dirichlet map to −vn (see e.g. [4, 7, 14]). The method described in detail
in [12] is used in all the numerical computations below.

The main point is that the Lagrangian evolution of the boundary ∂� is
replaced by the Eulerian solution of a transport equation in the whole fixed
domain D. Likewise the elasticity equations for the state u are extended to
the whole domain D by using the so-called “ersatz material” approach. The
Hamilton–Jacobi equation (4) is solved by an explicit upwind scheme (see e.g.
[18]) on a Cartesian grid with a time stepping satisfying a CFL condition. To
regularize the level set function (which may become too flat or too steep), it is
periodically reinitialized by solving another Hamilton–Jacobi equation which
admits, as a stationary solution, the signed distance to the initial interface [18].

6. OPTIMIZATION ALGORITHM

For the minimization problem (3) we propose an iterative coupling of the level
set method and of the topological gradient method. Both methods are gradient-
type algorithms, so our coupled method can be thought of as an alternate dir-
ections descent algorithm.

The level set method relies on the shape derivative L′(�)(θ) of Section 3,
while the topological gradient method is based on the topological derivative
DTL(x) of Section 4. These two types of derivative define independent descent
directions that we simply alternate as follows.

In a first step, the level set function ψ is advected according to the velocity
−v. Then, holes are introduced into the current domain � where the topolo-
gical derivative DTL(x) is minimum and negative.

In practice, it is better to perform more level set steps than topological gradi-
ent steps. Therefore, the main parameter of our coupled algorithm is an integer
nopt which is the number of gradient steps between two successive applications
of the topological gradient. Our proposed algorithm is structured as follows:

1. Initialization of the level set function ψ0 corresponding to an initial guess
�0 (usually the full working domain D).

2. Iteration until convergence, for k ≥ 0:

7



G. Allaire and F. Jouve

(a) Elasticity analysis. Computation of the state uk solving a problem
of linear elasticity on �k. This yields the shape derivative, the
velocity vk and the topological gradient.

(b) Shape gradient. If mod (k, ntop) < ntop, the current shape �k,
characterized by the level set function ψk, is deformed into a new
shape �k+1, characterized by ψk+1 which is the solution of the
Hamilton–Jacobi equation (4) after a time interval �tk with the
initial condition ψk and a velocity −vk. �tk is chosen such that
L(�k+1) ≤ L(�k).

(c) Topological gradient. If mod (k, ntop) = 0, nucleation step:
�k+1 is obtained by inserting new holes into �k according to the
topological gradient.

For details about the shape gradient step and the topological gradient step,
we refer to our previous works [2–4].

7. A NUMERICAL EXAMPLE IN 2-D

It is a variation of the classical cantilever, but its optimal solution seems to have
a more complex topology. It consists in a rectangular domain of dimensions
10 × 8 with a square hole whose boundaries are submitted to an homogeneous
Dirichlet boundary condition. The domain is meshed with a regular 150 ×
120 grid. Figure 1 shows the composite and penalized solutions obtained by
the homogenization method (see [1, 5, 6]). Since the composite solution is
a global optimum of the problem, it will be used as a reference. Figure 2
shows the solution obtained by the algorithm coupling shape and topological
sensitivity, starting from the full domain, with 1 step of topological gradient
every 10 iterations. Figure 4 shows different solutions obtained by the level set
algorithm (without topological gradient) for different numbers of initial holes,
ranging from 0 to 160.

The convergence history of Figure 6 gives some hints on the efficiency of
the level set method without topological gradient: first, it confirms that a “to-

Figure 1. Homogenization method: composite (left) and penalized (right) solutions.

8



Level Set Method and Topological Gradient

Figure 2. The initial configuration (full domain) and the solution obtained by the level set
method with topological gradient.

Figure 3. Convergence history of the homogenization method, the level set method with
topological gradient (full domain initialization), and the plain level set method with 4 different
initial states.

pologically poor” initialization cannot convergence to a good solution; second,
it shows that initializing with “many holes” is not a good idea too. The good
strategy lies in between, but it is generally not easy to find. The topological
gradient allows the convergence to a good solution, starting from the full do-
main, without the need of adjusting any tricky numerical parameters. Remark
that the solution computed from initialization 3 (22 holes) is also good, but it
has been reached after an history where it had to escape from many local min-
ima, using the tolerance of the algorithm to small increases of the objective
function.

8. A NUMERICAL EXAMPLE IN 3-D

We propose and test-case that have a very topologically complex solution. It is
defined by Figure 5 (left). The bottom face is submitted to a uniform Dirichlet
boundary condition.

The domain is meshed with 10976 hexaedral elements. The coupled
method, level set plus topological gradient every 5 iterations, has been com-
pared to the nominal level set method starting from two initial states (full do-

9



G. Allaire and F. Jouve

Figure 4. Four solutions obtained by the plain level set method (right) with four different
initializations (left): full domain, 12 holes, 22 holes and 160 holes.

main and 8 holes uniformly distributed). The 3 solutions obtained cannot be
distinguished on a picture. Figure 5 shows 3 views of the solution and Figure 6
confirms that the objective functions of the converged solutions are very close.

As suspected in [2], the topological gradient seems not to be as efficient and
useful in 3-d as it is in 2-d.

10
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Figure 5. Three different views of the optimal shape obtained for the problem defined on the
left.

Figure 6. Convergence history of the 3d problem for the plain level set method with two
different initializations, and the level set method with topological gradient.
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Abstract: This paper describes a parametric optimization technique for shape and topology
optimization. The proposed method is a generalization of the classical method
of level sets which are represented with discrete grids. In using radial basis
functions (RBFs), the proposed formulation projects the geometric motion of
the level sets of an implicit function onto its parametric representation. The res-
ulting method provides a set of new capabilities for general shape and topology
optimization, particularly treating it as a parameter problem with the RBF im-
plicit models. Numerical examples are presented in the paper, suggesting the
potential of the method.

Keywords: Shape and topology optimization, radial basis functions, level set method, para-
meter design.

1. INTRODUCTION

The finite element (FE) based strategy for structural topology optimization has
received wide attention and experienced considerable progress recently since
the seminal work of Bendsøe and Kikuchi [4]. A wide range of approaches
and techniques have been developed as reviewed in detail in [1, 5].

The method of implicit moving interface using the level set technique has
been an emerging scheme for shape and topology optimization [2, 11, 12]. The
level set method introduced by Osher and Sethian [8] is a simple and versatile
method for computing and analyzing the motion of an interface in two or three
dimensions. Since interfaces may easily develop sharp corners, break apart,
and merge together, the level set method has a wide range of applications, in-
cluding problems in fluid mechanics, combustion, solids modelling, computer
animation and image processing [9].
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Along with its benefits, the discrete representation also limits the utility of
the classical level set method. The level set function has no analytical form, and
the entire design domain must be discretized into a rectilinear grid for level set
processing, often through a distance transform. In applying the classical level
set method for structural topology optimization, the implementation requires
an appropriate choice of the upwind scheme, extension velocity and reinitial-
ization algorithm [9, 12]. Furthermore, there is no nucleation mechanism in
the conventional level set method, if the Hamilton–Jacobi equation is solved
under a strict condition for numerical stability [7, 10]. Indeed, new holes can-
not be created in the interior of a material region because the Hamilton–Jacobi
equation satisfies a maximum principle and reinitialization must be applied to
the level set function to ensure its regularity [7]. Although some attempts have
been made to incorporate the topological derivatives into the level set schemes
[7], it is shown to be difficult to combine the intrinsically discontinuous topolo-
gical derivatives with the continuous shape derivatives [13]. Hence, the numer-
ical considerations of discrete computation have severely limited the primary
advantages of the level set methods in solid optimization. Other attempts have
also been made to use an implicit function as a regularization method without
invoking the discrete level set system [3].

In this paper, we describe an extension of the level set methodology with
a parameterized implicit representation. The proposed scheme retains topolo-
gical benefits of the implicit representation of evolving surfaces while avoiding
the drawbacks of a grided spatial discretization. In other words, we can treat
shape and topology optimization as a parameter optimization problem. A para-
meterized implicit surface can be propagated under an arbitrary speed function.
The propagation occurs by changing the implicit’s parameters with the use of
a common search algorithm in conventional parameter optimization.

We employ the popular radial basis functions (RBFs) to provide a paramet-
erized implicit representation of shapes. The proposed RBF-level set method
is implemented in the framework of minimum compliance design that has been
extensively studied in the topology optimization field. Numerical examples are
given to illustrate the success of the method for 2D structures.

2. TOPOLOGY OPTIMIZATION WITH LEVEL SET
MODEL

In the level set framework, a surface is represented implicitly through a level
set function (x), which is Lipschitz-continuous, and the surface itself is the
zero isosurface or zero level set {x ∈ R

d |(x) = 0} (d = 2 or 3) [9]. In shape
and topology optimization of a solid, the solid structure is defined as
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(x) = 0 ∀ x ∈ ∂ � ∩D

(x) < 0 ∀ x ∈ �\∂�
(x) > 0 ∀ x ∈ (D\�)

(1)

where D ⊂ R
d is a fixed design domain in which all admissible shapes � (a

smooth bounded open set) are included, i.e., � ⊂ D.
With this implicit representation, the structural topology optimization pro-

cess operates on the implicit scalar function (x) defined in Equation (1)
[2, 12], often using a gradient method for the minimization of an object-
ive function J (). In the present study, only a relatively simple uncon-
strained minimum compliance design problem presented in [2] with a design-
independent load is considered, which can be expressed as

min:
(x)

J () =
∫
D

(ε(u))T Cε(u)H(−) d�+ �

∫
D

H(−) d�, (2)

where u is the displacement field, ε(u) the strain field, H() the Heaviside
step function of the implicit function (x), � a positive Lagrange multiplier,
and the volume V of the admissible design can be written as

V =
∫
D

H(−) d�. (3)

Given a local perturbation of the boundary, ẋ for x ∈ ∂�, of the admissible
domain �, the resulting change in the objective function J () gives rise to the
so-called shape derivative [2, 12], written as

dJ

d t
= −

∫
∂�

(
(ε(u))T Cε(u)− �

)
vn ds, (4)

where t is the artificial time, and vn the normal velocity representing the per-
turbation vn(x) = (∇) · ẋ for x ∈ ∂�.

Following the development in [8], the change in the surface of the solid as
a result of the normal velocity vn is captured by changing its underlying level
set function via:

∂

∂t
+ vn|∇| = 0. (5)

This is known as the Hamilton–Jacobi equation. Hence, moving the boundary
of the shape ((x) = 0) along the normal direction is equivalent to transporting
 by solving the Hamilton–Jacobi equation (5).

With the above shape derivative of Equation (4) and the time derivative of
(Equation 5), it is natural to define the normal velocity vn as a descent change
for the minimization of the objective function [2, 12], as

vn = −G = (ε(u))T Cε(u)− �. (6)
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Thus, by substituting the normal velocity vn of Equation (6) into Equation (5),
one obtain the level set propagation equation that, when integrated, defines
a moving boundary of the solid that evolves under the minimization of the
objective function [2, 12].

3. RBF-PARAMETERIZED IMPLICITS

In the conventional level set-based topology optimization, a general analytical
function for (t, x) is not known. Thus, it must be discretized for level set
processing, often through a distance transform. In an Eulerian approach, a
numerical procedure for solving the Hamilton–Jacobi PDE is indispensable.
This procedure requires appropriate choice of the upwind schemes, extension
velocities and reinitialization algorithms, which may limit the utility of the
level set method. Some of the limitations are discussed earlier. For example,
reinitialization prevents a level set function from nucleation of holes in the
interior of material regions [7, 10]. Another major limitation lies in the discrete
representation.

Therefore, a better method is to retain topological benefits of the implicit
representation of a level set model while avoiding the drawbacks of using its
discrete samples on a fixed grid or mesh. In the present study, we propose to
generalize the level set function (t, x) to include alternative implicit surface
representations which provide a free-form representation with parameteriza-
tion. To this end, a level set method using radial basis functions (RBFs) is
developed for structural topology optimization.

Radial basis functions are radially-symmetric functions centered at a partic-
ular point [6], or knot, which can be expressed as follows:

ϕi (x) = ϕ (‖x − xi‖) , xi ∈ D, (7)

where ‖ · ‖ denotes the Euclidean norm on R
d [6], and xi the position of the

knot. Only a single fixed function form ϕ : R
+ → R with ϕ(0) � 0 is used as

the basis to form a family of independent functions.
There is a large class of possible radial basis functions. Commonly used

RBFs include thin-plate splines, polyharmonic splines, Sobolev splines, Gaus-
sians, multiquadrics, compactly supported RBFs [6], and others. Among these
common functions, the multiquadric (MQ) spline appears to be the overall best
performing RBF, which can be written as

ϕi (x) =
√

‖x − xi‖2 + c2
i , (8)

where ci is the free shape parameter which is commonly assumed to be a con-
stant for all i in most applications [6].
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In the present RBF implicit modelling, MQ is used to define the scalar im-
plicit function (x) with N MQs centered at N knot positions:

(x) =
N∑
i=1

αiϕi (x)+ p (x) , (9)

where αi is the weight, or expansion coefficient, of the radial basis function
positioned at the i-th knot xi , and p (x) a first-degree polynomial to account
for the linear and constant portions of (x) and to ensure polynomial preci-
sion [6]. For three dimensional (3D) problems, p (x) is given by

p (x) = p0 + p1x + p2y + p3z (10)

in which p0, p1, p2 and p3 are the coefficients of the polynomial p (x). Be-
cause of the introduction of this polynomial, to ensure a unique solution, the
coefficients in Equation (9) must be subject to a set of orthogonality or side
constraints [6]:

N∑
i=1

αi = 0;
N∑
i=1

αixi = 0;
N∑
i=1

αiyi = 0;
N∑
i=1

αizi = 0. (11)

Thus, Equation (9) can be re-written in a vector form as

(x) = gT (x)α, (12)

where

g (x) = [
ϕ1(x) · · · ϕN(x) 1 x y z

]T ∈ R
(N+4)×1, (13)

α = [
α1 · · · αN p0 p1 p2 p3

]T ∈ R
N+4. (14)

4. RADIAL BASIS FUNCTION PROPAGATION

As aforementioned, in the level set-based topology optimization methods,
moving the boundary of the shape along a descent gradient direction to find
an optimal shape and topology is equivalent to transporting the scalar impli-
cit function (x) by solving the Hamilton–Jacobi equation (5) and thus the
optimal propagation of the front is performed by solving the Hamilton–Jacobi
PDE [2, 12]. In the present study with RBF implicit representation, it is as-
sumed that the space and time are separable and the time dependence of the
implicit function  is due to the generalized expansion coefficients α of the
RBFs in Equation (14). Then, the implicit function Equation (12) becomes
time dependent as follows:

 = (x, t) = gT (x)α(t). (15)
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Figure 1. An extension velocity field for the level set method.

Substituting Equation (15) into the Hamilton–Jacobi equation (5) yields

gT
dα

dt
+ vn|(∇φ)T α| = 0. (16)

To time advance the initial values α, a collocation method is introduced. In
the present Eulerian type approach, all the nodes of the fixed mesh are taken
as the fixed knots of the RBF interpolation for the implicit function (x). As
an extension, Equation (16) is then applied to each of these knots of the RBF
interpolation, rather than only the points at the front. The normal velocity vn
in Equation (16) is thus extended as v en to all these knots in the design domain
D. This is illustrated in Figure 1, where each of the grid point is considered as
a knot of the RBF.

According to Equation (6), a natural extension of the normal velocity can
be obtained if the strain field is defined over the entire design domain D by
assuming ε(u) = 0,u ∈ (D\�). Since both the strain energy density inside
the design domain and the constraint-related Lagrange multiplier are included,
this extension velocity is physically meaningful.

Using Euler’s method, an approximate solution to Equation (16) can be
found. It should be noted that the ODE may be rather stiff, since its coun-
terpart of the Hamilton–Jacobi PDE has a numerical stability condition known
as the Courant–Friedrichs–Lewy (CFL) condition [9]. A small time step is
advised. After obtaining the approximate solution at each time step, the time-
dependent shape and topology can be updated by using Equation (15). The
reader is referred to [14] for details.

5. PARAMETRIC SHAPE AND TOPOLOGY
OPTIMIZATION

We are further interested in the shape evolution of implicit surface represent-
ation by a parametric method. To this end, we consider the RBF level set
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function
(x(t),α(t)) = 0; (17)

as the solution x with a set of shape parameters α.
Assuming the shape changes through a velocity field vn(t), we can find the

shape evolution in the form of a parameter change directly from Equation (16)
as

vn = − 1

‖ ∇ ‖

(
N∑
i=1

ϕiα̇i + α̇0

)
. (18)

The resulting equation couples the changes in parameters α̇(t) with the speed
function vn(t) on the surface of the solid. Now, we can substitute Equation (18)
into Equation (4). The resulting equation couples the change in parameters
α̇ with the resulting change in the objective function of the optimization J .
Essentially, we have derived the parametric sensitivity of the objective function
with respect to the coefficients α of the RBF implicit surface representation:

∂J

∂α
=

[
∂J

∂α1
,
∂J

∂α2
, . . .

]T
, (19)

∂J

∂αi
=

∫
∂�

G
1

‖ ∇ ‖ϕi ds, i = 1, 2, . . . N, (20)

∂J

∂α0
=

∫
∂�

G
1

‖ ∇ ‖ ds, (21)

where G is given in Equation (6).
Therefore, we have transformed the general shape and topology optimiza-

tion problem into a parameter optimization problem. This would enable us to
use algorithms that are based on sensitivity analysis to derive a search strategy
in the parameter space. The costly grid discretization in the classical level set
method is thus avoided. Therefore, we may call the method presented here
parametric shape and topology optimization.

A standard search method is to use the parameter sensitivity to define a
search direction and a move step, such as the steepest descent method in math-
ematical programming. More elaborate techniques such as the method of mov-
ing asymptote (MMA) are also feasible.

6. NUMERICAL EXAMPLES OF A MICHELL TYPE
STRUCTURE

In this section, numerical examples in two dimensions are presented to illus-
trate the present RBF-level set method for structural topology optimization.
First, we show a Michell type example with the RBF propagation scheme dis-
cussed in Section 4. The Michell type structure, as shown in Figure 2, is loaded
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Figure 2. Definition of the minimum compliance design problem.

(a) Initial front and extension velocity (b) Final front and extension velocity

Figure 3. Front and extension velocity for the Michell type structure.

with a concentrated vertical force of P at the center of the bottom edge. The
basic parameters are assumed to be L = 4, H = 1, thickness t = 1.0, load
P = 1, E = 1 for solid material, E = 1 × 10−5 for void material, ν = 0.3,
and the fixed Lagrange multiplier � = 10. It is also assumed that the time step
size τ = 10−4 and the mesh size 80 × 20.

Figure 3 shows extension velocities at each knot and the front for the initial
and final designs. The final design is quite similar to a truss structure with
pin-like connection at some joints.

Next, we illustrate the parametric scheme discussed in Section 5. For this
scheme, we employ the inverse multi-quadric (IMQ) spline as the basis func-
tion, defined as

ϕi (x) = 1/
√

‖x − xi‖2 + c2
i , (22)

where ci = 0.05. The volume ratio is fixed at 0.4. The rest parameters remain
the same. For the parametric scheme, we use the method of moving asymptote
(MMA) that is papular for the topology optimization problem solutions.

The initial design and the corresponding level set function are shown Fig-
ure 4, while the final optimal solution and its corresponding level set function
are shown in Figure 5.

7. CONCLUSIONS

In this study, we focus on level set based methods for structural shape and topo-
logy optimization. Radial basis functions are used to define a general implicit
representation with weight coefficients as parameters. This enables level set
algorithms to avoid a costly discrete computational scheme and use a mathem-
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(a) Initial shape (b) Initial level set function

Figure 4. The initial design and level set function.

(a) Initial shape (b) Initial level set function

Figure 5. The final design and level set function.

atically more convenient parameter search technique instead. The formulation
applies to the general problem of shape and topology optimization with the
surface of the solid object evolving under a speed function. Numerical ex-
amples of 2D structures are given to show the success of the present method.
It is suggested that the introduction of the radial basis functions to the con-
ventional level set methods possesses promising potentials in parametric shape
and topology optimization.

Any serious application of the parametric optimization techniques with RBF
implicit surface representation described here requires careful numerical ana-
lysis for stability and convergence, and should be demonstrated on a wide vari-
ety of situations. In particular, the capability of hole nucleation needs thorough
analysis and verification. We plan to develop the depth of analysis required and
investigate general 3D applications.
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Abstract: This paper presents an intermediate approach between parametric shape optim-
ization and topology optimization. It is based on using the recent Level Set
description of the geometry and the novel eXtended Finite Element Method (X-
FEM). The method takes benefit of the fixed mesh work using X-FEM and of
the curves smoothness of the Level Set description. Design variables are shape
parameters of basic geometric features. The number of design variables of this
formulation is small whereas various global and local constraints can be con-
sidered. The Level Set description allows to modify the connectivity of the
structure as geometric features can merge or separate from each other. How-
ever no new entity can be introduced. A central problem that is investigated
here is the sensitivity analysis and the way it can be carried out efficiently. Nu-
merical applications revisit the classical elliptical hole benchmark from shape
optimization.

Keywords: Shape optimization, topology optimization, X-FEM, level set.

1. INTRODUCTION

Topology optimization has experienced an incredible soar since the seminal
work of Bendsøe and Kikuchi [2] and is now available within several com-
mercial packages and finite element codes. It is used with great success in
industrial applications. Practically, one major advantage of the optimal ma-
terial distribution formulation is to be able to work on a fixed regular mesh.
The drawback is that this formulation comes to very large scale optimization
problems, so that one generally considers very simple design problems as the
minimum compliance problem with a single volume constraint. Introducing
local constraints can lead to very huge problems difficult to handle, whereas
controlling geometrical constraints, which are mainly related to manufacturing
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considerations, requires some sophistications. Finally the optimal structure
picture needs to be interpreted to construct a parametric CAD model.

Meanwhile, shape optimization, which had received attention since the be-
ginning of the eighties, has been quite unsuccessful in industrial applications.
However, shape optimization of internal and external boundaries is of great
interest to improve the detailed design of structures against many criteria as
restricted displacements, various kinds of stress criteria, buckling, etc. The
shape optimization introduces a few design variables since the design problem
is formulated on the parameterized CAD model level. The major difficulty is
related to the mesh management problems coming from the large shape modi-
fications. Mesh distorsions and Finite Element errors can be reduced using
remeshing between two iterations and mesh adaptation tools. However a ma-
jor technical problem stems also from the sensitivity analysis that requires the
calculation of the so-called velocity field. It turns out that shape optimization
remains generally quite fragile and delicate to use in industrial context.

In order to circumvent the technical difficulties of the moving mesh prob-
lems, a couple of researches have tried to formulate shape optimization with
fixed mesh analyses using fictitious domains as in [5], based on fixed grid fi-
nite elements in [7] or more recently using projection methods as in [9]. The
present work relies on the novel eXtended Finite Element Method (X-FEM)
that has been proposed as an alternative to remeshing methods (see [8] or
[3] for instance). The X-FEM method is naturally associated with the Level
Set [11] description of the geometry to provide a very efficient treatment of dif-
ficult problems involving discontinuities and propagations. Up to now the X-
FEM method has been mostly developed for crack propagation problems [8],
but the potential interest of the X-FEM and the level set description for other
problems like topology optimization was identified very early in Belytschko et
al. [4], Wang et al. [14] or Allaire et al. [1].

The authors see the X-FEM and the Level Set description as an elegant way
to fill the gap between topology and shape optimization. The method can be
qualified as generalized shape optimization as it has smooth boundary descrip-
tions while allowing topology modifications as holes can merge and disap-
pear. X-FEM enables working on a fixed mesh, as in topology optimization,
circumventing the technical difficulties of shape optimization. The structural
shape description uses basic level set features (circles, rectangles, etc.) that
can be freely combined to generate any shapes. The design variables are para-
meters of the Level Set features, while constraints can, in principle, be either
global (compliance, volume) or local (stress) responses as in shape optimiza-
tion. A key issue of the problem is the sensitivity analysis. A semi analytical
approach has been developed. The work presents clearly validated solutions
and still open questions and difficulties. For the numerical applications a com-
plete solution of shape optimization using Level Set description and X-FEM
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has been implemented in the object oriented software, OOFELIE (Open Object
Finite Element Lead by Interactive User) [10].

The layout of the paper is thus the following. The Extended Finite Element
Method and the Level Set representation are reminded in Sections 2 and 3. Sec-
tion 4 states the generalized shape optimization problem with X-FEM and the
Level Set description. Sensitivity analysis is addressed in Section 5. Finally,
in Section 6 an academic applications of shape optimization is reinvestigated
to illustrate the proposed extended finite elements and their application to gen-
eralized shape optimization.

2. THE EXTENDED FINITE ELEMENT METHOD

The eXtended Finite Element Method [3, 8] is a recent method that has been
firstly developed for the simulation and the analysis of structures presenting
moving boundaries. The main strength of this method is its ability to include
discontinuities inside the finite elements. Hence, this method enables to in-
clude geometric boundaries, material or phase changes that are not coincident
with the mesh.

2.1 The Basis of the Method

In order to allow any types of discontinuities inside the elements and therefore
to be able to represent discontinuities in the physics fields, it is necessary to
add special shape functions to the finite element approximation. For example,
in the case of cracked structures, the displacement field is discontinuous and
to model the discontinuity, one has to add discontinuous shape functions. The
classical finite element approximation used is then extended to embed the dis-
continuous shape function as in the following equation:

u(x) =
∑
i

uiNi(x)+
∑
j

ajNj(x)H(x), (1)

where Ni(x) are the classical shape functions associated to degrees of free-
dom ui . The Nj (x)H (x) are the discontinuous shape functions constructed by
multiplying a classical Nj (x) shape function with a Heaviside function H(x)
(presenting a switch value where the discontinuity lies). These extended shape
functions are supported only by the enriched (extended) degrees of freedom aj .
Note that, usually, only the elements near the discontinuity support extended
shape functions whereas the other elements remain unchanged. The modific-
ation of the displacement field approximation does not introduce a new form
of the discretised finite element equilibrium equation but leads to an enlarged
problem to solve (see [3] for details):

K · q = g ⇔
[
Kuu Kua

Kau Kaa

] [
u

a

]
=

[
f ext
u

f ext
a

]
. (2)
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As the elements can now present discontinuous shape functions, the numer-
ical integration scheme has to be modified in order to take care of the dis-
continuity. In our implementation, the elements embedding a singularity are
divided into sub-triangular elements aligned with this discontinuity over which
an integration is processed.

2.2 Representing Holes

The modeling of material-void interfaces with X-FEM [12] is slightly different
from the cracked structure case. For void inclusions and holes, the displace-
ment field is approximated by:

u(x) =
∑
i

uiNi(x)V (x), (3)

where V (x) takes value ‘1’ if the node lies inside the material and ‘0’ other-
wise. The elements lying outside the material are removed from the system of
equations, whereas the partially filled elements are integrated using the X-FEM
integration procedure over solid sub-domain. Modeling holes with the X-FEM
is a very appealing method for the shape optimization but also for the topo-
logy optimization as no remeshing is needed and no approximation is done on
the nature of the voids in opposition to the power penalization of intermediate
densities (SIMP) method used in topology optimization.

3. THE LEVEL SET DESCRIPTION

The explicit representation of the structural shape of parametric CAD repres-
entation forbids deep boundary or topological changes such as creation or fu-
sion of holes. This limitation is one of the main reasons of the low perform-
ance generally associated to the shape optimization. Conversely, the Level Set
method developed by Sethian [11] which consists of representing the boundary
of the structure with an implicit method allows this kind of deep changes.

The Level Set method is a numerical technique first developed to track mov-
ing interfaces. It is based upon the idea of representing implicitly the interfaces
as a Level Set curve of a higher dimension function ψ(x, t). The boundaries of
the structure is then conventionally represented by the zero level, i.e. ψ(x, t)=0
of this function ψ , whereas the filled region is attached to the positive part of
the ψ function. In practice, this function is approximated on a fixed mesh by a
discrete function which is usually the signed distance function to the curve �:

ψ(x, t) = ± min
x�∈�(t)

‖x − x�‖ . (4)

The sign is positive (negative) if x is inside (outside) the boundary defined
by �(t). Applied to the X-FEM framework, the Level Set is defined on the
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structural mesh and a geometrical degree of freedom representing its Level Set
function value is associated at each finite element node. The Level Set is then
interpolated on the whole design domain with the classical shape function of
the finite element approximation:

ψ(x, t) =
∑
i

ψiNi(x). (5)

The combination of different level sets is also one of the appealing character-
istic of this method. This property allows easy treatment of merging interfaces
and connectivity modifications.

4. PROBLEM FORMULATION

The formulation of the optimization problem is similar to a shape optimization
problem, but its solution is greatly simplified thanks to the use of the X-FEM
and Level Set description.

The geometry and the material layout are specified using Level Sets repres-
entations. The user has a library of basic geometric features (in Level Sets)
that can be combined to create almost any structural geometry. The available
features are circles, ellipsis, squares, triangles, etc. The design variables are
chosen among the geometric parameters of these features.

The optimization problem aims at finding the best shape to minimize a given
objective function while satisfying mechanical and geometrical design restric-
tions. The mechanical constraints can either be global responses (e.g. com-
pliance) or local ones as displacements or stress constraints. However, in this
preliminary study only static criteria are available.

The number of design variables is generally small as in shape optimization.
However the number of constraints may be large if a lot of local stress restric-
tions, e.g. stress constraints are considered. Nonetheless, large scale problems
as in topology optimization are avoided.

The design problem is stated as a general constrained optimization problem:

min
x

g0(x)

s.t.: gj (x) ≤ gmax
j j = 1 . . . m

xi ≤ xi ≤ xi i = 1 . . . n.

(6)

The solution to this problem is carried out using the so-called sequential convex
programming. At each iteration, the X-FEM analysis problem is solved and a
sensitivity analysis is performed. The solution of the optimization problem is
then found by using a CONvex LINearization, CONLIN [6]. The new design
point is evaluated and if necessary the procedure is repeated until convergence.

Because of the X-FEM, the geometry has not to coincide with the mesh and
the generalized shape optimization problem is carried out on a fixed mesh. This
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circumvents the mesh perturbation problems of classical shape optimization.
Sensitivity analysis does not require anymore the velocity field. The present
formulation is then, up to a certain point, simpler. However, some technical
difficulties can be encountered if a finite difference or a semi-analytical scheme
is used for sensitivity analysis as explained in the next section. Basically, the
problem is that the perturbation must not change the number of degrees of
freedom of the X-FEM approximation.

The Level Set approach is very convenient to modify the geometry because
the level sets (and so the holes) can penetrate each other or disappear. Creation
of new holes is more problematic since it leads to a non smooth problem. To-
pological derivatives have then to be used to treat rigorously the problem. This
capability is not yet implemented in the present work.

5. THE SENSITIVITY ANALYSIS METHOD

As in classical shape optimization, the sensitivity analysis of mechanical re-
sponses (such as compliance, displacement, stress . . .) is carried out using a
semi-analytic approach. In this approach the derivatives of stiffness matrix
and load vectors are calculated by finite differences after perturbation of the
level set parameter by δx:

∂K
∂x

� K(x + δx)− K(x)
δx

and
∂f
∂x

� f(x + δx)− f(x)
δx

. (7)

In the classical shape optimization, the computing complexity of the stiff-
ness matrix sensitivity is due to the modifications of the mesh associated to
the perturbation δx and to the velocity field calculation. In the present X-FEM
based approach, one has not to bother with the mesh perturbations as one works
on a fixed grid. However, this method exhibits a different drawback with re-
spect to the general shape optimization as the number of elements may vary.
The critical situation happens (see Figure 1) when a boundary is very close to
a node. Thus, during the perturbation δx of the level set, new elements, pre-
viously empty, could become partly filled with material and then appear into
the formulation. Thus the number of degrees of freedom would change and
the dimension of the stiffness matrix would be modified between the level set
perturbation.

The strategy that is implemented presently to circumvent the difficulty is
the following. As one has only the displacement (ui) for the elements that
are present in the reference configuration, only these elements are taken into
account while the contributions coming from the new partly filled elements are
ignored. Hence, no new elements are introduced and the size of the stiffness
matrix remains unchanged.

This strategy obviously involves an error because it ignores the contribu-
tions related to new elements. However, practically the contribution of these
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Figure 1. Sensitivity difficulty with semi-analytic approach.

elements is so small that the neglected contribution does not alter the preci-
sion of the sensitivity. The quality of the approximation is illustrated in the
application section with the elliptical hole problem.

Of course the ultimate solution to the problem should resort to a fully ana-
lytical sensitivity of the stiffness matrix, but this would be rather restrictive for
industrial applications. On-going work is devoted to investigate two kinds of
other strategies to reduce the error of the semi-analytic approach:

(1) One can keep a narrow band (boundary layer) of elements with very
soft mechanical properties around the level set ψ = 0 in order to prevent the
variation of the total number of degrees of freedom.

(2) One could define a tolerance zone around the Level Set. If the discon-
tinuity in an element lies inside this zone, add the connected elements to the
set of cut ones.

These two alternative methods have the advantage of keeping the number of
degrees of freedom constant and then they do not create or remove elements
during the perturbation step. Hence, the computation of the sensitivity would
lead to a more accurate result as all elements are taken into account in the per-
turbated stiffness matrix. However, the presence of these elements will prob-
ably introduce a dependency upon the mechanical properties associated to the
narrow softening elements band like in topology optimization with the power
p coefficient in the SIMP law. Moreover, the use of this two methods does not
take fully advantage of the X-FEM as we re-introduce an approximation of the
void as a weak material.
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6. APPLICATIONS

6.1 Implementation

The X-FEM method and its Level Set description have been implemented in
an object oriented (C++) multiphysics finite element code, OOFELIE that is
commercialized by Open Engineering [10].

In OOFELIE, any mechanical result can be chosen as objective functions
and constraints that is: compliance and potential energy, all stress components,
displacements and geometric results. However in this study, solely compliance
minimization is used. Implementation of the X-FEM method is available in
2-D problems with a library of both quadrangle and triangle elements. The
CONLIN optimizer by Fleury [6] has also been coupled in the OOFELIE en-
vironment and an optimization framework has been created.

6.2 Plate with an Elliptical Hole

The plate with a hole is a classical benchmark from shape optimization. To
remind the reader, a large plate with a hole in the middle is subjected to a
biaxial stress field. The goal of the optimization problem is to find the optimal
shape to minimize the compliance of the structure with a constraint on the total
volume of the hole. From the analytical solution, we know that the solution is
an elliptical hole aligned with the principal stresses. Figure 2 left shows the
quarter of the initial design domain, an elliptic hole with a 45◦ orientation.

Here the particular values are considered. The dimensions of the plate are
2 × 2 × 1 m. The domain is covered with a transfinite mesh with 30 nodes
on each side. The applied biaxial stress field is σx=2σ0 and σy=σ0 and the
material properties associated are: Young modulus E = 1 N/m2, Poisson’s

Figure 2. Plate with a hole.
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Table 1. Validation of semi-analytical sensitivity analysis approximation.

Design variables Finite differences Semi-analytical approach Relative error (%)

a = 0.6 3698.0000 3691.3344 0, 1802
θ = π/4 478.0000 477.0641 0.1957

a = 0.6 783.8000 781.3920 0.3072
θ = 0 11.6239 11.6235 0.0029

ration ν = 0.3. The plane stress state is assumed. The variables are the angle
θ and the long axis a.

Three iterations with CONLIN optimizer are necessary to come to the solu-
tion, an ellipsis aligned with the principle stresses (see Figure 2(b)).

Let us remark the discretization of the geometry using the level set. The
boundaries are represented using the linear finite element shape functions, so
that the boundary is approximated using piecewise linear segments. This can
lead to discretization errors of the geometry as noted in [13].

The elliptical hole serves also to validate the approximated semi-analytical
sensitivity analysis that has been proposed in Section 5. Table 1 gives the
sensitivities of compliance calculated by finite differences and semi-analytical
approach for different combination of the design variables a and θ . The results
were obtained with a relative perturbation of the design variables of δ = 10−4.
The results show the quality of the proposed semi-analytical approximation.

7. CONCLUSION

An intermediate approach between shape and topology optimization has been
developed using extended finite elements and Level Set description. The
method combines the advantage of the fixed mesh approach of topology op-
timization and the smooth curve description of shape optimization. Obtained
results show that this new approach is promising and deserve further efforts.

The investigation of a semi-analytic sensitivity analysis with X-FEM and
Level Set is an original contribution of the paper. The problem of elements
becoming partially filled has been identified and a first strategy to circumvent
the problem has been validated. On-going work explores other alternative ap-
proaches.

The solution of 2-D problems is presently available. Future work is de-
voted to attack 3-D problems, dynamic problems, and multiphysic (electro-
mechanical) problems.
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Abstract: Conventional three-dimensional isoparametric elements are susceptible to prob-
lems of locking when used to model plate/shell geometries or when the meshes
are distorted etc. Hybrid elements that are based on a two-field variational for-
mulation are immune to most of these problems, and hence can be used to effi-
ciently model both “chunky” three-dimensional and plate/shell type structures.
Thus, only one type of element can be used to model “all” types of structures,
and also allows us to use a standard dual algorithm for carrying out the topology
optimization of the structure. We also address the issue of manufacturability of
the designs.

Keywords: Dual algorithm, three-dimensional structures, hybrid elements.

1. INTRODUCTION

Topology optimization, which involves distributing a given amount of material
in a pattern of solids and voids so as to optimize a given performance func-
tional, has been extensively used to find optimal designs of two-dimensional
structures, and in recent times, also of three-dimensional structures (see, e.g.,
[1] and [2]). Fernandes et al. [3] extend the work of Haber et al. [4] to the
three-dimensional case, by introducing microstructure to the material model,
and then penalizing the microstructure to generate solid-void designs. Similar
to the approach introduced in [4], they introduce a constraint on the perimeter
both to avoid “checkerboard” instabilities, and to make the problem well-
posed. Borrvall et al. [5] use a regularized penalty in place of the perimeter
constraint to generate solid-void designs that are free of checkerboard instabil-
ities.

Beckers [6, 7] introduced the use of dual algorithms for carrying out discrete
variable topology optimization. Dual algorithms are ideally suited for this pur-
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pose since they work in the space of Lagrange multipliers associated with the
constraints, and typically the number of constraints is far lesser compared to
the number of design variables. In addition, they work with discrete design
variables, so that solid-void topologies can be generated directly with no need
for penalization of “intermediate” densities. One of the main disadvantages of
the methodology followed in [3, 4] (as noted by the Fernandes et al. [3] in
their “Conclusions” section) is the high sensitivity of their algorithm to pen-
alization parameters associated with the intermediate density penalization and
perimeter functions. In fact, a lot of trial and error can be involved before
the “right” parameters are identified. In contrast, the use of a dual algorithm
completely bypasses the use of such parameters.

In many practical topology optimization problems, one has thin shell-type
structures that are connected to “chunky” three-dimensional objects. If one
uses isoparametric brick elements to model the entire structure, then, to avoid
locking, one would need to use an extremely refined mesh, which can be pro-
hibitively expensive. On the other hand, if one uses shell elements to model
the thin part and brick elements to model the chunky part, then one needs
transition elements to connect the brick and shell elements that are used to
model the structure. This makes the topology design algorithm also complic-
ated since brick elements have only translational, while shell elements have
both translational and rotational degrees of freedom. An alternative is to use
hybrid elements, where the stresses are interpolated independently of the dis-
placements, thus resulting in high accuracy, and in addition, also use the same
data input structure as conventional isoparametric elements.

One other issue that we address in this work is that of manufacturability.
The optimal topologies in the three-dimensional case that arise from, say, a
straight-forward extension of the strategy proposed in [8, 9] for the compli-
ance optimization problem, will, in general, have cavities that are enclosed,
making them difficult to manufacture. We propose a modified version that
links design variables along a user-specified direction, so that only through
holes are allowed in the resulting structure; we shall refer to such a design as a
“2.5D” structure since the geometry and loading are as in a three-dimensional
problem, but the resulting topologies are two-dimensional, and can be manu-
factured using a process such as extrusion. Other strategies to make the designs
manufacturable are discussed, in, e.g., [10].

2. HYBRID ELEMENT FORMULATION AND
SENSITIVITY ANALYSIS

We shall use the 27-node hybrid brick element that has been formulated and
discussed in detail in [11]. Let u, εc, τ c, C, b and t̄ denote the displacement,
engineering strain, stress and constitutive matrix, and the prescribed body
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force and traction field acting over part of the surface Γt . The two-field vari-
ational formulation is obtained by enforcing the equilibrium equations, traction
boundary condition and the strain-displacement relation in a weak sense.

Let the displacement and stress fields be interpolated as u = Nû and τ c =
P β̂. It can be shown that the finite element system of equations is given by

Kû = f̂ , (1)

where, with H = ∫
Ω

P tC−1P dΩ, G = ∫
Ω

P tB dΩ,

K = GtH−1G. (2)

Once the displacement field is found using Equation (1), the stress and strain
fields in an element are recovered using the relations

τ (e)
c = P (e)β̂ (e) = P (e)H

−1
(e)G(e)û(e), ε(e)c = C−1τ (e)

c . (3)

As mentioned in the Introduction, the key point in the hybrid formulation is the
choice of the stress interpolation matrix P (e), and this has been discussed in
detail in [11]. We note in the following section that the sensitivity expressions
also remain unaffected.

3. FORMULATION OF THE 3D TOPOLOGY
OPTIMIZATION PROBLEM

Following [8, 9], the dual formulation corresponding to the optimization prob-
lem of minimizing the compliance subject to the volume and perimeter con-
straints can be stated as:

Find the optimum values of the dual variables associated with the volume and
perimeter constraints, λ∗ ≡ (λ∗

1, λ
∗
2), that solve

min
λ
L(λ), λ1, λ2 ≥ 0

where

L(λ) = max
ρ

min
u
�(u, ρ)− λ1

(∫
Ω

ρ dΩ − V̄

)
− λ2

(
P − P̄

)
.

In the above equation, � denotes the potential energy given by

� = 1

2

∫
Ω

ε tcτ c dΩ − û
t
f̂ = 1

2
ûKû − û

t
f̂ , (4)

which is identical to the expression in an isoparametric formulation.
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The densities are updated using the condition

ρi = ρmax if
(ρ0

i )
2

ρmaxρmin

∫
Ωi

∂W

∂ρi

∣∣∣∣
ρ0
i

dΩ > λ1Vi + λ2
∂P

∂ρi

∣∣∣∣
ρ0
i

,

ρi = ρmin if
(ρ0

i )
2

ρmaxρmin

∫
Ωi

∂W

∂ρi

∣∣∣∣
ρ0
i

dΩ < λVi + λ2
∂P

∂ρi

∣∣∣∣
ρ0
i

,

(5)

where ρ0 is the density field at the current iteration, and W = εtcτ c/2 is the
strain energy density function.

Using the fact that the density variables ρi are discontinuous across element
boundaries, the strain energy sensitivity expression required in the above for-
mulae can be shown to be∫

Ωi

∂W

∂ρi
dΩ =

∫
Ωi

εt
∂C

∂ρi
ε dΩ, (6)

which is the same expression as in the standard displacement-based formula-
tion! To avoid checkerboarding and other instabilities, a smoothing strategy
similar to that described in [8] is used.

To generate “2.5D” topologies, instead of using Equation (5) for each ele-
ment, we use it for each group of elements, so that in Equation (6), i now varies
over the number of groups of elements, Ωi is taken to be the domain occupied
by the i-th group, and Vi denotes the total volume occupied by the i-th group
of elements. Smoothing is carried out in the plane perpendicular to the linking
direction.

4. NUMERICAL EXAMPLES

Numerical examples are presented in this section to demonstrate the 3D and
2.5D topologies, and to also demonstrate the effect of the perimeter constraint.
The first two examples are the same as those in [3]; the PT75β element is used
to generate all the designs except in one case, where the PT18β element [12]
is used. We use the starting strategy that was labeled as Start-II in [9] in all the
examples.

Example 1: Cantilever beam example
The candidate region and loading conditions are shown in Figure 1a. The ap-
plied load is F = 10 kN, and the Young modulus and Poisson ratio are 200 GPa
and 0.3. The specified volume fraction is 40%. A mesh of 16 × 10 × 4 cubical
elements is used to model half the structure (due to symmetry). A move limit
of 0.002 is used to gradually reduce the volume to the desired target volume.
The number of iterations are approximately 200 and 50 for obtaining the 3D
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(a)

(b)

(c)

Figure 1. Candidate domain and loading for the (a) cantilever beam (b) MBB beam (c) conoid
shell examples.

and 2.5D topologies, respectively, which are shown in Figure 2. As expected,
the compliance of the 2.5D design is higher than that of the 3D design.
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Figure 2. Optimal 3D and 2.5D topologies for the cantilever example (move limit=0.002),
V̄ = 40%: (a) J = 0.051 N-m; (b) J = 0.0724 N-m.

Example 2: MBB example
The purpose of this example is to show how 2.5D designs are a natural choice
from a manufacturability viewpoint when the thickness of the candidate do-
main is small compared to the other two dimensions, and also to show the con-
trol over the 2.5D topologies that can be obtained by varying the perimeter. The
candidate region and loading conditions are shown in Figure 1b. The point load
is applied at the center of the top surface, and has a magnitude of F = 180 kN,
and the Young modulus and Poisson ratio are 210 GPa and 0.3. The specified
volume fraction with respect to the total initial volume of the entire structure is
60%. The elements on the outer periphery are constrained to be solid. Meshes
of 25 × 10 × 3 (coarse mesh, PT75β elements) and 50 × 20 × 6 (fine mesh,
PT18β elements) cubical elements are used to model half the structure. The
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Figure 3. Optimal 2.5D topologies for the MBB example (move limit=0.024), V̄ = 60%: (a)
P̄ = 44, P = 45.36, J = 22.2 N-m (b) P̄ = 47, P = 46.64, J = 22.8 N-m (c) P̄ = 49,
P = 49.3, J = 18.35 N-m (d) P̄ = 49, P = 49.3, J = 17.6 N-m (PT18β) (e) P̄ = ∞,
P = 54.9, J = 18.7 N-m.

move limit used is 0.024. The fine mesh has been used to get the design in
Figure 3d, while the coarse mesh has been used to get the remaining designs
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in that figure. The number of iterations are (approximately) 100, 100, 90, 120
and 100, respectively. The specified perimeter for cases (c) and (d) are the
same, and in accordance with the theory, we obtain almost identical topologies
(although, as is well known, such agreement may not always be obtained, due
to the presence of lots of local optima in the topology design problem). Note

• the absence of instabilities, and the very good agreement between P̄ and
P in all the cases.

• that there is no trial and error involved in adjusting any of the para-
meters in the formulation in order to satisfy the volume and perimeter
constraints.

• the reduction in the compliances of the optimal designs as the perimeter
is increased on a given mesh.

• that, as a result of carrying out linking of the design variables along
the thickness direction, all the designs can be easily manufactured by a
process such as extrusion.

Example 3: Conoid shell
This example was attempted in [13] using shell elements and an optimality
criterion method, and will be solved here using the PT75β elements and a
dual algorithm. A shell of thickness t = 0.1 defined by the surface z(x, y) =
y
(
1 − x2/104

)
/2 is subjected to a central point load F = 10−4 as shown in

Figure 1c. The straight edge is clamped, while both ends of the curved edge
are supported by a hinge. The problem data is E = 2.1 × 105, ν = 0.3,
and the specified volume fraction is 60%. A move limit of 2.785 was used
and convergence was achieved in 160 iterations. The optimal designs obtained
using (a) shell elements and an optimality criterion method, and (b) PT75β
elements and a dual algorithm (without smoothing), are shown in Figure 4.
As can be seen, in spite of using completely different types of elements and
optimization strategies, the topologies obtained are almost identical.

5. CONCLUSIONS

The use of hybrid elements allows us to analyze both “chunky” three-
dimensional and shell type structures accurately, and hence allows us to use
a unified dual algorithm. Quite fortuitously, it turns out that to switch from a
dual optimization strategy based on standard displacement-based elements to
one based on hybrid elements, one needs only to

1. Compute the stiffness matrix using Equation (2), and

2. Recover the stresses and strains using Equations (3),
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(a)

(b)

Figure 4. Conoid shell example V̄ = 60%: Topologies obtained using (a) shell elements and
an optimality criterion method [13]; (b) PT75β hybrid elements and a dual algorithm.

since all other aspects of the optimization algorithm such as compliance or
strain energy computation, sensitivity analysis etc. are identical.

Since enclosed holes in optimal three-dimensional topologies can be dif-
ficult to manufacture, we have also suggested a method to obtain two-
dimensional topologies even though the domain and loading are three-
dimensional. This method links design variables along a user-defined linking
direction generating a uniform topology along this direction, thus making it
easy to manufacture the resultant topologies using a process such as stamping
or extrusion. In case, one wishes to obtain a fully three-dimensional optimal
topology, the linking is deactivated.
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TOPOLOGY OPTIMIZATION OF VIBRATING
BI-MATERIAL STRUCTURES WITH RESPECT
TO SOUND RADIATION

Niels Olhoff and Jianbin Du
Institute of Mechanical Engineering, Aalborg University, DK-9220 Aalborg East, Denmark

Abstract: This paper deals with topological design optimization of vibrating bi-material
elastic structures of given volume, domain and boundary conditions, with the
objective of minimizing the sound power radiated from the structural surfaces
into a surrounding acoustic medium. The structural vibrations are excited by a
time-harmonic mechanical loading with prescribed forcing frequency and amp-
litude, and structural damping is not considered. It is assumed that air is the
acoustic medium and that a feedback coupling between the acoustic medium and
the structure can be neglected. Certain conditions are assumed, where the sound
power radiated from the structural surface can be estimated by using a simpli-
fied approach instead of solving the Helmholz integral equation. This implies
that the computational cost of the structural-acoustical analysis can be consider-
ably reduced. Numerical results are presented for plate and pipe-like structures
with different sets of boundary conditions.

Keywords: Topology design, bi-material structures, sound power radiation, time-harmonic
loading, structural-acoustical analysis.

1. INTRODUCTION

Although problems of passive design against vibration and noise were already
undertaken many years ago, only during the last decade such problems have
benefited from the novel methodology of topology optimization [1–4]. Up
to now, works on topological design optimization of vibrating elastic struc-
tures have been mainly focused on (i) maximization of intrinsic properties of
the structures, like fundamental and higher order eigenfrequencies, eigenfre-
quency gaps, and phononic band gaps [5–9], (ii) minimization of dynamic
compliance [9–12], and (iii) optimization of structural response including wave
guidance [7, 13].

Unlike the aforementioned works, the present paper takes into account the
interaction between the structure and its surrounding acoustic medium, and re-
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duces the sound radiation level (noise) of the structure by directly minimizing
the total sound power flow from the structural surface. A bi-material model is
employed in the topology optimization. This implies that the boundary shape
of the structure is not changed during the design, which leads to a great sim-
plification of the sensitivity analysis since the calculation associated with the
shape gradients of the acoustic pressure loading is avoided.

2. MINIMIZATION OF SOUND POWER RADIATION
USING TOPOLOGY OPTIMIZATION

In this section, we consider topological design optimization of a vibrating
bi-material elastic structure with the objective of minimizing the total sound
power (energy flux) � radiated from the structural surface S into a surround-
ing acoustic medium. The structural vibrations are assumed to be excited by
a time-harmonic mechanical surface loading vector p(t) = Pe−iωpt with pre-
scribed forcing frequency ωp and amplitude vector P on S or part thereof. As-
suming that damping can be neglected, the corresponding structural displace-
ment response vector can be stated as Ue−iωpt , and the problem of minimizing
� can be formulated as follows:

min
ρe

{
� =

∫
S

IndS =
∫
S

1

2
Re(pf v

∗
n)dS

}
subject to (K − ω2

pM)U = P + LPf , (1)

CαPf = GU − HPf ,

NE∑
e=1

ρeVe − V ∗1 ≤ 0, V ∗1 = αV0,

0 < ρ ≤ ρe ≤ 1, e = 1, . . . , NE.

Here, the symbols pf and v∗
n in the expression for � represent the acoustic

pressure and the complex conjugate of the normal velocity of the structural
surface, and Pf denotes the corresponding vector of amplitudes of the acous-
tic pressure on the structural surface S. The symbol L represents the fluid-
structural coupling matrix and the symbols K and M denote theN-dimensional
structural stiffness and mass matrices, where N is the number of DOFs. The
expression K − ω2

pM in (1) represents the dynamic stiffness matrix which we
may denote by KD. The matrices G, H and Cα can be generated by the discret-
ized Helmholtz integral and calculation of the spatial angle along the structural
surface [14]. We consider a bi-material design problem where NE is the total
number of finite elements and the symbol ρe denotes the volumetric density of
the stiffer material in element e and plays the role of the design variable in the
problem [9]. The symbol α denotes the fraction of the given volume V ∗1 of the
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stiffer material (material *1) and is given by V ∗1/V0, where V0 is the volume
of the admissible design domain. The remaining part of the total volume V0 is
occupied by a softer material (material *2) as explained in Section 2.3.

2.1 Calculation of Sound Power Flow from the Surface of
a Vibrating Structure

The first two constraint equations in (1) denote the structural-acoustic coup-
ling equations (without incoming acoustic waves) and imply quite complicated
computations since these equations must be solved in each iterative step of the
solution procedure. For simplification, one may consider a special case where
the vibration frequency of the structure has a sufficiently high value. In this
case, the radiation impedance at the boundary of the structure is approximately
the same as the characteristic impedance of the acoustic medium [15, 16]. This
implies that the acoustic pressure pf and normal velocity vn of the structural
surface approximately satisfy the following linear relationship:

pf = γf cvn, (2)

where c is the sound speed and γf is the specific mass (mass density) of the
acoustic medium. Tests performed by Sorokin in [17] for simple beam and
sphere examples show that the accuracy of (2) depends on not only the fre-
quency level but also the size of the structure and the shape of the vibration
mode of the structure. Generally speaking, the accuracy of the approxima-
tion increases with increasing values of the frequency, but may decrease with
a change of the vibration mode. Nevertheless, the tests also show that even
for lower frequencies, (2) may still yield a good approximation of the distri-
bution (up to a multiplying factor) of the sound pressure along the structural
surface. This is actually useful for our problem of optimizing the global sound
radiation, because even a scaled distribution of the sound pressure along the
structural surface can yield a topology design which is close to the optimum
one.

If we further assume weak coupling, i.e., ignore the acoustic pressure in the
structural equation, the first constraint in (1) will be simplified to the equation
of a vibrating structure subjected only to the external mechanical loading P,

(K − ω2
pM)U = P. (3)

With the above simplification, the first two constraint equations in problem
(1) may be replaced by Equations (2) and (3), and the sound power flow from
the structural surface can be calculated as follows:

� = 1

2
γf cω

2
pUT SnU, (4)
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where

Sn =
NE∑
e=1

Sne =
NE∑
e=1

(∫
Se

NT nnT NdS
)

may be termed the surface normal matrix. The symbols n and N denote the
unit normal and the shape function.

2.2 Sensitivity Analysis

Using Equation (3) and applying the adjoint method, the sensitivity of the ob-
jective function (i.e. the total sound power flow) in problem (1) with respect to
the design variables ρe is given by

�′ = γf cω
2
p[UT

s P′ − UT
s (K

′ − ω2
pM′)U], (5)

where prime denotes partial derivative with respect to ρe. The symbol Us is the
solution to the equation (K −ω2

pM)Us = SnU ≡ fs , where fs may be regarded
as a pseudo surface load vector. Specifically, we only consider the case of
design-independent mechanical load in the present paper, so the sensitivity P′
of the mechanical load in (5) will be zero. The sensitivities of the stiffness
and mass matrices, i.e. K′ and M′, can be derived by introducing the material
models (see Section 2.3).

Based on the above sensitivity results, the optimization problem (1) may be
solved by using the well-known MMA method [18] or an optimality criterion
method, e.g. the fixed point method.

2.3 SIMP Model for Topology Optimization of
Bi-Material Structures

Following [19], the SIMP model for single-material design [2, 20] can be eas-
ily extended to bi-material design by using the rule of mixtures. Like in ei-
genfrequency design, penalization of the ratio between stiffness and mass is
the important aspect [8, 21], so in the present paper, the penalization is ap-
plied simultaneously to the stiffness and mass (i.e. to the dynamic stiffness
KD), especially in the case of high loading frequencies. Thus, the following
interpolation is used:

KDe(ρe) = ρreK∗1
De + (1 − ρre )K

∗2
De, (6)

where K∗1
De and K∗2

De are the element dynamic stiffness matrices corresponding
to the two different, given solid elastic materials *1 and *2, and the penaliza-
tion power r is taken to be 3 for both stiffness and mass. Note that it follows
from (6) that for a given element, ρe = 1 implies that the element fully consists
of the solid material *1, while ρe = 0 means that the element fully consists of
the solid material *2.
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Figure 1. Plate-like structure (a = 20, b = 20, t = 1) subjected to uniformly distributed
harmonic pressure loading on its upper surface. All edges of the plate are clamped.

3. NUMERICAL EXAMPLES

3.1 Minimization of Sound Power Radiated from a
Bi-Material Plate-Like Structure Excited by
Time-Harmonic, Uniformly Distributed Pressure
Loading

The first example concerns optimum topology design of a bi-material plate-
like structure with clamped edges (see Figure 1). A time-harmonic, uniformly
distributed transverse external load p(t) = P cosωt is applied to the upper
surface of the plate. The design objective is to minimize the total sound power
radiated from the surface of the plate to its surrounding acoustic medium, i.e.
air, for a prescribed loading frequency ω = ωp and a volume fraction of up to
50% for the given stiffer material *1, which has the Young’s modulus E∗1 =
1011, Poisson’s ratio ν = 0.3 and the specific mass γ ∗1

m = 7800 (SI units
are used throughout). The soft material *2 has the properties E∗2 = 0.1E∗1,
γ ∗2
m = 0.1γ ∗1

m , and ν = 0.3. The specific mass of the fluid (i.e. air) is γf = 1.2
and the sound speed c = 343.4.

The plate is modeled by 3D 8-node isoparametric elements (40 × 40 × 1
mesh). Five different loading frequencies, ωp = 10, 100, 500, 1000 and
100000 are considered, and the corresponding optimum topologies of the plate
are presented in Figures 2(a)–2(e), where the stiffer material *1 is represented
by black and the soft material *2 by grey. It can be seen that, as the loading
frequency increases, the optimum topology of the structure shows a more and
more complicated periodicity.

Figures 3 and 4 show the distribution of the power flow from the structural
surface of the initial design (ρ = 0.5) and the final optimum design. The
total sound power flow to the acoustic medium is reduced from 3.50 × 10−4 to
4.01 × 10−7 for ωp = 100, from 3.68 × 10−7 to 1.84 × 10−8 for ωp = 500,
and from 1.03 × 10−7 to 5.61 × 10−9 for ωp = 1000, respectively. Moreover,
if we study the variation of the sound pressure (amplitude) along the reference
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Figure 2. Optimum topologies of clamped bi-material plate-like structures for different load-
ing frequencies. (a) ωp = 10, (b) ωp = 100, (c) ωp = 500, (d) ωp = 1000, (e) ωp = 100000.

Figure 3. Distribution of the power flow from the structural surface of the initial design.
(a) ωp = 100, (b) ωp = 500, (c) ωp = 1000.

Figure 4. Distribution of the power flow from the structural surface of the optimum design.
(a) ωp = 100, (b) ωp = 500, (c) ωp = 1000.
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Figure 5. Sound pressure along the reference line EA on the lower and upper surfaces of the
plate for the initial and the optimum design (see Figures 1 and 2). (a) ωp = 10, (b) ωp = 100.

Figure 6. Sound pressure along the reference line EA on the upper surface of the plate for the
initial design and the optimum design (see Figures 1 and 2). (a) ωp = 500, (b) ωp = 1000.

line EA of the plate (see Figures 1, 5 and 6), we find that the optimum design
does not change the wave number of the sound pressure for low values of the
loading frequency (see Figure 5). However, for higher values of the loading
frequency, Figure 6 shows that both the wave shape and wave numbers of the
sound pressure are changed by the optimum design. Specifically, Figure 5
also shows that the phase of the sound pressure is inverted when the loading
frequency is increased from 10 to 100.
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Figure 7. Clamped-clamped pipe-like structure (L = 0.4, r = 0.025, t = 0.005) subjected
to a concentrated harmonic load p(t) = P cosωpt at the middle of its external surface.

Figure 8. Optimum topologies of bi-material pipe-like structures for different loading fre-
quencies. (a) ωp = 5000, (b) ωp = 15000, (c) ωp = 30000, (d) ωp = 50000.

3.2 Minimization of Sound Power Radiated from a
Bi-Material Pipe-Like Structure Excited by a
Concentrated Time-Harmonic Load

As a second example, we consider optimum topology design of a bi-material
pipe-like structure with clamped ends and loading conditions as shown in Fig-
ure 7. The design objective, the material volume fraction and the material
properties (structure and fluid) are the same as in Section 3.1.

The pipe is modeled by 3D 8-node isoparametric elements (40 × 20 × 1
mesh). The optimum topologies of the pipe for four different loading fre-
quencies, ωp = 5000, 15000, 30000, and 50000, are given in Figures 8(a)–
8(d), where the stiffer material *1 is represented by black and the soft material
*2 by grey. The corresponding vibration modes of the pipe in the optimum
designs are shown in Figures 9(a)–9(d). In comparison with the initial design
(ρ = 0.5), the total sound power radiated to the acoustic medium from the
final design is reduced from 8.14 × 10−7 to 4.11 × 10−8 for ωp = 5000, from
2.28 × 10−6 to 4.56 × 10−8 for ωp = 15000, from 1.25 × 10−4 to 2.32 × 10−7

for ωp = 30000, and from 2.39 × 10−6 to 7.87 × 10−8 for ωp = 50000.
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Figure 9. Vibration modes of the pipe in the final optimum designs. (a) ωp = 5000, (b) ωp =
15000, (c) ωp = 30000, (d) ωp = 50000.
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FORCE FIELDS WITHIN MICHELL-LIKE
CANTILEVERS TRANSMITTING A POINT
LOAD TO A STRAIGHT SUPPORT
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Świȩtokrzyska 21, 00-049 Warszawa, Poland
2Institute of Structural Mechanics, Faculty of Civil Engineering, Warsaw University of
Technology, al. Armii Ludowej 16, 00-637 Warsaw, Poland

Abstract: The paper concerns distribution of the force fields within Michell cantilevers
supported on a segment of a straight line. The allowable yield stresses for tension
and compression are not necessarily equal. The paper puts emphasis on checking
the final results for the optimal weight by computing the weight in two manners:
as a virtual work or, alternatively, by finding the force fields, the density of fibres
and then by summing up the weights of all the parts of the optimal cantilever, i.e.
the weights of the reinforcing bars and the weights of all the fibrous domains. If
this duality gap vanishes, the solution is correct.

Keywords: Michell-like cantilevers, minimum weight problem, topology optimization.

1. INTRODUCTION

The Michell problem can be expressed in terms of average stress fields as
a minimum weight problem or in terms of displacements as a maximization
problem, see Strang and Kohn (1983). The latter problem can be interpreted
as an equilibrium problem of a body with locking, see Golay and Seppecher
(2001), Lewiński and Telega (2001). The known analytical solutions were
found just within the framework of this formulation. In particular, the Michell
(1904) cantilever supported on a circle (see Hemp, 1973) was found by guess-
ing the kinematically admissible virtual displacements realizing the optimality
conditions εI = 1, εII = −1 concerning the principal values of the tensor of
virtual strains in the problem in which the allowable yield local stresses for
tension (σT ) and compression (σC) are equal: σT = σC . The weight of the
optimal cantilever is equal up to a factor to the value of the work of the point
load applied to a joint on the displacement of this joint. Let us emphasize here
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that this displacement is finite since the reinforcing bars connected at this joint
transmit the point load thus eliminating possible stress singularities. We see
that having the virtual displacements the computation of the weight becomes
straightforward. On the other hand, computation of this weight within the
average stress-based formulation is more complex. Note that none of the avail-
able exact solutions to the Michell problem was solved with using the stress-
based formulation. This would require finding the minimizer of the weight
(expressed in terms of average stresses) among all candidates which are stat-
ically admissible. This is not an easy task, since this set is affine and hard
to parameterize. It is easier to recover the average stress fields upon finding
the Hencky net, the latter being featured by the displacement-based optimality
criteria (see Hemp, 1973, sec. 4.3). The average stresses found this manner
should be correlated with longitudinal forces in the reinforcing bars. For in-
stance, the weight of the cantilever supported on a circle is equal to the sum of
weights of the reinforcing bars and the fibrous interior. The weight computed
this manner is exactly equal to the virtual work of the applied point load. The
relevant analytical proof has been only recently published, see Graczykowski
and Lewiński (2005a). This problem has been solved under the condition of
σT = σC , its generalization to the case of unequal permissible stresses being
unsolved till now, see Rozvany’s (1997) criticism on a part of Michell’s (1904)
work.

Note here that the most advanced numerical results have been recently ob-
tained by Gilbert et al. (2005) by the truss approximation method.

The main feature of Michell trusses is their discrete-continuous structure:
the mass is concentrated along the edge lines connecting the point load with
the support. The lines where the mass is concentrated are interpreted as bars,
i.e. usual bars of finite cross sections. They are subjected to tension or com-
pression. Optimization removes bending and transverse shearing. The volume
of the optimum structure is a sum of the volume occupied by the material form-
ing the bars and the volume of fibres in the interior part. In the present paper
we consider Michell cantilevers supported along a straight segment, lying in-
side a domain bounded by half-lines starting from the ends of the segment. The
results of the papers by Lewiński et al. (1994) can be generalized to the case
of unequal permissible local stresses, cf. Graczykowski and Lewiński (2005b).
Our aim here is to consider average stresses within such optimal cantilevers,
perform the local and global analyses of equilibrium. Other cases of position
of the point load are discussed in Graczykowski and Lewiński (2006).
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2. STRESS FIELDS WITHIN PRAGER–HILL
CANTILEVERS

We tackle the problem of transmitting the force P applied at point P to the
support RN by a plane structure lying within the infinite domain bounded by
the half-lines RR1 and NN1 and byRN , cf. Figure 1. The axial stress σ should
be bounded: −σC ≤ σ ≤ σT . The aim is to find the lightest structure satisfying
the above conditions. A graphical solutions to this problem were sketched by
Prager (1959) and Rozvany (1997). The analytical construction of the net of
fibres within ABDC and the relevant virtual displacement fields satisfying the
desired optimality conditions:

ε̄I = 1, ε̄I I = −κ (1)

with κ = σT /σC , were published recently, see Graczykowski and Lewiński
(2005b). Let us recall that if �NRA = γ2, �RNA = γ1, we have tanγ1 = κ1/2

and tanγ2 = κ−1/2. Thus r2 = κ1/2r1, where r1 = |NA|, r2 = |RA|. see
Rozvany (1997). We introduce notation: θ1 = �ANC, θ2 = �BRA. The
circular domains BRA, ANC are called fans; they are filled up with infinitely
thin radial bars, called fibres. The boundary bars RB and NC have finite cross
sections – they are typical truss members. The domain ABDC is parameter-
ized with a special curvilinear system (α, β). The units of α and β are radi-
ans. The vertices of ABDC have the coordinates: A(0, 0), B(0, θ2), C(θ1, 0),
D(θ1, θ2). This system is orthogonal; its Lamé coefficients A(α, β), B(α, β)
are also radii of curvatures of the parametric lines. The parametric lines (α, β)
are determined by Cartesian coordinates x(α, β), y(α, β) measured along the
(x, y) axes, as in Figure 1.

The formulae for x(α, β), y(α, β), A(α, β), B(α, β) were published in
Graczykowski and Lewiński (2005b). Let us mention only that the Hencky
net in ABDC is characterized by φ(α, β) = β−α; here φ represents an angle
between a tangent to the α-line at point (α, β) and the x axis, see Hemp (1973),
where this notation is explained in detail.

The conditions (1) determine the virtual displacement field ū = (u, v); u
and v represent displacements along α and β lines. The integration technique
explained in Hemp (1973) makes it possible to find the integral formula for
u(α, β) and v(α, β). However, to make these formulae useful for further ana-
lysis of longer cantilevers one should put them in terms of known special func-
tions. It turns out that the functions introduced by Chan (1975, Appendix) and
named Gn(α, β), Fn(α, β) in Lewiński et al. (1994) suffice to express all the
unknowns explicitly, not only A, B, u, v within ABDC but also their exten-
sions as well as stress fields.

These functions satisfy the hyperbolic equation LHn = 0, where H = G or
F and L = ∂2

∂α∂β
− 1. Just this equation governs the behavior of Lamé coeffi-
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Figure 1. Prager–Hill cantilever. The feasible domain is determined by RN and the angles
�R1RN , �N1NR.

cients, rotated coordinate functions x̄, ȳ defined by x̄+iȳ = exp(−iφ)(x+iy)

as well as the auxiliary displacement fields

u0(α, β) = u(α, β)− (κ + 1)αA(α, β),

v0(α, β) = v(α, β)+ (κ + 1)βB(α, β).
(2)

In the present paper we show that the force fields associated with the Hencky
net of the ABDC domain, caused by a point load P at point P = P(αp, βp),
lying within ABDC, can also be expressed in terms of Chan’s functions Gn.
The optimal cantilever occupies the domain RB ′PC ′N , see Figure 1. Having
found the force fields we can compute the volume by direct integration over the
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fibrous domains RB ′A, NAC ′ and AB ′PC ′ and along the lines of reinforcing
bars RB ′P and NC ′P . It turns out that the volume computed this manner
confirms the correctness of the whole solution. The problem of finding force
fields in the cantilever of Figure 1 has never been discussed till now.

We shall use notation of a classical plate theory. The average stress result-
ants referred to the (α, β) system will be denoted by NI , NII since α and β

lines are lines of principal directions of tensor N . We do not use notation: σI ,
σII to distinguish between average and local stresses. Let us recall that the dif-
ferential equations of equilibrium referred to the (α, β) system have here the
form

−∂(BNI )

∂α
+ ∂B

∂α
NII = 0, −∂(ANII )

∂β
+ ∂A

∂β
NI = 0. (3)

These equations are identical with the first two differential equations of mem-
branes parameterized by an orthogonal curvilinear system. It is Hemp (1973)
who discovered that equations (3) can be simplified by changing the unknowns
T1 = BNI , T2 = ANII . By using the differential constraints linking A and B
we reduce (3) to the form

T2 = ∂T1

∂α
, T1 = ∂T2

∂β
(4)

not involving Lamé coefficients. Thus we see that LT1 = 0, LT2 = 0, which
makes it possible to apply the Riemann method, already used for finding the
Hencky net (α, β). Note that T1, T2 are of force dimension. They measure the
forces per unit angles and not per unit lengths. From mechanics point of view
these fields have similar meaning to axial forces in truss members. If we put
(4) in the variational form∫∫ [

T1

(
∂ū

∂α
+ v̄

)
+ T2

(
∂v̄

∂β
+ ū

)]
dα dβ =

∫
α=const

T̂1ū dβ +
∫

β=const

T̂2v̄ dα

(5)
for all kinematically admissible ū, v̄ we note that (5) can be discretized to the
variational equilibrium equation of a truss. Here T̂1 (T̂2) are given loadings
normal to the edges α = const (β = const). We write (5) symbolically as∫∫

T1 dβ(dū + v̄dα)+
∫∫

T2 dα(dv̄ + ūdβ) = L̄ext, (6)

where L̄ext represents the virtual work of given loading. Note that

dū+ v̄dα = (A dα)ε̄I , dv̄ + ūdβ = (B dβ)ε̄II (7)

represent elongations of α and β fibres of lengths Adα and B dβ, respectively.
We remember that T1dβ is a longitudinal force in the strip of width B dβ along
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the α-line and T2dα is such a force in the strip of width Adα along the β-
line. The associated elongations of these strips are �̄α = Adαε̄I , �̄β =
B dβε̄II . Let us imagine that the Hencky net (α, β) is replaced by a net of finite
number of α and β lines constructed from straight segments, treated further as
members of a certain truss. We imagine that the forces T1dβ and T2dα are now
concentrated along the members. These forces are now treated as axial forces
Zα
K , Zβ

L in the truss; here K, L index the members. They do a virtual work on
elongations �̄K

α and �̄L
β . Thus Equation (6) is replaced with∑
K

Zα
K�̄

K
α +

∑
L

Z
β

L�̄
L
β = L̄ext (8)

and if the independent virtual displacements of nodes are denoted by
q̄1, . . . , q̄s , then L̄ext is replaced by q̄TQ with Q being the vector of effective
nodal forces. To note that (8) represents equations of nodes of the approx-
imating truss we should put Zα

K , Zβ

L into one column Z, put elongations �̄K
α ,

�̄L
β into one column �̄ and correlate them with nodal virtual displacements by

linear equations: �̄ = Bq̄, B being a geometry matrix. Thus Equation (8)

implies �̄
T
Z = q̄TQ hence BTZ = Q, because q̄ is arbitrary. We conclude

that Equation (6) can be approximated by truss equilibrium equations, with
arbitrary accuracy.

Let us come back to the problem of equilibrium of the cantilever of Fig-
ure 1. We should decompose it into two reinforcing bars B ′P (in tension,
FT > 0) and C ′P (in compression, FC < 0), the node P subjected to three
forces of magnitudes: FT (P ), FC(P ), P , the fibrous domain B ′PC ′A, the
fans RB ′A, NAC ′ with edge bars RB ′, NC ′ and the rectangle RAN is empty.
Kinematic consideration starts from RAN domain and moves to the right. On
the contrary, static analysis starts from equilibrium of node P and moves left.
The net is already found (see Graczykowski and Lewiński (2005b)) so we
know the angle ψ between tangent to C ′P at P and the vertical line RN :
ψ = γ1 + αp − βp . Angle ϕ is directed counterclockwise, see Figure 1a.

Note first that the longitudinal forces FT and FC do not vary along B ′P and
C ′P , since no tangent loading is applied. Thus FT = FT (P ) and FC = FC(P ).
The magnitudes of forces FT (P ), FC(P ) found from equilibrium equations of
node P

FC(P ) = −P cos(ψ + ϕ), FT (P ) = P sin(ψ + ϕ) (9)

determine the longitudinal forces in the bars B ′P and C ′P . Since B ′R (C ′N)
is a smooth extension of B ′P (C ′P ) at B ′ (C ′) the axial forces in RB ′ (and
NC ′) are still equal to FT (P ) (and FC(P )). Note that the bar RB ′P works like
a cord, since it slides along B ′P . The bar PC ′ is compressed with no buckling
allowed. The equilibrium equations of both the bars determine the magnitude
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of the normal loading Nn. Since Lamé coefficients are equal here to the radii
of curvatures we obtain

Nn = −FC(P ) for α = αp, Nn = −FT (P ) for β = βp, (10)

see Figure 1b. These formulae provide the boundary conditions

T1(αp, β) = −FC(P ), T2(α, βp) = −FT (P ) (11)

We can apply now Riemann’s method, as explained in Lewiński et al. (1994,
equation (17)) and find

T1(α, β) = −FCG0(αp − α, βp − β)+ FTG1(αp − α, βp − β),

T2(α, β) = −FTG0(αp − α, βp − β)+ FCG1(βp − β, αp − α).
(12)

Having found T1, T2 we can compute their boundary values along AB ′ and
AC ′, which determines force fields within the circular fans RB ′A, NAC ′. It
occurs that the circumferential stresses vanish and the radial stresses are con-
stant along the radii. Now we know the force fields T1, T2 within the whole
structure and we know the axial forces in the ribs. The last step is to com-
pute the reactions: HR, VR, HN , VN by considering equilibrium conditions of
nodes R and N . The concentrated forces at R, N and P should give zero total
vector and zero total moment around an arbitrary point (say, P ). These three
algebraic equations should confirm that the whole static analysis has been done
correctly.

3. EQUIVALENCE OF TWO FORMULAE FOR THE
WEIGHT OF THE OPTIMAL PRAGER–HILL
CANTILEVER

Virtual work of the force P determines the volume of the optimal cantilever:

V = P

σT
[u(P ) sin(ϕ + ψ)− v(P ) cos(ϕ + ψ)] , (13)

where P = P(αp, βp); the functions u, v being given in section 9 of
Graczykowski and Lewiński (2005b). Both the fields u and v are expressed
in terms of Chan functions. To be sure that this result is correct we shall com-
pute this volume directly by summing up the volumes of all the parts of the
structure. Density of fibres within AB ′PC ′ is given by

h(α, β) = T1(α, β)

σTB(α, β)
− T2(α, β)

σCA(α, β)
. (14)

We know that T2 < 0. For the NAC ′ fan the formula for density h does not
contain the first term. For the RB ′A fan the function h is expressed by the first
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term. To compute the integral

VAB ′PC ′ =
∫ αp

0

∫ βp

0
h(α, β)A(α, β)B(α, β) dα dβ, (15)

with h being given by (14), T1, T2 given by (12) and A, B given by (4) in
Graczykowski and Lewiński (2005b) one should apply the integration rules
(31)–(36) of Lewiński et al. (1994).

The expressions for VNAC ′ and VRB ′A can be found by similar integration.
Now we compute the volume of the tension (T ) bar

VT = FT (P )

σT

(∫ αp

0
A(α, βp)dα + r2

)
. (16)

The formula for the volume Vc of the compression bar is similar.
This integration can be performed by using properties of Chan’s functions.

By summing up the volumes of material used for construction of fibrous do-
mains AB ′PC ′, NAC ′, RB ′A and of the ribs RB ′P , NC ′P we arrive at V
coinciding exactly with formula (13). We say that the duality gap between the
dual and primal formulations vanishes.

4. FAMILY OF CANTILEVERS DESIGNED WITHIN
A STRIP. BENCHMARK RESULTS

Let us consider the case of κ = 3, θ1 = π/6, θ2 = π/3. Then the feasible
domain is a strip, see Figure 2. The force P is assumed to act parallel to the
RN supporting line, or ϕ = 0, its application point P being on the midperpen-
dicular to RN at a distance d from RN . Let ξ = d/a, with a = |RN |. Thus
the family of problems is indexed by ξ . If ξ = √

2/2 the optimal structure is
composed of two bars and one circular fan. If ξ >

√
2/2, point P lies at the

right side of P0, where |RP0| = |RA| = a
√

3/2, |RO| = a/2. Let the volume
of the optimal cantilever be denoted by V and its non-dimensional counterpart
by V̄ = V/(Pa/σT ). The values of V̄ are set up in Table 1 for subsequent val-
ues of the distance d = ξa of the force P to the RN line. The same table gives
also the curvilinear coordinates (αp, βp) of subsequent position of point P .

The midperpendicular of RN crosses subsequent domains of kinematic di-
vision, as introduced in Graczykowski and Lewiński (2005b, 2006). Thus the
graph of the volume of Figure 3 refers not to one but to several types of the
cantilevers: for 0 � ξ �

√
3/6 the optimal structure is composed of two bars;

for
√

3/6 � ξ �
√

2/2 the optimal structure is composed of one circular fan
and two bars; for

√
2/2 � ξ � 1.522008 the solution is called Prager–Hill

cantilever; for 1.522008 � ξ � 2.036580 the solution includes additionally
one Chan-like domain; for 2.036580 � ξ � 3.028582 the solution includes
two Chan-like domains and one Hill-like domain more.
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Figure 2. Case of: κ = 3, θ1 = π/6, θ2 = π/3, ϕ = 0. Chan’s domains are indicated by
dashed lines.

Figure 3. Non-dimensional volume V̄ of the optimal cantilevers.

Nonetheless, the graph of the volume versus ξ is smooth, even at points
ξ = √

3/6,
√

2/2, 1.522008, 2.036580, 3.028582, where the structure of
the solution switches to a more complicated form.

The results set up in Table 1 are benchmark results for possible numerical
checks based on a ground structure method or other numerical-oriented basis.
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Table 1. Non-dimensional volume V̄ of the optimal cantilevers.

ξ αp βp V̄
0 – – 0
0.25 – – 0.86602540
0.5 – 0.26179939 1.88962418
0.75 0.03909955 0.45996378 3.18119647
1 0.23418873 0.61048885 4.77413280
1.25 0.38788355 0.73867388 6.68710224
1.5 0.51357763 0.84847879 8.86123302
1.75 0.66391239 0.94562854 11.27758404
2 0.80344224 1.03477767 13.93605154
2.25 0.93237717 1.16472612 16.83306684
2.5 1.05679215 1.29767843 19.99191059
2.75 1.17798254 1.42731919 23.40492241
3 1.29752093 1.55600661 27.06729757

5. FINAL REMARKS

Construction of Hencky nets within the trapezoidal domains, as outlined in
Graczykowski and Lewiński (2005b), is complemented here by the analysis
of force fields within the fibrous domains and in the reinforcing ribs. The
force fields and Lamé fields determine the density of fibers as well as the cross
sections of the ribs. Integration of the mass density confirms the values of
the volumes of the optimal cantilevers found previously by the Michell-like
kinematic formulae.
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Graczykowski, C. and Lewiński, T. (2005b) New designs of Michell-like cantilevers corres-
ponding to different allowable tensile and compressive stresses, in 6th World Congress of
Structural and Multidisciplinary Optimization, Rio de Janeiro, 30 May–3 June 2005, Brazil,
CD ROM, in press.

64



Michell-Like Cantilevers Transmitting a Point Load to a Straight Support
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Abstract: In continuum topology optimization the resulting optimal designs are highly de-
pending on the amount of material available, relative to the size of the possible
design space. To obtain black and white solutions (material or no material),
penalization’s are applied, and for the problems of low density we see a clear
tendency toward solutions which more or less are truss or frame structures. Of-
ten the accuracy of the finite element models for the continuum is then at the
limits with respect to accuracy.

The purpose of the presented project is to make a comparison between op-
timal designs found by known methods for topology optimization of continuum
structures and optimal designs of structures modeled as trusses. For a statically
determined truss each bar can be designed independently and therefore must be
fully stressed in an optimal design. We want to put focus on the basic knowledge
which gives optimality criteria for single load cases with only a single constraint.

Truss and continuum examples are analyzed, optimized, and evaluated to
get further insight into the influence from the basic modeling, being truss or
continuum. Stiffness as well as strength are important aspects of optimal design,
and elastic energy density is a general measure of these constraints.

Keywords: Optimal design, trusses, 2D continuum, penalization, free material.

1. INTRODUCTION

In structural optimization as well as in structural analysis, the choice of a
proper model is important. The choice of necessary dimensions, 1D, 2D or 3D;
for non-continua, truss or frame; for 2D problems plane stress, plane strain or
alternatives; for finite element models the choice of elements and mesh. For
structural optimization we have the further complication that what might be a
proper model for the initial design, might not be a proper model for the optimal
design. This is well known in relation to re-meshing in shape optimization.

67

Martin P. Bendsøe et al. (eds), IUTAM Symposium on Topological Design Optimization of
Structures, Machines and Materials: Status and Perspectives, 67–76.
© 2006 Springer. Printed in the Netherlands.



P. Pedersen and N.L. Pedersen

In optimal design of an initial continuum design that tends towards a truss
or frame, a shift of model might also be appropriate. With this in mind we
analyze and optimize trusses and continua to get a better understanding of the
modeling issue.

Available basic knowledge related to truss design is described in Section 2
including a specific example of a bridge design. The importance of including
stability constraints is clearly demonstrated.

Available basic knowledge related to 2D and 3D continuum design is de-
scribed in Section 3. With the truss bridge problem in a continuum setting we
show the influence from penalization to 0–1 design (white and black).

Finally in Section 4 we want to focus on the free material design. Solutions
to these non-isotropic problems are obtained by isotropic, zero Poisson’s ratio
analysis. Results with Poisson’s ratio as an additional parameter are presented
and discussed.

2. BASIC KNOWLEDGE ON TRUSS DESIGN

Trusses are structures that are simple to analyze, because each point of the
structure is only subjected to a unidirectional state of stress/strain. The basic
element of a truss is a bar and the bars are connected through joints that only
transfer a normal force (tensile or compression) to each bar. In addition to
being simple structures, trusses are also very efficient structures with the pos-
sibility of designing fully stressed structures, where each point in the structure
is used to its limit. For a statically determined truss, each bar can be designed
independently and therefore in an optimal design must be fully stressed.

If we assume that allowable stresses and joint positions are given, then the
problem of finding a truss of minimum mass is a linear programming problem.
Such optimal design problems can be solved using the simplex optimization
procedure, and this was done already by Dorn et al. (1964) and by Fleron
(1964). With only a single load case, local stability is taken into account, and
we can prove that a statically determined truss is a solution. Stated more gen-
erally we have:

If each bar n of the truss is designed with a minimum cost φn (fully stressed),
which as a function of the actual non-negative bar force Pn, satisfies

dφn

dPn
≥ 0 and

dφn

dPn
non-increasing with Pn, i.e.

d2φn

dP 2
n

≤ 0, (1)

then there exists at least one statically determinate truss that minimizes the
cost of the total truss.

A proof of this theorem is available in chapter 16 of the book by Pedersen
(2003). The proof follows from equilibrium, change in equilibrium by intro-
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ducing an additional bar and the corresponding change in the total cost. We
directly deal with three-dimensional trusses, and supports are treated as un-
known bar forces. In the literature on mathematical programming, as in Gass
(1964) and in Hadley (1964) we can find geometrical interpretations showing
directly that the optimal solution is at a vertex of the convex feasible space de-
scribed by the linear constraints. When the objective is a concave function and
not just a linear function the solution is still at a vertex, but local optima may
exist if the concave functions are too curved relative to the curvature of the
feasible space. In the actually solved problems of topology design of trusses
such local optima have not been seen.

In addition to some specified joint positions and the actual loads to be
transferred, only few parameters are needed for the optimization. In most of
the examples we use the same values for these data and therefore list them
here: Modulus of elasticity E = 2.0 · 1011 Pa, stress limit of proportionality
σP = 1.6 · 108 Pa, allowable tensile stress σT = 2.0 · 108 Pa, maximum allow-
able compressive stress σC = 1.6 · 108 Pa, factor of safety for slender columns
ξ = 2.5, mass density ρ = 7500 kg/m3, and the cross-sectional parameter
α = √

I/A where A is the cross-sectional area and I is the cross-sectional
moment of inertia. We shall study the influence of local stability on the op-
timal topology by changing the cross-sectional parameter α. Also for visu-
alization of the results, we need cross-sectional outer dimensions. Therefore
we specialize to truss members with circular cross-section (pipes) with outer
diameter do and inner diameter di , specified by the ratio µ, i.e., di = µdo with
0 ≤ µ < 1. With well known formulas for the cross-sectional area A and for
the cross-sectional moment of inertia I we get α = α(µ) and do = do(A, α)

α = 1

2

√
1 + µ2

π(1 − µ2)
; µ =

√
4πα2 − 1

4πα2 + 1
; do =

√
2A(4πα2 + 1)/π. (2)

In the graphical illustrations of the trusses, the width of a bar is shown pro-
portional to the diameter do in order to see more directly the obtained designs.
At number of examples are available in chapter 3 of the book by Pedersen
(2003). Here we only discuss the “bridge” example, illustrated in Figure 1.

Figure 1. Truss with assumed symmetry and uniformly distributed loads. Initial topology
shown on half the model for analysis and optimization.

69



P. Pedersen and N.L. Pedersen

Figure 2. Total mass as a function of simplex iterations, including 5 redefinitions of weight
loads. Only the first of these redefinitions are visible in the figure.

Figure 2 shows the convergence results for three cross sectional cases. Figure
3 shows the final topology and size designs when self weights are included in
the optimization. The following points should be noted

• The topology designs are to a large extent influenced by the buckling
constraints. Even with thin walled cross sections (design c)) we see that
the less allowable compressive stress (80% of tensile stress) controls the
optimal design.

• With solid cross sections (design a)) as much load as possible is carried
by tensile members. The design is therefore much depending on the
actual boundary conditions for the model.

• Both design b) and design c) show the characteristic of the combined
cantilever and hanging simply supported part.

• No optimization of the joint positions are performed in the present ex-
amples, although the procedure for this is well known.

3. BASIC KNOWLEDGE ON CONTINUUM DESIGN

We start with some basis knowledge from size (thickness or density) optimiza-
tion, as it can be found in Pedersen (1998) for non-linear elasticity or in Wasi-
utynski (1960) for linear elasticity. If the objective is to minimize compliance
(minimize elastic energy) for given total mass then we have (for optimal stiff-
ness design with homogeneous assumptions and design independent loads):
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Figure 3. Half of the optimal bridge models, assuming symmetry as shown in Figure 1.
Optimal truss topology with a) solid cross sections, b) thickness equal to half radius, c) thin
walled cross section. All topologies with self weight. The width of the lines corresponding to the
outer diameter of the pipes with thin tensile bars compared to the more dominating compressive
bars. The gray lines are tensile bars, while the black bars are in compression.

The ratio between sub-domain energy and sub-domain mass should be the
same in all the design sub-domains.

Let the design parameters be he, then homogeneous mass relations are ob-
tained with M = ∑

e Me = ∑
e h

m
e M̄e, where M is the total mass, Me is

the mass in domain e, m is a given positive value, and M̄e is independent of
the design parameters. The homogeneous energy relations are obtained with
U = ∑

e Ue = ∑
e h

n
e Ūe, where U is the total elastic energy, Ue is the elastic

energy in domain e, n is a given positive value, and Ūe is explicitly (for fixed
strains) independent of the design parameters.

Restricted to problems with constant mass density we get, in all design do-
mains, the same mean elastic energy density. Furthermore, if the model has
constant elastic energy density within a design domain, then the result for the
optimal design is uniform elastic energy density u∗, i.e.

u∗
e = ū for all free design domains, (3)

71



P. Pedersen and N.L. Pedersen

where lower and upper size constraints are not reached. The symbolism here is
a super-index ∗ related to the optimal design, and a overhead bar ¯ indicating
a constant value for each domain e (mean value).

Assume now that the necessary condition (3) give a global minimum solu-
tion, then for any other design the total elastic energy U is larger (or equal
to)

U =
∑
e

ueVe ≥ U ∗ =
∑
e

u∗V ∗
e = ū

∑
e

V ∗
e = ū

∑
e

Ve =
∑
e

u∗
eVe, (4)

where V ∗
e is the optimal volume of the design domain e. For an alternative

design with design volumes Ve we have the same total volume V = ∑
e Ve =∑

e V
∗
e . From (4) we get ∑

e

(ue − u∗
e)Ve ≥ 0. (5)

With positive volumes Ve we read from (5), that at least one ue is not less than
u∗
e . Thus if the strongest design is defined by minimum of maximum ue, then:

The stiffest design characterized by the optimality condition (3) is also the
strongest design.

We note that the strength may also be defined in relation to the von Mises
stress or an alternative effective stress, and these measures are not always pro-
portional to the energy density. For a detailed discussion of these aspects, see
Pedersen (1998).

As an example of actual design optimization we choose a continuum bridge
model with dimensions and loads equal to the truss example in Section 2. From
the results in Figures 4, 5, and 6 we can draw some conclusions which are
general for many other examples.

• Traditional recursive iterations lead to solutions with uniform distribu-
tion of energy density (or as used here to uniform distribution of the von
Mises’ stress), within the limits of parametrization and finite element
modeling. The number of iterations is 5–10.

• More design freedom is possible with less volume percentage and there-
fore the design advantages are bigger. For the 25% example in Figure 6
without penalization the compliance decreases from 781 Nm to 414 Nm,
and the maximum von Mises’ stress decreases from 5.9·108 Pa to 2.2·108

Pa.

• Less design freedom as with 75% gives less differens between the non-
penalized and the penalized (black and white) designs. Compliance only
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Figure 4. Optimal design for a 2D linear elastic “bridge” model with total relative volume
density is 75%. Upper row shows the isolines of the designs and the lower row shows the
isolines of the resulting von Mises’ stresses. In the domains without isolines we have constant
volume density or constant von Mises’ stress, respectively. The numbers 1 and 0 indicate where
there is full density and void, respectively.

Figure 5. Optimal design for a 2D linear elastic “bridge” model with total relative volume
density is 50%. Upper row shows the isolines of the designs and the lower row shows the
isolines of the resulting von Mises’ stresses. In the domains without isolines we have constant
volume density or constant von Mises’ stress, respectively. The numbers 1 and 0 indicate where
there is full density and void, respectively.

increased from 207 Nm to 212 Nm, and maximum von Mises’ stress
from 1.5·108 Pa to 1.9·108 Pa.

• When the volume percent is low, as with 25%, the optimized and pen-
alized design needs a further processing with shape optimization. The
present finite element models have 43200 triangular elements and von
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Figure 6. Optimal design for a 2D linear elastic “bridge” model with total relative volume
density is 25%. Upper row shows the isolines of the designs and the lower row shows the
isolines of the resulting von Mises’ stresses. In the domains without isolines we have constant
volume density or constant von Mises’ stress, respectively. The numbers 1 and 0 indicate where
there is full density and void, respectively.

Mises’ stresses as high as 12.8·108 Pa are found in the penalized model,
to be compared with the value of 2.2·108 Pa for the non-penalized op-
timal design.

4. FREE MATERIAL DESIGN AND INFLUENCE
FROM POISSON’S RATIO

In Bendsøe et al. (1994) we have obtained analytical results for the individual
design of material constitutive components with the objective of minimizing
the compliance. The single constraint for the optimization problem is a given
total size of the constitutive matrix, measured by the Frobenius norm or by the
trace norm.

For 2D-problems the resulting optimal constitutive matrix is

[C]optimal = C

(ε1 + ε2)2

⎡⎣ ε2
1 ε1ε2 0

ε1ε2 ε2
2 0

0 0 0

⎤⎦ , (6)

where C is a reference modulus and the actual principal strains are ε1, ε2. The
theory is also valid for 3D-problems and the results also hold for non-linear
elasticity modeled by power law non-linearity, see Pedersen (1998).

The matrix [C] presented in (6) have only one non-zero eigenvalue, and
thus only stiffness in relation to the specific strain condition for which it is
designed. We can obtain the same effective strain and strain energy density
with an isotropic, zero Poisson’s ratio material, but then the corresponding
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Figure 7. Optimization results as a function of Poisson’s ratio ν for a total relative volume
density of 50%, and plane stress. Left: compliance Right: maximum von Mises’ stress.

material cost is three times greater for the 2D-problem with [C] = C[I ] (six
times greater for the 3D-problem). As shown in Bendsøe et al. (1994), the
zero Poisson’s ratio material is valuable in numerical calculation, because of
the degeneracy of the ultimate optimal material (6).

With this in mind we analyze and optimize the problem in Figure 5 taking
Poisson’s ratio ν as a further parameter in the range of ν = 0–0.5 (the results
in Figures 4, 5, and 6 are based on ν = 0.3). Figure 7 to the left shows
the compliance as a function of Poisson’s ratio, and to the right shows the
maximum von Mises’ stress as a function of Poisson’s ratio. To the results in
Figure 7 we add the following comments:

• For the uniform design as well as for the optimal continuum, the compli-
ance is weakly increasing with increasing Poisson’s ratio for this plane
stress model. (A plane strain model will give opposite results.) To phys-
ically understand this relation we note that the shear modulus G (mul-
tiple eigenvalue of the constitutive matrix) is decreasing with increasing
ratio ν. Note that the influence from penalization is clearly visible.

• The maximum von Mises’ stress is decreasing with increasing Poisson’s
ratio. A physical explanation may be that a more flexible model levels
out the stress concentrations. Even for the moderate volume fraction of
50%, the influence of penalization amounts to an increase with a relat-
ively large factor, as compared to the non-penalized optimal design. For
the penalized design a clear monotone decrease of the maximum von
Mises’ stress is not seen, which may be related to the sensitive finite
element modeling (43200 elements).
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5. CONCLUSIONS

Attention is put on basic knowledge related to truss and continuum optimal
design. Although this knowledge is related to single load cases it should be
kept in mind, especially in relation to benchmark tests.

In truss optimal design stability constraints must be incorporated. This im-
plies a primary focus on compressive members, and from this follows a major
importance of boundary conditions and selected cross sectional shapes. For
benchmark tests the statically determined optimal solutions are most valuable.

In continuum optimal design, solutions with a uniform distribution of elastic
energy play the role of reference. Under certain assumptions the stiffest design
will also be the strongest design. When penalization to 0–1 design is needed, it
implies a more compliant design and often with drastic stress concentrations.

The examples in this note are modeled as two dimensional linear elasticity.
However, the conclusions are valid in 3D and for non-linear power law elasti-
city. Even these extended problems can be solved without practical problems,
such as CPU time.

When several load cases and/or several constraints (such as displacements
and eigen frequency constraints) are involved, then mathematical program-
ming must be applied, as shown e.g. in Pedersen and Nielsen (2003). However
the basic knowledge presented in this note should not be forgotten and attempts
as by da Silva Smith (1997) need further investigations.
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Abstract: The aim of this paper is to discuss some issues of pivotal importance in topology
optimization, which receive inadequate attention in the literature.

Keywords: Topology optimization, topology benchmarks, checkerboard control, analytical
solutions, hyper-optimality, SIMP, non-gradient methods.

1. INTRODUCTION

Topology optimization has become one of the most popular research topics in
structural mechanics, because (a) it requires unusual mathematical and numer-
ical concepts and (b) it results in much greater savings than shape or size op-
timization. Whilst the number of papers dealing with (i) new methods, (ii) new
mechanical problems, and (iii) new industrial applications of topology optim-
ization is rather staggering, some fundamental issues of this field have not been
sufficiently researched and therefore the correctness and accuracy of methods
and applications in a large number of papers is somewhat questionable. The
paper dealt with the following issues:

(a) New classes of exact analytical solutions for structural topologies with
a view to providing benchmarks for numerical topology optimization
methods and applications.

Such solutions include those for

(i) Pre-existing members,

(ii) Unequal permissible stresses in tension and compression, and

(iii) Simultaneous optimization of structural topology and supports of
non-zero cost.
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(b) New corner contact (or “checkerboard”) suppression methods.

(c) Quantitative methods for checking on the “goodness” or quality of nu-
merical topology optimization methods and numerically obtained solu-
tions.

(d) Topology design based on so-called “extended optimality” or “hyper-
optimality”.

(e) Gradient-type methods (e.g. SIMP) vs. non-gradient methods (such as
ESO).

(f) The dependence of gradient-type methods on certain heuristic features.

2. NEW CLASSES OF EXACT ANALYTICAL
SOLUTIONS IN TOPOLOGY OPTIMIZATION

The first author and his research associates have derived exact analytical solu-
tions for the exact optimal topology of trusses, grillages, shell grids and per-
forated plates. They are working on a number of extensions of these theories,
out of which we consider three in this paper.

2.1 Optimal Topologies with Pre-Existing Members or
Elements

Numerical results for optimal topologies of perforated plates in plane stress
are often checked by comparing them with exact analytical solutions for least-
weight (Michell) trusses.

For the former problem class, it is usual to prescribe a “non-design” region,
in which all elements must remain of full thickness or density (called also
“black” elements). An example of such a problem is given in Figure 1.

Figure 1. Example of a discretized topology design problem with a non-design domain.
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2.1.1 Optimality Conditions. The optimality conditions for topologies
with pre-existing members are presented in the context of “grid-like continua”,
consisting of members that may have infinitesimal spacing. Some of these
were termed by Prager (e.g. Prager and Rozvany, 1977) “truss-like continua”,
“grillage-like continua” and “shell-grid-like continua”. The layout (topology
and geometry) and cross-sections of the members are to be optimized. Using
the so-called “optimal layout theory” of Prager and Rozvany (1977), we start
off with a “structural universe” (called by others “ground structure”), contain-
ing all potential members or elements, out of which the optimal ones are to be
selected. For grid-like continua, the structural universe may consist of an infin-
ite number of (infinitesimal) elements, (i) at all points contained in the design
domain and (ii) in all directions. An optimal solution is obtained by finding

(a) a statically admissible stress field Qs satisfying equilibrium for the given
loads and static boundary conditions,

(b) a kinematically admissible (“adjoint”) strain field qk satisfying kin-
ematic continuity and boundary conditions, such that

(c) the optimal stress-strain relations q(Q) are given by the subgradients
of the so-called “specific cost functions” w = ψ(Q), which express
the relationship between the (usually “generalized”) stresses Q and the
material weight (w) per unit area or unit volume of the design domain.
Examples of generalized stresses are axial forces F in truss elements or
bending moments M in beam elements.

The adjoint strain field is a fictitious one, but for so-called “self-adjoint”
problems it is proportional to the real strain field. The sub-gradients are the
usual derivatives in differentiable regions, but consist of the convex combin-
ations of adjacent derivatives at slope-discontinuities. Detailed presentations
of the optimal layout theory (which is a generalization of a classical truss op-
timization method by Michell, 1904) can be found in the first author’s books
(Rozvany, 1976, 1989). Considering a truss element subject to a stress con-
straint, for example, the specific cost function for so-called “plastic design”
(based on only statical admissibility, Prager and Shield, 1967) is

A = k|F |, (1)

where A is the cross-sectional area, k is a constant and F is the member force.
Then the adjoint strain is the longitudinal strain ε and the optimal strain-stress
relation are given graphically in Figure 2a. Note that for vanishing members in
the structural universe we have F = 0, but by Figure 2a the strains must still
satisfy an inequality constraint.

For a pre-existing truss element with a cross-sectional area of B, we show
the optimality conditions graphically in Figures 2b and c (for details, see
Rozvany et al., 2006).

79



G.I.N. Rozvany et al.

Figure 2. Examples of specific cost functions and adjoint strains: (a) traditional Michell truss
element, (b) pre-existing member with equal permissible stresses in tension and compression,
and (c) the same, but with different permissible stresses.

Notes:

(i) Although the above theory is illustrated in the context of least-weight trusses, it can be
readily extended to other structures.

(ii) The problems considered in Figure 2 are convex and therefore (a)–(c) above constitute
necessary and sufficient conditions for global optimality.

(iii) The Michell problem in Figure 2a is self-adjoint, but its extensions in Figures 2b and 2c
are not.

(iv) The Prager–Rozvany (e.g., 1977) layout theory was originally developed for so-called
“plastic design”, in which only statical admissibility of the stresses is required. How-
ever, it is also valid for elastic structures, if the optimal layout is statically determinate
(as for Michell trusses, see Sved, 1954).

2.1.2 Illustrative Examples. Consider the problem in Figure 1 but in
the context of least-weight (Michell) trusses.

If we do not have any pre-existing member, then the known optimal solution
(Lewinski et al., 1994) is shown in Figure 3a, in which the number of radial
members in the “fan” is infinite. Note that there is no “concentrated member”
along the line segment QR.

Next we investigate the problem, in which a pre-existing member is along
the line segment QR. The optimal solutions are shown in Figures 3b and 3c
(for details and proofs, see Rozvany et al., 2006).

The results in Figure 3a and 3b were confirmed numerically using the SIMP
method (Rozvany and Zhou, 1991); for details, see Rozvany et al. (2006).
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Figure 3. Examples of exact optimal truss topologies: (a) without pre-existing members,
(b) with a not fully stressed pre-existing member, equal permissible stresses, and (c) with a
fully stressed pre-existing member, unequal permissible stresses.

Figure 4. Example based on Michell’s (1904) solutions: (a) supports and loading, (b) optimal
topology without pre-existing member, (c) optimal topology with pre-existing member along
QR.

Figure 5. Example based on the cantilever problem (e.g. Lewinski et al., 1994): (a) to (c) as
for Figure 4.

Further examples are shown in Figures 4 and 5, in which we show (a) the
support conditions and loading, (b) the known optimal solution without pre-
existing members (Michell, 1904; Lewinski et al., 1994) and (c) the solution
for a not fully stressed pre-existing member along QR (with zero adjoint strain
along QR).
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2.2 Trusses with Unequal Permissible Stresses in Tension
and Compression

In an earlier paper (Rozvany, 1996), the first author (a) pointed out an error
in Michell’s (1904) optimality criteria, (b) located the source of this error in
Michell’s proof, (c) proved that Michell’s original optimality criteria are valid
for a restricted class of support conditions and (d) presented an example show-
ing that significant savings can be achieved by using the correct optimality
conditions instead of Michell’s conditions.

Based on the correct optimality criteria for unequal permissible stresses in
tension and compression, Graczykowski and Lewinski (2005) developed math-
ematical methods for deriving systematically exact extended Michell trusses
for a variety of support conditions (one of these topologies was selected by
Springer for the cover design of SMO). The above work is an extension of two
papers by Lewinski et al. (1994).

2.3 Simultaneous Optimization of Structural Topology
and Supports of Non-Zero Cost

Optimality criteria for exact analytical solutions and examples were presen-
ted at a DCAMM symposium (Rozvany, 2003). Earlier numerical solutions by
Buhl (2002) were verified by reference to older classical solutions by the first
author (Rozvany and Gollub, 1990). The extended theory is based on any sup-
port cost function depending on the reaction forces. Buhl assumed a constant
support cost, which is less realistic.

2.4 New Corner Contact (or “Checkerboard”)
Suppression Methods

One of the most severe computational difficulties in FE-based topology optim-
ization is caused by solid (or “black”) ground elements connected only through
a corner node. This configuration may appear in checkerboard patterns, di-
agonal element chains or as isolated hinges. Corner contacts in nominally
optimal topologies are caused by discretization errors associated with simple
(e.g. four-node) elements (e.g. Sigmund and Petersson, 1998), which grossly
overestimate the stiffness of corner regions with stress concentrations. In fact,
it was shown by Gaspar (Rozvany et al., 2003) that both checkerboard pat-
terns and diagonal element chains may give an infinite compliance, if the latter
is calculated by an exact analytical method. This makes them the worst pos-
sible solution, if an exact analysis is used in compliance minimization. Corner
contacts may be suppressed by:
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(a) a more accurate FE analysis of the ground elements,

(b) modification of the original problem by using geometrical constraints or
“diffused” sensitivities (filters),

(c) employing a constraint preventing corner contacts directly, or

(d) correcting selectively the discretization errors by appropriately penaliz-
ing corner contacts.

Method (a) may use several simple FEs per ground element (e.g. Rozvany
and Zhou, 1991), or higher order elements (Sigmund and Petersson, 1998).
Disadvantages of this approach are (i) greatly increased DOF for a given num-
ber of ground elements and (ii) some diagonal chains remaining in the solution
(Gaspar et al., 2002).

Method (b), for example perimeter control (Haber and Bendsøe, 1996) or fil-
tering (e.g. Sigmund, 1994), changes the original topology optimization prob-
lem and usually results in a lower resolution, which may – in some cases – be
highly non-optimal (Rozvany et al., 2003) in terms of the original problem.

Methods (c) and (d) are similar, in so far as they both employ a “Corner
Contact Function” (CCF) that has a high value for corner contacts and a low
value for any other configuration around a corner node. This function is used in
(c) above in an additional constraint preventing corner contacts (e.g. Poulsen,
2002) or in (d) as additional term in the objective function representing pen-
alty for corner contacts. The latter approach seems the most rational, because
it rectifies the discretization errors, which lower incorrectly the value of the
objective function (e.g. compliance). Various new CCFs were investigated re-
cently; for details, see Pomezanski et al. (2005). An early corner contact
function was suggested by Bendsøe et al. (1993).

3. QUANTITATIVE METHODS FOR CHECKING ON
THE “GOODNESS” OF NUMERICAL TOPOLOGY
OPTIMIZATION METHODS

In spite of the abundance of new computational techniques and applications in
structural topology optimization, methods used for proving the validity, quality
and convergence of topology optimization procedures are often highly ques-
tionable. For the above “proof”, the majority of papers consider compliance
design for plane-stress perforated plate problems with support and loading con-
ditions, for which the optimal (Michell) truss solutions are known. Most au-
thors are quite satisfied if their discrete plate solution vaguely reminds them of
the corresponding exact truss solution, without even showing the details of the
latter.
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If we impose only behavioural constraints on our topology problem, the
theoretical exact solution usually contains an infinite number of perforations
or cavities. This means that with mesh refinement, the number of cavities in
FE-based solutions will keep on increasing. However, if we know the exact
analytical solution (with an infinite number of cavities), then we can show nu-
merically that the discretized solutions indeed tends to the exact solution (both
in volume and configuration), as we increase the number of ground elements
and decrease the volume fraction. Various computational difficulties in this
procedure and methods for overcoming them were discussed at the WCSMO-
6 meeting (Rozvany et al., 2005).

4. TOPOLOGY DESIGN BASED ON SO-CALLED
“EXTENDED OPTIMALITY” OR
“HYPER-OPTIMALITY”

In a typical 2D topology optimization problem, we have a perforated plate of
given thickness in plane stress, and we either minimize the compliance for a
given volume (volume fraction) or minimize the volume (volume fraction) for
a given compliance. In “extended” or “hyper-optimization” of the topology, the
plate thickness and volume fraction are variable, and we minimize the product
of total volume and total compliance. Obviously, hyper-optimization chooses
an optimal solution from an infinitely larger feasible set than conventional to-
pology optimization. Solutions of hyper-optimization were given in a paper by
Rozvany et al. (2002). It was found that hyper-optimal topologies may even
have a volume fraction of 100% or tending to 0%.

5. GRADIENT-TYPE METHODS (E.G. SIMP) VS.
NON-GRADIENT METHODS (SUCH AS ESO)

This topic was discussed in detail at the meeting.

6. THE DEPENDENCE OF GRADIENT-TYPE
METHODS ON CERTAIN HEURISTIC FEATURES

Even gradient-type topology optimization methods have some heuristic fea-
tures. The solution strongly depends, for example, on the corner contact
control (checkerboard suppression) method used. The widely used “filtering
method” is almost entirely heuristic at present. Even within a given corner
contact control method, the solution strongly depends on the choice of so-
called “tuning parameters”. The effect of the above parameters on the solution
is being studied.
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Abstract: Discrete Material Optimization is introduced as a method for doing material
optimization on general laminated composite shell structures where the object-
ive is to minimize maximum strain values. The method relies on ideas from
multiphase topology optimization and uses gradient information in combination
with mathematical programming to solve a discrete optimization problem. The
method can be used to solve the orientation problem of orthotropic materials and
the material selection problem as well as problems involving both. The method
has previously been applied to compliance minimization and its applicability
to min-max problems is demonstrated for two simple examples and the results
compared to designs obtained using compliance minimization.

Keywords: Optimization, shell, penalization, stress, laminate.

1. INTRODUCTION

The strive for lighter and stronger structures has in recent years resulted in an
increasing use of advanced materials such as composite materials. In partic-
ular fiber reinforced polymers (FRPs) have become very popular due to their
very high strength to weight ratio. For structural applications FRPs are stacked
in a number of layers, each consisting of strong fibers bonded together by a
resin, to form a laminate. The design problem is then to determine the stacking
sequence by proper choice of material and fiber orientation of each FRP layer
in order to obtain the desired structural performance. For complicated geomet-
ries this is a very challenging design problem that calls for use of sophisticated
structural optimization tools. In such cases it is convenient to introduce meth-
ods that can solve the discrete material selection problem together with the
continuous fiber orientation and thickness distribution problem, and one such
approach is the Discrete Material Optimization (DMO) method introduced by
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the authors (Stegmann, 2004; Stegmann and Lund, 2005; Lund and Stegmann,
2005). The shape and thickness of the composite structure are assumed to be
fixed, and the problem deals entirely with design of the lay-up of the laminated
composite.

The goal of this work is to solve the material optimization problem effi-
ciently for general laminated composite shell structures where the objective is
to minimize the maximum strain in some or all parts of the structure. This ob-
jective is of great importance for practical design applications since failure of
laminated composites is often evaluated based on maximum principal strain.
The platform for implementation is the finite element based analysis and op-
timization code MUST (MUltidisciplinary Synthesis Tool), developed at the
Institute of Mechanical Engineering, Aalborg University (MUST, 2005).

In the following we provide a brief review of the parametrization and the
optimization problem statement and subsequently present two numerical ex-
amples which focus on comparing the local strain criteria solutions to solu-
tions obtained using compliance minimization. First, the analysis aspects of
the optimization are revised and the basic notation introduced.

2. ANALYSIS OF LAMINATED COMPOSITES

Each layer, k, in the laminate is characterized by the constitutive matrix, Cl
k,

which is a function of the spatial orientation, θk, of the orthotropic material in
that layer such that Cl

k = Cl
k(θk). It is assumed that all layers are perfectly bon-

ded together, which constitutes an equivalent single layer (ESL) description,
and thus displacements and strains will be continuous across the thickness.
This type of model provides a good approximation of the structural stiffness
while interlaminar effects such as delamination are not predicted.

2.1 Finite Element Formulation

The structural response of a laminate subjected to a given set of boundary
conditions is obtained using the finite element method. The finite elements
used are 4-node shell elements with full integration and assumed natural strains
to circumvent problems with shear locking, see e.g. Dvorkin and Bathe (1984)
for details. The linear element stiffness matrix, Ke, is obtained as the sum over
all layers, Nl:

Ke =
Nl∑
k=1

∫
V

(Bl
k)
T Cl

kB
l
k dV , (1)

where Bl
k is the linear strain-displacement matrix of the k-th layer. In the usual

way the global stiffness matrix is obtained by summation over the total num-
ber of elements, Ne, whereby we may write the linear static equilibrium equa-
tions as

[∑Ne

m=1 Ke
m

]
u = p, in which the vectors u and p contain the global
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nodal displacements and consistent nodal loads, respectively. For local cri-
teria we need the strain vector, ε = (ε11, ε22, ε33, 2ε12, 2ε23, 2ε13)

T , which
can be expressed for any given layer from the strain-displacement relation
as εl = Blu. By application of Hooke’s law we obtain the linear stresses,
σ = (σ11, σ22, σ33, τ12, τ23, τ13)

T , directly in a layer as σl = ClBlu where u
indicates the element nodal displacements.

3. OPTIMIZATION OF LAMINATED COMPOSITES

A major aspect of optimization with laminated composites is finding the op-
timal orientation of the orthotropic materials. The classical gradient-based ap-
proach to this problem is to use the fiber angle, θk, of each layer as a continuous
design variable but this poses a major difficulty as the problem becomes non-
convex. This is, off course, not a new realization and several methods have
already been proposed to circumvent the problem of local optimum solutions.

The most widely used methods in practical engineering are the mathematical
programming techniques, which have been integrated in several commercially
available codes. The DMO method can be characterized as a gradient based
technique that introduces a new parametrization of the problem.

4. THE DMO PARAMETRIZATION

Discrete Material Optimization is essentially an extension of the ideas used in
structural topology optimization but in stead of choosing between solid and
void we want to choose between multiple distinct materials. This can be stated
as: for all elements and layers in the structure find one distinct material from
a set of pre-defined candidate materials such that the design performance is
improved. To achieve this we employ the multi-phase topology optimization
strategy introduced by Sigmund and co-workers (Sigmund and Torquato, 1997;
Gibiansky and Sigmund, 2000) in which the total material stiffness is com-
puted as a weighted sum of candidate material stiffnesses.

In the present context this means that the constitutive matrix is computed as
a weighted sum of a finite number of constitutive matrices, each representing a
given candidate material that may be used in the lay-up. The orientation of or-
thotropic materials is encompassed by treating different orientations (represen-
ted by the fibre angles, θi) as different candidate materials and thus computing
the constitutive matrix at a number of discrete angles, i.e. Ci = C(θi). Con-
sequently, the design variables are no longer the fiber angles but the scaling
factors (or weight functions) on each constitutive matrix in the weighted sum.
Other materials such as polymeric foam, balsa wood, aluminum, CFRP, etc.
may also be included in the weighted sum to allow selection of both best ma-
terial and best orientation. The objective of the optimization is then to drive the
influence of all but one of these constitutive matrices to zero for each layer by
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driving all but one weight function to zero. As such, the methodology is very
similar to that used in topology optimization, which is further emphasized by
the fact that the method is still limited to operate on a fixed design domain, i.e.
thicknesses and shape are not changed.

4.1 The Methodology

The DMO parametrization is, as in topology optimization, invoked at the finite
element level. The layer constitutive matrix, Cl , is expressed as a weighted
sum of candidate materials, each characterized by a constitutive matrix, Ci . In
general, this may be expressed as a sum over the number of candidate materials
for the layer, nl:

Cl =
nl∑
i=1

wiCi = w1C1 + w2C2 + · · · + wneCne , 0 ≤ wi ≤ 1. (2)

It follows that the number of candidate materials is also the number of layer
design variables and if Nl is the number of layers in a given element, the total
number of design variables for a multi-layered element, ne, is the sum over all
layers ne = ∑

Nl

k=1 n
l
k.

The weights, wi , in Equation (2) must have values between 0 and 1 as no
matrix can contribute more than the physical material properties and a neg-
ative contribution is physically meaningless. In this way the weights on the
constitutive matrices become “switches” that turn on and off stiffness contri-
butions such that the objective is minimized and a distinct choice of candidate
material is made. The task of the optimization is therefore to eliminate the
influence of all but one of these materials by driving all but a single weight
factor, wi , to zero.

5. ELEMENT LEVEL PARAMETRIZATION

The simplest choice of weight functions would be to extend the classical topo-
logy optimization parametrization to multiple design variables, xi , as:

Cl =
nl∑
i=1

(xi)
p︸︷︷︸

wi

Ci = (x1)
pC1 +(x2)

pC2 +· · ·+(xnl )
pCnl , 0 ≤ xi ≤ 1. (3)

Here, each design variable scales only one constitutive matrix and thus has no
effect on any of the other candidate materials. To push the design variables
towards 0 and 1 the SIMP method has been adopted by introducing the power,
p, as a penalization of intermediate values of xi , see e.g. Bendsøe and Sigmund
(2003) for details. The method in Equation (3) is not very efficient as it fails to
push the design to its limit values. Consequently, an alternative interpolation
has been proposed, which is a simple extension of Equation (3):
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Cl =
nl∑
i=1

(xi)
p

nl∏
j=1;j �=i

[
1 − (xj )

p
]

︸ ︷︷ ︸
wi

Ci . (4)

The difference from Equation (3) is the term [1 − xj ]p, which is included so
that an increase in xi automatically involves a decrease in all other weights.
This helps drive the design towards 0/1 and the method has proven quite ef-
fective for particularly compliance minimization problems. However, the sum
of the weight functions in Equation (4) is not 1 and consequently, the stiff-
ness computed from Equation (1) will be unrealistically low, which leads to
non-physical displacements and strains. For pure fiber angle optimization with
compliance objective this does not pose a problem, but for problem of min
max strain we must require that

∑
nl

i=1 wi = 1.0. Thus a normalization of the
weights is introduced as:

wi = ŵi∑ne

k=1 ŵk

, i = 1, . . . , nl, (5)

where the weight functions ŵi are computed aswi in Equation (4). The weights
in Equation (5) have been used for the examples presented in this work to
ensure that stiffness, strains and stresses are realistic. However, using these
weights alters the effect of the penalization and renders the parametrization less
effective than Equation (4) used directly with respect to driving the weights to
0/1. Consequently, the normalized weighting scheme, Equation (5), converges
slower to a design where all layers in all elements have been assigned a dis-
tinct material – the degree of “distinctiveness” is called the DMO convergence
measure, which is just the ratio of converged elements/layers to total number
of element/layers, see details in Stegmann and Lund (2005).

6. THE OPTIMIZATION PROBLEM

The DMO problem is stated as a mathematical programming problem, which
is solved using the Method of Moving Asymptotes (Svanberg, 1987). Min-
imization of maximum local quantities is formulated as a min-max problem,
subject to an optional constraint on total mass, mc. The problem is stated using
a bound formulation as described in Bendsøe et al. (1983) and Olhoff (1989):

Objective : min
x, β

β

Subject to : εk(x) ≤ β , k = 1 . . . na

(m ≤ mc)

0 ≤ xmin ≤ x ≤ 1

(6)
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The number of strain values in Equation (6) becomes very large for models
involving many elements and layers and consequently, an active set strategy
is used in which only a user-specified fraction of strain values is used. The
number of values in the active set is designated na as indicated in Equation (6).

In solving the optimization problem Equation (6) we need the sensitivities
of the k-th strain, which is obtained using the chain rule for the i-th design
variable since the objective is implicitly a function of the displacements and
directly a function of the design variables (in the case of strains), i.e. we may
write εk = εk(u(x), x) and obtain the approximated derivative as:

dεk

dxi
� εk

(
u(x)+ du

dxi
�xi

) − εk
(
u(x)

)
�xi

. (7)

When evaluating Equation (7) we need the displacement sensitivities, which
are obtained in the standard way using direct differentiation:

K
du
dxi

= −∂K
∂xi

u + ∂p
∂xi

. (8)

This equation is easy to solve since the sensitivity of the stiffness can be evalu-
ated analytically and the factored stiffness matrix is already available from the
static solution.

7. NUMERICAL EXAMPLES

The DMO method has been implemented in the finite element based sys-
tem MUST, which is aimed at analysis and design of structural problems as
well as multidisciplinary problems such as fluid-structure interaction problems
(MUST, 2005). The system is capable of reading input from an external pre-
processor such as ANSYS. To run the optimization it is only necessary to add
some specific information about the optimization run.

In the following two simple examples are presented in order to illustrate the
results obtained using local strain criteria and compare to minimum compli-
ance results.

7.1 Example 1 – Single-Layer Plate

First a single layer clamped plate subjected to uniform pressure is solved for
both maximum integral stiffness and subsequently for minimization of the
maximum strain. The strain value used is the first principal strain, which
is the largest strain occurring in the structure. The plate has dimension
100 × 100 [mm] and thickness of 0.05 mm. The material is an orthotropic
glass/epoxy with Ex = 54 GPa, Ey = 18 GPa, Gxy = Gxz = Gyz = 9 GPa
and νxy = 0.25 and it may be oriented at the fiber angles [90◦,±45◦, 0◦],
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(a) (b)

Figure 1. Fiber angle distribution in clamped plate subject to distributed load – design optim-
ized for maximum stiffness (a) and min-max first principal strain (b).

which brings the number of candidate materials to 4 per element. The plate
is modeled using a mesh of 20 × 20 4-node MITC stabilized shell elements
whereby the total number of design variables is 1600. The active set toler-
ance is set to 90% so that only elements that are strained to more than 90%
of the maximum strain are included in the optimization. The SIMP power is
increased from 2.0 to 6.0 in steps of 1.0 every 10 iterations.

The results of the two optimizations are shown in Figure 1 where a clear
difference in fiber angle distribution can be noted. The fiber angle distribu-
tion obtained using the min-max optimization is more localized than the fiber
angles obtained using minimum compliance optimization, which is in good
agreement with the nature of the two objectives used.

The center point displacement in the minimum compliance design is 15%
lower than in the min-max strain design, but the strain levels are significantly
lower in the min-max strain solution, see Figure 2. As can be seen, the max-
imum strain is around 14% lower than in the minimum compliance design and
in general, the large strains occur over a larger area.

7.2 Example 2 – Single-Layer Spherical Cap

Now a spherical cap is investigated to evaluate the capabilities of the proposed
method for a doubly-curved shell. The base of the shell structure is spanned
by a 1000 × 1000 [mm] square and the center point rises 100 mm above the
base. The four sides are prescribed by parabolas and the surface is generated
by dragging one parabola along an identical parabola. In mathematical terms
the surface may be described as z(x, y) = h − 2h

l2
(x2 + y2) where h is the

height of the center point and l is the side-length, here 100 and 1000 [mm],
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2.667E-023

Figure 2. Principal strain distribution in clamped plate subject to distributed load – design
optimized for maximum stiffness (a) and min-max first principal strain (b).

Figure 3. Geometry of hinged spherical cap example shown with actual thickness; all edges
are hinged, i.e. all translational displacements are fixed.

respectively. The thickness of the shell is 8 mm and the structure is loaded
by a single load in the center point and the model is hinged on the four edge
curves. The entire shell geometry is modelled using a 30 × 30 mesh of 4-
node MITC-stabilized shell elements. The geometry and mesh are shown in
Figure 3. As candidate materials we again use a glass/epoxy composite with
Ex = 54 GPa, Ey = 18 GPa, Gxy = Gxz = Gyz = 9 GPa and νxy = 0.25 and
the permissible fiber angles [90◦,±45◦, 0◦], which results in 4 design variables
per element and thus 3600 design variables in total. As before, the active set
tolerance is 90% and the SIMP power is increased from 2.0 to 6.0 in steps of
1.0 every 10 iterations.

The optimal design is found for both compliance and min-max strain and
again, there are notable differences in the resulting fiber angles as shown in
Figure 4. As in the previous example, the fiber angles obtained using min-max
optimization are more localized that those obtained using a global criteria.

As in Example 1 the minimum compliance design is stiffer but this time only
by approximately 4%. The maximum strain in the design by min-max optimiz-
ation is approximately 3% lower compared to the minimum compliance design
as shown in Figure 5.
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(a) (b)

Figure 4. Fiber angle distribution in spherical cap subjected to concentrated center point load
– design optimized for maximum stiffness (a) and min-max first principal strain (b).
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1.974E-009

1.827E-013

Figure 5. Principal strain distribution in spherical cap subjected to concentrated center point
load – design optimized for maximum stiffness (a) and min-max first principal strain (b).

8. CONCLUDING REMARKS

In the present paper Discrete Material Optimization (DMO) is introduced as a
new gradient based technique for minimizing the maximum strain by optimiz-
ing material choice and material orientation. The method operates on a fixed
domain, i.e. shape and thicknesses are defined a priori and remain fixed, and
as such we deal entirely with solving a laminate lay-up problem.

In the two numerical examples presented the DMO method is able to suc-
cessfully reduce the strain level in the structure. Comparison with minimum
compliance optimization results indicate that the min-max formulation per-
forms as expected. So far the major drawback of the DMO methodology is the
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large number of design variables and, with the introduction of local criteria,
a large number of criteria functions. This renders the optimization problem
computationally expensive to solve and thus it presently constitutes a practical
limit on the problems that can be considered. For compliance minimization
the authors have successfully solved problems involving up to around 750, 000
design variables on a standard PC (Lund and Stegmann, 2005). For both min-
max and minimum compliance problems the vast majority of time is spend
on computing the design sensitivities for all design variables. However, patch
design variables may be used to reduce the number of design variables and the
active set strategy can be used to reduce the number of criteria functions, thus
reducing computational cost.
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Abstract: A methodology for a linearized elastic buckling analysis based on a two-scale
asymptotic method for periodic materials is generalized to three-dimensional
case and implemented at microscale level. The present two-scale method
provides a set of uncoupled problems for the linearized elastic stability analysis
at the macroscale and the microscale material levels respectively. For the micro-
scale level problem, it is considered an infinite and periodic structured medium
for a given average (at the macroscale level) strain. Using the Floquet–Bloch
wave theory within the finite element method and a continuum topology op-
timization problem, implicitly assuming repetitive cells, the minimum critical
buckling strain is obtained and maximized while the cell volume fraction is kept
constant. The performance of the implemented methodology is tested for differ-
ent cases. Results obtained with finite repetitive medium for periodic open cells
versus closed cells keeping the same cell volume fraction are discussed.

Keywords: Two-scale periodic materials, linearized elastic stability, Floquet–Bloch wave
theory, topology optimization.

1. INTRODUCTION

The spatially periodic microstructures studied here are modeled as a perfectly
periodic repetition of a unit or base cell. For these, the respective homogenized
or effective elastic properties are found by the mathematical theory of homo-
genization which is a classical averaging technique [1].

When tailoring these materials for extremal elastic properties with a given
volume fraction (material density) slender members are often present as a con-
sequence of using a linearized elasticity model. So, a limiting rule for the mi-
crostructural design of periodic materials is the elastic buckling phenomena,
since there is a limit to the reduction in the slenderness of the cell elements.

99

Martin P. Bendsøe et al. (eds), IUTAM Symposium on Topological Design Optimization of
Structures, Machines and Materials: Status and Perspectives, 99–106.
© 2006 Springer. Printed in the Netherlands.



M.M. Neves

Figure 1. Three-dimensional representations of 3 by 3 cells of 2D periodic microstructures.

The characterization of the elastic stability of periodic materials and its op-
timization are still a challenging problem that continues receiving some interest
from researchers in the area.

A first work in microstructural design against buckling of microstructured
medium was due to Bendsøe and Triantafyllidis [2]. They presented a tractable
size optimization model for an infinite rectangular frame. The case of axially
deformed layered composites under plane-strain conditions was investigated
by Triantafyllidis and Maker [3]. In 1993, Geymonant et al. [4] illustrated the
completeness of the Bloch wave representation for capturing the first instability
in finite strained periodic composites. Schraad and Triantafyllidis [5] used the
nonlinearly elastic lattice model to study the influence of scale on the onset of
failure.

The present work uses a linearized elastic buckling model [6] combining the
same kind of topology optimization techniques described for the “inverse ho-
mogenization” problems (see, for example, [7–11]) and an eigenvalue buckling
analysis combined with a Bloch wave technique [12].

This article is organized as follows. Section 2 contains a brief description of
the mechanical model for the linearized elastic buckling of a periodic material.
In Section 3, the topology optimization problem is stated. In Section 4, results
from finite repetitive medium obtained through a classical buckling finite ele-
ment analysis for periodic open cells versus closed are presented.

2. THE LINEARIZED ELASTIC BUCKLING
PROBLEM WITH BLOCH WAVE RELATIONS

A mathematical model for linearized elastic buckling analysis of structures
with periodic materials was presented by Neves et al. [6]. This model states
a linearized elastic stability condition for an infinite medium that has stress
stiffening as the only non-linear effect.

The problem of finding the first critical macroscale strain factor PY
r reduces

to the following equation at microscale:

(KY (k)− PY
r ∗ KGY (k))φ

r = 0, (1)
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Figure 2. Schematic representation of the two scales x and y and the repetitive base cell.

Figure 3. Brillouin zone for wave numbers k.

where KY and KGY are stiffness and geometric matrices, respectively; k is the
wave vector that runs over the Brillouin zone (see Figure 3) allowing to cover
possible wavelengths; PY

r is the critical strain factor at macroscale x and φr

are the associated eigenmodes at microscale y.
The boundary displacements of the cell are imposed by the Bloch wave

relations:

φ(y1 + 2d1, y2 + 2d2, y3 + 2d3) = ei(k1y1+k2y2+k3y3)φ(y1, y2, y3). (2)

Note that Equation (2) requires evaluation of the stress field at cell level (micro-
scale y). For a model description, see [12].

Figure 4 illustrates the obtained critical strain factors as function of wave
numbers k = (k1, k2, 0) for a macroscale strain of ε = C{−1,−1, 0, 0, 0, 0}
(where C is a given constant) assuming a unitary Young’s modulus and unitary
cell dimensions 2 ∗ d1 and 2 ∗ d2.

For the square honeycomb structure with volume fraction of ρ = 0.19 (dis-
cretized with solid finite elements of 8 nodes), the plot of the critical strain
factor as a function of wave numbers makes it evident that shear mode (long
wave length) is associated with the lowest critical strain factor (PY

cr = PY
1 =

0.024) and not with the periodic mode at the origin point k1 = k2 = 0.0.
Different behaviour has the hexagonal honeycomb with volume fraction of

ρ = 0.19 presenting a periodic mode very near to that of a shear mode (PY
cr =
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Figure 4. 3 by 3 cells of a square honeycomb and a plot of its critical strain factors versus
wave numbers k for biaxial compression.

Figure 5. Critical strain factors versus wave numbers k for biaxial compression.

0.008). Figure 5 has no discontinuity near the origin. Both global and local
buckling behaviour present near critical values at origin which gives safety for
a mechanical of materials approach to get critical strain factors.

3. THE OPTIMIZATION PROBLEM

To explore the potentialities of Bloch wave technique mentioned in Section 2
the following optimization problem is formulated. This maximizes the lowest
critical strain factor PY

1 for a given load at macroscale and a fixed amount of
volume of material.

max
µ

min
i=1,...,n

P Y
i (k)

subject to:
∫
Y

µ(y) dY = V0. (3)

Figure 6 presents an obtained optimal reinforcement for square honeycomb
under uniaxial compression (for details, see [12]).
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Figure 6. Optimal reinforcement.

4. OPEN CELLS VERSUS CLOSED CELLS: ON THE
OPTIMALITY OF THE BONE MICROSTRUCTURE

Studies on the optimality of periodic structures concluded with the observation
that cancellous bone structure does present a non-optimal stiffness [13]. The
reason is that cancellous bone is comprised of open wall cells that present non-
optimal stiffness.

A question arises from it: what other criteria can make cancellous bone
optimal? This question is still a open problem. One possible criterion often
mentioned is a buckling constraint preventing very thin plates to develop.

The present stage of this study does not allow a definitive answer to this
question but several considerations are presented.

Several finite repetitions of aluminum-made open wall cells and closed wall
cells, as shown in Figures 7 and 8 respectively, were tested for the same volume
fraction and subject to same uniaxial compressive load.

A comparison of the linearized elastic buckling performance between sev-
eral open wall cells and closed wall cells was done using a standard finite ele-

Figure 7. Obtained critical eigenmode and representation of finite element boundary condi-
tions for the finite repetition test with uniaxial compression.
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Figure 8. Critical eigenmodes obtained with closed wall cells.

ment eigenvalue buckling analysis. The main results are presented in Figure 9,
for the same boundary conditions and uniaxial compressive load.

From the obtained results for volume fractions of 0.1 we observed that
closed wall cells present critical load factors near to that obtained with the
open wall cells.

For volume fractions less than 0.1 the open cells built with beams presented
better buckling performance than the closed cells built with plates. For volume
fractions great than 0.1 the closed cells have better buckling performance than
the open cells. We observed that independently of the volume fraction value
the critical eigenmodes were global for open cells and local for closed cells.

Notwithstanding the particular test conditions used, this result is up to cer-
tain extent unexpected for the high volume fractions. It shows that in general
we can not simply assume a repetitive structure built of open cells as being
optimal with respect to elastic buckling behavior. Results obtained show that
open wall cells with low volume fractions that present non-optimal stiffness
have associated a best elastic buckling performance.

The results obtained in this section are a small but new contribution for the
understanding of the structural influence on bone-remodeling mechanism. This
is an important motivation for future numerical studies.
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Figure 9. Comparison of buckling response between open and closed cells with a finite
repetition of cells for different volume fractions: 0.01, 0.15 and 0.20. Critical factors were
divided by the lowest load factor obtained with the closed cells for a volume fraction of 0.15.
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Abstract: A general model of cylindrical structure filled with linear metal cellular material
is constructed to simulate a multi-tubular heat exchanger in this paper. Optimum
design of cellular material distribution aims at maximization of heat dissipation
rate while minimizing the prescribed flow pressure. Three-dimensional variation
of temperature is considered. Five types of inner cell topology and various fluid
nominal velocities are compared. We discuss in general the guideline for multi-
tubular heat exchanger design to maximize heat dissipation efficiency based on
insights from these optimization results. In the final part, a CPU cooler design
is studied by our presented approach.

Keywords: Topology optimization, cellular materials, multi-tubular heat exchanger, heat
dissipation, concurrent design of materials and structures.

1. BACKGROUND AND MODEL DESCRIPTION

In the modern industrial production, multi-tubular heat exchanger is a very
important thermal component. Heat sink in the electronic equipment [1, 2]
and monolithic catalyst support in the chemical reaction engineering [3, 4]
are the examples of multi-tubular heat exchanger. The primary consideration
for multi-tubular heat exchanger design is the efficiency of heat dissipation
through solid conduction and forced convection. Obviously, a good heat ex-
changer should have an optimum material distribution within the cross section
in order to dissipate as much heat as possible. For decades numerical tech-
niques, based on discrete model [5, 6] or continuous model [4, 7], are largely
employed in heat exchanger design. Groppi and Tronconi studied the devi-
ations between the two types of models by numerical experiment. A major
merit of the continuous model is to allow for remarkable saving in computa-
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(a) (b)

Figure 1. Structural morphology of nature: (a) Cross-sectional views of the head of a femur
and the tibia; (b) Cross-sectional views of stalk of a plant.

Figure 2. Cylinder structure filled with linear metal cellular material.

tional efforts and a better accuracy [8]. In previous work, people have generally
focused on materials with certain pre-defined, uniformly distributed periodic
microstructures. In comparison, when we examine bio-structures in nature
(such as the head of a femur and the tibia, stalk of a plant, see Figure 1 [9]) we
discovered that their morphology is very complicated and their microstructure
is much more diverse. In addition, their material distribution on macro-level
is far away from uniform. This inspires our study on concurrent material and
structural optimum design in order to achieve a non-uniform design within the
cross section of the heat exchanger.

A multi-tubular heat exchanger is shown in Figure 2. It is a cylindrical
structure made of linear metal cellular material. The outer surface � of the
cylindrical structure is subject to thermal boundary condition. Cooling or heat-
ing fluid is forced to pass through the cylinder in order to transfer heat with
the cell structure walls. Flow temperature varies along the length of the cylin-
der. Three-dimensional variation of the temperature, i.e., variation within cross
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Figure 3. Micro morphology of the five types of cellular cell: (a) Triangle-4; (b) Triangle-6;
(c) Square-3; (d) Square-4; (e) Hexagon.

section area and along the generating line of the cylinder is considered in the
problem formulation. For purpose of illustration a hexagonal cell is shown in
Figure 2. The idea of our work is to find optimum design of material distri-
bution within the cross section for maximization of heat dissipation efficiency
under prescribed flow pressure based on the continuous model and topology
optimization technique [10, 11]. Both relative density and local cell size distri-
bution of cellular material are to be optimized under the total material volume
constraints. Thermal performances of five types of cellular cells are investig-
ated.

To describe material distribution of the total cross section, we divide the
cross section into a number of sub-domains, which could be one element or a
group of elements in the finite element setting. In each sub-domain, the mater-
ial distribution or the arrangements of cells are uniform and are characterized
by the cell size li , cell wall thickness ti , relative density ρi (array density ρ∗
divided by solid cell wall density ρs); Figure 3 illustrates the cell shapes and
arrangements. For simplicity, all cellular arrays are assumed to be perfect, free
of process-induced geometrical imperfections. The surface area density αA
and corresponding hydraulic diameter Dh are functions of ρi and li as

αA = ca

√
1 − ρi

li
; Dh ≡ 4

1 − ρi

αA
= 4

li
√

1 − ρi

ca
. (1)

The coefficient ca and the other five coefficients for the five types of inner
cell are listed in Table 1.

2. GOVERNING EQUATIONS OF
THREE-DIMENSIONAL HEAT TRANSFER

In order to study the three-dimensional heat transfer of the cellular structure,
the cylindrical structure is cut into a number of slices along its axial direc-
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Table 1. Six coefficients for five types of cell shape and cell arrangement.

Inner Cell type cl ca ζx ζy Nu cf

Triangle-4 1/
√

3 4
√

3 0.5 1/3 2.35 13.3
Triangle-6 1/

√
3 4

√
3 0.5 0.5 2.35 13.3

Square-3 1 4.0 0.5 0.4 2.980 14.17
Square-4 1 4.0 0.5 0.5 2.980 14.17
Hexagon

√
3 4

√
3/3 0.5 0.5 3.353 15.07

tion. The coordinates of the two end cross sections of a typical slice are z and
z + �z. We assume that at each cross section z fluid temperature is uniform
and denoted by Tf (z). The governing equation is developed in the following.
We assume steady-state heat transfer, fully developed laminar flow, constant
physical properties of the fluid phase and negligible axial heat transfer in the
solid phase by conduction. To describe fluid phase temperature change over
the length of the slice we apply the steady state enthalpy balances for fluid
phase. So the average fluid temperatures of the two neighboring cross sections
satisfy the following equation

Tf (z +�z) = Tf (z)+ Qi

cpρf ν0S
, (2)

where Tf (z+�z) is the average fluid temperature of the cross section z+�z,
and Qi is the heat dissipation rate of the fluid over the i-th slice; cp is the mass
specific heat; and S is the area of the structural cross section. Enthalpy balance
for solid phase on the cross section of the slice gives

∂

∂x

(
kx
∂T

∂x

)
+ ∂

∂y

(
ky
∂T

∂y

)
− hαA(T − Tf (z)) = 0, (x, y) ∈ �. (3)

Associated thermal boundary conditions are considered in our formulation.
It should be emphasized that the Enthalpy balance governing differential equa-
tion (3) is developed based on the concept of meso-structural model and homo-
genization. For low-density foam the apparent thermal conductivity is related
linearly to its local relative density ρi [9]. The local heat transfer coefficient h
and the apparent thermal conductivities in two orthogonal directions kx and ky
are given as

h = Nu kf /Dh;
{
kx = ζxρiks + (1 − ρi)kf ,

ky = ζyρiks + (1 − ρi)kf .
(4)

Here Nusselt number Nu and coefficients ζx and ζy (see [12]) have been
listed in Table 1. ks and kf and are thermal conductivity of the cell wall and
fluid respectively.
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Equation (3) and the associated thermal boundary conditions can be solved
by FEM. Detailed derivations of FEM formulation can be found in [7, 13].

In the following numerical treatment, the design domain is meshed into
quadrilateral elements. The total number of elements is n and the number
of slice is ns. By applying the standard FEM procedure we obtain the total
heat dissipation rate from the structure.

Q =
ns∑
i=1

n∑
i=1

∫
�e

(
(hαA)

2NTNT e − (hαA)
eNTf (z)

)
d�. (5)

The pressure drop �P needed to force the fluid through the cylinder is

�P = (2×cf×L×ρf×ν0×µf )

n∑
j=1

sj (1−ρj )
(

n∑
i=1

c2
t l

2
i si(1 − ρi)

3

)−1

, (6)

where ν0 is the nominal velocity of fluid flow, si is the area of the i-th element,
the parameters ρf and µf denote the density and kinematic viscosity of fluid
flow, respectively, and the frictional coefficients cf and coefficients ct have
been listed in Table 1.

3. MATHEMATICAL FORMULATION OF OPTIMUM
TOPOLOGY DESIGN (OTD)

The heat dissipation performance of the structure is commonly gauged by the
ratio of total heat dissipation rate Q from the structure to the pressure drop
�P needed to force the fluid through. In this work the ratio is referred to as �;
the higher this ratio, the better the structure performance. The optimum design
problem for maximizing the efficiency of heat dissipation is written as

Find ρ = {ρ1, ρ2, . . . , ρn}; l = {l1, l2, . . . , ln}
Max � = Q

�P

S.t. KT (ρ, l)T = R(ρ, l)
n∑
i=1

ρisi ≤ V

ct li(1 − √
1 − ρi) ≥ t i = 1, 2, . . . , n (7)

li ≥ 2

√
si

nctH

4

caµf

ν0li√
1 − ρi

≤ 2300
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0 < ρ ≤ ρi ≤ ρ̄; l ≤ li ≤ l̄,

In Equation (7) the set of constraints include the governing equation, ma-
terial volume limitation, manufacture technique limitation, the constraint on
minimum number H of cells in one element (meso-structural model), the con-
dition to ensure fully developed laminar flow and the upper and lower bounds
of design variables respectively. The above optimization formulation is solved
by the well-known Sequential Quadratic Programming approach. In all of the
following examples, numerical iteration starts from initial uniform design, i.e.,
uniform aperture and local density for all elements.

4. NUMERICAL EXAMPLES

Numerical results of double examples are presented here. In the first example
we study optimum design of a cylindrical structure of square cross section,
filled with the square-4 type cellular metal cell. The thermal performance of
optimum topology design (OTD) is compared with optimum uniform design
(OUD) under various fluid nominal velocities. The results confirm the op-
timum of OTD. In the end, we discuss the effect of other types of inner cell for
the thermal performance. In the second example, we construct an optimization
design for CPU cooler.

4.1 Example 1

Here we consider a cylinder structure of 64 mm × 64 mm square cross section
and 25 cm length. Cooling water of temperature 283 K surrounds the structure.
The fluid temperature is 700 K at inlet. The data of parameters are ν0 =
11 m/s, cp = 1030 J/kg·K, ρf = 0.7048 kg/m3 and µf = 26.71 × 10−6 m2/s.
The thermal conductivity of metal and fluid are ks = 200 W/m·K is kf =
0.02 W/m·K, respectively. The number of elements and design variables are
144 and 288, respectively. The upper bound for material volume is 0.3. Only
the square-4 type cell is considered. The initial design is the optimum uniform
design (OUD), which has uniform local volume density ρ and cell size l for all
elements and meets the set of constraints in (7). To obtain the optimum uniform
design, we calculate the thermal performances of a set of uniform designs, and
pick the optimum uniform design among them. Maximum heat dissipation
performance 31.81 is attained at the uniform design ρ = 0.1 and l = 3 mm.
By allowing non-uniform distribution of local relative density and cell size the
optimum heat dissipation performance is 41.36, which increases by 30% as
compared with the performance of OUD. And the optimum material volume is
0.18154. The final material distribution is schematically shown in Figure 4(a).
In Figure 4(b), the structural temperature fields in the longitudinal section for
OUD (top) and OTD (bottom) are presented. There is a very long hot-core of
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(a) (b)

Figure 4. (a) Material distribution by OTD; (b) Structural temperature fields in the longitud-
inal section (the top is OUD and the bottom is OTD).

Figure 5. Ratio of performance of heat dissipation (OTD’s/OUD’s).

higher temperature from 400 K to 450 K through the structure of OUD. But, in
the OTD, the hot-core is very short only at inlet and the gradient of temperature
is much smaller than in the OUD. In addition, the OTD significantly reduces
the temperature difference between the fluid and cell wall based on insights
from the optimization results.

To study the effect of fluid nominal velocity, Figure 5 presents the ratio of
the performance of OTD to performance of OUD. As the nominal velocity of
fluid flow increases, the ratio increases. It means that OTD becomes more and
more valuable with increasing the fluid nominal velocity.

Now let us study the effect of various types of inner cell for the performance
of heat dissipation. Figure 6(a) presents unitary performance of heat dissipa-
tion for three types of inner cell versus fluid nominal velocities. At a same
nominal velocity ν0 = 11 m/s, optimum performances are 12.37, 41.36 and
98.30 for triangle-6, square-4 and hexagon cell respectively, and the optimum
material volumes are 0.26508, 0.18154 and 0.13471 respectively. Figure 6(b)
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(a) (b)

Figure 6. Comparison for various inner cell types: (a) Unitary performance of heat dissipa-
tion; (b) Total heat dissipation from structure.

shows another important comparison of the total heat dissipation rate from
structure. It can be seen from the two figures that as the nominal velocity of
fluid flow increases, the total heat dissipation rate increases and the perform-
ance of heat dissipation decreases. The performances of cylindrical structure
with hexagon and square cell are much better than the structure with triangle-
6 cell, and the total heat dissipation rate from the structure with square and
triangle-6 cell are better than the structure with hexagon cell.

4.2 Example 2

In this section, we construct a cylindrical structure of square cross section of
10 cm × 10 cm and 10 cm length to simulate a CPU cooler. The performance of
heat dissipation is the most important thermal index for the CPU cooler design.
The number of elements and design variables is 100 and 200, respectively.
The fluid temperature is 293 K at inlet. The bottom side is maintained at a
uniform constant temperature of 373 K. At the other three sides, the ambient
temperature is 293 K and convection heat transfer coefficient β = 20 W/m·K.
The data of parameters are cp = 1005 J/kg·K, ρf = 1.060 kg/m3, ν0 = 10 m/s
and µf = 20.1 × 10−6 m2/s, respectively. The thermal conductivity of metal
and fluid are ks = 200 W/m·K and kf = 0.02 W/m·K. Only the square-4 type
cell is considered. The optimum design is schematically shown in Figure 7(a).
The performance of our presented OTD is 43.32, which increases by 80% as
compared with the performance of OUD. The optimum material volume is
0.151. Figure 7(b) shows the temperature profiles along its axial direction.
Compared with the OUD, the temperatures of gas and cooler of OTD are all
increased, which indicates the material distribution of present OTD is more
beneficial for heat exchange. We can conclude that the material distribution is
too novel to be predefined.
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(a) (b)

Figure 7. CPU cooler design: (a) Optimum material distribution; (b) Temperature profiles.

5. CONCLUSIONS

A general mathematical model for optimum design of a multi-tubular heat ex-
changer for optimum efficiency of heat dissipation is studied in this paper.
Structural topology optimization methodology is applied to formulate the prob-
lem. Thermal analysis is based on a continuous model, and a three-dimensional
temperature distribution is considered. The effectiveness of our approach is
demonstrated by numerical examples. By optimizing the distribution of the
local volume density and cell size, the efficiency of the heat dissipation could
be greatly improved. Based on insights from the numerical results, square
and hexagon cells show their superiority for the performance of heat dissipa-
tion, and the OTD would become more and more valuable as the fluid nominal
velocity increases. Although optimal design obtained with the above formula-
tion remains a challenge to the present manufacture techniques, it provides a
guideline for the material design.
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LAYOUT OF TILEABLE MULTISTABLE
STRUCTURES USING TOPOLOGY
OPTIMIZATION

Jitendra Prasad and Alejandro R. Diaz
Mechanical Engineering Department, Michigan State University,
East Lansing, MI 48824, U.S.A.

Abstract: This work presents a formulation for the design of tileable bistable structures
using a topology optimization method. Modeling is based on a ground structure
approach, where each member is represented using a non-linear beam. A mem-
ber is either hinged or fixed at either end and a rubber-like material is used to
model the hinges. The optimization is implemented using a genetic algorithm.
The methodology developed is illustrated with an example.

Keywords: Bistable structures, bistable mechanisms, compliant mechanisms, tileable struc-
tures, periodic structures.

1. INTRODUCTION

A bistable structure has two different stable configurations when not loaded.
A two-bar truss with fixed ends loaded at the middle joint is a simple example
of a bistable structure (Figures 1(a, b)). Figure 1(c) shows a typical plot of the
force applied on this bistable structure versus the displacement of the loaded
joint. The origin of the plot (state C) corresponds to the first stable configur-
ation (Figure 1(a)). Under a monotonically increasing force, the loaded joint
gradually deflects downward until it reaches state D, where the structure be-
comes unstable and snaps through to state H. When the structure is unloaded
from H, the structure settles at state G with zero load. The state G corresponds
to the second stable configuration (Figure 1(b)).

Bistable structures are used in, e.g., mechanical switches, snap-shut lids,
valves, spectacle frames. Such structures also find applications as switching
devices in micro-electro-mechanical systems (MEMS), actuators and sensors.

Prasad and Diaz (2005) used a ground structure of nonlinear beam ele-
ments to design bistable structures. Hinges were modeled using a small cross-
sectional area at either end of the member. In the present work, the hinges
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Figure 1. An example of bistable structure; (a) first stable configuration, (b) second stable
configuration.

Figure 2. A 2D bistable structure; (a) 1st stable configuration, (b) 2nd stable configuration.

are modeled using a rubber-like material, which would be useful to keep the
stresses within limits. An arc-length-method is used to analyze the new model.

2. AN EXAMPLE OF TILEABLE STRUCTURES

Figure 2(a) shows an example of a two-dimensional bistable structure, i.e., a
structure that can be loaded in both horizontal and vertical directions. The thin
regions shown in the figure represent the rubber-like material used to model
hinges. Figure 2(b) shows the second stable configuration of this structure.
Two-dimensional bistable structures may be joined in series to achieve large
displacements with small forces. Similarly, they can be joined in parallel when
a high critical force for the snap through is desired.

We use the term tileable structure to refer to a basic or fundamental cell
which can be repeated periodically to fill a plane. For example, the bistable
structure shown in Figure 2 can be repeated periodically to tile a plane, joining
each unit end-to-end via rigid connectors (shown as solid rectangles). Two
stable equilibrium configurations of such structure are shown in Figure 3. The
dotted box shows a basic or fundamental cell of the periodic structure. Such
tileable structures may have potential to be used as smart materials, e.g., as a
substitute for a shape memory alloy.
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Figure 3. A 3 × 3 periodic arrangement of bistable structures; (a) first equilibrium configur-
ation, (b) second equilibrium configuration.

Figure 4. A member (bar) of the ground structure.

3. THE FINITE ELEMENT MODEL

A corotational element based on Timoshenko beam theory (Crisfield, 1991,
p. 219) is used for non-linear finite element analysis of the structure. The
analysis is quasi static and all inertia forces are ignored. A scaled arc-length
method (Al-Rasby, 1991; Bruns et al., 2002), suitable for analyzing structures
undergoing instability (snap through or buckling), has been used for the solu-
tion of the non-linear equations. While such instability is typically avoided
(e.g. to prevent buckling, as in Neves, 1995), here such instability is a desir-
able feature.

3.1 The Ground Structure and Design Variables

A version of the classical ground structure approach in truss topology optim-
ization (e.g., Dorn et al., 1964) was used in the present work. Every bar in
the ground structure is divided into two regions – shown as dark and light gray
regions in Figure 4. Material properties for the region shown in light gray are
variable, taking three possible values, namely, values corresponding to ‘no ma-
terial’, a ‘compliant’ material and a ‘stiff’ material. The region shown dark is
made from either ‘no material’ or the ‘stiff’ material.

In this work the compliant material is a rubber-like material, e.g. natural
rubber, silicone rubber or a polyurethane elastomer. The stiff material is rel-
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Figure 5. Prescribed normal stress as a function of normal strain in the compliant material.

atively stiff and approximately linear material, e.g. polypropylene. Material
properties are characterized by – (a) the normal stress (σ ) vs. normal strain
(ε) relationship and (b) the shear stress (τ ) vs. shear strain (γ ) relationship for
the material. Figure 5 shows a representative plot of σ vs. ε in a compliant
material, viz. polyurethane elastomer. The τ vs. γ relationship for both stiff
and compliant material is assumed to be linear.

The material and layout of the structure are controlled by two binary design
variables for each bar α, labeled ρα and µα . Variable ρα controls the layout
of the structure: ρα = 1 means bar α is present, ρα = 0 means bar α is
removed. When a bar is present, its material is controlled by variable µα .
µα = 1 indicates that the light gray regions of bar α are made of the compliant
material, i.e. α bar is hinged at both ends. µα = 0 means that bar α is made of
the stiff material. Thus, the normal stress in the light gray region of bar α may
be written as

σ gray
α (ρα, µα, ε) = ρα(µασ

1(ε)+ (1 − µα)σ
2(ε)),

where the superscripts (1) and (2) refer to properties of the compliant and stiff
material, respectively. Similarly, the shear stress in the light gray region of bar
α may be written as

τ gray
α (ρα, µα, γ ) = ρα(µατ

1(γ )+ (1 − µα)τ
2(γ )).

The normal stress in the dark region of bar α may be expressed as

σ dark
α (ρα, ε) = ρασ

2(ε),

while the shear stress in the dark region of bar α is

τ dark
α (ρα, γ ) = ρατ

2(γ ).

3.2 The Objective Function

The measure of performance of a bistable structure considered here is the spa-
tial difference between the two stable configurations of the structure. The ob-
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jective function (to be maximized) is

φ = (xC − xG)W(xC − xG). (1)

xC and xG are vectors of nodal degrees of freedom at the two stable configura-
tions, corresponding to states C and G in Figure 1(c). Matrix W is a diagonal
matrix with diagonal entries Wii = d2

i , where d ∈ Rn is a unit vector used
to control the desired direction of snap-through and ns is the total number of
degrees of freedom in the structure.

If a structure has two stable configurations, φ is a measure of the ‘distance’
between the two configurations. Naturally, many substructures of a ground
structure will not be bistable and thus they will not have two stable configura-
tions. For such structures φ is zero. Thus the objective function of the problem
is set simply to find any bistable structure within the set of all substructures of
the ground structure.

3.3 The Optimization Problem

The optimization problem is formally written as

Find ρ = {ρ1, ρ2, . . . , ρnb } ∈ {0, 1}nb ,µ = {µ1, µ2, . . . , µnb } ∈ {0, 1}nb that

maximize φ(ρ, µ) = (xC − xG)T W(xC − xG)

subject to
nb∑
a=1

ρα ≤ nmax, (2)

where nmax is the maximum number of bars allowed in the bistable structure.
nb is the total number of bars in the ground structure.

3.4 The Solution Scheme

The optimization problem is solved using a genetic algorithm (GA). The con-
straint on the total number of bars in the solution is implemented by adding a
penalty function to the objective function. Three additional penalty functions
are devised to rank candidate solutions which cannot be analyzed because they
are not well-formed structures (e.g. insufficiently supported or disconnected
structures). Such candidates may be retained in the population as they may
have the potential to evolve into the optimal solution. With the addition of
the penalty functions, the original objective function (φ) is modified into the
following new objective function to be minimized:

φ̂ = −wφ + ψ, (3)

where
ψ = ψ1 + ψ2 + ψ3 + ψ4, (4)
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and w is a constant scaling factor, which can be selected such that wφ ≈ 1.
Functions ψ1, ψ2, ψ3 and ψ4 are described below.

3.4.1 Penalty Function ψ1. A structure with no member at the loading
port is penalized by ψ1, which is defined as

ψ1 = 1

δmax

nf∑
j=1

, (5)

where δj is the shortest distance between the structure and the j -th loading
port. δmax is the maximum distance between any two nodes in the structure and
nf is the number of loading ports.

3.4.2 Penalty Function ψ2. A structure with a number of members that
exceeds a prescribed maximum is penalized by ψ2, given by

ψ2 =

⎧⎪⎨⎪⎩
(na − nmax)

(nt − nmax)
if na > nmax

0 if na ≤ nmax

, (6)

where na is the actual number of members present in the structure. nt > nmax

is a prescribed constant used to control the slope of this penalty (e.g., nt =
2∗nmax).nt is chosen to keep ψ2 ≈ 1.

3.4.3 Penalty Function ψ3. A disjoint structure is penalized by ψ3,
given by

ψ3 = Ns

Nt

, (7)

where Ns is the total number of disjoint substructures present in the structure
and Nt is a prescribed scaling factor (e.g., Nt = 2). In order to measure
Ns , the structure is represented as an undirected graph. Ns is the number of
components of the graph.

3.4.4 Penalty Function ψ4. A structure which is not sufficiently sup-
ported and may allow a rigid-body motion is penalized by ψ4, given by

ψ4 = Nx +Ny +Nθ, (8)

where Nx = 0 if the structure is supported in x-direction, i.e., the structure
does not allow a rigid body translation in x-direction, otherwise Nx = 1 and
similarly for Ny . If the structure does not allow a rigid body rotation, then
Nθ = 0, otherwise Nθ = 1.
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Figure 6. Design space and boundary conditions; (a) full design space, (b) ground structure.

4. EXAMPLE

In this example the goal is to design a two-dimensional bistable structure that
will operate loaded as shown in Figure 6(a), and will fit within a 1.6 mm ×
1.6 mm package space, as shown. This package space is partitioned into 8
triangles, whose boundaries are marked by dashed lines in the figure. The
structure will be assumed to be symmetric about these lines. The ground struc-
ture is laid on one of these triangles and the appropriate boundary conditions
are applied to enforce symmetry (Figure 6(b)). The total number of bars in the
triangular ground structure (nb) is 62 and the maximum allowable number of
bars in a solution is 8. In accordance with Section 4.1, every bar in the ground
structure is discretized into 2 regions, where the length of each light gray re-
gion is one-eighth of the total length of the corresponding member (bar). A
load F = 6 mN is applied.

The cross-sectional area of the bars is 2 × 10−3 mm2. All entries in the
weight matrix W are zero except Wmm = 1, where m is the degree-of-freedom
associated with load F . This means that we want to maximize snap-through
in the direction of the external load. The stiff material is polypropylene with
Young’s modulus 1380 MPa and Poisson’s ratio 0.3. The compliant material
is assumed to be linear in shear with shear modulus 5.2 MPa. The σ–ε plot for
the compliant material is given in Figure 5.

The scaling factor w (Equation (4)) used here is w = 7.7125 mm−2, which
corresponds to wφ = 1 for the bistable structure shown in Figure 2. The solu-
tion obtained by the GA is shown along with its second stable configuration in
Figure 7. The objective function value for this structure is 0.1317 (mm2), or φ̂
is –1.0159 with penalty function ψ = 0, i.e., only slightly better than the struc-
ture in Figure 2. The corresponding force displacement diagram is shown in
Figure 7(c). The critical force required for the snap through is approximately
5.5 mN in one direction (forward) and 3.0 mN in the other (backward).
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Figure 7. Bistable structure obtained by the GA; (a) first stable configuration, (b) second
stable configuration; (c) load-displacement curve.

Figure 8. Another bistable structure; (a) first stable configuration, (b) second stable configur-
ation, (c) load-displacement curve.

Another solution to this problem is shown in Figure 8. As shown in Fig-
ures 7 and 8, a few members overlap in the second stable configuration. One
way to handle the overlapping problem is to allow one of these two substruc-
tures to have a small curvature out of the plane.

5. A DIFFERENT APPROACH

From the solutions in the previous section it is clear that in all cases bistabil-
ity is achieved by distributing several two-bar structures around the domain
and creating a supporting structure around them, as illustrated in Figure 9
below. This suggests that a different strategy may be more computationally
attractive and may avoid several of the other drawbacks associated with the
GA approach (e.g., the possibility of interference as the structure deforms).
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Figure 9. Operation of typical bistable solution (a) is based on simple two-bar structures
(b) repeated and supported by an underlying structure (c).

In this approach, simple two-bar structures such as the one in Figure 9(b) are
randomly distributed over the two-dimensional tile and connected to loading
ports. Interference can be avoided using simple set intersection algorithms.
The load-displacement characteristics of the resulting structure can be easily
estimated as a function of position and geometry (e.g., using H, S in Figure 9(b)
as parameters). In this way many such structures can be explored with minimal
computational effort. From this set, instances with load-displacement curves
that exhibit desirable properties can be extracted for further investigation (e.g.,
the structure in Figure 9(c)). For these structures an underlying supporting
structure is built and further analysis can take place using the finite element
model discussed in the previous section.

6. CONCLUSION

The present work provides the concepts and numerical methodology to auto-
matically design tileable multistable structures. The methodology used here
does not account for the interfering or overlapping structures. However, over-
lapping can be avoided by providing a few members with small curvature out
of the plane. A more efficient optimization method such as a gradient-based
algorithm should be used in future work, replacing the (GA), in order to get
consistent and faster results. An improvement in the objective function is be-
ing undertaken which would facilitate the design of specific features of the
load-displacement curve.
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Abstract: In this paper, the possibility of using topology optimization for tailoring the dis-
persion properties in optical fibres is discussed. A method for finding the sensit-
ivities of the dispersion coefficient is introduced, along with different constraints
for confining the light to the centre of the fibre geometry. The modal analysis of
the fibre geometries is carried out with a finite-difference approximation to the
scalar Helmholtz wave equation. The results, obtained by optimizing the refract-
ive index distribution over the cross section of the fibre, show that it is possible
to match the value of the dispersion coefficient at both a single and at multiple
wavelengths.

Keywords: Topology optimization, optical fibres, dispersion properties.

1. INTRODUCTION TO OPTICAL FIBRES

Optical fibres are used as transmission media for electromagnetic waves in the
visible and near infrared spectrum. An optical fibre typically consists of a
cylindrical silica (SiO2) core with a radius of about 3–10 µm, surrounded by
a circular silica cladding region, with a radius of about 60 µm. The refractive
index is lower in the cladding region compared to the core region. Such a
fibre structure is known as a step-index fibre [1]. The index step allows for
confinement of light to the core region, due to a process known as total internal
reflection (TIR). Due to TIR light incident on the core/cladding interface is
reflected back into the core region, and the light can then propagate along the
fibre with very low losses (down to 0.2 dB/km, corresponding to loosing half
the energy after 15 km).

The guidance of light in optical fibres is governed by Maxwell’s equations,
which generally needs to be solved using full vectorial methods. However, if
fibres with relatively low index contrasts between the core and the cladding are
considered, Maxwell’s equations may be reduced to the scalar Helmholtz wave
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equation [2]:

∇2 ψ̃(x, y, z) + n(x, y)2 k2 ψ̃(x, y, z) = 0. (1)

Here ∇ is the Laplacian operator, ψ̃ is the electric or magnetic field distribu-
tion, which we will denote the optical field. n is the refractive index distribu-
tion, which is invariant in the z-direction, along the axis of the fibre. k is the
wavenumber, defined as k = 2π/λ, where λ is the free space wavelength of
the light.

Since the fibre is invariant in the z-direction, it can be shown that solutions
to (1) may be written as a transversal solution multiplied by a harmonically
oscillating function:

ψ̃(x, y, z) = ψ(x, y) exp(iβz). (2)

Inserting (2) into (1) we obtain:

∇2
⊥ ψ(x, y) + n(x, y)2 k2 ψ(x, y) = β2 ψ(x, y) (3)

where ∇⊥ is the transverse Laplacian operator [ ∂
∂x
, ∂
∂y

], and β is referred to as
the propagation constant. (3) is now an eigenvalue equation, with the eigen-
value β2 and the optical field distribution as eigenvector. From now on, the x-
and y-dependency of ψ and n is assumed.

In general, (3) needs to be solved using numerical tools. Our approach is to
make a finite-difference discretization of the term ∇2

⊥ +n2k2 in (3), which then
results in a matrix, . We then solve the resulting matrix eigenvalue problem
using Matlab:

ψ = β2ψ. (4)

The solutions to (3) and (4) are referred to as modes in the optical fibre.
These modes are either guided modes or cladding modes. Figure 1 shows the
index distribution of a step-index fibre, and three of the optical modes. The
guided modes (b and c) have the majority of the optical field confined to the
core area, which results in low propagation losses, and these are the modes
used for transmission of light. The cladding modes (d) has the optical field
spread out in the whole cross section of the fibre, and they are extremely lossy.
Most often so-called single mode fibres are used. Here, the fibre parameter and
the wavelength are chosen, so only a single guided mode exist. This means that
all the guided light is located in the fundamental mode (Figure 1b).

2. DISPERSION IN OPTICAL FIBRES

An important parameter, to describe the optical modes is the effective index,
defined as:

neff = β

k
. (5)
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Figure 1. Index profile of a step index fibre (a), and three of the optical modes for the fibre.
Fundamental mode (b), second order mode (c) and cladding mode (d).

The effective index can be seen as the average index of the mode, and depends
on how the light is distributed in the fibre. When the wavelength of the light
changes, the effective index also changes. This affects the propagation speed
of the light, and means that two different wavelengths travel with different
velocities in the fibre. This is known as fibre dispersion, and is an important
limiting factor in communication systems today. The problem arises because
an optical pulse have a finite spectral width, which means that it consists of
light with wavelengths in a small region around the center wavelength. Due
to dispersion, each of these pulse components travel with different velocities,
and as a consequence a sharp pulse is quickly broadened, as it travels down
along an optical fibre. The effect of dispersion is illustrated in Figure 2, where
a bit sequence is transmitted using an optical pulse train. Four bit slots (time
periods for each bit) is indicated by the vertical dashed lines. A 1-bit is sent
as a light pulse, and a 0-bit is sent as no light in the bit slot. In the beginning,
the bit sequence is easily recognised, but after travelling some distance, the bit
sequence is distorted. Eventually, it is not possible to detect the original bit
sequence. If the bits slots are made wider, the detection becomes easier, but
the bit rate is reduced.

The degree of pulse broadening depends on the value of the dispersion coef-
ficient [3]:

D = −λ

c

∂2neff

∂λ2
, (6)

where c is the speed of light in vacuum. The dispersion is calculated in
the unit ps/(km · nm), and denotes the number of picoseconds between two
wavelengths separated by 1 nm, after propagating 1 km in a fibre.

To overcome the dispersion limitations, so-called dispersion compensating
fibres (DCF) have been developed [4]. In these fibres, a more complex fibre
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Figure 2. Effects of dispersion on a bit sequence transmitted as optical pulses. The top curve
shows the launched optical signal, and the bottom curve shows the signal after it has travelled
100 km in the optical fibre.

geometry is used, which results in different dispersion properties. The idea is
to reverse the dispersion caused by the single mode fibres, by adding an extra
length of DCF. In such a fibre, the dispersion, at some desired wavelength,
should have the opposite sign as in a step-index fibre. This way the speed of
the different wavelengths are changed, to allow the slow components to catch
up again.

3. FORMULATION OF THE DESIGN PROBLEM

In the present optimisation problem, we are interested in optimising the re-
fractive index distribution over the cross section of the fibre in order to obtain
a specific value of the dispersion at a given wavelength. For this purpose, we
formulate the design problem as a task of minimizing an objective function of
the form:

f = (D −D∗)2. (7)

Here, D is the dispersion of the fibre design found during each iteration of the
optimisation process and D∗ represents the target value of the dispersion.

From (6) it is seen that the dispersion in an optical fibre is proportional to
the second derivate of the effective index, neff, which is again related to the
eigenvalue, β2, of the Helmholtz wave equation as shown in Equation (3). In a
straight forward approach, the calculation of the sensitivity of f with respect to
the design variable will give rise to a problem involving a third order derivative
of an eigenvalue. To circumvent this problem, we instead choose a simplified
approach, where the dispersion is expressed by a three point finite-difference
scheme:

D ≈ −λ

c

neff,1 − 2neff,2 + neff,3

(�λ)2
. (8)
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Here, we find the second derivate at the wavelength λ by calculating the effect-
ive index, neff, at three different wavelengths separated by �λ. The advantage
of this approach is that the problem of finding sensitivities is reduced to find-
ing a first order derivative of the eigenvalue. However, this advantage comes
at the cost of having to solve three eigenvalue problems for each dispersion
calculation, so the calculation time rises by approximately a factor of three.

In order to represent the topology of the fibre structure, we introduce a
design variable, γi , having a value between 0 and 1 in each grid point of the
design domain. The relation between the design variable and the refractive
index is given by the expression:

ni = nmin + γi(nmax − nmin), (9)

where nmax and nmin represent the maximum and minimum value of the refract-
ive index, respectively. By choosing γ as the design variable, the sensitivity of
the objective function may be written as an expression of the form:

∂f

∂γi
= ∂f

∂D

∂D

∂ni

∂ni

∂γi

= 2(D −D∗)(nmax − nmin)γi
∂D

∂ni
. (10)

This illustrates that the main objective in the present formulation of the design
problem consists in determining the derivative of the dispersion with respect
to the refractive index in the i-th grid point. By differentiating the three point
dispersion formula in Equation (8) we are faced with the task of finding the
first derivative of the effective index with respect to ni . From the definition of
neff in (5), the first order derivative of the effective index may be written as:

∂neff

∂ni
= ∂(

√
β2/k0)

∂ni
= 1

k2
0

1

2neff

∂(β2)

∂ni
, (11)

where the last term corresponds to the derivative of the eigenvalue, β2, of the
Helmholtz wave equation (3). In the specific case where this equation is solved
with a finite-difference approximation, the derivative of the eigenvalue with
respect to the refractive index in a single grid point is given as:

∂(β2)

∂ni
= ψT ∂

∂ni
ψ = 2nik

2
0ψ

2
i . (12)

Here, it is utilized that the -matrix only contains information of ni in the
diagonal element of the i-th row [5], so the sensitivity in (12) does therefore
only depends on ni and the corresponding value of the eigenvector, ψi , in that
particular grid point. If this result is combined with the three point formula in
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Equation (8), the following expression for the derivative of the dispersion is
obtained:

∂D

∂ni
= −λ

c

ni

(�λ)2

(
ψ2

1,i

neff,1
− 2

ψ2
2,i

neff,2
+ ψ2

3,i

neff,3

)
, (13)

where it is emphasised that the effective indices and eigenvectors are calculated
at three different wavelengths. Inserting (13) into (10) yields the final expres-
sion for the sensitivity of the dispersion with respect to the design variable, γ .

4. DISPERSION OPTIMIZATION AT A SINGLE
WAVELENGTH

As a first example of applying the theory introduced in the previous section,
we will try to optimize the dispersion at a single wavelength. For this purpose,
we choose a design domain of size 20 × 20 µm, discretized in 200 × 200
grid points, resulting in a total number of design variables of 40000. Also, we
impose a volume constraint on the design variable, demanding that the sum of
γ , over the entire design domain should be larger than a certain fraction of the
total area.

The modelling of the fibre geometry is carried out with a finite-difference
mode solver [5] where fibre geometry and the Helmholtz wave equation is ap-
proximated on a finite calculation domain using a homogeneous discretization
grid. The truncation of the calculation domain is done by imposing a Dirichlet
boundary condition that forces the field to be zero on the edge of the calcula-
tion domain. This is equivalent to having a perfectly reflecting boundary. Ob-
viously, this choice of boundary condition may affect the solution, but as the
mode field of the fibre decays exponentially away from the core, the boundary
condition will provide a valid representation of the actual physical problem, as
long as the mode is well confined to the core region. This is the reason for im-
posing the volume constraint discussed above, since the requirement of using
a certain amount of high-index material will ensure a well confined mode.

The aim of the first optimization example, is to obtain a dispersion of
1 ps/(km nm) at a wavelength of 1 µm. In this case, the maximum and min-
imum value of the refractive index is set to 1.44 and 1.458 respectively, which
corresponds to typical values of the refractive index contrast in silica fibres.
To ensure that light will be confined to the centre of the calculation domain,
the initial value of the design variables, γi , are chosen so that that the index
distribution has a circular high index region, with a diameter of 2 µm in the
centre of the design domain. Furthermore, the limit of the volume constraint is
chosen to be 20% of the calculation domain.

The optimization step is carried out using the method of moving asymptotes
(MMA) [6]. Figure 3 shows the dispersion curve obtained by minimizing the
objective function, and it is seen that the aim of the optimization, i.e. to obtain a
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Figure 3. The dispersion curve obtained after optimizing the waveguide structure. The op-
timization goal of having a dispersion of 1 ps/(km nm) at λ = 1 µm has been achieved.

(a) Optimized index distribution. (b) Index distribution along the diameter of the
fibre.

Figure 4. Index distribution of the optimized fibre geometry.

dispersion of 1 ps/(km nm) at λ = 1 µm, has been achieved. This result there-
fore illustrates that the basic idea of using topology optimization for tailoring
the dispersion properties of optical fibres is indeed feasible.

The index distribution of the optimized waveguide geometry is shown in
Figure 4a, along with a cross section along the diameter of the fibre, shown
in Figure 4b. Both figures show that additional material has been added to
the core region of the fibre during the optimisation. In this way, the desired
value of the dispersion has been obtained. From an optimization point of view,
the task of tailoring the dispersion in a single point is relatively easy, since
there exists a large amount of waveguide structures that meet this requirement.
However, many of these structures will not be practically usable, because they
are no longer single moded. For instance, this is the case for the fibre design
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shown in Figure 4b, where the core region has become too wide compared to
the wavelength. This means that a second order mode is allowed to exist in the
core region of the fibre. The presence of higher order modes at the wavelength
of operation is a highly undesired property, since the different modes travel
along the fibre with different velocity. This gives rise to a significant increase
in the dispersion (pulse broadening), and therefore modern optical telecommu-
nication systems are all based on single mode fibres to avoid this detrimental
property. As a consequence, special care should be taken to keep the fibre
design single-mode during the optimization procedure.

5. DISPERSION OPTIMIZATION AT MULTIPLE
WAVELENGTHS

In order to address some of the issues introduced in the previous section, we
will here discuss some modifications to the formulation of the optimization
problem. As a first modification, we will modify the method to consider dis-
persion design at multiple wavelengths simultaneously. In practice, this means
that we will be able to control the value of the dispersion coefficient as well as
the slope of the dispersion curve. Thereby, the optimization problem becomes
more complicated and the amount of possible solutions decreases significantly.

The objective function of the multi-wavelength optimization problem is
simply defined as a sum of the form:

S =
∑
i

Si, (14)

where Si is the value of objective function for the individual wavelength cal-
culations. To avoid some of the problems with multi-mode fibre structures, we
replace the previously used volume constraint with a constraint on the effective
area of the guided mode. Basically, the effective area represents a measure of
the degree of confinement and it is defined as [7]:

Aeff =

(∫
ψ2dA

)2

∫ (
ψ2)2

dA

. (15)

By ensuring that Aeff stays below a certain value, the diameter of the core
region is not allowed to increase during the optimization, as it was the case in
the previous example. As a consequence, the existence of higher order modes
may be avoided. One of the challenges of imposing the effective area constraint
is that we need to calculate the sensitivities of Aeff with respect to the design
variables. In this process we need to find the derivate of the eigenvector, ψ ,

134



Topology Optimization of Dispersion Properties in Optical Fibres

1.5 1.52 1.54 1.56 1.58 1.6 1.62
−115

−110

−105

−100

−95

−90

−85

−80

Wavelength [µm]

D
is

pe
rs

io
n 

[p
s/

km
 n

m
]

(a) Optimized dispersion curve and the target
values of the dispersion coefficient.

(b) Optimized index distribution.

Figure 5. Optimization of a dispersion compensating fibre at two wavelengths.

which is a quite cumbersome task, because it involves solving a singular matrix
problem. The solution consist in reformulating the effective area as:

Ãeff = Aeff + lT (ψ − β2ψ)+ c(ψT ψ − 1), (16)

where l and c are a vector and a scalar Lagrangian multiplier, respectively. The
problem is then solved by combining the adjoint method [8] with Nelson’s
method [9] for solving singular matrix problems. An in-depth discussion of
this approach is given in the work by Tcherniak [10].

Figure 5(a) shows the result from optimizing the dispersion at multiple
wavelengths. As the dispersion curve in Figure 5(a) illustrates, the disper-
sion is optimized at two wavelengths, λ = 1.55 µm and λ = 1.555 µm, which
are typical wavelengths used for optical communication. The value of the dis-
persion coefficient is optimized to match a value of −5 times the dispersion in
a conventional single mode fibre. This means that 200 meters of such a fibre
may be used to compensate for the dispersion in 1 km of conventional trans-
mission fibre. As seen from Figure 5(a), the optimized dispersion curve has an
excellent agreement with the target values of the dispersion coefficient. This
result demonstrates that topology optimization also provides an efficient tool
for optimizing dispersion at several wavelengths simultaneously.

The index distribution of the fibre design obtained from the multi-
wavelength optimzation step is shown in Figure 5(b). Just as in the single
wavelength case, the fibre geometry is circular symmetric around the core
area, but has some high index lobes further away from the core region. The
resulting mode field distribution (not shown) is very localized to the core re-
gion. This fact demonstrates that the effective area constraint used in the mul-
tiple wavelength case provides an efficient way of eliminating the presence
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of higher-order modes, while keeping the mode field confined to the central
region of the design domain.

6. CONCLUSION

We have presented a numerical model based on topology optimization for
designing the dispersion properties in optical fibres. It has been success-
fully demonstrated that the proposed method is capable of finding fibre
designs, where the dispersion matches predefined values at both one and two
wavelengths. One of the main challenges in this work has been the task of
confining the guided modes to the centre of the design domain, while keeping
the fibre singlemoded. An efficient solution to this problem was found by im-
posing a constraint on the effective area of the guided modes. It is believed
that the presented method holds some interesting prospects, in particular due
to the possibility of tailoring the dispersion at several wavelengths, which may
used to predict novel fibre designs that provide dispersion compensation over
a very large spectral interval.
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Abstract: This paper is concerned with optimal design problems where we assume that
the coefficients in the state equation have small contrast. Making an asymptotic
expansion up to second order with respect to the contrast greatly simplifies the
optimization problem. By using the notion of H -measures we are able to prove
general existence theorems for small amplitude optimal design and to provide
simple and efficient numerical algorithms for their computation. A key feature
of this type of problems is that optimal microstructures are always simple lam-
inates.

Keywords: Optimal design, homogenization, H -measures.

1. INTRODUCTION

The homogenization method has been very successful for relaxing ill-posed
problems of shape optimization [1, 5, 6, 15, 18]. Unfortunately, in full math-
ematical rigor, the homogenizaton approach is complete only for a few, albeit
important, choices of the objective function (mostly self-adjoint problems like
compliances or eigenvalues optimization). This restriction is not just a math-
ematical problem: for general objective functions numerical practice shows
that all generalizations of the homogenization method do not work as well in
some cases (e.g., partial relaxations as in [1, 3, 7], or SIMP method [5]). The
extension of the homogenization method to cost functions depending on the
gradient of the state (or strain or stress) is a very difficult problem, although
some progress was made in [4, 9, 12, 13, 17]. The goal of the present paper
is to extend the homogenization method to new objective functions by mak-
ing a strong simplifying assumption, namely that the two component phases
involved in the optimal design have close coefficients or material properties.
More precisely we consider two-phase optimal design problems in the context
of conductivity or linearized elasticity and we make an asymptotic expansion
of the coefficients in terms of the small amplitude parameter that character-
izes the variations between the two phases. Restricting ourselves to terms up
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to second order greatly simplifies the situation. However, the small amplitude
optimal design problem is still ill-posed and requires relaxation. The nice fea-
ture of our approach is that this relaxation is quite simple because the neces-
sary and delicate tools of homogenization are replaced by more basic results
on so-called H -measures. These H -measures are quadratic default measures,
introduced by Gérard [8] and Tartar [16]. They can be interpreted as two-point
correlation functions of the underlying microstructure.

We give the relaxed formulation of very general objective functions, includ-
ing ones depending on the gradient of the state. A key feature is that optimal
microstructures in small amplitude optimization can always be found in the
class of simple or rank-one laminates. In other words, there are only two relev-
ant design parameters in our method: the local volume fraction and the angle of
lamination (which governs the anisotropy of the optimal microstructure). An-
other feature of our small amplitude method is that the coefficient of the state
or adjoint equations are uniform and independent of the design. Indeed, all the
geometric parameters appear as right hand sides in the equations. This implies
a drastic reduction of the CPU cost of the method because, once the rigidity
finite element matrix has been factorized by a Cholesky method, it is stored
and used throughout the optimization process for different right hand sides at
each iteration. For the optimization process we use a simple gradient steepest
descent algorithm. We implemented our method only in two space dimensions
using the FreeFem++ package for finite elements [10]. There is no conceptual
difficulty in extending the method to three space dimensions where the gain in
CPU time is even higher. A final word of caution: our small amplitude approx-
imation is not meaningful in the context of “standard” structural optimization
which amounts to optimize the distribution of a given material with a very
weak one mimicking holes (the so-called ersatz material approach). However,
it makes sense, for example, in the context of reinforced plane structures: a
typical problem is to find the region where to reinforce the thickness of a plate
by pasting some tape on top of it. Our method can be useful for this plane
reinforcement problem and our numerical examples can be interpreted in this
sense. Further details on our method can be found in [2].

2. A MODEL PROBLEM IN CONDUCTIVITY

2.1 Small Amplitude Asymptotic

We consider mixtures of two conducting phases characterized by two sym-
metric positive definite tensors A0 and A1. We denote by η the amplitude or
contrast or aspect ratio between the two materials, A1 = A0(1+η). We assume
that the contrast is small, |η| � 1. Denoting by χ the characteristic function
of the region occupied by phase A1, we define a conductivity tensor
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A(x) = (1 − χ(x))A0 + χ(x)A1 = A0(1 + ηχ(x)).

For a smooth bounded open set � ⊂ RN , with boundary ∂� = �D ∪ �N ,
and for given source terms f ∈ H−1(�) and g ∈ L2(∂�), we consider the
following boundary value problem

−div (A ∇u ) = f in �,

u = 0 on �D, A ∇u · n = g on �N,

}
(1)

which admits a unique solution in H 1(�). Typically we want to minimize an
objective function of the type

J (χ) =
∫
�

j (u) dx,

where j is a smooth integrand with adequate growth conditions. We
define a set of admissible designs Uad made of characteristic functions
χ ∈L∞(�; {0, 1}) which satisfy the volume constraint

∫
�
χ(x) dx = !|�|.

We consider the following optimal design problem

inf
χ∈Uad

J (χ). (2)

Assuming that the amplitude or contrast η is small, we perform a second-order
expansion in the state equation and in the objective function

u = u0 + η u1 + η2u2 +O(η3). (3)

Plugging this ansatz in (1) yields three equations for (u0, u1, u2)

−div (A0 ∇u0 ) = f in �,

u0 = 0 on �D, A0 ∇u0 · n = g on �N,

}
(4)

−div (A0 ∇u1 ) = div (χ A0∇u0 ) in �,

u1 = 0 on �D, A0 ∇u1 · n = −χA0∇u0 · n on �N,

}
(5)

−div (A0 ∇u2 ) = div (χ A0∇u1 ) in �,

u2 = 0 on �D, A0 ∇u2 · n = −χA0 ∇u1 · n on �N.

}
(6)

Remark that u0 does not depend on χ and thus only u1, u2 depends on χ .
Similarly, we make a Taylor expansion in the objective function, and, neglect-
ing the remainder term, we introduce a function Jsa which only depends on
u0, u1, u2

Jsa(u
0, u1, u2) =

∫
�

j (u0) dx + η

∫
�

j ′(u0)u1 dx

+η2
∫
�

(
j ′(u0)u2 + 1

2
j ′′(u0)(u1)2

)
dx .

(7)
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Definition 1 We call “small amplitude” optimal design problem the
second-order asymptotic of problem (2), namely

inf
χ∈Uad

{
Jsa(χ) = Jsa(u

0, u1, u2)
}

(8)

where Jsa is defined by (7) and u0, u1, u2 are solutions of the state equations
(4), (5), (6) respectively.

2.2 Relaxation by H -Measures

As most optimal design problems, the small amplitude problem (8) is ill-posed
in the sense that it does not admit a minimizer in general. Therefore we relax
it by using H -measure, a tool which was introduced by Gérard [8] and Tartar
[16]. It is a default measure which allows to pass to the limit in quadratic
functions of weakly converging sequences in L2(RN).

The general procedure for computing the relaxation of (8) is to consider a
sequence (minimizing or not) of characteristic functions χn and to pass to the
limit in (8) and its associated state equations. Up to a subsequence there exists
a limit density θ such that χn converges weakly-* to θ in L∞(�; [0, 1]). We
denote by u0, u1

n, u
2
n the solutions of (4), (5), and (6) respectively, associated to

χn (recall that (4) does not depend on χn). In a first step, it is easy to pass to the
limit in the variational formulation of (5) to obtain that u1

n converges weakly to
u1 in H 1(�) which is the solution of

−div (A0∇u1) = div (θA0∇u0) in �,

u1 = 0 on �D, A0∇u1 · n = −θA0∇u0 · n on �N.

}
(9)

The main difficulty comes from (6) which admits the variational formulation∫
�

A0∇u2
n · ∇φ dx = −

∫
�

χnA
0∇u1

n · ∇φ dx (10)

for any test function φ ∈ H 1(�) which vanishes on �D. The sequence u2
n is

obviously bounded in H 1(�) and, up to a subsequence, it converges weakly to
a limit u2 in H 1(�). As usual with weak convergence the limit of the product
χn∇u1

n is not the product of the limit θ∇u1! However since it is a quadratic
expression, we can use the theory of H -measures [16] to describe its limit. We
can prove that the limit of (10) is∫
�

A0∇u2 ·∇φ dx = −
∫
�

θA0∇u1 ·∇φ dx+
∫
�

θ(1−θ)A0MA0∇u0 ·∇φ dx
(11)

where the H -measure matrix moment M(x) is defined by

M =
∫

SN−1

ξ ⊗ ξ

A0ξ · ξ ν(x, dξ) (12)
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with ν, a probability measure with respect to ξ (see [2] for details). In other
words u2 is the solution of an equation similar to (6) except that χ is replaced
by θ and there is an additional geometric term in the right hand side of (11),
depending on the H -measure matrix moment M. We now can pass to the limit
in the objective function Jsa(χn) to obtain

lim
n→+∞ Jsa(χn) = J ∗

sa(θ, ν) = Jsa(u
0, u1, u2)

where u0, u1, u2 are now solutions of the relaxed state equations (4), (9), (11),
respectively. It is then a standard matter to prove the following result.

Proposition 2 The relaxation of (8) is thus

min
(θ,ν)∈U∗

ad

{
J ∗
sa(θ, ν) = Jsa(u

0, u1, u2)
}

(13)

where Jsa(u
0, u1, u2) is defined by (7), u0, u1, u2 are solutions of (4), (9), (11),

respectively, and U∗
ad is defined by

U∗
ad =

{
(θ, ν) ∈ L∞(�; [0, 1]) × P(�,SN−1) s.t.

∫
�

θ dx = !|�|
}
, (14)

where P(�,SN−1) is the set of probability measures on �× SN−1. More pre-
cisely, there exists at least one minimizer (θ, ν) of (13), any minimizer (θ, ν)
of (13) is attained by a minimizing sequence χn of (8) in the sense that χn
converges weakly-* to θ in L∞(�), ν is the H -measure of (χn − θ), and
limn→+∞ Jsa(χn) = J ∗

sa(θ, ν), any minimizing sequence χn of (8) converges
in the previous sense to a minimizer (θ, ν) of (13).

Remark 3 A simpler, albeit formal, method for computing the limits of u1
n

and u2
n is to assume that the sequence χn of characteristic functions is period-

ically oscillating, i.e. χn(x) = χ(x, nx) where y → χ(x, y) is Y -periodic.
Then, using formal two-scale asymptotic expansions it is possible to compute
the limits of u1

n and u2
n, as well as the first-order corrector term for u1

n, i.e.

u1
n(x) = u1(x)+ 1

n
u11(x, nx)+O

(
1

n2

)
.

Making a Fourier expansion of χ(x, y) = ∑
k∈ZN χ̂(x, k)e

2iπk·y , we can com-
pute explicitly u11 and u2, and the H -measure is given by

ν(x, ξ) = 1

θ(1 − θ)

∑
k �=0∈ZN

|χ̂ (x, k)|2δ
(
ξ − k

|k|
)
.
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2.3 Optimality Conditions

Proposition 4 The relaxed small amplitude problem (13) can be solved by
restricting the set of probability measures P(�,SN−1) to its subset of Dirac
masses. In other words, there exists an optimal design solution of (13) which is
a simple laminate. Furthermore, the corresponding optimal H -measure, which
is a Dirac mass, does not depend on the density θ .

Remark 5 The main consequence of Proposition 4 is that not all possible
composite materials have to be considered in the relaxed small amplitude prob-
lem (13) but just the simple laminates of rank one. It turns out that this property
holds true for all generalizations of (13) [2]. Another interesting consequence
of Proposition 4 is that the optimization with respect to ν can be done once
and for all at the beginning of the optimization process since it is independent
of the exact values of θ .

The fact that simple laminates are always optimal may seem paradoxical
in view of the well-known results about rank-N laminates being optimal for
compliance optimization in elasticity [1, 6, 18]. However, one needs to under-
stand that we do not optimize the original objective function but its second-
order small-amplitude asymptotic expansion. Therefore, simple laminates are
merely optimal, up to second-order, for the original objective function.

Proof. To simplify the formula for J ∗
sa(θ, ν) by eliminating u2, we introduce

an adjoint state p0 (which does not depend on (θ, ν)), solution in H 1(�) of

−div (A0 ∇p0 ) = j ′(u0) in �,

p0 = 0 on �D, A0∇p0 · n = 0 on �N.

}
(15)

By doing some integration by parts in (15) and (11), we obtain

J ∗
sa(θ, ν) =

∫
�

j (u0) dx + η

∫
�

j ′(u0)u1 dx + η2
∫
�

1

2
j ′′(u0)(u1)2 dx

−η2
∫
�

θA0∇u1 · ∇p0 dx + η2
∫
�

θ(1 − θ)A0MA0∇u0 · ∇p0 dx

(16)
which is now explicitly affine inM, defined by (12), and thus in ν. Minimizing
J ∗
sa(θ, ν) with respect to ν amounts to minimize a scalar affine function on the

convex set of probability measures P(�,SN−1). Therefore any minimizer ν∗
can be replaced by another minimizer which is a Dirac mass concentrated at a
direction ξ ∗ which minimizes the integrand of the last term in (16). Remark
that ξ ∗ does not depend on θ . Furthermore, replacing a minimizer ν∗ by the
Dirac mass concentrated at ξ ∗ does not change θ , u0, u1 and p0. Thus one
can restrict the minimization in ν to the subset of P(�,SN−1) made of Dirac
masses of the type ν(x, ξ) = δ(ξ − ξ 0(x)). •
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Figure 1. Gradient minimization. η = −0.5, Volume=40%.

After the optimal H -measure ν, a Dirac mass concentrated on ξ ∗(x), has
been found, we can easily compute the derivative of J ∗

sa with respect to θ by
introducing another adjoint state p1 (this is standard and we refer to [2] for
details).

2.4 Generalizations

The same method and the same results can be obtained for various other prob-
lems. For example, it is possible to derive the same results for an objective
function that depends on the gradient of the state. We can also generalize our
approach to the system of linearized elasticity by considering mixtures of two
linear isotropic phases [2]. Furthermore, we can consider so-called multiple
loads problems, i.e. several state equations associated to a single objective
function. It is even possible to consider the case of a multi-physics problem,
i.e. the coefficients of the different state equations can be different although
they share the same geometry or microstructure (a typical example would be
thermo-elasticity where a conductivity problem is coupled to an elasticity sys-
tem). In all such cases, once again, simple laminates are optimal microstruc-
tures.

3. ALGORITHM AND NUMERICAL EXAMPLES

3.1 Optimization Algorithm

Recall that there are two design parameters for our relaxed small-amplitude
optimization problem: the lamination angle and the local proportion θ . We
proved that the lamination direction of the optimal microstructure does not
depend on θ , and that it is explicitly given in terms of u0 and p0 which do not
vary during the optimization process. Therefore, the optimal lamination angle
is computed once and for all before we start a gradient-based steepest descend
method for the local proportion θ .
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Figure 2. Compliance minimization for the short cantilever: η = −0.1 (left), η = −0.99
(right), volume=25%.

The boundary value problems are solved using FreeFem++ [10] and we
take advantage of the fact that all the problems we need to solve have the same
elliptic differential operator, namely div (A0∇ ). Therefore the factorization
of the stiffness matrix is performed only once during the initialization and is
saved for all subsequent finite elements resolutions during the iterations. This
of course speeds up considerably the code. For all states ui and adjoint states pi

we use P2 Finite Elements, while the local proportion θ is discretized with P0

Finite Elements (as well as the lamination direction ξ ∗). As is well known (see
[1, 5] and references therein) we prefer the P2 −P0 combination to the simpler
P1 − P0 in order to avoid the so-called checkerboard numerical instability.

The subsequent figures show the local proportion of the material with higher
conductivity or with higher stiffness, meaning higher values of both Lamé
parameters. In other words, if η is negative (which is always the case below),
we display (1 − θ). The volume, when mentioned in the caption, always refers
to the percentage of volume occupied by the better conductor or the stiffer
material.

3.2 Diffusion Problem

Since the inception of the homogenization method a classical test case is the
so-called torsion problem (see [1] for further references). It amounts to solve
(1) in the unit square � = (0, 1) × (0, 1) with Dirichlet boundary conditions
and a source term f ≡ 1. We minimize J2(χ) = ∫

�
|∇u|2dx. In Figure 1 we

plot the resulting optimal shape for the relaxed small amplitude problem. The
phase conductivities are 0.5 and 1, and the proportion of the best conductor is
40%. This resut is slightly different than that obtained by Lipton and Velo (see
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Figure 3. Strain minimization of a square clamped at the bottom and vertically loaded at the
top: η = −0.1, volume=50%.

Figure 1:a in [11]) using a partial relaxation of the problem. Different values
of η and different refinement of the mesh yield similar results.

3.3 Elasticity Problem

In all the following examples we take the reference material A0 with Lamé
coefficients λ = 0.73 and µ = 0.376. As we said in the introduction, one
should interpret the following results in the context of reinforcing a plane struc-
ture by adding to it a layer at a location that is optimal.

Let us first consider the so-called short cantilever problem subject to com-
pliance minimization. We choose � = (0, 1) × (0, 2) (discretized by 8765
triangles) clamped on its left side and with a unit vertical load at the middle of
the right side. After 50 iterations the resulting optimal designs for η = −0.1
and η = −0.99 are shown on Figure 2 (recall that dark colors correspond to
the stiffer material). The latter design is quite similar to the usual short can-
tilever with two bars making a 90 degree angle at the position where the load
is applied, giving then the impression that the approach developed here for the
small amplitude case, might very well be used at least in some cases when the
amplitude is not necessarily so small.

Next we minimize the norm of the strain tensor, i.e. J (χ) = ∫
�

|e(u)|2dx.
The domain is the unit square � = (0, 1)2, which is discretized with 8654
triangles, clamped at the bottom and vertically loaded at the top. The resulting
optimal design, shown in Figure 3, looks like a bridge with two pillars.
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Abstract: The design problem of maximizing the lowest eigenfrequency or the buckling
load factor of laminated composite shell structures is investigated using the so-
called Discrete Material Optimization (DMO) approach. The design optimiz-
ation method is based on ideas from multi-phase topology optimization where
the material stiffness is computed as a weighted sum of candidate materials, thus
making it possible to solve discrete optimization problems using gradient based
techniques and mathematical programming. The potential of the DMO method
to solve the combinatorial problem of proper choice of material, stacking se-
quence and fiber orientation simultaneously is illustrated for two multi-layered
multi-material plate examples.

Keywords: Laminate design optimization, composite structures, discrete material optimiza-
tion, topology optimization, eigenvalue problems.

1. INTRODUCTION

Composite shell structures are today used in many engineering applications
and may be composed as a combination of many different materials such as
Fiber Reinforced Polymers (GFRP/CFRP) together with foam, wood and iso-
tropic materials, which are then bonded together by a resin to form a laminate.
Thus, the well-known design problem of determining the best thickness and
fiber orientation of each FRP layer must be expanded by including the material
selection problem in order to obtain a desired structural performance. In such
cases it is convenient to introduce methods that can solve the discrete material
selection problem together with the continuous fiber orientation and thickness
distribution problem, and one such approach is the Discrete Material Optimiz-
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ation (DMO) method introduced by the authors, see [1, 2]. In this work focus is
put on linear eigenvalue problems using eigenfrequencies or buckling behavior
as criteria function.

The DMO method is based on ideas from multi-phase topology optimization
(see Sigmund and co-workers [3, 4]) where the material stiffness (or density)
is computed as a weighted sum of candidate materials. In this way the discrete
problem of choosing the best material (with the right orientation) is converted
to a continuous formulation where the design variables are the scaling factors
(or weight functions) on each candidate material.

2. ANALYSIS OF LAMINATED COMPOSITE SHELL
STRUCTURES

The finite element method is used for determining the structural response of
the laminated composite. The structure is typically composed of multiple ma-
terials and multiple layers, and the laminated shell structure may, in general,
be curved or doubly-curved. The materials used in this work may be fiber rein-
forced polymers oriented at a given angle θk for layer k or it may be softer iso-
tropic core materials. All materials are assumed to behave linearly elastic and
the structural behavior of the laminate is described using an equivalent sing-
le layer theory where the layers are assumed to be perfectly bonded together
and thus, displacements and strains will be continuous across the thickness.
Such theories are known to be sufficiently accurate for modelling of the struc-
tural stiffness. For computational efficiency the element used for the design
optimization in this work is a four node isoparametric shell element with full
integration where the problem of shear locking is avoided by using the method
of assumed natural strains for the transverse shear interpolation (MITC).

2.1 Eigenfrequency Analysis

In this work the objective of designing the structure w.r.t. eigenfrequencies is
formulated as maximizing the lowest eigenfrequency. Other eigenfrequency
objectives can easily be formulated but are omitted here for brevity. The free
vibration frequency analysis can be written as

K�j = λjM�j , λj = ω2
j , j = 1, 2, . . . , (1)

where K is the global stiffness matrix, M the global mass matrix, λj the ei-
genvalue, ωj the eigenfrequency, and �j the corresponding eigenvector. The
eigenvalues are assumed ordered by magnitude, such that λ1 is the lowest ei-
genvalue.
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2.2 Linear Buckling Analysis

In case of using the buckling behavior as objective function the analysis is
restricted to linear buckling predictions, i.e., the structure is assumed to be
perfect with no geometrical imperfections and the buckling load found will be
an upper limit for the real value. First the static equilibrium equation for the
structure is solved using

KD = F. (2)

Here D is the global displacement vector and F the global load vector. Based
on the displacement field the element layer stresses can be computed, whereby
the stress stiffening effects due to the mechanical loading can be evaluated by
computing the element initial stress stiffness matrix Ke

σ (also termed the ele-
ment geometric stiffness matrix). By summation over all elements the global
stress stiffness matrix Kσ is obtained, and the linearized buckling problem can
be established as (

K + λjKσ

)
�j = 0, j = 1, 2, . . . , (3)

where the eigenvalues again are assumed ordered by magnitude, such that λ1

is the lowest buckling load factor and �1 is the corresponding eigenvector.

3. DESIGN SENSITIVITY ANALYSIS AND
OPTIMIZATION OF LINEAR EIGENVALUE
PROBLEMS

The objective of the design problem considered is to maximize the lowest ei-
genfrequency or buckling load factor of the laminated composite structure us-
ing gradient based techniques, and thus the sensitivities should be computed in
an efficient way.

3.1 Design Sensitivity Analysis of Simple Eigenvalues

The design variables are termed xi, i = 1, . . . , I , and the direct approach to
obtain the eigenvalue sensitivity in case of a distinct, i.e. simple eigenvalue
λj , is to differentiate (1) with respect to a design variable xi , premultiply by
�T
j and make use of (3), then the following expression is obtained for the

eigenvalue sensitivity of simple eigenvalue λj , see, e.g., [5, 6]

dλj

dxi
= �T

j

(
dK
dxi

− λj
dM
dxi

)
�j , (4)

where it has been assumed that the eigenvectors have been M-orthonormalized,
such that �T

j M�j = 1. In case of buckling analysis, the mass matrix M in (4)
is replaced by −Kσ .
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For the DMO parametrization proposed in this work where the geometry is
fixed and only the material is changed, the stiffness matrix derivative dK/dxi
only involves the derivative of the element layer constitute matrix Cl

k with re-
spect to xi . In the next section the DMO interpolation scheme used for determ-
ining the constitute matrix is described, and the derivative of this interpolation
is computed analytically.

In case of buckling analysis the stress stiffness matrix is an implicit function
of the displacement field, i.e. Kσ = Kσ (D(x), x), which must be taken into
account as

dKσ

dxi
= ∂Kσ

∂xi
+ ∂Kσ

∂D
dD
dxi

. (5)

Thus, the displacement sensitivities dD/dxi must be computed which is done
efficiently using the direct differentiation approach, i.e., the static equilibrium
equation, (2), is differentiated with respect to a design variable xi

K
dD
dxi

= ∂F
∂xi

− ∂K
∂xi

D, (6)

where the load sensitivity ∂F/∂xi is zero for the DMO design variables used,
unless volume forces are considered. The displacement sensitivities are com-
puted analytically by solving (6) for each design variable xi , reusing the stiff-
ness matrix K from the analysis, but the stress stiffness matrix sensitivities
dKσ /dxi in (5) are computed by central difference approximations at the ele-
ment level. This approach is mainly used in order to facility easy implement-
ation of sensitivity analysis for all different types of laminate design variables
and no inaccuracy problems have been observed for the central difference ap-
proximation of element stress stiffness matrix sensitivities.

3.2 Design Sensitivity Analysis of Multiple Eigenvalues

So far multiple eigenvalues and corresponding eigenvectors have not been
mentioned. In this case the eigenvectors are not unique, which complicates
the sensitivity analysis and optimization due to the non-differentiability of the
eigenvalues. In such situations the sensitivity analysis described in [7] is used
together with the optimization algorithm developed in [8]. The details are omit-
ted here for brevity.

3.3 The Mathematical Programming Problem

In case of only simple, distinct eigenvalues, the optimization problem of max-
imizing the lowest eigenfrequency or buckling load factor λ1 is reformulated
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using a bound formulation, see [9], as

Objective : max
x, β

β

Subject to : λj ≥ β, j = 1, . . . , Nλ

M ≤ M

xi ≤ xi ≤ xi, i = 1, . . . , I

(7)

where M is the upper limit on the mass M of the structure. By introducing the
bound parameter β the lowest Nλ eigenvalues are considered when solving the
minimax problem, such that the case of crossing eigenvalues (mode switching)
during the optimization is taken into account.

The derivative of the mass constraint in (7) is also computed analytically,
and having obtained all the necessary design sensitivities, the mathematical
programming problem is solved using the Method of Moving Asymptotes by
Svanberg [10]. The closed loop of analysis, design sensitivity analysis and
optimization is repeated until convergence in terms of no change of the design
variables is reached or until the maximum number of design iterations have
been performed.

4. THE DISCRETE MATERIAL OPTIMIZATION
APPROACH

The design parametrization method applied in this work is denoted Discrete
Material Optimization (DMO), that can be used for efficient design of general
laminated composite shell structures, see [1, 2, 11]. The approach developed
is to formulate the optimization problem using a parametrization that allows
us to do efficient gradient based optimization on real-life problems while re-
ducing the risk of obtaining a local optimum solution. To this end we will use
the mixed materials strategy suggested by Sigmund and co-workers [3, 4] for
multi-phase topology optimization, where the total material stiffness is com-
puted as a weighted sum of candidate materials.

In the present context this means that the stiffness of each layer of the lam-
inated composite will be computed from a weighted sum of a finite number of
candidate constitutive matrices, each representing a given lay-up of the layer.
Consequently, the design variables are no longer the fiber angles or layer thick-
nesses but the scaling factors (or weight functions) on each constitutive matrix
in the weighted sum. For example, we could choose a stiff orthotropic material
oriented at three angles θ1 = 0◦, θ2 = 45◦ and θ3 = 90◦ and a soft isotropic
material, thereby obtaining a problem having four design variables per layer.
The objective of the optimization is then to drive the influence of all but one
of these constitutive matrices to zero for each ply by driving all but one weight
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function to zero. As such, the methodology is very similar to that used in to-
pology optimization. This is further emphasized by the fact that penalization
is used on the design variables to make intermediate values un-economical. At
the beginning of the optimization, the constitutive matrices used in the analysis
thus consist of contributions from several candidate materials, but at the end
of the design optimization, the parametrization for the weight functions has to
fulfill the demand, that one distinct candidate material has been chosen.

4.1 Parametrization for Single Layered Laminate
Structures

As in topology optimization the parametrization of the DMO formulation is
invoked at the finite element level. The element constitutive matrix, Ce, for a
single layered laminate structure may in general be expressed as a sum over
the element number of candidate material configurations, ne:

Ce =
ne∑
i=1

wiCi = w1C1 + w2C2 + · · · + wneCne , 0 ≤ wi ≤ 1, (8)

where each candidate material is characterized by a constitutive matrix Ci .
The weight functions wi must all have values between 0 and 1 in order to be
physically allowable. Furthermore, in case of solving buckling problems or
having a mass constraint as in the optimization problems studied here, it is
necessary that the sum of the weight functions is 1.0, i.e.,

∑ne

i=1 wi = 1.0. If
this demand is not fulfilled, physically meaningless results will be obtained.
Several new parametrization schemes have been developed, see details in [1,
2], and we give here a short outline of the most effective implementation.

We apply for each element a number of design variables xei , i = 1, . . . , ne,
and write

wi = ŵi∑ne

k=1 ŵk

, i = 1, . . . , ne,

ŵi = (xei )
p

ne∏
j=1; j �=i

(
1 − (xej )

p
)
.

(9)

To push the design variables xei towards 0 and 1 the SIMP method known
from topology optimization has been adopted by introducing the power, p, as
a penalization of intermediate values of xei . The power p is typically set to 2
in the beginning of the optimization process and then increased by 1 for every
10 design iterations until p is 6. Moreover, the term (1 − xej )j �=i is introduced
such that an increase in xei results in a decrease of all other weight functions.
Finally, the weights have been normalized in order to satisfy the constraint that
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the sum of the weight functions is 1.0. Note that the expression in (9) means
that complicated additional constraints on the design variables xei are avoided
and only simple box constraints have to be dealt with.

It should be noted that the normalization introduced in (9) makes the in-
terpolation less effective in driving the weights to 0/1 since the normalization
alters the effect of the penalization. Consequently, the normalized weighting
scheme converges slower to a design where a distinct material have been se-
lected than if the weight functions ŵi are used.

4.2 Parametrization for Multi Layered Laminate
Structures and Patch Variables

The only difference between single and multi layered laminate structures is
that the interpolation given above has to be used for all layers, i.e., the layer
constitutive matrix Cl

k for layer k is computed as

Cl
k =

nl∑
i=1

wiCi , (10)

where nl is the number of candidate materials for the layer.
The design variables xi may be associated with each finite element of the

model or the number of design variables may be reduced by introducing
patches, covering larger areas of the structure. This is a valid approach for
practical design problems since laminates are typically made using fiber mats
covering larger areas.

5. MAXIMUM LOWEST EIGENFREQUENCY
DESIGN OF 16-LAYER CLAMPED PLATE

Several examples have been studied in order to investigate the performance
of the DMO method, and examples involving pure fiber angle optimization of
plate structures made of unidirectional composites yield results similar to those
obtained using optimality criteria based methods as described in [12].

The example included here illustrates the potential of the DMO method
for solving the combinatorial problem of proper choice of material, stacking
sequence and fiber orientation simultaneously for maximum lowest eigenfre-
quency design of a clamped plate. The plate has dimension 0.1 × 0.1 m and
consists of 16 layers of equal thickness 0.0003 m, yielding a total thickness of
0.0048 m. One candidate material is unidirectional glass/epoxy, i.e. an ortho-
tropic material with Ex = 5.4 · 1010 Pa, Ey = Ez = 1.8 · 1010 Pa, ν = 0.25,
Gxy = Gxz = 9.0 · 109 Pa, Gyz = 3.4 · 109 Pa, and ρ = 1900 kg/m3.
The other candidate material is an isotropic polymer foam material and has
Ex = 1.25 · 108 Pa, ν = 0.3, and ρ = 100 kg/m3.
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Figure 1. Optimized material directions (fiber angles) for maximum lowest eigenfrequency
design of 16-layer clamped plate when 5 DMO variables per element are used (soft material to-
gether with orthotropic material oriented at 0◦, ±45◦, and 90◦). White means that the isotropic
soft material has been selected. The lowest eigenfrequency is distinct for the optimized design.

The upper and lower layers have 4 DMO design variables per element asso-
ciated with the orthotropic material oriented at 0◦, ±45◦, and 90◦, respectively,
and the remaining 14 interior layers have 5 DMO variables, allowing the op-
timizer also to choose the soft isotropic material. The mass constraint is set
such that 2/3 of the total volume should be filled with soft material. A 20 by
20 mesh of 4-node shell elements is used, and the result of the optimization
can be seen in Figure 1.
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Figure 2. Optimized material directions (fiber angles) for maximum buckling load factor
design of 8-layer simply supported plate when 5 DMO variables per element are used (soft
material together with orthotropic material oriented at 0◦, ±45◦, and 90◦). White means that
the isotropic soft material has been selected. The lowest eigenfrequency is distinct for the
optimized design. No eigenmode mode switching appeared during the optimization.

The fiber directions for the orthotropic material in the upper and lower layers
are quite similar to results published by other people for single layer plates
made of unidirectional composites using continuous fiber angles, see e.g. [12].
For the remaining 14 interior layers the DMO method suggests to put soft
material in the middle of the plate as expected. Furthermore, the orthotropic
material available should be put at the middle of the clamped edges, oriented
perpendicular to the boundary.

6. BUCKLING LOAD DESIGN OF 8-LAYER PLATE

Next a plate with dimension 0.5 × 0.5 m is considered. It has 8 layers of
equal thickness 0.000125 m, yielding a total thickness of 0.001 m. The plate
is clamped at the left edge, simply supported at the other three edges and sub-
jected to a distributed compression load of 100 N/m at the right edge.
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The same two candidate materials are used as in the previous example, and
now the mass constraint is set such that half of the domain should be filled with
soft material. The objective is to maximize the lowest buckling load factor, and
the topology and fiber orientations of the orthotropic material for all 8 layers
can be seen in Figure 2.

7. SUMMARY

In this paper the Discrete Material Optimization approach has been applied
with the purpose of maximizing the lowest eigenfrequency or buckling load
factor of laminated hybrid composite shell structures, and several examples
have documented the potential of the parametrization method for multi mater-
ial optimization. The parametrization used may not converge to a distinct 0/1
design everywhere in the domain but still the method provides much insight
into the optimal solution to the material distribution problem.
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Abstract: Micropolar field theory represents an extension of the classical Cauchy con-
tinuum theory. In this paper, a topology optimization procedure for maximum
stiffness is applied to two dimensional structural elements described in terms of
micropolar (Cosserat) solids. The role of the characteristic length of bending on
the optimal configurations is highlighted in the applications.
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1. INTRODUCTION

Conventional continuum mechanics approaches do not incorporate any in-
trinsic characteristic length. However, real materials often exhibit a number of
important length scales, which must be included in any realistic model: grains,
particles, fibers, cellular solids, biological tissues [1]. So called nonlocal the-
ories can be used to account for size effects in the mechanical behaviour of
materials. The departure from local theories begins with the micropolar (or
Cosserat) continuum models where rotational degrees of freedom of the ma-
terial particles are considered. As a consequence, their associated stress quant-
ities (couple stresses) enter the formulation and dimensional arguments lead to
the introduction of an internal characteristic length.

The goal of this paper is to analyze the influence of this parameter on op-
timal shapes of micropolar solids obtained by imposing the maximum stiffness
criterion with a defined amount of material [2, 3]. In the two-dimensional con-
text, the internal length scale is identified as the characteristic length for bend-
ing, because the role of couple stresses is similar to that of bending moment in
plane beam-like structures.
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2. GOVERNING EQUATIONS FOR COSSERAT
SOLIDS

In micropolar continua the deformation is described in terms of displacement
field uk and microrotations φk. The micropolar strain tensor εkl is defined as
[4, 5]

εkl = ekl + eklm (wm − φm) , (1)

where ekl denotes the macro-strain tensor

ekl = 1

2

(
uk,l + ul,k

)
, (2)

and eklm the permutation tensor, whereaswk is the particle macrorotation, wk =
eklmum,l/2.

In a Cartesian co-ordinate system the equilibrium equations read

σji,j + bi = 0, mji,j + eilkσlk + mi = 0, (3)

where σji is the non-symmetric stress tensor andmji is the couple stress tensor;
bi and mi are, respectively, body forces and body couples.

The constitutive equations for a micropolar linear (in general anisotropic)
elastic solid are given by [6]

σij = Eijklεkl + Bijklφl,k, mij = Bklij εkl +Kijklφl,k, (4)

whereEijkl ,Bijkl andKijkl are the micropolar fourth-order constitutive tensors.
Eijkl couples strains with stresses, whereas Kijkl associates microcurvatures
(φl,k) to couple stresses. Bijkl is often called “pseudo-tensor” [6], as it vanishes
in the relevant case of isotropic behaviour. The constitutive equations for a
linear, elastic, isotropic micropolar solid are

σkl = λennδkl + (2µ+ κ) ekl + κeklm(wm − φm), (5)

mkl = αφn,nδkl + γ φl,k + βφk,l , (6)

where λ and µ correspond to the classical Lamè constants, while κ , α, β and γ
are micropolar constants. The quantity µ∗ = µ − κ/2 is the micropolar shear
modulus.

Limit conditions in terms of static and/or kinematic quantities should be
imposed on the boundary of the body �. By assuming that ∂� = ∂�static ∪
∂�kinematic, we may write

tj = σijni, sj = mijni on ∂�static, (7)

where, in addition to surface tractions tj , the expression for the surface couples
sj has been added, and

φj = φ0
j , uj = u0

j on ∂�kinematic, (8)
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where φ0
j and u0

j are, respectively, prescribed microrotation and displacement
vectors.

2.1 Two-Dimensional Case

For a plane problem, the kinematics of a micropolar body is described through
the components u1 and u2 of the displacement vector u taken with respect to a
Cartesian co-ordinate system [O; x1, x2], together with the normal component
(φ3) of the microrotation vector φ, as follows

ε11 = u1,1, ε22 = u2,2,

ε12 = u2,1 − φ3, ε21 = u1,2 + φ3.

(9)

Equilibrium equations reduce to

σ11,1 + σ21,2 + b1 = 0, σ12,1 + σ22,2 + b2 = 0,

σ12 − σ21 +m13,1 +m23,2 + m3 = 0.
(10)

The specialization of the constitutive equations (4) to plane problems requires
the distinction between plane-strain and plane-stress conditions. In the case of
plane strain we have

σ11 = (λ+ 2µ+ κ) e11 + λ e22,

σ22 = (λ+ 2µ+ κ) e22 + λ e11,

σ12 = (2µ+ κ) e12 + κ (w3 − φ3) ,

σ21 = (2µ+ κ) e21 − κ (w3 − φ3) ,

m13 = γ φ3,1, m23 = γ φ3,2,

(11)

while in the plane-stress case

σ11 = e11 (λ+ 2µ + κ)+ λ (e22 + e33) ,

σ22 = e22 (λ+ 2µ + κ)+ λ (e11 + e33) ,

σ12 = e12 (2µ+ κ)+ κ (w3 − φ3) ,

σ21 = e21 (2µ+ κ)− κ (w3 − φ3) ,

m13 = γ φ3,1, m23 = γ φ3,2,

(12)
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where

e33 = − (e11 + e22)
λ

(λ+ 2µ+ κ)
. (13)

It is however more useful to introduce generalized engineering constants
(which are six in 3-D and four in 2-D); in plane problems these are: the Young’s
modulus [7, 8]

E = (2µ+ κ)(3λ+ 2µ+ κ)

2µ+ 2λ+ κ
, (14)

the Poisson’s ratio

ν = λ

2µ+ 2λ+ κ
, (15)

the characteristic length for bending

�m =
(

γ

4µ+ 2κ

)1/2

=
(
γ (1 + ν)

2E

)1/2

, (16)

and the coupling number

Nm =
(

κ

2µ+ 2κ

)1/2

=
(

κ (1 + ν)

E + κ (1 + ν)

)1/2

. (17)

In order to fulfill thermodynamics requirements, these constants must satisfy
the following bounds:

0 < �2
m < ∞, 0 < E < ∞, (18)

and
0 < N2

m < 1. (19)

The constant κ couples the rotation of particles to shear stresses. If κ = 0
(Nm = 0) the Cauchy stress does not depend on the rotational degree of free-
dom. The equilibrium equation (10)3 reduces to an equilibrium of couple
stresses (as σ12 = σ21) that are null if body couples (m3) are absent. The
limit κ → ∞ is a condition energetically admissible, similar to “incompress-
ibility” in classical elasticity, and corresponds to Nm = 1. The modulus γ sets
the intensity of couple stresses in the problem and is proportional to the charac-
teristic length for bending �m [7]. In Cauchy solids, the internal characteristic
length is of the order of the atomic distance and moments of forces at this scale
do not produce any macroscopic effect. However, in microstructured solids
such as biological hard tissues, cellular and fibre-reinforced materials, where
an intrinsic internal length at least of the order of microns may be detected
(steel: �m ∼= 0.05 mm; graphite: �m ∼= 2.8 mm; cancellous bone: �m ∼= 1 mm;
masonry �m > 100 mm), couple stresses may influence the macroscopic beha-
viour. In the limit γ = 0 (�m = 0) Cauchy elasticity is recovered.
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3. THE TOPOLOGY OPTIMIZATION PROBLEM

The classical problem of maximum global stiffness [9] (or minimum compli-
ance C) is solved for a micropolar solid. It reads: find

min
ρ,u,φ

C(Eijkl (ρ),Kijkl(ρ)) (Eijkl ∈ Eadm, Kijkl ∈ Kadm), (20)

subject to ∫
�

ρ d� ≤ V, 0 < ρmin < ρ ≤ 1, (21)

aE(u, ū)+ aB(u, ū)+ aK(u, ū) = l(ū)+ g(φ̄), u =
[

u
φ

]
, (22)

for all ū ∈ U and φ̄ ∈ S. Sets Eadm and Kadm are those of thermodynamic-
ally admissible micropolar stiffness tensors, ρ is the material density and ρmin

its lower limit, introduced in order to avoid singularities in the finite element
procedure to obtain the solution. V is an upper bound on the total amount
of material available, whereas U and S denote the space of the kinematically
admissible displacements and the space of the kinematically admissible mi-
crorotation field, respectively. Terms in the weak form of equilibrium (22)
correspond to:

aE(u, ū) =
∫
�

Eijklεij (u)εkl(ū) d�,

aB(u, ū,φ, φ̄) =
∫
�

Bijklεij (ū)χkl(φ) d�+
∫
�

Bklij εkl(u)χij (φ̄) d�,

aK(φ, φ̄) =
∫
�

Kijklχij (φ)χkl(φ̄) d�,

l(u) =
∫
�

biui d�+
∫
∂�

tiui dS,

g(φ) =
∫
�

miφi d�+
∫
∂�

siφi dS. (23)

Henceforth, bi and mi will be taken to be null vectors for simplicity.
The constrained minimization problem (20) is solved by means of the SIMP

method with different material interpolation laws for the stiffness tensors Eijkl

and Kijkl , namely

Eijkl(x) = ρ(x)pE0
ijkl (p ≥ 1), Kijkl(x) = ρ(x)qK0

ijkl , (24)

whereE0
ijkl andK0

ijkl are the constitutive tensors of the base material. The solu-
tions of maximum stiffness correspond to q = 0. In this case the penalization
acts only on the translational part.
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4. RESULTS

A couple of examples are illustrated in order to describe the role of the char-
acteristic length for bending �m. The first is the standard “cantilever problem”,
solved for micropolar materials (in plane strain). A parametric analysis in
terms of �m is reported, with coupling number (Nm) fixed to 0.8. The ranging
of �m from 0 to a value of the order of the dimension of the design domain
(case of optimal design of a representative volume element of a periodic con-
tinuum) allows to investigate the influence of the length scale on the optimal
shape of structures. Some interesting phenomena may be noted. First, the
lost of connectivity in the optimal configurations as long as the characteristic
length for bending increases to become comparable to the dimension of the
domain. Second, the evolution from truss-like shapes to hierarchical config-
urations where different order of structures, able to transmit couple stresses in
addition to normal tractions, cooperate to transfer the load from the point of
application to the constraints (see [10] for additional examples).

Figure 1. Optimal solution for the cantilever problem: Cauchy material.

Figure 2. Optimal solution for the cantilever problem: Cosserat material with �m = H .

In Figure 1 the optimal layout for Cauchy material, which corresponds to
truss-like solution, is reported. Figure 2 displays the material distribution in

162



Effect of Internal Length Scale on Optimal Topologies for Cosserat Continua

Figure 3. Couple stress m13 in optimal solution for Cosserat material with �m = H .

the case of characteristic length for bending of the order of the design domain
(�m = H ). It coincides with a thin cantilever subject mainly to couple stresses
(Figure 3), whereas normal tractions are almost absent.

Figure 4. Optimal solution for the cantilever problem: Cosserat material with �m = H/40
(left) and �m = H/8 (right).

Figure 5. Optimal solution for the cantilever problem: Cosserat material with �m = H/4
(left) and �m = H/2 (right).

Another example where the role of the internal length scale can be appreci-
ate is that of a structure consisting of two rectilinear elements, loaded with a
vertical force in the free joint C (Figure 6). The oblique bar (index 1), of length
L1, reacts only to axial load, while the horizontal rod (index 2, length L2 = L)
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Figure 6. Truss optimal problem.

possesses both bending and axial stiffnesses. Two dimensionless parameters
x1 and x2 (which serve as optimization variables) may be introduced in order
to parametrize the areas of the two cross sections, namely

A1(x1) = x1A
0, x1 ∈ [0, 1], (25)

A2(x2) = x2A
0, x2 ∈ [0, xu2 ], (26)

where A0 is a reference area and xu2 is the upper limit of x2 set by the constraint
on the total volume V of the structure

V (x1, x2) =
2∑

k=1

(Ak(xk)Lk) = (x1L1 + x2L2)A
0 = Vol, (27)

where Vol is assigned. When x1 = 0, it follows that xu2 = Vol/(A0L2); on the
other hand, if the whole amount of material is distributed on bar 1 (x1 = 1,
x2 = 0), then Vol = L1A

0, so that xu2 = L1/L2. Equation (27) define also
the dependence of x2 on x1 which becomes the independent variable of the
problem. The cross-sectional inertia of the rod may be written as

I2(x2) = A2(x2)ρ
2
2 = A2(x2)(iL)

2, (28)

where ρ2 is the radius of gyration and i = ρ2/L its dimensionless counterpart.
The object function is the compliance of the system, defined as

C(x1) = F uC =
2∑

k=1

N2
k Lk

EkAk(xk)
+

∫
rod 2

M2
2

E2I2
ds. (29)

The optimization problem is to minimize the compliance C(x1), subject to the
volume constraint (27). In Figure 7 the function C(x1) is plotted for differ-
ent values of the parameter i and for H = L/4. When i = 0 the bending
stiffness of rod 2 is absent, then the optimal solution (minimum of each curve)
corresponds to classical truss-like structure with x1 = 0.515. A similar res-
ult is obtained for i = 1/8. However in the cases i = 1/4, 1/2 the optimal
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Figure 7. Plots of compliance C for different values of i as functions of the optimization
parameter x1 for the truss problem. From the top: i = 0, 1/8, 1/4, 1/2.

solution corresponds to a null value of x1, which means that the bar 1 has van-
ishing area: the load is carried by the cantilever 2 which is subject to bending
moment.

These results suggest an analogy between the characteristic length for bend-
ing (�m) in micropolar solids and the radius of gyration (ρ2) of the example,

�2
m ←→ ρ2

2 = (iL)2. (30)

Beam theory may be interpreted as a monodimensional Cosserat continuum
theory. When �m is of the order of the dimension of the design domain, the
material is subject to high couple stresses which are prominent with respect to
normal tractions.
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Abstract: Cellular Automata (CA) is an emerging paradigm for the combined analysis
and design of complex systems using local update rules. Several algorithms
based on of the CA paradigm have recently been demonstrated successfully for
the topology optimisation of structures. In the present paper, the elements of
a CA paradigm for topology optimisation are discussed. A framework for a
biologically inspired CA topology optimisation is proposed and an initial effort
to fit existing CA topology optimisation studies within this basic framework.

Keywords: Cellular automata, biomemetics, topology optimisation.

1. INTRODUCTION

Use of Cellular Automata (CA) paradigm for modelling complex systems is
finding widespread applications in science and engineering. CA uses a lat-
tice of regularly spaced cells to model the physical domain (e.g., a continuum
structure). Each cell contains all the information needed to update its state.
This includes both field variables (e.g., displacements or stresses) as well as
local design variables (e.g., local cross-sectional area or thickness). The only
external information to the cell comes directly from the adjacent cells, which
along with the cell forms a neighbourhood. The attraction of CA comes from
two facts. First, the iterative application of simple local CA rules at the cell
level can be used to generate global complex behavior. Second, by limiting
computations to neighbourhoods and using identical update rules for cell vari-
ables in the entire lattice, CA proves to be an inherently massively parallel
algorithm. The local CA rules can come from a variety of sources: heuristic,
biomemetic, optimality based, or a mixture of these.

Several algorithms for structural analysis and/or design of structures based
on the CA paradigm are presented in the literature. One of the early applic-
ations is the work in Hajela (1998) where CA rules for the solution of two-
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dimensional elasticity problems are sought. This work was further extended in
Hajela and Kirn (2000) and Hajela and Kim (2001). A CA topology optim-
isation algorithm based on the method of evolutionary structural optimisation
(ESO) is presented in Kita and Toyoda (2000). The method relied on using
finite element analysis to perform analysis and constructed CA design rule for
updating the topology design variables. A similar approach is implemented
in Tovar et al. (2004a) where the CA design rule is based on the uniform
strain energy condition and the Solid Isotropic Microstructure with Penalisa-
tion (SIMP) material interpolation scheme. This work is further extended in
Tovar et al. (2004b, 2005).

The use of the CA paradigm for addressing the automated combined ana-
lysis and design of two-dimensional elastic systems is implemented in Gürdal
and Tatting (2000). The basic elements of the methodology are demonstrated
using a simple two-dimensional domain occupied by a ground truss structures.
CA rules are used both to update the displacements, the so-called analysis up-
date rule, and to update the cross-sectional areas, the so-called design update
rule. The design rule is limited to fully stressed design. The analysis and design
rules are nested such that the analysis rule is applied several times before the
design rule is invoked. Other extensions to include geometric and material non-
linear behaviour and multiple load cases for truss topology design are presented
in Missoum et al. (2003a, 2003b), while the nesting strategy of analysis and
design is investigated in detail in Missoum et al. (2005). Parallel implement-
ation of the method and basic stability analysis is carried out in Slotta et al.
(2002), while a more refined parallel implementation is presented in Setoodeh
et al. (2005b). The method is extended in Tatting and Gürdal (2000) to a two-
dimensional continuum representation using an equivalent truss approach that
was further refined in Canyurt and Hajela (2004). Continuum CA topology
design algorithm is developed in Abdalla and Gürdal (2002) and Setoodeh et
al. (2005a) using rigorous models for the analysis rule and optimality condi-
tions for the design rule.

In this paper, we review the basic components of CA and describe a frame-
work for a biologically inspired CA formalism for structural optimisation. The
model problem considered is two-dimensional minimum compliance topology
optimisation, but the approach can be easily generalised for other performance
functionals. The different existing approaches to CA models for topology op-
timisation are discussed in relation to the proposed formalism. In particular,
we discuss the role of cell definition in suppressing numerical instabilities such
as checkerboard patterns and mesh dependency.
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Figure 1. CA Lattice for 2D topology optimisation (Abdalla and Gürdal, 2002).

2. ELEMENTS OF CELLULAR AUTOMATA

Cellular automata are generally attributed to Ulam (1952) and von Neumann
(1966) who introduced the concept in the late forties to provide a realistic
model for the behaviour of complex systems. Cellular automata is a regu-
lar lattice of logical entities called cells which are updated synchronously in
discrete time steps. Each cell can update its state based on the state of the
cell itself and its lattice nighbours in the previous step. Moreover, the update
(transition) rules and the neighbourhood structure are the same for all sites.
Commonly, cells are defined to have a discrete set of states, while a variant
of the cellular automata uses continuous lattice site values. In their modern
engineering implementation, cellular automata are simple mathematical ideal-
izations of natural systems, and are used successfully to represent a variety of
phenomena (Wolfram, 1994). A typical CA algorithm is defined by few basic
elements which are explained in the following subsections.

2.1 CA Lattice

The form of the cellular space directly reflects the physical dimensions of the
problem being solved. Rectangular lattices (Figure 1) of uniform spacing are
the simplest and for topology optimisation they are almost universally used.
The lattice structures, however, are not limited to be rectangular and non uni-
form lattices have been used in CA algorithms for structural analysis such
as the work of Hajela and Kim (2001). When CA algorithms are based on
uniform lattices, they are highly suitable for massively parallel calculations.
Preliminary results on parallel performance of CA for structural optimisation
applications on standard clusters (Slotta et al., 2002; Setoodeh et al., 2005b)
and on reconfigurable computers (Hartka et al., 2004) demonstrate the ease of
parallelisation and the good scalability of the method.
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Figure 2. Traditional CA neighborhoods.

2.2 The Neighbourhood

The neighbourhood structure is one of the most important characteristics of
a CA lattice. In updating the values of a site, it is necessary to consider the
site’s own value and the values of the sites in its neighbourhood. The set of
sites that is utilized for the update is highly problem dependent, and relies
heavily on the nature of the physical phenomenon that is being modelled. Some
common examples of neighbourhood structures used in the literature are shown
in Figure 2. The cell to be updated is labelled as C, and the adjacent ones are
labelled with letters representing the East, West, North, and South directions.

CA algorithms that rely on finite element analysis to determine the dis-
placement field identify CA cells with the elements of the rectangular mesh.
This approach is consistent with the traditional practice of associating topo-
logy variables with elements. In these approaches (e.g., Kita and Toyoda,
2000; Tovar et al., 2004a), the neighbourhood structure is based on element
adjacency. Other CA methods identify CA cells with nodes and the neighbour-
hood structure is based on node connectivity. In these methods, the topology
variables are associated with nodes and element values need to be properly
interpolated from nodal values.

2.3 Boundaries

Since every cell has the same neighbourhood structure, even the cell at the
boundary of a physical domain has neighbouring cells that are outside the
domain. For structural analysis applications, displacement boundary condi-
tions may be modelled by using preset values of the cell displacements for
the boundary cells. Traction boundary conditions can be avoided by using a
variationally consistent update rule.

2.4 CA Update Rules

In a computer implementation, the update rules that are applied to every cell
of the lattice are like function subroutines. The arguments for the function
subroutine are the values of the sites of the neighbourhood, and the value re-
turned by the function is the new value of the cell at which the function is being
applied. For example, for the von Neumann neighbourhood, the function has
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5 arguments, f (C,E,W,N, S) which returns the value of the site C at the
time/iteration t + 1. Since the update rule is applied to all the cells simultan-
eously, the incoming arguments are the values of all the cells in the previous
cycle (t), and at the new cycle (t + 1) all the cells have new values.

CA update rules are at the heart of any CA algorithm. For structural ap-
plications, two types of update rules can be identified. Rules that alter struc-
tural displacements to satisfy local equilibrium are called analysis update rules.
Rules that alter the design variables are called design update rules. One or both
types may be devised depending on whether the CA algorithm is constructed to
perform analysis only, design only or combined analysis and design. Classific-
ation of CA rules will be guided by the development of a biologically inspired
CA formalism based on an interpretation of the variational formulation of the
minimum compliance topology optimisation problem.

3. VARIATIONAL FORMULATION OF MINIMUM
COMPLIANCE DESIGN

Minimum compliance design attempts to find the optimal distribution of ma-
terial in a given domain � to minimize the compliance of the structure under
given loads with constraints on material availability. The distribution of the
material throughout the domain is described by certain design functions b(x),
that determine the local stiffness of the material and the local use of resources
at any point x in the domain. An example is the topology design of variable
stiffness panels considered in Setoodeh et al. (2005a), where the local design
functions are the local material density and local fibre angle.

The compliance of the structure is measured by the complementary work
done by the external loads. Compliance minimisation takes the form (Setoodeh
et al., 2005a)

max
b

min
u
�, (1)

where � is the total potential energy of the system,

� =
∫
�

(x, γ ; b) d� −
∫
�1

t · u∂�, (2)

where t is the applied surface traction, and  is the strain energy density of the
structure, and γ (x, u) is the, generalized, strain vector.

Material availability becomes a constraint on functionals of the design func-
tions (e.g., material volume). These integral constraints take the form∫

�

[
f (b)− f0

]
d� ≤ 0. (3)
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Additionally, local point by point by constraints (e.g., maximum thickness)
can be applied in the form

g(x, b(x)) ≤ 0. (4)

The optimality conditions for the minimum compliance problem can be
shown (Setoodeh et al., 2005a) to be equivalent to the following local optim-
isation problem:

min
b
̂(x,σ ) + µ · fx, subject to, gx(b) ≤ 0, (5)

where the generalised stress σ and the complementary energy ̂ are given by

σ = ∂

∂γ
and ̂(x, σ ; b) = σ · γ −(x, γ ; b), (6)

and µ is a vector of Lagrange multipliers. In the optimisation problem (5), the
subscripts under different functions indicate variables that are held constant
during minimisation.

4. BIOLOGICALLY-INSPIRED CELLULAR
AUTOMATA

In the previous section, the minimum compliance problem is reduced to a local
mathematical optimization problem. In CA terms, the optimisation problem
can be solved by the application of a local design rule. Note, however, that the
local optimization problem presented above (5) contains an unknown vector
of Lagrange multipliers associated with the global integral constraints. Values
of these Lagrange multipliers, therefore, are dependent on the global integral
constraints. The Lagrange multipliers associated with the integral constraints,
µ, are obtained by solving the active integral constraints of (3), while the Lag-
range multipliers associated with the inactive integral constraints will be zero.
In this fashion, the minimum compliance design problem is split into a set of
local design rules (5), and a global iteration to obtain the Lagrange multipliers.

The relation between the local design rule and the Lagrange multipliers par-
allels adaptation processes in nature where cells respond and adapt to external
stimuli guided by their genetic code. The genetic code is not itself defined by
the environment and is fixed for the lifetime of the cell. The adaptation of the
genetic code is a separate process driven by interaction with the environment
through survival of the fittest. The genetic code of the cell regulates both the
way it responds to stimuli and the way it adapts its function over longer time
scales. The adaptation of the genetic code itself occurs at a much slower time
scale than adaptation which occurs at a slower time scale than response.
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Figure 3. Biologically inspired CA paradigm.

The above view enables us to identify three nested processes in biologically
inspired CA topology optimisation as illustrated in Figure 3. The innermost
loop comprises an analysis update, where the state of a cell is iteratively up-
dated to maintain equilibrium with neighbouring cells through the application
of an analysis rule. The intermediate loop comprises a design update where the
stress state of the cell is used together with the current value of the Lagrange
multipliers to update the design of the cell through a design rule. Finally, the
outermost loop is where the Lagrange multipliers are updated to satisfy the
global integral constraints.

The proposed general paradigm depicted in Figure 3 is only one variant of
a wide possibility of interpretation of biological processes and how they relate
to structural analysis and design optimisation. One possibility not included is
for the outer loop to adapt not only the Lagrange multipliers which appear in
the design update, but to also adapt parameters in the analysis update. This
possibility was explored by Hajela and Kim (2001) where the analysis rule
was encoded using a Genetic Algorithm (GA) and optimised to give the best
possible structural response. The main disadvantage of such an approach is that
there are well known methods to discretise the structure for analysis purposes.
However, the idea of using GA for the outer iteration, in a design context, is
quite attractive and requires further investigation.

5. HYBRID CELLULAR AUTOMATA

One problem with the approach presented in Section 4 is that when the inner-
most loop is executed on serial computer architecture or medium sized parallel
clusters, the analysis iterations converge poorly and the deterioration in con-
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vergence rate increases when denser lattices are used. This phenomena can be
addressed using acceleration techniques such as multigrid (Maar and Schulz,
2000; Abdalla et al., 2004). Another attractive option is to use standard finite
elements for performing the analysis. Tovar et al. (2004b) terms this approach
hybrid cellular automata (HCA). In their approach, the same paradigm as Sec-
tion 4 is used except for the replacement of the innermost loop by a finite
element analysis. It might be argued that this approach is inherently wasteful,
since fully converged designs are obtained again and again that do not satisfy
the integral constraints. The computational cost is large especially because of
the finite element calculation is in the innermost loop. These designs, how-
ever, are physically meaningful. The integral constraints limit the availability
of global resources and it is often interesting to investigate the optimal design
as the amount available resources are parametrically varied, and this is effect-
ively accomplished by parametrically varying the Lagrange multipliers. An
instance of these trade-off studies is the trade-off between optimal compliance
and available material volume in Setoodeh et al. (2005a).

6. CLASSIFICATION OF CA UPDATE RULES

There seems to be a basic dividing line of CA methods for structural analysis
and design. There are hybrid methods that rely on finite element analysis and
pure CA methods which use local rules either for analysis only or for com-
bined analysis and design. In the following we review the basic features of
these methods. A major issue with optimisation of structural topology is the
suppression of numerical instabilities such as checkerboard patterns and mesh
dependency (Sigmund and Petersson, 1998). While, traditionally, sensitivity
filtering is applied (e.g., Diaz and Sigmund, 1995), different approaches to
instability suppression are used in CA algorithms. These features will be high-
lighted.

An early hybrid method is the topology design algorithm considered in
Kita and Toyoda (2000) where the optimal thickness distribution of a two-
dimensional continuum (plate) under inplane loads is sought. The basic meth-
odology advocated therein consists has finite elements identified as CA cells,
the cell neighborhood is identified as the elements sharing a common edge
with the cell(for the rectangular FEM mesh used, this is a Moore neighbor-
hood), and an update rule is devised, based on stresses in the neighborhood,
to update cell thickness. This work contained some far-reaching features. The
CA design rule is formulated, for the first time, as a local optimization problem
at the cell (element) level. The local update rule is based on the value of stress
resultants in the neighbourhood. The main drawback of their method is that
they depended on the evolutionary structural optimization (ESO) method. In
ESO, the von Mises stress is used as a measure to eliminate elements in the
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domain that are not contributing to the load carrying capacity of the structure.
This method is essentially heuristic is not guaranteed to converge to optimal
topologies. Another disadvantage of this CA algorithm is the large number
of iterations (in excess of a thousand) required to reach a converged topology.
Given that each CA design iteration required a full finite element analysis of the
structure, the overall computational cost proved to be excessive. Additionally,
the method does not have a mechanism for suppressing numerical instabilities
such as checkerboard patterns.

An improved hybrid method is proposed in Tovar et al. (2004a). The design
rule is based on the optimality condition of uniform strain energy. Instead of
formulating the design rule as a local optimisation problem, the design rule is
formulated as a control law. The method also included an averaging algorithm
of the design variables over the cell neighbourhood to eliminate numerical in-
stabilities. By optimising the parameters of the control law, convergence to
optimal topologies could be achieved in a reasonable number of iterations.
One drawback of the method is that the volume constraint was not explicitly
reinforced and the method relied on changing the target value of strain energy
density to generate designs with different volume fractions. The optimality
condition is improved in Tovar et al. (2005) where a multi-objective formu-
lation based on assigning different costs to the volume and the energy of the
structure is used.

Pure CA approaches such as the work of Abdalla and Gürdal (2002) and
Setoodeh et al. (2005a) identify CA cells with nodes and use optimality con-
ditions for the design rule. By nesting the analysis and the design and directly
addressing the issue of the determination of the Lagrange multipliers, these
methods are the most general CA approaches available. Additionally, associ-
ating the design variables with nodes leads to a simple approach to suppress
numerical instabilities by smoothly interpolating element densities (Maar and
Schulz, 2000; Rahmatalla and Swan, 2003). The cell neighbourhood (Fig-
ure 1) is partitioned into four quadrants and when the popular SIMP model is
used, the following compliance averaging is used to assign a constant average
density to each quadrant:

1

ρ̄p
= 1

4

∑
cells

1

ρ
p

i

, (7)

where ρi’s are the density measures of the four cells surrounding the quadrant.
This compliance averaging interpolation scheme is chosen so that any cell

with a low density would turn-off (force the assigned density to zero) all four
quadrants in which that cell participates. This makes cells in white (void) re-
gions have a negligible (or no) effect on the equilibrium equations of cells
in the black regions. Moreover, the interpolation scheme (7) does not allow
checker board patterns to be representable on the lattice, thus, suppressing
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checkerboard patterns automatically. Numerical experience with this scheme
(Abdalla and Gürdal, 2002; Setoodeh et al., 2005a) also indicates that mesh
independent topologies are obtained. A satisfactory explanation of this is a
point that requires further research. The major drawback of pure CA methods
is that the convergence of the analysis update can be extremely slow especially
for dense lattices. Acceleration techniques such as multigrid offer one solution
to this problem (Abdalla et al., 2004). Thus, the choice between pure CA or
hybrid CA is not conclusive. Further comparison of these approaches requires
careful computational experiments designed for a parallel environment.

7. CONCLUDING REMARKS

The paper discusses the elements of cellular automata (CA) and presents a
biologically inspired CA paradigm for topology optimisation problems. The
basic features of the proposed paradigm are explained and related to the ex-
isting literature on CA for structural optimisation. The proposed paradigm
is shown to provide a unifying framework for the existing literature on the
subject. There has been a substantial progress made in demonstrating the feas-
ibility of the Cellular Automata (CA) paradigm for the analysis and design
of two-dimensional structural systems under static loads as witnessed by the
work reviewed herein. The set of applications considered so far is not exhaust-
ive of the potential of CA in structural and multidisciplinary design optimiz-
ation. Further development of CA algorithms for topology optimisation can
be achieved in two main areas. The first area is extending the optimality con-
ditions for general objectives and for multiple load cases including vibration
and buckling. The second area where further work is needed is parallelisation
studies. The value of CA as a topology optimisation tool lies mainly in its
parallel capabilities. A careful investigation of the parallel performance of CA
methods especially for three-dimensional problems is needed.
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Abstract: We consider the topology optimization problem with local stress constraints. In
the basic formulation we have a pde-constrained optimization problem, where
the finite element and design analysis are solved simultaneously. Here we in-
troduce a new relaxation scheme based on a phase-field method. The starting
point of this relaxation is a reformulation of the constraints of the optimiza-
tion problem involving only linear and 0–1 constraints. The 0–1 constraints are
then relaxed and approximated by a Cahn–Hillard type penalty in the objective
functional. As the corresponding penalty parameter decreases to zero, it yields
convergence of minimizers to 0–1 designs. A major advantage of this kind of
relaxation opposed to standard approaches is a uniform constraint qualification
that is satisfied for any positive value of the penalization parameter.

After the relaxation we end up with a large-scale optimization problem with
a high number of linear inequality constraints. Discretization is done by usual
finite elements and for solving the resulting finite- dimensional programming
problems an interior-point method is used. Numerical experiments based on
different stress criteria attest the success of the new approach.

To speed up computational times we investigated the construction of an op-
timal solver for the arising subproblem in the interior-point formulation.

Keywords: Topology optimization, local stress constraints, phase-field methods, one-shot
methods, KKT-system.

1. INTRODUCTION

In comparison to maximization of material stiffness at given mass, the treat-
ment of minimization of mass while keeping a certain stiffness is by far less
understood. Until now there seems to be no approach that is capable of com-
puting reliable (global) optima with respect to local stress constraints within
reasonable computational effort.
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In our work we use a different approach to the relaxation of the local con-
straints. Starting point of our analysis is a reformulation of the equality con-
straints describing the elastic equilibrium and the local inequality constraints
for stresses and displacements into a system of linear inequality constraints.
The main difficulty is that the arising problem also involves 0–1 constraints in
addition to the linear inequalities. Instead of solving mixed linear program-
ming problems, we propose to use a phase-field relaxation of the reformulated
problem. The phase-field relaxation consists in using an interpolated mater-
ial density ρ, similar to material interpolation schemes. In addition, a Cahn–
Hilliard type penalization functional (cf. [3]) of the form

P ε(ρ) = ε

2

∫
�

|∇ρ|2 dx + 1

ε

∫
�

W(ρ) dx (1)

is used to approximate the perimeter, where W : R → R ∪ {+∞} is a scalar
function with exactly two minimizers at 0 and 1 satisfying W(0) = W(1) =
0. The second term of the penalty functional ensures that the values of the
material density ρ converge to 0 or 1 as ε → 0, while the first term controls
the perimeter of level sets of ρ.

2. REFORMULATION OF CONSTRAINTS AND
PHASE–FIELD RELAXATION

We consider the following problem formulation as a starting point of our re-
formulation: ∫

�

χ dx → min
χ,u

div σ = 0 in {χ = 1}
σ = C : e(u) in �

u = 0 on �u ⊂ ∂�

σ · n = t on �t ⊂ ∂�

σ · n = 0 on ∂{χ = 1} ∪ (∂�− �u − �t)

χ ∈ {0, 1} a.e.
σmin ≤ σ ≤ σmax in {χ = 1}
umin ≤ u ≤ umax in �.

In the following we briefly summerize a reformulation, due to Stolpe and
Svanberg [6], of constraints on subsets of locally bounded stresses, i.e.,
β|σij | ≤ 1, in �, i, j = 1, . . . , d, for some (small) β > 0. Next we in-
troduce an additional artificial stress variable s such that s = σ if χ = 1 and
s = 0 if χ = 0, i.e., s = χσ = χ ·C : e(u). Then, (χ,u) satisfying the original
constraints

σ = C : e(u) in �
σmin ≤ σ ≤ σmax in {χ = 1}
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is equivalent to (χ,u, s) satisfying the following additional constraints (with
the matrix 1 = (1)ij ):

−(1 − χ)1 ≤ β(C : e(u)− s) ≤ (1 − χ)1 in �
χσ min ≤ s ≤ χσ max in �

Note that (except χ ∈ {0, 1}) the constraints are now linear with respect to the
new vector of unknowns (χ,u, σ, s), in particular all constraints are formulated
on � and not on the unknown set {χ = 1}. We would like to mention that
the drawback of the reformulation is an increase in the number of unknowns
and a high number of inequality constraints. On the other hand, this seems to
be a reasonable price for the linear reformulation of the complicated original
constraints.

We now turn our attention to the relaxation of the stress constrained topo-
logy optimization problem. For this sake is has been proposed in [5] to replace
the indicator function χ by a density ρ : � → [0, 1] and add the Cahn–Hillard
term (1) to the objective. The resulting relaxation in the case of total stress
constraints is given by

γ
∫
�
ρ dx + P ε(ρ) → min,

div s = 0 in �,
σ = C : e(u) in �,

u = 0 on �D,
s · n = t on �N,
s · n = 0 on ∂�− �D − �N,

−(1 − ρ)1 ≤ β(σ − s) ≤ (1 − ρ)1 in �,
σminρ ≤ s ≤ σmaxρ in �,

0 ≤ ρ ≤ 1 a.e. in �,
umin ≤ u ≤ umax in �.

(2)

It is now possible to show for the relaxed problem the existence of a solu-
tion, and that the discretized problem satisfies the linear constraint qualification
condition.

3. NUMERICAL REALIZATION

Usual finite element discretization with linear elements for ρ and u and con-
stant elements for s lead to a very large scale optimization problem. In [5],
we solve the discretized problem with IPOPT used as a black-box routine,
which is realizing a primal-dual interior point method. Nevertheless, the al-
gorithm behaves robust and produces reliable results. One test example shows
the following picture where the left part shows the load condition, bearings and
geometry and the left one the optimal design with respect to local von Mises
constraints.
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Here set γ = 2 and started the ε-continuation with ε0 = 1 where decreased
ε over 4 levels as εl+1 = εl/4. A mesh with 17291 elements results finally
in a problem with 355097 unknowns and 242502 constraints (including slack
variables).

One possibility to speed up the calculation is to construct a solver for the
linear KKT-system, which results from the interior-point formulation, with op-
timal complexity. This can be done using a multi-grid approach with a mul-
tiplicative Schwarz-type smoother (see e.g. [4]). Here we list the numerical
results for ε = µ = 0.1 with a W-cycle and 1 pre- and post-smoothing step,
error reduction by a factor of 10−8:

Level Unknowns Iterations Conv. Factor

4 725 18 0.35
5 2853 10 0.14
6 11333 11 0.17
7 45189 11 0.18
8 180485 11 0.18
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Abstract: We present a concept for solving topology design problems to proven global
optimality. We propose that the problems are modeled using the approach of
simultaneous analysis and design with discrete design variables and solved with
convergent branch and bound type methods. This concept is illustrated on two
applications. The first application is the design of stiff truss structures where the
bar areas are chosen from a finite set of available areas. The second considered
application is simultaneous topology and geometry design of planar articulated
mechanisms. For each application we outline a convergent nonlinear branch and
bound method and present a numerical example.

Keywords: Stiffness optimization, mechanism design, global optimization, branch and
bound.

1. INTRODUCTION

We propose a concept for solving certain classes of topology design problems
to proven global optimality. The concept consists of a suitable choice of prob-
lem formulation and global optimization method. We propose that the topology
design problems are formulated using the approach of simultaneous analysis
and design. In these formulations continuous state variables and equilibrium
equations are explicitly included. Furthermore, we require that the design vari-
ables are discrete. As a special case this includes the important situation that
the design variables are binary to indicate presence or absence of material.
The choice of optimization method falls on special purpose implementations
of branch and bound type methods.

One of the main advantages of this modeling approach is that the objective
function and the constraint functions are given as polynomials of low order,
generally with only linear or quadratic terms. This is achieved at the expense
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of an increased number of variables and constraints compared to a nested for-
mulation stated in the design variables only. In a nested formulation, these
functions are often rational functions in which the nominator and denominator
are polynomials of high order. Our choice of modeling gives the possibility
to take advantage of the particular mathematical structure of the optimization
problem. It is possible to tailor global optimization methods, in particular
branch and bound methods, and solve large-scale instances to proven global
optimality. The concept is illustrated on two applications, design of stiff truss
structures and the design of planar articulated mechanisms.

1.1 Reformulations of Topology Design Problems

In Grossman et al. (1992) a special class of discrete truss topology design prob-
lems are formulated as linear mixed integer programs. As a direct result of
these formulations a special purpose branch and bound method for minimum
weight design of linearly elastic trusses with stress and displacement con-
straints is presented in Bollapragada et al. (2001). Many topology design prob-
lems can be modeled as convex mixed 0–1 problems, see Stolpe and Svanberg
(2003) and Stolpe (2004). The reformulation results hold for problems arising
in a wide range of recent applications of topology optimization of continuum
structures and materials. The cornerstone in all these reformulations is the
use of simultaneous analysis and design with discrete design variables. In this
model the non-convex terms which appear in the problems are bilinear terms
involving a binary variable and a continuous variable. It is possible after in-
troducing additional state variables and linear constraints to remove this non-
convexity.

Similar reformulation techniques can also be used to construct convex con-
tinuous relaxations of the considered discrete problems. This possibility is
used extensively when solving the mechanism design problem.

2. BRANCH AND BOUND METHODS

Branch and bound is a deterministic global optimization method based on the
concept of divide and conquer and was first introduced for general integer pro-
grams in Land and Doig (1960). Branch and bound methods for mixed integer
linear programs are described in Nemhauser and Wolsey (1999) and for gen-
eral global optimization problems in Horst and Tuy (1993). Today methods
based on branch and bound are de facto standard for solving large-scale linear
and convex quadratic mixed integer programs.

In branch and bound algorithms the feasible set of the problem is partitioned
into subsets (branching). For each subset a lower and an upper bound on the
objective function value are determined (bounding). The lower bound is of-
ten found by solving a continuous relaxation of the problem over the subset.
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A relaxation can be obtained by relaxing difficult constraints such as integer
requirements. Upper bounds are given as the objective function values for
solutions which are feasible to the problem. The partition of the feasible set is
represented by an enumeration tree in which the sons of a given node repres-
ent a partition of the feasible region of the father. One of the key features of
branch and bound methods is the ability to delete sets in the partition (pruning
or fathoming) on which it can be shown that a global minimizer is not loc-
ated. This corresponds to excluding entire subtrees from further consideration
and thus avoid complete enumeration. Associated with the enumeration tree
is the global lower bound lb defined as the lowest lower bound over all un-
pruned (active) nodes in the enumeration tree and the global upper bound ub

given as the optimal objective function value of the best found feasible solution
(the incumbent). Using the global bounds lb and ub it is possible to obtain a
measure of the closeness from the incumbent to the global optimal solution by
computing either the absolute gap ub − lb or the relative gap (ub − lb)/ lb if
lb > 0.

Many factors influence the behavior of branch and bound methods. Two of
the most important are the quality and the mathematical structure of the relax-
ation. The relaxation should be a good approximation of the original problem.
The strength of a relaxation is often measured by comparing the optimal object-
ive function value of the relaxation and the optimal objective function value of
the original problem (once this has been found). The relaxation should also be
tractable and therefore the relaxations are often smooth and convex problems.
The choice of method for solving the relaxation should preferably benefit from
good starting information since this is almost always available. Another factor
which can greatly influence the convergence of branch and bound methods is
the generation of good feasible solutions by heuristics.

We next present the two applications from the field of topology optimiza-
tion for which it is possible to tailor the different parts of a branch and bound
method such that large-scale instances can be solved to global optimality.

3. APPLICATIONS

The first of the two applications is the classical problem of finding the stiffest
truss subject to a volume constraint. The design variables are the cross section
areas of the bars in the ground structure which are chosen from a finite set of
available areas. The second application is simultaneous geometry and topology
optimization of planar articulated mechanisms. The mechanism is modeled
using a truss representation and the binary design variables indicate presence
or absence of the bars in the ground structure. In both applications the state
variables are the nodal displacements.
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3.1 Design of Stiff Truss Structures

We consider the following single load minimum compliance problem where
the bar areas a are to be chosen from a finite set of available areas.

minimize
a,u

1
2f

T u

subject to K(a)u = f,

n∑
j=1

aj lj ≤ V,

aj ∈ {a1
j , . . . , a

mj

j }, j = 1, . . . , n.

(P)

The elastic equilibrium of a truss subject to a static external nodal load vector
f ∈ R

d is assumed to be given by K(a)u = f , where u ∈ R
d denotes the

nodal displacement vector, and d denotes the number of degrees of freedom of
the ground structure. The stiffness matrix K(a) ∈ R

d×d in global coordinates
may be written as

K(a) =
n∑

j=1

ajKj =
n∑

j=1

aj
Ej

lj
γjγ

T
j =

n∑
j=1

ajbjb
T
j .

Here, lj is the bar length, Ej is the Young’s modulus of the material used for
the j th bar, γj is a vector of direction cosines, and bj = √

(Ej/ lj )γj . The
available areas are assumed to satisfy 0 ≤ a1

j < · · · < a
mj

j < +∞.
A “natural” continuous relaxation of the discrete minimum compliance

problem (P) is obtained if the requirements aj ∈ {a1
j , . . . , a

mj

j } are relaxed to

a1
j ≤ aj ≤ a

mj

j . We study here relaxations of (P) with arbitrary box-constraints
on the design variables. The relaxation is the non-convex continuous minimum
compliance problem

minimize
a,u

1
2f

T u

subject to K(a)u = f,

n∑
j=1

aj lj ≤ V,

Lj/ lj ≤ aj ≤ Uj/lj , j = 1, . . . , n.

(R)

This covers the relaxation of (P) with the constraints a1
j ≤ aj ≤ a

mj

j if Lj =
a1
j lj and Uj = a

mj

j lj . There exist numerous equivalent reformulations of the
continuous minimum compliance problem (R), see e.g. Achtziger et al. (1992),
Ben-Tal and Bendsøe (1993), and Ben-Tal and Nemirovski (1994, 1997). One
such reformulation is the indefinite quadratic program
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minimize
u,s,µ

1
2 (u

T , sT , µ)C(uT , sT , µ)T − f T u

subject to −B̃T u− s − µe ≤ 0,
B̃T u− s − µe ≤ 0,
s ≥ 0, µ ≥ 0,

(QP)

where e ∈ R
n is a vector of all ones, the symmetric indefinite matrix

C =

⎛⎜⎜⎜⎜⎝
n∑

j=1

Lj

lj
Kj 0 0

0 diag(U − L) U − L

0 (U − L)T V −
n∑

j=1
Lj

⎞⎟⎟⎟⎟⎠ ∈ R
(d+n+1)×(d+n+1)

and the matrix B̃ =
(

1√
l1
b1

1√
l2
b2 · · · 1√

ln
bn

)
∈ R

d×n. The relaxation (R)

and the quadratic program (QP) are closely related.

Proposition 1 The following statements are equivalent:

(i) Problem (R) possesses a solution.

(ii) Problem (R) is feasible.

(iii) Problem (QP) possesses a solution.

(iv) Problem (QP) is bounded.

In any case, inf (R) = − inf (QP).

Given a Karush–Kuhn–Tucker (KKT) point of the quadratic program (QP), a
global minimizer of the non-convex relaxation (R) can be constructed.

Theorem 2 Let (u, s, µ) be a KKT-point of (QP) with multipliers σ−, σ+, ρ
and κ . If µ > 0 then (a, u) is a global optimizer of (R) where

aj =
⎧⎨⎩

Lj

lj
+ 1

µlj

[
(σ−

j + σ+
j )− (Uj − Lj)sj

]
if Uj > Lj ,

Lj/lj if Uj = Lj .

In view of the branch and bound method we must solve the relaxation (R)
repeatedly for different choices of bounds L andU . Now observe the following
crucial effect when (QP) is solved instead of (R). The bounds L and U appear
solely in the objective function of (QP), and the feasible set of (QP) remains
identical for all choices of L and U . Hence, independent of the choice of L
and U a feasible point of (QP) is immediate. In a branch and bound context, a
good feasible solution to the relaxation is given by the optimal solution of the
relaxation at the father node in the enumeration tree.

189



M. Stolpe et al.

The branch and bound method. A strong lower bound on the optimal
compliance is given by an optimal solution to the non-convex relaxation (R)
which in turn is obtained by solving the indefinite quadratic program (QP).
Upper bounds, i.e. feasible solutions, are found by a fast heuristic based on
rounding. Given a globally optimal solution to the non-convex relaxation (R)
the optimal bar areas are rounded to the nearest area in {a1

j , . . . , a
mj

j } for all j
while satisfying the volume constraint. This gives a candidate topology. If a
displacement vector satisfying the equilibrium equations can be found for this
candidate design a feasible solution is found. Every tenth iteration the node
chosen for further refinement in the enumeration tree is the one where the least
lower bound is attained (the best-bound-first rule). From this node we resort
to a depth-first search strategy. The feasible set is partitioned using variable
dichotomy branching on the discrete area variables. The design variable for
branching is chosen according to the maximum integer infeasibility rule. With
these choices of relaxation, node selection rule, and branching rule the branch
and bound method is finitely convergent. Hence, a global optimal solution is
obtained after solving a finite number of relaxations. The branch and bound
method is implemented in matlab. The matlab code controls the overall
program flow as well as constructs and maintains the branch and bound search
tree. The indefinite quadratic programs (QP) are solved by the sparse sequen-
tial quadratic programming package snopt described in Gill et al. (2002).

Numerical example. The design domain, boundary conditions, and ex-
ternal load for a cantilever beam example are shown in Figure 1(a). A ground
structure with n = 72 potential bars and d = 48 degrees of freedom is shown
in Figure 1(b). The available volume V = 60 and the area variables are to be
chosen from the set {0, 1, 3, 5, 7, 9}. The optimal topology to the continuous
relaxation (R) is shown in Figure 1(c) and the optimal topology to the discrete
minimum compliance problem (P) is shown in Figure 1(d). In this example the
optimal topologies of the relaxed and the mixed discrete problem are identical
and the heuristic found the optimal solution in the root node of the enumeration
tree. The initial relative gap for this example is merely 2%. Global optimality
of the solution was assured after processing 4211 nodes (= relaxations solved)
of the enumeration tree.

3.2 Design of Planar Articulated Mechanisms

In the second application we consider an optimization model and a method
for the design of planar articulated mechanical mechanisms. The mechanism
design problem is modeled as a non-convex mixed integer program in which
the optimal topology and geometry of the mechanism are determined simul-
taneously. Details of the problem formulation and the method together with
several numerical examples are found in Stolpe and Kawamoto (2005).
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Figure 1. A cantilever beam example.

A mechanism consists of links which are connected by joints. An articu-
lated mechanism is a mechanism which gains all of its mobility from its joints.
Instead of using rigid bars and revolute joints in the analysis of the mechanism
we propose to use an elastic truss representation. The use of a truss model is
an approximation of the rigid bars and revolute joints. Therefore the modulus
of elasticity is chosen sufficiently large such that the articulated mechanisms
cannot rely on the elasticity of the bars to function. In the mechanical model
we assume that large displacements are allowed but the strains are small. The
strains are given by the Green–Lagrange strain measure. We also assume and
that the material is linearly elastic and the material properties remain constant.

The topology of the mechanism is described by the binary vector a ∈ B
n in-

dicating presence or absence of the bars in the ground structure. The geometry
is described by the vector χ ∈ R

2N containing the coordinates of the nodes.
For a given topology and geometry the displacement vector u ∈ R

d should
be a minimizer of the potential energy. In order to find a stable equilibrium,
we need to find a local minimizer or at least a stationary point of the poten-
tial energy �(a, u, χ) such that the Hessian of � with respect to u is positive
semidefinite. The first order necessary optimality conditions for this problem,
in the form of equilibrium equations, are given by

∇u�(a, u, χ) = 0. (1)

The second order conditions are given by the nonlinear matrix inequality

∇2
uu�(a, u, χ) � 0. (2)
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Since we want the optimal design to be able to perform its task repeatedly
and with certainty, the elastic stability of the mechanism must be assured. We
therefore include a constraint on the global stability of the mechanism in the
problem formulation. A commonly used model for the stability analysis of
trusses is the linear buckling model, see e.g. Bathe (1982). The condition on
the truss stability can, in the linear buckling model, be stated as a nonlinear
matrix inequality, see e.g. Ben-Tal et al. (2000). The stability condition is
given by the non-linear matrix inequality

K(a, χ) +G(a, u0, χ) � 0, (3)

where u0 ∈ R
d is a solution to the small-deformation equilibrium equations

K(a, χ)u0 = p. (4)

The matrices K(a, χ) and G(a, u0, χ) are the linear stiffness matrix and the
geometry matrix of the truss, respectively. The global stability condition (3)
guarantees that the mechanism is stable in the initial configuration, while the
condition (2) guarantees that the mechanism is stable in the final configuration.

The problem under consideration is to design a stable mechanism consisting
of Vn bars with exactly one mechanical degree of freedom. Given an input
force p ∈ R

d , the output port displacement in the desired direction c ∈ R
d

should be maximized. The (essential parts of the) mechanism design problem
is stated as the non-convex mixed integer optimization problem

minimize
a,u,u0,χ

−cT u
subject to ∇u�(a, u, χ) = 0,∇2

uu�(a, u, χ) � 0,
K(a, χ)u0 = p,K(a, χ) +G(a, u0, χ) � 0,
dm(a) = 1, eT a = Vn, a ∈ {0, 1}n,

where dm(a) denotes the number of mechanical degrees of freedom. Included
in the mechanism design formulation (but not shown here) are also constraints
on the member stresses and bounds on the geometry and displacement vari-
ables.

The branch and bound method. A mixed integer non-convex relaxation
is obtained after temporarily removing the nonlinear matrix inequalities (2)
and (3). This relaxation is then rewritten by introducing additional continuous
state variables representing bar forces, strains, lengths, and disaggregating the
equilibrium equations (1) and (4). The resulting problem consists of linear,
bilinear, and quadratic terms. The nonlinear terms are then replaced by their
convex envelopes. Finally, the integer requirements a ∈ {0, 1}n are relaxed
to a ∈ [0, 1]n. The final relaxation is a convex all-quadratic program. The
node chosen for further refinement is the one where the least lower bound is
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attained. Branching is first performed on the discrete design variables. Once
all discrete variables are fixed, branching is done on the continuous displace-
ment and geometry variables. The removed stability conditions (2) and (3) are
reintroduced once a candidate topology has been found in the form of feasib-
ility tests. The stability constraints are thus enforced to hold for all candidate
designs. The choices of node selection rule, branching rule, and relaxation
guarantee convergence (but not finite convergence) of the branch and bound
method, see e.g. Horst and Tuy (1993). The branch and bound method is im-
plemented in MATLAB. The MATLAB code controls the overall program flow
and the branch and bound tree. The convex all-quadratic relaxations are solved
using the package SNOPT.

Numerical example. A ground-structure consisting of n = 66 potential
bars and d = 18 degrees of freedom for the example is shown in Figure 2(a).
The bounds on the nodal positions are depicted by black boxes in the figure.
In this example the design domain is a two dimensional square with width and
height equal to one. The requested number of active bars in the mechanism
is 10. The modulus of elasticity is in all examples set to Ej = 10 for all j .
The stiffnesses of the linear springs at the input and output ports are denoted
by kin = 2.0 and kout = 0.02, respectively. The external load vector p and the
output direction vector c have +1 or −1 entries in the positions correspond-
ing to the degrees of freedom for the input and output port displacements and
zero entries otherwise. In Figure 2(b) the optimal design to the simultaneous
topology and geometry design problem is shown in black. The optimal design
with initial nodal positions is shown in grey in Figure 2(b). The optimal ob-
jective function value for the simultaneous topology and geometry problem is
cT u = 0.993. Global optimality of the solution was assured after processing
163 nodes of the enumeration tree.

Figure 2. Ground-structure and optimal design for the example.
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Ben-Tal, A., Jarre, F., Kočvara, M., Nemirovski, A. and Zowe, J. (2000) Optimal design of
trusses under a nonconvex global buckling constraint, Optimization and Engineering, 1,
189–213.

Bollapragada, S., Ghattas, O. and Hooker, J.N. (2001) Optimal design of truss structures by
logical-based branch and cut. Operations Research, 49(1), 42–51.

Gill, P.E., Murray, W. and Saunders, M.A. (2002) SNOPT: An SQP algorithm for large-scale
constrained optimization, SIAM Journal on Optimization, 12(4), 979–1006.

Grossman, I., Voudouris, V.T. and Ghattas, O. (1992) Mixed-integer linear programming for-
mulations of some nonlinear discrete design optimization problems, in Recent Advances in
Global Optimization, C.A. Floudas and P.M. Pardalos (eds), Princeton University Press.

Horst, R. and Tuy, H. (1993) Global Optimization: Deterministic Approaches, Springer-Verlag.
Land, A.H. and Doig, A.G. (1960) An automatic method for solving discrete programming

problems, Econometrica, 28, 497–520.
Nemhauser, G. and Wolsey, L. (1999) Integer and Combinatorial Optimization, Wiley.
Stolpe, M. (2004) On the reformulation of topology optimization problems as linear or convex

quadratic mixed 0-1 problems, Technical Report, Department of Mathematics, Technical
University of Denmark (DTU). MAT-Report No. 2004-13. Submitted.

Stolpe, M. and Kawamoto, A. (2005) Design of planar articluated mechanisms using branch
and bound. Mathematical Programming, Series B, 103, 357–397.

Stolpe, M. and Svanberg, K. (2003) Modeling topology optimization problems as linear mixed
0-1 programs, International Journal for Numerical Methods in Engineering, 57(5), 723–739.

194



Image Processing Ideas and Level Sets



IMPEDANCE IMAGING FOR
INHOMOGENEITIES OF LOW VOLUME
FRACTION

Yves Capdeboscq
Université de Versailles Saint-Quentin-en-Yvelines, 78035 Versailles Cedex, France

Yves.Capdeboscq@uvsq.fr

Abstract: We first review some recent representation formulas for the boundary voltage
perturbation arising as a result of the presence of low volume fraction inhomo-
geneities, and then discuss the attainability of the limit set of possible polariza-
tion tensors by simply connected domains.

Keywords: Impedance imaging, polarization tensors.

1. INTRODUCTION

Impedance imaging uses measurements of boundary voltage potentials and as-
sociated boundary currents to obtain informations about the internal conductiv-
ity profile of an object. Without any a priori assumptions about the conductivity
profile, impedance imaging is known to be extremely ill-conditioned [1]. The
conditioning may be drastically improved in several practical important cases
by the introduction of a priori information on the nature of the conductivity
profile to be identified. One such case is that of a known background medium
with low volume fraction inhomogeneities, the volume, locations and shapes
of which one should like to estimate.

Over the last two decades, a considerable amount of work has been ded-
icated to the imaging of such low volume fraction inhomogeneities. This
presentation does not attempt to give an exhaustive survey of all the work of
this nature. Here, the focus shall be on certain representation formulas that
have emerged [3, 5, 12–14]. After introducing these formulas in the general
case, some properties of the polarization tensors that appear will be reviewed.
Finally, the question of the attainability of the optimal bounds by simply con-
nected sets will be discussed.
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For simplicity, the focus of this talk is on the problem of electrical conduc-
tion. However, most of the results that are presented exist both for conduction
and elasticity.

2. REPRESENTATION FORMULA

Let � ⊂ Rn be a bounded smooth domain representing the entire object being
imaged. Let K0 be a compact subset of � and let ωε ⊂ K0 ⊂ � represent the
unknown set of inhomogeneities. The subscript ε on ωε is used to indicate that
the focus is on “small” sets (in the sense of Lebesgue measure). A concrete
example could be

ωε = ∪N
k=1 (zk + εBk) ,

where the “centers” zk are points in �, and the “shapes” Bk are bounded,
smooth domains. Another example could be

ωε = ∪N
k=1ω

k
ε,

where each of the ωk
ε has the form

ωk
ε = {

x′ + ηn(x′) : x′ ∈ σk, η ∈ (−ε, ε)} .
Here all σk are smooth non intersecting surfaces, and n(x′) denotes a smooth
unit normal vector field to σk. Let γε denote the conductivity in the presence
of the inhomogeneities. It is given by γε(x) = γ0(x) for x ∈ � \ ωε and
γε(x) = γ1(x) for x ∈ ωε , the functions γ0(·) and γ1(·) being smooth, and
such that

0 < c < γ0(x)γ1(x) < C < ∞, x ∈ �.

The background voltage potential u0 and the voltage potential in the presence
of inhomogeneities uε are the solutions of⎧⎨⎩

∇ · (γ0(x)∇u0) = 0 in �,

γ0
∂u0
∂n

= ψ on ∂�,
and

⎧⎨⎩
∇ · (γε(x)∇uε) = 0 in �,

γε
∂uε
∂n

= ψ on ∂�.

Here ψ ∈ H 1/2(∂�) and
∫
∂�
ψ = 0 is the prescribed boundary current. The

voltage potential is normalized by the assumption that
∫
∂�
u0dσ = ∫

∂�
uεdσ =

0. The available data is the trace on the boundary of the voltage potential
uε . The asymptotic limit of uε is straightforward: the sequence uε converges
strongly in H 1(�) to u0. Informations on the inclusion can be extracted from
the boundary voltage difference uε − u0. An integration by parts shows that,
for all w ∈ H 1(�),∫

�

γ0∇(uε − u0) · ∇wdx =
∫
�

(γ0 − γε)∇uε∇wdx, (1)

= |ωε|
∫
�

(γ0 − γ1)∇uε · ∇w 1

|ωε|1ωε (x)dx.
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Since the function |ωε|−1 1ωε (x) is bounded in L1(�) we may extract a sub-
sequence (also denoted by ε) such that is converges to a regular Borel measure
µ, in the sense of measures

|ωε|−1 1ωε (x)dx → dµ as |ωε| → 0. (2)

Introducing the Neumann function of the unperturbed problem⎧⎨⎩
∇x · (γ0(x)∇xN(x, y)) = 0 in �,

γ0(x)
∂u0
∂nx

= −δy + 1
|∂�| on ∂�,

We deduce from (1) that

uε(y)− u0(y) = |ωε|
∫
�

(γ0 − γ1)(x)∇uε · ∇N(x, y) 1

|ωε|1ωε (x)dx.

In order to state the general representation result, we need to introduce the
following family of auxiliary problems⎧⎨⎩

∇ · (γε(x)∇vjε ) = ∂γ0
∂xj

(x) in �,

γε
∂uε
∂n

= γ0(x)nj on ∂�,

normalized as before by
∫
∂�
vjε dσ = 0. It is proved in [10] that up to the

extraction of a subsequence (still indexed by ε),

lim
1

|ωε|
∫
ωε

∂

∂xi
vjε φ(x)dx =

∫
�

Mij (x)φ(x)dµ, (3)

for any φ ∈ C0(�). The following representation result for all possible leading
terms of the boundary voltages uε − U was established in [10].

Theorem 2.1. Given a family of measurable sets ωε ⊂ K0 ⊂ �, containing
sets of arbitrarily small Lebesgue measure, let ωεbe a subsequence such that
|ωε| → 0 and such that (2) and (3) hold. Then

uε(y)− u0(y)

= |ωε|
∫
�

(γ0 − γ1)(x)M∇u0 · ∇N(x, y) dµ(x) + o(|ωε|), y ∈ ∂�.

The term o (|ωε|) is such that ‖o (|ωε|)‖L∞(∂�) / |ωε| converges to 0 for any
fixed ψ ∈ H−1/2and uniformly on {ψ : ∫

∂�
ψdσ = 0, ‖ψ‖L2(∂�) ≤ 1}.

Special instances of this representation formula were derived for specific col-
lections of inhomogeneities [7, 8, 13, 14] and can be used to very effectively
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reconstruct the support of µ [3, 9]. In the case of inhomogeneities of small dia-
meter, i.e. when ωε = ∪N

k=1 (zk + εBk) it is possible to obtain an asymptotic
expansion to any order in ε; this is explained in [3], also in the elasticity case,
originally published in [4] (see also [19]). In that case, assuming for simplicity
that ωε = z + εBε , the expansion for the displacement uε starts by

uε(x) = u0(x)+ εm
m∑

i,j,p,q=1

∂iu
j (z)∂pNkq(x − z)mij

pq +O
(
ε2m

)
,

where M = (m
ij
pq) is the elastic moment tensor, and N is the Neumann func-

tion associated with the Lamé operator Lλ,µ.

Remark 2.2. The concept of polarization tensor is not new, neither in con-
duction nor in elasticity (see e.g. [3, 16, 17, 19–22, 24, 25]), and has been
introduced either as the trace at infinity of an inclusion (or a cavity) inside an
infinite domain, or as the small volume fraction limit of an homogenized op-
erator, in a periodic setting. Here, the only assumption on the set ωε is that
its measure tends to zero with ε, and no intermediate homogenization step is
required.

3. BOUNDS FOR THE POLARIZATION TENSOR

In the spirit of effective media theory, it is possible to characterize the set
of matrices M that may occur as polarization tensors. This characterization
is in terms of the eigenvalues, more specifically in terms of bounds for the
expression Trace(M) and Trace(M−1). While these bounds may be formulated
point wise, they have only been rigorously verified in the following average
sense [11, 12].

Theorem 3.1. Suppose that the conductivities γ0 and γ1 are constants, with
γ0 �= γ1. Then

Trace

(∫
�

Mdµ

)
≤ m− 1 + γ0

γ1
(4)

and

Trace

(∫
�

Mdµ

)−1

≤ m− 1 + γ1

γ0
. (5)

Remark 3.2. Bounds (4)–(5) are very related to the so-called Hashin-Strikman
bounds in Homogenization Theory [18, 23], and the proof relies on the Hashin-
Strikman variational technique as described in [15]. These bounds were de-
rived as dilute limits of effective tensors in [6, 17].

200



Impedance Imaging for Inhomogeneities of Low Volume Fraction

In the case m = 2, the trace and inverse trace bounds are optimal in the
sense that every pair (λ1, λ2) in the set

E =
{
(λ1, λ2) ∈ (R+)2 s.t. λ1 + λ2 ≤ 1 + γ0

γ1
and λ−1

1 + λ−1
2 ≤ 1 + γ1

γ0

}
arises as the eigenvalues of a polarization tensor in the presentation formula
from Theorem 2.1. The polarization tensor of corresponding to the set{

(x1, x2) ∈ (R+)2 s.t.
x2

1

a2
+ x2

2

b2
≤ 1

}
is given by [9]

M =
(

γ0(a+b)
γ1b+γ0a

0

0 γ0(a+b)
γ1a+γ0b

)
,

and this shows that the lower bound (5) is attained by elliptic inclusions. It
is possible to show that the full set is obtained with “washers”, i.e., confocal
ellipses [12]. In terms of diameter of the inclusion (at constant volume), “wash-
ers” are natural candidates for an upper estimate. It is however reasonnable to
suppose that in many cases the inclusions would be simply connected. The at-
tainability of the full set E by simply connected objects as been the subject of
recent work [2]. Shapes are created by convex combinations of crosses C and
ellipses E of unit area. Numerical simulations show that as the cross grows
longer and thinner, it tends to the upper bound (4). Longer and thinner ellipses
tend to the intersection of the two bounds, that is, λ1 = 1 and λ2 = γ0/γ1 (or
vice-versa). Numerical simulation show that the convex combinations of these
shapes

sE + (1 − s)C

fill in the rest of the interior of the domain. The next section is devoted to the
attainability of the upper bound.

4. ATTAINABILITY OF THE UPPER BOUND

In the following proposition, we compute the limit of the sequence of po-
larization tensor MH

n corresponding to a thin rectangular horizontal beams
Hn = [−θδ−1

n , θδ−1
n

] × [− 1
4δn,

1
4δn

]
where

lim
n→∞ δn = 0.

Note that polarization tensor for similar structures or more complex thin struc-
tures have already been derived [8] together with precise regularity estimates
for the corresponding correctors. It is very likely that the result below is a
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consequence of these more general results. However, since we only need lim-
ited informations on the limit polarization tensor, and the structure we consider
rather simple, it is possible to provide a independent proof.

Given λ ∈ R2, we denote by wλ
n the unique in D1,2(R2) of the problem

�wλ
n = γ0 − γ1

γ0
div

(
1Xn

(∇wλ
n + λ)

)
. (6)

The domain Xn is a cross, given by Xn = Hn∪Bn, where Hn = [−θδ−1
n , θδ−1

n ]
× [− 1

4δn,
1
4δn] is a thin horizontal beam, whereas Bn is the thin vertical beam

Vn = [− 1
4 δ̃n,

1
4 δ̃n][−(1 − θ)δ̃−1

n , (1 − θ)δ̃−1
n ] rotated of an angle ϕ ∈]0, π [.

lim
n→∞ δn = lim

n→∞ δ̃n = 0.

We denote by hn (resp. bn) the unique solution in D1,2(R2) of the problem

�hλn(resp. bλn) = γ0 − γ1

γ0
div

(
1Hn

(resp. 1Bn)
(∇hλn(resp. bλn)+ λ

))
, (7)

which tends to zero at infinity. In all the sequel, the superscript λ will be
dropped.

Proposition 4.1. The polarization tensor MH
n for the horizontal beam Hn sat-

isfies

MH
n = θ

(
1 0
0 γ0

γ1

)
+ o(1). (8)

As a consequence, we can derive the following estimates for hλn, solution of (7)∥∥∥∥∇hλn + λ21Hn

γ0 − γ1

γ1

∥∥∥∥
L2(R2)

= o(1) (9)

with the notation λ = λ1e1 + λ2e2.

Let us first note that, asymptotically, beams Hn and Bn uncouple.

Proposition 4.2. If wn is unique the solution in D1,2(R2) of problem (6), then

lim
n→∞ ‖∇wn − ∇hn − ∇bn‖L2(R2)2 = 0. (10)

As a consequence, the polarization tensor Mn corresponding to the cross Xn

satisfies
lim
n→∞Mn = lim

n→∞MH
n + lim

n→∞MB
n , (11)

where MH
n and MB

n are the polarization tensors corresponding to Hn and Bn

respectively.
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A consequence of (11) is that the Polarization tensor of Xn tends to

θ

(
1 0
0 γ0

γ1

)
+ (1 − θ)

(
cos ϕ sin ϕ

− sin ϕ cos ϕ

)( γ0
γ1

0
0 1

)(
cos ϕ − sin ϕ
sin ϕ cos ϕ

)
.

By varying θ between 0 and 1 or ϕ between 0 and π , we see that the bound (4)
is described entirely.

We shall show that for all test function φ,∣∣∣∣∫
R2
γXn

∇ (wn − hn − bn) · ∇φ
∣∣∣∣ ≤ ‖∇φ‖L2(R2)2 × o(1), (12)

where o(1) is a sequence converging to zero with n, independently of φ, and
γXn

= γ0 + 1Xn (γ1 − γ0). The conclusion then naturally follows by coercivity
of the left-hand side.

Proof of Proposition 4.1. It is sufficient to consider the case θ = 1. We Let us
start by noticing that, because of the symmetries of the structure, we have for
all n

MH
n e1 · e2 = 0.

Secondly, MH
n must satisfy (4) and (5), we only need to prove that

MH
n e2 · e2 = γ0

γ1
+ o(1). (13)

Let us now prove (13). Note that, by definition,

(γ1 − γ0)M
H
n e2 · e2 = γ1 − γ0

γ1
γ0 + min

φ∈D1,2
0 (R2)

∫
R2
γHn

∣∣∣∣∇φ + 1Hn

γ1 − γ0

γ1
e2

∣∣∣∣2 .
It is therefore sufficient to provide a construct φn such that

lim
n→∞

∫
R2
γHn

∣∣∣∣∇φn + 1Hn

γ1 − γ0

γ1
e2

∣∣∣∣2

= 0.

Let fm(x) be the linear function fm(x) = 1 − x/m, where m is a parameter.
We defineφn by φn(−x, y) = φn(x, y), φn(x,−y) = −φn(x, y),

φn(x, y) = γ1

⎧⎪⎨⎪⎩
y if (x, y) ∈ [

0, θδ−1
n

] × [
0, 1

4δn
]

1
4δnfm

(
y − 1

4δn
)

if (x, y) ∈ [
0, θδ−1

n

] × [
1
4δn,

1
4δn +m

]
yfm(x − θδ−1

n ) if (x, y) ∈ [
θδ−1

n , θδ−1
n +m

] × [
0, 1

4δn
]

and if we write r =
√
(x − θδ−1

n )2 + (y − 1
4δn)

2 for r ∈ [0,m] and for θ ∈
[0, π/2], θ = arctan((y− 1

4δn)/(x− θδ−1
n )), φn(x, y) = 1

4δnfm(r). A straight-
forward computation shows that

∫
R2 γHn

|∇φn + 1Hn
γ1e2|2 = o(1), if for ex-

ample m = √
δn.
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Finally, to prove (9), note that hn is a linear function of λ, and that MH
n e1 ·

e1 = 1 + o(1) means from

(γ1 − γ0)M
H
n e1 · e1 = γ1 − γ0

γ1
γ0 + min

φ∈D1,2
0 (R2)

∫
R2
γHn

∣∣∣∣∇φ + 1Hn

γ1 − γ0

γ1
e1

∣∣∣∣2 ,
that the gradient of the minimizer tends to zero.

Proof of Proposition 4.2. The proof relies on the following results, direct con-
sequences of (9)

lim
ε→0

‖∇hn‖L2(Bn) = 0, lim
ε→0

‖∇bn‖L2(Hn) = 0, (14)

lim
ε→0

‖∇hn‖L2(Hn∩Bn) = 0, lim
ε→0

‖∇bn‖L2(Hn∩Bn) = 0, (15)

By simple algebra, we obtain

div
((
γ0 + 1Cn (γ1 − γ0)

)∇ (wn − hn − bn)
)

= (γ1 − γ0) div(1Bn∇hn + 1Hn
∇bn)

− (γ1 − γ0) div
(
1Hn∩Bn (∇hn + ∇bn + λ)

)
.

Thanks to (14) and (15), the last two terms tend to zero strongly in H−1 and
we have obtained (12).

Let us now proove (11). Note that the polarization tensor Mn is given by
[12]

(γ1 − γ0)Mnλ · λ =
∫

Rn
γXn

∣∣∣∣∇wn + 1Xn

γ1 − γ0

γ1
λ

∣∣∣∣2
+γ1 − γ0

γ1
γ0 |λ|2 .

Furthermore, since wn is a minimizer of the above energy, we have∫
Rn
γXn

∣∣∣∣∇wn + 1Xn

γ1 − γ0

γ1
λ

∣∣∣∣2 = −
∫

Rn
γXn

|∇wn|2 +
∫

Rn
γXn

∣∣∣∣γ1 − γ0

γ1
λ

∣∣∣∣2 .
(16)

Note that the second integrand is a constant. Using (10) we deduce that up to
a sequence εn converging to zero as n tends to infinity,

(γ1 − γ0)Mnλ · λ = (γ1 − γ0) |λ|2 θ −
∫

Rn
γHn

|∇hn|2

+ (γ1 − γ0) |λ|2 (1 − θ)−
∫

Rn
γBn |∇bn|2

+ εn,
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where γHn
= γ0 + 1Hn

(γ1 − γ0), γVn = γ0 + 1Vn(γ1 − γ0). Using identities
similar to (16), we see that we have in fact obtained

(γ1 − γ0)Mnλ · λ = (γ1 − γ0)M
H
n λ · λ+ (γ1 − γ0)M

VB
n λ · λ+ εn.
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Abstract: We describe the phase-field method, a new approach to optimal design originally
introduced in Bourdin and Chambolle (2000, 2003). It is based on the penaliza-
tion of the variation of the properties of the designs, and its variational approxim-
ation (in the sense of �-convergence. It uses a smooth function, the phase-field,
to represent all materials involved.

We describe our approach, and detail its application to two problems.

Keywords: Phase-field, multi-physics optimal design, perimeter penalization.

1. INTRODUCTION

Consider the following generic optimal design problem: given a reference do-
main � in RN , some D0 ⊂ �, and two volume fractions 0 ≤ θ1 ≤ θ2 ≤ 1, the
admissible designs are subsets D of �, such that

D0 ⊆ D ⊆ �,

θ1|�| ≤ |D| ≤ θ2|�|. (1)

An optimal design problem is to find an admissible design D minimizing some
objective function, F , that is:

inf
D admissible

F(D). (2)

In this form, optimal designs problems are very likely to be ill-posed. The
geometric constraints are not enough to ensure the compactness and closedness
of the set of feasible designs. Over the years, several theoretical and numer-
ical workaround have been proposed. In the homogenization-based methods,
one considers generalized designs, microperforated or laminated materials for
example (see Kohn and Strang, 1986; Bendsøe and Kikuchi, 1988; Allaire and
Kohn, 1993a, 1993b, 1994; Cherkaev and Kohn, 1997; Allaire et al., 1997;
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Cherkaev, 2000, Allaire, 2002, among others). Another class of numerical
methods relies on heuristic “filtering” techniques (Diaz and Sigmund, 1995;
Sigmund and Petersson, 1998). It was rigorously studied in Bourdin (2001).
Lastly, various penalization methods have also been suggested, where one adds
an additional term to the objective function, in order to gain compactness.

Among all these choice of penalizations, “perimeter-controlled” optimiza-
tion has a special place (Haber et al., 1996). It has been long understood that
adding a surface term proportional to the perimeter of the designs prevents
from sequences of solutions wit rapid oscilllations, and makes the problems
well posed. This was indeed formalized in Ambrosio and Buttazzo (1993),
where (2) is replaced with the following free discontinuity problem:

inf
D admissible

F(D)+ λHN−1(∂D), (3)

where λ is an arbitrary parameter and HN−1 represents the N − 1-dimensional
Haussdorf measure i.e. the length of ∂D in two dimensions, or its area in three
dimensions (see Federer, 1969; Evans and Gariepy, 1992, for instance).

In the absence of an efficient numerical implementation, this method has
not been widely accepted. The phase-field approach introduced in Bourdin
and Chambolle (2000, 2003) provides such a thing.

2. THE PHASE-FIELD METHOD

The numerical implementation of (3) and in particular the approximation of
the perimeter term are challenging. If D is a set of finite perimeter, then
HN−1(∂D) is equal to the total variation of χD . If one uses material interpol-
ation schemes, and replaces the characteristic function with a smooth material
density ρ, with values in [0, 1], then the total variation of ρ is given by

T V (ρ) =
∫
�

|∇ρ| dx, (4)

which raises two issues. Numerical minimization of an equivalent of (3)
replacing the perimeter term with T V (ρ) is challenging. If one tries to
avoid intermediate material densities, using material penalization, for instance,
then (4) becomes very stiff, and its numerical approximation non-isotropic
(see Petersson et al., 1999; Chambolle, 1999).

Our approach is different. We consider a small parameter ε and introduce
the functional

Pε(ρ) = 1

cW

∫
�

ε

2
|∇ρ(x)|2 + 1

ε
W (ρ(x)) dx (5)

where W is a l.s.c potential such that W(0) = W(1) = 0, W(x) > 0 if x �∈
{0, 1}, W(x) ≥ c1|x|2 − c2 for some c1 > 0 and c2, and cW = ∫ 1

0

√
2W(t) dt .
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We also extend the objective function F by a F , defined for any density field
ρ(x) ∈ L1(�), and such that

F(χD) = F(D), (6)

for any set D of finite perimeter, and such that F(ρ) depends continuously
on ρ. Then, we consider the following regularization of the optimal design
problem:

inf
ρ∈DA

F(ρ)+ λPε(ρ), (7)

where the set of admissible designs is

DA=
{
ρ∈H 1(�), ρ(x) = 1 a.e. in D0, and θ1|�|≤

∫
�

|ρ(x)| dx ≤ θ2|�|
}
.

It is well known (see Alberti, 2000; Modica and Mortola, 1977a, 1977b;
Dal Maso, 1993; Braides, 2002, for instance) that if for any small ε there
exists a subsequence ρεj of the sequence ρε of minimizers of (7) and a subset
D ∈ �, such that ρεj → χD almost everywhere in �, then D is a solution
of (3). Practically, this means that solving the regularized problem (7) for a
“small enough” ε will lead to a good approximation of the solution of (3).

This approach has several advantages over the classical ones. It is independ-
ent of the choice of F , provided that condition (6) is satisfied. In the case of
structural optimization, for instance, this means that the debate over the mech-
anical soundness of various material interpolation law is unrelevant in our case
(although it might be used in the numerical implementation as in Bourdin and
Chambolle, 2003). From the expression of Pε, it is clear that for a given ε, the
minimizing sequences of designs are bounded in H 1(�). Classical numerical
methods, finite elements or finite differences can be applied without fear of
mesh-dependency, checkerboards, or anisotropy for instance.

One of the drawbacks of the method, which is indeed true of all perimeter
controlled optimal design method, is that the solution of (3) may not be an
open set and regular set. Optimal sets for the penalized problems are sets of
finite perimeter, a very wide class of sets that contains very “pathological” sets.
If one wishes to carry out a very rigorous analysis of the method applied to a
specific objective function, one has to study the regularity of the solutions. This
is done in Ambrosio and Buttazzo (1993) for the thermal conductivity problem
and in Chambolle and Larsen (2003) in the case of compliance optimization,
for instance.

Lastly, the penalization term in (7) takes into accounts only the part of the
perimeter of D inside the computational domain. In other words, it does not
account for the part of the boundary of D that lies along ∂�. This can easily
addressed (see Bourdin and Chambolle, 2003 or Bourdin et al., 2000, for a
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similar problem in fracture mechanics). For the sake or simplicity, we do not
discuss this issue in this paper.

In the following section, we describe the application of the phase field in the
classical context of compliance optimization, then extend it to a multi-phase
problem with design-dependent loads. Note that it has already been used in
more complicated problems (Burger and Stainko, 2003) and that extension to
more general problems involving multiple materials and multiple physics are
in progress.

3. A CLASSICAL EXAMPLE: COMPLIANCE
OPTIMIZATION

We consider here the classical problem of the design of structure with maximal
stiffness under given loads. Let �0 and �f ∈ ∂� be disjoint subsets of the
boundary of � standing at strictly positive distance from each other. Let f ,
be a given force on �f , and A be the linear Hooke’s law of an elastic material
occupying a subset D ⊂ �. The compliance of D under the load f is defined
by

F(D) = − inf
u=0 on �0

∫
D

Ae(u) : e(u) dx − 2
∫
�f

f · u dx, (8)

where and e(u) is the symmetrized gradient of u. It is easy to show that the
perimeter-controlled optimal design associated with this objective function is
well-posed, in the class of sets of finite perimeter. A little more care has to
be taken while applying the phase-field regularization, however. Indeed, the
straightforward extension of F to characteristic functions χD is not continuous.
Following a now classical approach, we introduce an arbitrarily weak fictitious
material with Hooke’s law δA (δ > 0), and extend the compliance as

Fδ(D) = − inf
u=0 on �0

∫
�

((1 − δ)χD + δ)Ae(u) : e(u) dx−2
∫
�f

f ·u dx. (9)

Note that this step is not strictly related to the phase-field method, but
simply about gaining continuity of the objective function with respect to design
changes. In Bourdin and Chambolle (2003), it is shown using �-convergence,
that when δ → 0, the minmizers of Fδ(D) + λP(D) converges to that of
F(D)+ λP(D).

A trivial way to extend Fδ to arbitrary density functions ρ(x) is to con-
sider any function continuous monotonous function S such that S(0) = 0 and
S(1) = 1, and

Fδ(ρ) = − inf
u=0 on �0

∫
�

((1 − δ)S(ρ)+ δ)Ae(u) : e(u) dx − 2
∫
�f

f · u dx.
(10)
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Figure 1. Optimal design of a beam using the phase field method.

Once again, it is shown in Bourdin and Chambolle (2003) that when ε → 0,
the minimizer ρδε of Fδ(ρ) + λPε(ρ) converge to a χEδ , where Eδ minimizes
Fδ(D) + λP(D) among all admissible designs D. Sending then δ to 0, one
obtains convergence of vδ,ε to the minimizers of F(D)+ λP(D).

Figure 1 presents a numerical example obtained by Arnaud Anantharaman
and Alain Griveau under Antonin Chambolle’s supervision, at École Polytech-
nique. It corresponds to a beam clamped on its lower-left and lower-right
corners, and loaded in its center. The density of gray corresponds to the value
of the phase field ρ. The function W used here is

W(t) =
{
t (t − 1)/2 if 0 ≤ t ≤ 1
+∞ otherwise,

and the material interpolation law is S(t) = t2.
Note that the density function ρ, has very little intermediate values. Indeed,

the second term in (5) penalizes them. The transition of ρ from 0 to 1 along
the edges of the designs is still smooth, meaning that piecewise linear finite
element, for instance, will provide a good interpolation. It is known indeed
that the with of the transition layer around the edges of the designs is of the
order of επ , for any ε > 0. This gives an estimate on how small shall one set
the regularization parameter, in relation with the mesh size, for example.

4. EXTENSION TO DESIGN-DEPENDENT LOADS

Another strength of our approach is that the phase field also provides a simple
way to represent the edges of the designs, and is easy to extend to the case of
more than two phases.

In Bourdin and Chambolle (2003), we consider the problem of the minim-
ization of the compliance of structures submitted to fixed pressure loads on
parts of their boundary. We consider a domain � partitioned in three subsets S
(the structure), L (some liquid under a give pressure p), and V the void. The
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compliance of this system is given by

F(S,L, V ) = inf
u

∫
S

Ae(u) : e(u) dx − 2
∫
∂L

pu(x) · νL(x) dHN−1(x), (11)

where νL is the outer normal to the set L, and u varies among kinematically
admissible displacement fields which we do not explicit here. A generalization
of the perimeter energy to this three phase case would is

"(S,L, V ) = HN−1(∂S ∩ ∂L)+HN−1(∂S ∩ ∂V )+HN−1(∂L ∩ ∂V ). (12)

Intuitively, however, it is clear that if the interface in between the liquid and the
void sets has length > 0, then the compliance (11) is infinite. Indeed, we show
(in 2D only) that if F(S,L, V ) < ∞ then HN−1(∂L∩ ∂V ) = 0, in which case
we have

"(S,L, V ) = HN−1(∂L)+ HN−1(∂V ). (13)

Another consequence of that is that it allows the use of a scalar phase field:
following the analysis of the previous section, we introduce a fictitious material
of Hooke’s law δA, a phase field ρ, and three material interpolation functions
S,L, V such that ⎧⎨⎩

V (−1) = 1, V (0) = V (1) = 0
S(−1) = 0, S(0) = 1, S(1) = 0
L(−1) = L(0) = 0, L(1) = 1

(14)

In this case, one can approximate F(S,L, V ) by a function Fε(ρ) similar to (5)
where W is now a three-well function such that W(−1) = W(0) = W(1) = 0
and W(x) > 0 if x �∈ {−1, 0, 1}. Lastly, the compliance F(S,L, V ) becomes

Fδ,ε(S, L, V ) = inf
u

∫
�

((1 − δ)S(ρ)+ δ)Ae(u) : e(u) dx

− 2
∫
�

pu(x) · ∇L(ρ) dx. (15)

Note in particular how the surface intergral over ∂L was approximated in terms
of ∇L(ρ). Again using �-convergence with respect to δ first and then ε, one
can show that the minimizers of Fδ,ε + λPε converge to that of F(S,L, V )+
λ"(S,L, V ).

Figure 2 represents the design of a piston subject to pressure forces in its
lower side, and clamped along the black rectangle on the top left corner. The
black colored region correspond to ρ = 1, i.e. the liquid, the gray area to
ρ = 0 (the structure), and the white are to the void (ρ = −1). The white line
correspond to the level line 1/3 of ρ and the black one to ρ = −1/3. The three
design correspond to decreasing parameters λ. As expected, the complexity of
the topology of the designs increases when λ decreases.
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Figure 2. Optimal design of a piston.

5. NUMERICAL IMPLEMENTATION

The issues linked with the implementation of the phase field are a combination
of typical difficulties in optimal design and in free discontinuity problems. We
give here a short survey and refer the reader to Bourdin and Chambolle (2003),
Burger and Stainko (2003) and Wang and Zhou (2004) for more details.

In order to correctly represent the perimeter term (5), it is necessary to use
a discretization scheme for the phase field ρ which converges in W 1,2. This
means in particular that piecewise constant approximation is not possible. Typ-
ically, one would use piecewize linear finite elements for the density and the
displacement field, for example. Another solution, if one relies on structured
meshed would be to used offset grids for u and ρ, in such a way that ρ is
approximated at the center of the elements for u.

Another issue is the stiffness of the regularized perimeter (5). It is well
known that a steepest-descent based algorithm for (5) will converge only if the
descent step rn is of the order of εh4, where h is the discretization size. This is
of course not acceptable.

A steepest descent step would be

ρ(n+1) = ρ(n) − rn

(
DρFδ(ρ

(n))− λε

cW
�ρ(n) + λ

εcW
W ′(ρ(n))

)
, (16)

where DρFε(ρ
(n)) denotes the Frechet derivative of the objective function with

respect to the phase field, evaluated at the point ρ(n). In Bourdin and Cham-
bolle, 2003, a semi-implicit approach is used. The term �ρ(n) is dealt with
explicitly and the descent iteration is performed solving the problem:(

I − rnλε

cW
�

)
ρ(n+1) = ρ(n) − rn

(
DρFδ(ρ

(n))+ λ

εcW
W ′(ρ(n))

)
. (17)

This can even be improved by decomposing W as the sum of a quadratic and
a concave function, and treating the quadratic term explicitly. Another ap-
proached, used in Burger and Stainko (2003) is to use an interior point minim-
ization algorithm, which seems to also address the stiffness issue.
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The last issue is related to the non-convexity of the problem, a typical prob-
lem in topology optimization which is emphasized here by the term 1

ε
W(ρ) in

the regularized perimeter. Once again, this is a common issue in the imple-
mentation of the Modica–Mortola functional. Typical methods rely on gradu-
ally reducing the regularization parameter ε, noticing that for “large” ε, the
term (5) is convex. In Bourdin and Chambolle (2003), we combined this ap-
proach with an gradual increase of the descent step rn, which is essentially
equivalent to gradually increasing the weight on the non-convex term in Pε.
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Abstract: Using the level set method and topological derivatives, a topological shape op-
timization method that is independent of initial topology is developed for geo-
metrically nonlinear structures in Total Lagrangian framework. In nonlinear to-
pology optimization, response analysis may not converge due to relatively sparse
material distribution driven by the conventional topology optimization such as
homogenization and density methods. In the level set method, the initial do-
main is kept fixed and its boundary is represented by an implicit moving bound-
ary embedded in the level set function, which facilitates to handle complicated
topological shape changes. The “Hamilton–Jacobi” (H–J) equation and com-
putationally robust numerical technique of “up-wind scheme” lead the initial
implicit boundary to an optimal one according to the normal velocity field while
both minimizing the objective function of instantaneous structural compliance
and satisfying the required constraint of allowable material volume. In this pa-
per, based on the obtained level set function, structural boundaries are actually
represented in the response analysis. The developed method is able to create
holes whenever and wherever necessary during the optimization and minimize
the compliance through both shape and topological variations at the same time.
The required velocity field in the initial domain to update the H–J equation is
determined from the descent direction of Lagrangian derived from optimality
conditions. The rest of velocity field is determined through a velocity extension
method. Since the homogeneous material property and explicit boundary are
utilized, the convergence difficulty is effectively prevented.

Keywords: Shape optimization, topological derivative, adjoint sensitivity analysis, geomet-
ric nonlinearity, level set method, velocity extension method, explicit boundary.

1. INTRODUCTION

In conventional topology optimization method for the geometrically nonlin-
ear structures, the response analysis often experiences convergence difficulty
due to relatively sparse material distribution driven by the conventional topo-
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logy optimization methods [1, 2]. For the geometrically nonlinear problems,
all the efforts seem not to work satisfactorily as long as we perform the topo-
logy optimization based on the variations of material distribution. However,
in the level set approach, the difficulty can be significantly relieved by using
homogeneous material and implicit boundary. Nevertheless, this approach in-
curs another convergence problem caused by the approximation of implicit
functions [3]. In this paper, to prevent this difficulty, the explicit boundary de-
termined from the level set function is utilized in the response analysis in total
Lagrangian framework.

Osher et al. [4] have devised a level set method for numerically tracking
fronts and free boundaries, which is used in many applications as motion by
mean curvature. Allaire et al. [5] proposed a structural optimization method
based on a combination of shape derivative and the level set method for front
propagation. Wang et al. [6] developed a topology optimization method for
linear elastic structures using implicit function. Kwak and Cho [3] proposed a
level set based topology optimization method for geometrically nonlinear prob-
lems, which significantly relieve the existing convergence difficulty. Soko-
lowski et al. [7] defines a topological derivative for an arbitrary shape func-
tional that can provide the information on the infinitesimal variation of the
shape functional if a small hole is created. To obtain the topological derivat-
ive expression, Céa et al. [8] derives some optimality conditions using shape
and topological gradients simultaneously. Novotny et al. [9] defines topolo-
gical derivative as the limit of shape derivative when the radius of small hole
approaches to zero.

The shape optimization is to move the boundary, according to the obtained
sensitivity with respect to the boundary variations, while the allowable volume
is kept constant. It is crucial to find an appropriate normal velocity field such
that it will iteratively lead the design boundary to the optimal shape. The nor-
mal velocity is determined in the descent direction of Lagrangian function us-
ing its sensitivity. However, if the explicit boundary is employed, the normal
velocity field can be computed only inside the domain. To solve the H–J equa-
tion, we should have the velocity field at least in narrow band region around
the boundary. Thus, we employ a fast extension method [10], which extends
the velocity field in an upwind fashion using the level set functions.

2. LEVEL SET METHOD

Given a closed d-dimensional hyper-surface � at zero level, we come up with
a formulation for the motion of hyper-surface propagating �τ along its normal
direction with Vn at time τ . Let �I and �I be an initial reference boundary and
domain, respectively, which include all the possible boundary and domain. At
time τ = 0, assume the existence of a zero level set function φ(x, 0) that is
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Lipschitz continuous and defined on �I , satisfying

φ(x, τ = 0)

⎧⎨⎩
+ζ(x, �) x ∈ �,

= 0 x ∈ �,

−ζ(x, �) x ∈ �I\�̄,
(1)

where ζ(x, �) is a distance from a point x to the boundary �, for all x ∈ Rd .
Using the level set function, an outward unit vector n normal to the boundary
� and a curvature κ are expressed as

n = − ∇φ
|∇φ| , κ = div n = −∇ ·

( ∇φ
|∇φ|

)
. (2)

Taking the material derivative of level set function in Equation (1) with respect
to arbitrary time leads to the H–J equation [4] as

∂φ

∂τ
= Vn|∇φ|, ∂φ

∂n

∣∣∣∣
�I

= 0. (3)

Note that given a normal velocity field Vn, repeated attempts to solve the first
order partial differential equation leads to the optimal implicit boundary of the
structures. In the level set approach, the boundary is varying to meet the op-
timization requirements, which significantly relieves the existing convergence
difficulty. Nevertheless, this approach incurs another convergence problem
caused by the approximation of implicit boundary. To prevent this difficulty,
the explicit boundary determined from the level set function is utilized in the
nonlinear response analysis. Since the response and sensitivity analyses are
performed in the domain with explicit boundary, the necessary velocity field to
integrate the H–J equation is available only in the domain with explicit bound-
ary. To obtain the velocity field outside the domain, we use the velocity exten-
sion method proposed by Adalsteinsson et al. [10].

3. DESIGN SENSITIVITY ANALYSIS

Since the level set function is defined on the initial reference domain at unde-
formed configuration, the total Lagrangian formulation is an obvious choice
for the response analysis. At the current configuration (n + 1), the linearized
equilibrium equation is written, in incremental form, as

a∗(nz;�z, z̄) = �∗(nz; z̄), ∀z̄ ∈ Z, (4)

a∗(nz;�z, z̄) ≡
∫

0�

Sij (
nz)η̂ij (�z; z̄) d 0�

+
∫

0�

cijkl ε̂kl(
nz;�z)ε̂ij (nz; z̄) d 0�, (5)
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�∗(nz; z̄) ≡ n+1R −
∫

0�

Sij (
nz)ε̂ij (nz; z̄) d 0�. (6)

0� and 0�t are the structural domain and traction boundary at initial config-
uration, respectively; z, z̄, and Z are the displacement, virtual displacement,
and variational space, respectively; Sij (z), ε̂ij (z; z̄), and Ri are the second
Piola–Kirchhoff stress tensor, virtual Green–Lagrange strain tensor, and ex-
ternal load, respectively. The constitutive relation for isotropic Kirchhoff ma-
terial is used.

ε̂ij (z; z̄) = 1

2

(
∂z̄i

∂0xj
+ ∂z̄j

∂0xi
+ ∂z̄m

∂0xi

∂zm

∂0xj
+ ∂zm

∂0xi

∂z̄m

∂0xj

)
, (7)

η̂ij (�z; z̄) ≡ 1

2
(�zm,i z̄m,j +�zm,j z̄m,i), (8)

Sij (z) = cijklεkl(z). (9)

Define a Lagrangian for instantaneous compliance at configuration (n+1) and
the corresponding adjoint equation as

Lρ(
n+1z,λ) =

∫
0�ρ

n+1b · (n+1z + λ) d 0�ρ

+
∫

0�t∪∂ωρ
n+1t · (n+1z + λ) d 0�ρ

−
∫

0�ρ

S(n+1z) : ε̂(n+1z;λ) d 0�ρ, (10)

a∗(n+1z;λ, λ̄) = �(λ̄), ∀λ̄ ∈ Z, (11)

a∗(n+1z;λ, λ̄) ≡
∫

0�

S(n+1z) : η̄(λ̄;λ) d 0�

+
∫

0�

ε̂(n+1z;λ) : C : ε̂(n+1z; λ̄) d 0�, (12)

�(λ̄) ≡
∫

0�

n+1b · λ̄ d 0�+
∫

0�t

n+1t · λ̄ d 0�. (13)

Taking the shape derivative of Equation (10) in the direction of V and using
the fact that V = 0 for x ∈ �d , we have the following expression:

L̇S(
n+1z, λ) =

∫
0�rho

∇ ·
[{

n+1b · (n+1z + λ)+ n+1t · (∇(n+1z + λ) · n)

+κ(n+1t · (n+1z + λ))− S(n+1z) : ε̂(n+1z;λ)

}
V

]
d 0�ρ

=
∫

0�ρ

∇ · {�(n+1z,λ)V} d 0�ρ. (14)

220



Level Set Based shape Optimization of Geometrically Nonlinear Structures

Figure 1. Domains and boundaries.

3.1 Topological Derivative

Consider a two-dimensional problem for simplicity as shown in Figure 1. Let
� ⊂ R2 be an original domain without holes (Figure 1a). Its boundary is
denoted by � = �D ∪ �N . Also, let �ρ = �\ω̄ρ be an open domain with
holes (Figure 1b). Its boundary is denoted by �ρ = � ∪ ∂ωρ. ω̄ρ = ωρ ∪ ∂ωρ

is a complete circular domain of radius ρ(x̂) centered at the point x̂ ∈ �. Let
�ρ+τ = �\ω̄ρ+τ be a perturbed domain (Figure 1c). Its boundary is denoted
by �ρ+τ = � ∪ ∂ωρ+τ . ω̄ρ+τ = ωρ+τ ∪ ∂ωρ+τ is a complete circular domain
of radius ρ(x̂)+ τδρ(x̂) centered at the point x̂ ∈ �.

When a hole is created during the topology optimization, it is impossible
to build a homeomorphic map between the domains � and �ρ . Using the
asymptotical regularization concept, the topological variation ψ ′

T (x̂) is defined
as the limit of shape variation when the radius of the hole ρ(x̂) approaches to
zero.

ψ ′
T (x̂) = lim

ρ→0

{
lim
t→0

�(�ρ+τ − �(�ρ)

|ωρ+τ |
}
δ|ωρ+τ |

∣∣∣∣
τ=0

=
{

lim
ρ→0

1

|�ρ|,τ ψ̇s(x)
}
δ|ωρ| ≡ ψ̇T (x̂)δ|ωρ|, (15)

where | · | denotes the negative function of Lebesque measure of the set. ψ̇T (x̂)
denotes the topological derivative. To calculate the topological derivative in
total Lagrangian framework from the concept above, we need the shape deriv-
ative around the ball centered at x̂. To this end, the perturbation is made only
on the boundary of hole that has homogenous Neumann boundary condition as
n+1S · n1n = 0 on ∂ 0ωρ . The Lagrangian for the instantaneous compliance
in the domain 0�ρ = 0�\0ω̄ρ has the same form as Equation (10). Note that
since only the boundary of hole is perturbed, the design velocity vanishes on
the other boundary. Using the following relations:

δ|ωρ| = 2πρδρ = −2πρVn,
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|ωρ|,τ = − d

dτ

∫
ωρ+τ

dωρ+τ

∣∣∣∣∣
τ=0

= −
∫
∂ωρ

Vn∂ωρ, (16)

the topological variation for the instantaneous compliance can be written, in
the absence of body force for simplicity of problem, as

L′
T (

n+1z, λ)(x̂) =
{

lim
ρ→0

1∫
∂ 0ωρ

Vn∂ 0ωρ

∫
∂ 0ωρ

�(n+1zρ,λρ)Vn d 0�ρ

}
2πρVn, ∀x̂ ∈ �.

(17)

To calculate this limit in order to obtain the final expression of the topological
derivative, we use an asymptotic analysis to know the behavior of the solu-
tion S(n+1zρ) when ρ → 0. This behavior may be obtained from the analyt-
ical solution for a stress distribution around a circular void in two-dimensional
elastic body in polar coordinates [11]. Finally, the topological variation is ex-
pressed as

L′
T = (n+1z,λ)(x̂) = −2πρVn#(

n+1z,λ)(x̂), (18)

# =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

λ+2µ
2µ(λ+µ) [4µS(n+1z) : ε̂(n+1z;λ)+ (λ− µ)tr S(n+1z)tr ε̂(n+1z;λ)]

plane strain

λ+µ
µ(3λ+2µ)

[
8µS(n+1z) : ε̂(n+1z;λ)+ 2µ(λ−2µ)

(λ+2µ) tr S(n+1z)tr ε̂(n+1z;λ)
]

plane stress
(19)

The topological variation is always positive when the hole is created since
the topological derivative and the velocity on the boundary of hole is always
negative. This means that the compliance increases when the hole is created.

4. TOPOLOGICAL SHAPE OPTIMIZATION

The objective of topological shape optimization is to find the optimal layout
that minimizes the instantaneous compliance of the system under prescribed
loadings. Considering the domain and boundary before nucleation, the topolo-
gical shape optimization problem is stated as

Minimize ψ =
∫

0�

n+1b · n+1z d 0�+
∫

0�N

n+1t · n+1z d 0�, (20)

Subject to m =
∫

0�

d 0� ≤ Mmax, (21)

where Mmax is an allowable volume. The velocity field V(x) defines the
propagation speed of all level sets along outward normal direction. The ve-
locity should be determined such that it reduces the instantaneous compliance
while satisfying the requirement of allowable material volume.
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To identify the location and time for nucleation, consider the velocity field
Vω when only the boundary of hole centered at x̂ is perturbed. Since Vn < 0 on
the hole, the topological variation in Equation (18) is always positive. How-
ever, the corresponding shape variation is occurring at the same time. If the
topological variation is smaller than the shape variation at x̂ during the optim-
ization process, the position x̂ and the optimization step are most appropriate
for the nucleation.

ψ ′
s − ψ ′

T (x̂) = 2
∫
s

�(n+1z,λ)Vn dsδτ + #(n+1z,λ)(x̂)δ|ωρ| > 0, (22)

where s denotes the circular path along the boundary of the hole. Introducing
the ratio of shape to topological variations as α = Vnδτ/δ|ωρ|, we can define
an indicator function as

Ĥ (!) =
{

1 if ! > 0,
0 if ! ≤ 0,

! ≡ #(n+1z,λ)(x̂)− 2α
∫
s

�(n+1z,λ) ds. (23)

Next, define the Lagrangian function " for the constrained optimization
problems as

"(τ,µ, s) = ψ + µ{m+ s2 −Mmax}, (24)

where Mmax, s, and µ are the allowable material volume, a slack variable to
convert the inequality constraint to the equality one, and a Lagrange multi-
plier, respectively. Using the indicator function to selectively introduce the
topological variations, the application of the Kuhn–Tucker optimality condi-
tions leads to the following optimality conditions.

d"(τ, ξ, s)

dτ

∣∣∣∣
τ=0

=
∫

0�

∇ · {�(n+1z,λ)+ ξ }nVn d 0�+ Ĥ (!)

× {#(n+1z,λ)+ ξ }(x̂) = 0,

ξ =
⎧⎨⎩0 if

∫
0�

d 0� < Mmax,

µ if
∫

0�
d 0� ≥ Mmax,

(25)

where the Lagrange multiplier and velocity are determined by [3]

ξ = −
∫

0�
∇ · {�(n+1z,λ)n} d 0�∫

0�
∇ · n d 0�

, Vn = −{�(n+1z,λ)+ ξ }. (26)

5. NUMERICAL EXAMPLES

5.1 Example 1: Linear vs Nonlinear Formulations

Consider the simply supported plate as shown in Figure 2. The simply sup-
ported plate model is subjected to a concentrated force of F = 107 N. The
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Figure 2. Simply supported plate.

(a) Linear formulation (b) Nonlinear F = 106 N (c) Nonlinear F = 107 N

Figure 3. Optimization histories for various conditions.

objective is to obtain the optimal layout of the structure while minimizing the
instantaneous compliance of the structure while satisfying the requirement of
allowable volume, 40% of the original one.

Figure 3 shows the evolution of the optimal shapes for various conditions.
According to the corresponding normal velocity, the explicit boundary determ-
ined from velocity extension scheme evolves to the optimal shape. Figure 3a
shows the optimization history for linear formulation, Figure 3b for nonlinear
formulation with F = 5 × 106 N, and Figure 3c for nonlinear formulation
with F = 107 N. It turns out that depending on the formulations, different
optimal shapes are obtained (Figures 3a and 3b) and also it has dependence on
the magnitude of loading (Figures 3b and 3c).

5.2 Example 2: Nucleation Using Topological Derivative

For the same model as Example 1, the topological shape optimization incor-
porating with topological derivative is carried out. Using the topological de-
rivative concept, nucleation is made depending on the indicator function given
in Equation (23). Moreover, the optimization is less dependent on the initial
condition. Figures 4b and 4c show the evolution of the optimal shape under
the different loading conditions.

Figure 5 shows the convergence history for linear (Figure 4a) and nonlinear
(Figure 4c). Due to the volume constraint, compliance functional is increasing
until volume constraint, which is 40% of original one, is satisfied. After that,

224



Level Set Based shape Optimization of Geometrically Nonlinear Structures

(a) Linear formulation (b) Nonlinear F = 106 N (c) Nonlinear F = 107 N

Figure 4. Optimization history for various loadings.

Figure 5. Convergence history.

compliance is minimized while holding constraint. For the same model, the
compliance of nonlinear formulation with topological derivative is less than
that of linear one without topological derivative. It means that the nonlinear
formulation with topological derivative can yield stiffer design using the same
material volume.
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6. CONCLUSION

A topological shape optimization method for geometrically nonlinear struc-
tures is developed using the level set method and topological derivative ap-
proach. To avoid convergence difficulty during the nonlinear response ana-
lysis, explicit boundary converted from the implicit one is utilized. For the
optimization process, the required velocity field to integrate the Hamilton–
Jacobi equation is obtained from the Kuhn–Tucker optimality condition for
the Lagrangian function. The velocity field outside the domain is obtained us-
ing the extension method. The necessity of geometrically nonlinear topology
optimization and the applicability to large deformation problems are demon-
strated. The convergence difficulty is significantly relieved by using the level
set method with explicit boundary. It turns out that the initial holes in the do-
main is not required to get the optimal result since this method creates holes
whenever and wherever necessary during the optimization using the indicator
function obtained from topological derivative.
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Abstract: This paper deals with topology optimization seen from an industrial and a man-
ufacturing point of view. What the industrial users see as key issues when
implementing topology optimization are frequently not the topics that the aca-
demic environments consider when implementing topology optimization. One
of the key issues is that topology optimization should be integrated into an ex-
isting CAD and CAE environment (example of FE-solvers: ABAQUS, ANSYS,
CATOPO, NX Nastran, MSc Nastran, MSc Marc and Permas). Here, it is of
importance to note that the models analyzed in the industrial CAE environments
often consist of many finite elements (can be more than 2 million elements) and
different types of elements (continuum, beam, membrane, shell, bar and rigid
elements) which all can be employed in the same model. Furthermore, sym-
metry and manufacturing constraints are important for ensuring that the results
of the topology optimized are manufacturable. Several examples will be given
of how structural topology optimization can be used as an add-on module in
existing CAE environments However, from an academic point of view an add-
on module including topology optimization for commercial FE-solvers is also
of interest because the latest finite element and solver technology can be ap-
plied in the modeling for the topology optimization. Furthermore, the aim is
also to show where the industry is today and which demands exist for the future.
The results reported here are based upon the work done by FE-Design and their
industrial partners using the topology optimization module (TOSCA.topo) and
smooth module (TOSCA.smooth) of the program TOSCA.

Keywords: Industrial integration, industrial applications, large scale optimization, CAD,
CAE.
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1. IMPLEMENTATION OF TOPOLOGY
OPTIMIZATION IN EXISTING CAD AND CAE
ENVIRONMENTS

For industry it is important that the topology optimization method can be in-
tegrated into an existing CAD and CAE environment. Several reasons exist for
why it is important to integrate the topology optimization into an existing CAD
and CAE environment. First, all the features and functionalities of proven
and reliable CAE solvers should also be accessible for the topology optimiza-
tion. Second, the optimization should utilize existing investments in software
and hardware. Third, one should take advantage of the existing knowledge
of the staff regarding the CAD and CAE when applying topology optimiza-
tion. Hence, it is important that the topology optimization module work as an
add-on module for the existing commercial finite element solvers (ABAQUS,
ANSYS, CATOPO, NX Nastran, MSc Nastran, MSc Marc and Permas), see
Figure 1.

Figure 1. Integrating topology optimization in an established CAD and CAE environment.
Initially, the preprocessing is conducted using existing preprocessing modules. Secondly, the
topology optimization is an add-on module based upon the results obtained from the existing
FE-solvers. Thirdly, the results can be evaluated and further modified in a postprocessor.

Some of the advantages of using the results of commercial FE-solvers for
topology optimization are listed in the following subsection.

1.1 Advances of Using the Results of Existing CAE
Solvers for Topology Optimization

Some main advances of using the result of proven and reliable CAE solvers in
connection with topology optimization:
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• Possible to use existing FE-models.

• Possible to use large 3D models (at the present feasible: more than 3
million elements).

• Possible to use different advanced FE-solver types. Both sparse direct
solvers and iterative solves.

• Possible to apply different kind of elements in the model (continuum,
shell, beam, membrane, shear and rigid elements). Parts can also be
modeled as superelements1 if the specific solver supports this ability.

• Boundary conditions with advanced kinematics, e.g. applied through
rigid elements. Coupling between different components and parts.

• The models should also be compatible for other types of FE-analysis,
e.g. static and frequency analysis, linear and non-linear analysis.

However, from an academic point of view the integration with commercial FE-
solvers is also of interest because the latest finite element and solver techno-
logy can be applied in the modeling for the topology optimization for showing
special effects and features.

1.2 Response Types for Objective and Constraints

The responses and constraint types applied in a topology optimization can of-
ten be characterized as following:

• Linear static analyze:

1. Compliance of structure for specific loadcases (measure for stiff-
ness of given loadcase).

2. Displacements for specific loadcases (deflections and rotations).

3. Reaction forces for specific loadcases (forces and moments).

• Modal eigenfrequencies:

1. Single eigenfrequencies.

2. Sum of eigenfrequencies.

• Mass of structure:

1. The structural weight of the design space.

• Manufacturing restrictions (the mesh does not have to be regular):

1. Stamping (straight sides of structure in stamping direction)
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Figure 2. Manufacturing constraints. (a) Ensure manufacturing direction including avoiding
no undercuts or cavities. (b) No material accumulation otherwise problems with cooling can
occur. An additional constraint can also ensure that the mid plan has no holds ensuring a good
material flow when molding.

2. Casting for avoiding under cuts as shown in Figure 2a. The mid
plane can be fixed by user or determined automatically during the
optimization. The mid plan can also be constraint to contain no
holds as shown in Figure 2b.

3. Symmetry constraints (plane, point, rotational and cyclic sym-
metry and linked symmetry between different subdomains).

For the optimization the user has the free choice of combining the above lis-
ted response types in the objective function and in the constraints including the
results of an eigenfrequency analysis and a static analysis using ones preferred
CAE solver. Furthermore, the user can specify if the objective function should
be minimized and maximized or if a Min-Max formulation should be applied.

1.3 Choice of Optimization Algorithm

In the literature (Bendsøe and Sigmund, 2003), several optimization algorithms
can be found. Three algorithm types are implemented in TOSCA (TO-
SCA.topo) for topology optimization, FE-Design (2005). The manufacturing
constraints can be applied in all three algorithm types. The type of algorithm
has to be chosen according to the character of the optimization task and for
minimizing the CPU-time. The three algorithms have some advantages and
disadvantages:

• The controller algorithm can be used for stiffness optimization having
material constraints. The controller algorithm is a modified optimality
criteria algorithm based upon stresses and the algorithm optimizes for
an even stress distribution. The algorithm has the advantage that it ob-
tains very clear solid/void designs in 15 optimization iterations. The
algorithm also converges for large models including non-linearities like
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contact. However, the objective function and constraint is limited to be
the compliance and the material volume, respectively.

• The optimality criteria algorithms can be used for stiffness or frequency
optimization having material constraints. The optimality criteria al-
gorithms optimize for average strain energy distribution. Usually, more
than 15 optimization iterations are needed, however, the number is nor-
mally under 25 optimization iterations. The objective function is limited
to be compliance or frequency and the constraint must be the material
volume.

• The mathematical programming algorithm (Svanberg, 1987) converges
normally in 25–50 optimization iterations. The mathematical program-
ming algorithm is useful when more complicated optimization formu-
lations are applied where compliance, frequencies, displacements and
reaction forces are combined in the objective function and the con-
straints. The sensitivities are based on the theory in Bendsøe and Sig-
mund (2003).

Due to the large FE-models often applied in industrial applications the num-
ber of optimization iterations is of importance. Hence, a key issue when se-
lecting an algorithm is often the number of optimization iterations.

1.4 Post Processing Using Smoothing Techniques

When the final topology optimized design is achieved, it consists of a large
amount of data (fine meshes where each element has a density) and these
FE-data are no standard input CAD. Consequently, an important issue is that
the topology optimization data from the optimization should be converted
(TOSCA.smooth) into a CAD-compatible format including a smoothing, cal-
culation of isosurfaces and data reduction as shown in Figure 3. In this pro-
cess the design is smoothed to a complete solid/void design for being directly
remeshed or transferred into a CAD system for further changes and maybe
afterwards the structure is reanalyzed in the CAE system.

2. EXAMPLES OF TOPOLOGY OPTIMIZATION
USING EXISTING CAE SOLVERS

2.1 Manufacturing Constraints with the Controller
Algorithm

The present design problem deals with a stiffness optimization of an engine
mount including mass and manufacturing constraints as shown in Figure 4.
However, for comparison the structure is also optimized without manufac-
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Figure 3. Transferring the optimized structure back into the CAD system using smoothed
isosurfaces and data reduction.

Figure 4. The design space for the stiffness optimization. The optimized structure should be
castable in the given direction.

Figure 5. The optimized solutions. (a) Optimized without manufacturing constraint. (b) Op-
timized with manufacturing constraint.

turing constraint. The present solutions are obtained using the controller al-
gorithm in TOSCA and the finite element solver Nastran.

The optimized solution without manufacturing constraint (see Figure 5a) is
similar to a truss structure containing undercuts and therefore not castable. As
expected the solution optimized with manufacturing constraint (see Figure 5b)
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Figure 6. The design domain for the pressure loads. The domain is discretized in 3D using
32000 elements.

is castable. Consequently, the cost of adding the manufacturing constraint is
that the maximal displacement increases from 1.45 mm to 1.73 mm. The model
contains 3 loadcases and it is meshed with more than 750.000 theta continuum
elements and several beam elements leading to a total of 511689 degrees of
freedom. Still the total run time for the optimization was under 24 hours on a
Windows PC.

2.2 Pressure Loads with the OC Algorithm

The present design problem deals with pressure loads as shown in Figure 6
where the stiffness should be maximized for a given amount material. The
present example relates directly to the work by Sigmund and Clausen (2005).
The idea is to use incompressible elements when designing for pressure loads
because these elements can transfer forces when they are void due to their in-
compressibility. The present solutions are obtained using the optimality criteria
in TOSCA and the finite element solver ABAQUS where the nodal pressure
can be introduced as a degree of freedom.

The optimization problem is initially solved using standard compressible
finite elements with a Poisson ratio of 0.3, see Figure 7a. Afterwards, the
optimization problem is solved using the compressible finite elements with a
Poisson ratio of 0.5, see Figure 7b. Figure 8 shows a mechanical interpretation
of the two solutions. When the elements are incompressible the surface forces
can be transferred by the void elements, which is not case when the elements
are compressible. Meaning that the solution obtained using the incompressible
elements do not only determine the topology but also locates where the loaded
surface should be positioned. Opposite, the solution obtained using compress-
ible elements has the loaded surface given by the initial pressure distribution
defined by the user.
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Figure 7. The optimized solutions and their equivalent smoothed solutions. (a) and (b) For
compressible material, Poisson ratio of 0.3. (c) and (d) For incompressible material, Poisson
ratio of 0.5.

Figure 8. Interpreting the optimized solutions in Figure 7. (a) Compressible material, Poisson
ratio 0.3. (b) Incompressible material, Poisson ratio 0.5.

2.3 Mechanisms with the Sensitivity Based Algorithm

The present problem will deal with so called hinge problem (Poulsen, 2002;
Yin and Ananthasuresh, 2003) which occurs in mechanism design (Bendsøe
and Sigmund, 2003; Pedersen et al., 2001). The hinges occur because the
lower-order elements often used in topology optimization approximate inad-
equately the stresses and strains in the regions of the elements near to the nodes.
For avoiding hinges the idea of the present study is to include the rotational de-
grees of freedom about the normal to the plane of the 2D element as shown in
Figure 9.

As an example the inverter is designed using 20% material. The mechanism
is applied to an actuator where the inverse output displacement is maximized as
shown in Figure 10a. The example is solved using the element type shown in
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Figure 9. Four node elements. (a) Two translation degrees of freedom. (b) Two translation
degrees of freedom plus the rotational degrees of freedom about the normal to the plane of the
element.

Figure 10. (a) Design space for inverter mechanism. (b) Optimized inverter mechanism
modeled used elements including rotational degrees of freedom about the normal to the plane
of the element as shown in Figure 9b.

Figure 9b obtained in ABAQUS or Nastran combined with the sensitivity based
algorithm in TOSCA. The filter suggested by Sigmund and Petersson (1998)
is applied with a filter size corresponding to 1.5 elements. Normally, the fil-
ter does not prevent hinges in mechanism designs. Nevertheless, the design in
Figure 10b does not contain hinges when the filter is combined with elements
including rotational degrees of freedom due to the more accurate physical de-
scription by the elements around the nodes. Both solution methods concerning
hinges suggested in Poulsen (2002) and Yin and Ananthasuresh (2003) lead to
a significant higher number of optimization iterations which was not observed
in the present optimization. Thus, the discussions regarding hinges in the liter-
ature for mechanisms can be solved using a more accurate FE-modeling and a
filter. Additional numerical experiments indicated that this conclusion is valid
as long as the ground structure is stiff. However, when the ground structure is
flexible some hinges could be observed. As shown here one of the main ad-
vantage of using commercial FE-solvers for topology optimization is that one
can use the enormous element library and functionalities which the commercial
solvers provide.
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3. FUTURE NEEDS

These and other examples show that topology optimization and the features
which can be found in the literature to a large extend can be and are integrated
into existing CAD and CAE environments used in industry. However, some
key issues are still unsolved and believed to be interesting also from an aca-
demic point of view. Especially, to include stress constraints in topology op-
timization would be desirable from an industrial point of view. Among highly
nonlinear problems the possibility of combining crashworthiness and topology
optimization is wanted, especially for the automotive industry. Due to the large
FE-models frequently applied in these optimizations, the maximum number of
allowed optimization iterations is 30–50 which is an important restriction.

NOTES

1. A superelement is a substructure which is condensed by eliminating its degrees of freedom.
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Abstract: Topology optimization has matured to be a practical design tool. After sev-
eral years of success in the automotive industry, topology optimization has been
introduced in other industries with great success. Design processes in the con-
sumer products and aerospace industry benefit greatly from the use of topology
optimization. The introduction of manufacturing constraints made the techno-
logy even more appealing. The paper will discuss recent developments in the
implementation of topology optimization in commercial software and the use in
a digital engineering environment.

Keywords: Topology optimization, software, design.

1. INTRODUCTION

The last decade has seen tremendous progress in the application of structural
optimization. Many finite element based algorithms have matured and have
been implemented into software packages applicable to day-to-day practical
problems. Designs are created in an iterative process where computational
simulation of the structural behavior is the basis for making design decisions.
It is very common that design modifications are derived using a trial and er-
ror approach. However, the use of optimization technology would change the
design process into a process driven directly by computational analysis.

Until the early 1990s, the use of structural optimization has been limited
to improve designs with predetermined topology using sizing and shape op-
timization. Intuition and experience of the designer played the central role in
defining the initial layout of a design. It has been shown that substantial fur-
ther improvement of the design can be achieved by altering the initial design
concept of the arrangement of cavity distribution inside a structure.
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Bendsøe and Kikuchi pioneered the theoretical foundation of today’s mod-
ern finite element based topology optimization methodology in 1988 [1]. Altair
OptiStruct� , first released in 1994 [2], appeared to be the first commercial
software that utilizes this technology. It has found immediate overwhelming
response from the automotive industry at the first place owing to its significant
impact to designs at a very low effort for design engineers. Using such a tool,
engineers are now able to generate efficient design concepts even before cre-
ating the first CAD model. The integration of topology optimization into the
design process has been proven successful through a large number of industrial
applications.

2. DESIGN PROCESS

Designing is optimization. The design is derived from a set of requirements.
Knowing early in the design process what the design targets are makes it easy
to apply computational means already in the definition of the design concept
[3]. Generally, the design process is an iterative procedure consisting of the
following phases: Conceptual design; Design; Testing; Optimization.

Changes to the design are introduced in all phases of the process. At a
certain stage of this process changes to the concept become prohibitive. Hence
the concept phase plays a fundamental role concerning the overall efficiency
of the design and the cost of the overall development process.

This view of the process is quite theoretical. However, it can be used to
define the use of computational methods to create and verify a design. These
days, using topology optimization preceding the design can even extend this
process. In each stage of the process computational methods are available. De-
pending on the character of the problem, the design optimization is performed
using integrated or general optimization tools. Hence, computational means
can be used to automate the design process as a whole.

In the concept phase of a design process, the freedom of the designer is just
limited by the specifications of the design. Today, the decision on how a new
design should look like is mostly based on a benchmark design or on previous
designs. The decision-making is based on the experience of those involved
in the design process. However, preliminary design tools such as topology
and topography optimization can be introduced to enhance the process [4].
Topography optimization is methodology for preliminary sheet metal design
[5]. This method is an application of shape optimization and allows the design
of draw beads in sheet metal.

The concept can be based on results of a computational optimization rather
than guessing by using topology and topography optimization. The initial
design step is then already based on input generated using computational ana-
lysis. This way topology and topography optimization redefines the role of
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computational analysis and simulation in the design process. Computational
analysis has matured from a testing tool to a design tool.

3. TOPOLOGY OPTIMIZATION

The initial implementation of topology optimization in OptiStruct followed the
original theory of [1]. The topology optimization problem is stated as

Minimize W(ρ)

Subject to V =
∑

ρiνi ≤ V̄ , η ≤ ρi ≤ 1, i = 1, . . . , n. (1)

Here, the quantity W(ρ) represents the objective function. The quantities ρi
and νi are element densities and volumes, respectively, V̄ is the target volume,
n is the total number of elements, and η is a small number that prevents the
stiffness matrix being singular.

To enforce the design to be close to a black-and-white-solution, a penalty is
introduced to reduce the efficiency of elements with intermediate density. This
is achieved by a power law formulation

K̂i(ρi) = ρ
p

i Ki . (2)

The matrices K̂i and Ki represent the penalized and the real stiffness matrix
of the ith element, respectively. The power p is the penalization factor that is
larger than one. This method is frequently referred to as Density Method or
Single Isotropic Material with Penalty (SIMP) Method.

A common objective function is the weighted sum of compliance across
all load cases or a weighted sum of natural frequencies or any combination
thereof.

For many practical applications a general formulation of the topology op-
timization problem is suitable, i.e.

Minimize W(ρ)

Subject to gi(ρ)− ḡj ≤ 0, j = 1, . . . , m, (3)

η ≤ ρi ≤ 1, i = 1, . . . , n.

The functions gj and ḡj are the j -th constraint and its upper bound, respect-
ively, and m is the total number of constraints. To solve this problem dual
optimization methods based on separable approximations are best suited [6,
7]. This is due to the fact that the number of design variables in a topology
optimization problem is usually far too big for general nonlinear programming
algorithms. The advantage of this formulation is that general optimization
problems with constraints can be solved. Other methods such as the Method of
Moving Asymptotes [8] or Interior Point methods with similar characteristics
as the dual methods are applicable too.
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Figure 1. Rectangular design space with pressure boundary.

Figure 2. Rectangular design space with pressure boundary. Results.

4. SOFTWARE IMPLEMENTATION

In the software implementation the density method can be treated in the same
manner as a typical sizing and shape optimization problem. Advanced approx-
imation techniques using intermediate design variables and response are ap-
plied in the solution procedure [9]. Using such unified approach a wide variety
of problems that have been off limits for topology optimization can be solved
[10].

One example is the treatment of design space under pressure load. The best
material distribution for the problem in Figure 1 is not the typical bridge design
obtained with topology optimization, but a pressure vessel.

In a unified implementation of topology and shape optimization shape vari-
ables can be define on the pressure boundary. The problem solved is then to
minimize the compliance with a volume constraint. Figure 2 shows the results
obtained.

The pressure vessel is the much stiffer design. Its compliance is only about
50% of that of the bridge type structure with both having the same volume.

5. MANUFACTURABILITY

One of the major problems in topology optimization that needs to be addressed
is the manufacturability of the optimization result. The transfer of a topology
optimization result into a design still needs a lot of manual interference. The
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Figure 3. Control arm with enclosure due to torsion load.

Figure 4. Defining a draw direction constraint.

design needs to include manufacturing consideration and practically recreates
the optimization result in a CAD system. There is some help like geometry
recovery tool such as OSSmooth, which is part of Altair OptiStruct [2]. But
sometimes due to an unclear topology optimization result this involves much
creativity, which may lead to a loss of performance of the design compared
to the optimization result. Methods pioneered by Altair Engineering, such as
minimum member size control [11] help already to improve the process. But
still, in parts that are mainly under torsion load, large enclosures define the
optimum structure, and these are difficult to manufacture (Figure 3).

The solution would be to develop a technology that defines a draw direction
to open up the design into one direction only. This allows for better casting
and milling manufacturability.

Harzheim [12] developed such a method using a Soft-Kill-Option method
for topology optimization. The draw direction was determined based on a
regular mesh with hexahedral elements. Zhou [13] suggests a similar method
that would be valid for arbitrary meshes and is based on the computational
optimization method described above. An efficient implementation has been
found.

The following optimization problem is being solved (Figure 4):
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Figure 5. (a) Design, non-design space and loading. (b) Design without draw direction
constraints. (c) Design with draw direction constraint.

minW(ρ)

gj (ρ)− ḡj ≤ 0 (4)

0 ≤ ρi ≤ ρi+1 ≤ ρi+2 ≤ . . . ≤ ρM.

For the user this method is hidden behind an efficient GUI. The user starts by
defining the package volume (Figure 5a) for the part that has to be designed.
The geometry of the design package volume is meshed and appropriate loading
and constraints are applied. The user can then identify and impose performance
constraints such as stiffness, frequencies, displacement, and weight thresholds
that the resulting design has to meet. Also, to force the concept design to
develop ribs in a C-channel, the user can specify the draw directions to pull
out the part from the dies. Based on this information OptiStruct analyzes and
optimizes the model to predict the optimum material layout that meets the per-
formance constraints and also the manufacturability constraints. Below is an
example of a torsion beam, optimized with and without casting constraints.
Without any casting constraint imposed on the design space, it produces a hol-
low structure (Figure 5b). Although this structure is mathematically optimal, it
cannot be manufactured by casting. Applying draw direction produces a design
that can be manufactured by casting (Figure 5c) while optimally re-orienting
the material to conform to the draw directions.

Entirely new approaches to manufacturing constraints are extrusion con-
straints [12]. These are intended to enforce constant cross sections in a largely
prismatic design spaces. Figure 6 shows a simple example of that. It is a rail
loaded on top with several load cases. It is compared to the design without
extrusion constraints.

Here the optimization problem is defined as follows:

minW(ρ)

gj (ρ)− ḡj ≤ 0 (5)

0 = ρi = ρi+1 = ρi+2 = . . . = ρM.

Similarly symmetry and patterns of repetition can be enforced for a design.
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Figure 6. (a) Topology design space and loading. (b) Optimum design without extrusion
constraints. (c) Optimum design with extrusion constraint.

6. LINEAR BUCKLING CONSTRAINTS

The issues of linear buckling constraints for topology optimization have been
widely discussed [15]. Major obstacles for their robust implementation are:

1. The existence of singular designs;

2. The effect of low density elements on the buckling factors;

3. The absence of rules for stress calculation for semi-dens elements;

4. The computational effort for buckling sensitivity.

It is fairly straightforward to implement such constraints. For particular prob-
lems the solutions are of practical meaning. That is if a ribbing pattern on shell
structures needs to be determined. For such cases topology solutions can be
obtained.

In the general case an approach using compliance based topology optimiz-
ation to find the stiffest design followed by a sizing and shape optimization to
include buckling constraints needs to be employed [16].

7. SHELL AND COMPOSITE LAY-UP DESIGN

Using the density method for topology optimization of shells usually yields
truss designs. Even more so if minimum member size control is employed.
However, in many design applications it has been proven that shear web
designs perform better [17].

Instead of using a density approach with penalty element-wise shell thick-
ness as design variables has been implemented. It can be shown that this way
shear panels can emerge in the design concept. Depending on the design target
either the truss or the shear web design performs better. The term Free Sizing
Optimization has been coined for this approach.

A trade-off study between the results of a density approach and a free sizing
approach are shown below. The topology design always yields a truss structure
while the free sizing design may yield a shear web if it is the best design.
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Figure 7. (a) Topology – Truss structure. (b) Free Sizing – Shear panels.

Figure 8. Comparison of truss and shear web designs.

It turns out the for a design target of lower stiffness (higher displacement)
the truss yields a lighter design and for a higher stiffness the shear web design
is of lower weight.

The free sizing approach can also be applied to the conceptual design of
composite lay-ups. The approach is to fix the fiber angle in each ply and then
to apply free sizing to the ply thickness in each element.

8. EXAMPLE 1: LEADING EDGE

This example resulted from a project at Airbus UK Ltd [18]. It showcases the
advanced application of 2D topology optimization to a complex design prob-
lem such as the design of the A380 leading edge (Figure 9). The topology op-
timization was performed under consideration of a stiffness-based design. The
design concept derived from it was then sized using size and shape optimiza-
tion. In this final phase, stress and buckling constraints have been introduced.
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Figure 9. Leading edge design.

Figure 10. Handle design using draw direction constraints.

Figure 11. Impact of draw direction constraints.

Only the very final result of this entirely CAE based design process was then
put into a CAD drawing.

9. EXAMPLE 2: INJECTION MOLDED PART

This example shows the application of the draw direction constraints [19]. The
design is an injection molded handle. In order to be able to manufacture it,
no die locking must be allowed. The use of manufacturing constraints directly
produces a design that can be put into a prototype (Figure 10). Figure 11 com-
pares the optimization with and without draw direction constraints. Without
the constraint the part cannot be molded because of internal voids.
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Abstract: This work is concerned with the automatic configuration design or synthesis of
mechanisms consisting of rigid links and joints. The specific design goal is to
configure a rigid-link mechanism that converts a given input motion at a certain
location to a desired output motion at an end-effector location without any initial
information on mechanism configuration. To the authors’ knowledge, the auto-
matic synthesis or design envisioned in this investigation has not been reported.
In this respect, this investigation may open a door to rigid-body mechanism syn-
thesis. For the synthesis, two-dimensional mechanisms consisting of rigid links
and revolute joints will be considered. The synthesis is formulated as a problem
to minimize the difference between the prescribed output motion and the actual
output motion. The key to the success of the mechanism synthesis lies in the
development of a single unified model that can represent all possible rigid-body
mechanisms. Our idea is to represent rigid link mechanisms by spring-connected
rigid blocks; by adjusting the real-valued spring stiffness, any rigid link mechan-
ism can be simulated and a desired mechanism can be synthesized by varying the
spring stiffness. In this investigation, only the kinematics of a mechanism will be
considered. Numerical examples are presented to demonstrate the effectiveness
of the proposed method.

Keywords: Rigid link mechanism, automatic design, synthesis, spring-connected blocks.

∗The underlying concepts of some automatic synthesis methods, including the one given here, were presen-
ted as the plenary lecture under the same title at the 3rd China-Japan-Korea Joint Symposium on Optimiza-
tion of Structural and Mechanical Systems (Kanazawa, Japan, October 30–November 2, 2004).

251

Martin P. Bendsøe et al. (eds), IUTAM Symposium on Topological Design Optimization of
Structures, Machines and Materials: Status and Perspectives, 251–260.
© 2006 Springer. Printed in the Netherlands.



Y.Y. Kim et al.

1. RESEARCH DIRECTION

Mechanism synthesis has been a subject of numerous investigations [1–11].
Since good reviews [8–11] on the subject can be found in the literature, we
will mainly focus on the difference between existing investigations and the
present investigation. The goal of this research is to develop a new compu-
tational method to automatically design or synthesize a planar linkage mech-
anism without using any initial baseline linkage. Most existing mechanism
synthesis methods use a candidate mechanism layout such as an equal-length
four-bar linkage and vary its link lengths and joint locations until a desired
mechanism is obtained. If the desired linkage cannot be configured by the ad-
justment of the joint location and link size of the baseline linkage, the synthesis
must be repeated with a new candidate linkage. Therefore, a synthesis method
to determine the linkage type (the numbers of links and joint conditions) and
specific dimensions in a single synthesis process will be extremely useful, but
no such method has been developed so far.1 In this work, the kinematic syn-
thesis of planar linkages consisting of rigid links and revolute joints will be
investigated.

The main criteria in developing the automatic synthesis method are (1) that
the synthesis process should not require a specific initial mechanism and
(2) that the synthesis process should be determined in reasonable computation
time. To satisfy the two criteria, the idea of using a unified model for the topo-
logy optimization [15] of continuum bodies may be borrowed for the present
investigation. Here, we should develop a single unified rigid-link mechanism
model that can represent various candidate linkage configurations by the ad-
justment of some parameters or variables. The crucial step in this research
is the development of a spring-connected block model (SBM); this model
is shown to be capable of simulating the kinematic motion of any rigid-link
mechanism connected by revolute joints by adjusting the spring stiffness. By
means of SBM, the problem of the rigid link mechanism synthesis can become
a minimization problem to determine the stiffness values. By formulating the
problem with real-valued design variables that control the spring stiffness, nu-
merically efficient gradient-based algorithms are applicable in searching the
desired linkage configuration.

The automatic design or synthesis problem considered in this investigation
is schematically depicted in Figure 1. To clarify the scope of the present in-
vestigation, the problem definition and assumptions are summarized as (OBJ:
objective, G: Given condition; A: Assumption):

1During the conference (topoptSYMP 2005), some related research works on the automatic mechanism
synthesis were brought to our attention: articulated mechanism design approaches [12, 13] using deformable
ground trusses and topology optimization of rigid body mechanisms using relaxed kinematic constraint
equations [14].
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OBJ: Without a baseline linkage, find a linkage mechanism producing the de-
sired motion at a designated location.

G1: Input motion (say, simple circular or linear motion at a designated loca-
tion);

G2: Desired output motion at a designated location such as the end-effector
location;

G3: Configuration domain within which a planar linkage is synthesized;

A1: The desired linkage consists of rigid links and revolute joints;

A2: The link number and the revolution joint number are not known in ad-
vance although the maximum numbers are constrained;

A3: If necessary, revolute joints should be fixed to the ground;

A4: No initial linkage type or configuration is available;

A5: Only kinematics will be considered, i.e., dynamics will not be con-
sidered in this investigation.

Figure 1. Problem definition: for given input and output motions, find a planar linkage
mechanism without relying on any baseline linkage.

The following is the summary of the automatic synthesis procedure de-
veloped in this work:

Step 1: The given mechanism configuration domain is discretized by a num-
ber of rigid rectangular blocks (see Figure 2(a)).

Step 2: Rigid blocks are connected by zero-length one-dimensional elastic
springs with varying stiffness (see Figure 2(b)). It will be shown
that as far as the kinematics is concerned, a set of the developed
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Figure 2. Spring-connected block model: (a) discretization of a mechanism configuration
domain by a number of rigid rectangular blocks, and (b) a set of zero-length elastic springs with
varying stiffness connecting adjacent rigid blocks.

spring-connected blocks can accurately simulate the movement of ac-
tual linkages composed of rigid links and revolute joints. The spring
stiffness should be properly selected.

Step 3: Solve the following optimization problem to find the desired mech-
anism configuration:

minimize
ξ∈RN

F = max
t0≤t≤tf

(rQ(t)− r̂Q(t))2, (1)

where rQ is the motion of the end-effector at Q, and r̂Q the prescribed
motion. In (1), time is denoted by t and subscripts 0 and f denote the
initial and final stages. The symbol ξ denotes the design or decision
variables controlling the stiffness of the springs attached to the rigid
blocks.

Step 4: Identify the actual linkage mechanism consisting of rigid links and
revolute joints from the spring-connected block model having the ob-
tained values of ξ .

Step 5: If necessary, carry out the size/shape optimization (i.e., vary joint loc-
ations and link sizes) for the linkage obtained at Step 4) in order to
decrease the value of F .

In Section 2, we propose a unified spring-connected block model to facilit-
ate the automatic mechanism synthesis. In Section 3, the validity the proposed
automatic synthesis method using the block model is examined by several nu-
merical examples.
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2. LINKAGE MECHANISM MODELING FOR
AUTOMATIC SYNTHESIS

Since there is no given initial linkage layout, the following decision (or design)
variables must be determined by the automatic mechanism synthesis if a typical
rigid-link mechanism model is used for the synthesis:

nlink: number of rigid links; Li: link length, i = 1, . . . , nlink;
njoint: number of revolute joints;

rj ∈ R2: joint position vector (j = 1, . . . , njoint);
gj : state variable indicating whether the j -th revolute joint is fixed

in space or not (if gj = 0, not fixed, else if gj = 1, fixed).

The minimization problem in Equation (1) is nearly impossible to solve for
nlink, Li , njoint, rj and gj because different values of nlink and njoint change the
linkage types of the mechanism, say, from a four-bar linkage to a six-bar link-
age. Whenever different values of nlink and njoint are considered, new kinematic
models should be built and analyzed. Even if the allowed maximum numbers
of nlink and njoint are moderate, solving Equation (1) as a minimization prob-
lem involving both integer and real variables would require impractically large
computation time. Thus developing one universal model that can represent dif-
ferent linkage types may be the key to the success of the automatic mechanism
synthesis.

The spring-connected block model shown in Figure 2(b) is the proposed
model for the synthesis. Because spring elements are introduced, the pure
kinematic problem of rigid-link mechanisms becomes the problem to solve
both kinematics and statics. Instead of the block model shown in Figure 2(b),
we also considered using a set of rigid links connected by translational and
rotational springs. The adjustment of the rotational springs was problem-
dependent so that the spring-connected rigid-link model could not be used as a
single unified model.

In the proposed SBM, two neighboring blocks sharing a common edge are
connected by a pair of elastic springs. In particular, each spring has only the
translational stiffness (both in the horizontal and vertical components as be-
fore), and no rotational spring is considered for the connection. Symbols k1

ij

and k2
ij in Figure 2(b) correspond to the two springs connecting the i-th and

j -th blocks. When the interfacing edge of two blocks is horizontal, subscripts
1 and 2 are associated with the left and right springs, respectively, whereas if
the edge is vertical, subscripts 1 and 2, the upper and lower springs, respect-
ively. For actual numerical implementation, the values of kpij (p = 1, 2) will
be bound as kmin ≤ k

p

ij ≤ kmax. (For all numerical problems, kmax = 1 and
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Figure 3. Representation of various joints by adjusting the spring stiffness of SBM.

Figure 4. (a) A given rigid-link mechanism having an anchored revolute joint (JG), (b) equi-
valent mechanism simulated by G-SBM.

kmin = 0.001∼0.01 are used.) Figure 3 illustrates how various joint statuses of
rigid links are simulated by SBM.

Now let us consider the modeling of a more general linkage having an
anchored revolute joint on the ground. The anchored revolute joint (denoted by
JG) is a revolute joint whose translation motion is constrained. To be able to
express JG in addition to the three joint statues illustrated in Figure 3, we are
modifying SBM; the modified model will be called the Generalized Spring-
connected rigid Block Model (G-SBM). To give an idea of G-SBM, Figure 4
shows the application of G-SBM for the simulation of a rigid link having JG.

In G-SBM, blocks α (α = i, j, k, l) are supported by zero-length elastic
(translational) springs kp,α (α = i, j, k, l) connecting nodes pα in blocks α
and a generic node p located at the common interfaces of the blocks (see Fig-
ure 4(b)). The generic node p is also connected to the ground by a zero-length
anchoring spring kp,A. The anchoring spring also has the translational stiff-
ness only. If kp,A approaches zero, the resulting model is equivalent to the
earlier SBM. On the other hand, if kp,A approaches infinity, the translational
motions of node p become restrained. If k1,A → 0, k2,A → ∞ and kp,α → ∞
(p = 1, 2; α = 1, 2), the G-SBM simulates a rigid link with an anchored revol-
ute joint. To avoid numerical singularity in solving kinematics and statics for
G-SBM, the values of kp,α and kp,A are also bound as kmin ≤ kp,α , kp,A ≤ kmax.

When the minimization (1) is solved by a gradient-based approach, the stiff-
ness should be as close as possible to either kmin or kmax; otherwise, it is not
possible to identify a physically-configurable rigid-link mechanism. Thus, the
stiffness k can be made to approach kmin or kmax at the end of the minimization
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process by relating k and the design variable ξ as:

kp,α = f (ξp,α); kp,A = g(ξp,A), (2)

where f and g are chosen as

f (ξ) = g(ξ) = kmax − kmin

1 − exp(−tξ ) + kmin (t ∈ R+). (3)

For the numerical problems considered below, the use of the S-shaped func-
tion in (3) worked satisfactorily, but other functional forms may be considered.
Successful applications of the S-shaped function in pushing design variables to
their limits may also be found in the literature [16–18]. To check how closely
SBM or G-SBM simulates the motions of various rigid-link mechanisms, sev-
eral tests were conducted. Unless the motion duration was very large, SBM and
G-SBM simulated the desired motions satisfactorily. (Due to space limitation,
the simulated motions will not be included here.)

3. MECHANISM SYNTHESIS BY SBM AND G-SBM

In this section, the proposed method using SBM and G-SBM will be applied to
synthesize or design a few rigid-link mechanisms. All numerical simulations
were carried out by using ADAMS [19]. The solution of (1) was found by SQP
[20] provided in ADAMS. The required sensitivity was calculated by finite
difference.

As the first problem, we will check if the known mechanism can be syn-
thesized by the proposed approach using SBM. Referring to Figure 5(a), the
objective is to synthesis a rigid-link mechanism giving r̂Q(t) at Q if the link
connecting (0, 0) and (0.033, 0.303) is rotated by the angle φ(t) = πt/6. Fig-
ure 5(b) shows the discretized configuration design domain by 9 rigid blocks
connected by 24 block-connecting springs. (To facilitate drawing, zero-length
springs will not be shown.) For the synthesis, the initial values of kαij = 0.5
were used. Figure 5(c) shows the snapshots of the final motions of the con-
verged SBM at t = tf and the identified rigid-link mechanism from the SBM.
The iteration histories are shown in Figure 6. (If necessary, the joint coordin-
ates of the identified rigid link mechanism can be updated by shape optimiza-
tion.)

As the next problem, the synthesis of a vertical-line mechanism shown in
Figure 7(a) is considered. The specific objective is to synthesis a mechan-
ism converting a rotation motion (φA(t) = πt/6, 0.0 ≤ t ≤ 0.3) at A to an
upward motion at Q, the end-effector location. This problem will be solved
by using G-SBM, which is the generalized form of SBM. The synthesis do-
main is discretized by 3 × 3 blocks that are connected by 32 block-connecting
springs and 12 anchoring springs. For the synthesis, the design variables cor-
responding to kp,α = 0.5 and kp,A = 0.001 were used as the initial values for
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Figure 5. Mechanism synthesis by SBM. (a) The given four-bar mechanism (Q: end-effector
location), (b) discretized configuration design domain, (c) snapshots of the final motion of the
converged SBM at t = tf and the identified rigid link mechanism.

Figure 6. Iteration history for the problem depicted in Figure 5.

Figure 7. Synthesis of a straight-line mechanism by the proposed method based on G-SBM.
(a) Problem definition and configuration design domain disretization, (b) snapshot of the con-
verged G-SBM as the solution of Equation (1), (c) the identified rigid-link mechanism.
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the synthesis. Figure 7(b) shows the snapshot of the motion of the converged
G-SBM at t = tf and Figure 7(c) shows the identified link mechanism. To
improve the straightness of the output motion, the coordinates of the revolute
joints at B, C and D are updated by shape optimization. Not shown here is that
the shape optimization changed the coordinates of B, C and D, which helped
improve the straightness of the motion of the end-effector.
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Abstract: A weak point of the density based approach to topology optimization has been its
disability to handle design dependent surface loads like pressure loads without
introducing special parameterizations of the load surfaces. In this paper we sug-
gest a way to resolve the problem. Based on a mixed pressure-displacement
finite element model we impose the pressure load through an incompressible hy-
drostatic fluid. One continuous design variable pr. element interpolates between
solid elastic material and incompressible fluid. The method is straightforward to
implement and applies to two as well as three dimensions.

Keywords: Pressure loads, mixed formulation, density method, incompressibility, SIMP.

1. INTRODUCTION

In pressure load problems, the position of the loads depend on the topology.
Such problems are encountered in hydrostatics and dynamics of wind, wa-
ter and snow loaded mechanical and civil structures such as ships, submerged
structures, airplanes, combustion engines, pumps, etc.

Previous works on topology optimization with pressure load embrace sev-
eral approaches (Hammer and Olhoff, 2000; Du and Olhoff, 2004a, 2004b;
Chen and Kikuchi, 2001; Fuchs and Shemesh, 2004; Bourdin and Chambolle,
2003), all involving alternative parametrization schemes or shape parameteriz-
ations of the loading surfaces. Alternatively one may use the level-set method
where it is fairly straight forward to implement pressure loads since the load
surface is well-defined (Allaire et al., 2004; Liu et al., 2005).

In this paper we introduce a new way to solve the pressure load problem
based on a mixed displacement-pressure (incompressible) formulation but us-
ing the standard density approach to topology optimization. Thus, the scheme
can be implemented in existing topology optimization softwares based on the

∗Now FE-design GmbH, Karlsruhe, Germany.
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density approach. In fact, the only necessary changes to the code lies in the
interpolation scheme, the boundary conditions and possibly the linear system
solver.

The idea of the method is the following. Instead of defining the equilibrium
equations in the typical FE displacement formulation, we define it in mixed
form by including the pressure as a separate variable. This makes it possible
to define the void phase in the topology optimization formulation as an in-
compressible hydrostatic fluid, thus allowing for transfer of pressure from the
external boundary conditions to the structure – independent of its shape or to-
pology.

2. MODELLING

Linear elasticity problems may be stated in a mixed pressure-displacement
form by introducing a pressure variable

p = −Kεkk, (1)

where K is the bulk modulus and εij the Cauchy strain tensor and double in-
deces means summation.

The constitutive law for the mixed form is

σij = 2Geij − δij p (2)

where G is the shear modulus, σij is the stress tensor, eij is the deviatoric strain
tensor

eij = εij − 1

2
δij εkk (3)

and δij is Kronecker’s delta. Here we assumed planar elasticity but the idea
applies to three dimensions as well.

In weak form, the equilibrium conditions for the mixed formulation can be
written as∫

�

δεij 2Geij d�−
∫
�

δεij δij p d�−
∫
�

δui Fi d�−
∫
�T

δui T
∗
i d� = 0, (4)

and additionally ∫
�

δp(p/K + εkk) d� = 0, (5)

which have to hold for all kinematically admissible displacement variations
δui and pressure variations δp. In (4), Fi is the volume force tensor and T ∗

i is
the surface traction tensor.

The mixed form described by (4)–(5) is implemented in a standard finite ele-
ment form using the commercial code FEMLAB which is a MATLAB add-on.
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For stability reasons it is important to use the right element field interpolations
schemes. Here we use rectangular 4-node elements with bi-linear displace-
ment interpolation and element-wise constant pressures for computational ef-
ficiency. These elements are known only to be partially stable, however, in our
optimizations we did not experience any problems with pressure oscillations.

3. INTERPOLATION SCHEME

Depending on the choices of the bulk and shear moduli, we can model different
material behaviours. An infinite bulk modulus gives incompressibility and a
shear modulus close to zero corresponds to a (hydrostatic) fluid whereas stand-
ard elastic materials have finite bulk and shear moduli. The simplest scheme
is obtained for interpolation between a hydrostatic incompressible fluid and an
incompressible elastic material

K = Kfluid = K0 = ∞
G(µ) = Gfluid + µη(G0 −Gfluid)

}
(6)

where µ is the density design variable and Kfluid, K0, Gfluid and G0 are the
fluid bulk modulus, elastic bulk modulus (both set to infinity), fluid shear mod-
ulus and elastic shear modulus, respectively. The penalization factor η is well-
known from the standard SIMP approach.

4. NUMERICAL IMPLEMENTATION

Apart from the interpolation scheme and the mixed formulation, the imple-
mentation of the pressure load problem follows that of standard compliance
minimization problems. The objective function is still to minimize compli-
ance. Note that since the fluid domain is incompressible and has negligible
shear stiffness, the strain energy stored in the fluid domain will be diminutive
compared to the elastic domain. Therefore, we can stick to the usual compli-
ance objective function.

The topology optimization problem is solved using Matlab scripts calling
the FE-package FEMLAB. As demonstrated in Olesen et al. (2005), the Mat-
lab script can be formulated very compactly using FEMLAB calls and the de-
rivation of sensitivity information can be performed (semi-)automatically. This
is obtained by defining the design variable field µ as an extra field in the FE
model. The solver only solves for the original displacement and pressure fields.

Since the emphasis in this paper is on the physical concept and not the im-
plementation, no further details about the FEMLAB implementation will be
given here. However, it is noted that the automatically calculated sensitivities
have been confirmed by finite differences checks. The optimization problems
is solved by the Method of Moving Asymptotes (MMA, Svanberg, 1987). Fi-
nally, as with most other density formulations, the proposed topology optim-
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ization scheme is prone to numerical problems like checkerboards and mesh-
dependencies (Sigmund and Petersson, 1998). In order to avoid this problem
we use the mesh-independency filtering scheme proposed by the first author
(Sigmund, 1997).

5. INTERNALLY PRESSURIZED LID EXAMPLE

To demonstrate the method we use an example that has previously been used
in the literature to demonstrate schemes for pressure load problems (Hammer
and Olhoff, 2000; Du and Olhoff, 2004a, 2004b; Chen and Kikuchi, 2001;
Liu et al., 2005). The design domain with indication of boundary conditions
corresponding to a simply supported stubby beam of length 1 and height 1/2
is shown in Figure 1a. The pressure load may for the mixed formulation be
introduced by different boundary conditions. Common for all cases, however,
is that a narrow fixed fluid region is introduced below the design domain. The
fluid region is put under pressure either by removing the supports on the lower
edge and applying a vertically distributed traction load, by prescribing the ver-
tical displacements of the lower edge or by prescribing the pressure on the left,
right and lower edges of the fixed fluid region. For the following case we used
the latter approach, however, it has been tested that the other two formulations
result in essentially the same responses and topologies. For this case, we use
rectangular elements with bi-linear displacement interpolation and element-
wise constant pressure interpolation but for the design field we use a bi-linear
interpolation, i.e. a Q-4/1/4 element. In the following examples only half the
design domain is discretized and there are 1681 nodal design variables. A
volume fraction of f0 = 0.5 may be filled with solid material with E = 1 and
ν = 0.3. The mesh-independency filter size is equal to 1.5 times the element
size.

As a reference we first optimize the structure for fixed unit tractions on
the lower edge of the design domain and non-fluid void regions, i.e. a stand-
ard SIMP approach. The optimized topology is seen to be the well-known
bridge-like solution (Figure 1b) which has a compliance of Wfinal = 1.12. As
a check we can also analyze this optimized structure with an incompressible
fluid region with boundary conditions corresponding to prescribed p = 1 on
the lower, left and right boundaries of the fixed fluid region. Also in this case
the compliance is W = 1.12, confirming that it is possible to transmit surface
loads through an incompressible fluid.

Next we optimize the structure with the incompressible fluid model. The
optimized topology is seen in Figure 1c and is seen to be an arch-like structure
known from the previous works on pressure load problems. The final compli-
ance of the arch-like structure isWfinal = 0.94, i.e. 16% better than for the fixed
traction problem. This result corresponds well with the 17.67% improvement
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Figure 1. (a) Design domain and boundary conditions for internally loaded lid. The white
region below the design domain indicates a region fixed to be fluid. (b) Reference case with op-
timized topology for pressure load fixed to the lower edge of the design domain. (c) Optimized
topology with pressure load.

reported in Du and Olhoff (2004a) which was obtained for a coarser discretiz-
ation (400 elements) and an iso-density curve for imposing the pressure load
surface.

This example was done for the case of incompressible material and fluid. It
is also possible to solve problems with small compressibility of the fluid phase
and compressible elastic material. Here, however, it is important that the bulk
modulus of the fluid does not exceed approximately 20 times that of the elastic
material. This is to avoid numerical instabilities associated with spurious but
numerically favorable mixtures of elastic material with incompressible fluid
inclusions.

6. CONCLUSIONS

In this proceedings paper we have only shown a few details of the method and
we have demonstrated its efficiency with only one example. However, the pro-
cedure immediately applies to three dimensions and by small modifications of
the interpolation scheme, one may model cases with other material behaviours
such as for example compressible elastic material.

A potentially weak point of method is that internal “void” regions in the
structures also become incompressible (fluid-filled) – a possibility the optim-
ization algorithm may take advantage of by using the void regions as “incom-
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pressible cavities”. This possibility, that may or may not be physically relevant
for a particular problem, can be avoided by introducing an extra (compressible)
void phase in the design problem. If one now puts a constraint on the available
amount of fluid, it is possible to eliminate fluid filled cavities by a trial and
error approach or alternatively by the method suggested by Chen and Kikuchi
(2001). Also, the idea may be applied to design of water loaded structures like
dams or water towers by introducing mass density and gravity loads on the
fluid and structural regions.

More details about the method and several examples in two and three di-
mensions including dam design problems are given in a full paper (Sigmund
and Clausen, 2005). An extension to dynamic problems (acoustic-structural
interaction) can be found in these proceedings (Yoon et al., 2006).
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TOPOLOGY OPTIMIZATION
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Abstract: Topology optimization in magnetic fields has been studied based on the HDM
(homogenization design method) and SIMP (Solid Isotropic Material with Pen-
alization). Recently, the modified density approach that accepts the concept of
the homogenization design method has been suggested. In this study, the res-
ults of topology optimization based on the objective functions such as maxim-
izing magnetic force as well as maximizing the magnetic mean compliance are
reviewed. Especially, the modified density approach is studied to obtain the im-
proved final topology comparable to the results by HDM focusing on the hole-
shape of the unit element structure considering the directional properties of the
magnetic flux.

Keywords: Topology optimization, magnetic fields, homogenization design method, solid
isotropic material with penalization, modified density approach.

1. INTRODUCTION

The studies on topology optimization in magnetic fields have been focused on
the obtaining the optimal structure affected by magnetic fields. Two kinds of
methods are used in ordinary topology optimization: density method such as
SIMP (Bendsøe, 1989) and the homogenization design method (HDM) sug-
gested by Bendsøe and Kikuchi (1988). The density method has been used
in the name of the optimal material distribution method (OMD) from the late
1990s (Lowther et al., 1998) and HDM has been applied in 2000 (Yoo and
Kikuchi, 2000; Yoo et al., 2000). Topology optimization has been also applied
in the design of electromagnetic component or system such as coil and motor
(Wang et al., 2004a, 2004b). The governing equation of magnetic field prob-
lems is very similar to that of elastic field problems. The shear terms in the
material property tensor are very important in elasticity problems: on the other
hand, those in magnetic problems are often ignored except in special cases. In
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that sense, the density approach such as SIMP seems to be more attractive in
topology optimization in magnetic fields than HDM.

During the topology optimization process using the density approach, the
magnetic permeability value is penalized in magnetic field problems while the
Young’s modulus value is penalized in elastic field problems. The value of
the penalization parameter in elasticity problems can be constrained by the
Hashin–Strikman bounds (Bendsøe and Sigmund, 1999): therefore, it is selec-
ted as 3 for 1/3 Poisson’s ratio in 2-D cases. In the magnetic field topology op-
timization, similar penalization values are used for the permeability calculation
(Byun et al., 1999) without any theoretical supports. Recent study shows that
for the topology optimization in magnetic fields, the results with small penal-
ization parameter are superior to the results with large penalization parameter
not only in the performance but also in the CPU time and the convergence rate
(Yoo and Hong, 2004).

In this study, the results of topology optimization based on different object-
ive functions such as maximizing magnetic force or maximizing the magnetic
mean compliance are reviewed. Also, the study on the modified density ap-
proach is expanded to obtain the topology optimization results comparable to
the HDM results by fixing the hole-shape of the unit element in specific direc-
tions considering the directional properties of the magnetic flux.

2. OPTIMIZATION PROBLEM

Two optimization problems are considered in this study. First one is the max-
imizing the magnetic energy in a design domain and the other is maximizing
the force generated by magnetic flux. In both cases, the magnetic permeabil-
ity is obtained using HDM or the density method. In the former method, the
macro-micro scale analysis is required to obtain the homogenized permeability
value meanwhile the penalization based on the element density is used to get
the permeability in the latter method.

2.1 Magnetic Permeability Calculation

In HDM, the magnetic permeability is homogenized and used to compute the
magnetic energy. Assuming µ0

ij as the original magnetic permeability, the ho-
mogenized permeability can be calculated as (Yoo and Kikuchi, 2000)

µH =
∫
Y

µ0
ij dY +

∫
Y

µ0
ij

∂γi

∂yj
dY, (1)

where the characteristic function γ represents the magnetic field strength of a
unit-cell and y represents the micro-scale coordinate. In the ordinary density
method as SIMP, the magnetic permeability is penalized as follows (Byun et
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Figure 1. Element structure for the modified density approach.

al., 1999)
µ = µ0[1 + (µr − 1)ρp], (2)

where µ0 and µr represent the magnetic permeability in free space and relat-
ive magnetic permeability, respectively. The element density ρ has the value
between 0 and 1 and the penalization parameter is valued as 2 to 4.

The modified density approach has been suggested by Yoo and Hong (2004)
using the concept of HDM where each element has a hole as shown in Figure 1
and the element density is determined by the hole-size as

µ = µ0[1 + (µr − 1)(1 − abc)p]. (3)

According to the study by Yoo and Hong (2004), it is recommended to take
the value of the penalization parameter as a small value different to the cases
in elasticity problems. Without any restrictions, the hole-shape is changing as
a square type: therefore, the modified density approach works as the ordinary
density method. It is expected to control the flux density or improve the topo-
logy optimization result by fixing the hole-shape with a particular rectangular
one. During the optimization process, the magnetic permeability is computed
either by Equations (1)–(3) based on the optimization method used.

2.2 Formulation of the Optimization Problems

With the permeability values obtained and considering the saturation effect,
the magnetic energy in the design domain � can be defined as

Wm = 1

2

∫
�

∫ B

0

1

µ(B)
B dB dv = 1

2

∫
�

BT 1

µ(B)
B dv. (4)

Using the relation between the magnetic flux density B, inductance L, current
I and the magnetic flux ψ , Equation (4) can be simplified as follows:

Wm = 1

2
LI 2 = 1

2
NIψ. (5)
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As an example for topology optimization in magnetic fields, the objective
function is defined as maximizing the magnetic mean compliance IMMC that is
the same as the maximizing magnetic flux because N and I are constant during
the optimization process.

Maximize
D

IMMC = NIψ

Subject to
N∑
e=1

νe ≥ V0, (6)

where D stands for the design variable matrix and V0 is the specified volume
ratio.

Another example is maximizing the force generated by magnetic fields and
it can be obtained by minimizing the magnetic energy in the design domain
considering the force-energy relation (Yoo and Soh, 2005).

Minimize IMMC = NIψ

Subject to
N∑
e=1

νe ≤ V0. (7)

The design variable is defined as the size of the hole in micro-cells when
HDM is used or as the density of each element in the density approach. As
explained previously, the magnetic permeability is updated according to the
change of the design variables. The sequential linear programming (SLP) is
used for the optimization algorithm.

3. APPLICATIONS

Figure 2 displays two structures where topology optimization is applied. Fig-
ure 2(a) shows a C-core excited by the current density by the wire coil around
the air-gap portion. The design domain is fixed only at the tip end of the iron-
core part and it is discretized as 15 × 9 × 1 elements. The design objective
for the structure is to maximize the magnetic energy that is maximizing the
magnetic flux of the design domain. Figure 2(b) shows a solenoid type magnet
actuator composed of an armature, a case and coil. The armature is a moving
part made of ferrous material and the case is a ferrous structure surrounding the
coil. The armature part is defined as the design domain to maximize the actu-
ating force that is same as minimizing the magnetic mean compliance of the
design domain. Figures 3(a) and (b) show the topology optimization results.
In case of (b), the boundary of the optimal result is not clear and the response
surface method is applied to determine the clear boundary contour (Yoo and
Soh, 2005).
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(a) (b)

Figure 2. Schematic structures for topology optimization: (a) C-core and (b) magnetic actu-
ator.

(a) (b)

Figure 3. Topology optimization results by HDM: (a) C-core and (b) magnetic actuator.

(a) (b) (c)

Figure 4. Topology optimization results by the modified density approach with (a) penaliza-
tion parameter is 1.0, (b) penalization parameter is 2.0 and (c) penalization parameter is 3.0.
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(a) (b)

Figure 5. Simple core and design domain model when (a) the design domain is aligned and
(b) the design domain is misaligned.

Figure 4 shows the application results for the C-core by applying the mod-
ified density approach with various penalization parameter values. The final
figures are similar compared to the result by HDM shown in Figure 3(a). How-
ever, it requires more CPU time and iteration number if the penalization value
is selected as a large number such as 2 or 3 (Yoo and Hong, 2004).

4. EXTENSION OF THE MODIFEID DENSITY
METHOD

Another simple example shown in Figure 5 is considered for topology op-
timization. The purpose of the optimal design is to maximize the magnetic
flux in the ferromagnetic design domain that is adjacent to the iron-core wired
around. An air-gap exists in between and the core and the design domain are
aligned with the core in Figure 5(a) and misaligned in Figure 5(b). In both
cases, not only HDM but also the modified density approach with different
penalization parameter is used for the comparison. Figures 6 and 7 show the
topology optimization results for the aligned position and for the misaligned
position, respectively. As shown in the figures, the results by the modified
density method with penalization parameter 0.5 or 2 are similar to the results
by HDM: however, many gray-scale representation can be found in the results
by the modified density methods compared to the results by HDM even though
there is no severe difference in the density method according to the change of
the penalization parameter.

Considering the concept for a unit element shown in Figure 1, it is extended
by fixing the hole-shape to specific directions to improve the results by the
modified density method. Since the magnetic flux generated from the actuating
core is mostly to the x-direction, it is assumed that the hole length to x and z-
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(a) (b) (c)

Figure 6. Topology optimization results for the aligned design domain by (a) HDM, (b) mod-
ified density method (p = 0.5) and (c) modified density method (p = 2.0).

(a) (b) (c)

Figure 7. Topology optimization results for the misaligned design domain by (a) HDM,
(b) modified density method (p = 0.5) and (c) modified density method (p = 2.0).

directions are 0.995 that is almost 1 . Therefore, only the length of the hole to
y-direction is the only design variable for an element.

Figure 8 displays the optimal shape for the design domains designated in
Figure 5 by fixing the element hole length to x and z-directions. Compared to
the results by the modified density methods without any directional pre-setting,
it can be verified that the final topology becomes more clear and comparable
to the results by HDM.

5. CONCLUDING REMARKS

In this study, topology optimization for the structures in magnetic fields are
reviewed focused on HDM and the modified density method. Especially, a
new technique to obtain the better results by fixing the hole-length to specific
directions is suggested when the modified density method is used. That kind
of extension is only possible in the modified density approach due to its unique
characteristic that the element density is defined base on the inner hole-size in
the method.
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(a) (b)

Figure 8. Topology optimization results with fixed hole length to x and z-directions by the
modified density method (p = 0.5) for (a) aligned design domain and (b) misaligned design
domain.

However, there are large rooms to study in topology optimization in mag-
netic fields. In the density method, the appropriate selection of the penalization
parameter has not been supported by any theoretical researches and in HDM,
it is required to test various micro-structures according to the characteristics
dependent on the problem by problem.
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Abstract: A methodology for topology optimization of fully-coupled electro-mechanical
systems is developed in this study, considering non-matching meshes. In order
to develop a technique for parameterizing the electrostatic mesh, based on the
solid-void state of the structural elements, the case of electrostatic forces is dis-
cussed in detail. High-fidelity analysis models are used in both the structural
and electrostatic fields. The parameterization scheme is successfully applied to
minimum compliance and compliant mechanism design.

Keywords: Topology optimization, electro-mechanical, non-matching meshes, MEMS.

1. INTRODUCTION

Since its modern inception, topology optimization has become an advanced
design tool for many engineering applications. One area that has been largely
unaccounted for is the development of topology optimization schemes for fully
coupled multi-field systems that interact through a surface or interface. Ex-
amples of this type of interaction include fluid-structure and electro-mechanical
systems. The coupling of the physical fields occur through stresses generated
on the structure by the fluid or electrostatic fields, and the displacement of the
structure. In this study, the topology optimization of fully coupled electro-
mechanical systems is explored, in particular for the case in which the struc-
tural and electrostatic meshes do not match.

Electro-mechanical systems are an ideal application for topology optim-
ization due to the development of a class of devices called micro-electro-
mechanical systems (MEMS). This is because MEMS are (a) often used in new
contexts and applications, demanding conceptually new designs and (b) fabric-

277

Martin P. Bendsøe et al. (eds), IUTAM Symposium on Topological Design Optimization of
Structures, Machines and Materials: Status and Perspectives, 277–287.
© 2006 Springer. Printed in the Netherlands.



M. Raulli

ated by a process that allows for arbitrary planar geometries without increase
in manufacturing cost.

Based on the material formulation, topology optimization has been extended
for various multi-physics problems. For example, Rodriques and Fernandes [9]
considered thermal loading. Sigmund [10–12] studied the design of electro-
thermo actuated MEMS, as did Yin and Ananthasuresh [13], including the use
of multiple materials. These problems have in common that all physical fields
involved are defined for the entire design space and the coupling results in
mechanical forces due to thermal strains only. The structural, thermal, and
all other fields evolve automatically along with the material distribution in the
course of the optimization process.

Multi-physics topology optimization problems with loads acting on the sur-
face of the structure, however, are less adaptable to material topology optimiz-
ation as the surface is not known in advance. The surface evolves in the course
of the optimization process and is not explicitly defined using the material for-
mulation of the topology optimization problem. Topology optimization with
design dependent surface loads has been studied by Hammer and Olhoff [6],
Chen and Kikuchi [2], Bourdin and Chambolle [1] and Du and Olhoff [3, 4].
However, in these studies the magnitude of the surface load is given rather
than being governed by other physical fields. Additionally, the use of para-
metric surfaces [3, 4, 6] to represent the topology of the interface is limiting.
An electro-mechanical topology optimization scheme was developed by Raulli
and Maute [8] that allows arbitrary interface locations and uses high-fidelity
solution methods for the fully-coupled multiphysics solution of the electro-
mechanical system.

The downside to the method in [8] is that it requires exactly matching elec-
trostatic and structural meshes, a shortcoming which is addressed in the current
study. For topology optimization problems, the design spaces are often simple,
geometrical shapes, since the complexity of the structure is developed by the
optimization procedure, therefore a simple, regular mesh is sufficient. The
same arguments can be made for coupled problems with separate computa-
tional domains, however this puts an unnecessary limitation on the solution of
the coupled optimization problem. Since the electrostatic and structural dis-
cretizations are of different spatial domains, forcing meshes to match exactly
becomes a potentially more difficult and time consuming process for mesh gen-
eration. With the methods proposed herein, arbitrary meshes can be generated
and parameterized with little user input in a preprocessing step that takes a
few seconds. Therefore, the parameterization algorithms proposed can replace
significant amounts of time spent in mesh generation. Another reason for the
importance of this functionality is the eventuality that a complex geometrical
feature limits the structural or electrostatic domain. A mesh to capture such a
feature would (a) be difficult to match exactly to another mesh and (b) perhaps
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Figure 1. Topology optimization issues for electro-mechanical systems.

be meshed with a different fidelity in order to capture the behavior of this effect
or (c) be meshed with an unstructured mesh generator. Therefore, the require-
ment of matching meshes presents a limitation on the problem formulation,
which is overcome through the proposed methods.

2. ELECTRO-MECHANICAL TOPOLOGY
OPTIMIZATION

Figure 1 illustrates the difficulties involved in topology optimization of electro-
mechanical systems, and interface coupled systems in general. These issues
include the fact that (A) as the initial structural domain (�0

S) changes due to
topology optimization, the electrostatic field must conform to the voids in the
new structural domain (�t

S). This entails the expansion of the initial electro-
static domain (�0

E) to include the newly void areas (�δ
E). (B) The electrostatic

pre-ssure (�σ ) generated on the interface between the structure and the elec-
trostatic domain changes magnitude and location as the solid-void state of the
structure evolves. (C) The application of the voltage boundary condition (�v)

must also conform to the changing topology.
These matters are discussed in detail in [8] and are omitted here in interest

of space. The electrostatic force computation and parameterization through the
structural optimization variables is discussed in detail in Section 3 in order to
illustrate the general technique used for the parameterization of non-matching
meshes. A simple way to approach this problem is to fix the interface topo-
logy, however, a free interface allows greater flexibility in the optimal design.
Details regarding electro-mechanical analysis and adjoint sensitivity analysis
are omitted due to space. Please see [8] for further discussion of these issues.
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3. PARAMETERIZATION OF LOAD TRANSFER FOR
NON-MATCHING MESHES

The physics of the coupled system form the basis for the parameterization
scheme. For electro-mechanical problems, the main source of coupling is
through the electrostatic/structure interface. At the interface, electrostatic forces
are generated, which cause the structure to deform. These deformations, in
turn, affect the distribution of the electrostatic field by altering the physical do-
main in which it is computed. These interface coupled quantities are handled
through an algorithm developed initially for aeroelastic applications [5], and
extended to electro-mechanical applications [7]. The goal of the algorithm is
the transfer of loads and motion between computational domains in a manner
that conserves energy.

Since the structural and electrostatic problems are solved in separate nu-
merical discretizations, a method for transferring loads from the electrostatic
discretization (where they are computed) to the structural mesh is necessary.
The transfer of loads can be summarized by the following equation:

fi =
ne∑
j=1

(∫
�E/S

[
εσ̂e · nNj d�E/S])Ni(χj ), (1)

where ne is the number of electrostatic nodes, �E/S represents the electro-
static structure interface, ε is the permittivity, εσ̂e is the Maxwell stress tensor,
Nj and Ni are shape functions corresponding to electrostatic and structural
nodes, respectively, χj represents the natural coordinate in a structural element
to which an electrostatic node is matched and fi is the force on a structural
node. In the case of material topology optimization with a free interface, the
effect of the optimization variables on the structural and electrostatic material
parameters must be considered.

The electrostatic force calculation exemplifies the proposed parameteriza-
tion method. Physically, electrostatic stresses are generated on a conducting
surface, therefore, if there is not a structure (conductor), then there cannot be
any electrostatic stresses. Since the electrostatic/structural interface is free to
evolve, the effect of the material distribution is factored into the force calcu-
lation in Equation (1) in the following manner: contribution to a nodal force
in the structure should only come from solid elements. Since the force com-
putation is carried out in the electrostatic mesh, which overlaps the structural
design space in order to allow for new voids, the permittivity of an electrostatic
element should be altered to correspond to the solid-void state of the structural
elements with which it is associated.

If the meshes matched, this would be a simple task, as there would be a
one-to-one correspondence between the overlapped structural and electrostatic
elements and the following parameterization could be used: εk = ε0si , where
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Figure 2. Example of interface. Electrostatic mesh: dotted lines, Greek letters for elements,
numbers for nodes. Structural mesh: solid lines, Roman letters for elements.

εk is the permittivity in electrostatic element k, ε0 is the base permittivity and
si is the optimization variable that represents the solid-void state of the cor-
responding structural element, and can have values between zero and one. A
void structural element will result in a zero force contribution from the corres-
ponding electrostatic element. However, as illustrated in Figure 2, there are
potentially multiple structural elements that are associated with a given elec-
trostatic element. In order to properly parameterize the structural force, two
effects need to be considered (a) which electrostatic elements contribute to the
force calculation and (b) how does the solid-void state of the structural ele-
ments influence the force calculation in the electrostatic elements.

The first issue is illustrated by Equation (1). The latter issue is discussed
below. Figure 2 illustrates the two-dimensional projection of the electrostatic
interface on a two-dimensional structural domain. In order to compute the
force on the structural node marked with an asterisk (*), Equation (1) is expan-
ded, considering only the contribution of electrostatic node 6, for simplicity:

f∗ =
[∫

εασ̂enNα
6 d�α +

∫
εβ σ̂enNβ

6 d�β +
∫
εδσ̂enNδ

6 d�δ +
∫
εζ σ̂enNζ

6 d�ζ
]
Na∗ (χ6). (2)

The superscript a on the shape function (N∗) indicates which structural element
the electrostatic node 6 is matched to. In reality, the contribution from electro-
static nodes 1, 2, 3, 5, 6, 7, 9, 10 and 11 would effect f∗. Equation (2) exposes
the difficulties of parameterizing the permittivity in the force calculations with
the state of the matched structural element. The integration underlined in (2)
over the electrostatic element ζ (neglecting the shape function) is a good ex-
ample of this.

The element ζ is actually associated with all four structural elements, there-
fore the permittivity

(
εζ
)
, which is a constant, would ideally be piecewise con-
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stant over �ζ :∫
�ζ

εζ σ̂en d�ζ =
∫
εaσ̂en d�ζ/a +

∫
εbσ̂en d�ζ/b

+
∫
εcσ̂en d�ζ/c +

∫
εdσ̂en d�ζ/d, (3)

where εa = ε(sa) and indicates that the permittivity depends on the optimiza-
tion variable that controls the state of structural element a and �ζ/a represents
the region of overlap between the electrostatic element ζ and the structural ele-
ment a. The theoretically correct parameterization based on the load transfer
algorithm is represented by rearranging Equation (3) and solving for εζ :

εζ = εa
∫
σ̂end�ζ/a + εb

∫
σ̂end�ζ/b + εc

∫
σ̂en d�ζ/c + εd

∫
σ̂en d�ζ/d∫

σ̂end�ζ
(4)

Equation (4) represents an intractable solution to the problem of preprocessing
the parameterization of the permittivity in element ζ , due to the dependence
of the parameterization on the physical response of the system, which is con-
stantly changing with topology. Therefore, the simplification is made that the
electrostatic stress tensor (σ̂e) is constant in an element (ζ ), which is accurate
in the limit of mesh refinement. This assumption is only made for the para-
meterization of the electrostatic elements, not for any numerical calculations.
With this assumption, (4) reduces as follows:

εζ = εa
∫

d�ζ/a + εb
∫

d�ζ/b + εc
∫

d�ζ/c + εd
∫

d�ζ/d∫
d�ζ

, (5)

εζ = εa
Aζ/a

Aζ
+ εb

Aζ/b

Aζ
+ εc

Aζ/c

Aζ
+ εd

Aζ/d

Aζ
; εa = ε0

(sa − smin)

1 − smin
. (6)

The permittivity parameterization is weighted by the area of overlap
(
Aζ/a

)
between an electrostatic (ζ ) and structural (a) element, or their projections,
normalized by Aζ . The actual relation between εζ and the optimization vari-
ables is formulated as follows:

εζ = ε0

Aζ (1 − smin)

d∑
i=a

[
(si − smin)A

ζ/i
]

= ε0

1 − smin

[
1

Aζ

(
d∑
i=a

siA
ζ/i

)
− smin

]
. (7)

The variable smin in Equation (6) represents the minimum value the variable
can take on, in order to avoid singularities in the structural solver. It is in-
cluded in the permittivity parameterization to ensure that the permittivity is
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zero when the structural variables (sa–sd ) are equal to smin. The denominator
term (1 − smin) is used to ensure that the base permittivity (ε0) is achieved if
variables sa–sd are all unity. In order to encourage fully solid-void distribu-
tions, a penalization exponent is applied to Equation (7). The parameterization
of any element in the electrostatic mesh (k) is given as follows:

εk = ε0

1 − smin

[
1

Ak

(
no∑
i=1

siA
k/i

)
− smin

]pf
, pf ≥ 3.0, (8)

where no is the number of structural elements overlapping the electrostatic
element k and pf is the exponent for penalizing the permittivity in force calcu-
lations. Equation (8) represents the parameterization of the force computation
in the case of an evolving interface in electro-mechanical topology optimiza-
tion, which preserves the conservative properties of the load transfer algorithm.
The electrostatic sub-problem is parameterized in a pre-processing step to the
topology optimization problem.

For other physical properties that are parameterized, such as the voltage
boundary condition enforcement and the permittivity of the elements used
to build the electrostatic stiffness matrix, a similar development can be fol-
lowed. Therefore, all parameterization of electrostatic properties is accom-
plished through a normalized area weighting of overlapped elements. In the
interest of space, these developments are omitted.

4. NUMERICAL EXAMPLES

Two and three-dimensional examples of free interface topology optimization
were presented in the initial work on electro-mechanical topology optimization
by Raulli and Maute [8]. Efforts were made to demonstrate the effectiveness of
the methodology for automatically synthesizing optimal topologies which (a)
performed well and (b) were almost completely solid-void in the final design
and (c) avoided checkerboard modes. In order to achieve these optimal results,
there was careful consideration of the filtering techniques.

In this paper, there will not be a general evaluation of the quality and per-
formance of the topology optimization scheme per se, since this has already
been carried out. This section will aim to demonstrate that results obtained
with non-matching meshes are consistent with those obtained with matching
meshes. In order to demonstrate this, two examples are shown: (1) a compli-
ance problem with a two-dimensional structural mesh and a three-dimensional
electrostatic mesh and (2) a completely two-dimensional compliant mechan-
ism force-inverter, as in [8]. They are considered in Sections 4.1 and 4.2, re-
spectively. Schematics for the three and two-dimensional problems are given
in Figure 3.
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Figure 3. Three-dimensional compliance (left) and force inverter schematics.

Figure 4. Comparison of topology results for varying electrostatic mesh sizes. The ratio of
electrostatic to structural mesh density is given for each result in Table 1. Increasing letters
indicate increasing electrostatic mesh refinement. Result B is for matching meshes.

4.1 Three-Dimensional Minimum Compliance

Using the simpler implementation and parameterization involved for matching
meshes, an optimal topology was generated (Figure 4, center), given the setup
in Figure 3. Using this as the benchmark, two additional topology optimization
problems were run, one with an electrostatic mesh finer than the benchmark,
and one with a coarser electrostatic mesh. The structural mesh was kept con-
stant, in order to compare the final material designs, and how the fidelity of the
electrostatic mesh affected the results, thus decoupling the problem from the
structural mesh density.

A summary of the objective and constraint values is provided in Table 1.
Figure 4, left and right, show the topology optimization results for the coarser
and finer meshes, respectively. For the non-matching meshes, the only points
at which there are matching nodes are the mesh boundaries.

The results are encouraging for the finer mesh and discouraging, but not
unexpected, for the coarser mesh. The finer mesh achieves the same optimal
design, visually, even though the values of the objective functions are some-
what different. The coarser mesh achieves a completely different, unsymmetric
design. The reasons for the poor performance of the coarse mesh can be attrib-
uted to two reasons: (a) a decline in accuracy due to the need of a finer elec-
trostatic mesh in the load and motion transfer algorithm [5] and (b) a coarser
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Table 1. Three-dimensional compliance results.

A (0.825) B (1.0) C (1.175)
�init × 10−17 9.71 9.71 9.71
�final × 10−17 0.117 0.0786 0.103

parameterization, which leads to unsymmetry in the parameterized response,
and hence to the poor outcome of the coarser electrostatic mesh.

4.2 Two-Dimensional Force Inverter

Using the simpler implementation and parameterization involved for matching
meshes, an optimal topology was generated given the setup in Figure 3. Using
this as the benchmark, five additional topology optimization problems were
run, three with an electrostatic mesh finer than the benchmark, and two with a
coarser electrostatic mesh. As in Section 4.1 the structural mesh density was
kept constant. The optimization problem is defined as follows:

maxs z(s) = uc subject to: (9)

g1 : Mass ≤ 10% of total g2 : � ≤ �0, (10)

where �0 represents the initial strain energy and uc is the displacement at point
c in Figure 3.

The force inverter is a complicated problem and prone to checkerboard
modes. In the previous study [8], careful attention was paid to the filter such
that checkerboard modes were avoided. In this study, however, less attention
is devoted to this matter to illustrate how non-matching meshes can lead to
consistent topology optimization results, with less user input. Therefore, some
of the results presented in this section, including the one for matching meshes,
exhibit some small amount of checkerboard pattern. This is not to suggest
that this is the best design obtainable with matching meshes, as superior res-
ults have been obtained in [8], but is simply used as a benchmark to compare
different electrostatic mesh densities.

Table 2 summarizes the results for the six different electrostatic mesh sizes
and Figure 5 shows the final designs. The constraints are active at the optimum
for all examples. The number in the top row of Table 2 indicates the ratio of
electrostatic to structural mesh densities. All six examples should produce the
same value for initial displacements, but this is not the case for A and B because
of the fact that the load transfer algorithm depends on the electrostatic mesh
being finer than the structural mesh. Meshes C–F are all in good agreement for
the initial displacement.
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Table 2. Results from topology examples.

A (0.717) B (0.75) C (1.0) D (1.25) E(1.72) F(1.75)
uinit
c × 10−12 –1.01 –1.22 –1.30 –1.30 –1.30 –1.30
ufinal
c × 10−12 619 567 498 514 500 497

Figure 5. Comparison of topology results for varying electrostatic mesh sizes. The ratio of
electrostatic to structural mesh density is given for each result in Table 2. Increasing letters
indicates increasing electrostatic mesh refinement. Result C is for matching meshes.

Figure 5 demonstrates that all the examples achieve similar final designs,
even though the numerical results for the coarser electrostatic meshes (A,B)
are rather inconsistent with the equivalent (C) and finer electrostatic meshes
(D–F). Symmetry is enforced in this example.

The two and three-dimensional examples illustrate that the proposed method
is able to achieve similar designs to exactly matching meshes. Differences in
numerical results naturally arise due to the fineness of the discretization and
the effect this has on the gradients of the system, though the results are also
quite consistent numerically for finer electrostatic meshes.

5. SUMMARY

The possibility of non-matching computational meshes is considered in this
study when developing computational techniques for topology optimization
in multifield, interface coupled problems, such as electro-mechanical systems.
This study has developed a method for parameterization of non-matching meshes
for use in a computational topology optimization procedure. These techniques
were successfully applied to the design of micro-actuators in order to demon-
strate the feasibility of the method.
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Abstract: This research presents a structural topology optimization method for the design
of mechanical resonators, and smart structures, such as mechanical actuators and
sensors, that are composed of flexible structures and mechanical energy conver-
sion devices. First, the concept of the topology optimization method is briefly
discussed. Next, we clarify the mechanical design specifications of mechan-
ical resonators, actuators and sensors, and construct objective functions that
aim to satisfy design specifications. Based on these formulations, an optim-
ization algorithm is constructed using Sequential Linear Programming (SLP).
Finally, several numerical examples are presented in order to confirm that the
method presented here can provide optimized structures applicable to the design
of mechanical resonators, mechanical actuators and sensors.

Keywords: Topology optimization, vibration, smart structures, actuators, sensors, finite ele-
ment method.

1. INTRODUCTION

This research presents a structural topology optimization method for the design
of mechanical resonators, and smart structures such as mechanical actuators
and sensors, that are composed of flexible structures and mechanical energy
conversion devices.

First, the concept of the topology optimization method [1] is briefly dis-
cussed. Next, we clarify the mechanical design specifications of mechanical
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resonators, actuators and sensors, and construct objective functions that aim to
satisfy design specifications.

Finally, several numerical examples are presented in order to confirm that
the method presented here can provide optimized structures applicable to the
design of mechanical resonators, mechanical actuators and sensors.

2. TOPOLOGY OPTIMIZATION

Consider the design problem of determining the boundary of the design do-
main �d by minimizing or maximizing objective functions. The key idea
of the topology optimization method is the introduction of a fixed, extended
design domain D that includes the original design domain �d , a priori, and
the utilization of the following characteristic function [1]:

χ�(x) =
{

1 if x ∈ �d

0 if x ∈ D�d,
(1)

where x denotes a position in the extended design domain D. Since this char-
acteristic function can be very discontinuous, i.e., resides in L∞(D), some
regularization or smoothing technique should be introduced for the numer-
ical treatment. A homogenization method is utilized to deal with this extreme
discontinuity of material distribution and to provide the material properties
viewed in a global sense as homogenized properties. This method, called the
Homogenization Design Method (HDM) [1, 2], has been applied to a vari-
ety of design problems, and the density approach [3], also called the SIMP
(Solid Isotropic Material with Penalization) method [4], is another currently
used method. The basic idea of SIMP is the use of a fictitious isotropic ma-
terial whose elasticity tensor is assumed to be a function of penalized material
density, expressed by an exponent parameter. In this research, both relaxation
methods are examined for three deign problems. That is, the HDM is employed
for the design of mechanical resonators, and the SIMP method is employed for
the design of mechanical actuators and sensors.

3. DESIGN SPECIFICATIONS AND OBJECTIVE
FUNCTIONS

In order to design mechanical resonators and smart structures, two types of
design specifications must be considered. One is a comprehensive motional
specification that determines the performance concerning the vibration char-
acteristics of mechanical resonators [5], the deformation characteristics of the
flexible structure of mechanical actuators [6, 7], and the sensing characteristics
of mechanical sensors [8]. The other is a structural specification that determ-
ines the structural stiffness of the target structure. Here, we discuss only the
motional specification and the corresponding objective function. The structural
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specification can be achieved by implementing an appropriate stiffness that is
formulated as the minimization of the mean compliance.

3.1 Mechanical Resonator

Consider that an elastic and vibrating structure occupying a design domain �d

is fixed at boundary �u. Body forces applied to this elastic body and damp-
ing effects are ignored for simplicity of the formulation. Here, we intend to
control the amplitudes of vibrations for all the excitation frequencies from 1
to ms . That is, we intend to maximize the amplitude of vibration of the j -th
excitation frequency (j = 1, . . . , ms) along the direction of a unit load vec-
tor tOutmax

j at boundary �Outmax
tj and minimize the amplitude of vibration of the

j -th excitation frequency (j = 1, . . . , ms) along the direction of a unit load
vector tOutmin

j at boundary �Outmin
tj simultaneously when a harmonic exciting

traction t In
j is applied at boundary �In

tj , in order to specify the desired vibration
mode where the j -th excitation frequency is assumed to be ωIn

j . Instead of dir-
ectly specifying the amplitude of vibration of the excitation eigen-frequencies
explained above, we control the structure’s resonance eigen-frequencies and
specified portions of eigen-modes, which yields sufficient deformation in the
desired direction.

Suppose that the j -th eigen-frequency and its corresponding eigen-mode
of the vibrating structure are ωj and φj , respectively. To satisfy the above
goals concerning the control of the amplitudes of the specified eigen-frequency
vibrations, first, one of the eigen-frequencies must match the excitation fre-
quency ωIn

j . Here, we intend to match the j -th eigen-frequency ωj with the
j -th excitation frequency ωIn

j (j = 1, . . . , ms). Furthermore, other eigen-
frequencies may also have to be specified to avoid changing the sequence in
which the eigen-frequencies and eigen-modes are dealt with during the optim-
ization process. In cases where such reordering must be avoided, an appropri-
ate number, m (m > ms), of eigen-frequencies, ωIn

ms+1, ωIn
ms+2, . . . , ωIn

m , must be
given fictitious and sufficiently large values. Therefore, the objective function
concerning the eigen-frequencies can be formulated as:

minimize
r

f V
j =

∣∣∣∣∣ωj(r)
2 − ωIn2

j

ωIn2
j

∣∣∣∣∣ =
∣∣∣∣∣λj (r)− λIn

j

λIn
j

∣∣∣∣∣ for j = 1, . . . , m, (2)

where r is a design variable, λj (r) is the j -th eigen-value, and λIn
j = ωIn2

j .
In order to satisfy the design requirements, the shape of the eigen-modes

must also be controlled. The important design specifications are to determine
the portions of the eigen-mode shape where the desired dynamic response is
maximized, and other portions where undesirable dynamic response is minim-
ized. Using this specification method, sufficient eigen-mode control can then
be achieved for the design of vibrating structures and mechanical resonators.

293



S. Nishiwaki et al.

Figure 1. Motional performance of mechanical actuator.

Thus, the following objective functions are formulated to satisfy the above spe-
cifications:

maximize
r

f M =
ms∑
j=1

{
w
m,In
j (t InT

j φj (r))
2 + w

M,Outmax
j (tOutmaxT

j φj (r))
2

− w
M,Outmin
j (tOutminT

j φj (r))
2}, (3)

where wM,In
j , w

M,Outmax
j , and w

M,Outmin
j are the weighting coefficients for the

maximization of the j -th eigen-mode in the direction of t In
j , the maximization

of the j -th eigen-mode in the direction of tOutmax
j , and the minimization of the

j -th eigen-mode in the direction of tOutmin
j , respectively.

3.2 Mechanical Actuator

Here, we consider a piezoelectric actuator composed of a flexible and elastic
structure �e and piezoceramic device �p as a mechanical actuator, and only
the flexible structure is a design domain, �d , as shown in Figure 1. Suppose
that the flexible structure is fixed at boundary �u, and the electric potential
is set to zero at �φ in the piezoceramic device. The piezoceramic device is
also subjected to a specified electric potential φ1 at boundary �1

φ , and the dis-
placement vector of the flexible structure due to this potential φ1 is u1. Now,
we intend to design a flexible structure that starts to deform in the direction
specified by the unit vector t2 at �2

t in order to function as an actuator when
electric potential φ1 is applied. A sufficient and specified deformation can be
obtained by maximizing the following linear form defined as the mean trans-
duction:

L〈t2,u1〉 =
∫
�
t2

t2 · u1d� (4)
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Figure 2. Motional performance of mechanical sensor.

3.3 Mechanical Sensor

Here, we consider a piezoresistive sensor composed of a flexible and elastic
structure �e and piezoresistive device �r , and only the flexible structure is also
a design domain, �d , as shown in Figure 2. Suppose that the flexible structure
is fixed at boundary �u and is subjected to surface traction t at boundary �t .
The change in resistivity of the piezoresistive device due to t is measured as
the change in electric potential �Vout using a Wheatstone bridge.

Now, we intend to design a flexible structure that maximizes electric poten-
tial �Vout when surface traction t at boundary �t is applied. In this problem,
�Vout is a performance measure, and sufficient performance is obtained by
maximizing �Vout. In order to calculate �Vout, the following equations must
be solved: ∫

�r

∇ϕ : k : ∇φd� =
∫
�r

J · nϕd� (5)

ρ = ρ0(Im +� : σ ) = ρ0(Im +� : Dr : ε(u)) (6)∫
�

ε(ν) : D : ε(u)d� =
∫
�t

t · νd�, (7)

where ∀ϕ and φ are the electric potentials, J is the current density, n is the nor-
mal vector defined at boundary �r , ρ is the resistivity tensor, k is the conduct-
ivity tensor such that k = ρ−1, Im is the identity matrix, � is the piezoresistive
coefficient tensor, and Dr is the elasticity tensor of the piezoresistive material.
∀ν and u are displacement vectors, ε(u) is the strain tensor due to the displace-
ment u, and D is the elasticity tensor of the flexible structure.
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(a) Eigen-mode specification

(b) Stiffness specification 1 (c) Stiffness specification 2

Figure 3. Design specifications of mechanical resonator.

4. NUMERICAL EXAMPLES

4.1 Mechanical Resonator

Figure 3 shows the design specifications of a mechanical resonator. As shown
in this figure, the second eigen-mode along the direction f Outmax

2 at point
POutmax

1 , along the direction f In
2,1 at point P In

2,1, and along the direction f In
2,2 at

point P In
2,2 is to be maximized, and the second eigen-mode along the direction

f Outmin
2 at point POutmax

2 is to be minimized, according to the eigen-mode spe-
cification shown in Figure 3(a), while the lowest and second eigen-frequencies
are required to conform to target values, 350 Hz and 500 Hz, respectively, ac-
cording to the eigen-frequency specification. Further, the static stiffness along
the direction of f In

2,1 at point P In
2,1 and along the direction of f In

2,2 at point P In
2,2

is to be maximized to resist the applied force as shown in Figure 3(b), and the
static stiffness along the direction of f Out

2 at point POut
2 is to be maximized

while point P In
2,1 is fixed along the direction of f In

2,1, and point P In
2,2 is fixed

along the direction of f In
2,2 to resist the reaction force imposed by a workpiece,

as shown in Figure 3(c). The total volume constraint �s is set to 20% of the
volume of the whole design domain. Figure 4(a) shows the optimal configur-
ation. Figure 4(b) shows the eigen-mode shape corresponding to the second
eigen-frequency. As shown in this figure, the optimal configuration satisfies
the eigen-mode specification.
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(a) Optimal configuration (b) Second eigen-mode shape

Figure 4. Optimal configuration and second eigen-mode of mechanical resonator.

(a) Design domain (b) Boundary conditions

Figure 5. Design specifications of mechanical actuator.

4.2 Mechanical Actuator

Figure 5 shows the design specifications of a mechanical actuator. As shown
in this figure, two rectangular shapes of PZT5A piezoceramic material are set
in a square domain. The dark regions including the two piezoceramic shapes
are set as non-design domains, with the remaining area set as a design domain
whose material is assumed to be aluminum. Here, two deformations are to be
maximized: the deformation at point PA in the direction of F 1

2 is to be maxim-
ized when the electric potential φ1

1 is applied to PZT(1), and the deformation at
point PA in the direction of F 2

2 is to be maximized when the electric potential
φ2

1 is applied to PZT(2), while the stiffness in the directions of -F 1
2 and -F 2

2 at
point PA are to be maximized. The total volume constraint �s is set to 25% of
the volume of the whole design domain. Figure 6 shows the optimal configur-
ation. As shown in this figure, a clear optimal configuration is obtained.

4.3 Mechanical Sensor

Figure 7 shows the design domain of a mechanical sensor. As shown in this fig-
ure, the electric potential �Vout of the piezoresistive device is to be maximized
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Figure 6. Optimal configuration of mechanical actuator.

Figure 7. Design domain of mechanical sensor.

when an external force F of 100 N is applied at point PF while the stiffness
in the direction F at point PF is to be maximized. The material of the design
domain is assumed to be aluminum. The material properties of the piezoresist-
ive device are shown in Table 1. The total volume constraint �s is set to 50%
of the volume of the whole design domain. Figure 8 shows the optimal con-
figuration. �Vout of the optimal configuration is obtained as 31.2 mV whereas
�Vout of the entire design domain of aluminum is 2.7 mV. Thus, the sensing
performance is improved 12-fold using the obtained optimal configuration.

Table 1. Material properties of piezoresistive device.

Component ρ0 (�·m) π11 (10−11 m2/N) π12 (10−11 m2/N) π14 (10−11 m2/N)
0.117 –102.2 53.4 –13.6

Component D11 (GPa) D12 (GPa) D14 (GPa)
165.7 63.9 79.6
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Figure 8. Optimal configuration of mechanical sensor.

5. CONCLUSION

This research presented a structural topology optimization method for the
design of mechanical resonators, and smart structures such as mechanical actu-
ators and sensors, that are composed of flexible structures and mechanical en-
ergy conversion devices. It was confirmed, using several numerical examples,
that the method presented here can provide optimized structures applicable to
the design of mechanical resonators, mechanical actuators and sensors.
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Abstract: We apply topology optimization in order to design an acoustic horn that radiates
sound as efficiently as possible. At the same time, we wish to monitor and con-
trol also the directivity properties of the horn. Topology optimization provides
a rational approach to difficult design problems, such as finding the complex
shape required for efficient transmission of sound at frequencies that are too low
to efficiently transmit in a short straight horn.

Keywords: Topology optimization, material distribution, Helmholtz equation, acoustic horn,
efficiency, radiation properties.

1. INTRODUCTION

The so-called material distribution method has demonstrated its effectiveness
for topology optimization of linearly elastic structures. In this method, a scalar
function 0 ≤ ρ ≤ 1, which can be interpreted as a local density, is used
to model presence or lack of material. The monograph by Bendsøe and Sig-
mund [2] contains a comprehensive discussion of the method and shows many
applications.

A recent trend is to attempt a similar strategy to applications in fluid mech-
anics and wave propagation. Our interest is to design an acoustic horn to trans-
mit sound waves as efficiently as possible. Previously, the second author and
coworkers applied boundary shape optimization to this design problem [1, 3].
Recently, we have finished a manuscript [7] applying instead topology optimiz-
ation using the material distribution method. Here, we summarize our findings
and present an extension in which we also consider the directional character-
istics of the horn in the far field.
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Figure 1a. The wave transducer to be op-
timized.

Figure 1b. Material is placed in the region
�m in order to improve the transducers radi-
ation properties.

1.1 Problem Description

We consider the planar symmetric wave transducer depicted in Figure 1a. The
waveguide has infinite extension to the left and its termination is denoted the
horn. The gray shaded region above and below the waveguide and the horn is
assumed to consist of sound-hard material.

The horn is fed by planar waves from the waveguide. When such a wave
reaches the horn parts of it will propagate into free air, while other parts get
reflected. For the horn to function as an effective loudspeaker this reflection
needs to be low. We are also interested in the behavior of the wave in the far-
field of the horn; in other words, how the wave evolves in different directions
far away from the horn.

To optimize the horn we allow an arbitrary distribution of material �m to be
placed symmetrically with respect to the axis of the horn (Figure 1b), within
the interior horn region �H.

1.2 Geometry Modeling

We use the finite element method to solve the wave propagation problem nu-
merically and thus need to truncate the domain and the waveguide. The com-
putational domain � is illustrated in Figure 2. The inflow boundary �in cor-
responds to the cross section g of the waveguide in Figure 1a and �sym is a
symmetry boundary. The radius of the computational domain is denoted R�.
The boundary of the ground structure (the portion of the wave guide plus horn
contained in Figure 2) is denoted �n.

1.3 The State Equation

Let �d to be the subset of � occupied by air, that is �d = �−�m, and let �ñ
be the boundary between the sound-hard material (ground structure plus �m)
and air. We consider time harmonic acoustic wave propagation governed by the
Helmholtz equation. Seeking a solution for the complex amplitude function p
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Figure 2. The computational domain.

and a single frequency ω and adding appropriate boundary conditions – for
details, see the discussion by Bängtsson et al. [1] – yields

c2�p + ω2p = 0 in �d ,
∂p

∂n
= 0 on �ñ ∪ �sym,(

iω + c

2R�

)
p + c

∂p

∂n
= 0 on �out, iωp + c

∂p

∂n
= 2iωA on �in,

(1)

where n is the outward directed normal of the boundary of �d , c is the speed
of sound and A is the amplitude of the incoming wave at �in.

The shape of �d can be described by a material indicator function α : R2 →
{0, 1} such that α is equal to the characteristic function of �d . Making use of
α, the state equation (1) can be written as a variational problem over �:

Find p ∈ H 1(�) such that

c2
∫
�

α∇q̄ · ∇p d�− ω2
∫
�

αq̄p d�

+iωc
∫
�in∪�out

q̄p d� + c2

2R�

∫
�out

q̄p d� = 2iωcA
∫
�in

q̄ d�, ∀q ∈ H 1(�).

In order to obtain a unique solution of this variational problem in �, we re-
define α such that α(x) ∈ {ε, 1} for all x ∈ �H, where ε is a small positive
number.

1.4 Optimization Problem

We are interested in the efficiency and the far-field behavior of the horn. In
order to study the efficiency, the mean complex amplitude 〈p〉in on �in,

〈p〉in = 1

|�in|
∫
�in

p d�,

is observed. The mean complex amplitude of the reflected wave at �in can then
be expressed as 〈p〉in − A.
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The behavior of the complex amplitude function far away from the horn can
be described in the following manner. For details in the three dimensional case,
see chapter 3 in [4] (current section contains a discussion about the modifica-
tions needed to treat the two dimensional case).

Let x̂ be a vector such that |̂x| = 1, that is x̂ = (cos θ, sin θ) and let ρ be a
scalar. Assuming that all sources are located in a bounded region and that ρ is
sufficiently large, the far-field behavior of the complex amplitude function is
given by

p(ρx̂) = e−iωρ

√
ρ

{
p∞(θ)+O

(
1

ρ

)}
.

We call the function p∞(θ) the far-field pattern.
Making use of the boundary conditions given in (1) and the fact that there

are no sources located outside � and its mirror image on the other side of �sym,
the far-field pattern is given by

p∞(θ) = 1 − i

4
√
πk

∫
�̂out

eikx̂·x
(

ikx̂ · x
R�

+ ik + 1

2R�

)
p(x) d�(x),

where �̂out is the closed path described by �out and its mirror image on the
other side of �sym, k = ω/c is the wavenumber and x̂ · x is the scalar product
of x̂ and x.

Remark 1. There is a sign difference depending on whether the ansatz P(x, t) =
"{p(x)eiωt} (our choice) or P(x, t) = "{p(x)e−iωt } (Colton and Kress) is
used. This choice affect the sign (±iω) in the boundary conditions at �in and
�out as well as the sign in the expression for the far-field pattern.

In order to use gradient based optimization we relax the variable α(x) to attain
values in the continuum [ε, 1] for x ∈ �H. In order to obtain a purely solid–
fluid final design we define a penalty function, Jp to promote α towards ε or 1
at all points in �H. The penalty function we use have the form

γ

∫
�

(α − ε)(1 − α) d�,

where γ is the penalty constant.
Unfortunately the use of the penalty appears to make the problem ill posed [7].

In order to regularize the problem we use a filtering technique. Hence we
define a new design variable α̃ and let α(x) for x in �H indirectly be defined
by

α(x) =
∫

R2
σ (x)max

(
0, 1 − |x − y|

τ

)
α̃(y) dy,

where τ is the filter radius and σ (x) is a normalization constant such that∫
R2
σ (x)max

(
0, 1 − |x − y|

τ

)
dy = 1.

304



Topology Optimization of Wave Transducers

Figure 3. To the left: a coarse version (hmax = 0.119) of the hybrid mesh used in our
numerical experiments. To the right: a closeup on the structured part.

We define the set of all admissible designs,

U =
⎧⎨⎩α̃ ∈ L∞(R2);

α̃ ≡ 0 in �M,
0 < ε̃ ≤ α̃ ≤ 1 a.e. in �H,

α̃ ≡ 1 otherwise

⎫⎬⎭ ,

and state the general form of our optimization problem as

min
α̃∈U

⎡⎣∑
wj

∣∣〈p(ωj )〉in − A
∣∣2 +

∑
wj ,θl

βj,k|p(ωj )∞ (θk)|2 + Jp

⎤⎦ ,

where the constants βj,k stipulate whether the optimization should minimize,
maximize or do nothing with the value of the far-field pattern for frequency ωj

at angle θk.

2. THE DISCRETE SETTING: SETUP AND
IMPLEMENTATION

We apply the finite element method to numerically solve the variational form
of the state equation. The computational domain � is triangulated using a
hybrid mesh. The structured part of the mesh contains the waveguide, the horn
and some of their surroundings (Figure 3). The triangles in the structured part
are right triangles with a ratio of 1:2 between the two catheti.

In our numerical experiments we use second order Lagrangian elements.
The function α is approximated with a function αh : � → [ε, 1], constant
on each element. The filtered version of α is approximated similarly. The
dimensions of the horn and data about the mesh used for the finite element
discretization of the problem can be found in Tables 1a and 1b respectively.

We use the software Femlab for the initial assembly of state matrices and the
construction of the unstructured part of the mesh. In each step of the optimiz-
ation algorithm the linear systems resulting from the discretization of the state
and adjoint equations are solved using the sparse direct solver UMFPACK [5].
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Table 1a. The dimensions of the
horn in the numerical experiments,
with the parameters defined in Figs. 1a
and 2.

a(m) b(m) l(m) d(m) R�(m)

0.05 0.3 0.5 0.5 1.2

Table 1b. Top row: data for the finite element
mesh used in the numerical experiments optimiz-
ing the horn, bottom row: (as a refererence) data
for the mesh in Figure 3. M is the total number
of elements, n is the degrees of freedom, N is the
number of design variables, hmax is the maximum
edge length and h�H is the edge length in the x1
direction in the structured part of the mesh.

M n N hmax h�H

28104 56907 8960 0.03423 0.00625

2142 4463 560 0.11942 0.025

The objective functions are discretized by replacing the variables with their
approximations. The necessary gradients are computed using the solution of
the associated adjoint equations. The material distribution is updated using the
method of moving asymptotes, MMA [6]. Afterwards the state matrices are
updated, due to the changes in material distribution.

When optimizing the efficiency of the transducer we use α ≡ 1 (all air) as a
starting guess of the material distribution and a continuation approach for the
penalization. That is, the optimization problem is first solved with γ = 0, then
γ is increased and a new round of optimization is performed. The process is
then repeated.

When optimizing both the efficiency and some far-field properties of the
transducer we use the shape optimized only with respect to efficiency as start
guess for the material distribution and a reduced continuation approach for
the penalization. That is, we use the continuation approach but starting with a
positive value of γ instead of 0.

3. RESULTS

For all numerical results below, we have used ε̃ = 10−6 and filter radius τ =
0.0125 whenever filtering is being used.

The reflection coefficient R is the quotient between the amplitude of the re-
flected wave and the incoming wave at �in, that is R = (〈p〉in − A)/A. The
reflection spectrum is the absolute value of the reflection coefficient as a func-
tion of frequency. The shapes of the optimized horns are presented together
with their reflection spectra, and the far-field behavior of the horns will be
illustrated, for some frequencies, by polar plots of |p∞(θ)|2 as a function of θ .

Here we apply the same type of postprocessing as in our manuscript [7], that
is when the optimization (using filtering) has converged at the highest penalty
level the filter is removed and the optimization process is continues using a
high penalty. For more results on accuracy, mesh dependency for the case
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Figure 4. From the left: the initial horn, its spectrum and its far-field behavior for the fre-
quencies 400 Hz (solid line), 800 Hz (dotted line) and 1600 Hz (dashed line).
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Figure 5. Left: horn optimized for a single frequency of 400 Hz, middle: its spectrum and
right: its far-field behavior for the frequency 400 Hz (solid line) together with the far-field
behavior for the initial horn at 400 Hz (dotted line).

when the horn is optimized with respect to efficiency we refer to our studies
presented in [7].

3.1 Optimizing for Efficiency

First, we compute the reflection spectrum and the far-field behavior for the ini-
tial horn. The results presented in Figure 4 shows that the simple funnel-shaped
horn is a fairly inefficient transmitter, particularly for the lower frequencies.
The horn also exhibits a marked beaming effect. That is, the wave propagation
becomes more concentrated right in front of the horn for higher frequencies.

At a single frequency the horn can be optimized to almost perfect transmis-
sion. There is no uniqueness in such designs; there are many different shapes
that may provide good transmission. The horns computed by our topology op-
timization tends to have piles of material at different locations, depending on
the frequency of optimization, along the walls of the funnel. These shapes dif-
fer substantially from the ones obtained by boundary shape optimization [1]. A
horn optimized using topology optimization for a single frequency of 400 Hz
is shown in Figure 5.
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Figure 6. Left: horn optimized for the frequencies 400 Hz, 410 Hz, . . . , 500 Hz, middle: its
spectrum and right: its far-field behavior for the frequency 400 Hz (solid line) together with the
far-field behavior for the initial horn at 400 Hz (dotted line).
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Figure 7. Left: horn optimized for the frequencies 150 Hz, 160 Hz, . . . , 300 Hz, middle: its
spectrum and right: its far-field behavior for the frequency 200 Hz (solid line) together with the
far-field behavior for the initial horn at 200 Hz (dotted line).

The horn shapes become more complicated when a larger frequency range is
considered in the optimization. A horn optimized using topology optimization
for eleven frequencies in the range 400–500 Hz is shown in Figure 6. This
horn has almost perfect transmission properties throughout the frequency range
considered in the optimization. The horns in Figs. 5 and 6 transmit almost
perfectly at 400 Hz and illustrate the fact that many different horn shapes show
almost perfect transmission at a single frequency.

From the far-field behaviors at 400 Hz presented in Figures 5 and 6 the fol-
lowing observation can be made. In comparison with the initial horn the horn
optimized for a single frequency tends to concentrate the wave propagation
around the symmetry axis while the horn optimized for the multi frequency
case tends to spread the sound. Hence for the frequency 400 Hz both horns are
much more efficient than the initial horn, but there is a significant difference in
what influence these horns have on the behavior of the wave in the far field.

Horns tuned for low frequencies tend to be large and bulky since it is dif-
ficult to obtain good performance from a straight horn shorter that half the
wavelength. Performing topology optimization for a frequency range of 150–
300 Hz results in the horn presented in Figure 7. In this case the horn is shorter
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Figure 8. Optimization with
respect to efficiency and far-
far field behavior for a single
frequency of 1200 Hz. Top
row left: horn optimized only
with respect to efficiency. Top
row right: horn optimized only
with respect to both efficiency
and far-field behavior. Bottom
row: reflection spectra and far-
field behavior for the initial horn
(dashed line), the horn optim-
ized with respect to efficiency
(dotted line) and the horn op-
timized with respect to both ef-
ficiency and far-field behavior
(solid line).

that a quarter of the wavelength for the lowest frequency in the optimization.
The material distribution serves as an effective elongation of the horn.

A comparison of the far-field patterns at 200 Hz between the initial horn
and the horn optimized for frequencies in the range 150–300 Hz shows that the
optimized horn has gained far-field intensity in all directions.

3.2 Optimizing for Efficiency and Directivity

As a second experiment, we optimize at a single frequency of 1200 Hz trying
the maximize the efficiency of the horn, and at the same time minimize the
far-field intensity right in front of the horn. In a sense the two objectives work
in different directions. Since, the absolute value of the far-field pattern is zero
when the incoming wave is totally reflected back into the waveguide.

The first step in this optimization is to optimize the horn only with respect to
efficiency. The shape of the horn optimized for efficiency at a single frequency
of 1200 Hz is shown at the top left side of Figure 8. Compared to the 400 Hz
horn shown in Figure 5 we note that the piles of material at the funnel sides
has moved closer to the throat of the horn and decreased in size.

The second step is to include the far-field behavior in the optimization prob-
lem and use the horn optimized only with respect to efficiency as a starting
guess. The resulting horn is shown at the top right side of Figure 8. The shape
of this horn is much more complex than the shape of the horn optimized only
with respect to efficiency. However near the throat of the horn the two horns
are similar in shape.

The horn optimized only with respect to efficiency is also efficient in a re-
gion around 1200 Hz. The horn optimized both with respect to transmission
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efficiency and minimizing the far-field wave propagation right in front of the
horn has only good transmission properties at the frequency subject to optim-
ization.

Finally there is a vast difference in the far-field behavior at 1200 Hz for the
two optimized horns indicating that it could be worthwhile to take the far-field
behavior into account when performing optimization for acoustical devices.

4. CONCLUSIONS AND OUTLOOK

The dimensions of the horns considered here are in the order of the wavelength.
Design problems in that parameter regime are difficult to solve by intuitive
physical reasoning, since physical intuition typically relies on asymptotic the-
ory that does not apply, such as long wavelength transmission line or short
wavelength ray theory. We believe that there are many such design problem
in acoustics and electromagnetics that would benefit from the use of numer-
ical design optimization. Topology optimization is an attractive alternative to
boundary-shape optimization particularly for cases like the one illustrated in
Figure 7, when the device is too small for a simple shape modification to yield
sufficient performance improvement.

We intend to extend the present study to three space dimensions and also to
explore further the combined optimization of efficiency and directivity.
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Abstract: The problem of coupling electromagnetic or acoustic waves into a dielectric
waveguide with minimal energy loss is formulated as a structural (topology) op-
timization problem. Optimal solutions are shown to attain at least one material
constraint, almost everywhere in the design domain. A numerical optimization
procedure using a level set method is proposed, and results from numerical ex-
periments are described.

Keywords: Waveguide coupler, mode matching, optimal design.

1. INTRODUCTION

Dielectric channel and strip waveguides are simple devices for localizing and
moving optical signals in integrated photonic structures. These waveguides are
low-loss and relatively easy to fabricate. A fundamental engineering problem
arising with these structures is how to efficiently couple energy into and out
of the waveguide, particularly when the cross section of the waveguide is on
the order of the wavelength of the incoming signal. This can be viewed as a
classical problem of “mode-matching” which has been widely studied since
early investigations in acoustics, and also in antenna design. Recent applica-
tions of optimization for photonic waveguides can be found in [2, 11]. Shape
and topology optimization for waveguides has been studied in [1, 6].

We describe an approach for designing efficient waveguide couplers using
the general techniques of topology optimization. The approach assumes very
little about the general form that a solution should take, however we argue
that optimal solutions generally attain at least one material constraint, almost
everywhere in the design domain. Additional constraints can be added to the
problem to enforce fabrication or performance requirements. Similar methods

∗Research partially supported by NSF grant number DMS–0537015.
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have been developed for other topology optimization problems in photonics
and phononics, see for example [3, 4, 12].

2. MODEL PROBLEM

Consider time-harmonic electromagnetic wave propagation in two spatial di-
mensions, modeled by the Helmholtz equation

#u+ ω2εu = 0, in R
2, (1)

where ω represents the frequency, and ε ∈ L∞(R2), ε(x) ≥ 1 > 0 is the
dielectric coefficient, and x = (x1, x2) ∈ R

2. This is the underlying model for
all wave propagation considered here.

A simple waveguide structure can be defined by

ε(x) =
{
ε0, |x1| ≤ h

2 ,

1, otherwise,
(2)

where ε0 > 1, and h > 0.
We are interested in coupling waves exterior to such a waveguide to particu-

lar solutions known as “guided modes” within the waveguide. Next we briefly
describe the guided modes. A much more detailed discussion of waveguide
modes can be found in [7].

Solutions to (1), (2) which decay exponentially as |x1| → ∞ can be sought
in the form

u0(x) =
⎧⎨⎩ ce−i(α0x1+βx2), x1 < −h/2,

ae−i(α1x1+βx2) + bei(α1x1−βx2), |x1| ≤ h/2,
dei(α0x1−βx2), x1 > h/2.

(3)

Here, β is a real propagation constant, chosen such that ω2 < β2 < ε0ω
2,

and a, b, c, d are unknown constants. We define α0 = √
ω2 − β2, α1 =√

ε0ω2 − β2. Note that α0 is purely imaginary, and α1 is real and positive. By
choosing the channel width h appropriately, modes which propagate along the
−x2 direction are supported. With β (and hence α0 and α1) fixed, allowable
values of h are

h = 1

α1
(πn− arg((α1 − α0)

2)), (4)

where n ≥ 0 is any integer which makes h > 0. Conversely, if h is specified
large enough, there exist finitely many propagating modes (each corresponding
to a different value of β), with the number of modes growing with h. Figure 1
illustrates typical dependence of h versus β.

For each pair h, β which satisfy (4), there exists a one-dimensional linear
subspace of solutions proportional to

a = b = 1, c = d = 2e−iα0h/2 cos(α1h/2).
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Figure 1. Typical channel width h versus propagation constant β.

From now on, u0 will denote the solution (3) where a, b, c, d are defined above.
The parameters h, β are assumed to be fixed.

Above the waveguide (for large x2), consider an incoming wave propagating
through an empty half-space. In particular, choosing some positive constant b
and another slightly smaller constant b′ such that 0 < b′ < b, assume that the
dielectric coefficient ε(x) satisfies ε(x1, x2) = ε1 for x1 ≥ b′, where ε1 ≥ 1 is
constant. The line �b = {(x1, x2) : x2 = b} will denote the boundary between
the homogeneous region above and the inhomogeneous region below.

In the homogeneous region x2 > b, separate the solution u to (1) into an
incident and scattered field: u = ui +us . Taking the Fourier transform of us in
the x1 variable, and insisting that the scattered field is outgoing, one can derive
from (1) that

∂us

∂x2
(x1, b) =

∫
R

iγ (ξ)ûs(ξ, b)e
iξx1 dξ ≡ (T (us |�b))(x1),

where γ (ξ) = √
ω2ε1 − ξ 2, and ûs(·, b) is the Fourier transform of us(x1, b).

The linear map T (Dirichlet-to-Neumann operator) then defines the relation-
ship between the traces us |�b and ∂2us|�b : T (us |�b) = (∂2us)|�b . On the bound-
ary �b, the solution u = ui + us should then satisfy ∂2u− T u = ∂2ui − T ui .
Thus given the incident wave ui , one can calculate q = ∂2ui − T ui on �b, and
enforce the boundary condition ∂2u− T u = q on �b.
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Figure 2. Problem geometry.

2.1 Ideal Waveguide Coupler

An ideal waveguide coupler (for our purposes) would consist of a material
structure ε(x) in the slab� = {x ∈ R

2 : 0 < x2 < b} such that a given incident
wave ui coming in from x2 > b couples perfectly to particular waveguide
channel mode u0 situated in the half-space x2 < 0 (see Figure 2). Perfect
coupling means that all of the energy flux from ui across the upper boundary
�b is transferred into the chosen waveguide mode.

For a given incident wave ui , one can easily find a real constant t such that
the energy flux of the channel mode tu0 across �0 matches that of ui ,

t =
∫
�b
εRe{ui(∂2ui)}∫

�0
εRe{u0(∂2u0)}

.

Since the phase of the waveguide mode does not affect its energy flux, we may
write the desired waveguide mode as teiθu0, where θ is an arbitrary real phase.

In the hypothetical situation where an ideal coupling structure ε(x) exists,
the following overdetermined Cauchy problem must be satisfied:

#u+ ω2εu = 0, in �,(
∂

∂x2
− T

)
u = q, on �b,

∂u

∂x2
= eiθf, on �0,

u = eiθg, on �0, (5)
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where f = t ∂u0
∂x2

∣∣
�0

and g = tu0|�0 . Even with the flexibility to choose an
arbitrary function ε(x) in � and phase θ ∈ R, there is no reason to expect that
a solution to this problem exists. Our goal will be to find a structure ε(x) such
that this problem is approximately satisfied, in the sense described below.

3. OPTIMIZATION PROBLEM

Physically realizable structures must be of finite extent. We therefore define an
admissible design set consisting of mixtures of two materials

A = {ρ ∈ L∞(�′) : ω2 ≤ Re{ρ(x)} ≤ ω2ε1, 0 ≤ Im{ρ(x)} ≤ δ1, a.e.},
where �′ is a bounded open set whose closure is contained in �. For each
ρ ∈ A, define the extension to �

ρ̃(x) = iδ +
{
ρ(x), x ∈ �′,
ω2ε1, otherwise.

The small absorption term δ > 0 is included to facilitate estimates on the solu-
tion. In the numerical experiments (which take place on bounded domains),
we set δ = 0.

Define F(ρ, θ) = u|�0 , where u is the weak solution to the problem

#u+ ρ̃u = 0, in �, (6)(
∂

∂x2
− T

)
u = q, on �b, (7)

∂u

∂x2
= eiθf, on �0. (8)

Lemma 1 For each ρ ∈ A, problem (6)–(8) admits a unique weak solution
u ∈ H 2(�). Furthermore, there exists a constant C depending on δ > 0, such
that ‖u‖H 2(�) ≤ C, independent of ρ ∈ A.

The proof is an application of the Lax–Milgram theorem, and closely follows
the similar result in [5].

Reformulate the overdetermined Cauchy problem as a minimization

inf
ρ∈A,
θ∈R

J (ρ, θ) = 1

2
‖F(ρ, θ)− eiθg‖2

2. (9)

Finding ρ, θ for which J (ρ, θ) = 0 would enforce condition (5), and con-
sequently yield a solution to the overdetermined Cauchy problem (attaining
ideal mode coupling). Again, we make no claim that such an ideal solution
exists, however, the following proposition holds:
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Proposition 1 Problem (9) has a solution (ρ0, θ0) ∈ A× R.

The proof is a simple application of the Direct Method of the calculus of vari-
ations, using Lemma 1 to obtain a weakly convergent subsequence of solutions.
Details for a similar problem can be found in [5].

In the following sections, solutions to (9) are characterized and numerically
approximated. Numerical results indicate that one can in practice come quite
close to achieving ideal coupling.

4. CHARACTERIZATION OF MINIMIZERS

Let ρ ∈ A and δρ ∈ L∞(�′) be given such that ρ + δρ ∈ A. The directional
derivative of J (ρ, θ) in direction δρ is formally

DJ(ρ, θ)(δρ) = Re〈DF(ρ, θ)(δρ), F (ρ, θ)− eiθg〉L2(�0)

= Re〈δρ,DF ∗(ρ, θ)(F (ρ, θ)− eiθg)〉L2(�′).

One can calculate directly that

〈DF(ρ, θ)(δρ), F (ρ, θ)− eiθg〉L2(�0)
=

∫
�′
δρ uw̄,

where w is the solution to the adjoint problem

#w + ρ̃w = 0, in �,(
∂

∂x2
− T ∗

)
w = 0, on �b,

∂w

∂x2
= F(ρ, θ)− eiθg, on �0,

and T ∗ is the L2(�b) adjoint of T . Identifying separate gradients for the real
and imaginary parts of ρ = ρr + iρi , we find ∇ρr J (ρ, θ) = Re{uw̄|�′ },
∇ρi J (ρ, θ) = −Im{uw̄|�′ }, so that

DJ(ρ, θ)(δρ) = 〈Re{δρ},∇ρrJ (ρ, θ)〉 + 〈Im{δρ},∇ρiJ (ρ, θ)〉.
The formal derivative of J (ρ, θ) with respect to θ is also easily calculated,
∂θJ (ρ, θ) = Re〈∂θF (ρ, θ)− ieiθ g, F (ρ, θ)−eiθg〉L2(�0)

, where ∂θF (ρ, θ) =
v|�0 and v solves a perturbed problem.

Because of the constraint ρ ∈ A, necessary conditions include a Lagrange
multiplier rule. Consequently, if (ρ0, θ0) is a minimizer, it must hold that
∇ρr J (ρ0, θ) = ∇ρi J (ρ0, θ) = 0 on the set

V = {x ∈ �′ : ω2 < Re{ρ0(x)} < ω2ε1, 0 < Im{ρ0(x)} < δ1}
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upon which the constraints are not active. Suppose that V contains an open
set U . The real and imaginary gradient fields are both zero on U . In other
words, the product uw̄ = 0 on U , where u and w are solutions of the direct
and adjoint scattering problems, respectively. Since both fields are in H 2(�)

and hence continuous, one of the two fields must also be zero on some open set
contained in U . By the unique continuation property of solutions (see e.g. [8]),
the field must then be zero everywhere. By uniqueness of solutions, this can
only occur when the boundary data is zero, which is only possible for w, and
only then when the residual F(ρ0, θ0) − eiθg = 0. The following proposition
must then hold:

Proposition 2 If (ρ0, θ0) is a solution of the minimization problem (9) for
which J (ρ0, θ0) > 0, then ρ0(x) attains at least one of the bound constraints
in the admissible class A, for almost every x ∈ �′.

A slightly closer look at regularity estimates shows that u and w are C1 func-
tions. It then follows from the necessary conditions that boundaries separating
regions in which the material constraints are active are C1.

5. OPTIMIZATION METHOD

The derivative calculations in the previous section lead directly to the follow-
ing projected gradient descent method. For simplicity, it is assumed henceforth
that the upper bound δ1 on the imaginary part of ρ is zero. Note that Proposi-
tion 2 above does not then guarantee that the constraints on Re{ρ} are attained,
since the constraints on Im{ρ} are automatically active everywhere.

For the initial step k = 0, choose an initial structure ρ0, phase angle θ0, and
step parameters sρ, sθ > 0.

Algorithm 1.
while (necessary conditions are not satisfied),
G := ∇ρr J (ρk, θk);
p := ∂θJ (ρk, θk);
if J (P (ρk − sρG), θk − sθp) < J (ρk, θk) then

ρk+1 = P(ρk − sρG);
θk+1 = θk − sθp;
k := k + 1;

else
(sρ, sθ ) := 1

2(sρ, sθ );
end if

end while

The map P : L∞(�′) → A is simply pointwise projection onto A.
For optical applications, designs which utilize only two materials are highly

preferable to those using intermediate indexes. It makes sense to use an al-
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gorithm which enforces this condition. The level-set method [9] is readily
adapted and combined with Algorithm 1 for this situation. We follow the ap-
proach in [10].

The idea is to represent ρ(x) through an auxiliary level set function φ(x)

through the formula

ρ(x) =
{
ω2, φ(x) < 0,
ω2ε1, φ(x) > 0.

(10)

The zero set of φ encodes the boundary between one material and the other.
For our purposes, the primary advantages of this approach are that changes in
the topology of the design are handled effortlessly, and that all computations
can be done on a fixed grid. The only modification necessary to Algorithm 1
is that the level set function φ must be updated in the gradient step, rather
than modifying ρ directly. One can calculate in a straightforward way that an
appropriate update is

φk+1 = φk − sφG.

All references to ρ are made through its definition (10) with respect to φ, and
the projection operator P is no longer necessary.

6. NUMERICAL EXPERIMENTS

The algorithm was implemented by discretizing problem (6)–(8), along with
the adjoint problem, with piecewise bilinear finite elements on a fixed, uniform
rectangular grid. To truncate the x1-direction, periodic boundary conditions
were enforced, usually with an absorptive layer near the computational bound-
aries. The nonlocal boundary condition (7) results in a full subblock in the
finite element matrix, however the number of nonzero elements is still on the
order of the number of grid points, for relatively square domains. The matrix
is complex symmetric, but non-Hermitian, resulting in poor performance from
standard iterative matrix solvers. Also, acceptable performance of the gradient
descent algorithm often requires extremely accurate solutions and gradients.
For these reasons, solution of the finite element problem is accomplished with
a direct sparse solver.

Figures 3–5 illustrate the results of some preliminary numerical experi-
ments. The examples in Figures 3 and 4 use ε0 = ε1 = 4, while that in Figure 5
uses ε0 = ε1 = 6. In this last example, additional constraints were added to
enforce the connectedness of the high-index region. The resulting structure has
similar characteristics to those produced in [2]. Note that when coupling into
symmetrical modes, symmetrical structures are generated. Coupling efficiency
(the proportion of incident energy coupled into the waveguide) in some of our
experiments exceeded 99%, far in excess of the performance typically obtained
with conventional structures.
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initial initial re(u) optimized real(u)

Figure 3. Coupling from air into a symmetrical waveguide mode. Initial guess and real part
of initial field is on the left, optimized solution and real part of resulting field is on the right.

initial initial re(u) optimized real(u)

Figure 4. Coupling from a high-index medium into an antisymmetric waveguide mode.

initial initial re(u) optimized real(u)

Figure 5. Coupling from a high-index medium into a symmetrical waveguide mode, with
interface constraints on the design.

The numerical optimizations require three pde solves for each gradient des-
cent step. Convergence is generally very slow (typically requiring thousands
of steps), meaning the method is computationally intensive. Essentially no at-
tempt was made to improve the efficiency of the optimization, for example by
implementing a step length control strategy. A more sophisticated optimization
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algorithm could alleviate the situation considerably. The point here is merely
to indicate that the general design approach is plausible.

The approximate “optimal” designs generated here lack some desirable fea-
tures. First, the designs tend to be very sensitive to perturbations. Nothing in
the objective functional enforces robustness, and it turns out that small changes
in the solutions can have a drastic effect on the coupling efficiency. Second, the
designs can be quite complicated. Simpler designs may exist which perform
equally well (and are perhaps more robust). Either or both of these drawbacks
might be addressed with modifications to the objective, or through better op-
timization strategies.
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Abstract: In traditional structural topology optimization (TO), the material properties of
continuum finite elements of fixed form and coupling are varied to find the op-
timal topology that satisfies the design problem. We develop an alternative, fun-
damental formulation where the design space search is dependent on the coup-
ling, and the goal of the topology optimization by penalty (TOP) method is to de-
termine the optimal finite element coupling constraints. By this approach, seem-
ingly disparate topology design problems, e.g. the design of structural supports,
topology optimization for fluid mechanics problems, and topology optimization
by the element connectivity parameterization (ECP) method, can be understood
as related formulations under a common topology optimization umbrella, and
more importantly, this general framework can be applied to new design prob-
lems. For example, in modern multibody dynamics synthesis, the geometric
form of finite elements of fixed material properties and interconnectivity are
varied to find the optimal topology that satisfies the mechanism design prob-
lem. The a priori selection of coupling, e.g. by revolute or translational joints,
severely limits the design space search. The TOP method addresses this limita-
tion in a novel way. We develop the methodology and apply the TOP method to
the diverse design problems discussed above.

Keywords: Topology optimization, penalty methods, structures, fluids and mechanisms.

1. INTRODUCTION

The goal of topology optimization [1] is to determine the optimal material dis-
tribution that satisfies a design objective and design constraints. In a discrete
or continuum setting, the physical design domain is discretized by finite ele-
ments. Each finite element is distinguished by its material properties, its shape
or form, and its coupling with other finite elements. The mixture of these finite
elements defines the overall topology. In traditional structural topology optim-
ization, the material properties of a collection of finite elements of fixed form,
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e.g. a 4-node quadrilateral element or 2-node truss element, and interconnectiv-
ity are varied to find the optimal topology that satisfies the design problem. In
traditional rigid or flexible multibody dynamics synthesis, the shape of a col-
lection of finite elements of fixed material properties and interconnectivity are
varied to find the optimal topology that satisfies the design problem. We note
that the a priori selection of coupling, e.g. by revolute or translational joints in
mechanism design, can severely limit the design space search, and this issue is
the motivation for the method developed here.

We develop an alternative topology optimization formulation where the
design space search is dependent on the coupling. The main idea behind the
topology optimization by penalty (TOP) method is that design-dependent kin-
ematic constraint equations can be appended to the conventional finite element
methodology by a penalty method. The degree of enforcement of the con-
straint equations is then dependent on the design variables associated with the
kinematic constraints. We demonstrate that the idea of design-dependent con-
straint equations can be applied to a wide range of different problems.

In Section 2, we briefly describe the Lagrange multiplier and penalty meth-
ods, and the TOP method is defined in Section 3. In the presentation, the ap-
proach is applied to support design, fluid mechanics, convection-dominated
(top and side surface) heat transfer, structural mechanics, and mechanism
design problems to demonstrate its wide application. Of particular note, the
grail of mechanism design is the ability to systematically synthesize the coup-
ling topology, and for the first time in the literature, this issue can be addressed
by the TOP method because the method utilizes design-dependent constraint
equations with a continuously variable degree of enforcement and admits re-
dundant constraints. However, due to space constraints here, we illustrate the
basic concept by only presenting the material and support design problem in
Section 4. More detailed information about the other design problems are
provided in references [2] and [3].

2. LAGRANGE MULTIPLIER AND PENALTY
METHODS

Lagrange multiplier and penalty methods, e.g. see [4], can be used to enforce
constraints on the finite element equations that we derive from variational for-
mulations. Without loss of generality, we briefly describe both approaches for
a steady-state, discrete, linear structural system with (potential energy) func-
tional �∗ expressed by

�∗ = −1

2
UT KU + UT F. (1)

The displacement response U of the structural system with (symmetric) stiff-
ness matrix K subjected to external load F is found for conditions which make
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the variation of �∗ stationary, i.e.

δ�∗ = δUT (−KU + F) = 0 (2)

with respect to all admissible virtual displacements δU. Since δU are arbitrary,
Equation (2) yields residual

R∗(U) = −KU + F = S(U)+ F = 0, (3)

where we define the internal force S(U) = −KU for the linear problem, and
we recover the familiar linear finite element equations

KU = F. (4)

Now, assume that the unconstrained variational formulation is subject to a
set of discrete, linear constraint equations of the form

�(U) = CU − D = 0, (5)

e.g. the x-displacement Ux
i of node i is constrained to fixed value Û x by Ux

i −
Û x = 0. By the Lagrange multiplier method, we modify the unconstrained
functional �∗ by

� = �∗ − λT �(U), (6)

where λ are the Lagrange multipliers and invoke the stationarity of the con-
strained functional �, i.e.

δ� = δ�∗ − δUT (CTλ)− δλT (CU − D) = 0, (7)

which yields, for arbitrary δU and δλ, the familiar equation[
K CT

C 0

]{
U
λ

}
=

{
F
D

}
. (8)

By the penalty method, we modify the unconstrained functional �∗ by

� = �∗ − α

2
�(U)T�(U) (9)

with penalty parameter α and again invoke the stationarity of the constrained
functional � (and drop the U dependencies), i.e.

δ� = δ�∗ + δUT (−α�T
U �), (10)

where Jacobian �U ≡ ∂�
∂U . Assuming the linear FEA of Equation (3) and linear

constraints of Equation (5), the modified residual R is

R(U) = R∗(U)− α CT (CU − D) = 0

= −KU + F − α CT (CU − D) = 0 (11)

which leads to the modified linear finite element equations
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(K + α CT C)U = F + αCT D. (12)

An advantage of the Lagrange multiplier method is that the constraints are
satisfied exactly, but this is accomplished at the expense of a larger set of equa-
tions. On the other hand, an advantage of the penalty method is that the size of
the set of equations is preserved, but the enforcement of the constraints relies
on the proper penalty parameter α selection that is large enough to fully enforce
the constraints but not too large to cause numerical difficulties. The augmented
Lagrangian penalty method can iteratively correct for the constraint violation
and, therefore, is less dependent on the α selection. For analysis, each ap-
proach has trade-offs that should be weighed for an effective incorporation of
constraints. However, in the context of topology optimization, the variable
degree of enforcement of the constraints is a feature of the penalty method
that we can exploit. When α = 0 in Equation (9), the constraints are not en-
forced, but when α is sufficiently large, the constraints are fully enforced, and
intermediate α values impose a continuously varying degree of constraint en-
forcement. This concept is the essence of the topology optimization by penalty
(TOP) method approach.

Although we imposed linear constraints on discrete variables U above, the
penalty method can be generalized to constraints on continuous variables u,
e.g. through

� = �∗ − α

2

∫
�

�(u)T�(u) dv, (13)

to constraints that impose continuity requirements, and to constraints that en-
force specific values, e.g. recall Ux

i − Û x = 0, or that impose conditions
between solution variables. Furthermore, constraints can be applied to more
diverse and complex quantities than the primal discrete and continuous state
variables, e.g. by φ = (u, f, f(u), p, p(u), σ (u), w(u)) where the struc-
tural constraints may depend on the continuous displacement states u, dead
and live loads f and f(u), pressure loads p and p(u), stress measures σ (u), or
work/energy measures w(u).

A particular case that we encounter is a nonlinear (structural) finite element
analysis (FEA) constrained by nonlinear constraints. We generalize the penalty
method to enforce nonlinear, discrete constraint equations of the form

�(U) = 0, (14)

and with nonlinear internal force S, the nonlinear residual that arises due to the
penalty method is

R(U) = S(U)+ F − α�T
U � = 0. (15)

By the Newton Raphson method, we solve Equation (15) for U by iteratively
computing Ui+1 = Ui +�U at iteration i + 1 with update
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−∂R
∂U

�U = R (16)

until convergence. For nonlinear analysis and nonlinear constraints, Equation
(16) reduces to (

KT + α (�T
U �̄)U + α �̄

T

U�U

)
�U = R (17)

where KT ≡ − ∂S
∂U and (·̄) indicates a function of fixed U. The constrained ana-

lysis by penalty method can now be embedded into the topology optimization
problem.

3. TOPOLOGY OPTIMIZATION BY PENALTY
METHOD

The optimization problem is stated as

minimize !0(d)

subject to !i(d) ≤ 0 (18)

dj ≤ dj ≤ dj

where !0 is the objective function, !i for i = 1, noc are the noc inequality
optimization constraints and dj for j = 1, nd are the nd design variables that
are bounded below and above by dj and dj . Here, the large design space is
searched by the Method of Moving Asymptotes (MMA) [5], and the analytical
sensitivities, i.e. d!0

dd (d) and d!i

dd (d), are efficiently calculated by the adjoint
variable method. For topology optimization, we define density, or indicator,
design variables bounded by 0 ≤ d ≤ d ≤ d = 1.

In traditional topology optimization, a density design variable di is assigned
to every element i that ranges between its small lower bound di ≈ 0, e.g.
di = 10−6, and upper bound di = 1. Following [6], a first density measure
η1i is computed for every finite element i and is defined as a function of the
density design variable field d, i.e. η1i = η̂1i(d). In a manner consistent with
the density design variable range, the density measure η1 ranges from a small
value to one representing void and solid material respectively, and therefore the
variation in the first density measure field η1 = {η11, ... , η1i , ... , η1ne}T for ne
elements depicts the topology of the structure. The notion of topology is intro-
duced into the analysis by weighting the material properties of the construction
material by the first density measure field in some manner, e.g.

Ki(d) = η̂1i (d) K̂i (19)

where K̂i is the stiffness matrix of solid construction material of element i, and
stiffness matrix Ki is used in the computations. To generalize, we can refer to
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stiffness in a general sense independent of any particular discipline, i.e. not
limited to structural stiffness, as a representation of the behavior of the con-
stituent material, e.g. elastic material properties, viscous fluid properties, heat
conductivity properties, or electric conductivity properties, etc. Similarly, we
refer to the displacement response which can be more generally described as
the state response consistent with the particular discipline. Usually interme-
diate density design variables are penalized, e.g. by SIMP or SINH methods,
and the effective volume vm of material is constrained by it upper bound v̄m
through

!1(d) = vm(d)− v̄m, (20)

where the effective volume vm is computed by

vm(d) =
ne∑
i=1

∫
�

η̂2i (d) dv, (21)

the second density measure η2i for every element i is defined as a function of
the density design variables d, i.e. η2 = η̂2(d), and the upper bound v̄m is
defined as fraction 0 < γm < 1 of the maximal volume, i.e. v̄m = γm

∫
�
dv.

A common objective function for structural topology optimization is minimal
compliance, i.e. minimize !0(d) = U(d)T F, and a typical objective for com-
pliant mechanism design is to extremize an output displacement component,
e.g. minimize !0(d) = Ux

i .
In the TOP method, we associate an indicator, or for convenience to be

analogous with common topology optimization terminology, density design
variable di with every constraint set i, i.e. �i . In turn, each constraint
set is assembled into a global vector � of constraint sets, i.e. � ={
�T

1 , . . . ,�
T
i , . . . ,�

T
nkc

}T
, for nkc kinematic constraint sets of any form, e.g.

simple or complex, linear or nonlinear, discrete or continuous, and of specified
value or between variables. In a manner consistent with the density design
variable range, a third density measure η3i is computed for every constraint
set i and is defined as a function of the density design variable field d, i.e.
η3i = η̂3i (d). When η3i = η

3i
, the third density measure indicates the (rel-

ative) absence of influence of its corresponding constraint set �i . Likewise,
η3i = 1 indicates the full presence and enforcement of constraint set �i . A
penalty measure αi for every constraint set i is computed, for example, by

αi(d) = α η̂3i(d) (22)

where α is a scalar penalty parameter. The notion of constraint topology is
introduced into the analysis of the topology optimization by penalty method,
e.g. for linear elastic analysis

R(U) = −KU + F − α(d)�T
U � = 0. (23)
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where α(d) = diag[α1(d), . . . , αi(d), . . . , αnkc(d)], and the constraint topo-
logy is depicted by η3. Note that α(d)�T

U � can be systematically assembled
by the summation of each αi(d)�U

T
i �i by looping over each constraint set i

in the same manner as global K is assembled by K = ∑ne
i=1 Ki for each ele-

ment i by traditional finite element methodology. Analogous to the constrained
effective volume of material of Equations (20) and (21), the effective constraint
“volume” vc is restricted by it upper bound v̄c and computed, for example, by

vc(d) =
nkc∑
i=1

η̂4i(d), (24)

where the fourth density measure η4i for every constraint set i is defined as a
function of the density design variables d and the upper bound v̄c is defined as
fraction 0 < γc < 1 of the number of kinematic constraints, i.e. v̄c = γcnkc.

We do not explicitly define the density measures here to generalize the for-
mulation, to accommodate the many variants that have appeared in the lit-
erature, and to admit alternative schemes that may be required for different
topology problems, e.g. structural topology optimization vs. fluidic topology
optimization. However, as examples, the first and second density measures
are defined in stiffest structural topology design to penalize intermediate dens-
ity values by η̂1i(d) = d

p

i and η̂2i (d) = di with penalty parameter p, by
η̂1i(d) = φ̂

p

i and η̂2i(d) = φ̂i , or by η̂1i(d) = di and η̂2i (d) = 1− (1− φ̂i (d))p

with φi = φ̂i (d) = ∑
j ωij dj where the filtered density design variable field φ

is computed using blurring filter kernel weights ωij for every element i. The
main point here is that the density measures, i.e. η1, η2, η3, and η4, are defined
as some smooth and continuous functions of the density design variables d
or a filtered function φ thereof, and they are defined based on the underlying
mechanics problem.

The key concept of the TOP method is that we associate a density-weighted
penalty with every constraint set, and therefore we can search the design space
for an optimized constraint topology. We note that the effectiveness of pen-
alization is dependent on the magnitude of penalty α which should be just
large enough to enforce the constraints when η3i = 1 and should not be too
large to cause numerical conditioning problems. A particularly interesting fea-
ture is that the methodology can easily accommodate redundant constraints.
The methodology can be applied to problems with discrete or continuum, lin-
ear or nonlinear finite elements and discrete or continuous, linear or nonlinear
constraints. The approach can be combined with traditional topology optim-
ization techniques to simultaneous design for material properties and coupling
constraints. Most importantly, the TOP method is a fundamental topology op-
timization formulation that can be applied to a wide range of topology design
problems.
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4. TOP METHOD FOR SUPPORT DESIGN

In most structural topology design problems, we search for the optimal ma-
terial distribution within a given design domain with given external loads and
prescribed boundary support conditions. This a priori selection of the support
conditions can greatly limit the design space for optimal designs.

By the TOP method, we can introduce the notion of spatially variable sup-
ports into the topology design problem. For example, in a planar design do-
main discretized by 4-noded quad elements connected by nodes denoted by i,
j, k, and l, we define a discrete, linear constraint set �i for every element i by

F
j

kl

i

i
�i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ux
ii − 0

Ux
ji − 0

Ux
ki − 0

Ux
ji − 0

U
y
ii − 0

U
y
ji − 0

U
y
ki − 0

U
y
li − 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, (25)

where Ux and Uy are nodal x- and y-displacement components, and we no-
tice that Equation (25) can be readily formulated into Equation (5) form, i.e.
�i = CiUi where Di = 0.

For linear elastic structural mechanics, the governing equation for the con-
strained finite element analysis of the TOP method is

(K(ḋ)+ α(d̈)CT C)U = F, (26)

where we distinguish between the material density design variable field ḋ and
the support or indicator density design variable field d̈. The density design
variable field d is partitioned by d = {ḋT , d̈T }T . For generality, the ḋ and d̈
design variables could be linked, but they are treated separately here.

We demonstrate the approach by the structure and support design of a tip-
loaded micro-cantilever beam. The design domain with prescribed support
boundary conditions on the left edge is shown in Figure 1(a). The stiffest struc-
tural topology design, i.e. minimum compliance subject to a limited volume
of distributable material, found by traditional topology optimization is shown
in Figure 1(b). Next, we apply the TOP method for structure and support
design. The design domain of a tip-loaded cantilever beam without prescribed
support boundary conditions is shown in Figure 1(c). The stiffest structural
and support topology design found by minimal compliance subject to the same
limited volume of distributable material as above and a limited volume of sup-
port material is shown in Figure 1(d). The elements of the optimized support
conditions are encircled. Note that we generate the same optimized mater-
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Figure 1. Design domain of tip-loaded cantilever beam (a) with prescribed support and (c)
without prescribed support conditions. Optimized topology (b) with prescribed support and (d)
without prescribed support conditions.
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Figure 2. Design domain of inverter mechanism (a) with prescribed support and (c) without
prescribed support conditions. Optimized topology (b) with prescribed support and (d) without
prescribed support conditions.

ial distribution for both cases, and the supports are located at the appropriate
locations by the TOP method.

In a similar manner, the TOP method is applied to the material and sup-
port design for an inverter mechanism depicted in Figure 2. We note that this
approach is particularly beneficial for compliant mechanism design where the
optimal support locations are less intuitive.

5. CONCLUSION

We developed the TOP method where design-dependent constraints are appen-
ded to the FEA by a penalty method and the degree of enforcement depends
on the design variables associated with each constraint. We applied the fun-
damental concept to a wide range of design problems which are illustrated in
Figures 1, 2 and 3 and are more fully described in [2] and [3]. It was our in-
tent to show that the TOP method is a fundamental counterpart to the common
density-based stiffness matrix approach, that many diverse design problems
that have been previously handled can be reinterpreted under this common
TOP method umbrella, and, more importantly, that the approach can be ap-
plied to new and more complex design problems.

In future work, we will more fully develop and tailor the TOP method to
particular mechanics problems, particularly for mechanism topology design
within large ground structures. To illustrate the methodology, we concen-
trated on design problems with constraints that are simply dependent on the
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Figure 3. Overview of the TOP method applied to diverse design problems.

discrete or continuous state variables, but we emphasize that the approach
can be applied to more diverse constraint types. We will investigate how
the (non)convexity of the constraints of the penalty method affects the topo-
logy optimization. Also, we are investigating the selective application of the
augmented Lagrangian penalty method to constraints where αi(d) approaches
penalty parameter α in value.
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Abstract: A new method for topology optimization (CAMD method) is extended to the
stiffness design problem of a structure undergoing finite deformation. In this
methodology, the continuous distribution of microstructures, or equivalently,
design variables, is approximated using the nodal design variables and stand-
ard shape functions, in the context of FE discretization. After summarizing the
basic settings for the finite deformation stiffness optimization problem and the
CAMD method, we formulate a stiffness design problem for nonlinear solids. A
representative numerical example is presented to show the validity and efficiency
of the proposed method. In particular, we clarified the mechanism that generates
optimal structures while inhibiting structural instabilities such as snap-through.

Keywords: Topology optimization, finite deformation, homogenization design method.

1. INTRODUCTION

Recent years have been seen great developments in topology optimization,
since Bendsøe and Kikuchi [1] originally proposed the homogenization design
method (HDM) for the practical applications. This methodology is based on
the concept of the fixed design domain and the homogenization method to relax
the domain and to change the material distribution problem into a sizing prob-
lem in the micro-scale. Suzuki and Kikuchi [2] applied the methodology to the
stiffness design problem using a microstructure with a rectangular void and
succeeded to obtain mesh independent topologies by rotating it. Contrastly,
Bendsøe [3] also proposed a simplified methodology using a fictional isotropic
material elasticity tensor which is assumed to be a function of the penalized
material density with an exponent parameter. This is nowadays known as the
SIMP method (Solid Isotropic Microstructures with Penalization) [4, 5]. Since
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these pioneering works, a considerable number of theoretical and computa-
tional studies have been made on the area of topology optimization [6].

Although it has been argued that there is no physical interpretation of the
assumptions in the latter approach, Bendsøe and Sigmund [7] demonstrated its
validity under a certain conditions. Thanks to this demonstration and to inher-
ent simplicity for implementation, the SIMP method has been widely accepted
by researchers and applied to various optimization problems. However in some
cases, over simplified SIMP method causes complications which significantly
influence the optimized results. In such cases, the problem of checkerboard
patterns and the mesh dependency of the results occur. These problems have
generated an enormous amount of interest, with many different solutions made
possible by the SIMP method. That different optimized solutions are obtained
for different sizes or discretizations of the finite element is a matter of concern.

To avoid these kinds of numerical instabilities, including the appearance of
gray-scale (intermediate density), a variety of techniques have been proposed
[8, 9]. For example, there are material interpolation schemes which can be used
to solve gray-scale problems [7], checkerboard-free topologies are successfully
obtained by means of higher-order finite elements [10], and there are a variety
of filtering schemes to avoid checkerboard patterns or mesh-dependencies (see,
e.g., [11, 12]). In addition, a perimeter control method was proposed by Haber
et al. [13] to resolve the issues of mesh dependency. Since the use of high-
order elements requires significant computational cost, the filtering schemes
and perimeter controls are commonly used to avoid numerical instabilities,
having provided clear or fine topologies in the above-cited literatures. The
basic idea of the filtering schemes is to restrict the solution space by defining
some additional constraints on either the perimeter or the distribution modes
of the material.

On the other hand, the authors have proposed a checkerboard free topology
optimization method without introducing any additional constraint parameters
[14]. This is successfully achieved by assuming the continuous distribution
of material in a fixed design domain, and by introducing the C0-continuous
finite element approximation of the design variables, we refer to our method as
the CAMD method (Continuous Approximation of Material Distribution). By
virtue of this continuous FE approximation of design variables, discontinuous
material distributions, like checkerboard patterns, disappear without the need
for any filtering schemes.

In this paper, we extend the CAMD method to the stiffness design in
the finite deformation problem, and demonstrate its efficiency and capabil-
ity. At the end of the 20th century, some authors began to address the stiff-
ness design problem with geometrical nonlinearities [15–19] using the conven-
tional element-based discretization. In addition, Pedersen et al. extended their
method to the design of compliant mechanisms [20]. Most of the literature
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has concluded that the consideration of geometrical nonlinearity in topology
optimization gives quite different topologies from cases where small strain is
assumed.

In the following, we first briefly review the formulation for the stiffness
design problem at finite deformation in general form. Then we formulate the
CAMD method for stiffness design with finite deformation, and also present
a sensitivity analysis. Representative numerical example shows how capable
this method is and also shows the difference between optimized structures with
linear elasticity and those with finite deformation.

2. STIFFNESS DESIGN PROBLEM AT FINITE
DEFORMATION

In this section, we formulate the stiffness optimization problem for the struc-
tures in the framework of hyperelasticity. Our emphasis is placed on the fact
that the problem of topology optimization should be recognized as a problem
of finding distribution of the material in the fixed design domain, but not the
configuration of finite elements.

Let B0 ⊂ Rndim be the reference configuration of a design domain with
smooth boundary ∂B0. It is assumed that the elastic body is subjected to dead
loading with the body force per unit mass defined by b and that the nominal
traction vector is also prescribed as T̂ for Γt of the boundary. In addition, the
deformation is prescribed as u = 0 for Γu ⊂ ∂B0 of the boundary. Then the
equilibrium equation for the elastic body is given in the following weak form:∫

B0

P : (η0 ⊗ ∇X) dV −
∫
B0

ρ0B.η0 dV −
∫
∂B0

T̂ .η0 dΓ = 0. (1)

Generally speaking in the topology optimization problems, from B0 we are
able to find the optimal distribution of material, which is occupied by the do-
main of a designed structure, Bm

0 . Buhl et al. [16] have introduced the follow-
ing end compliance as a simple extension of the mean compliance in linear
elasticity to large deformation problems, that is, the mean compliance in the
deflected configuration at the design load level.

Cend :=
∫
B0

ρpb.u dV +
∫
∂B0

T̂ .u dΓ. (2)

Then the general form of the stiffness design problem for nonlinear solids
can be defined as

min
(material distribution for B0)

Cmean

subject to
equilibrium equation (1),
volume constraint for domain Bm

0 .

(3)
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To express the material distribution, the following indicator function χ(x) is
usually introduced:

CIJKL(x) = χ(x)C̄IJKL, χ(x) =
{

1 if x ∈ Bm
0 ,

0 if x ∈ B0 \ Bm
0 ,

(4)

where CIJKL are the components of the elastic tensor of the material distributed
in the fixed design domain B0, and C̄IJKL are those of the actual material in Bm

0 .
However, this setting gives the discrete optimization problem (black-and-white
design) with 0-1 integer parameterization, which tends to be difficult to solve
unless some regularization or smoothing is performed for the material distri-
bution. That is, as first demonstrated by Bendsøe and Kikuchi [1], the ON-
OFF problem of macro-scale material can be transformed into a continuous
sizing problem for microstructures by means of the homogenization method.
However, in these developments, the designed structures were formed by the
arrangement of discrete finite elements rather than the continuous distribution
of material. In the following formulation of CAMD method, the emphasis is
placed on the concept of continuous material distribution.

3. CAMD METHOD FOR TOPOLOGY
OPTIMIZATION

In this section, we extend the method of continuous approximation of material
distribution to the finite deformation problems. After briefly reviewing the
CAMD method, we accomplish the formulation of the stiffness design problem
with finite deformation using the methodology.

3.1 Continuous FE Approximation of Material
Distribution

As pointed out in the literature [14], the continuous distribution of material, or
equivalence of microstructure is consistent with the mathematical assumptions
of the homogenization theory, have been introduced in the original formulation
by Suzuki and Kikuchi [2]. The CAMD method can maintain consistency
during its optimization process and can avoid rboading without requiring any
special treatment, such as, the use of filtering schemes or perimeter controls.
In the following, we summarize the basic concept of the CAMD method in
the context of the FE-analysis, and accomplish the formulation of the stiffness
design problem.

In the standard displacement-based FEM, the displacement field u in the
domain B0 is approximated by nodal interpolation such that

u ≈ uh = N(X)d, (5)
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Figure 1. Global shape function NJ associated with node J .

where N(x) is a matrix of global shape functions and d is the corresponding
nodal displacement vector. Here, the parameter h is the representative size of
elements for spatial discretization of the domain, and designates the discretized
quantities when attached as a super- or subscript. Note that the components of
the shape function matrix, NJ (x), are non-zero only in elements associated
with the J -th node as shown in Figure 1. Employing the same interpolation
function for variations of η, we can obtain the discretized form of the governing
equation (1) or linearized equation.

To maintain mathematical consistency, the CAMD method approximates the
distribution of the design variable r(X) continuously in space. That is, using
the same shape functions as those for displacement fields, we approximate the
design variable as

r(X) ≈ rh(X) = M(X)R =
n∑

J=1

NJ (X)RJ , (6)

where M is a vector whose components are NJ (X) (J = 1, . . . , n), R is a
vector of nodal (discrete) design variables RJ (J = 1, . . . , n) and n the total
number of nodes (and of design variables). The design variable can be C0-
continuous over the domain due to the partition-of-unity property of NJ (X)

and also continuously distributed in an element. Consequently, the topology
optimization problem yields the following discretized alternative:

min
R

Ch
end = min

R

[(∫
B0

(
ρHB

)
N dV +

∫
∂B0

T̂ N dΓ

)
d

]
subject to

discretized version of the equilibrium equation (1),
Bm

0 := ∫
B0

(
1 − (rh)2

)
dV ≤ Ωdes,

0 ≤ RJ ≤ 1 (J = 1, . . . , n).

(7)
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3.2 Sensitivity Analysis

To solve the above optimization problem by mathematical programming, we
need to compute its sensitivity. As the final step of our formulation, the sensit-
ivity analysis using the adjoint method is presented under the assumption that
the external load is independent of design.

Introducing a vector of Lagrangian multipliers λ, the objective function is
modified as

C∗
end = Cend + R(P ,λ), (8)

where we define

R(P ,λ) :=
∫
B0

P : ∇Xλ dV −
∫
B0

ρH0 B.λ dV −
∫
∂B0

T̂ .λ dΓ. (9)

When the state variables are in the equilibrium state, R(P ,λ) = 0 is achieved
for all λ and the sensitivity of the objective function does not change,

dCend

dr
= dC∗

end

dr
. (10)

Using the modified objective function, the sensitivity becomes the following:

dC∗
end

dr
=

∫
B0

ρH0 B.
du

dr
dV +

∫
∂B0

T̂ .
du

dr
dΓ + ∂R(P ,λ)

∂u
.
du

dr

+
∫
B0

dρH0
dr

B.u dV + ∂R(P ,λ)

∂r
. (11)

Since the vector of Lagrangian multipliers λ is arbitrary, we choose λ∗ such
that ∫

B0

ρH0 B.
du

dr
dV +

∫
∂B0

T̂ .
du

dr
dΓ + ∂R(P ,λ∗)

∂u
.
du

dr
= 0. (12)

With the solution of the above adjoint system λ∗, the sensitivity of the objective
function is computed as

dC∗
end

dr
=

∫
B0

dρH0
dr

B.u dV + ∂R(P ,λ∗)
∂r

. (13)

Here, if we set du/dr = η, Equation (12) would be similar to the linearized
version of equilibrium equation. In addition, we are able to obtain the sensit-
ivity very easily, since ∂R/∂u corresponding to the tangential stiffness.

4. NUMERICAL EXAMPLE

To show the validity and the efficiency of the CAMD method for topology op-
timization problems with finite deformation, we would like to present some
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Figure 2. Design domain for topology optimization.

Figure 3. Optimal topologies for small strain and finite deformation.

illustrative numerical example. Note that no filtering scheme to avoid checker-
boarding or mesh dependent design in topology optimization.

The optimization problem for hyperelasticity shown in Figure 2 is solved
for three different loading conditions (Pext = 1.0, 100, 200 (MN/m2)). The op-
timized topology obtained from these analyses are shown in Figure 3, and the
result of the linear elasticity is also shown for comparison. In the small strain
problem, very similar topologies are obtained when the magnitude of the ex-
ternal load is changed (Figure 3(a)). As can be seen, the resulting topology for
a small load is similar to the result of linear elasticity (Figure 3(b)). However,
the topologies change according to the increment of the external load (Fig-
ures 3(c), (d)). The topology shown in Figure 3(d) is very similar to that Buhl
et al. [16] showed and explained by buckling effect in which “the topology
consists of two longer beams in tension and two short beams in compression”.

In order to discuss the validity of the above topologies and the proposed op-
timization method, we make the computations with sufficient large load for the
optimized topologies. Figure 4 shows the load-displacement curves at the cen-
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Figure 4. Force-displacement diagram for optimum design.

ter of the design domain obtained from the computation. As can be seen in the
figure, Model (b) is the stiffest structure when the applied load is small. How-
ever, this structure snaps through at a certain load level and the stiffness of the
whole structure decreases. As a result, after Model (b) has snapped through,
Model (c) becomes the stiffest of the three structures. Then Model (c) also
snaps through and looses its stiffness. Finally, Model (d) which has low stiff-
ness becomes the stiffest when a maximum external load is applied. That is,
when we consider loading level applied to each model, each structure obtained
by the topology optimization is the stiffest at a certain level. Consequently we
could conclude that the proposed method is valid not only for linear elasticity
but also for finite deformation problems.

According to the above computations, the explanation by Buhl et al. [16]
seems to be correct. However, their optimization started from the horizontal
straight bar, which never buckles under such loading conditions, and the ob-
jective function, or end compliance could not explicitly take into account the
buckling. Thus, the interpretation is not sufficient to clarify the mechanism.
That is, it failed to explain why the topologies are different depending on the
magnitude of the external load.

Figure 5 shows the change of topology during the optimization process for
two load cases. Especially here shows topologies at the beginning of the op-
timization where a large change of topology was occurred. As can be seen
from the figure, they begin to converge to quite different topologies from the
first optimization step, and the convergence tendency observed in the small
loading case being very similar to that in the optimization in cases with small
strain. In addition, we have observed that there is no buckling during the op-
timization process nor at any of the loading steps. This means that the topology
shown in Figure 3(d) is not affected by any unstable mechanical behavior such
as buckling or snap-through, and is governed only by the large deformation at
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Figure 5. Change of topology (and its deformation) during optimization.

the initial state of optimization. In other words, we could obtain the topology
using a nonlinear finite element analysis not because it enables us to treat the
unstable mechanical behavior, but because it simulates the large deformations
in the design domain more accurately. Therefore we should recognize that the
topology happens to be stiff so that buckling or snap-through do not occur.

5. CONCLUDING REMARKS

In this paper, we extended the CAMD method to the stiffness design problem
undergoing finite deformation. Owing to the mathematically consistent ap-
proximation of material distribution, the optimum topologies obtained by this
methodology are free from checkerboard patterns.

In the illustrative optimization example in the context of finite deformation,
we were able to obtain quite different topologies from those with a linear elasti-
city. We gave some consideration to how different topologies are generated,
especially to those which seem to be against instable mechanical behavior,
such as buckling or snap-through. That is, it is not because we take such beha-
vior into account, but because we could describe the large deformation in the
design domain at the beginning of the optimization process. Thus another kind
of the objective functions is needed, which take into account the geometrical
instabilities explicitly.
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Abstract: In this paper, we consider the design of a morphing airfoil for improved aileron
effectiveness using the spectral level set methodology. This methodology is a
framework to formulate topology optimization of interfaces based on the level
set methods, which represent the interface as the zero level set of a function.
As this function evolves, during the optimization process, topological changes
of the interface are easily described. According to our formulation, the Fourier
coefficients of the level set function are the design variables of the optimiza-
tion problem. An advantage of the proposed methodology, for a sufficiently
smooth interface, is to admit an error asymptotically smaller than the one for
non-adaptive spacial discretizations of the level set function. In this case, the
methodology could lead to a reduction of the design space dimension. Another
advantage is the nucleation of holes in the interior of the interface.

As an application, we consider an airfoil with a system of actuators distrib-
uted along its chord. This system provides morphing capability to the airfoil by
operating on its camber to increase lift generation. The optimization problem
consists in determining the camber profile that minimizes the actuation power
while improving the airfoil effectiveness. The sign of the level set function de-
termines which actuators are activated.

Keywords: Topology optimization, level set methods, Fourier series, morphing airfoil, aile-
ron control reversal.

1. INTRODUCTION

In this paper, we consider the design of a morphing airfoil for the improve-
ment of its aileron effectiveness [4]. To this end, we formulate the topology
optimization problem using the spectral level set methodology.

The topology optimizer searches for minimizing configurations among to-
pologically distinct classes. Consequently, in structural optimization for in-
stance, holes may appear or disappear from the initial design, and breakages
and merges of the structure may occur.
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The main approach to structural boundary design is the homogenization
method [5–7], in which the initial design is composed of a repeated base cell
made of an arrangement of solid material and void space. The design vari-
ables of the optimization problem define that arrangement. Another important
approach is SIMP [19]. In this case, the stiffness is multiplied by a density-
like function with values between zero and one, which becomes the design
variable of the optimization problem. Other theories include the evolutionary
algorithm [23], in which solid elements are deleted from a fixed mesh to de-
crease the objective function, and the bubble method [8], in which holes are
positioned along the structure, thus changing its initial topology.

The spectral level set methodology is based on the level set methods intro-
duced in [16]. According to these methods, the relevant boundary or interface
is the zero level set of a function. As this function evolves during the op-
timization, so does the boundary. In this way, an interface can easily sustain
topological changes, establishing the level set approach as an adequate tool in
topology optimization problems. Classic level set methods use the nodal val-
ues of the level set function as design variables of the optimization problem.
The spectral level set methodology expands this function into a finite Fourier
series and uses its coefficients as the design variables.

Sethian and Wiegmann [20] use the level set approach to achieve fully
stressed structures. Osher and Santosa [17] and Allaire and co-workers [2, 3]
have also applied the level set methods to structural optimization.

The application of topology optimization to aeroservoelasticity is very re-
cent, of which the studies in [13–15] are good examples. In particular, in
[15], the authors propose the integration of mechanisms in the aeroelastic op-
timization of adaptive airfoils, considering both aerodynamic and structural
constraints and using a level set approach.

In this work, the spectral level set methodology is used to design a morphing
airfoil which enhances the performance of its aileron effectiveness. A system
of actuators provides morphing capability by operating on the camber to in-
crease lift. The optimization problem consists in determining the airfoil profile
which minimizes the actuation power while improving the aileron effective-
ness. The sign of the level set function establishes the set of driving actuators
and its Fourier coefficients constitute the design variables.

This paper is divided into two main parts: the discussion of the key ideas
behind the spectral level set methodology and the analysis of an application of
the proposed methodology to the design of an aircraft structure with improved
roll maneuvering performance.
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2. SPECTRAL LEVEL SET METHODOLOGY

The spectral level set methodology inherits from the level set formulation [16],
the idea of embedding the evolution of an interface into the evolution of a func-
tion during the optimization. However, instead of defining this function using
its nodal values, the spectral level set methodology uses the coefficients of its
Fourier series expansion for its definition. The Fourier coefficients become the
design variables of the optimization problem assigned to the interface defini-
tion.

The proposed formulation does not consider the level set function to be a
solution of an Hamilton–Jacobi equation. As a result, the spectral level set
methodology is able to nucleate new holes in the interior of the interface in
a two-dimensional setting. Therefore, the formation of new holes is possible,
making it less likely for the optimization algorithm to settle in a non-global
solution. Other solutions to avoid the lack of nucleation mechanism have been
addressed in [1, 21].

In the following, we present the key ideas of the spectral level set methodo-
logy. A detailed description may be found in [11].

Let ψ : T
n → R be the level set function. The Fourier coefficients of ψ are

ψ̂ (k) = 1

(2π)n

∫
Tn

ψ (θ) e−ik·θ dθ. (1)

The Fourier inversion formula is given by

ψ (θ) =
∑
k∈Zn

ψ̂ (k) eik·θ (2)

for ψ defined as a function of θ , with θ ∈ [0, 2π ]n. In general, we wish to
identify T

n = [0, 2π ]n with the physical space defined by the variable x ∈ R
n.

Assume x ∈ [a1, b1] × . . . × [an, bn]. Then, each component of θ is linearly
related to the corresponding component of x, through θi = 2π

pi
(xi − ai), in

which pi = bi − ai is the period corresponding to coordinate i = 1, . . . , n.
Consider the set of functions constructed using a finite Fourier series. A key

question in the spectral level set methodology consists in determining estimates
on the error committed in this approximation of the interface. For the sake of
completeness, we provide in the following an upper bound for this error.

The existence of an infinite number of functions with the same zero level
set implies the lack of uniqueness of the level set function in the description
of an interface. Our goal is to choose one of these functions and then see if its
zero level set is adequately represented by the zero level set of a finite Fourier
expansion.

One candidate is the signed distance to the interface which is Lipschitz con-
tinuous independently of the degree of regularity of the interface, and therefore
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can be uniformly approximated by Fourier series. However, further results
from the theory of the Fourier series [22] determine that we must increase the
regularity of the signed distance to the interface to guarantee the convergence
of its Fourier series.

The smoothing, or mollification [9], results in a smooth function very sim-
ilar to the original except at sharp corners. At these points, the original function
undergoes an averaging operation. Gomes and Suleman [11] provides an up-
per bound for the error committed in the smoothing procedure, estimating the
difference between the original and the smoothed level set functions.

Given the smoothed signed distance to the interface, an estimate of the error
committed in using a finite Fourier series expansion, with an a priori specified
number of Fourier coefficients, is also given in [11] as the truncation error.

The total error bound involved in the proposed methodology, which is the
sum of the smoothing and truncation error bounds, is asymptotically propor-
tional to 1/N , in which N is a measure of the number of Fourier modes in the
expansion. This error is of the same order as the one in classic non-adaptive
spacial discretizations of ψ considering N nodes. However, if the level set
function is sufficiently smooth, we can prove asymptotically in N , that the
proposed methodology achieves the same error with less design variables than
spacial discretizations [11]. That is, under certain circumstances, the spectral
level set methodology could lead to the reduction of the design space dimen-
sion.

3. MORPHING AIRFOIL

3.1 Problem Setting

Consider an airfoil equipped with an aileron deflected downwards to provide
additional lift. The flow acting on the aileron generates a moment of force
which twists the airfoil nose down, thus reducing the angle of attack and the
aileron incidence. Consequently, the net lift generation is decreased and for
the same aileron deflection, the rolling moment for an elastic wing is less than
that for a rigid wing. This loss of aileron effectiveness is a consequence of the
elastic properties of the wing and is dependent on the flight condition. If not
accounted for, this condition can lead to a reduction of the vehicle’s perform-
ance in roll maneuvers. In case the aileron produces no lift, we say the aileron
has reversed.

Consider the lift coefficient produced by an aileron deflection on the airfoil
of a real wing, �cel , and the lift coefficient produced in a similar way on a
rigid wing, �crl . A way to measure aileron effectiveness consists in evaluating
the ratio �cel /�c

r
l [4]. Ideally, this ratio should be one. However, the elastic

proprieties of the wing add a negative contribution to �crl . Considering strip
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theory [4], �cel can be written as

�cel = �crl + ∂crl

∂α
θ, (3)

in which θ is airfoil twist, α is the angle of attack, ∂�crl /∂α > 0 and θ < 0.
Suppose the airfoil is equipped with a system of actuators capable of gener-

ating an additional lift coefficient �cal such that the negative twist contribution
is counteracted. The designer is satisfied as long as

�cal ≥ −∂crl

∂α
θ. (4)

The actuation system is comprised of a setup of actuators, each with two
possible states, activated or deactivated, distributed along the airfoil chord. To
generate �cal , the system changes the airfoil mean camber line. Moreover,
�cal depends on the flight condition through θ and ∂cal /∂α. As this condition
changes, the airfoil mean camber line adapts itself to produce the required �cal .

The specific characteristics of the actuators as well as the actuation mech-
anism are not of concern in this study. The requirement is that each actuator is
able to increase the camber at its location by a positive value hz.

The optimization problem is to minimize the fraction of active actuators,
thus minimizing the actuation power, constrained by inequality (4). In the
framework of the spectral level methodology, the sign of the level set function
ψ defines the state of each actuator. The Fourier coefficients of ψ constitute
the set of design variables of the optimization problem.

3.2 Problem Statement

The effect of camber line change on the airfoil lift coefficient is determined
using general thin airfoil theory [12]. Given a point on the airfoil chord, the
mean camber line is defined as halfway between the upper and lower surfaces
describing the airfoil geometry at that point. The general thin airfoil theory as-
sumes the mean camber line stays close to the chord line and that the maximum
airfoil thickness is small compared to the chord length.

Consider an airfoil with a mean camber line given by the graph of zc, which
is a function of the coordinate along the chord direction, x. The lift coefficient
at a zero angle of attack, cl0 , is a function of zc. In fact, neglecting the effect of
the aileron deflection as an additional camber line shape variation, we have

cl0 = 2
∫ c

0

dzc

dx

[cos τ (x)− 1]

c/2 sin τ (x)
dx, (5)

in which x = c (1 − cos τ) /2, τ ∈ [0, π ] and c represents the airfoil chord.
The convergence of this integral requires zc = 0 at x = 0 and x = c.
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Let zcnom describe the nominal camber configuration. Each active actuator
modifies the camber at its location by increasing the local zcnom by a positive
value hz. The actuation state is regulated by the sign of the level set function
ψ : at chord locations where ψ is negative, the actuators are not activated,
and the camber coincides with the nominal camber; at positions where ψ is
positive, the camber is incremented by hz. Consequently, the zero level set of
ψ determines the distribution pattern of active actuators along the airfoil chord.
Accordingly,

zc (x) = zcnom (x)+ hz

{
arctan [aactψ (x)]

π
+ 0.5

}
, (6)

in which hz is multiplied by a relaxed indicator function. The larger the aact ,
the fastest are the changes from zcnom to zcnom + hz and vice-versa.

The additional amount of lift, �cal , is the difference between the lift pro-
duced by the nominal camber and the lift provided by the new camber line,
that is,

�cal = 2hz
π

∫ c

0

d

dx
{arctan [aactψ (x)]} [cos τ (x)− 1]

c/2 sin τ (x)
dx. (7)

Finally, the optimization problem is

min
Fourier coeff.

V (ψ)

Vtotal
(8)

subject to − 2hz
π

∫ c

0

d

dx
{arctan [aactψ (x)]} [cos τ (x)− 1]

c/2 sin τ (x)
dx ≤ ∂crl

∂α
θ,

in which V stands for the volume of active actuation and Vtotal stands for the
total volume of actuators.

Typically, in subsonic regime, zc has a maximum value of 5% of c, [12]. In
our case, suppose the airfoil has a zc maximum of 2.5% of c, and assume the
increase in camber, hz, is 1.0% of c. Let c = 1.0 m. Then hz = 0.01 m. Also,
let ∂crl /∂αθ = −0.1, which for ∂crl /∂α = 2π corresponds, approximately,
to a twist angle of 1◦. These values were found to be adequate to satisfy the
constraint in (8) and the hypothesis of the thin airfoil theory.

The initial design is a fully activated actuation system, that is, ψ ≡ 1.0.
The airfoil chord was discretized into 5000 elements. The optimization

problem (8) was solved for aact = 10000.0.
The optimization algorithm is composed of two steps: a quick random

search of the design space followed by a local search with cobyla [18], a
derivative-free optimization tool.
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3.3 Results and Discussion

In previous work [10, 11], the iteration approach in the number of design vari-
ables proved to be a good strategy to find an optimal design. In this case, we
also follow this approach. For n = 1, the number of design variables corres-
ponding to N + 1 Fourier coefficients is 2N + 1. The initial value was chosen
to be N = 3. For this value, we preceded cobyla with a random search in
the design space. The resulting Fourier coefficients were consecutively used to
initialize simulations N = 6, 9, without random search.

The optimal configuration of active actuators applied on a real airfoil results
in a smooth displacement vector field, and, consequently, in a smooth variation
of the mean camber line. To simulate the effects of elasticity and digital ac-
tuation mode on the airfoil geometry, we have convolved the relaxed indicator
function in (6), restricted to [0, c], with a Gaussian function with zero mean
and variance σ 2 = 0.03. The variance can be considered a measure of the net
elastic properties of the airfoil materials and internal arrangement.

For visualizing the evolution of the morphing airfoil geometry during the
optimization procedure, we applied the actuation system to a nominal airfoil
based on the NACA four-digit family of wing sections [12]. In particular, we
have consider a value of 0.1 for the maximum thickness expressed as a fraction
of c, a value of 0.025 for the maximum value of zcnom attained at position
0.25c. In the following figures, the nominal airfoil is represented by a dashed
line. Moreover, the depicted airfoils are graphic representations of the results
attained with the spectral level set formulation of optimization problem (8).
There is no relation between the value used for θ∂crl /∂α and the represented
airfoils.

Table 1 shows the values of the optimal objective function J and the max-
imum constraint violation for the corresponding optimal configuration, maxcv.
The value of J decreases with increasing N , corresponding to a progressive re-
duction of the width of the set of active actuators, as depicted in Figure 1.

The results in Figure 1 show that the set of active actuators is being drawn
to x = c. From the constraint in (8), we deduce that a way to minimize the
actuation, while still provide additional lift, would be to concentrate all the

Table 1. Quantitative results for an all-active initial design.

J maxcv

Initial 9.99937E-01 9.99990E-01
N = 3 2.27479E-01 0.0
N = 6 1.88164E-01 6.70552E-08
N = 9 1.45582E-01 1.11759E-07
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Figure 1a. All active initial configura-
tion: N = 3.

Figure 1b. All active initial configura-
tion: N = 6.

Figure 1c. All active initial configuration: N = 9.

active actuators near the trailing edge, that is, x = c. In fact, the closer to the
trailing edge, the less active actuators are needed. A limiting case would be
to set a spike-type of actuation very close to the trailing edge, since we cannot
have actuation at x = c because of constraint ψ (x = c) ≤ 0.0. Therefore, the
interface is evolving according to our predictions.

Another experiment starts from the configuration in Figure 2a, which has a
different topology from those consider in the first example. The value of the
initial objective function is 0.5, with verified constraints, and the final value
for the objective function, obtained with N = 6, is J = 3.89045E-02, also
with verified constraints. The spectral level set formulation was capable of
achieving the one-spike configuration depicted in Figure 2b.

Figure 2a. Initial configuration. Figure 2b. Optimal design for N = 6.

We can conclude that for topologically different initial configurations, the
spectral level set methodology was able to produce a very narrow set of active
actuators close to x = c using a very small number of Fourier modes.

4. CONCLUSIONS

In this paper we proposed the optimization of an airfoil aeroelastic response
using the spectral level set methodology. According to this formulation, an in-
terface is described as a level set of a function. As this function evolves, during
the optimization process, topological changes of the interface may occur. An
advantage of the spectral level set methodology is to provide, asymptotically
in the number of degrees of freedom design variables and for a sufficiently
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regular boundary, a lower error bound than non-adaptive classical approaches
to structural topology optimization. Under this circumstances, the proposed
methodology could lead to a reduction of the design space dimension.

An application of the proposed methodology, consisting in the design of
a morphing airfoil minimizing the actuation power while improving the ail-
eron effectiveness, was discussed. This problem showed the spectral level set
methodology can adequately handle the occurrence of spike-like functions dur-
ing the optimization process, starting from different topologies and with a very
small number of Fourier coefficients.
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Abstract: We propose a gradient based topology optimization algorithm for acoustic-
structure (vibro-acoustic) interaction problems without an explicit interfacing
boundary representation. In acoustic-structure interaction problems, the pres-
sure field and the displacement field are governed by the Helmholtz equation and
the linear elasticity equation, respectively, and it is necessary that the governing
equations should be properly evolved with respect to the design variables in the
design domain. Moreover, all the boundary conditions obtained by computing
surface coupling integrals should be properly imposed to subdomain interfaces
evolving during the optimization process. In this paper, we propose to use a
mixed finite element formulation with displacements and pressure as primary
variables (u/p formulation) which eliminates the need for explicit boundary rep-
resentation. In order to describe the Helmholtz equation and the linear elasticity
equation, the mass density as well as the shear and bulk moduli are interpolated
with the design variables. In this formulation, the coupled interface boundary
conditions are automatically satisfied without having to compute surface coup-
ling integrals. Two-dimensional acoustic-structure interaction problems are op-
timized to show the validity of the proposed method.

Keywords: Mixed formulation, acoustic-structure interaction, dynamics, harmonic loading,
coupled problems.

1. INTRODUCTION

Topology optimization has been applied to a variety of engineering problems
and extensions to multiphysics systems seems to be a promising future direc-
tion [1]. In this paper, the computational framework for topology optimization
of acoustic-structure interaction problems is proposed.

First, however, we are required to address the following issues. During the
optimization process, two distinct governing equations – Helmholtz equation
and the linear elasticity equation – should be modeled without explicit bound-
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Figure 1. The interaction boundary conditions between acoustic and structure (where n: the
normal vector from the fluid to the solid, p: the pressure, u: the displacement, ω: the angular
speed, ρa : the structural density, and Sinter: the interfacing boundary).

ary representation to allow for free topological variations. Because the pressure
and the displacements are the primal variables for the acoustic and the linear
elasticity equation, respectively, alternating these two equations during optim-
ization is difficult. Moreover, at the evolving interfacing boundaries, some
conditions, illustrated in Figure 1, coming from the conservation of mass and
the equation of motion should be properly imposed. This implies that posi-
tions and parameters of boundary conditions depend on a given topology. This
explicit boundary issue is also observed in hydrostatics and electromagnetic
structures [2]. To make it possible to compute these design dependent bound-
ary conditions, an explicit boundary representation as known from shape op-
timization must be used. However, in topology optimization relying on the
localized density, this is not possible.

2. u/p MIXED FORMULATION FOR THE
ACOUSTIC-STRUCTURE INTERACTION
PROBLEM

In this paper, instead of separately solving the Helmholtz equation and the
linear elasticity equation, we propose to adopt the mixed displacement/pressure
(u/p) finite element formulation, in which the displacements as well as the
pressure are the primal variables for both physical regions [3, 4]. Moreover,
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the material interpolation scheme based on the SIMP (Solid Isotropic Material
with Penalization) method [1] must account for the interpolation between the
material properties of air (fluid) and solid.

2.1 The Mixed Finite Element Formulation for the
Acoustic-Structure Interaction Problem

Rather than using only the displacements of nodes as the primal variables, in
the mixed finite element procedure, pressure is added as an additional primal
variable and the constitutive equation involving pressure and displacements is
implemented in a finite element context.

2.1.1 Basic Principle of the Mixed Finite Element Formulation. In
the mixed finite element formulation, the (2D) governing equation, without
consideration of body force, and the constitutive equation are formulated as
follows:

Frequency domain equilibrium equation: ∇σ = −ω2ρu on �, (1)

Stress and strain relationship: σ = Kεvδ + 2Ge, (2)

Pressure and volumetric strain relationship: p = −Kεv (3)

e = ε − εv

2
δ, εv = �V

V
= εkk, (4)

where K, G and ρ are the bulk modulus, the shear modulus, and the density in
the analysis domain �, respectively. The deviatoric strain components and the
volumetric strain are denoted by e and εv, respectively, and δ is Kronecker’s
delta.

The basic approach of displacement/pressure finite element formulations is
to interpolate the displacements and the pressure, simultaneously. This re-
quires that we express the principle of virtual work in terms of the independent
variables u and p, which gives∫

V

δeT Cσ dV −
∫
V

pδεv dV =
∫
�

−ω2ρδuT u d�+
∫
Sf
δuT fS

f

dSf , (5)

∫
V

(p/K + εV )δp dV = 0, (6)

(σ + pδ) = C′
(

ε − 1

2
εvδ

)
. (7)

The virtual displacement and the corresponding strains are denoted by δu and
δε, respectively, and C′ is the stress-strain matrix for the deviatoric stress and
strain component.
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In this mixed displacement/pressure finite element formulation, three in-
volved material properties, the bulk modulus (K), the shear modulus (G), and
the density (ρ) in Equations (1)–(7), are alternated with respect to the acoustic
domain and the structural domain. For instance, if the analysis domain � is
assumed to be divided into a structural domain �s and an acoustic domain �a ,
these three material properties are varying as follows:

� = �s ∪�a, �s ∩�a = 0, (8)

For structural domain: K ≡ Ks, G ≡ Gs, ρ ≡ ρs on �s, (9)

For acoustic domain: K ≡ Ka, G ≡ Ga = 0, ρ ≡ ρa on �a, (10)

where the subscripts ‘s’ or ‘a’ on the bulk, the shear and the density denote
whether the corresponding material properties are belonging to the structural
domain or the acoustic domain, respectively.

2.1.2 The Derivation of the Wave Equation from the Mixed Displace-
ment/Pressure Formulation. The analysis procedure for response of linear
solid media by the mixed displacement/pressure finite element procedure is
well understood. However, in case of the acoustic domain, it requires some al-
gebra to derive the Helmholtz equation from the mixed displacement/pressure
formulation by assigning the appropriate material properties.

Setting the shear modulus to zero makes it possible to derive the Helmholtz
equation on the acoustic domain from the mixed displacement/pressure formu-
lation.

K ≡ Ka, G = Ga = 0, ρ ≡ ρa. (11)

The governing equation (1) and the constitutive equation (3) may then be
simplified as follows:

∇p − ω2ρau = 0, (12)

∇ · u + p

Ka

= 0. (13)

Note that Equations (12) and (13) can be regarded as the linearized Euler’s
equation and the linear continuity equation, respectively, which together con-
stitute the basis of the linear wave equation [5]. Substituting the displacement
in (12) into Equation (13), the Helmholtz equation (the frequency dependent
wave equation for the pressure variable) can be derived:

∇ ·
(

1

ρa
∇p

)
+ ω2 1

Ka

p = 0. (14)

This shows that we can imitate the wave equation (or Helmholtz equation)
using the mixed displacement/pressure finite element problems with the proper
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bulk, shear modulus, and the fluid density corresponding to air or fluid domain
as well as the proper boundary conditions for the pressure and displacements.
(This can be conceptually understood because the acoustic pressure is in fact
generated by the harmonic movement of the fluid element.)

2.2 Parameterization Method for Topology Optimization

For the mixed finite element governing equation to alternate between the Helm-
holtz equation and the linear elasticity equation, the involved material proper-
ties, i.e., the bulk modulus, the shear modulus, and the mass density, should
be properly interpolated with respect to the design variables follwing Equa-
tions (8)–(10) [2]. In this paper, the nodal design variable method based on the
SIMP (Solid Isotropic Material with Penalization) is used:

K(γ ) = Ksγ
n1 + (1 − γ n1)Ka, (15a)

G(γ ) = Gsγ
n1 +Ga(1 − γ n1) = Gsγ

n1, (15b)

ρ(γ ) = ρsγ
n2 + (1 − γ n2)ρa, (15c)

0 ≤ γ ≤ 1, (15d)

where γ is the nodal design variable. The penalty factors for the bulk modulus,
the shear modulus, and the density are denoted by n1 and n2, respectively. In
these interpolation functions, the solid media can be represented when is one
and the acoustic media when γ is zero. Positive values between 1 and 3 are
used for n1 and n2 = 1.

3. TOPOLOGY OPTIMIZATION OF
ACOUSTIC-STRUCTURE INTERACTION
PROBLEMS

In this section, an analysis example as well as topology optimization prob-
lems for the acoustic-structure interaction structures will be solved with the
developed mixed displacement/pressure (u/p) finite element procedures and
the method of moving asymptotes [6].

Case 1: The pressure calculation by the mixed finite element formulation
In order to verify the analysis code we first solve the simple wave propagation
problem shown in Figure 2(a) by the Helmholtz equation as well as the mixed
finite element formulation with the same discretization. Figure 2(b) shows the
pressure distributions along cross-section AA′ obtained by the mixed finite ele-
ment formulation and the Helmholtz equation, respectively. It is hereby shown
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Figure 2. Analysis example 1: Acoustic domain analysis with the mixed formulation with
various boundary conditions. (a) Problem definition (where pfix = 123 Pa and pin = 1000 Pa),
(b) the pressure distribution of the cross section, (c) the pressure distribution by the Helmholtz
equation, and (d) the pressure distribution by the mixed finite element procedure.

that it is possible to implement the Helmholtz equation by the studied mixed
finite element formulation.

Case 2: Topology optimization for flexible partition
For an illustrative topology optimization example, a design problem shown in
Figure 3 is considered. By designing a structure inside the structural (design)
domain, the noise level in a defined domain should be minimized. The object-
ive function is defined as the minimizing of the integral of the pressure.

Minimize
γ

φ =
∫
�0

|p| d� (where the objective domain is defined by �0).

(16)
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(a)

(b)

Figure 3. Topology optimization for a flexible partition. (a) The definition of optimization
problem (where E, ν, and ρs are Young’s modulus, the Poisson’s ratio, and the structural dens-
ity, respectively. pin is set to −1.0 × 103 Pa), (b) the initial frequency response functions of the
objective function with two different mass densities.

At first, the initial frequency response functions of the defined objective func-
tion for two different mass densities (ρ = 11 and 15 kg/m3) are presented in
Figure 3(b) with the whole design domain filled with solid. Important differ-
ences between these two frequency response functions can be observed. As
expected, the eigenfrequencies for ρ = 11 kg/m3 are higher than those for
ρ = 15 kg/m3. Setting the excitation frequency to 5/2π between two hills in
Figure 3(b) and minimizing the objective function, one can imagine the dif-
ferent behaviors of these frequency response functions during optimization.
In Figures 4 and 5, the optimized results and the frequency response func-
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Figure 4. Optimization results with ρ = 11 kg/m3. (a) An optimized result (φoptimized =
250.93 N), (b) the pressure distribution, and (c) the frequency response.

tions are plotted. When the heavier mass density (ρ = 15 kg/m3) is used, the
second eigenfrequency is placed to the left of the excitation frequency. Thus,
to minimize the objective function, the optimized result will be one having
low fundamental eigenfrequency. Oppositely, with the lighter structural dens-
ity ρ = 11 kg/m3, the fundamental eigenfrequency is placed to the right of
the excitation frequency. This leads to an optimized result having larger fun-
damental eigenfrequency as Figure 4 shows. Some observations can be made
here. First, it can be postulated that optimization topology for frequencies
between eigenfrequencies will have similar topologies. Second, minimizing
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Figure 5. An optimization result with ρ = 15 kg/m3. (a) An optimized result (φoptimized =
129.27 N), (b) the pressure distribution, and (c) the frequency response function.

the response below the fundamental frequency is very similar to maximizing
the fundamental eigenfrequency as seen in Figure 4. It should also be noted
that the sharp peaks seen at regular intervals in the response function corres-
pond to acoustical eigenmodes with little influence on the structural behaviour.

4. CONCLUSION

Using a mixed displacement/pressure formulation, we can solve acoustic-
structure interaction problems using a standard density based topology optim-
ization approach. By changing the bulk modulus, the shear modulus, and the
density in the mixed displacement/pressure formulation, the Helmholtz equa-
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tion and the linear elasticity equation can be recovered. Topology optimization
of acoustic-structure interaction structures is demonstrated and the behavior of
the optimized designs was interpreted.
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Abstract: We consider topology optimization of mass distribution problems in 2D and 3D
Stokes flow with the aim of designing devices that meet target outflow rates.

For the purpose of validation, the designs have been post processed using
the image processing tools available in FEMLAB. In turn, this has enabled an
evaluation of the design with a body fitted mesh in a standard analysis software
relevant in engineering practice prior to design manufacturing.

This work investigates the proper choice of a maximum penalization value
during the optimization process that ensures that the target outflow rates are met
in the validation test.

Keywords:
COMSOL.

1. INTRODUCTION

Shape optimization for fluid mechanics problems is now an established re-
search field [9]. However, the application of topology optimization tools is
quite recent. Topology optimization of fluid network problems was treated by
Klarbring and Petersson [8], the concept of a topological derivative has been
introduced as a new tool for shape optimization by Guillaume and Idris [7],
and Borrvall and Petersson [2] investigated topology optimization of Stokes
flow problems to design energy efficient fluid devices. The latter seminal work
was extended including the effect of inertia in [4, 5, 11, 10]. New work on
topology optimization of transport problems was presented in [14].

The present work elaborates on the idea of designing a fluid device that
meets quantitative performance measures. Here we consider topology optim-

Topology optimization, fluid dynamics, FEM, sensitivity analysis, FEMLAB,
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ization of mass distribution devices in 2D and 3D Stokes flow that meet a uni-
form target outflow rate. This is a new extension of topology optimization in
fluid dynamics, since previous works in the field have focused on minimizing
the rate of energy dissipation [2] or obtaining a special qualitative behavior of
the fluid, see [5, 10].

Also, we are concerned with post processing of a design prior to manufac-
turing, i.e. the interpretation of the design that defines the optimized geometry.
We investigate the value of the penalization that gives reasonable agreement
between the finite element model used during the optimization process and the
optimized geometry run in a standard analysis software. Finally we show how
easily the post processing steps are done using FEMLAB1 and thereby we sug-
gest that such a check should be performed as a standard check by researches
in the field of topology optimization that have access to FEMLAB.

2. TOPOLOGY OPTIMIZATION IN STOKES FLOW

Topology optimization problems in Stokes flow was introduced in [2], which
the present study extends by also including target outflow rates as part of the
optimization problem. The topology optimization problem is stated in the gen-
eric form below, see [1] for more details

min
â∈Rm

 = ∫
�

∇u · ∇u + αu · u (1)

subject to
∫
�
a ≤ VfV (2)

(fi − 1)2 ≤ ε2, i = 1, . . . , Nout (3)

a = ∑m
j=1 ψj(x)âj (4)

10−3 ≤ âi ≤ 1, i = 1, . . . , m (5)

α = α + (α − α)a
1+q
a+q (6)

−∇2u + α(a)u + ∇p =0 in �

∇ · u =0 in �

u =g on �D
∂u
∂n

− np =0 on �N

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(7)

The problem is to choose the m-dimensional vector â of design parameters
such that the rate of energy dissipation (1) is minimized subject to box con-
straints (5), a volume constraint (2), and constraints (3) on the outflow rates of
the device. Parameter fi is the outflow rate at the i-th outlet channel scaled
with the target flow rate, and ε is the relative tolerance on the outflow rate; in
the present case ε = 0.005 ensuring that the flow rates differ no more than 1%.

The effect of the design parameters â is visible in the Stokes equations (7)
as the control term α. Following standard topology optimization ideas â is
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interpolated through an interpolation function (6) which is based on a finite
element interpolation (4). In turn this means that a large value of α $ 1 cor-
responds to a “solid” (porous material) and a small value of α � 1 corresponds
to a fluid obeying the Stokes equations. Using topology optimization with this
interpretation we can determine an optimal fluid layout.

The first term in the cost function (1) measures the velocity gradients which
is the mathematical link to energy dissipation. The second term plays a differ-
ent role, it penalizes large velocities in “solid” areas. Furthermore, in order to
obtain final designs with | log10 α| > 1 we have also added penalization of the
form α(α − α) when needed. When doing this an extra adjoint problem needs
to be solved in the sensitivity analysis, however when the number of outlets is
large this does not increase the computational effort significantly.

In the present problem the presence of the volume constraint (4) lacks a
practical engineering motivation, because there is no economical cost of al-
lowing more fluid to flow through the device. One could speculate that if the
weight of the fluid device was to be minimized, such a constraint could be rel-
evant. Nonetheless, numerical evidence suggest that the volume constraint is
necessary in order to ensure a well-posed optimization problem.

Equation (7) is the Stokes equations given in the strong form where the in-
compressibility constraint has been used to decouple the velocity components
such that the Laplacian appears. This is a well known trick in fluid mech-
anics [6] which makes the problem well suited for a parallel implementation.
Note, however, that this alters the boundary conditions compared to [2]. For
the boundary condition on �N to be valid one needs a down stream (pipe type)
flow, which requires inlets/outlets to be added to the design domain. This was
also introduced in [10] and is relevant to include in the modeling since this
boundary condition often occurs in experimental practice. For optimization
purposes this has the consequence that the symmetry boundary condition –
frequently used in optimization of solid mechanics problems – does not apply.

The optimization problem (1)–(7) is solved using the gradient driven MMA
algorithm [12, 13] in combination with a finite element solver for equation (7).
FEMLAB is used as a finite element library and also provides semi-analytical
sensitivities. A continuation approach is used such that penalization parameter
q is gradually increased to obtain a 0 − 1 design.

2.1 Investigation of Proper Penalization

To illustrate the effect of the penalization parameter α we consider a quantit-
ative design problem. First, consider the example shown in Figures 1(a)–1(b)
where the outflow rates are fixed through the choice of boundary conditions.
This design problem is similar to designs that minimize the rate of energy dis-
sipation subject to a low fluid volume fraction, see, e.g., [2]. Now, changing
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(a) Boundary conditions (D). The velo-
city profile is prescribed at the bound-
ary and the design domain is colored
grey. At edges without a label the no-slip
boundary condition is enforced.

(b) Using the BCs in Figure 1(a), the rate of en-
ergy dissipation is minimized.

(c) Boundary conditions (D+N). The ve-
locity profile is prescribed at the inlet and
the pressure is fixed at the outlet. The
design domain is colored grey and edges
without a label have the no-slip boundary
condition imposed.

(d) Using the BCs in Figure 1(c), the rate of en-
ergy dissipation is minimized with a constraint
on the difference between the outflow rates.

Figure 1. Mass distribution example where the amount of fluid in the device is fixed. As
expected, the outflow boundary makes a difference on the design.

the boundary conditions such that the outflow rates depend on the design gives
a new problem, cf. Figures 1(c)–1(d). The result shown in Figure 1(d) is able
to deliver uniform outflow rates within the 1% tolerance, a feature the design
in Figure 1(b) does not have when subjected to the boundary conditions seen in
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(a) Geometry created from the level
curve of the velocity |u| = 0.1 in the
design setting, cf. Figure 1(d).

(b) Geometry created from the level curve
of the velocity |u| = 0.01 in the design
setting, cf. Figure 1(d).

Figure 2. Post processed designs. The values of the colored level curves, depicting the mag-
nitude of the velocity, are seen in the color bar. The geometry in Figure 2(a) is smooth because
the no-slip boundary condition is only loosely incorporated in the post processing procedure.

Figure 1(c). One problem remains, however, in engineering practice the cred-
ibility of above results would be low, since the design in Figure 1(d) has not be
validated in standard software.

Different interpretations of the design in Figure 1(d) are possible. First,
the design is a 0 − 1 design which is desirable since it has a clear physical
meaning. Unfortunately, the corresponding level curve of α may be too rough
such that the number of unknowns grows beyond what can be solved in prac-
tice. Secondly, for the optimized geometry the no-slip condition is enforced on
channel walls. This motivates the use of a level curve of the magnitude of the
velocity which also produces a smooth boundary, see Figure 2.

Although the procedure used in Figure 2 yields an optimized geometry that
is smooth, it is required – in order to obtain a meaningful level curve in Fig-
ure 2(b) – to use a larger maximum value α in (6) than the value used during the
optimization process. The winkles in this figure are due to the coarse design,
but one would think that the no-slip condition is critical in reproducing the be-
havior seen in figure 1(d) for the optimized geometry . On the poster presented
at the symposium, this was investigated in greater detail by a comparison of α
and the performance of the optimized geometries.
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(a) Topology design. (b) Interpretation given as a jpg picture:
Level curve of the magnitude of the velo-
city.

(c) FEMLAB mesh of the optimized geo-
metry.

(d) Standard run in FEMLAB.

Figure 3. Illustrations of FEMLAB as a post processing tool. Figure 3(a) is a typical picture
seen in topology optimization from which an optimized geometry can be extracted. This is
done using a post processing procedure (level curve of the control variable α, the magnitude
of the velocity etc.), see Figure 3(b). This picture can be imported in FEMLAB and meshed
(Figure 3(c)) which enables a validation run in standard software (Figure 3(d)).

2.2 Postprocessing Steps

Running FEMLAB with MATLAB one can create a mesh based on level curves
of a standard picture, such as a jpg picture. This we find to be a valuable tool
for developing topology design since it enables a validation check of planar
designs produced important to engineering practice. Figure 3 shows as an
example how this can be done as a supplement to the MATLAB code shown
below.
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MATLAB Code.

clear all
close all

% Get jpg file
[fn,pn]=uigetfile(’*.jpg’);

% Read image
pic=imread([pn fn]);

% Get coutours as a FEMLAB geometry object
[c_fl,r] = flim2curve(pic,{[],0:120:255},’KeepFrac’,0.1);
% Fix FEMLAB bug
c = mirror(c_fl,[0 1] ,[0 1]);

% Plot using FEMLAB routine
figure(1)
geomplot(c,’Pointmode’,’off’);

figure(2)
geomplot(c_fl,’Pointmode’,’off’);
% Plot all small curves in a red color.
for j = 1:length(r)

hold on, geomplot(r{j},’Pointmode’,’off’,’edgecolor’,’r’,’linewidth’,2)
end

% In FEMLAB, use ’Import geometry objects’. Type ’c’

2.3 Ongoing Research

Advanced 2D Example. This design problem is an extension of the prob-
lem described in Section 2.1. It is more difficult due to the number of outlets,
thus it requires a fine mesh and it yields 10 adjoint problems, one for each out-
let. For this problem extra penalization was needed – giving one extra adjoint
problem – to avoid intermediate densities near the outlets (a porous plug). The
final design was obtained after 400 MMA iterations using UMFPACK as the
direct sparse linear algebra solver, see Figure 4.

3D Simulations. Here we investigate the influence of the effects of 3D
fluid modeling on the design. These effects are present even in Stokes flow
(where the velocity components decouple) since the problem is posed on a
finite domain. In Figure 5 we show preliminary 3D designs of the 3D version
of the problem presented in Section 2.1.

The computations are substantially larger for the 3D problem. These invest-
igations we carry out on a SUN computer using the parallized SUN Perform-
ance Library to solve the large sparse linear algebra problems.
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(a) Topology design. Intermediate values
of the control term appear as black.

(b) Topology design. The height shows
log10 to the control term α. White areas
should be filled with fluid and grey areas
(at the top) should be filled with solid.

Figure 4. Advanced 2D design. The goal is to obtain uniform outflow rates in the 10 channels
while minimizing the rate of energy dissipation and obeying a volume constraint. The numbers
at the color bar are log10 to the control term α.

(a) 3D slice plot of the design field. (b) 3D tetrahedron plot of the design field.

(c) Mesh used (d) u3 component of the velocity field. It is
non-zero, but small.

Figure 5. Future research is directed towards investigating the effect of 3D fluid response on
the design.
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Abstract: In this paper a method to control acoustic properties in a room with topology op-
timization is presented. It is shown how the squared sound pressure amplitude in
a certain part of a room can be minimized by distribution of material in a design
domain along the ceiling in 2D and 3D. Nice 0-1 designs can be obtained when
optimizing for low frequencies, but for higher frequencies the method results in
complicated designs with porous material.

Keywords: Topology optimization, room acoustics, Helmholtz equation, 2D and 3D prob-
lems, Padé expansions.

1. INTRODUCTION

This paper presents a method to control acoustic properties in a room by means
of topology optimization.

So far topology optimization has only been applied to a few problems in
acoustics. In [1, 2] results are presented for an inverse acoustic horn and an
acoustic horn, respectively. In [3] an example is shown where the shape of a
reflection chamber is optimized to reflect waves, first for a single frequency
and then for an entire frequency interval. The equation governing the wave
propagation is the Helmholtz equation and in the article material interpolation
functions for the inverse density and bulk modulus as function of the design
variable are suggested to formulate the topology optimization problem. The
model has resulted in nice optimized designs and is thus used as the basis for
the model in this paper. See [4] for a detailed description of the general topo-

∗This work is an overwiew of a master thesis carried out at Department of Mechanical Engineering, Solid
Mechanics, Technical University of Denmark, during the period from the 2nd of May to the 15th of Decem-
ber 2005 with Professor Dr.techn. Ole Sigmund, Professor Dr.techn. Martin Bendsøe and Associate Pro-
fessor, Ph.D. Jakob Søndergaard Jensen as supervisors.
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logy optimization method and how it has been applied to problems in various
engineering fields.

The problem considered here is a rectangular room in two or three dimen-
sions bounded by rigid walls and with a source emitting sinusoidal sound
waves. The task is to distribute material in a design domain along the ceil-
ing, such that the squared sound pressure amplitude is minimized in a certain
area of the room (the optimization domain). The problem of minimizing this
quantity in a room is interesting for various applications for instance in car
cabins where the noise from the motor can be reduced at the positions of the
driver and passengers and in rooms where people are working at certain posi-
tions among noisy machinery.

2. THE ACOUSTIC MODEL

The governing equation of steady-state acoustic problems with sinusoidal sound
waves is the Helmholtz equation

∇ · (ρ−1∇p̂)+ ω2κ−1p̂ = 0. (1)

Here p̂ is the complex pressure amplitude and depends on the position r. ρ is
the density and κ is the bulk modulus for the acoustic medium in which the
sound propagates. ω is the angular frequency at which the acoustic system
is driven. The real physical sound pressure p is found as the real part of p̂.
The optimized design found by the topology optimization is a distribution of
air and solid material and the material properties ρ and κ must take values
corresponding to either air or solid material depending on the position. For
air the material properties are (ρ, κ) = (ρ1, κ1) and for the solid material
(ρ, κ) = (ρ2, κ2), where large values of ρ2 and κ2 correspond to a reflecting,
rigid material and smaller values correspond to an acoustic medium where the
waves are partly reflected and partly transmitted. The material values used in
the project are ρ1 = 1.204 kg/m3 and κ1 = 141.921 · 103 N/m2 for air and
ρ2 = 2643.0 kg/m3 and κ2 = 6.87 · 1010 N/m2 for solid material (aluminum).

To introduce the design variable ξ in the following section it is convenient
to use the two variables

ρ̃ = ρ

ρ1
=

{
1, air,
ρ2
ρ1
, solid, κ̃ = κ

κ1
=

{
1, air,
κ2
κ1
, solid. (2)

When Equation (1) is rescaled with these variables Helmholtz equation takes
the form

∇ · (ρ̃−1∇p̂)+ ω̃2κ̃−1p̂ = 0. (3)

376



Topology Optimization for Acoustic Problems

Here ω̃ = ω/c is a scaled angular frequency and c = √
κ1/ρ1 is the speed of

sound in air. To solve the problem the two boundary conditions are used

n · (ρ̃−1∇p̂) = 0, n · (ρ̃−1∇p̂) = −iω̃√
κ1ρ1U. (4)

The first boundary condition describes a perfectly reflecting surface and is em-
ployed for the rigid walls of the room. The second boundary condition ex-
presses a vibrating surface with the vibrational velocity U and is used to imitate
a point source emitting sinusoidal sound waves.

3. DESIGN VARIABLES AND MATERIAL
INTERPOLATION

In topology optimization the task is to find a distribution of air and solid mater-
ial in the design domain �d for which the objective function is optimized. The
way to find the optimal design in acoustic problems is to allow the material
properties κ̃ and ρ̃ to take any value in between the values for air and solid
material during the optimization process. To control the intermediate material
properties a continuous material indicator field 0 ≤ ξ ≤ 1 is introduced, where
ξ = 0 corresponds to air and ξ = 1 to solid material. The material proper-
ties are now functions of ξ . Thus the two continuous property interpolation
functions ρ̃(ξ ) and κ̃(ξ ) have to meet the conditions

ρ̃(ξ ) =
{

1, ξ = 0,
ρ2
ρ1
, ξ = 1, κ̃(ξ ) =

{
1, ξ = 0,
κ2
κ1
, ξ = 1. (5)

The final design is only allowed to contain material corresponding to ξ = 0
and ξ = 1 in order to be able to produce it. This can be obtained by choosing
interpolation functions that somehow provide this property. In [3] it is sug-
gested to find the interpolation functions by looking at a 1D acoustic system
where a wave with an amplitude of unit magnitude propagates in air and hits
an interface to an acoustic medium. The amplitudes R and T of the reflected
and transmitted waves are

R =
√
κ̃ ρ̃ − 1√
κ̃ ρ̃ + 1

, T = 2√
κ̃ ρ̃ + 1

. (6)

This means that R → 1 and T → 0 for κ̃ ρ̃ → ∞ when the wave is reflected
from a perfectly rigid surface, and R → 0 and T → 1 for κ̃ ρ̃ → 1 when
the wave just continuous in air. Experience shows that good 0-1 designs are
obtained if the interpolation functions are chosen, such that the reflection from
the acoustic medium is a smooth function of ξ with non-vanishing slopes at
ξ = 1. According to [3] such functions are obtained if the inverse material

377



M.B. Dühring

properties are interpolated between the two material phases as follows:

ρ̃(ξ )−1 =
(

1 + ξq1

((ρ2

ρ1

)−1 − 1
))

·
(

1 + iω̃ν1

)
, (7)

κ̃(ξ )−1 =
(

1 + ξq2

((κ2

κ1

)−1 − 1
))

·
(

1 + i
ν2

ω̃

)
. (8)

The factors ν1 and ν2 in the imaginary terms are small quantities below 1 which
are introduced to incorporate material damping in the model. The term includ-
ing ν2 damps the lowest modes most, whereas the term with ν1 damps the
highest modes most. The two factors q1 and q2 are penalty factors which are
used to penalize intermediate material properties.

4. THE OPTIMIZATION PROBLEM

The objective function  considered in this paper is the average of the squared
amplitude of the sound pressure over the optimization domain, �op. The for-
mulation of the optimization problem then takes the form

min
ξ

log() = log

(
1∫

�op
dr

∫
�op

|p̂(r, ξ )|2dr

)
, Objective function (9)

subject to
1∫

�d
dr

∫
�d

ξ(r)dr − β ≤ 0, Volume constraint (10)

0 ≤ ξ(r) ≤ 1, Design variable bonds
(11)

The optimization problem is solved using the Method of Moving Asymptotes
(MMA) [5] and as this algorithm is performing best for moderate values of
the objective function the logarithm is taken. A volume constraint is employed
to put a limit on the amount of material distributed in the design domain �d.
Here β is a volume fraction of allowable material and takes values between
0 and 1, where β = 1 corresponds to no limit. To fulfil the constraint from
the beginning of the optimization the initial guess for the optimized design is
simply to have a uniform distribution of material in the design domain with the
volume fraction β. The final design is dependent on both the initial guess and
the allowable amount of material to be placed and is therefore dependent on β.
Hence β can be varied to obtain good and usable designs.

5. DISCRETIZATION AND SENSITIVITY ANALYSIS

The mathematical model of the physical problem is given by the Helmholtz
equation (3) and the boundary conditions (4) and to solve the problem finite
element analysis is used. Hence the complex pressure amplitude field p̂ and
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the design variable field ξ are discretized using sets of finite element basis
functions {φi,n(r)}

p̂(r) =
N∑
n=1

p̂nφ1,n(r), ξ(r) =
Nd∑
n=1

ξnφ2,n(r). (12)

The values of the degrees of freedom (dofs) corresponding to the two fields are
assembled in the vectors p̂ = {p̂1, p̂2, . . . , p̂N }T and ξ = {ξ1, $2, . . . , ξNd

}T .
For the model in 2D a triangular element mesh is used and tetrahedral elements
are used in 3D to subdivide the domain. Quadratic Lagrange elements are used
for the complex pressure amplitude p̂ to obtain high accuracy in the solution
to the governing equation and for the design variable linear Lagrange elements
are used.

The commercial program Femlab is employed to do the finite element
analysis where the Helmholtz equation and the boundary conditions are written
in general form and discretized by the standard Galerkin method, see [6]. This
results in solving the discretized equation

K0(p̂ − p̂0) = L0, (13)

where the stiffness matrix K and the residual vector L are evaluated for the
linerization point p̂0, which is indicated by the subscript 0.

To update the design variables in the topology optimization the derivatives
with respect to the design variables of the objective and the constraint function
are needed. First the derivative of the objective function is found. p̂ is an
implicit function of the design variables, because a solution p̂(ξ) can be found
for any ξ . Thus the derivative of the objective function  = (p̂(ξ), ξ) is
given by the following expression found by the chain rule:

d

dξ
= ∂

∂ξ
+ ∂

∂p̂
∂p̂
∂ξ

. (14)

As p̂ is an implicit function of ξ the derivative ∂p̂/∂ξ is not directly known,
so it is convenient to do the sensitivity analysis by use of the standard adjoint
method. By this method the unknown derivative is eliminated at the expense
of determining a set of Lagrange multipliers λ from the adjoint equation

KT λ = ∂

∂p̂
. (15)

The equation for the derivative of the objective function then reduces to

d

dξ
= ∂

∂ξ
+ λT

∂L
∂ξ

. (16)
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To do the optimization the derivative of the constraint function with respect to
the design variable is also needed. The derivative with respect to one of the
design variables is

∂

∂ξn

(
1∫

�d
dr

∫
�d

ξ(r)dr − β

)
= 1∫

�d
dr

∫
�d

φ2,n(r)dr. (17)

The vectors ∂/∂ξ , ∂/∂p̂ and
∫
�d
φ2,n(r)dr as well as the matrix ∂L/∂ξ

are assembled in Femlab as described in [6]. As problems occur when the
derivative of |p̂|2 is calculated by the symbolic differentiation available from
Femlab (to get ∂/∂ξ ) it is instead calculated by hand as

d

dp̂
(|p̂|2) = 2(Re(p̂)− iIm(p̂)). (18)

As the logarithm is taken to the objective function the sensitivities are also
modified as follows:

d
(

log((ξ)
)

dξ
= 1

(ξ)

d(ξ)

dξ
. (19)

6. OPTIMIZATION OF A RECTANGULAR ROOM
IN 2D

The squared sound pressure amplitude is now minimized over the optimization
domain �op by distributing material in the design domain �d in a rectangular
room in 2D as shown in Figure 1. The volume fraction is chosen to β = 0.15,
the vibrational velocity of the pulsating circle is U = 0.01 m/s and the angular
frequency is ω = 217.125 rad/s, which is chosen as it is a natural frequency
for the room with the initial guess of the material distribution. The maximum

Figure 1. The dimensions of the rectangular room in 2D with the design domain �d, the
optimization domain �d and the point source with the vibrational velocity U .
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Figure 2. Top: the optimized design for a single frequency, bottom left: the sound pressure
amplitude for the initial guess, bottom right: the sound pressure amplitude for the optimized
design.

length of an element side hm is set to 0.3. An absolute tolerance of 0.01 on the
maximal change of the design variables is used to terminate the optimization
loop. The penalty factors are both equal to 1.5 and the damping factors are
ν1 = 0 and ν2 = 0.001. The optimized design was found in 158 iterations
and the objective function was reduced from 6.052 Pa2 to 1.012 · 10−3 Pa2.
Figure 2 shows the optimized design and the sound pressure amplitude for the
initial guess and the optimized design, respectively. It is clearly seen that in
comparison to the initial guess the redistributed material in the design domain
is influencing the sound pressure in the room, so it is nearly zero in the optim-
ization domain �op, note the different scales on the color bars. Figure 3 shows
the transfer function for the initial guess and the optimized design, where  is
plotted as function of ω. It is seen that in comparison to the initial guess the

Figure 3. Transfer function for the rectangular room; left: for initial guess, right: for optim-
ized design.
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(a) iter: 29,  = 0.0039, hm = 0.7. (b) iter: 64,  = 0.0028, hm = 0.5.

(c) iter: 147,  = 2.072 · 10−4, hm = 0.4. (d) iter: 77,  = 0.0021, hm = 0.3.

(e) iter: 55,  = 0.0059, hm = 0.2. (f) iter: 150,  = 0.0062, hm = 0.1.

Figure 4. Optimized designs of the rectangular room for decreasing values of hm.

(a) iter: 80,  = 0.0056, hm = 0.7. (b) iter: 80,  = 0.0025, hm = 0.5.

(c) iter: 39,  = 0.0029, hm = 0.4. (d) iter: 56,  = 0.0021, hm = 0.3.

Figure 5. Optimized designs of the rectangular room for decreasing values of hm and ω =
4 · 217.125 rad/s.

natural frequencies for the optimized design have changed, and instead of a
high response for ω = 217.125 rad/s there is now a very low response for this
frequency.

It is possible to get mesh-independent designs if the sensitivities are filtered
as described in [4]. The idea is to modify the sensitivities d/dξn for each
degree of freedom using a weighted average of the sensitivities in a fixed
neighborhood of the actual degree of freedom. The radius of the neighbor-
hood is given by rmin. In Figure 4 the results are shown for decreasing hm
and the quantities used are rmin = 0.6hm, q1 = q2 = 1.5, ν2 = 0.001 and
ω = 217.125 rad/s. For this example nice 0-1 and mesh-independent designs
are obtained.

In the previous examples a low frequency has been used resulting in nice
optimized designs. In the next example the room is optimized for the quantities
ω = 4 · 217.125 rad/s, β = 0.5, q1 = q2 = 3, ν2 = 0.001 and rmin =
1.0hm. The optimized designs for decreasing hm are seen in Figure 5. The
designs consist of complicated structures with a mixture of porous materials
and they clearly indicate that it is difficult to get good 0-1 solutions for high
angular frequencies. The reason is that for increasing angular frequency the
distribution of the sound pressure amplitude in the room gets more complex
and the design needed to minimize the objective function will naturally also
consist of more complicated shapes and be more difficult to find.

The optimization problem is now changed such that the optimization is done
for an entire frequency interval. The method is to minimize the sum of re-
sponses for a number of target frequencies ωi in the interval considered. The
critical frequencies in the interval are then updated at regular intervals during
the optimization. The objective function  as function of the frequency is ap-
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Figure 6. Top: the optimized design for the angular frequency interval [115;145] rad/s, bot-
tom: the transfer function for the initial guess and the optimized design.

proximated using Padé expansions, see [7]. The room from Figure 1 is now
optimized for the interval [115;145] rad/s using 5 target frequencies where the
target frequencies are updated for each 25th optimization iteration. The quant-
ities used in the optimization is β = 0.9, hm = 0.3, q1 = q2 = 1.5, ν2 = 0.001
and rmin = 0.7hm. The optimized design obtained after 56 iterations is illus-
trated in Figure 6 together with the transfer function for the initial guess and
the optimized design. It is seen from the two graphs that the objective function
is minimized almost in the entire interval for the optimized design and that the
high peaks have disappeared.

7. OPTIMIZATION OF A RECTANGULAR ROOM
IN 3D

The optimization problem is now extended to 3D problems and a rectangular
room with the geometry shown in Figure 7 is considered. The optimization
is done for the interval [264;276] rad/s for a single target frequency which is
updated for every 15th iteration. The quantities β = 0.5, hm = 0.4, q1 = q2 =
1.5, ν2 = 0.001 and rmin = 0.5hm are used. The optimized design obtained
after 46 iterations is shown in Figure 8 as well as the transfer function for the
initial guess and the optimized design. The material in the design has been
placed along the two walls in the y-direction and the graphs show that the
objective function is minimized in the entire interval for the optimized design
compared to the initial guess.
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Figure 7. The dimensions of the rectangular room in 3D with the design domain �d, the
optimization domain �op and the point source with the vibrational velocity U .

Figure 8. Top: the optimized design for the frequency interval [262;278] rad/s, bottom: the
transfer function for the initial guess and the optimized design.
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8. CONCLUSION AND FURTHER WORK

In this paper the topology optimization method is employed to minimize the
squared sound pressure amplitude in a certain part of a rectangular room with
rigid walls by distribution of material in a design domain along the ceiling. The
method is based on continuous material interpolation functions in the inverse
density and bulk modulus and is developed for problems in 2D and 3D.

It is shown that for low frequencies nice mesh-independent, 0-1 designs can
be obtained for a single frequency or a frequency interval for proper choices
of penalty factors and when a mesh-independent filter is used. However, for
higher frequencies the designs consist of complicated structures with a mixture
of porous materials due to the more complex distribution of sound pressure
amplitude in the room.

Further work includes optimization of rooms with more complicated geo-
metries, with several sound sources and obstacles placed around the room. In
addition the boundaries can have different reflecting and absorbing properties.
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Abstract: Topology optimization is demonstrated as a useful tool for systematic design of
wave-propagation problems. We illustrate the applicability of the method for
optical, acoustic and elastic devices and structures.
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1. INTRODUCTION

We consider steady-state wave-propagation governed by the 2D Helmholtz
equation:

∇ · (A(x)∇u(x))+ ω2B(x)u(x) = 0, (1)

where ω is the wave frequency, u(x) is some scalar and complex amplitude
function, and A(x) and B(x) are position-dependent coefficients that depend
on the problem. Table 1 lists the coefficients that can be applied to model
acoustic, elastic and optical wave-propagation. A topology optimization al-
gorithm [1] is applied based on a finite element discretization of Equation (1)
with appropriate boundary conditions. The resulting optimization problems
are solved using analytical sensitivity analysis and MMA [2].

Table 1. Choices of A and B for different 2D wave-propagation problems. Symbols: ρ (dens-
ity), κ (bulk modulus), µ (shear modulus), ε (dielectric constant) and c (speed of light in va-
cuum).

2D wave problem A B

Acoustic ρ−1 κ−1

Out-of-plane shear µ ρ

E-polarized light 1 εc−2

H-polarized light ε−1 c−2
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Figure 1. Optimized distribution of two elastic materials for maximizing relative bandgaps.
Top figure: out-of-plane shear waves and bottom figure: in-plane waves (not governed by the
Helmholtz equation). From [6].

2. MAXIMIZING BANDGAPS

Wave-propagation through an infinite material is characterized by its band dia-
gram, relating the wave-length and -direction to the wave frequency. A peri-
odic modulation of the material properties may introduce gaps in the diagram,
the so-called band gaps.

A material layout algorithm was first used in [3, 4] to maximize bandgaps
for E- and H-polarized light (photonic bandgaps), and in [5, 6] for plane elastic
waves (phononic or sonic bandgaps). Figure 1 shows the optimized distribution
of two elastic materials for maximizing the relative bandgap for out-of-plane
shear waves (top figure) and in-plane waves (bottom figure.) An extension of
the elastic problem is found in [7] dealing also with bending waves.

3. MAXIMIZING TRANSMISSION IN OPTICAL
DEVICES

Using topology optimization to maximize the transmission through photonic
crystal devices was suggested in [8, 9].

Topology optimized photonic crystal structures have recently been fabric-
ated [10–13], and the optimized structures (two of them shown in Figure 2)
display very good broadband performance in good agreement with 3D compu-
tations.

4. DESIGN OF ACOUSTIC DEVICES

In [14–16] topology optimization was used to design acoustic devices. Figure 3
shows an example of an optimized acoustic de-multiplexor. A broadband wave

388



Topology Optimization of Wave-Propagation Problems

Figure 2. Optimized 120-degree and 60-degree bends in 2D photonic crystal waveguides. The
fabricate structures display low transmission loss for large wavelength ranges in good agreement
with 3D computations. From [10] and [11].

Figure 3. Topology optimized acoustic de-multiplexor. A broadband wave enters in the left
channel and exits in the top, right or lower channel depending on the frequency. The trans-
mission curves right show the fraction of the input energy that is transmitted through the three
channels.

enters the chamber from the left channel and is transmitted into the other three
channels depending on the frequency. As shown in the transmission plot, about
90% of the input energy is transmitted into the appropriate channel in quite
large frequency ranges with very little cross-talk between channels.

5. CONCLUSION

We have demonstrated how topology optimization can be used as a tool for
optimization of optical, acoustic and elastic wave-propagation problems. Fur-
ther work in this direction deals with multi-physics applications, e.g. elasto-
acoustic, fluid-structure and opto-elastic interaction problems.
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Abstract: This work shows a methodology for the optimum design of piezelectric actu-
ators undergoing large deformations. An equilibrium formulation for the fi-
nite movement of a piezoelectric body is introduced, as well as its finite ele-
ment discretization. The solution of the nonlinear finite element equations is
acomplishied through a new coupled-field arc-length algorithm. The optimiza-
tion consists in the maximization of the output displacements subject to volume
and displacement constraints. Sensitivities are derived with respect to mechan-
ical displacements and electric potentials. The Generalized Method of Moving
Asymptotes (GMMA) is used for the solution of the optimization problem. The
results obtained with the proposed formulation are shown and the influence of
the geometric nonlinearities is discussed.

Keywords: Topology optimization, piezoelectric actuators, geometric nonlinearities.

1. INTRODUCTION

Piezoelectric materials are usually fabricated in simple geometries and oper-
ate in simple deformation modes. Additionally, for the usual electric fields
and dimensions, the displacements are quite small, requiring the use of some
mechanical amplification mechanisms. Many of such devices are described in
the literature, mostly small improvements of existing designs.

Recently, Topology Optimization was introduced as a tool for designing
these mechanisms, with substantial improvements in their performance and al-
lowing non-traditional actuation modes (Silva and Kikuchi, 1999; Bendsøe and
Sigmund, 2003). Additionally, recent works on the design of compliant mech-
anisms (Buhl et al., 2000; Sigmund, 2001; Bruns and Tortorelli, 2001) have
shown that considering geometric nonlinearities might lead to different topo-
logies. These designs could be stable under other loading conditions, avoid
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locking positions and avoid elastic instabilities. It is also possible to consider
nonlinear springs and stress-stiffening/softening effects.

This text presents a methodology for the optimum design of piezoelectric
transductors considering the geometric nonlinearities.

2. FINITE ELEMENTS FOR LARGE-DEFORMATION
PIEZOELECTRICITY

A finite element formulation for the mechanics of large deformation piezo-
electricity was recently published (Cardoso and Fonseca, 2004). It is a total
Lagrangian incremental formulation, refering all variables at the instant t+�t

to the initial (t = 0) domain �0 and its initial boundary �0.
The incremental fields for the mechanical displacement and electrical po-

tential fields �u and �φ are aproximated inside each finite element e as

�ueI � Nu
αI�U

e
αI , (1)

�φe � Nc
α�

e
α, (2)

where α ∈ [1, nen] and nen are the number of nodes of each finite element,
I ∈ [1, 3] are the Cartesian coordinates , Nu

αI are the shape functions for the
displacement increments of the I direction of the α node and �Ue

αI its corres-
ponding nodal value, whereas Nc

α is the shape function for the electric potential
increment of the α node and �e

α its nodal value. An 8-node serendipity plane
stress finite element was chosen.

This discretization is used to define a finite element approximation to the
Principle of the Minimum Total Potential Energy, which states that the vari-
ation t+�tδan at the time t + �t with respect to any component n of a vector
field a of the internal energy minus the external work Wext should vanish

t+�tδan
∫
�0

G d�0 + t+�tδanWext = 0. (3)

The internal energy is given by the Gibbs functional

G = 1

2
EijCijklEkl − 1

2
ϕiεijϕj − ϕkekijEij , (4)

where E is the Green–Lagrange strain tensor, C is the fourth-order elastic
coefficient tensor, ϕ is the electric field vector, ε is the second-order dielec-
tric coefficient tensor, and e is the third-order piezoelectric coefficient tensor.
The work of the external loads is given by the mechanical body forces b, the
mechanical surface tractions t , and the electric surface charges σ .

W =
∫
�0

b · u d�0 +
∫
�0

t · u d�0 −
∫
�0

σφd�0. (5)
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After assembly, it yields the nonlinear finite element equations[
Kuu Kuφ

Kφu −Kφφ

]{
�U

��

}
=

{
t+�t
0 Fext
t+�t
0 Qext

}
−

{
t
0Fint
t
0Qint

}
= R, (6)

where Kuu is the nonlinear mechanical stiffness matrix, Kφφ is the nonlinear
electrical matrix, Kuφ is the electromechanical coupling matrix, t+�t

0 Fext is
the external mechanical force increment vector, and t+�t

0 Qext is the external
electric charges increment vector. It is convenient to rearrange Equation (6) as
a simpler system

Kt�x =t+�t
0 Pext −t

0 F = R. (7)

where Kt is the coupled tangent matrix, x is the state vector with the dis-
placement increments and the electric potential increments. Pext is the external
loading vector, and F is the internal forces vector. R is the residual which
should vanish at the equilibrium.

This nonlinear system of equations is solved with a modified GDC (Gen-
eralized Displacement Control) algorithm described in Cardoso and Fonseca
(2004, 2005). Additional care is taken to ensure that the exact load is applied
(load multiplier is unitary) at the end of the nonlinear analysis, because this
condition is not necessarily satisfied in arc-length algorithms. This is very im-
portant because the lack of consistence between sucessive analyses can prevent
the GMMA optimization algorithm to build a good convex approximation.

3. DESIGN OF PIEZOELECTRIC TRANSDUCTORS

The formulation adopted here for the design of piezoelectric transductors is an
extension of the formulation for the design of geometric nonlinear compliant
mechanisms used by Buhl et al. (2000) and Brun and Tortorelli (2001). In
a given admissible domain, some points are defined as output ports, to which
output springs attached to simulate the stiffness of the external medium. The
goal is to find the design that maximizes the displacement of the output port,
subject to a volume constraint. Additionally, it is possible to impose displace-
ment constraints, for instance to avoid the lateral movement of the output port.

Max uout

Subject to V ≤ V

g(u) = 0
(8)

where uout is the output displacement, V is the volume of the mechanism, V
is the upper bound on the volume, g(u) = 0 expresses the optional displace-
ment constraints. The extension proposed here imposes the input as an electric
potential instead of a mechanical force.

The domain contains a fixed (non-design) regions of piezoelectric material
whereas the design domains is assumed to be made of an isotropic material.
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The design variable is the isotropic material density distribution, using a cu-
bic relation between the elastic properties and the density (SIMP), so that the
Youngs modulus is expressed as E = ρ3E0. Densities are assumed constant
within each finite element, so the number of design variables is equal the num-
ber of finite elements in the isotropic material domain.

Filtering is a well known technique to avoid numerical instabilities and to
control the complexity of the topology optimization solution (Bendsøe and
Sigmund, 2003). This work uses a moving limit filter, where neighborhood
dependent box constraints for each variable are introduced in each optimization
step, as described in Cardoso and Fonseca (2003).

3.1 Sensitivity Analysis

Volume Sensitivity to the Design Variables. In this work, the volume is
used as a constraint in the optimization. The volume is expressed simply as

V =
n elems∑
i=1

Ai ∗ ρi, (9)

where Ai and ρi are the element area and density. The derivative is given
directly by

dV

dρi
= Ai ∗ espi. (10)

Derivative of the State Vector with Respect to the Design Variables. Us-
ing the adjoint approach to the derivation of the derivative of the xi component
of the state vector, we start with

xi = LiT x + λTg R, (11)

where λg is the adjoint vector and the Li is the localization vector. Differenti-
ating xi with respect to a design variable yields

dxi

dρm
= LiT dx

dρm
+ λTg

(
dR

dx

dx

dρm
+ ∂R

∂ρm

)
. (12)

Collecting the common terms results in

dxi

dρm
= dx

dρm

(
LiT + λTg

dR

dx

)
+ λTg

∂R

∂ρm
, (13)

which is further developed by choosing λg such as the expression between
parenthesis vanishes and thus eliminating the need to compute dx/dρm.

Ktλg = Li. (14)
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As λg is now known, the sensitivity (13) can be expressed as

dxi

dρm
= λTg

∂R

∂ρm
. (15)

The solution of (14) is quite simple and costs only a backsubstitution. The
inner product in Equation (15), is calculated element by element.

Special care was taken with the sensitivities for the boundary conditions,
since the electric potentials are equivalent to non-homogeneous essential
boundary conditions. The formulation presented by Cho and Jung (2003) for
prescribed displacements was easily extended to this application, allowing the
calculation of the sensitivities with prescribed Dirichlet conditions for both
mechanical (displacements) and electrical (potentials) fields.

3.2 Optimization Algorithm

Optimization was performed by a implementation of the Generalized Method
of Moving Asymptotes (GMMA) shown in Zhang et al. (1996). The imple-
mentation uses a Conjugate Gradients algorithm for the dual problem. It also
explicitly includes box constraints for each variable for the moving limit neigh-
borhood filtering.

4. RESULTS

This formulation is suitable for the design of both actuators and sensors, al-
though this work presents only applications to actuators.

In the following results, the fixed piezoelectric material is PZT-5, with
elastic, dielectric and piezoelectric material properties given by

C =

⎡⎢⎢⎢⎢⎢⎢⎣
12.1 7.54 7.52 0.0 0.0 0.0
7.54 12.1 7.52 0.0 0.0 0.0
7.52 7.52 11.1 0.0 0.0 0.0
0.0 0.0 0.0 2.1 0.0 0.0
0.0 0.0 0.0 0.0 2.1 0.0
0.0 0.0 0.0 0.0 0.0 2.3

⎤⎥⎥⎥⎥⎥⎥⎦ ∗ 1010 Pa, (16)

ε

ε0
=

⎡⎣ 1650 0.0 0.0
0.0 1650 0.0
0.0 0.0 1700

⎤⎦ , (17)

e =
⎡⎣ 0.0 0.0 0.0 0.0 12.3 0.0

0.0 0.0 0.0 12.3 0.0 0.0
−5.4 −5.4 15.8 0.0 0.0 0.0

⎤⎦Cm−2 (18)

and the isotropic material to be designed is copper (E = 110 GPa and ν =
0.34). Full geometry was modelled with finite elements, while symmetry was
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enforced throughout the design variables. Densities ranged from the lower
bound of 10−3 to one.

4.1 Moonie-Type Actuator

In this case, it is chosen a 60 × 60 mm domain with a 30 × 4 mm piezoelectric
insert considering a 15 mm thickness, as shown in Figure 1. The PZT-5 is
polarized upwards, and its submited to a 100 V/mm electric field. An output
spring is added to the output port. A regular mesh of 3600 elements was used,
as well as a 20% constraint on the volume fraction.

Figure 1. Design domain of a Moonie Actuator (dimensions in meters).

Without filtering, the optimization failed to yield meaningful results, stop-
ing in most runs at some low performance local minima for both linear and
nonlinear formulations. Once filtering was introduced, results as shown in
Figure 2 were systematically obtained. The designs obtained by this formu-
lation depend heavily on hinges to work; large deformation effects are mostly
confined to the hinges, so there are almost no differences between the linear
and nonlinear models, as shown in Table 1.

Table 1. Normalized displacement values for the
designs shown in Figure 2.

Linear Nonlinear Diference between models

1.00 0.997 0.3%
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Figure 2. Topologies obtained for the linear (left) and nonlinear (right) cases, using filtering.

Figure 3. Topologies obtained considering constant, linear, and quadratic output springs.

Table 2. Normalized displacements of the designs
shown in Figure 3.

Stiffness Constant Linear Quadratic

Displacement 1.00 0.514 0.654

Nonlinear stiffness of the output spring is possible only with the nonlinear
model, and did influence the results, as shown in Figure 3 and in Table 2.
In this case, the output spring stiffness was chosen to be constant (105 N/m),
linear-stiffening (105 + 4 ∗ 1011uout N/m), or softening-stiffening quadratic
(105 − 1011uout + 1017u2

out N/m). The linear model can consider only constant
stiffness.

4.2 Bridge Actuator

Another popular actuator is the bridge actuator (Figure 4) which uses two
piezoelectric actuators to obtain a transverse displacements. Actuation is per-
formed by six PZT-5. A regular mesh of five thousands elements was used.
Three different output stiffnesses are considered.

As in the case of the Moonie actuator, only small details differ nonlinear
and linear designs (Figure 5). With low rigidity of the output, the resulting
designs uses hinges, whereas with high output force the designs have small
output displacements. In both cases the nonlinear influence is small.
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Figure 4. Design domain for the bridge actuator (dimensions in meters).

Figure 5. Topologies obtained for the linear (left) and nonlinear (right), for constant stiffness
ouptup springs with Ks = 1 ∗ 102 N/m (first line), Ks = 1 ∗ 105 N/m (second line) and
Ks = 1 ∗ 1010 N/m (third line), with 20% volume constraint.
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The use of lower stiffness of the output spring, has also the side effect of the
appeareance of intermediate densities on the output region. The low-density
material is suffiently stiff to move the output, and the resulting designs become
difficult to be interpreted.

5. CONCLUSIONS

A procedure for the topology design for geometric nonlinear piezoelectric
structures was developed, together with the its sensitivity analysis. The op-
timization problem is set as the maximization of the output port displacement
against a spring. Tests show that filtering is essencial to obtain meaningful
designs. The results show no significant difference between the linear and
nonlinear designs for this optimization setting in the case of linear springs.

The objective function of maximizing the output displacement favours
designs with hinges, which reduces the influence of the geometric nonlinearit-
ies. Therefore the authors suggest the development of an alternative formula-
tion for the optimization problem.
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THE WORST-CASE MULTIPLE LOAD FMO
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Abstract: We propose a new formulation of the worst-case multiple-load problem of free
material optimization. It leads to an optimization problem with bilinear mat-
rix inequality constraints. The resulting problem can be solved by a recently
developed code PENBMI. The new formulation is shown to be more computa-
tionally efficient than the recently used one.

Keywords: Free material optimization, semidefinite programming.

1. INTRODUCTION

We want to solve a worst-case multiple load formulation of the free material
optimization (FMO) problem. The formulation used so far (for instance in
the FMO code MOPED; Hörnlein et al., 2001) leads to a (large-scale) linear
semidefinite programming (SDP) problem. This has two main disadvantages:

• the SDP problem is much more complex than a nonlinear program of the
same dimension – consequently, we can only solve problems of much
smaller dimension than in the single-load case;

• the result gives us just indirect information about the properties of the
optimal material; the full material matrix can only be obtained by ex-
pensive postprocessing.

We propose to solve the multiple load problem by means of another formula-
tion which was known for some time but which has never been used for the
numerical solution. The reason for that was that it leads to an SDP problem
with bilinear matrix inequality (BMI) constraints. Until now, there was no soft-
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ware for this kind of problems available. We solve the problem by our recently
developed code PENBMI. Using the BMI formulation, we can avoid the two
difficulties mentioned above. Though nonlinear, the BMI formulation leads
to problems with very sparse data that can be solved efficiently even for high
dimensional problems. Further, the optimal material matrices can be obtained
directly as Lagrangian multipliers of the BMI constraints, provided by PEN-
BMI. Finally, the number and size of the constraints are independent of the
number of load cases, contrary to the formulation used so far.

2. THE FMO MULTIPLE-LOAD PROBLEM

We study the optimization of the design of a continuum structure that is loaded
by multiple independent forces. In order to deal with the problem in a very
general form, we consider the distribution of the material in space as well as
the material properties at each point as design variables. The idea to treat the
material itself as a function of the space variable goes back to the work by
Bendsøe et al. (1994) and has also been studied in various other contexts (see
Bendsøe and Sigmund, 2002; Zowe et al., 1997).

We look for a structure within a domain � which can withstand a whole set
of loads f �, � = 1, . . . , L, in the worst-case sense. This leads to the following
multiple-load design problem, in which we seek the design function E which
yields the smallest possible worst-case compliance1

inf
E∈E

sup
�=1,...,L

sup
u∈H

{
−1

2

∫
�

〈Ee(u), e(u)〉 dx + F�(u)

}
. (1)

Here

F�(u) :=
∫
�

f � · u dx for � = 1, . . . , L, (2)

and

E :=
{
E ∈ [

L∞(�)
]3×3 | E � 0,

∫
�

tr(E)dx ≤ V, 0 ≤ tr(E) ≤ ρ

}
.

3. THE CURRENT APPROACH

Assume that � is partitioned into M finite elements �m of volume ωm and let
N be the number of nodes. We approximate E by a function that is constant
on each element �m, i.e., E becomes a vector (E1, . . . , EM) of 3 × 3 matrices
Em. The feasible set E is replaced by its discrete counterpart

E :=
⎧⎨⎩E ∈ R

3×3M

∣∣∣∣∣∣
Em = ET

m � 0 and tr(Em) ≤ ρ, m = 1, . . . ,M
M∑
m=1

tr(Em)ωm ≤ V

⎫⎬⎭ .
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To avoid merely technical details we neglect in the following the constraint
tr(Em) ≤ ρ. We further approximate the displacement vector by a piece-
wise bi-linear function u�(x) = ∑N

n=1 u
�
nϑn(x) where ϑn is the basis function

associated with nth node; i.e., u = (u1, . . . , uN) ∈ R
D, D ≤ 2N .

For basis functions ϑn, n = 1, . . . , N , we define matrices

Bn(x) =

⎛⎜⎜⎜⎝
∂ϑn
∂x1

0

0 ∂ϑn
∂x2

1
2
∂ϑn
∂x2

1
2
∂ϑn
∂x1

⎞⎟⎟⎟⎠ .

For an element �m, let Dm be an index set of nodes belonging to this element.
The value of the approximate strain tensor e on element �m is then (we add
the space variable x as a subscript to indicate that ex(u�) is a function of x)

ex(u
�) =

∑
n∈Dm

Bn(x)u
�
n on �m.

Finally, the linear functional F�(u�) reduces to (f �)T u� with some f � ∈ R
D.

The discrete character of the “ sup
�=1,...,L

” in (1) is treated using a weight vector

λ for the loads, which runs over the unit simplex

" :=
{
λ ∈ R

L |
L∑
�=1

λ� = 1, λ� ≥ 0 for � = 1, . . . , L

}
.

Further we put v := (v1, . . . , vL),

V := {
(v;λ) | v ∈ [H]L, λ ∈ "0}

and denote (v;λ) = (v1, . . . , vL;λ) ∈ V .
Denote by xms ∈ �m the Gaussian points and by γ 2

ms the corresponding
weights; here s = 1, . . . , S. With the (d × LS)-matrix

Zm := [
γm1exm1(v

1), . . . , γmsexms (v
1), . . .

. . . , γm1exm1(v
L), . . . , γmsexms (v

L)
]

and the (LS × LS)-matrix

"(λ) := diag(λ1, . . . , λ1, . . . . . . , λL, . . . , λL)

the problem can be written as a linear semidefinite program:

inf
(v;λ)∈V
τ∈R

ατ − 2
L∑
�=1

(f �)T v�

subject to

(
τId Zm(v)

Zm(v)
T "(λ)

)
� 0 for m = 1, . . . ,M.

(3)
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The question of recovering the optimal elasticity matrices E∗
1 , . . . , E

∗
M from

the solution of (3) is a bit technical; we refer the reader to Ben-Tal et al. (1997).
This formulation is currently implemented in the computer program

MOPED (Hörnlein et al., 2001). The linear SDP problem (3) is solved by
a generalized augmented Lagrangian algorithm implemented in the general-
purpose optimization code PENNON (Kočvara and Stingl, 2003). Although it
allows us to solve real-world size problems, it has certain disadvantages:

• the constraint matrices in (3) are sparse but relatively large and, com-
pared to the single-load problem, the solution time is considerably high
for large problems;

• the size of the constraint matrices is linearly proportional to the number
of load cases (see the dimension of Zm(v)); that means, the solution time
for problems with a higher number of load cases is rather high;

• the dimension of the constraint matrices in (3) increases considerably
when switching from 2d to the 3d problems (from 8 · 4 ·L to 24 · 8 ·L);

• the optimal elasticity matrices E∗
1 , . . . , E

∗
M are not readily available and

their recovering requires solution of an auxiliary problem (see Ben-Tal
et al., 1997).

4. THE NEW APPROACH

Recall the discretized single-load formulation of the FMO problem: For an
element �i , let Di be an index set of nodes belonging to this element.

Am =
∑
k,�∈Di

∫
�i

BT
k B� dx . (4)

The discretized single load problem can be reduced to a convex NLP

min
α,u

αV − f T u s.t.
1

2
uT Amu ≤ α, m = 1, . . . ,M

(see Zowe et al., 1997). This formulation is extremely numerically efficient
due to its convexity, simplicity and sparsity of the constraints.

It turns out that the multiple load problem can be formulated in a way mim-
icking the structure of the single-load problem (4) and thus sharing some of its
advantages.
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The multiple-load problem (1) is a Lagrange dual to the following problem

min
α,λ�,u�

αV −
L∑
�=1

λ�(f �)T u�

s.t.
L∑
�=1

λ�e(u�)e(u�)T � αId×d

L∑
�=1

λ� ≤ 1, λ� ≥ 0, � = 1, . . . , L,

where the material matrix E plays the role of the Lagrange multiplier to the
matrix inequality constraint. The variable λ plays again the role of weights for
the load cases.

After discretization, using the same symbols as in the previous section, we
get the following nonlinear semidefinite programming problem

min
α,λ�,u�

α −
L∑
�=1

λ�(f �)T u�

s.t.
L∑
�=1

λ�
S∑
s=1

exms (u
�)exms (u

�)T � αId×d, m = 1, . . . ,M

L∑
�=1

λ� ≤ 1, λ� ≥ 0, � = 1, . . . , L .

With the change of variables

λ = µ2, u� = v�/µ

we arrive at the problem which, by its structure, reminds the discretized single-
load problem (4):

min
α,µ�,v�

α −
L∑
�=1

µ�(f �)T v� (5)

s.t.
L∑
�=1

S∑
s=1

exms (v
�)exms (v

�)T � αId×d, m = 1, . . . ,M

L∑
�=1

(µ�)2 ≤ 1, µ� ≥ 0, � = 1, . . . , L .

The resulting problem is a semidefinite program with bilinear objective
function and convex quadratic matrix inequality constraints. This kind of prob-
lems can be efficiently used by the recently developed code PENBMI (Kočvara
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et al., 2004) that is built on the generalized augmented Lagrangian algorithm
(Kočvara and Stingl, 2003). Note that this formulation was first proposed in
the thesis of Werner (2000) who, however, did not consider it numerically im-
portant due to the lack of nonlinear SDP algorithm at that time.

The advantages of the new formulation are now obvious:

• like (3), problem (5) is a problem in displacements only;

• the convex quadratic matrix constraints are of much smaller dimension
than in (3); further, the dimension (and the number of the constraints)
does not increase with the number of load cases and only mildly in-
creases when going from 2d to 3d problems (from 3 × 3 to 6 × 6);

• the material matrices are the multipliers to these constraints and are read-
ily available in the PENBMI code.

5. COMPLEXITY ESTIMATES AND EXAMPLE

Recall first the original (primal) formulation of the problem, where we minim-
ize the maximal (over load-cases) compliance subject to (nonlinear) equilib-
rium constraints and (semidefinite) constraints on the material:

min
α,E1,...,EM

α (6)

subject to

Em � 0, ρ ≤ trEm ≤ ρ, m = 1, . . . ,M

(f �)T A(E)−1f � ≤ α, � = 1, . . . , L
M∑
m=1

trEm ≤ V .

This formulation is known to be quite inefficient, compared to the problem
(3), as it is a nonlinear SDP problem with a difficult equilibrium constraint. It
can be solved by the recent version of the code PENNON; however, because
only first-order information is available, an because PENNON is based on a
second-order algorithm, we have to approximate the second derivatives by fi-
nite differences and solve the Newton system by a conjugate gradient method.
As a result, the whole approach is not that robust as the other two approaches,
where the analytic second derivatives are available. In order to be able to work
with the inverse of the stiffness matrix, we also have to relax the original con-
straint 0 ≤ trEm to 0 < ρ ≤ trEm.

It is now easy to see the dependence of the computational complexity of
the three problems on the number of load-cases. While in the current formu-
lation (3) this dependence is cubic, in the new formulation (5) it is only quad-
ratic. Furthermore, the dependence is only linear in the primal formulation
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(6). These complexity estimates will be clearly demonstrated in the following
numerical example:

Example 1. We present preliminary results for the new formulation. The
new formulation was recently implemented in our code MOPED for free ma-
terial optimization.

We consider an academic two-dimensional problem with the number of
load-cases increasing from two to ten. All problems are discretized using 5000
elements. In the next two figures we see the data (left) and optimal solution
(right) for the problem with two and six load-cases, respectively.

Figure 1. Example 1: initial design and optimal result for two load-cases.

Figure 2. Example 1: initial design and optimal result for six load-cases.

Table 1 gives the dimensions of the problems: while the number of the
primal variables (given just by the number of finite elements) stays the same,
the number of dual variables (given by the displacement vectors) increases
linearly with the number of load-cases.

Finally, Table 2 presents the results for the three approaches: the current
formulation (linear SDP), the new formulation (dual nonlinear SDP) and also
for the primal formulation of the problem (primal nonlinear SDP). We can
clearly see the effect predicted by the complexity estimates. For small number
of load-cases, the new formulation is clearly the best one. With increasing
number of load-cases, it is better and better than the currently implemented
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Table 1. Example 1: problem dimensions.

Elements Loads Dual variables Primal variables

5000 2 20598 30001
5000 4 41205 30001
5000 6 61812 30001
5000 10 103122 30001

Table 2. Example 1: numerical results for 2-10 forces (process time in seconds).

Loads Process time Process time Process time
(linear SDP) (dual nl. SDP) (primal nl. SDP)

2 197 120 597
4 896 512 1171
6 2992 1473 1496

10 15356 5216 3012

formulation. The primal formulation, as expected, is by far the worst one for
small number of load-cases. However, its complexity grows only linearly with
this number, and we can see that for large number of load-cases it actually
becomes the most efficient formulation; a rather unexpected effect. But recall
that the (first-order) primal formulation is much less robust than the other two
and, for large real-world problems, this effect may not be confirmed.

6. REMARKS

6.1 Weighted Multiple-Load

For given weights λ�, � = 1, . . . , L, we can directly derive the weighted
multiple-load problem from (5):

min
α,v�

α −
L∑
�=1

µ�(f �)T v� (7)

s.t.
L∑
�=1

S∑
s=1

exms (v
�)exms (v

�)T � αId×d, m = 1, . . . ,M

using the same change of variables (λ → µ, u → v) as above.
This problem can now be solved just as the worst-case multiple-load prob-

lem by the code PENBMI. Further, it is now a convex problem and, as before,
the optimal material is directly available by means of the Lagrangian mul-
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tipliers. Note that the weighted multiple-load problem has almost the same
computational complexity as the worst-case formulation.

6.2 Truss Topology Problem

An analogous development can be done for the worst-case multiple-load truss
topology problem. Due to the dimensional reduction, the resulting formula-
tion, analogous to (5), is now a standard nonlinear optimization problem. The
corresponding formulation appeared, e.g., in Kočvara et al. (1998).
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Ben-Tal, A., Kočvara, M., Nemirovski, A., and Zowe, J. (1997). Free material design via semi-

definite programming. The multi-load case with contact conditions. SIAM J. Optimization,
9:813–832.

Bendsøe, M. and Sigmund, O. (2002). Topology Optimization. Theory, Methods and Applica-
tions. Springer-Verlag, Heidelberg.

Bendsøe, M. P., Guades, J. M., Haber, R., Pedersen, P., and Taylor, J. E. (1994). An analytical
model to predict optimal material properties in the context of optimal structural design. J.
Applied Mechanics, 61:930–937.
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Abstract: The paper considers the problem of simultaneous truss geometry and topology
optimization. We tackle the classical problem of minimal compliance subject to
a volume constraint which alternatively can be regarded as a minimum volume
problem subject to symmetric stress constraints. After the review of a bilevel
approach of Kočvara et al. we propose three closely related approaches which,
however, overcome the pitfall of vanishing potential bars for melting end nodes.
This is achieved through the use of the data structure of the problem allowing
a split of the dependence of the data on the geometry variable into a linear and
a quadratic part. The paper closes with some numerical experiments based on
the new problem formulations. In particular, we are interested in a relation of
the number of potential bars needed in a pure topology approach and a simul-
taneous geo/topo approach, respectively, to achieve the same value of optimal
compliance resp. volume.

Keywords: Truss optimization, geometry optimization, bilevel programming.

1. INTRODUCTION, NOTATIONS, AND REVIEW

We consider the problem of truss topology optimization on a given ground
structure. One difficulty in this approach is the “good” definition of nodal
points. When defining a ground structure one would like to choose the nodal
points in way that the optimal structure can make profit of these choices. On
the other hand, one would not like to predefine an optimal design by cer-
tain choices of nodal positions because, obviously, an optimal structure is not
known.

One common attempt to escape from this dilemma is to set up a ground
structure which is “dense”, i.e., possesses many nodes and potential bars. The
optimization will then automatically select those nodes which are “needed” for
the construction of a good structure. Usually, the nodal points are chosen on a
rectangular grid. As a consequence, the optimization problem gets very large
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scaled, and thus is hard to solve, at least, if all possible nodal connections are
considered as potential bars. As a further consequence, the obtained solution
usually consists of very many (thin) bars because the optimization can resort
to a very rich design space.

A second approach is alternating optimization of topology and geometry.
This means, for given nodal positions first the topology is optimized resulting
in some vector of positive or zero cross-sectional areas. Then these areas are
fixed and the geometry is optimized resulting in new nodal positions. Then
these nodal positions are fixed, and the topology is optimized again, and so
on. Such approaches often use heuristics, and it is hardly possible to guarantee
(local) optimality of the calculated solutions in a given mathematical problem
setting. We will come back to this approach below.

A third approach is the simultaneous optimization of topology and geo-
metry. This means, both, cross-sections as well as nodal positions of the
ground structure, are optimized. In this way, qualitative statements of the
structure obtained are possible for a clearly defined mathematical problem
statement, sparse structures are obtained because the set of potential bars can
be kept “small”, and the nodal positions are optimized without a given “pre-
justice” by the user. Of course, there is a high price to pay for these advantages.
The numerical treatment of this optimization setting is very hard. The nonlin-
ear dependence of the geometry data on the position of the nodal points screws
up the successful numerical optimization of problems of larger size, at least,
if a “straightforward” optimization problem formulation is tackled. Here it
is necessary to exploit the mathematical structure of the problem data and to
adjust the mathematical optimization method used. In this paper we review
and propose new computational approaches to the problem. We note, however,
that the development presented here does not only apply to the simultaneous
geometry and topology optimization of trusses, but may be viewed as a more
general study on how to numerically attack problems with certain linear and
quadratic dependencies in the problem data.

For the further development in this paper we use the data structure of the
stiffness matrix, and hence we will focus on the following well-known defin-
itions and notations in more detail. In this paper we consider truss ground
structures consisting of m potential bars and N nodal points in d spatial di-
mensions, i.e., d ∈ {2, 3}. For the moment being, let the nodal positions of
the N nodal points be fixed, as usual. After the deletion of s displacement co-
ordinates referring to support conditions, the degree of freedom of the (ground)
structure is denoted by n = N · d − s. For the ith potential bar, the so-called
geometry vector γi ∈ R

n in the displacement coordinates referring to its two
end nodes contains the cosines and sines w.r.t. the position of the bar in the
ground structure. Moreover, �i denotes the length of the ith potential bar, and
Ei refers to the Young’s modulus of the material used for this bar. Hence,
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if for each index i ∈ {1, . . . , m}, respectively, the value ai ≥ 0 denotes the
cross-sectional area (yet to be optimized) of the ith potential bar, we may state
the global stiffness matrix of the structure a ∈ R

m, a ≥ 0, in global reduced
coordinates as

K(a) :=
m∑
i=1

ai
Ei

�i
γiγ

T
i ∈ R

n×n, (1)

where we assume linear elastic material behavior, as usual. Hence, with a
corresponding displacement vector u ∈ R

n the equations of elastic equilibrium
can be written as K(a)u = f where f ∈ R

n is a vector of a given external
load applied to some nodal points expressed in global reduced coordinates.

With these notations we can formulate the (classical) problem of truss topo-
logy optimization on a ground structure where compliance is minimized s.t. a
volume constraint:

min
a∈Rm, u∈Rn

{
f T u

∣∣∣ K(a)u = f,

m∑
i=1

ai�i ≤ V, a ≥ 0
}
. (2)

Here, V > 0 is a given bound on the total volume of the structure. This prob-
lem has been extensively studied, also for discrete and discretized structures
other than trusses (cf., e.g., [1, 2, 4, 5], and the references therein). For truss
structures, however, the construction of the element stiffness matrices from
dyadic products γiγ T

i can be used to obtain the following linear programming
formulation (LP) of (2) (cf. [1, 2, 10]).

max
u∈Rn

{
f T u

∣∣∣ − 1 ≤
√
Ei

�i
γ T
i u ≤ 1 ∀i

}
. (3)

With certain substitutions, the LP-dual of this problem can be written in the
form

min
a∈Rm, q∈Rm

{ m∑
i=1

ai�i

∣∣∣ Bq + f = 0, −σ̄iai ≤ qi ≤ σ̄i ∀i, a ≥ 0
}
. (4)

Here, the so-called geometry matrix (or compatibility matrix) B is defined by
the geometry vectors γi through

B := ( γ1 · · · γm ) ∈ R
n×m.

Hence, q plays the role of a vector of internal forces, and (4) can be inter-
preted as a minimum volume problem subject to force equilibrium and stress
constraints with the same absolute member stress bound σ̄i for tension and for
compression (cf. [2] for a summary).

Now we add the variation of geometry to the problem. Let us collect the
initial spacial positions of the N nodal points of the ground structure in a vector
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ȳ ∈ R
N ·d . Similarly we may define a set Y � R

N ·d of admissible nodal
positions where, of course, the connectivity of nodes through potential bars
remains unchanged independently of y. We assume that ȳ ∈ Y .

By this additional variable y, the geometry vectors γi and the values of the
bar lengths �i become dependent on y, i.e., in generalization to (1) the global
stiffness matrix is written as

K(y, a) :=
m∑
i=1

ai
Ei

�i(y)
γi(y)γi(y)

T ∈ R
n×n.

Problem (2) is generalized to

min
y∈Y, a∈Rm, u∈Rn

{
f T u

∣∣∣ K(y, a)u = f,

m∑
i=1

ai�i(y) ≤ V, a ≥ 0
}
. (5)

It turns out that the direct numerical treatment of this formulation is not effi-
cient, and generally fails, even for moderate problem sizes. The background
lies in the difficult treatment of local optimizers due to non-convexity and in
the lack of satisfaction of constraint qualifications which are needed for al-
gorithmic convergence.

As an “alternative” let us briefly discuss alternating optimization in y and a.
This means, for fixed y solve (5) in (a, u) (cf. problem (2) above; as already
outlined, this can be easily done). Then fix a and solve (5) in (y, u) (or, altern-
atively, fix (a, u) and solve (5) in y). Obviously, this methodology generates
better and better feasible points (i.e., structures), and thus may be interpreted
as a numerical descent method for the treatment of (5). Sometimes this meth-
odology is also referred to as coordinate-wise optimization. Pedersen [13–15]
proposed this methodology for the solution of (5) using the fact that, without
restriction, the solution a of each topology optimization represents a statically
determinate structure. Hence, u (locally) can be interpreted as a differentiable
function of y (or of (a, y)), and thus gradients for the optimization w.r.t y (or
w.r.t. to (a, y)) can be calculated. Since the existence of statically determinate
solutions remains true if local buckling constraints are added to the problem
[3], this calculation methodology may well be used also for the more complic-
ated problem setting including buckling constraints. As the meanwhile fam-
ous examples in [15] prove, this methodology is able to end up in very good
practical results. There are, however, some mathematical drawbacks of this
methodology. First, the linear independency hidden in statically determinacy
only holds in a small neighborhood of the considered point (a, u), and thus the
optimization model used in each step may be wrong if one moves away from
(a, u). Second (more serious), it is known that coordinate-wise optimization
usually gets stuck at points which may lack to be local optimizers. To under-
stand this, think of a situation where locally an improvement is not possible,
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neither if y is varied for fixed a, nor if a is varied for fixed y (and u depends
on (a, y)). But it may well be the case that improvement is still possible if
a and y are simultaneously varied! It is easy to construct examples showing
this unpleasant behavior at almost every feasible point. Hence, convergence
of coordinate-wise optimization to local optimizers cannot be proved in gen-
eral without taking into account further properties of the problem. Having a
look at the results of Pedersen, however, it may well be that such properties
exist for our particular problem (5). To the knowledge of the author, however,
mathematical results in this field are not yet known.

The simultaneous treatment of a and y is the keypoint in the following meth-
odology. Kočvara et al. [7, 11, 12] (or, cf. [2]) propose a bilevel approach mak-
ing use of the fact that for fixed geometry y, problem (5) can be easily solved
as the LP (3) for fixed y,

max
u∈Rn

{
f T u

∣∣∣ − 1 ≤
√
Ei

�i(y)
γi(y)

T u ≤ 1 ∀i
}
. (6)

With the function φ : Y −→ R ∪ {+∞},

φ(y) := inf
a∈Rm, u∈Rn

{
f T u

∣∣∣ K(y, a) = f,

m∑
i=1

ai�i(y) ≤ V, a ≥ 0
}
, (7)

problem (5) becomes
min
y∈Y φ(y) . (8)

The function φ can be viewed as the so-called optimal value function of the in-
ner problem in (7) where y ∈ Y acts as a perturbation parameter. The behavior
of such functions is well studied, e.g., for perturbed linear programming prob-
lems (as is here the case). Notice the strict coupling of y with (a, u) contrary
to coordinate-wise optimization (cf. above). If y (“master variable”) is varied
then the optimal variables (a, y) in the inner problem must compete (“follower
variables”), i.e., must follow y. In this sense, a and u can be interpreted as (yet
set-valued) functions of y.

As seen above, the inner problem in (7) in the variables (a, u) can be writ-
ten as the LP (6). There are, however, serious difficulties when solving (8).
The function φ lacks to be differentiable. Moreover, if Y is not appropriately
chosen then φ attains infinite values. Even worse, if nodal points “melt”, i.e.,
have the same position, singularities occur in the definitions. For example,
K(y, a) is undefined because �i(y) = 0 for some i, and the values of cosines
and sines in γi(y) become undefined as well. As a consequence, φ even needs
not be locally Lipschitz-continuous. Nevertheless, with a careful definition of
Y , e.g., as a small box around ȳ, a step-wise treatment of problem (8) can
be performed by the use of algorithms of Nonsmooth Nonconvex Optimiza-
tion. At each iteration point yk these algorithms require the function value
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φ(yk) and the knowledge of one arbitrary so-called subgradient (in the sense
of Clarke [8]). The function value φ(yk) is obtained through the LP (6). The
subgradient is a vector gk ∈ R

N ·d generalizing the gradient of φ at yk if φ
lacks to be differentiable at yk . Under certain technical assumptions, an ex-
plicit formula for gk is available [12]. This formula can be simply evaluated
when the Lagrange multipliers of problem (6) are available, i.e., when (6) has
been solved for y = yk . Several numerical examples in [12] show the practical
use of this approach. In particular, also the optimization of positions of support
nodes and of load nodes(!) is possible. Nevertheless, the serious drawbacks of
this approach remain. In the following chapter we try to get rid of these diffi-
culties. Moreover, we want to get more and general insight into the numerical
treatment of bilevel formulations such as (8) because such an approach may be
useful for very many other applications in Structural Optimization.

2. IMPROVED APPROACH

One of the difficulties in the approach of Kočvara et al. is the nonlinear de-
pendence of the data on the nodal positions y. Another difficulty is that for
certain geometries y the data is not defined, or, one needs to calculate with a
modified ground structure after the removal of vanishing potential bars. In the
following we use the data structure of γi and �i to get rid of these drawbacks.

Let y ∈ R
N ·d be an arbitrary geometry. Let ji,1,k, ji,2,k ∈ {1, . . . , N · d}

denote two indices which correspond to the coordinates of the two end nodes
of the ith potential bar in the same spatial dimension k ∈ {1, . . . , d}. Then the
difference yji,2,k − yji,1,k is obviously a linear function of y. Hence, we define a
Matrix Ci ∈ R

(N ·d)×(N ·d) such that the pth component of the vector Cy ∈ R
N ·d

contains the value yji,2,k − yji,1,k if p = ji,2,k for some k, and yji,1,k − yji,2,k if
p = ji,1,k for some k, and zero otherwise. A closer look shows that for d = 2
the matrix Ci has the structure

Ci = −vivTi − wiw
T
i , (9)

where each of the vectors vi, wi ∈ {−1, 0,+1}N ·d contains exactly one entry
−1 and one entry +1 where

vTi vi = wT
i wi = 2 and vTi wi = 0. (10)

(Analogous relations hold for d = 3 with three vectors vi, wi, zi .)
Denote by ȳ0 ∈ R

N ·d the vector containing the fixed coordinates of the
original geometry ȳ, which may be given by the support conditions, and zeros
otherwise. In the following we assume that all nodal coordinates with free
degree of freedom w.r.t. displacements can also be freely varied w.r.t. geometry.
Hence, for simplicity, the set Y of admissible geometries is given by

Y = {Py + ȳ0 | y ∈ Ỹ } � R
N ·d ,
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where Ỹ � R
n is a proper subset (like a box) or even the whole space, and

P ∈ R
n×(N ·d) is a simple projection matrix inserting zero components to y at

the fixed nodal coordinates. Note that the meaning of y now slightly differs
from above due to this definition. It is now y ∈ R

n.
With these settings, for each y ∈ Ỹ the length �i(y) of the ith potential bar

can be expressed as

�i(y) = ‖ 1
2Ci(Py + ȳ0)‖2 =

√
1
2 (Py + ȳ0)T (−Ci)(Py + ȳ0),

where we have used that Ci is symmetric and that C2
i = −2Ci because of

(9) and (10). Similarly, by simple arguments from elementary geometry in
calculating sines and cosines, the vectors γi are given by

γi(y) = 1

�i(y)
P T Ci(Py + ȳ0)

with �i(y) from above. Now, insert these expressions into problem (8):

min
y∈Ỹ

sup
u∈Rn

{
f T u

∣∣∣ − �i(y)
2 ≤ √

Ei(Py + ȳ0)
T CiPu ≤ �i(y)

2 ∀ i
}
. (11)

Here we have replaced the inner problem by (6) (Note that the relation of the
optimal objective function value f T u∗ in (6) and its counterpart f T u∗∗ = φ(y)

in (7) is given by (f T u∗)2 = f T u∗∗ [1],[2]. Hence, optimal geometries in (8)
and in (11) are the same).

Notice that in formulation (11) the problem of singularities does not occur.
If the nodal positions of two end points of a potential bar coincide then �i(y) =
0 and Ci(Py + ȳ0) = 0. Therefore, the corresponding constraints “−�i(y)2 ≤√
Ei(Py + ȳ0)

T CiPu ≤ �i(y)
2” in (11) become “0 ≤ 0T u ≤ 0”, and thus are

trivially satisfied. Moreover, the inner supremum takes the value +∞ if and
only if the potential bar with �i(y) = 0 is needed for the structure to carry the
load (i.e.,

∑
j αjγj (y) = f %⇒ αi �= 0).

By LP-duality applied to the inner sup-problem in (11) we arrive at the
formulation

min
y∈Ỹ , ρ+,ρ−∈Rm

m∑
i=1
(ρ+

i + ρ−
i )(Py + ȳ0)

T (−Ci)(Py + ȳ0)

s.t.
m∑
i=1
(ρ+

i − ρ−
i )

√
EiP

T Ci(Py + ȳ0)+ f = 0

ρ+, ρ− ≥ 0.

(12)

Again, the effect of vanishing potential bars due to melting end nodes does
not cause difficulties. If �i(y) = 0 then Ci(Py + ȳ0) = 0, and the variables
ρ+
i , ρ

−
i become meaningless. Obviously, for fixed geometry y the inner prob-

lem in (12) is a version of problem (4) where (ρ+ − ρ−) takes the role of the
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vector q of internal member forces. Hence, problem (12) means simultaneous
optimization of topology and geometry in a minimum volume setting.

Besides the effect for vanishing potential bars, notice the interesting math-
ematical problem structure of (12). As above, for fixed y the problem in
(ρ+, ρ−) is a linear programming problem LP. Vice versa, for fixed (ρ+, ρ−)
the remaining problem in y is a convex(!) quadratic optimization problem
(QP) because the matrix Ci is symmetric and negative semi-definite due to (9).
Hence, problem (12) may be numerically attacked in two ways. First, formu-
lation (12) may be treated jointly in the variables (y, ρ+, ρ−) by any solver of
Nonlinear Programming. It is a problem in n+ 2m variables where the object-
ive function is a polynomial of degree 3 with a special structure. The equality
constraints are bilinear. Second, we may treat the formulation

min
ρ+,ρ−≥0

ψ(ρ+, ρ−), (13)

where the function ψ is the optimal value function for the convex quadratic
optimization problem in y with (ρ+, ρ−) as perturbation parameters,

ψ(ρ+, ρ−) := inf
y∈Ỹ

{ m∑
i=1
(ρ+

i + ρ−
i )(Py + ȳ0)

T (−Ci)(Py + ȳ0)

∣∣∣
m∑
i=1
(ρ+

i − ρ−
i )

√
EiP

T Ci(Py + ȳ0)+ f = 0
}
.

Note that for fixed (ρ+, ρ−) the calculation of ψ(ρ+, ρ−) is “simple” because
it requires just the solution of a convex quadratic optimization problem for
which very efficient solution procedures are available. Similarly to the ap-
proach described in Sec. 1, formulas for subgradients of ψ can be derived.
Note also that the “perturbation” (ρ+, ρ−) enters the inner QP in a linear(!)
way, which also simplify the necessary theoretical considerations.

3. SOME NUMERICAL EXPERIMENTS

For the time being, we have made some first experiments with the new formu-
lations (11), (12), and (13). It seems that (11) is still difficult to handle as a
bilevel problem, since the behavior of the feasible set for u heavily changes
with the outer variable y. A direct treatment of (12) with the solver Snopt
[9] shows good performance for problems up to several thousand bars (Snopt
is a well-established standard solver of Nonlinear Programming, realizing a
method of Sequential Quadratic Programming). Note that in realistic examples
the number m of potential bars in the ground structure needs not be excess-
ively large because the geometry is varied as well (and, in view of practical
realizations, we want to avoid structures consisting of very many thin bars).
Figure 1 shows the result of an optimization run for a cantilever-like structure
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Figure 1. Optimization of a cantilever.

of academic size. For the calculation of a good starting point we first calcu-
late a solution (ρ+0, ρ−0) of (12) with fixed y := y0, i.e., for fixed geometry.
Then Snopt produces three iteration points (yk, ρ+k, ρ−k), k = 1, 2, 3, un-
til it terminates with the information that a local optimizer of (12) has been
reached. Figure 1 displays the four structures given by the iteration points
(yk, ρ+k, ρ−k), k = 0, 1, 2, 3. For each k the underlying ground structure is
shown (upper row; indicates yk) as well as its material distribution on this
ground structure (bottom row; indicates ρ+k + ρ−k).

Approach (13) is still under development, but first experiments are prom-
ising. The treatment of the non-convexity of ψ in a non-smooth problem set-
ting, however, is still not easy.

We close with a brief view on a study which might be of more and of gen-
eral interest. This leads back to the beginning of the paper. From a practi-
tioner’s point of view it is the question whether one should solve the topology
problem on a dense ground structure, or whether one should simultaneously
optimize geometry as well while using a sparse ground structure. Hence, we
compare formulation (2) for a dense ground structure (“topo”; solved through
LP (3)) with formulation (5) for a sparser ground structure (“geo+topo”; solved
through (12)). For a fixed number N of nodal points but for increasing “dens-
ity” of the ground structure we have calculated the values of optimal compli-
ance for different support and load scenarios [16]. Clearly, optimal compliance
decreases in both problem formulations when the number m of potential bars
is increased (See also the similar study in [6]). For example, the test for a 2D
bridge scenario with N = 50 nodal points shows that the optimal compliance
for the “pure” topology problem (2) on a ground structure with (≈) 6000 po-
tential bars results in almost the same value as for the geo+topo problem (5)
on a ground structure with (≈) 700 potential bars. This leads to the principal
question of how to find a mathematical measure or formula for the difference
of both approaches in terms of optimal compliance as well as in terms of res-
ulting structures (Are they similar? What does “similar” mean?). Another
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principal question is how to compare compliance values for ground structures
of different size, in particular for a different number N of nodal points.
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TOPOLOGY OPTIMIZATION BY SEQUENTIAL
INTEGER LINEAR PROGRAMMING

Krister Svanberg and Mats Werme
Optimization and Systems Theory, Royal Institute of Technology, Sweden

Abstract: We present a new iterative approach for topology optimization of load-carrying
structures. In each iteration an integer linear programming problem is gener-
ated and solved. The method is guaranteed to find a local optimum of the ori-
ginal problem, but not necessarily a global optimum. Numerical results for some
stress constrained problems are presented.

Keywords: Topology optimization, stress constraints, sequential integer linear program-
ming, first order sensitivities.

1. INTRODUCTION

This paper deals with optimal design of load-carrying structures. In continuum
topology optimization a fixed design domain in a two or three dimensional
space is given. The problem is then to determine which subdomains of the
design domain that should be filled with material and which should be void. In
practice the design domain is usually discretized into finite elements in order to
obtain a finite dimensional problem with binary variables indicating presence
or absence of material in the various finite elements. The following general
form is often adopted:

minimize f0(x)

subject to fi(x) ≤ f max
i , i = 1, . . . , m

x ∈ {0, 1}n,
(1.1)

where the design variable vector x = (x1, x2, . . . , xn)
T is defined as xj = 1

when the j th element is filled with material while xj = 0 when the j th ele-
ment is void. In most cases, the objective function f0 and/or some of the con-
straint functions fi are implicitly defined through the solution of the equilib-
rium equations of the structure. A common choice of objective is the weight of
the structure and the constraints can be e.g. bounds on the displacements and
stresses. Unfortunately, this gives rise to integer nonlinear programs, with a
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non-convex NLP-relaxation, which are very hard to solve to a global optimum
even for relatively small problems. In Stolpe and Svanberg (2003) a subclass
of the nonlinear problems was reformulated to mixed integer linear programs
but also these turned out to be very hard to solve to a global optimum, partly
due to the large number of additional continuous variables needed to transform
the nonlinear constraints to linear.

A common heuristic approach to tackle problem (1.1) is to relax the binary
constraints on the variables and then model the stiffness matrix so that interme-
diate values between ε and one are given low stiffness in comparison to their
weight. Here ε > 0 is an artificial lower bound on the design variables intro-
duced in order to assure that the stiffness matrix never becomes singular. This
approach is seen in interpolation models such as SIMP, see e.g. Bendsøe (1989)
and Rozvany et al. (1992). For more information on topology optimization,
see Bendsøe and Sigmund (1999) and the references therein.

In this paper we propose a sequential integer linear programming (SILP)
method that solves a sequence of integer linear programs (ILP) where each
subproblem is solved to a global optimum by a integer linear programming
package. The SILP method uses the first order sensitivity of a function
fi : {0, 1}n → IR, which in a sense corresponds to a “discrete derivative”,
to obtain a linearization of fi . Since it is uncertain how good the linearization
is “far away” from the current point, a neighbourhood constraint is added to
the integer linear program restricting the number of design variables allowed
to be changed at each iteration. Further, numerical experience indicate that
a hierarchical approach should be used, where one starts with a coarse mesh,
solves the problem by the SILP method, and then uses the obtained (locally
optimal) solution to construct a starting point for the same problem on a re-
fined mesh. In each refinement, every finite element is divided into four new
finite elements.

The paper is organized as follows. In Section 2 the first order sensitivities
are defined and their use in the SILP approach is presented. In Section 3 the
mathematical formulation of the considered problems is given. More details
on the SILP method are given in Section 4. In Section 5 we present some
numerical results and conclusions are drawn in Section 6.

2. SENSITIVITIES WITH RESPECT TO BINARY
VARIABLES AND THE SILP APPROACH

If the optimization problem (1.1) was posed for continuous variables a natural
approach would be to generate and solve a sequence of approximating sub-
problems. Many optimization methods, such as Sequential linear programming
(SLP, see Griffith and Stewart, 1961), Convex linearization method (CONLIN,
see Fleury, 1989; Fleury and Braibant, 1986), Method of moving asymptotes
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(MMA, see Svanberg, 1987, 2002) and Sequential quadratic programming
(SQP, see e.g. Nash and Sofer, 1996) use this approach. All of these methods
require the first and in some cases the second order derivatives, i.e. gradients
and Hessians, of the objective and constraint functions. Since (1.1) is posed
in a “discrete universe” derivatives can not be defined. There is, however, a
natural definition of the first order sensitivity for a function fi : {0, 1}n → IR

with respect to a binary variable xj , in a point x ∈ {0, 1}n given by

δfi

δxj
(x) = fi(x + ξjej )− fi(x)

ξj
, (2.1)

where ξj = 1 − 2xj ∈ {−1, 1} and ej = (0, . . . , 1, . . . , 0)T ∈ IRn.
In an earlier work, documented in Svanberg and Werme (2005a), we de-

veloped a fast method to calculate the quantities fi(x + ξjej ) provided the
structure corresponding to the point x had already been analyzed and fi stands
for a displacement, a compliance or a stress. Thus we can efficiently calculate
the exact changes in displacements, compliances and stresses when one vari-
able xj is changed from its current value to its opposite binary value. These
changes can be calculated without any need for a refactorization of the stiff-
ness matrix and without any need for the frequently used artificial lower bound
ε > 0 on the variables xj . This means that it is perfectly valid that the number
of “active” degrees of freedom (i.e. degrees of freedom that are present in the
finite element model used to compute the displacements) is changed when a
design is changed.

The approach presented in this paper is a “Sequential integer linear program-
ming method” (SILP), where a linear approximation is used to obtain integer
linear programs (ILPs). The idea is to at the iteration point x(k), where k is
the iteration number, approximate the functions fi for i = 0, 1, . . . , m by the
functions f̃ (k)

i defined by

f̃
(k)
i (x) = fi(x(k))+ gi (x(k))T(x − x(k))

where gi (x(k)) =
(
δfi

δx1
(x(k)), . . . ,

δfi

δxn
(x(k))

)T

.
(2.2)

It can be noted that if x ∈ {0, 1}n and ‖x(k) − x‖1 = 1, the approximation is
exact, i.e. f̃ (k)

i (x) = fi(x).
Further, if fi ∈ C1 and the variables were continuous this would cor-

respond to the first order Taylor expansion of fi at the point x(k), namely
fi(x) ≈ fi(x(k)) + ∇fi(x(k))T(x − x(k)), where ∇fi(x(k)) denotes the gradi-
ent of fi at the point x(k).

The next iteration point x(k+1) in the SILP process is then obtained as the
optimal solution to the ILP
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minimize f̃
(k)
0 (x)

subject to f̃
(k)
i (x) ≤ f max

i , i = 1, . . . , m,

x ∈ X(k),

(2.3)

where X(k) ⊂ {0, 1}n is a certain “neighbourhood” of x(k) described by linear
inequalities.

3. MATHEMATICAL FORMULATION OF THE
CONSIDERED PROBLEMS

First of all it is assumed that the considered ground structure has been di-
vided into n finite elements giving it a total of d degrees of freedom, dofs,
corresponding to displacements of the non-fixed nodes. The design of a cer-
tain structure, within the ground structure, is then represented by the design
variable vector x ∈ {0, 1}n. As already mentioned an element which is filled
with material will have xj = 1 while an element which is void has xj = 0.
The stiffness matrix K(x) ∈ IRd×d corresponding to a given design x ∈ {0, 1}n
can be written as K(x) = ∑n

j=1 xjKj , where each element stiffness matrix
Kj ∈ IRd×d is symmetric and positive semidefinite. Further, an external load
vector p ∈ IRd is assumed to be given. The corresponding vector of nodal dis-
placements u ∈ IRd satisfies the equilibrium equations K(x)u = p, provided
that these equations have a solution. For ease of exposition we only consider
a single load-case, but the generalization to multiple load-cases is straightfor-
ward.

If there are some white elements, i.e. variables with xi = 0, the stiffness
matrix K(x) may contain some rows in which all matrix elements are equal
to zero, so called “zero rows”. Since K(x) is symmetric, the corresponding
columns are “zero columns”. When analyzing the structure, it is possible to
reduce K(x) by simply removing the zero rows and zero columns. This means
that the corresponding dofs, which are from now on called “passive dofs”, are
neglected. To get a unique solution of the equilibrium equations for the re-
maining dofs, which are from now on called “active dofs”, it is necessary and
sufficient that this reduced stiffness matrix is non-singular (and thus positive
definite) and that the external load vector p ∈ IRd has no non-zero components
among the passive dofs. This motivates the following definition of the set S
which characterizes the set of stable designs.

Definition: S = {x ∈ {0, 1}n | rank(K(x)) = nzc (K(x)) and p ∈ R(K(x))}.

Here, R(K(x)) denotes the column space (or range) of K(x), rank(K(x)) de-
notes the dimension of this column space, and nzc (K(x)) denotes the number
of non-zero columns in K(x).
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We are now ready to state the three different problems that are considered
in this paper. The first is a minimum volume problem with constraints on the
maximum von Mises stress in all non-void elements. The second is the prob-
lem of minimizing the maximum von Mises stress with a volume constraint.
Finally, for comparison, we consider the minimum compliance problem with a
volume constraint.

3.1 Minimum Volume with Stress Constraints and an
Additional Thickness Variable

One of the problems considered in this work is the following:

minimize t · eTx
subject to ũ(t x)TSiũ(t x) ≤ C for all elements i with xi = 1,

Ax ≤ b,
x ∈ S and
t > 0,

(3.1)

where x is the vector of binary design variables, t is a continuous design
variable denoting the common thickness of all non-void elements, e =
(1, . . . , 1)T ∈ IRn, the objective function t · eTx is the volume of the struc-
ture, the displacement vector ũ(t x) is a solution to the equilibrium equations
K(t x)u = p, the matrix Si is chosen such that ũ(t x)TSiũ(t x) becomes the
squared von Mises stress in the ith element (provided this element is non-void)
and the constant C > 0 is a given upper bound on the squared von Mises stress
in all non-void elements. The linear constraints Ax ≤ b are introduced to avoid
some unwanted things like “checkerboards” and bar-like parts which are much
too thin. Details on these linear constraints are given in Svanberg and Werbe
(2005b).

Assuming that K(t x) = t K(x), the continuous variable t can be elimin-
ated from the problem (3.1), and then the following equivalent problem in x is
obtained.

minimize eTx · max
i

√
xiu(x)TSiu(x)

subject to Ax ≤ b,
x ∈ S,

(3.2)

where the new displacement vector u(x) is a solution to K(x)u = p (without
any t ). If x̂ is optimal to (3.2) then (x̂, t̂), with t̂ = maxi

√
x̂iu(x̂)TSiu(x̂)/C ,

is optimal to (3.1).
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The problem (3.2) can in turn be written equivalently as the following prob-
lem in x and z:

minimize z

subject to z ≥ fi(x) for i = 1, . . . , n,

Ax ≤ b,
x ∈ S and z ∈ IR,

(3.3)

where fi(x) = eTx · √xiu(x)TSiu(x).

3.2 Minimizing the von Mises Stress with a Volume
Constraint

The second considered problem in this paper can be written as

min
x,u

max
i

σi

s.t K(x)u = p,
σi = √

xiuTSiu, i = 1, 2, . . . , n,
Ax ≤ b,
x ∈ S.

(3.4)

In this problem the linear constraints Ax ≤ b include the volume constraint
eTx ≤ V . With fi(x) = √

xiu(x)TSiu(x), where u(x) is a solution to K(x)u =
p, (3.4) may equivalently be written as the following problem in x and z:

min z

s.t z ≥ fi(x) for i = 1, 2, . . . , n,
Ax ≤ b,
x ∈ S and z ∈ IR.

(3.5)

3.3 Minimizing the Compliance with a Volume Constraint

As a comparison, the problem of minimizing compliance with a volume con-
straint is also treated in this paper. This problem can be stated as

min
x

f0(x)

s.t Ax ≤ b,
x ∈ S,

(3.6)

where f0(x) = pTu(x) and u(x) is the solution to K(x)u = p. Note that the
linear constraints Ax ≤ b, as for (3.5), include the volume constraint eTx ≤ V .
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4. THE SEQUENTIAL INTEGER LINEAR
PROGRAMMING APPROACH

The suggested SILP approach for solving the problems (3.3) and (3.5) gener-
ates a sequence of iteration points x(1), x(2), x(3) . . . A typical iteration, starting
in x(k) and ending in x(k+1), goes as follows (the compliance case, i.e. (3.6) will
be treated later).

First, the function values fi(x(k)) = eTx(k) · √
xiu(x(k))TSiu(x(k)) or

fi(x(k)) = √
xiu(x(k))TSiu(x(k)) and the first order sensitivities δfi

δxj
(x(k)) are

calculated for i = 1, . . . , n, the latter by using (2.1) with the appropriate
fi(x) together with the sensitivity analysis method from Svanberg and Werme
(2005a).

Next, the following integer linear programming problem in x and z is solved
(e.g. with the well known integer programming software CPLEX).

minimize z

subject to z ≥ f̃
(k)
i (x) for i = 1, . . . , n,

Ax ≤ b,∑n
j=1 | xj − x

(k)
j | ≤ M

x ∈ {0, 1}n and z ∈ IR,

(4.1)

where f̃ (k)
i (x) is defined by (2.2), and M is an given upper bound on the num-

ber of elements that are allowed to be simultaneously changed in the current
iteration.

Assume that an optimal solution, denoted x̄, of this problem (4.1) has been
obtained. If x̄ ∈ S and maxi fi(x̄) < maxi fi(x(k)), the next iteration point
is chosen as x(k+1) = x̄. Otherwise, the right hand side M is temporarily
decreased by one, and (4.1) is solved again. This decrease in M is repeated
until x̄ ∈ S and maxi fi(x̄) < maxi fi(x(k)), in which case the next iteration
point is chosen as x(k+1) = x̄ and M is reset to its original value, or until M
has decreased down to 0, in which case the whole algorithm is stopped with
the current point x(k) being an (at least) local optimal solution of the original
problem (3.3) or (3.5). For the compliance case, i.e. (3.6), the additional vari-
able z ∈ IR is not needed. Instead the objective function in (4.1) is simply
chosen to be the linearization f̃

(k)

0 (x) of f0(x(k)) = pTu(x) and the constraints
z ≥ f̃

(k)
i (x) for i = 1, . . . , n are omitted from the problem formulation (4.1).

Note that the constraint
∑n

j=1 |xj − x
(k)
j | ≤ M can equivalently be written

as the linear constraint ∑
j∈J (k)

0

xj +
∑
j∈J (k)

1

(1 − xj ) ≤ M,
(4.2)
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where J (k)
0 = {j | x(k)j = 0} and J (k)

1 = {j | x(k)j = 1}.
The motivation for this constraint, which defines a certain “neighbourhood”

of the current iteration point x(k), is twofold. First, it makes the ILP problem
(4.1) easier to solve since the number of possible solutions are decreased by
this constraint. Second, the approximations fi(x) ≈ f̃

(k)
i (x) are likely to be

better if x is reasonably close to x(k).
Numerical experience indicate that an hierarchical approach should be used,

were one starts with a coarse mesh, solves the problem (3.3), (3.5) or (3.6) by
the above SILP method, and then uses the obtained (locally optimal) solu-
tion to construct a starting point for the corresponding problem (3.3), (3.5) or
(3.6) on a refined mesh. In each refinement, every finite element is divided
into four new finite elements. This means that each new considered prob-
lem has four times as many binary variables as the previous problem. After
several refinements, the number of binary variables has become so large that
the ILP problem (4.1) gets very time consuming to solve, even if M is reas-
onably small. Then a possible simplification is to specify that a certain sub-
set of the binary variables should be held fixed in the current iteration. If
F(x(k)) denotes the index set for these fixed variables, then the constraints
xj = x

(k)
j for all j ∈ F(x(k)) are included in (4.1). A natural way to generate

this set F(x(k)) for problem (3.3) is as follows. First, the number N of ele-
ments that should not be fixed is chosen, say N = 100. Next, the quantities
wj = maxi fi(x(k) + ξ

(k)
j ej ) are calculated for j = 1, . . . , n, where (as before)

ξ
(k)
j = 1 − 2x(k)j and fi(x) = eTx · √xiu(x)TSiu(x). Finally, the indices j

corresponding to the n−N largest wj define the set F(x(k)), while the indices
corresponding to the N smallest wj define the set of non-fixed variables xj in
the current ILP problem (4.1). The set F(x(k)) can be constructed in a similar
way for problem (3.5) and (3.6).

5. NUMERICAL RESULTS

The method has been implemented in Matlab and the CPLEX 8.1 Callable
Library (see ILOG, 2001) was used in order to solve the ILPs. The considered
problems were solved for the ground structure, supports and load-case shown
in Figure 1 where a distributed unit load is applied to a third of the right-
most side. In the test example Young’s modulus was set to 100 and Poisson’s
ratio was 0.3. Nine-node isoparametric finite elements were used. The ini-
tial (coarsest) mesh consisted of 27 finite elements. Three refinements were
accomplished, so that the final (fourth) mesh consisted of 27 × 64 = 1728
elements.

The numbers M and N which define, respectively, the neighbourhood radius
and the number of non-fixed elements in the ILP problem (4.1), were chosen as
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Figure 1. The test example.

Figure 2. Obtained solutions for the load-case in Figure 1 for problem (3.3).

Figure 3. Obtained solutions for the load-case in Figure 1 for problem (3.5).

follows for the four different meshes: (M, N) = (2, 27), (4, 108), (8, 108),
and (8, 108).

The obtained results for problem (3.3) are presented in Figure 2 and Table 1.
Problem (3.5) was also solved and here the volume constraints for all meshes
were set to the corresponding volumes obtained in the previous problem,
i.e. (3.3). The obtained results for problem (3.5) are presented in Figure 3
and Table 2.
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Table 1. The data for the initial structure
and solutions given in Figure 2 All the nu-
merical values have been computed after
translating all the solutions to the finest
mesh. x0 is the completely black structure.

x eTx maxi σi pTu

x0 100 100 100

x1 70.4 123.8 155.1

x2 54.6 103.8 185.0

x3 50.5 90.7 198.9

x4 41.7 82.7 233.6

Table 2. The data for the initial structure
and solutions given in Figure 3. All the
numerical values have been computed after
translating all the solutions to the finest
mesh. x0 is the completely black structure.

x eTx maxi σi pTu

x0 100 100 100

x1 70.4 123.8 155.1

x2 54.6 109.3 180.7

x3 50.5 81.6 187.8

x4 41.7 73.6 216.5

Table 3. The data for the initial structure and solutions given in Figure 4. All the numer-
ical values have been computed after translating all the solutions to the finest mesh. x0 is the
completely black structure.

x eTx maxi σi pTu

x0 100 100 100

x1 70.4 114.3 152.5

x2 54.6 137.3 170.5

x3 50.5 123.5 158.8

x4 41.7 131.6 182.4

Figure 4. Obtained solutions for the load-case in Figure 1 for problem (3.6).

Finally, problem (3.6) was solved. The volume constraints were set to the
corresponding volumes obtained for problem (3.3) and the results are given in
Figure 4 and Table 3.

6. CONCLUSIONS

The numerical results indicate that the proposed method is able to find reas-
onable solutions to medium-scale topology optimization problems. Since a
pure 0-1 setting is used no “grey” elements appear which means that no post-
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processing is needed. Further advantages is that the method is able to reduce
the volume while at the same time reduce the maximum von Mises stress, com-
pared to the completely black starting solution, for both the problems involving
stresses. The linear subproblems are solved to a global optimum and the ob-
tained solutions to the original problem are guaranteed to be a local optimum
in the sense that no binary variable can be changed to its opposite binary value
while at the same time give a lower objective value. That the (fourth mesh)
solution to (3.3) is just a local optima is apparent since the maximum von
Mises stress for this solution is actually higher than the von Mises stress for
the (fourth mesh) solution to (3.5). Both solutions have the same volume how-
ever, which implies that the obtained solution for (3.5) is actually better than
the obtained solution for (3.3), even if the objective from (3.3) is used. Thus,
the solution for the finest mesh in Figure 2 is not a global optimum of problem
(3.3).

Another conclusion, based on the numbers in Tables 1–3, is that obtained
solutions to a minimum compliance problem may be poor with respect to
stresses.
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Abstract: Natural materials such as bone, tooth, and nacre are nano-composites of pro-
teins and minerals with superior stiffness and toughness. At the most element-
ary structure level, bio-composites exhibit a generic microstructure consisting of
staggered mineral bricks wrapped by soft protein in nanoscale. Why does nature
design building blocks of biological materials in this form? Can we reproduce
this kind of structure from the structural optimization point of view? We believe
that biological materials are designed with simultaneous optimization of stiff-
ness and toughness for maximum structural support and flaw tolerance. With
this philosophy, an optimization problem is formulated under the assumption of
appropriate material constitutive models and failure criteria. It is shown that,
within this optimization framework, the staggered microstructure of biological
materials can be successfully reproduced at the nanometer length scale. This
study may have at least partially provided an answer to the question whether the
nanostructure of biological materials is an optimized structure and what is be-
ing optimized. The results suggest that we can draw lessons from the nature in
designing nanoscale and hierarchically structured materials.

Keywords: Bio-inspired mimetic, material design, optimization, flaw tolerance.

1. INTRODUCTION

Natural materials such as bone, tooth, and nacre are nano-composites of pro-
teins and minerals with superior stiffness and toughness (Jackson et al., 1988).
Experimental results show that the while the stiffness of bio-composites is
close to that of its mineral constituent, its fracture strength and toughness are
significantly higher than those of the mineral. This outstanding performance of
bio-composites comes from their highly complex hierarchical structures at dif-
ferent length scales (Weiner and Wanger, 1998). For instance, sea shells have 2
to 3 orders of lamellar structure (Currey, 1997; Menig et al., 1998; Weiner and
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(a) (b)

(c)

Figure 1. The nanostructure of some typical hard biological tissues; (a) tooth, (b) bone and
(c) shell.

Wanger, 1998) and bone has 7 orders of hierarchy (Currey, 1984; Rho et al.,
1998; Weiner and Wanger, 1998). Figure 1 shows the nanostructure of some
typical bio-composites.

While the full hierarchical structure of bio-materials such as bone is ex-
tremely complex and variable, it is most interesting to observe that its basic
building blocks, the mineralized collagen fibril are rather universal. They are
generally designed at the nanoscale with nanometer sized hard mineral inclu-
sions embedded in the soft protein matrix (Gao et al., 2003). For instance,
at the lowest level of hierarchy, the nanostructure of bone (mineralized fib-
rils) is consisting of mineral platelets with thickness around a few nanometers
aligned in a stagger pattern in a collagen matrix (Landis, 1995; Rho et al.,
1998; Weiner and Wanger, 1998). Dentin is a calcified tissue somewhat sim-
ilar to bone, where the collagen-rich matrix is reinforced by calcium phosphate
crystals (Weiner et al., 1999; Tesch et al., 2001; Weiner and Wanger, 1998).
Similarly, the cell walls of wood are made of cellulose fibrils embedded in a
soft semicellulose-lignin matrix.

Because mineralized fibrils are the elementary unit of many complex bio-
composites, it is important to understand how their mechanical properties de-
pend on the properties of their constituents and the style of arrangement of
different materials at the level of individual fibrils. The components of mineral
fibril have extremely different mechanical properties. The mineral is stiff and
brittle while the (wet) protein is much softer but also much tougher than the
mineral. Increasing the amount of mineral particles will always increase the
stiffness but also the brittleness of the bone tissue at the same time. How to
make the bio-composite hard enough with high toughness? Nature solves this
problem in an elegant way by the smart design of the size, shape and material
distribution of the nanostructures of bio-composites.
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Previous studies (Gao and Ji, 2003; Ji and Gao, 2004) show that large aspect
ratios and the pattern of a staggered alignment of mineral platelets are the key
factors contributing to the large stiffness of biomaterials. On the other hand,
proteins between staggered mineral platelets play the essential role of absorb-
ing and dissipating a large amount of fracture energy. Furthermore, as shown
by Gao and Ji (2003), at the nanoscale, brittle mineral becomes insensitive
to flaws which makes it possible for it to sustain large stress without brittle
fracture and in turn enhance the toughness of biomaterials. In summary, it is
apparent that both the organic and mineral components as well as their arrange-
ment contribute equally to the strength of biomaterials. The bio-composite
combines the optimal properties of its both components, the stiffness and the
toughness. This rather unusual combination of material properties provides
both rigidity and resistance against fracture. From the viewpoint of materials
science, a better understanding of the underlying construction principles might
help designing better composite materials.

Nature materials have been perfected by the evolution through millions of
years. The essential idea of bio-inspired material design is to see how, in some
cases at least, the forms of these “well designed” nature materials can be ex-
plained by physical and mathematical laws. Once we can abstract the principle
and mechanism of good design from nature, we can therefore use them to make
advanced synthetic materials. From example, if we know some of the meth-
ods that natural systems have evolved to increase toughness, we can realize
that holes, carefully used, can improve strength while at the same time actually
making the structure lighter.

It is generally believed that the complex hierarchical structure is optimized
to achieve a remarkable mechanical performance (Weiner and Wanger, 1998;
Aksay and Weiner, 2004; Fratzl, 2004). Among the key features of the biolo-
gical systems, the organization of bio-structures at nano-scale is the prominent
one. The amazing rationality of these biological constructions naturally ex-
cites the interest to analyze them by using mathematical tools developed in the
theory of mechanics and structural optimization. Although the “result” of the
“optimization problem” is known, until now, however it is still unclear what
performance index is optimized when nature designs the building blocks of
bio-composites, i.e. in what sense the structure is optimal.

In order to obtain more insight in bio-inspired material design from nano-
scale and up, an optimization model is proposed in the present study to explain
why nature designs building blocks of biological materials in the present form.
We believe that biological materials are designed with simultaneous optimiz-
ation of stiffness and toughness for maximum structural support and flaw tol-
erance. With this philosophy, an optimization problem is formulated under the
assumption of appropriate material constitutive models and failure criteria. It is
shown that, within this optimization framework, the staggered microstructure
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of biological materials can be successfully reproduced at the nanometer length
scale. This study may have at least partially provided an answer to the question
whether the nanostructure of biological materials is an optimized structure and
what is being optimized. The results suggest that we can draw lessons from
the nature in designing hierarchically structured materials.

This paper is organized as follows. In Section 2, the mechanical prop-
erties of mineral and protein as well as their basic failure mechanisms will
be discussed. Then in Section 3, an optimization model used for the design
of nanostructure of bio-composites with appropriate objective and constraint
functions is proposed. Optimization results obtained with the proposed optim-
ization model will be given in Section 4. It is shown that the staggered pattern
of the material distribution in the nanostructure of bio-composites can be suc-
cessfully reproduced via the present optimization model. Finally, we end the
paper with some concluding remarks.

2. MECHANICAL PROPERTIES AND FAILURE
MECHANISMS OF THE BASIC COMPONENTS OF
BIO-COMPOSITE AT NANOSCALE

2.1 Mechanical Property of Mineral and Its Flaw
Tolerance Behaviour at Nanoscale

The present study focuses on the basic building block, the collagen-mineral
composite, containing nano-sized mineral platelets (essentially carbonated hy-
droxyapatite), protein and water. These components have extremely different
mechanical properties. The mineral is stiff and brittle, which can be considered
as linear elastic material during the process of deformation in physiological
conditions. It has a Young modulus as high as about 100 GPa with failure
strain about 1–2%. The stiffness of the biomaterials, which provides skeletal
rigidity, is mainly provided by the mineral crystals.

Although the theoretic strength of mineral material in bio-composites is
about 1 GPa, it is, however, as fragile as a classroom chalk. It is very sensitive
to the flaw in it at macroscopic length scale. The cracks in the mineral can
always propagate at stresses much lower than its theoretical strength, which
often leads to the catastrophe failure of structures. The high toughness of bio-
materials, however, requires that the mineral constituent should sustain large
stresses without brittle fracture. How does nature solve this problem?

This problem has been studied by Gao et al. (2003). They pointed out that
there is a critical length scale of mineral material below which the mineral is
insensitive to existing flaws, which can be expressed as:

hcri ≈ α2 γE
M

σ 2
th

, (1)
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where γ is the surface energy and Em is the Young’s modulus of mineral. α

is a crack geometry dependent parameter and σ th is the theoretical strength of
mineral.

As the thickness of mineral crystal drops below this length scale, the
strength of a perfect mineral platelet is maintained in spite of defects. In this
circumstance, the failure criterion is governed by theoretical strength rather
than by the Griffith criterion. For typical values of γ , EM and σ th, it can be es-
timated that hcri is in the nanometer scale. This explains why the basic building
blocks of bio-composites are always taken in nanometer sizes.

2.2 Mechanical Property of Protein and Its Failure
Mechanism

Protein plays very important role in biomaterials. Although protein may have
less effect on the biomaterial’s stiffness than mineral, however, it has a pro-
found effect on the biomaterial’s toughness. While the toughness of bone
results from its complex hierarchical microstructure with several contributing
toughening mechanisms, at the level of mineralized collagen fibrils, the soft or-
ganic matrix between the hard but brittle mineral plays a crucial role because
it is a primary arrestor of cracks and source of energy dissipation. Previous
studies (Gao and Ji, 2003; Ji and Gao, 2004) show that the tensile stress on
the bio-composite is transmitted through the organic matrix mainly by shear,
therefore the shear stiffness, failure strength and post yielding deformation be-
haviour are the controlling factors for the toughness of the bio-composites.
Furthermore, it has been shown that the geometric arrangement of the inor-
ganic and organic materials in the nanostructure of bio-composites also plays
an essential role for the toughening effect. This naturally leads to the question
that whether the staggered pattern in which the mineral and the organic mater-
ial are organized in bio-composites is good enough from optimization point of
view? This issue will be addressed in the following sections.

Since the mechanical behaviour of protein is vital for the toughness of bio-
composites, here we will discuss it in more details. Smith et al. (1999) used
atomic force spectroscopy to test the axial force-extension behavior of organic
matrix exposed on a fractured nacre surface. The axial force-extension be-
havior exhibited an irregular “saw-tooth” character, so named because of the
repeating pattern of a nonlinear force increase with extension followed by ab-
rupt load drops. This phenomenon is attributed to the unfolding of complic-
ated domains along the bio-macromolecular chain and overcoming sacrificial
bonds induced by Ca2+ ions in organic matrix sequentially. This behavior is
speculated to play a significant role in the mechanical behavior of biomaterials.
The protein molecules can undergo large deformation as the protein domains
unfold, which in turn increases the amount of energy dissipated before frac-
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Figure 2. A schematic illustration of the force-extension curve of protein.

ture and results in a very long flat tail of the force-extension curve as shown
in Figure 2. In this work, the mechanical behavior of protein is modeled as
σ e = f (εe) = σ P

f (1 − e−γε), where γ = 5 and σ P
f = 20 MPa. σ e and εe are

equivalent stress and equivalent strain, respectively.

3. OPTIMIZATION PROBLEM

The present work aims at understanding the rationality of the existing brick
and mortar form of the building blocks of bio-composites from optimization
point of view. Mathematically speaking, bio-mimicking or bio-inspired mater-
ial design can be formulating as an inverse optimization problem, i.e. finding
a goal functional of an optimization problem with the inspiration that obtained
from the analysis of existing forms of biomaterials. If the solution of this op-
timization problem can be in reasonable agreement with the reality, then the
design principles embedded in the proposed optimization problem can be used
to design high-performance man-made materials. This is just the essential idea
of bio-mimicking research.

Here we have assumed implicitly that the building block of bio-composites
is the “optimization result” of natural evolution, which is consistent with Neo-
Darwin’s theory of natural selection. As for an optimization problem, the
design variables, the objective as well as constraint functions (or functionals)
are its three basic ingredients. In the following, these issues will be addressed
respectively.

3.1 Design Variables

In this work, we will formulate the corresponding optimization problem in the
framework of optimal topology design, i.e. finding the optimal distribution of
hard and brittle inorganic as well as soft and ductile organic materials in a basic
unit-cell (RVE) of the basic building blocks of bio-composites. To this end, an
indicator function ρ(x) defined on the unit cell Y is introduced, which can only
take the values of 0 and 1. If ρ(x) = 0, it is indicated that the current point x
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Figure 3. Illustration of the design variable and design domain.

is occupied by hard mineral material, otherwise it is occupied by soft protein
like material (see Figure 3).

In order to use gradient based numerical algorithms for the solution of the
proposed discrete valued design optimization problems, a conventional ap-
proach is to replace the integer variables with continuous variables and then
introduce some form of penalty that steers the solution to discrete 0-1 values.
This approach is also adopted in the present paper.

Another design variable is the displacement control factor αū, which con-
trols the process of deformation. Here we assume that the unit cell is loaded
by prescribed displacements on the boundary of the unite cell, which takes the
form of u = ū = αūu0 on ∂Yu.

3.2 Objective Function

The determination of a suitable objective functional is a crucial aspect for the
solution of an inverse optimization problem. As for the present bio-mimicking
problem, it should reflect the essential idea (if there is) that nature used to
“design” the biomaterials. In the present work, we postulate that biological
materials are designed with simultaneous optimization of stiffness and tough-
ness for maximum structural support and flaw tolerance. With this philosophy,
the following objective functional is proposed:

f =
(
Eeff

E0

)(
�

�0

)
. (2)

We use f as a measure of the ductility of the material. Here only one di-
mensional loading case (uni-axial tensile loading along principle deformation
direction) is considered and Eeff is the effective stiffness along the loading dir-
ection. � is the energy dissipated during the process of deformation before any
material point in the unit cell reaches its critical failure status. E0 and �0 are
two parameters used for the dimensionless of the objective function.
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3.3 Constraint Functions

Constraint function is another very important ingredient for an optimization
problem, since it has vital influence on the final optimal solution. In a bio-
mimicking problem, just like that of objective functional, the constraint func-
tions should also reflect the basic challenges nature faced when designing bio-
materials. From mechanics point of view, these constraint functions are closely
related to the basic failure mechanisms of different materials as shown by Gao
and Ji (2003). In the proposed optimization model, it requires that during the
process of deformation, the effective strain of any material point in the unit cell
should not exceed its critical value. According to the discussions in Section 2,
in this work, the effective failure strain is set to be 1% for hard and brittle
mineral material while 150% for soft and ductile organic material. This is con-
sistent with the typical deformation and failure mechanisms of these materials
as discussed thoroughly in the literatures.

It is worth noting that in the present work, we tacitly assumed that the inter-
faces between different materials are strong enough. This can be justified by
the fact that special polymers such as proteoglycans at the interface of organic
and inorganic materials in bio-composites are capable of making the binding
between them tight enough (Fratzl et al., 2004). Another problem is that 1of
mineral material, but if we take the unavoidable defects into consideration, is
it still reasonable to use this theoretical strength value as the control parameter
in the optimization problem?

This problem can be solved by restricting the size of the unit cell below the
critical size of mineral derived from the argument of flaw tolerance. As pointed
out in Section 2, when the mineral size drops below this critical length scale,
the theoretical strength of mineral platelet can be maintained in spite of defects.
From optimization point of view, this dimension restriction of the unit cell can
also be seen as a result of fracture strength optimization, which is an essential
part of the multidisciplinary optimization process of biomaterial design.

In summary, the optimization problem of bio-material design can be formu-
lated as follows:

Find ρ(x) ∈ L∞(Y ), αū

minf = −
(
Eeff

E0

�

�0

)
(3)

S.t. ∫∫
Y

C(x)ε(u(x)) : ε(v(x)) dY = 0 in Y for every v ∈ Uad, (4)∫∫
Y

ρ(x) dY = V̄ , 0 ≤ ρ(x) ≤ 1, (5)
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u = ū = αūu0 on ∂Yū, (6)

εeq(x) = √
ε(u(x)) : ε(u(x)) ≤ ρn(x)εMf + [1 − ρn(x)]εPf in Y , (7)

where C(x) = ρn(x)CM + 1 − ρn(x)]CP is the fourth order elasticity tensor at
material point x. It is obtained by interpolating between the elasticity tensors
CM of mineral and CP of protein, respectively. n > 1 is an integer used for the
penalization of the intermediate values of ρ. εeq(x) is the equivalent strain at x.
εMf and εPf denote the failure strain of mineral and protein, respectively. u0 =
(1, 0)T is the displacement mode vector, which indicates that the structure is
only loaded along x1 direction. Uad is the space of admissible test functions
appeared in the weak form of equilibrium equation. V̄ is the given amount of
the available mineral material. For simplicity, only the 2-D case is considered,
extensions to the 3-D case is straightforward.

For the calculation of Eeff, a homogenization approach based on asymptotic
expansion is used. Eeff can be expressed as:

Eeff = 1

|Y |
∫∫

Y

[
E1111(x)− E11pq

∂χ11
p (x)

∂yq

]
dY, (8)

where χ11 = χ11(x) is the characteristic function, which can be obtained by
solving a boundary value problem defined on Y with periodic boundary condi-
tions. |Y | denotes the area of the unit cell.

In the present work, the measure of the toughness of the bio-composites
corresponding to the considered loading condition is defined as:

� =
∫∫

Y

[(1 − ρ(x)σ (x) : ε(x)] dY, (9)

where σ (x) and ε(x) are stress and strain at point x, respectively. An assump-
tion is also made here that all of the work done on the soft material is dissipated
as heat during the process of deformation.

3.4 Optimization Algorithms

For the nonlinear constitutive model, although the sensitivities used for numer-
ical optimization can be obtained analytically (for the limitation of space, the
detailed derivations are omitted here), numerical experiments show that the be-
havior of the solution process is unstable and often lead to non-convergent res-
ults. This is can be partially attributed to the inaccurate numerical calculation
of the sensitivities since at some stages of the solution process, the condition
number of tangent stiffness matrix is large for the high contrast of the material
stiffness properties of different materials. Taking this into consideration and in
order for dealing with the 0-1 constraints more directly, in the present work,
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Figure 4. Loading condition in front of the tip of a propagating crack.

Genetic Algorithm (GA) is used to solve the corresponding optimization prob-
lem. A binary chain with m+9 bits is used to represent one point in the design
space. The first m bits represent the material type in m elements and the last 9
bits represent the value of the displacement control factor. Its value is varied
in the interval of [0.0, 5.1] with a resolution of 0.1.

4. RESULTS AND DISCUSSION

In this section, a numerical example will be given for illustration purpose. For
the considered problem, the design domain is a rectangular one with an aspect
ratio of 10:1. The length and width of the design domain are len x = 100 nm
and len y = 10 nm, respectively. The Young’s modulus of mineral and pro-
tein like material are EM = 100 GPa and EP = 100 MPa (corresponding
to γ = 5), respectively. The effective failure strains for mineral and protein
like material are 1% and 150%, respectively. The yield stress for protein like
material is σP

f = 20 MPa. E0 and �0 in objective function used for dimen-
sionless are E0 = EMV̄ /|Y | and �0 = σ P

f ε
p

f × len x × len y/4, respectively.
The available volume percentage of mineral in the design domain is chosen as
57%. The prescribed displacements are imposed on the lateral boundary of the
unit cell in the horizontal direction. This loading condition is used to simulate
the pull out process in the process zone in the front of the propagating crack
(see Figure 4).

We assume that the unit cell to be designed has one-quarter symmetry. Then
only one quarter of the unit cell needs to be optimized. The design domain and
the boundary conditions determined from both of the symmetry and periodic
properties of the unit cell and loading condition are depicted in Figure 5. In
this figure, the vertical displacement at the upper and lower boundaries and the
horizontal displacements at the right boundary are set to zero values.

14 × 3 and 7 × 6 meshes are first used to solve the same optimization. The
individuals in the initial population for GA algorithm are generated randomly.
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Figure 5. Design domain and boundary as well as loading conditions.

(a) Step 1 (b) Step 10

(c) Step 80 (d) Step 120

(e) Step 220 (f) Step 227

(g) Step 228 (h) Step 250

Figure 6. GA evolution history for 14 × 3 mesh (best individual in each generation).

The GA evolution histories are illustrated in Figures 6a–6h and Figures 7a–
7l, respectively. The optimal values of the displacement control factor and
objective function are 2.6 and −0.0386 for 14 × 3 mesh as well as 1.5 and
−0.0946 for 7 × 6 mesh, respectively. It can be seen that for these meshes,
the optimal distributions of the mineral and protein like material are also of
staggered type.

In order to further examine the optimality of the staggered type material ar-
rangement, refined finite element mesh should be used. In order to enhance the
computational efficiency of GA algorithm, under these circumstance, we insert
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(a) Step 1 (b) Step 41

(c) Step 81 (d) Step 91

(e) Step 95 (f) Step 120

(g) Step 160 (h) Step 200

Figure 7. GA evolution history for 7 × 6 mesh (best individual in each generation).

the specific individuals constructed based on the inspirations obtained from the
optimization results for coarse mesh. In this way, a lot of computational efforts
can be saved. Figures 8a–8d show several such specific individuals. Optimal
topologies obtained by GA algorithm for different meshes are shown in Fig-
ure 9. Both are of staggered type.

Jager and Fratzl (2000) studied the mechanical properties of mineralized
collagen and proposed a model with a staggered array of platelets that is in
better agreement with results on molecular packing in collagen fibrils (see Fig-
ure 10). They showed this material arrangement leads to larger elastic modulus
and fracture strain with the given amount of mineral in the fibril compared with
a strictly parallel arrangement.

It can be seen that with the use of the proposed optimization model, the
staggered arrangement of the hard and soft materials which is in reasonable
agreement with that found in natural bio-composites can be reproduced (see
Figures 1 and 10). Then it seems that a plausible explanation for the convergent
evolution in biology can be given (at least partially) from the optimization point
of view. The obtained encouraging results confirm the belief that a staggered
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(a) Individual 1 for 14 × 6 mesh

(b) Individual 2 for 14 × 6 mesh

(c) Individual 1 for 28 × 12 mesh

(d) Individual 2 for 28 × 12 mesh

Figure 8. Specific individuals used for GA algorithm for different meshes.

(a)

(b)

Figure 9. (a) Optimal topology for 14 × 6 mesh. (b) Optimal topology for 28 × 12 mesh.

arrangement of mineral particles in the fibrils is mechanically superior to a
strictly parallel arrangement from optimization point of view.
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(a)

(b)

Figure 10. (a) Stagger model of mineralize collagen fiber (Jager and Fratzl, 2000) and (b) the
optimal material distribution obtained by the proposed optimization model.

5. CONCLUDING REMARKS

The results of this study show that an optimization model with appropriate ma-
terial constitutive models, failure criteria as well as objective and constraint
functions can reproduce the realistic material distribution in the nanostructure
of bio-composites. Although our approach to model the complex physical be-
haviour of biomaterials is certainly simplified, results obtained do show the
independent roles played by mineral and soft protein like material and high-
light the design principles used by the nature to produce the building blocks of
bio-composites.

It seems that the maximization of ductility may be an objective of nature
to design the basic building blocks of bio-composites. The insights gained
from the present study are not only important for biological materials, but may
also inspire novel ideas for the design of synthetic materials. From optim-
ization point of view, bio-mimicking or bio-inspired material design can be
formulated as an inverse optimization problem, i.e. finding a goal functional
of an optimization problem under the condition that the solution to that prob-
lem is known. It is worth noting that the optimization problems in bio-inspired
material design and engineering construction design are mutually inverse. In
the former, the biological structure is known, but it is not clear what perform-
ance is optimized whereas the goal of the latter is to find an (unknown) op-
timal structure with the minimization (or maximization) of a given functional
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(LeeLavanichkul and Cherkaev, 2004). Using optimization principles to re-
veal the strategies and mechanisms used by nature to design biomaterials is a
promising research field. The present work is only a preliminary step along
this direction, more work needs to be done in this promising research field.
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Abstract: The notion of optimization is inherent in protein design. A long linear chain
of twenty types of amino acid residues are known to fold to a 3-D conforma-
tion that minimizes the combined inter-residue energy interactions. There are
two distinct protein design problems, viz. predicting the folded structure from
a given sequence of amino acid monomers (folding problem) and determining
a sequence for a given folded structure (inverse folding problem). These two
problems have much similarity to engineering structural analysis and structural
optimization problems respectively. In the folding problem, a protein chain with
a given sequence folds to a conformation, called a native state, which has a
unique global minimum energy value when compared to all other unfolded con-
formations. This involves a search in the conformation space. This is some-
what akin to the principle of minimum potential energy that determines the de-
formed static equilibrium configuration of an elastic structure of given topology,
shape, and size that is subjected to certain boundary conditions. In the inverse-
folding problem, one has to design a sequence with some objectives (having a
specific feature of the folded structure, docking with another protein, etc.) and
constraints (sequence being fixed in some portion, a particular composition of
amino acid types, etc.) while obtaining a sequence that would fold to the desired
conformation satisfying the criteria of folding. This requires a search in the se-
quence space. This is similar to structural optimization in the design-variable
space wherein a certain feature of structural response is optimized subject to
some constraints while satisfying the governing static or dynamic equilibrium
equations. Based on this similarity, in this work we apply the topology optim-
ization methods to protein design, discuss modeling issues and present some
initial results.

Keywords: Protein sequence design, continuous modeling of amino acid types, topology
optimization, inverse folding.
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Figure 1. (a) Three amino acid residues connected by peptide bonds. The relative rotations
are indicated by ϕ and ψ . (b) The representation of the backbone formed by the Cα atoms.
(c) Ribbon representation highlighting the secondary structures, viz., α-helices, β sheets and
loop regions.

1. INTRODUCTION

Proteins are heteropolymer linear chains consisting of 20 types of amino acid
residues. Figure 1a shows how two adjacent residues in the chain are connec-
ted by a peptide bond and how they can rotate relative to each other. Addi-
tionally, the side chains that are denoted by Ri in Figure 1a can also assume
different configurations. These mobilities allow protein chains to fold in nu-
merous ways. The folded shape is often denoted by the backbone formed by
the Cα atoms in the chain. As shown by the backbone in Figure 1b, proteins
fold into their preferred three dimensional structures. The term “conforma-
tion” is also often used interchangeably with “structure”. The conformation of
a protein has hierarchical structure: the linear chain is the primary structure;
α-helices, β sheets and loop regions are secondary structures; and the compact
three dimensional form is the tertiary structure [1]. The folded conformation
has flexible regions and relatively rigid regions. The flexible motions allow
conformation changes, which form the basis for the functionality of most pro-
teins [2]. Proteins are thus nano-scale deformable structures.

There is a strong correlation between the function of a protein and its folded
structure to the extent that predicting the biological function of a protein from
its sequence without knowing its conformation is very difficult and may even
be impossible [1]. However, it is the sequence of amino acids that entirely
determines its folded conformation [3]. The folded conformation is called the
“native state” of the protein. The protein of a given sequence is said to have the
lowest free energy in its native state when compared with all other conforma-
tions. Thus, the notion of optimization is inherent in protein folding. The next
section elaborates this view and briefly reviews previous approaches in compu-
tational studies on proteins. Section 3 includes a discussion of the continuous
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modeling of a discrete problem to make it amenable to computationally ef-
ficient gradient-based local optimization methods. The continuous modeling
brings out an analogy between structural topology optimization and protein
design problems, as presented in Section 4 with some results. The paper ends
with Section 5.

2. OPTIMIZATION IN PROTEIN DESIGN

Based on Anfinsen’s thermodynamic hypothesis [3] and subsequent modeling
and experimental observations, it is generally accepted that the linear chain of a
protein folds to its native state because it has the lowest free energy in that state.
Thus, computational prediction of the folded conformation is a minimization
problem in the conformation into space. This space consists of all possible
ways that a protein chain can fold. Given a sequence, the folding problem at-
tempts to identify the folded conformation. Even after many decades of intens-
ive research, this problem does not yet have a complete solution. Stochastic
methods such as Monte Carlo methods (e.g., [4]), genetic algorithms (e.g., [5])
and simulated annealing (e.g., [6]) as well as somewhat deterministic methods
such as dead end elimination (e.g., [7]) and mean field theories (e.g., [8]) have
been applied to solve this problem. Template matching algorithms have also
been developed. Among them, ROSETTA [9] is said to be the most reliable
computer program/algorithm today [10]. Many of the above methods amount
to semi-exhaustive searches. Experimental determination of folded conform-
ation is an equally difficult problem. X-ray crystallography is the dominant
method while the Nuclear Magnetic Resonance (NMR) method is the other. In
the protein data bank (PDB), there are more than 30,000 proteins with determ-
ined conformations but there are already more than 1.3 million sequenced pro-
teins whose structure is not known. Furthermore, it is remarked that while the
number of determined conformations doubles every three years, the sequences
with unknown folded conformations doubles every few months [10].

There is also an alternate criterion for protein folding. From the stability
viewpoint, it is argued that proteins prefer a native conformation that is not
necessarily the one with the lowest energy but the one with an energy that is
separated by a large value from the average energy of unfolded conformations
in its vicinity. That is, in the energy landscape in the conformation space, the
native state is a minimum located in a deep and narrow valley rather than in
a wide valley even if the latter is a global minimum. This view, for example,
is explained using mean field theory by Wolynes [8]. Yet another criterion is
the kinetic accessibility. That is, a protein should be able to fold to its native
state rapidly and consistently. Molecular dynamics (MD) simulations help in
this regard [11].

457



G.K. Ananthasuresh

The inverse folding problem or sequence-design problem, i.e., determining
the sequence for a given conformation, is a harder problem than the folding
problem. Unlike the folding problem, it does not even have a conceptual basis
such as the minimum free energy criterion. In other words, if we determine
a sequence that has the lowest energy in a given conformation, there is no
guarantee that this sequence will fold to this conformation. This is because
this particular sequence may have even lower energy in another conformation.
This is one difficulty with the inverse folding problem.

A second difficulty is the size and the nature of the sequence space. Consider
a protein that hasN residues. Since there are 20 amino acids and they can occur
any number of times, the number of possible sequences are 20N . For N =
100, the number of sequences is 20100 ≈ 1.27 × 10130. Therefore, exhaustive
enumeration is completely ruled out in the foreseeable computational power.
Furthermore, the sequence space is discrete which makes searching through
this using continuous algorithms impossible.

In this work, we model the discrete, combinatorial sequence space as a con-
tinuous space and formulate a continuous optimization problem based on some
assumed criteria for folding and simplified models of energetic interactions.

2.1 Criteria for Protein Folding

The criteria for protein folding can be summarized as follows. Let SC
∗

denote
the entire sequence space for a protein chain. Then, for a given conformation
C∗, SC

∗
ns represents a subset of SC

∗
, the members of which have C∗ as the

native state. This is shown pictorially in Figure 2. Likewise, we can visualize
SC

∗
e and SC

∗
� as subsets in which the energy is a minimum or the energy gap is a

maximum respectively. Based on the foregoing criteria, the designed sequence
must belong to SC

∗
ns . Some researchers believe that it suffices if the sequence

belongs to SC
∗

� [6, 8]. Some other researchers consider SC
∗

e because it is easier
to deal with computationally: only the sequence space needs to be searched
here. They believe that when the composition of amino acid types is fixed,
energy-minimizing sequences for a conformation also prefer that conformation
as the native state. The mathematical basis for this is explained in [12]. In this
work, we first search only in the sequence space subjected to above constraint
and later extend the search to a limited portion of the conformation space as
well.

2.2 Analogy with Structural Optimization

The two important criteria of protein folding lead to an optimization problem
that assumes the following form:
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Figure 2. Subsets of the sequence space that have: a conformation C∗ as the native state
(Sns ), minimum energy in C∗ (Se) and maximum energy gap (S�).

Minimize
x∈S

E = energy

Subject to x has a minimum E for C∗ in the conformation space. (1)

Given amino acid residue composition for x.

The above optimization problem implies that the minimization of the energy in
the sequence space is to be done in such a way that each considered sequence
must have C∗ as its native state (which in turn means a minimization of the
energy in the conformation space) and it satisfies the composition constraint.
If we compare x ∈ S with the design variables in structural optimization, the
variables defining the conformation can be thought of as the state variables,
i.e., displacements. In other words, the minimizing sequence should be found
in the sequence space in such a way that every one of them has the desired con-
formation as the native state in the conformation space. The composition con-
straint in Equation (1) is like a resource constraint, which is similar to volume
constraint in multiple-material topology optimization.

3. CONTINUOUS MODELING

When we search in the sequence space in order to minimize energy for a given
conformation, at each residue site there are 20 possibilities. Let us consider
a simpler case. Amino acids can be grouped into two categories based on
their hydrophobicity. Hydrophobic types (denoted by H) usually get buried in-
side the folded conformation hiding from water molecules in the environment
whereas non-hydrophobic ones (denoted by P for polar) often get exposed on
the outside. Since hydrophobicity plays an important role in protein folding,
especially in the initial stages, a two-category HP modeling is quite justifiable
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as a starting point. Now, if there are only two types, each residue site can be
occupied by either H or P. This is a discrete binary problem leading to mul-
tiple combinations of N-tuples of 1s (for Hs) and 0s (for Ps) when there are
N residues in the chain. This is similar to the structural topology optimization
problem where occupation by material at a point (1 state) or not (0 state) leads
to a binary problem. Just as in the topology optimization problem, here too it
can be relaxed into a continuous model.

Following [13, 14], consider the unity-normalized Gaussian distribution
function to denote the H (1) and P (0) states for the ith residue site.

Si(ρi) = e−(ρi/σ )
2
, −∞ < ρi < ∞. (2)

It is easy to see that the H state is obtained when ρi = 0, and the P state for
all other values of ρi. When the tuning parameter σ is very small, the above
interpolation asymptotically approaches an almost discrete selection between 1
and 0 depending on whether ρi is equal to 0 or not. For all practical purposes, in
numerical calculations the peak of the Gaussian distribution function becomes
a Kronecker delta function. In numerical optimization, a moderately large σ is
used initially and subsequently is driven to a small value.

A similar approach can also be followed for more number of amino acid
types by expressing the interpolating function Si in terms of two variables per
each site, viz., φi , θi . Letting Sji denote the j th residue type at the ith site, we
write

S
j

i (φi, θi) =
2∑

k=1

P k
j , j = 1, . . . , m− 1, (3)

where

P k
j = exp

[
−arccos2

(〈ρ(φi, θi), ρjk 〉)
σ 2

]
, i = 1, . . . , m; k = 1, 2.

Furthermore, for the “ground” (zero) state we have

Smi = 1 −
m−1∑
j=1

S
j

i . (4)

The above equations can be understood by visualizing a sphere (see Fig-
ure 3a) on which “peaks” are arranged. The two variables per site φi , θi now
denote the angular part of the spherical coordinates and point to a certain dir-
ection. If this direction coincides with the direction of a pre-specified peak,
at that residue site the corresponding amino acid type will be assumed. The
peaks are arranged on the sphere such that from each type of peak all others
are equally accessible. Once again, σ allows tuning of the intermediate states.
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Figure 3. Continuous interpolation of multiple states: (a) arrangement of “peaks” on a sphere,
(b) a large value of the tuning parameter σ , (c) a smaller value σ .

We also use another continuous modeling in which m variables are assigned
to each site where there are m amino acid types. In this case, there will be
mN variables for an N-residue chain. The m variables of each site individu-
ally determine each of the m amino acid states. Here, we let the interpolation
function be linear but each variable is bounded between 0 and 1. Of course,
we now need a constraint of the form shown below to ensure that no site is
occupied by more than “one” combined state.

m∑
j=1

x
j

i = 1. (5)

As explained in [15], this leads to a quadratic programming problem. Any one
of the above three continuous modeling schemes for the discrete amino acid
types could be used as per the categorization of residue types.

3.1 Modeling of Energy

When the discrete amino acid types are continuously interpolated, a question
naturally arises as to how the energy is computed using the interpolated states.
To see this, let us consider the simplest case of HP modeling in which only
three residue sites exist with the middle site fixed to be an H as shown on
the left side in Figure 4. Now, by letting the state of the other two residues
interpolated using Equation (2), we write [16]:

E = e(S1, S2) (6)

= eHHS1S2 + eHPS1(1 − S2)+ eHP(1 − S1)S2 + ePP(1 − S1)(1 − S2).
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Figure 4. A simple three-residue example to show the energy calculation using continuous
modeling of the amino acid types at two sites shown on the left side. The figure on the right is
the interpolated energy as per Equation (6).

Here, all the four possible cases are considered and their corresponding inter-
residue energy is included. It is easy to see that when the two residue sites
are purely H or P, the energy is properly computed. The interpolated energy
function is plotted on the right side in Figure 4.

In a general protein withN residue sites, we define an adjacency matrix A in
which Aij element is 1 if ith and j th residue sites have an energetic interaction
and 0 otherwise. This is shown below.

E = 1

2

N∑
i=1

N∑
j=1
j �=i

Aij e(Si(ρi), Sj (ρj )). (7)

The inter-residue energy em1m2 is determined from the Miyazawa–Jernigan
(MJ) potentials [17]. The MJ potentials are based on statistical analysis of
occurrence of amino acid residues found in real proteins. It is one of the easi-
est ways to model energetic interactions in proteins.

3.2 Finite Modeling of the Conformation Space

A protein chain, whose backbone (see Figure 1b) can be considered as a curve
in three dimensional space, can fold in infinitely many ways. Using a con-
tinuous curve has practical difficulties. For example, ensuring that this curve
does not cross itself is difficult. Letting the curve take any shape would make
the energy landscape rather difficult to deal with. Instead, in the literature the
relative rotations between adjacent amino acid residues are varied to define the
conformation space. Usually, the angles are fixed to a few positions (say, 10
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Figure 5. Elastic network model of a protein. The peptide-bonded neighbors are rigidly
connected with hinges at the residues sites. Non-bonded neighbors within some cut-off distance
are assumed to have energetic interaction, which is shown by a spring (dotted line).

positions separated by 36◦). For stochastic approaches, this modeling is fine.
However, since we want to optimize with respect to continuous variables re-
lated to varied angular positions, an alternative modeling is preferred. We use
the following approach.

For visualizing the kinetic pathway for a conformational change, an elastic
network model was used in [18]. This is valid even physically because the rel-
ative motion between adjacent residues is not without any resistance to motion.
Here, we use such an elastic network but do not use all possible angles as vari-
ables because there will be too many. Instead, we perform an eigenanalysis of
the elastic network to obtain the eigenmode shapes. Then, following the mode
summation method, we select a few modes and consider their amplitudes to
get local changes in the conformations.

Let wi , i = 1, 2, . . . , N denote the eigenmode shapes of an elastic net-
work, which consists of point masses and springs between adjacent residue
sites that have an energetic interaction. Each energetic interaction is assigned
a spring constant of unity. We do not count the interactions between pep-
tide bonded adjacent pairs of residue sites. The peptide bonds are taken as
hinges. Such an elastic network is shown in Figure 5. By multiplying a few
selected mode shapes and taking a linear sum with mode shape amplitudes qj ,
j = 1, 2, . . . , n < N , we get a variety of local conformation changes. By
denoting the initial spatial positions of the residue sites by x0

i , i = 1, 2, . . . , N ,
we can write the changed positions as follows:

xi = x0
i +

n<N∑
j=1

qiwi , i = 1, 2, . . . , N. (8)

In exploring the conformation space, qj , j = 1, 2, . . . , n < N become the
finite number of design variables. These variables decide the conformation.
Any designed sequence should have a global minimum in the conformation
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space. However, in this work we use only local optimization method. The
energy modeling should now take into account the changing distance between
pairs of interacting residue sites. This is taken as follows where d0

ij is the initial
distance in the given conformation and dij in the changed conformation. This
modulates the elements of the adjacency matrix, Aij .

E = 1

2

N∑
i=1

N∑
j=1
j �=i

Aij

1 + dij − d0
ij

e(Si(ρi), Sj (ρj )). (9)

4. PROBLEM STATEMENT AND RESULTS

Using the modeling done so far, the problem is formulated as follows:

Minimize
ρi ,i=1,2,...,N

qj ,j=1,2,...,n<N

E = 1

2

N∑
i=1

N∑
j=1
j �=i

Aij

1 + dij − d0
ij

e(Si(ρi), Sj (ρj))

Subject to
N∑
i=1

Si(ρi)−NH = 0, ql ≤ qi ≤ qu, −∞ ≤ ρi ≤ ∞.

Other relationships

dij = ‖xi − xj‖, d0
ij = ‖x0

i − x0
j‖ (10)

Si(ρi) = exp

(
−ρ2

i

σ 2

)
e(Si, Sj ) = eHHSiSj + eHPSi(1 − Sj)+ ePH(1 − Si)Sj + ePP(1 − Si)(1 − Sj )

eHH = −2.3, eHP = ePH = −1, ePP = 0.

Here, the HP modeling is shown for simplicity. The objective function is the
energy in the changed conformation as it depends on the eigenmode shape
amplitudes. The constraint refers to a given number of H residue types, NH .
The HP potentials are taken from [19]. They are derived from the Miyajawa–
Jernigan potentials. Two examples are shown in Figures 6a and 6b.

5. CLOSURE

Protein sequences for a given conformation are to be designed in such a way
that the designed sequence would have the lowest energy in the given con-
formation among all the other conformations in the conformation space. This
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Figure 6. (a) Lactoferrin protein (PDB code: 1LFG) designed with only two types of amino
acid monomers, H (hydrophobic; black dots) and P (polar; circles), (b) SRc Tyrosine Kinase
transformation protein (PDB code: 1SRL) designed by considering all amino acid monomer
types but in two stages using a combination of two methods using a procedure similar to the one
described in [16].

can be done by simultaneously searching in the sequence and conformation
spaces. Continuous modeling of the discrete sequence space and finite dimen-
sional continuous modeling of the conformation space give rise to a problem
structure that is similar to structural topology optimization. Thus, gradient-
based methods are used to solve this problem for some protein models with
simple energetic potentials. Future work will use more realistic modeling of
the energy due to the changing conformations.
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Abstract: The topological derivative allow us to quantify the sensitivity of a given cost
function when the domain of definition of the problem is perturbed by intro-
ducing a hole or an inclusion. This concept has been successfully applied in
the context of topology design and inverse problems. In order to find close ex-
pressions for the topological derivative several methods can be achieved in the
literature. In particular, we have proposed the Topological-Shape Sensitivity
Method, whose main feature is that all mathematical framework (and results),
already developed for shape sensitivity analysis, can be used in the calculation
of the topological derivative. In this paper we present the Topological-Shape
Sensitivity Method and use it as a systematic methodology for computing the
topological derivative for holes and inclusions in problems governed by Pois-
son’s and Navier’s equations.

Keywords: Topological derivative, shape sensitivity analysis, asymptotic expansion.

1. INTRODUCTION

The topological derivative [3, 5, 15] has been recognized as a promising tool
to solve topology optimization problems (see [4] and references therein). In
addition, extension of the topological sensitivity in order to include arbitrary
shaped holes and its applications to Laplace, Poisson, Helmoltz, Navier, Stokes
and Navier–Stokes equations were developed by Masmoudi and his co-workers
and by Sokolowsky and his co-workers (see, for instance, [11]).

Although the topological sensitivity is extremely general, this concept may
become restrictive due to mathematical difficulties involved in its calculation.
However, several approaches to compute the topological derivative may be
found in the literature [3, 14, 15]. In particular, we have proposed an altern-
ative approach, called Topological-Shape Sensitivity Method [12], which is
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based on classical shape sensitivity analysis. On the other hand, the topolo-
gical derivative (TD) concept is wider. In fact, this same idea can also be used
to calculate the sensitivity of the problem when, instead of a hole, a small in-
clusion is introduced at a point in the domain. In this last case, no topology
change occurs, then we have called it as configurational derivative (CD). Des-
pite the conceptual difference between TD and CD, we will show that this last
one can also be computed using the Topological-Shape Sensitivity Method.

In this paper, we firstly present a brief description of the Topological-Shape
Sensitivity Method. Next we apply this approach to obtain the TD for Poisson’s
(considering both homogeneous and non-homogeneous Neumann and Dirich-
let and also Robin boundary conditions on the hole) and Navier’s (plane-stress,
plane-strain and three-dimensional linear elasticity problems) equations . Fur-
thermore, we compute the CD for steady-state heat conduction and plane-stress
linear elasticity. Finally, it is also shown that in general the CD cannot be used
to obtain the TD for homogeneous Neumann boundary condition on the hole
simply taking the limit when the material property associated to the inclusion
vanishes.

2. TOPOLOGICAL-SHAPE SENSITIVITY METHOD

Let us consider an open bounded domain � ⊂ R
N (N = 2, 3) with a smooth

boundary ∂�. If the domain � is perturbed by introducing a small hole Bε of
radius ε at an arbitrary point x̂ ∈ �, we have a new domain �ε = � − Bε,
whose boundary is denoted by ∂�ε = ∂� ∪ ∂Bε. Then, considering a cost
function ψ defined in both domains, its topological derivative for holes is given
in [3], for f (ε) > 0, such that f (ε) → 0 with ε → 0+, as

DT

(
x̂
) = lim

ε→0

ψ (�ε)− ψ (�)

f (ε)
. (1)

We have proposed in [12] an alternative procedure to compute the topolo-
gical derivative called Topological-Shape Sensitivity Method. This approach
makes use of the whole mathematical framework (and results) developed for
shape sensitivity analysis (see, for instance, the pioneer work of Murat and Si-
mon [10]). The main result obtained in [12] is given by the following theorem:

Theorem 1 Let f (ε) be a function chosen in order to 0 <
∣∣DT

(
x̂
)∣∣ < ∞,

then the topological derivative given by Equation (1) can be written as

DT

(
x̂
) = lim

ε→0

1

f ′ (ε)
d

dε
ψ (�ε) , (2)

where the derivative of the cost function with respect to the parameter ε may
be seen as its classical shape sensitivity analysis.
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In general the cost function ψ(�) := J�(u) may depends explicitly and im-
plicitly on the domain �. This last dependence comes from the solution of a
variational problem associated to �: find u ∈ U(�), such that

a (u,η) = l (η) ∀η ∈ V(�) , (3)

where U(�) and V(�) respectively are the sets of admissible functions and
admissible variations defined on � and a (·, ·) : U × V → R is a bilinear
form and l (·) : V → R is a linear functional, which will be characterized
later according to the problem under analysis. Likewise, the state equation
written in the original configuration � (without hole) may also be satisfied in
the perturbed configuration �ε (with the introduction of a hole at point x̂ ∈ �).
Therefore, we have the following variational problem associated to function
�ε: find uε ∈ Uε(�ε), such that

aε (uε,η) = lε (η) ∀η ∈ Vε(�ε) , (4)

where aε (·, ·) : Uε×Vε → R, lε (·) : Vε → R and Uε(�ε) and Vε(�ε) respect-
ively are the sets of admissible functions and admissible variations defined on
�ε, which will be also defined later according to the problem under analysis
and the boundary condition on the hole.

Formally, the shape derivative of the cost function ψ(�ε) := J�ε
(uε) in

relation to the parameter ε reads{
Calculate :

d

dε
J�ε

(uε)

Subject to : aε (uε, η) = lε(η) ∀ η ∈ Vε(�ε)
. (5)

Let us relax the constraint of the above problem, given by the state equation
(Equation 5), by Lagrangian multipliers. Therefore, the Lagrangian is written
as

Lε (v, µ) = J�ε (v)+aε (v, µ)−lε (µ) ∀µ ∈ Vε(�ε) and v ∈ Uε(�ε) . (6)

Then, we have the following well-known result

d

dε
J�ε

(uε) = ∂

∂ε
Lε(v, µ)

∣∣∣∣v=uε
µ=λε

, (7)

where uε is the solution of the state equation (Equation 4) and λε is the solution
of the adjoint equation given by: find λε ∈ Vε(�ε), such that

aε (λε, η) = −
〈
∂

∂uε
J�ε

(uε), η

〉
∀η ∈ Vε(�ε) . (8)

It should be observed that only the part of the boundary ∂�ε associated
to ∂Bε is submitted to a perturbation (a uniform expansion of the ball Bε in
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this case). Therefore, the shape derivative of the cost function results in an
integral on the boundary ∂Bε. In addition, considering the result of Theorem 1
(Equation 2), the topological derivative becomes

DT

(
x̂
) = −lim

ε→0

1

f ′ (ε)

∫
∂Bε

�εn · n , (9)

where tensor �ε, that depends on uε and λε, can be interpreted as a general-
ization of the Eshelby energy-momentum tensor [6]. As a consequence, this
tensor plays a central role in the Topological-Shape Sensitivity Method and
should be clearly identified according to the problem under consideration.

Finally, we need to calculate the limit ε → 0 in Equation (9). Thus, we
should know the behavior of the solutions uε and λε when ε → 0, which may
be obtained from an asymptotic analysis around the neighborhood of the hole.
For that, we can define a new function wε such as uε = u + wε and, after
making y = x/ε, we need to solve an exterior boundary value problem (define
in R

N −B1, where B1 is a unit ball) associated to wε. At least for linear cases,
this problem may be solved using separation of variables. From this result,
we can choose a function f (ε) in order to take the limit ε → 0, obtaining
the final expression of the topological derivative. Therefore, the Topological-
Shape Sensitivity Method may be summarized in the following steps:

1. choose the cost function ψ(�) := J�(u), where u is the solution of the
state equation associated to the original domain �;

2. define the associated cost function ψ(�ε) := J�ε
(uε), where uε is the

solution of the state equation defined in the perturbed domain �ε;

3. compute the shape derivative of the cost function J�ε
(uε) using the Lag-

rangian Method, identifying tensor �ε and writing the sensitivity expres-
sion as a boundary integral only defined on ∂Bε;

4. use the result of Theorem 1;

5. make an asymptotic analysis around the neighborhood of the hole Bε in
order to know the behavior of the solutions uε and λε when ε → 0;

6. finally, choose function f (ε) and compute the final expression of the
topological derivative taking the limit ε → 0.

Now, let us apply the above method to compute the topological (holes) and
configurational (inclusions) sensitivities for some classical problems.

Remark 1 For the sake of simplicity, we will choose a cost function that
depends only implicitly on the domain of definition of the problem through
the solution of the state equation. Therefore ψ (�) := J (u) and ψ (�ε) :=
J (uε), where u is the solution of Equation (3), associated to �, and uε is the
solution of Equation (4), associated to �ε.
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3. TOPOLOGICAL DERIVATIVE (HOLES)

In this section we will compute the topological derivative for steady-state heat
conduction (considering both homogeneous and non-homogeneous Neumann
and Dirichlet and also Robin boundary conditions on the hole) and linear elasti-
city (plane-stress, plane-strain and three-dimensional problems).

3.1 Steady-State Heat Conduction

Let us state the following variational problem associated to the original domain
�: given a constant excitation b in � and a Dirichlet data ū on ∂�, find the
temperature field u∈ U(�), such that∫

�

k∇u · ∇η =
∫
�

bη ∀η ∈ V(�) , (10)

where k is a material property and U(�) and V(�) are given, respectively, by

U = {
u ∈ H 1 (�) : u|∂� = ū

}
, V = {η ∈ H 1

0 (�)} . (11)

Now, let us state a new variational problem associated to the perturbed domain
�ε: considering that on ∂Bε we have Dirichlet, Neumann or Robin boundary
conditions, find the temperature field uε ∈ Uε(�ε), such that∫

�ε

k∇uε ·∇η+γ
∫
∂Bε

uεη =
∫
�ε

bη+(β + γ )

∫
∂Bε

hη ∀η ∈ Vε(�ε) , (12)

where Uε(�ε) and Vε(�ε) are given, respectively, by

Uε = {
uε ∈ U(�ε) : α(uε|∂Bε − h) = 0

}
, (13)

Vε = {
η ∈ V(�ε) : α η|∂Bε = 0

}
, (14)

and α, β, γ ∈ {0, 1}, with α + β + γ = 1. This notation should be interpreted
as follows: when α = 1, uε = h and η = 0 on ∂Bε, and when α = 0, uε and η
are free on ∂Bε, where h is a data. Considering Remark 1, the shape derivative
of the cost function becomes

d

dε
J (uε) = −

∫
∂Bε

(
�εn · n − 1

ε
(γ (uε − h)− βh) λε

)
, where (15)

�ε = (k∇uε · ∇λε − bλε) I − k (∇uε ⊗ ∇λε + ∇λε ⊗ ∇uε) . (16)

Finally, from an asymptotic analysis of uε and λε, we can choose function
f (ε) depending on each type of boundary condition on ∂Bε, which allow us to
compute the limit ε → 0 in Equation (15). This procedure leads to the results
presented in Table 1, where u and λ are the solutions of the state and adjoint
equations, respectively, both defined in the original domain � (without hole).

See [12] for applications of the results shown in Table 1. We also observe
that the exceptional case h = h∗ appears in the Saint-Venant theory of torsion
of elastic shafts.
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Table 1. Topological derivatives for Poisson’s problem in 2D domains.

Boundary conditions f (ε) DT (x̂)
β = 1, α = γ = 0 and h = 0 πε2 −2k∇u · ∇λ+ bλ

β = 1, α = γ = 0 and h �= 0 2πε −hλ
γ = 1, α = β = 0 2πε (u− h) λ

α = 1, β = γ = 0 and h = h∗ πε2 2k∇u · ∇λ
α = 1, β = γ = 0 and h �= h∗ − 2π

log(ε) (u− h) λ

3.2 Linear Elasticity

The mechanical model associated to linear elasticity problem can be stated
in its variational formulation as following: find the displacement vector field
u ∈ U(�), such that∫

�

T(u) · E(η) =
∫
�N

q̄ · η ∀η ∈ V(�) , (17)

where U(�) and V(�) are given by

U = {u ∈ H 1 (�) : u|�D = u}, V = {η ∈ H 1 (�) : η|�D = 0} (18)

and � represents a deformable body submitted to a set of surface forces q̄ on
the Neumann boundary �N and displacement constraints ū on the Dirichlet
boundary �D. In addition, E(u) is the linearized Green deformation tensor and
T(u) is the Cauchy stress tensor respectively given by

E(u) = 1

2

(∇u + ∇uT
) := ∇us and T(u) = CE(u) , (19)

where C = CT is the elasticity tensor for linear elastic isotropic material. The
problem stated in the original domain � can also be written in the domain
�ε with a hole Bε. Therefore, assuming null forces on the hole, we have the
following variational problem: find the displacement vector field uε ∈ Uε (�ε),
such that ∫

�ε

Tε(uε) · Eε(η) =
∫
�N

q̄ · η ∀η ∈ Vε (�ε) . (20)

where Uε (�ε) = U (�ε) and Vε (�ε) = V (�ε). Observe that in accordance
with the variational problem given by Equation (20), the natural boundary con-
dition on ∂Bε is Tε(uε)n = 0 (homogeneous Neumann condition). Consider-
ing Remark 1, the shape derivative of the cost function becomes

d

dε
J (uε) = −

∫
∂Bε

�εn · n , where (21)
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�ε = (Tε(uε) · Eε(λε)) I − (∇λε)
T Tε(uε)− (∇uε)T Tε(λε) . (22)

Finally, taking into account homogeneous Neumann boundary condition on
the hole and considering a classical stress distribution around the void, we can
choose function f (ε) and take the limit ε → 0 in Equation (21) to obtain the
final expression for the topological derivative. Thus, for u and λ solutions of
the direct and adjoint problems, respectively, both associated to the original
domain � (without hole) and with ν being the Poisson’s ratio, we have the
following results (see also [8] and [9]):

• plane-stress linear elasticity, f (ε) = πε2

DT (x̂) = − 4

1 + ν
T(u) · E(λ)+ 1 − 3ν

1 − ν2
trT(u) trE(λ); (23)

• plane-strain linear elasticity, f (ε) = πε2

DT (x̂) = −4(1− ν)T(u) ·E(λ)+ (1 − 4ν)(1 − ν)

1 − 2ν
trT(u) trE(λ); (24)

• three-dimensional linear elasticity, f (ε) = (4/3)πε3

DT (x̂) = −3

2

1 − ν

7 − 5ν

[
10T(u) · E(λ)− 1 − 5ν

1 − 2ν
trT(u) trE (λ)

]
. (25)

For applications of these results, see [7] for 2D and [13] for 3D problems.

4. CONFIGURATIONAL DERIVATIVE (INCLUSIONS)

In this section we will compute the configurational derivative in steady-state
heat conduction and plane-stress linear elasticity. Therefore, let us consider
that the domain � is now perturbed by introducing, instead a hole, a small
inclusion represented by Bε. Therefore, we have a perturbed domain �ε ∪ Bε,
where �ε = � − Bε. Thus, considering a cost function ψ defined in both
domains � and �ε ∪ Bε, its configurational derivative is defined as

DC

(
x̂
) = lim

ε→0

ψ (�ε ∪ Bε)− ψ (�)

|Bε| , (26)

where |Bε| is the Lebesgue measure of the inclusion. It is important to observe
that all the mathematical framework introduced in section 2 can also be applied
in this context. See also [1] and references therein.
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4.1 Steady-State Heat Conduction

Let us consider again the Poisson’s equation. Therefore, the problem formula-
tion associated to the original domain � is given by Equation (10) and the state
equation associated to the domain �ε∪Bε is given by the following variational
problem: find the temperature field uε ∈ Uε(�ε ∪ Bε), such that∫

�ε∪Bε
kδ∇uε · ∇η =

∫
�ε∪Bε

bη ∀η ∈ Vε(�ε ∪ Bε) , (27)

where, according to definitions of the set U(�) and the space V(�) given by
Equation (11), we have Uε(�ε ∪ Bε) = U(�ε ∪ Bε) and Vε(�ε ∪ Bε) =
V(�ε ∪ Bε). In addition, the material property kδ is defined, for δ ∈ R

+, as

kδ = k ∀x ∈ �ε and kδ = δk ∀x ∈ Bε . (28)

Introducing the notation [[·]] := (·)|e − (·)|i , where (·)|e is associated to the
bulk material e, represented by �ε, and (·)|i is associated to the inclusion i,
represented by Bε. Then the shape derivative of the cost function, according to
Remark 1, results in

d

dε
J (uε) = −

∫
∂Bε

[[�εn]] · n , (29)

where tensor �ε is given by Equation (16) for k = kδ . Using the jump con-
ditions associated to the normal derivatives of solutions uε and λε, we can
compute the limit ε → 0 to get the configurational derivative, that is

DC

(
x̂
) = −2k

1 − δ

1 + δ
∇u · ∇λ , (30)

where u and λ are the solutions of the state and adjoint equations, respectively,
both defined in the original domain � (without inclusion).

4.2 Plane-Stress Linear Elasticity

In this section we compute the configurational derivative in plane-stress linear
elasticity problem, whose variational formulation, associated to the original
domain �, is given by Equation (17). On the other hand, the mechanical model
associated to the domain �ε∪Bε is given by the following variational problem:
find the displacement vector field uε ∈ Uε(�ε ∪ Bε), such that∫

�ε∪Bε
Tε(uε) · Eε(η) =

∫
�N

q̄ · η ∀η ∈ Vε(�ε ∪ Bε) . (31)

where, according to definitions of the set U(�) and the space V(�) given by
Equation (18), we have Uε(�ε ∪ Bε) = U(�ε ∪ Bε) and Vε(�ε ∪ Bε) =
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V(�ε ∪ Bε). In addition, the elasticity tensor is now defined, for δ ∈ R
+, as

Cδ = C ∀x ∈ �ε and Cδ = δC ∀x ∈ Bε . (32)

From Remark 1, the shape derivative of the cost function results in

d

dε
Jε(uε) = −

∫
∂Bε

[[�εn]] · n , (33)

remembering that [[·]] := (·)|e − (·)|i and that �ε is the generalized Eshelby
tensor, given in by Equation (22) for C = Cδ. Finally, taking into account the
jump condition on the boundary of the inclusion, we find f (ε) = πε2 and the
configurational derivative, for α = (3 − ν)/(1 + ν), becomes

DT

(
x̂
) = −1 − δ

2

1 + α

1 + δα

[
2T (u) · E(λ)− (1 − δ)(α − 2)

2δ + α − 1
trT (u) trE(λ)

]
,

(34)
where u and λ are solutions of the direct and adjoint problems, respectively,
both associated to the original domain � (without inclusion).

5. FINAL REMARKS

In this paper, we have applied the Topological-Shape Sensitivity Method as a
systematic procedure to compute the topological (holes) and configurational
(inclusions) sensitivities for some classical problems in continuum mechanics.

We have observed that the CD in general doesn’t converge in the limit case
(for δ = 0) to the TD for homogeneous Neumann boundary condition on the
holes. In order to illustrate this issue, let us consider a cost function that also
depends explicitly on the domain � as follows

ψ(�) := J�(u) =
∫
�

w(u− u∗)2 , (35)

where u is the solution of Equation (10), u∗ is a target temperature and w is a
weighting factor defined, for a given subset & ⊂ �, as w = 1 if x ∈ & and
w = 0 if x ∈ � − & . From the Topological-Shape Sensitivity Method, we
have respectively obtained the following results for holes and inclusions:

DT

(
x̂
) = −w(u− u∗)2 − 2k∇u · ∇λ+ bλ , (36)

DC

(
x̂
) = −2k

1 − δ

1 + δ
∇u · ∇λ . (37)

Observe that the result given by Equation (36) cannot be obtained taking the
limit δ → 0 in Equation (37). Therefore, this fact suggests that in general
the CD cannot be used to compute the TD for homogeneous Neumann bound-
ary condition on the hole simply taking the limit when the material property
associated to the inclusion vanishes.
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Finally, we would like to point out that this paper only deals with linear
problems. In addition, only linear problems or when the nonlinear term is
a compact perturbation of the principal part of the operator have been con-
sidered in the current literature [2]. Therefore, we are now interested in the
applications of the topological sensitivity for the cases in that the nonlinear
term involves the principal part of the operator, like the p-Poisson’s equation,
plasticity, finite deformations and so on.
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Abstract: Numerical methods of evaluation of topological derivatives are proposed for
contact problems in two dimensional elasticity. Problems of topology optim-
isation are investigated for free boundary problems of boundary obstacle types.
The formulae for the first term of asymptotics for energy functionals are de-
rived. The precision of obtained terms is verified numerically. The topological
differentiability of solutions to variational inequalities is established. In partic-
ular, the so-called outer asymptotic expansion for solutions of contact problems
with respect to singular perturbation of geometrical domain depending on small
parameter are obtained by an application of nonsmooth analysis. The topolo-
gical derivatives can be used in numerical methods of simultaneous shape and
topology optimisation, in particular, in the level set type methods.

Keywords: Shape optimization, topological derivative, contact problem, asymptotic expan-
sion, energy functional, optimal design.

1. INTRODUCTION

The main idea we use to derive the topological derivatives for contact problems
is the modification of the energy functional by an appropriate correction term
and subsequent minimisation of the resulting energy functional over the cone
of admissible displacements. Such an approach leads to the outer approxima-
tions of solutions to variational inequalities.

In this paper we derive useful formulae for the correction terms of the energy
functionals. We restrict ourselves to two dimensional problems and to singular
perturbations of geometrical domains in the form of small discs.
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The correction terms are derived in such a form, that the numerical verifica-
tion of its precision is straighforward. On the other hand, the terms are directly
used to establish the topological differentiability of solutions to variational in-
equalities. As a result, the one term outer expansion of solutions is derived for
a class of nonlinear problems. Outer expansion means that the expansion is
precise far from the hole, the expansion precise near the hole is called inner
expansion and usually the matching procedure is applied [7] to construct the
global asymptotic approximation of solutions to boundary problems in singu-
larly perturbed geometrical domains.

We provide a list of references, which includes in particular the results based
on asymptotic analysis of singularly perturbed boundary value problems in
the spirit e.g., of the monographs [7, 8], and of the paper [9]. The list is not
complete, since the topic is under dynamical expansion, we refer the reader to
the special issue on shape optimization of the journal Control and Cybernetics
34(1) (2005), which includes many related results. The notion of topological
derivative for an arbitrary shape functional is introduced for the first time in the
report [20], published in [21], and can be extended in many directions, for the
most general study of interior topological derivatives for the elasticity system
we refer the reader to [9]. Since the topological derivative is actually the first
term of asymptotic expansion of the functional under study, the results for the
energy functionals are already given, e.g., in [7] (the Russian version of the
book is published in 1987), and used in [3] for numerical methods of shape
optimization.

The outline of the paper is the following. In Section 1 the main result, on
asymptotic expansion of solutions to the contact problem, is presented. The
result uses the conical differentiability of solutions and the appropriate correc-
tion term of the energy functional. In Section 2 the correction term is derived in
two dimensional case. Mathematical analysis of the problem considered here
is performed in [27], where some numerical results are included.

1.1 Contact Problem in Elasticity

We establish the conical differentiability of solutions for two dimensional con-
tact problem in the elasticity. We consider the bounded domain � with the
boundary ∂� = �0 ∪ �c. On �0 the displacement vector of the elastic body is
given, on �c the frictionless contact conditions are prescribed. To specify the
week formulation we need an expression for the symmetric bilinear form and
for the convex set K ⊂ H 1(�)2.

The method of analysis is the same as in the case of Signorini problem. We
start with the formulation of the free boundary problem in unperturbed domain
�. The form of variational inequality is straightforward.
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(1) Contact problem in �

Find u = u(�) = (u1, u2) and σ = (σ )ij , i, j = 1, 2, such that

−div σ = f in � , (1)

Cσ − ε(u) = 0 in � , (2)

u = 0 on �0 , (3)

uν ≥ 0, σν ≤ 0, σνuν = 0 στ = 0 on �c . (4)

Here

σν = σijνjνi, στ = σν − σν = {
σ i
τ

}2

i=1 , σ ν = {
σijνj

}2
i=1 ,

εij (u) = 1

2
(ui,j + uj,i), i, j = 1, 2, ε(u) = (εij )

2
i,j=1,

{Cσ }ij = cijk�σk�, cijk� = cjik� = ck�ij , cijk� ∈ L∞(�).

The Hooke’s tensor C satisfies the ellipticity condition

cijk�ξjiξk� ≥ c0|ξ |2, ∀ξji = ξij , c0 > 0, (5)

and we have used the summation convention over repeated indices.
When the topology of � is changed, we have the following contact problem

in the domain �ρ with the small hole B(ρ).

(2) Contact problem in �ρ

Find u = u(�ρ) = (u1, u2) and σ = (σ )ij , i, j = 1, 2, such that

−div σ = f in �ρ , (6)

Cσ − ε(u) = 0 in �ρ , (7)

u = 0 on �0 , (8)

σν = 0 on �ρ , (9)

uν ≥ 0, σν ≤ 0, σνuν = 0 στ = 0 on �c . (10)

We assume for simplicity that the case of isotropic elasticity is considered,
thus the symmetric bilinear form associated with the boundary value problem
(1)–(4) is given by

a(u,u) =
∫
�

[
(λ+ µ)(ε11 + ε22)

2 + µ(ε11 − ε22)
2 + µγ 2

12

]
, (11)

where the notation for isotropic elasticity is fixed in Section 2.
The problem (6)–(10) is approximated by the problem with modified bilin-

ear form in the following way.
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(3) Approximation of contact problem in �ρ

We determine the modified bilinear form as a sum of two terms, as it is for the
energy functional, the first term defines the elastic energy in the domain �, the
second term is a correction term, determined in Section 2.3 by formula (42).
The correction term is quite complicated to evaluate, and we do not provide its
explicit form, such a form is actually defined by the formulae in Section 2. The
values of the symmetric bilinear form a(ρ; ·, ·) are given by the expression

a(ρ; v, v) = a(u,u)+ ρ2b(v, v) . (12)

The derivative b(v, v) of the bilinear form a(ρ; v, v) with respect to ρ2 at ρ =
0+ is given by the expression

b(v, v) = −2πev(0)− 2πµ

λ+ 3µ

(
σII δ1 − σ12δ2

)
, (13)

where all the quantities are evaluated for the displacement field v according
to formulae (26), (27), (29), (42), (33), we provide the line integrals which
defines all terms in (13) below.

Hence, we can determine the bilinear form a(ρ; v,w) for all v,w, from the
equality

2a(ρ; v,w) = a(ρ; v + w, v + w)− a(ρ; w,w) .

In the same way the bilinear form b(v,w) is determined from the formula for
b(v, v).

The convex set is defined in this case by

K = {v ∈ H 1(�)2|vν ≥ 0 on �c , v = g on �0} . (14)

Let us consider the following variational inequality which provides a suffi-
ciently precise for our purposes approximation uρ of the solution u(�ρ) to
contact problem (6)–(10),

uρ ∈ K : a(ρ; u, v − u) ≥ L(ρ; v − u) ∀v ∈ K . (15)

The result obtained is the following, for simplicity we assume that the linear
form L(ρ; ·) is independent of ρ.

Theorem 1 For ρ sufficiently small we have the following expansion of the
solution uρ with respect to the parameter ρ at 0+,

uρ = u(�)+ ρ2q + o(ρ2) in H 1(�)2 , (16)

where the topological derivative q of the solution u(�) to the contact problem
is given by the unique solution of the following variational inequality

q ∈ SK(u) = {v ∈ (H 1
�0
(�))2|vν ≤ 0 on '(u) , a(0; u, v) = 0} (17)

a(0; q, v − q)+ b(u, v − q) ≥ 0 ∀v ∈ SK(u) . (18)
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The coincidence set '(u) = {x ∈ �s |u(x).ν(x) = 0} is well defined [18] for
any function u ∈ H 1(�)2, and u ∈ K is the solution of variational inequality
(14) for ρ = 0.

Remark 1.1 In the linear case, it can be shown that ‖u(�ρ)− uρ‖ = o(ρ2)

in the norm of appropriate weighted space. We refer the reader to [9] for the
related error estimates in the Hölder weighted spaces. In general, we cannot
expect that uρ is close to u(�ρ) in the vicinity of Bρ , therefore the weighted
spaces should be used for error estimates.

For the convenience of the reader we provide the explicite formulae for the
terms in b(v, v) defined by (13), we refer to Section 2.2 for details. We have

2πev(0) = π(λ+ µ)

π2R6

(∫
�R

(v1x1 + v2x2) ds

)2

+ (19)

+ µ

π2R6

(∫
�R

(
(1 − 9k)(v1x1 − v2x2)+ 12k

R2
(v1x

3
1 − v2x

3
2 )

]
ds

)2

+

+ µ

π2R6

(∫
�R

[
(1 + 9k)(v1x2 + v2x1)− 12k

R2
(v1x

3
2 + v2x

3
1 )

]
ds

)2

,

with

σII = µ

πR3

∫
�R

[
(1 − 9k)(v1x1 − v2x2)+ 12k

R2
(v1x

3
1 − v2x

3
2 )

]
ds,

σ12 = µ

πR3

∫
�R

[
(1 + 9k)(v1x2 + v2x1)− 12k

R2
(v1x

3
2 + v2x

3
1)

]
ds,

and

δ1 = 9k

πR3

∫
�R

[
(v1x1 − v2x2)− 4

3R2
(v1x

3
1 − v2x

3
2 )

]
ds,

δ2 = 9k

πR3

∫
�R

[
(v1x2 + v2x1)− 4

3R2
(v1x

3
2 + v2x

3
1 )

]
ds.

2. TRANSFORMATIONS OF THE ENERGY
FUNCTIONAL FOR THE 2D ELASTICITY SYSTEM

2.1 Using Poisson Kernel for Computing Strain

As it turns out, similar reasoning may be carried out in case of the 2D elasticity
system, even if it is much more complicated. In absence of volume forces such
a system has a form

µ�u1 + (λ+ µ)(u1/1,1 + u2/1,2) = 0,

µ�u2 + (λ+ µ)(u1/1,2 + u2/2,2) = 0,
(20)
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where u = (u1, u2)
T denotes the displacement and λ, µ are Lame constants.

We shall use also the usual notation for the symmetric strain tensor ε = [εij ],
ε11 = u1/1, ε22 = u2/2, γ12 = 2ε12 = u1/2 + u2/1 as well as stress tensor
σ = [σij ]. The Hooke’s law

σ11 = (λ+2µ)ε11 +λε22, σ22 = λε11 +(λ+2µ)ε22, σ12 = µγ12 = 2µε12

links both objects. In these terms (20) reduces to

∇ · σ (u) = 0. (21)

For such a system there exists an analog to the Poisson kernel, see [1]. It is
a matrix G(x, y) allowing us to express the values of the solution inside the
circle �R(x0) by means of its values on the circumference:

u(x) = − 1

π

∫
�R(x0)

G(x − x0, y − x0) · u(y) dsy. (22)

Let us denote I – identity matrix and

k = λ+ µ

λ+ 3µ
.

Then G(x, y) has a form

G(x, y) = �(x, y)+ A(x, y), (23)

where

�(x, y) =
⎛⎝(1 − k)I + 2k

⎡⎣ ( ∂d
∂x1
)2 , ∂d

∂x1

∂d
∂x2

∂d
∂x1

∂d
∂x2

, ( ∂d
∂x2
)2

⎤⎦⎞⎠ ∂

∂ny
log

1

d
, (24)

A(x, y) = 1

2R

⎛⎝(1 − k)I − k

⎡⎣ x1y1−x2y2
R2 − 1 ,

x1y2+x2y1
R2

x1y2+x2y1
R2 , −1 − x1y1−x2y2

R2

⎤⎦⎞⎠ ,

(25)
and d = d(x, y) = ‖x − y‖.

From now on we shall assume that x0 = 0. This greatly simplifies formulae
without loss of generality.

Using the representation of displacement as given by (22) we may compute
the values of its derivatives at 0. Before writing down the result, we must
introduce some notation. Let us define I1(k, l) and I2(k, l) as

I1(k, l) = 1

α(k, l)

∫
�R

u1x
k
1x

l
2 ds , I2(k, l) = 1

β(k, l)

∫
�R

u2x
k
1x

l
2 ds ,

(26)
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where

α(k, l) = Rk+l+2
∫ 2π

0
cosk+1 φ sinl φ dφ ,

β(k, l) = Rk+l+2
∫ 2π

0
cosk φ sinl+1 φ dφ ,

whenever these expressions make sense, i.e. if k is odd and l even or vice versa.
Observe that α(k, 0) = β(0, k) and

α(1, 0) = πR3, α(3, 0) = 3

4
πR5, α(1, 2) = 1

4
πR5,

α(5, 0) = 5

8
πR7, α(3, 2) = 1

8
πR7

and so on. Furthermore, let

δ1 = 9k ([I1(1, 0)− I2(0, 1)] − [I1(3, 0) − I2(0, 3)]) ,
δ2 = 9k ([I1(0, 1)+ I2(1, 0)] − [I1(0, 3) + I2(3, 0)]) . (27)

In terms of these symbols one may obtain, after very lengthy calculations, the
formulae for the values of strain components at the point x0 = 0 which will
constitute the basis of our energy transformations:

ε11 + ε22 = I1(1, 0) + I2(0, 1) ,

ε11 − ε22 = I1(1, 0) − I2(0, 1) − δ1 ,

γ12 = I1(0, 1) + I2(1, 0) + δ2 .

(28)

Let us recall also the expression for the elastic energy density at the same point,

eu(0) = 1

2
σ : ε = 1

2

[
(λ+ µ)(ε11 + ε22)

2 + µ(ε11 − ε22)
2 + µγ 2

12

]
. (29)

2.2 Distortion of the Stress Field Caused by Small
Circular Hole

We shall recall here some formulae describing the stress field around circular
hole in the infinite 2D elastic medium. If we assume that at infinity only σ11

is not zero, and the hole B(ρ) is centered around origin, then the stresses for
r ≥ ρ have the form

σrr = 1

2
σ11

[(
1 − ρ2

r2

)
+

(
1 − 4

ρ2

r2
+ 3

ρ4

r4

)
cos 2φ

]
,

σφφ = 1

2
σ11

[(
1 + ρ2

r2

)
−

(
1 + 3

ρ4

r4

)
cos 2φ

]
,

σrφ = −1

2
σ11

(
1 + 2

ρ2

r2
− 3

ρ4

r4

)
sin 2φ .

(30)
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Here (r, φ) constitute the polar coordinate system around origin and the σ–
components are give in the orthogonal coordinates defined by {er , eφ}, with
base versors at any given point directed along radius and perpendicularly to it,
anticlockwise.

Using these expressions we may immediately construct the solution corres-
ponding to nonzero σ22 at infinity, by substituting φ := φ + π

2 , σ11 := σ22

(exchange of axis):

σrr = 1

2
σ22

[(
1 − ρ2

r2

)
−

(
1 − 4

ρ2

r2
+ 3

ρ4

r4

)
cos 2φ

]
,

σφφ = 1

2
σ22

[(
1 + ρ2

r2

)
+

(
1 + 3

ρ4

r4

)
cos 2φ

]
,

σrφ = 1

2
σ22

(
1 + 2

ρ2

r2
− 3

ρ4

r4

)
sin 2φ .

(31)

Furthermore, we may exploit the fact that the pure shear stress σ12 is equi-
valent to simultaneous stretching and compression with the same intensity σ12

and −σ12, but along the axis rotated by the angle π/4. Thus we make substitu-
tions φ := φ + π

4 , σ11 := σ12, then φ := φ − π
4 , σ11 := −σ12 in (30) and add

both solutions together obtaining:

σrr = σ12

(
1 − 4

ρ2

r2
+ 3

ρ4

r4

)
sin 2φ ,

σφφ = σ12

(
1 + 3

ρ4

r4

)
sin 2φ ,

σrφ = σ12

(
1 + 2

ρ2

r2
− 3

ρ4

r4

)
cos 2φ .

(32)

Let us now denote

σI = 1

2
(σ11 + σ22), σII = 1

2
(σ11 − σ22). (33)

Then adding (30), (31),(32) gives the solution corresponding to the general
stress field at infinity:

σrr = σI + σII cos 2φ + σ12 sin 2φ

− σI
ρ2

r2
− σII

(
4
ρ2

r2
− 3

ρ4

r4

)
cos 2φ − σ12

(
4
ρ2

r2
− 3

ρ4

r4

)
sin 2φ ,

σφφ = σI − σII cos 2φ − σ12 sin 2φ

+ σI
ρ2

r2
− 3σII

ρ4

r4
cos 2φ − 3σ12

ρ4

r4
sin 2φ ,

σrφ = −σII sin 2φ + σ12 cos 2φ

− σII

(
2
ρ2

r2
− 3

ρ4

r4

)
sin 2φ + σ12

(
2
ρ2

r2
− 3

ρ4

r4

)
cos 2φ .

(34)

486



Topological Derivatives for Contact Problems

Recalling the rules for the transformation of stresses under rotation of the co-
ordinate system, we get the distortion of the stress due to the circular hole:

σ̂rr = −σI ρ
2

r2
− σII

(
4
ρ2

r2
− 3

ρ4

r4

)
cos 2φ − σ12

(
4
ρ2

r2
− 3

ρ4

r4

)
sin 2φ ,

σ̂φφ = σI
ρ2

r2
− 3σII

ρ4

r4
cos 2φ − 3σ12

ρ4

r4
sin 2φ ,

σ̂rφ = −σII
(

2
ρ2

r2
− 3

ρ4

r4

)
sin 2φ + σ12

(
2
ρ2

r2
− 3

ρ4

r4

)
cos 2φ .

(35)

2.3 Transformation of the Energy Functional

Now we shall consider the contribution, in the absence of volume forces, of the
energy integral over the circle surrounding the origin (i.e. the potential location
of the small hole)

eR(u) = 1

2

∫
B(R)

(σ : ε) dx = 1

2

∫
�R

uT (σ .n) ds (36)

to the global elastic energy. Similarly as in the case of Laplace equation, we
shall leave the displacement as is and consider the distortion to the stress field
caused by introducing the small hole. Due to (35) it may be expressed as

δeR = 1

2

∫
�R

uT (σ̂ .n) ds. (37)

At every point on the �R we shall use the same coordinate system {er , eφ} as
in the last section. In this system u = [ur , uφ]T , n = [1, 0]T . As a result, we
have to compute the integral

δeR = 1

2

∫
�R

(σ̂rrur + σ̂rφuφ) ds. (38)

Now we observe that x2
1 + x2

2 = R2 on �R and

ur = 1

R
(u1x1 + u2x2) uφ = 1

R
(−u1x2 + u2x1) ,

sinφ = 1

R
x2 cosφ = 1

R
x1 .

To simplify the calculations we introduce notations:

f = I (1, 0) + I (0, 1), a = I (1, 0)− I (0, 1), b = I (3, 0) − I (0, 3),

c = I (0, 1) + I (1, 0), d = I (0, 3)− I (3, 0).

487



J. Sokołowski and A. Żochowski

In these terms ∫
�R

ur ds = πR2 f,∫
�R

ur cos 2φ ds = πR2
(3

2
b − a

)
,∫

�R

ur sin 2φ ds = πR2
(

2c − 3

2
d
)
,∫

�R

uφ cos 2φ ds = πR2
(3

2
b − 2a

)
,∫

�R

ur cos 2φ ds = πR2
(3

2
d − c

)
.

(39)

Now, due to (27),(28),

f = ε11 + ε22, a = ε11 − ε22 + δ1, b = ε11 − ε22 +
(

1 − 1

9k

)
δ1,

c = γ12 − δ2, d = γ12 −
(

1 + 1

9k

)
δ2.

Substituting this into (38) gives

δeR = −1

2
πρ2

[
σI (ε11 + ε22)+ σII (ε11 − ε22)+ σ12γ12+

+
(

1 − 1

k
+ ρ2

R2

1

k

)
(σII δ1 − σ12δ2)

]
.

(40)

Since from Hooke’s law follows

σI = (λ+ µ)(ε11 + ε22), σII = µ(ε11 − ε22), σ12 = µγ12

then, because of (29),

δeR = −πρ2eu(0)− 1

2
πρ2

[(
1 − 1

k
+ ρ2

R2

1

k

)
(σII δ1 − σ12δ2)

]
. (41)

This makes it different from the Laplace equation case, where the additional
term vanishes. Observe, that in order to solve the elasticity problem in the
domain containing the hole with accuracy (outside �R) up to o(ρ2), we don’t
need, due to (41), the solution in the intact domain. Simultaneously all the
terms in (41) are quadratic with respect to u and introduce no difficulty into
numerical procedures.

If we restrict ourself to the terms depending strictly on ρ2 and take into
account the value of k, the energy corrections take on the form

δeR = −πρ2eu(0)− πρ2 µ

λ+ 3µ
(σII δ1 − σ12δ2). (42)
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In order to make clear that the energy correction is indeed an integral bi-
linear form of u defined over �R, we collect below the dependences given by
(27),(28),(29) and write down the explicit expression for the terms appearing
in (42):

ε11 + ε22 = 1

πR3

∫
�R

(u1x1 + u2x2) ds,

ε11 − ε22 = 1

πR3

∫
�R

[
(1 − 9k)(u1x1 − u2x2)+ 12k

R2
(u1x

3
1 − u2x

3
2 )

]
ds,

γ12 = 1

πR3

∫
�R

[
(1 + 9k)(u1x2 + u2x1)− 12k

R2
(u1x

3
2 + u2x

3
1 )

]
ds,

δ1 = 9k

πR3

∫
�R

[
(u1x1 − u2x2)− 4

3R2
(u1x

3
1 − u2x

3
2 )

]
ds,

δ2 = 9k

πR3

∫
�R

[
(u1x2 + u2x1)− 4

3R2
(u1x

3
2 + u2x

3
1 )

]
ds.

These expressions are easy to compute numerically, but unfortunately the cor-
rection formula is not so compact as in the Laplace operator case.
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[25] J. Sokołowski and A. Żochowski, Optimality conditions for simultaneous topology
and shape optimization, SIAM Journal on Control and Optimization, 42(4), 1198–1221
(2003).

490



Topological Derivatives for Contact Problems
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[27] J. Sokołowski and A. Żochowski, Modelling of topological derivatives for contact prob-
lems, Numerische Mathematik, 102(1), 145–179 (2005).

491



RELIABILITY-BASED TOPOLOGY
OPTIMIZATION (RBTO)
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Abstract: Recently, topology optimization has been the subject of a significant amount
of academic and industrial research due to its simplicity in implementation and
impact on product design. In this paper, reliability-based topology optimiza-
tion (RBTO) is introduced for structures, electromagnetics, heat transfer, and
coupled systems with consideration of uncertainties in topology optimization.
Continuum design sensitivity using the adjoint variable method, the density
method, and optimization algorithm (SLP and MMA) are used for topology op-
timization. PMA is mainly used for reliability computations. Examples are
given to validate the proposed method.

Keywords: Reliability, topology optimization, uncertainty, multi-physics.

1. INTRODUCTION

Conventional structural optimization techniques such as sizing or shape/
configuration optimizations are aimed at the improvement of current designs.
Conversely, topology optimization focuses on obtaining an initial conceptual
design and does not require a sophisticated initial design. As such, any geo-
metry within the boundaries for conditions and loads is sufficient for commen-
cing an initial topology optimization. Starting from basic structural systems,
topology optimization is now of an age where it extends throughout various
physical systems including electromagnetic, acoustic, thermal, and even to
coupled-physics systems.

Reliability-based design optimization (RBDO) together with topology op-
timization has received high attention from optimization societies [1]. The
primary goal of probabilistic optimization is to consider the variations of per-
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Figure 1. Concept of reliability-based design optimization.

formances caused by uncertainties. In deterministic optimization, these uncer-
tainties are not considered and therefore the optimum design can be unreliable
with respect to failures. On the other hand, in probabilistic optimization, min-
imizing the cost and bringing the probabilistic constraints on target should be
done simultaneously.

In this research, the RBDO concept is applied to Topology Optimization and
Reliability-Based Topology Optimization (RBTO) [2] is introduced. RBTO
determines the optimal topology that satisfies the given probability in consid-
eration of the variances of the uncertainties. RBTO is then applied to various
multi-physics systems and numerical examples are presented.

2. RELIABILITY-BASED TOPOLOGY
OPTIMIZATION

2.1 Concept of Reliability-Based Design Optimization

In general, engineering design problems are based on the control of the ele-
ments of a system such that they satisfy various criteria for performance, safety,
serviceability, and durability under various demands. For example, a structure
should be designed so that its strength or resistance is greater than the effects
of the applied loads. However, there are numerous sources of uncertainty in
system parameters. The goal of RBDO is to incorporate this uncertainty in-
formation into the actual design problems. The main idea for RBDO and its
corresponding evaluations are shown in Figure 1.

RBDO has the same cost function as deterministic optimization, but it has
probabilistic constraints used in the consideration of the probability of the sat-
isfaction/failure potential of the constraints.

The general form of RBDO is described as follows:
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Minimize f (X)

subject to Pf (X) = P [G(x) < 0] ≤ Pf t (1)

xLi ≤ xi ≤ xUi , i = 1, . . . , n,

where Pf t is the target probability of failure. In RBDO, a limit state function,
G, is formulated, and the system fails when G < 0.

2.2 General Formulation of Reliability-Based Topology
Optimization (RBTO)

Conventional topology optimization is a deterministic method, so the RBDO
concept was applied to topology optimization, resulting in the development
of Reliability-Based Topology Optimization (RBTO) [2]. RBTO can be in-
terpreted as a problem which finds an optimum topology under probabilistic
constraints such that it becomes reliable for these uncertainties.

The general form of an RBTO problem is described as the following:

Find the design variable vector such that:

Min/Max f (ηi)

Subject to Ps(X) = P [G(ηi,Xj) ≥ 0] ≥ Pt (2)

0 ≤ ηi ≤ 1

i = 1, . . . , ndv and j = 1, 2, . . . , no. of uncertain variables,

where Xj is the j th uncertain variable, Ps is the system probability of success,
Pt is the target probability of success, and G is the limit state function (per-
formance function). Design variables are density functions, ηi , in each finite
element.

Applying the Performance Measure Approach (PMA) to Equation (2)
yields:

Min/Max f (ηi)

Subject to G∗(ηi, Xj ) ≥ 0

when βs = βt for each evaluation (3)

0 ≤ ηi ≤ 1

i = 1, . . . , ndv and j = 1, 2, . . . , no. of uncertain variables,

where βs is the system reliability index for success, and βt is the target reliab-
ility index for success.
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In an RBTO problem, the performance (or limit-state) function should be
defined, and each sensitivity analysis should be performed with respect to each
uncertain variable.

2.3 RBTO for Structural Systems

Displacement is considered the limit-state function for a static problem.
Young’s modulus, thickness, and loading are considered uncertain variables.

The limit state function, G, is defined by:

G = −ψ + ψmax ≥ 0,

ψ = z(x̂) =
∫
�

δ̂(x − x̂)z(x)d�, (4)

X = [X1, X2, X3]T = [E, t, F ]T ,
where ψ is the displacement at an isolated point x̂ and δ̂ is the Dirac-Delta
function, and Xj is the j th uncertain variable. The limit-state, Equation (4),
implies that if the displacement, ψ , is larger than the limit value, ψmax, the
system fails.

2.4 RBTO for Electromagnetic System

In RBTO for electromagnetic systems, in order to estimate the failure prob-
ability, the magnetic energy is considered the limit-state function for static
problems. Design variables are density functions, ηi , in each finite element
and the permeability, applied current density, and coercive force are uncertain
variables [4–7].

The limit-state function G is defined by:

G = ψ − ψmin ≥ 0,

ψ =
∫
�

g(A, u)d� = 1

2

∫
�

B ·Hd�, (5)

X = [X1, X2, X3]T = [µ, Js,Hc]T ,
where ψ is the magnetic energy. The limit-state implies that if the magnetic
energy, ψ , is smaller than the limit value, ψmin, the system fails.

2.5 RBTO for Thermal System

For thermal systems, the temperature of the kth nodal point is chosen as the
performance response, and the convection coefficient, h, is assumed to be an
uncertain variable.

The limit-state function becomes:

G = ψ − ψmin ≥ 0,
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(a) Conventional Type (b) Design Domain

Figure 2. Basis model for topology optimization.

ψ = uT T, (6)

X = [X1]T = [h]T ,
where u is the vector which has 1 in the kth position and 0 elsewhere.

2.6 RBTO for Electric-Thermal-Structural Coupled
System

For coupled systems, the objective function is to maximize the displacement
of a target node. Since the example system is an actuator, the maximum dis-
placement leads to a well-working device. The performance function is the
total input current, Im, and it should be less than a limit value. The electric
conductivity, σ , is assumed to be an uncertain variable.

Then, the limit state function becomes:

ψ = Im,

G = −ψ + ψmax ≥ 0, (7)

X = [X1]T = [σ ]T .

3. NUMERICAL EXAMPLES

3.1 Structural System: Double-Folded-Spring for MEMS

In this system [8], the spring is the most important part for the overall system
performance (k θ and k x). Therefore, the spring is selected as the design do-
main for topology optimization. The conventional model is given in Figure 2(a)
and the design domain from the conventional model is shown in Figure 2(b).

Three topology optimization problems are performed: (1) Deterministic To-
pology Optimization (DTO); (2) RBTO with β = 1.0; and (3) RBTO with
β = 1.5. The number of design variables is 3400. The system should be
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Figure 3. Summary of topology designs.

Table 1. Comparison of topology designs.

Conventional DTO RBTO β = 1.0 RBTO β = 1.5

UX 0.02209 0.1473 0.03601 0.02270

UY 8.428E-06 7.974E-06 7.323E-06 6.951E-06

k x 226.3 33.95 138.85 220.3

k θ 4.878E+09 5.157E+09 5.615E+09 5.910E+09

symmetric, and a symmetric condition is internally imposed. The uncertain
variables are Young’s modulus, thickness, and loading. The uncertain vari-
ables have a 5% standard deviation of the mean values and they have normal
distributions.

In the following equations, UX is an x-directional displacement of the tar-
get node and is inversely proportional to k x. This property is associated with
the actuation of the device. Additionally, UY is a y-directional displacement
of the target node and is inversely proportional to k θ . This property is as-
sociated with the stability of the device. The target value of the constraint is
selected from the analysis result of the conventional model (Figure 2(a)).

RBTO using PMA

Max UX, (Under Force Set 1: Translation)

s.t. UY < 8.0E − 6, (Under Force Set 2: Torsion)

when β = βt (1.0, 1.5) (8)

X = [E, t, F ], σi = 0.05 × µi, i = 1, 2, 3.

Figure 3 and Table 1 summarize the obtained results.
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Figure 4. C-core actuator.

3.2 Electromagnetic System: C-Core Model

A numerical example [5] is a C-core model, as shown in Figure 4. The C-core
actuator has three parts; an armature, a core, and a coil. The width of both
the armature and the core is 20 mm. The length of the core and the blade are
60 mm and 50 mm, respectively. The relative permeability is 1000 at both the
core and armature. The current density of the coil is 2.0 [A/mm2].

The limit-state function is the magnetic energy and should be larger than
140 [J/m], which is the target magnetic energy (ψt ) in this example. The per-
meability and current density are the uncertain variables. The permeability and
current density have 10% and 5% variance of the initial values, respectively,
and they are assumed to be normal random variables.

If the PMA is used for RBTO, the RBTO problem is written as:

Minimize Total Volume

Subject to G = ψ − ψt ≥ 0 when βs = 3, ψt = 140, (9)

where ψt is the target magnetic energy.
The optimum results of several topology problems are shown in Figure 5

and Table 2. DTOSV is the Deterministic Topology Optimization with the
Same Volume as the RBTO result. Since RBTO requires a reliability analysis,
it needs a greater computational time than DTO. Empirically, RBTO needs
about three times more computations than DTO. However, as shown in Table 2,
RBTO gave a more reliable solution than DTOSV, while both methods used
the same volume. Moreover, RBTO can satisfy the target reliability exactly as
requested.

3.3 Thermal System: 2-D Cooling Fin

A 2-D cooling fin [9] is examined as a verification purpose. A 20 × 50 mm2

plate (Figure 6) is considered to have heat conditions such that k = 0.2. hf =
0.005, Tb = 25◦C, T S = 300◦C. Knowing that a larger temperature difference
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Figure 5. Topology results for electomagnetic systems.

Table 2. Comparison between DTO and RBTO.

Objective Energy at Force Reliability
(volume) mean value (Fx ) [Nm]

DTO 59.03 139.96 –6048.5 –0.070274

RBTO with
3 uncertainties 86.40 140.81 –6110.6 3.00241

DTOSV (with the same
volume of RBTO result) 86.40 140.73 –6102.9 2.40125

Figure 6. A simple heat transfer system illustrating energy balance.
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Table 3. Optimal 2-D fin designs with consideration of different reliability indices.

ensures a higher heat transfer rate by convection, an optimization problem is
suggested that has a high temperature in the middle of the right side on the end.

Minimize Total Volume

Subject to Pr(Tp > 30.6) ≤ Pr(βtgt). (10)

The convection coefficient, h, is assumed to be an uncertain variable which has
20% standard deviation of the mean value. Three different reliability indices
(1.0, 2.0, 3.0) are used to test influences on the optimal results. PMA is used
for RBTO in this example. As shown in Table 3, as the reliability index gets
higher, the more volume is used, and the higher the mean temperature achieved.
This result coincides with the fact that the rectangular fin (full material) has the
highest temperature.

3.4 Electric-Thermal-Structural Coupled System:
Electro-thermal Actuator

A switch with a bi-stable actuator for RF and optical applications is a use-
ful device. The switch is electro-thermally actuated and it exhibits a clear
bi-stable performance. The micro-switch mainly consists of a bi-stable actu-
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Figure 7. Initial design domain of the actuator for topology optimization.

ator enabling two separate transmission lines to connect physically, and a ther-
moelastic micro-actuator for making the bi-stable micro- actuator latch-up.

For this device, topology optimization is performed on the cascaded bent-
beam area to obtain a more efficient structure in terms of displacement and
power. The initial design domain is chosen as a simple rectangle, and then
meshed into 30 times60 finite elements. The leaf spring is replaced with a
spring element [10].

Constraint on the total input current is considered to limit the overall power
usage.

For the electro-thermal actuator RBTO is applied as:

Maximize Displacement at P(δp)

Subject to Pr(Iin < 50mA) ≤ Pr(βt ), (11)

where Iin is the total input current.
Since an electric analysis works as a constraint, the uncertain variable is

selected from one of the electric properties, i.e., the electric conductivity, σ . It
is assumed that σ has a 10% standard deviation of the mean value. PMA is used
for RBTO. The test proceeds with two different target reliability indices, i.e.,
βt = 1.0, 2.0. As shown in Table 4, the objective function decreases when the
target reliability index increases. The resulting input current decreases when
the higher target reliability index is imposed, which explains that the limit
of the constraint function (input current) is affected by the imposition of the
reliability analysis.

4. CONCLUSION

In this research, the RBDO concept is applied to Topology Optimization and
Reliability-Based Topology Optimization (RBTO) is introduced. RBTO de-
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Table 4. Electro-thermal actuator design using RBTO.

termines an optimal topology that satisfies the given probability in consider-
ation of the variances of the uncertainties. RBTO is then applied to multi-
physics systems and each formulation is derived.

Structural displacement, magneto-static energy, thermal temperature, and
electro-thermal actuator problems are solved using the RBTO methodology.
RBTO is mainly compared to the deterministic Topology Optimization with
the same volume of RBTO and the effectiveness of RBTO is shown.
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Abstract: Feature-based modeling has been widely studied in Computer Aided Design
(CAD) and greatly facilitates mechanical design and manufacture. This paper
incorporates the standard technology into topology optimization, and develops
a feature-based structural topology optimization method. The method employs
implicit models or level set models to represent complex structural boundaries;
adopts R-function theory to handle set-theoretic operations; applies topological
derivative analysis to determine the insertion position of geometric primitives;
uses morphing technology and sensitivity analysis to choose the geometric prim-
itives; employs the shape matching to merge the given geometric primitives for
the further simplification of the final design.

Keywords: Topology optimization, feature-based, topological derivative, R-function, impli-
cit representation, shape matching.

1. INTRODUCTION

Structural topology optimization has rapidly developed in the past two decades,
and a number of methods have been proposed. In [4], Eschenauer and Olhoff
divide them into two classes, the so-called material or Micro-approach, and the
geometrical or Macro-approach. The Micro-approach uses fixed finite element
meshes to describe the geometry and the mechanical response fields within the
entire admissible design domain. The constitutive properties of finite elements
are modeled based on the porous microstructures, whereas the Macro-approach
assumes that the structure entirely consists of solid, isotropic or anisotropic
material, and the topology of a solid body can be changed by growing or de-
generating material. Since the topology optimization is always performed in
conjunction with shape optimization, the finite element mesh cannot be a fixed
one and must change with the changes of the structural boundaries [4].
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Inspired by the level set method for topological optimization [1, 11], which
can be regarded as a Macro-approach but can be implemented on the fixed
meshes and need not track the boundaries of a structure explicitly, we realize
that whether a topological optimization algorithm can be implemented easily
on the fixed finite element meshes depends on whether the structure is de-
scribed implicitly. For example, the SIMP method [2] describes the structure
by means of the material density, and level set method employs the zero level
set of a real valued function to represent the design, while the topology descrip-
tion function approach also defines the geometry of a structure by the level set
of a summation of basis functions [3]. In fact, the description of a shape by
a single real-valued function is a traditional approach of analytical geometry
and has been exploited to define an arbitrary complex solid in computer-aided
geometric modeling and in computer graphics [7]. Using the standard ideas
from Constructive Solid Geometry (GSD), this paper presents a feature-based
structural topology optimization method, which is based on the combination of
topological derivative theory, sensitivity analysis, R-function theory, morphing
technology, shape matching with the implicit structural representation. During
the optimization process, we gradually construct a structure by Boolean op-
eration of geometric primitives, which is directed by topological analysis and
morphing technology, the topological derivative informs us where to subtract a
simple geometric primitive, while morphing technology helps us to choose one
among the given geometric primitives, and all the analyses can be conveniently
implemented in the fixed Euler meshes, such as topological derivative analysis,
morphing and Boolean operations. Certainly, the final design structure is com-
posed of a finite set of simple geometric primitives so as to reduce manufacture
cost.

2. BASIC APPROACHES

2.1 Problem Setting in Implicit Representation Frame

For the sake of realizing a feature-based optimization, we construct a structure
by using some simple geometric primitives and set-theoretic operations, and
the complex structure is described by Constructive Solid Geometry model and
expressed by geometric tree in the topological optimization process. To guar-
antee that all the computation of the method can be implemented in a fixed
Euler meshes, we apply a real valued function to implicitly represent complex
material interfaces of a structure. We use � to denote the computational do-
main. The structure to be designed occupies a part of the domain �. If the
structure is composed of one solid material, we consider the computational
domain to be occupied by two materials, one is solid material, and another is
void. In this case the structure can be represented implicitly by a real valued
function φ(X) as closed subset of two-dimensional or three-dimensional Euc-
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lidean space. The structure or solid material is represented by {X | φ(X) <
0, X ∈ �}, the void is represented by {X | φ(X) > 0, X ∈ �}, and the bound-
ary of the structure can be described by the level set {X | φ(X) = 0, X ∈ �}
of the function φ(X). In this way, each geometric primitive is defined by a
real valued function analytically or with tabulated values and an appropriate
interpolation algorithm, and the major requirement to the function is to have
at least C0 continuity. A complex structure is a result of set operations on the
simple geometric primitives, and typical set-theoretic operations include “or”,
“and” and “subtract” operations. And these set-theoretic operations on func-
tionally expressed object have been introduced and studied by Rvachev (1963,
1974) [7] for solving problems of mathematical physics on an area with com-
plex shapes. By now, there is a rich set of functions to realize the set-theoretic
operations, and they are characterized that their signs are completely defined
by signs of their arguments and do not depend on arguments values, and are
generally named after R-function.

Let us consider a structural topology optimization problem in the frame of
linear elasticity. With implicit representation of structures, the problem can be
formulated as

Minimize
φ(X)

J (u) =
∫
�

F(u)H(φ)d�

subject to:
∫
�

Eijklεij (u)εkl(ν)H(φ)d�

=
∫
�

pνH(φ)d�+
∫
�

τνδ(φ)d�, ∀ν ∈ U

u
∣∣
∂�u

= u0,

Ri(u)

∫
�

ri(u)H(φ)d� ≤ 0, i = 1, 2, . . . , m, (1)

where H(·) is a Heaviside function, δ(·) is a Dirac function, U stands for a
space of kinematically admissible displacement fields, whereas u denotes the
displacement field, Eijkl the elasticity tensor, εij the liberalized strain tensor,
p the body forces, τ the tractions applied on the structure traction boundary,
u0 the prescribed displacement on the structure displacement boundary, and
m the number of constraints. Assume that a given solid material may occupy
the domain �, then the structural optimization problem is to find the optimal
material distribution so that the objective function J (u) is minimized while the
constraints Ri(u) ≤ 0 are satisfied.
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2.2 Sensitivity Analysis

For clarity, it is assumed that a given solid material initially occupies the com-
putational domain �, and that the optimum structure is achieved by subtracting
some simple geometric primitives and changing their positions, sizes or orient-
ations. In this case, the structure to be designed can be expressed by a serials of
Boolean “and” operation of some geometric primitive representation function,
which can be formulated as

φ(X) =
n⋂
i=1

[
ciφi

(
1

ci
RT
i (X − bi)

)
+ Li

]
, (2)

where ∩ denotes the “and” operation; φ(X) is the representation function of
the design structure, and results from the “and” operation of n simple geo-
metric primitives; φi denotes the representation function of the ith geometric
primitive; the superscript T expresses the matrix transpose, and Ri is the ro-
tation matrix, which determines the orientation of the ith geometric primitive
in the structure. For our purpose it is sufficient to think that Rk belongs to the
group of 2×2 or 3×3 rotation matrices, and its derivative is the set of 2×2 or
3×3 real skew-symmetric matrices and can also be regarded as a vector in two-
or three-dimensional Euclidean space, which is denoted by dωk; ci stands for
the scale coefficient of the ith geometric primitive, which determines the geo-
metric size of the ith geometric primitive, and it can also be substituted with an
affine matrix for different scale coefficients in different coordinate directions;
bi expresses a vector in the computational domain, which determines the posi-
tion of the ith geometric primitive; Li is a constant, which determines the offset
size of the ith geometric primitive. Therefore, the structural topology optim-
ization problem aims to find the number n of the geometric primitives, their
size scale coefficient ci (i = 1, 2, . . . , n), the offset size Li (i = 1, 2, . . . , n),
and position vector bi (i = 1, 2, . . . , n), as well as the orientation matrix Ri

(i = 1, 2, . . . , n).
Differentiating the objective function in Equation (1) yields its sensitivity

with respect to φ(X) in the direction ψ(X) [11],〈
dJ (u)

dφ
,ψ

〉
=

∫
�

∇J (u,w)ψ(x)δ(φ)d�, (3)

where ∇J (u,w) stands for the boundary shape sensitivity of the objective
function. For detailed formulae, the reader is referred to [11].

For brevity, we rewrite Equation (2) as follows:

φ(X) = A

(
(X), ckφk

(
1

ck
RT
k (X − bk)

)
+ Lk

)
. (4)
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Here, A(·, ·) denotes the R-function of “and” operation; (X) is a represent-
ation function resulting from “and” operations of the other n − 1 geometric
primitives in Equation (2).

With this notation in mind, differentiating Equation (4) with respect to size
scale coefficient ck , offset size Lk, and position vector bk as well as orientation
matrix Rk of the kth geometric primitive, we can obtain

dφ = A′
2

[
−∇φk ·

(
RTk (X − bk)

dck

ck
+ dωk × RTk (X − bk)+ RTk dk

)
+ φkdck + dLk

]
,

(5)

whereA′
2 stands for the partial derivative of the “and” operation function A(·, ·)

with respect to the second argument. Applying Equations (3) and (5), substi-
tuting ψ(X) with dφ yields

dJ (u)

dck
= −

∫
�

∇J (u,w)A′
2∇φk · 1

ck
RT
k (X − bk)δ(φ)d�,

dJ (u)

dωk

= −
∫
�

∇J (u,w)A′
2R

T
k (X − bk)× ∇φkδ(φ)d�,

dJ (u)

dbk
= −

∫
�

∇J (u,w)A′
2Rk∇φkδ(φ)d�,

dJ (u)

dLk

= −
∫
�

∇J (u,w)A′
2δ(φ)d�. (6)

Equation (6) expresses the sensitivity of the objective function when changing
the geometric and positional parameters of the kth geometric primitive.

2.3 Topological Derivative Analysis

As mentioned above for our purposes of machinability, the structure to be de-
signed is modeled by using the constructive geometry method in the topolo-
gical optimization, which leads to the resulting structure composed of a partic-
ularly simple set of geometric primitives. During the optimization process, the
structure is begun with a block of the given solid material, which occupies the
entire computational domain, and then some simple geometric primitives are
subtracted from the structure gradually, meanwhile their characteristic para-
meters are updated in order to achieve a better design. With the helps of the
topological derivative analysis, which characterizes the sensitivity of the ob-
jective of the optimization problem when a small hole is created at a point of
the domain, we can find the proper position where a simple geometric primitive
is subtracted in the current structure. The so-called topological derivative of an
arbitrary shape functional is introduced by Garreau et al. [5] and Sokolowski
and Zochowski [9] with applying asymptotic analysis in singularly perturbed
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geometrical domains. Recently, an alternative way is proposed to compute the
topological derivative based on the shape sensitivity analysis concepts [6], and
the topological derivative of multi-material structures is also applied [11]. The
topological derivative provides us for any point of the domain the sensitivity in
creating a small hole in that point. By simple comparison, we can determine
where a simple geometric primitive should be inserted in the current structure.
The topological derivative formulae derived in [9] for the two-dimensional case
is used here.

2.4 Morphing Technology

Although the contour or iso-surface of the topological derivative near the per-
forated point can offer us some information about which geometric primitive
in the prescribed set is chosen to be subtracted from the current structure, a
matching calculation of geometric graphs is needed. Here, we use an altern-
ative way to choose the geometric primitive based on morphing technology
in computer graphic, which is a method used to construct a smooth, natural
sequence of images between an ordered pair of images [8].

Consider n geometric primitives φ1, φ2, . . . , φn we formulate each geomet-
ric primitive to be a vertex of an (n− 1)-dimensional simplex. An in-between
geometric primitive is considered a point in the simplex and expressed by bary-
centric coordinates T = (t1, t2, . . . , tn) subject to the constraints ti ≥ 0 and∑n

i=1 ti = 1. Thus, an in-between geometric primitive can be formulated as
φT (X) = ∑n

i=1 tiφi , and the sensitivities of the objective function with respect
to barycentric coordinates are given as

dJ (u)

dtk
=

∫
�

∇J (u,w)A′
2φkδ(φ)d�, k = 1, 2, . . . , n. (7)

In sum, we first subtract the in-between geometric primitive from the current
structure after topological derivative analysis and then continuously optimize
its geometric and positional parameters according to Equation (6), while we
gradually update the parameter to find the suitable basis geometric primitive
by using the sensitivity information (7) and by penalizing the in-between shape
during the optimization process.

2.5 Shape Matching Techniques

Numerical experiments show that the outcome of the topology optimization
process is influenced by the initial dimension of the in-between geometric
primitive that is inserted into the structure in iterations. In order to search for a
optimum design, the inserted dimension of the in-between geometric primitive
can not be too large, and it usually is chosen as 3–10% of the design domain
area or volume, which results in the final structure consisted of dozens of the
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basis geometric primitives as illustrated in the next section. For the sake of
simplifications, before the topology optimization process is finished, the mer-
ging of the geometric primitives will be implemented with the helps of shape
matching techniques, and the connected geometric primitives will be replaced
by a basis geometric primitive.

Shape matching has been approached in a number of ways, which deals with
transforming a shape, and measuring the resemblance with another one, and so
on. Here the template metric is employed as the similarity measure, which
is defined as the area of symmetric difference of two compared compact sets
[10]. If we use φ(X) to implicitly represent a connected domain that is formed
by the union of some geometric primitives, and φr(X) denotes the substitut-
ing geometric primitive, which is written in the form of in-between geometric
primitive so that the appropriate basis geometric primitive can be found auto-
matically in the matching process, the template metric can be formulated in
the implicit notations as

∫
�
H(A(φ,−φr))+H(A(−φ, φr))d�, its derivative

with respect to the affine, rotation, displace and offset transform can be easily
written out, here we omit it for brevity. Therefore, the structure simplification
or matching can be implemented by a mathematical programming; here the
steepest descent method is applied while the constraints and the penalty also
are considered.

3. NUMERICAL EXAMPLES

Example 1: A Michell-type structure in Figure 1 is considered. Three con-
centrated forces are applied at the equally distanced points on the bottom with
P1 = 300 N and P2 = 150 N. The design domain is occupied by one mater-
ial with elasticity modulus 200 Gpa and Poisson ratio 0.3. The design aims
to minimize structural energy under the material volume constraints 0.3. Dur-
ing the optimization process, only the right half is analyzed and discretized by
62 × 62 quadrilateral elements, and a circle, a square and a triangle are chosen
as the basis geometric primitives. The iteration histories of the objective func-
tion and the constraint are shown in Figure 2. Figure 3 shows the evolution of
structural topology during optimization, where Figure 3(a) is the initial struc-
ture, and during the optimization process 20 in-between geometric primitives
are inserted and Figure 3(d) is the optimal topology constructed by the given
quadrangle, 3 triangles and 17 circles. The example is recalculated while the
shape matching algorithm is implemented to simplify the optimization result.
In this case the iteration histories of the objective function and the constraint
are shown in Figure 4. The iterative processes are illustrated in Figure 5, where
Figure 5(a) is the initial structure and Figure 5(d) is the final result that is only
constructed by the given quadrangle, 1 triangle, 2 rectangles as well as 1 el-
lipse.
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Figure 1. Michell-type structure. Figure 2. Objective and constraint.

Figure 3. Iterative processes. Figure 4. Objective and constraint.

Figure 5. Iterative processes. Figure 6. Cantilever beam.

Example 2: Consider a cantilever beam as shown in Figure 6. The beam is
loaded with a concentrated vertical force P = 800 N at the middle point of
the free hand. Assume that the modulus of elasticity and the Poisson ratio of
the material are 200 Gpa and 0.3, respectively. During the optimization pro-
cess, the design domain is discretized by 27 × 62 quadrilateral elements, and
the volume ratio is constrained to be 0.3. Meanwhile, two basis geometric
primitives are given, one is a circle, the other is a triangle. The objective func-
tion, the constraint and iterative processes are illustrated in Figures 7 and 8.
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Figure 7. Objective and constraint. Figure 8. Iterative processes.

Figure 8(a) is the initial structure, and 18 in-between geometric primitives are
inserted during the optimization process, and Figure 8(d) is the final result that
is constructed by the given quadrangle, 1 triangle and 17 circles.

4. CONCLUSION

In order to reduce manufacture cost, we present a feature-based structural topo-
logy optimization method. Its main characteristic is that the final design is only
constructed by the several given basis geometric primitives. Obviously, these
simple geometric primitives can be easily and directly transferred to manufac-
turing instructions in machine tools, which ensures that the obtained topology
can be conveniently manufactured.

In essence, the method uses a real valued function to implicitly represent
complex material interfaces of a structure in order to guarantee that all the
analysis can be implemented in the fixed Euler meshes, meanwhile Construct-
ive Solid Geometry (CSG) method is employed to construct the structure by
gradually inserting in-between geometric primitives during the optimization
process. Furthermore, the topological derivative analysis is adopted to de-
termine the insertion position of an in-between geometric primitive, while the
morphing technology and the sensitivity analysis are together used to determ-
ine which basis geometric primitive is chosen to insert. In addition, Boolean
operations on the geometric primitives are implemented by R-function method,
which guarantees the regularity of the structure representation function, and
which meets the need of the structure boundary smoothness for finite ele-
ment analysis. Finally, in order to further simplify the final design so that
each connected perforation in the final result is only represented by one basis
geometric primitive, the shape matching techniques is used to merge these
connected geometric primitives before the topology optimization process is
finished.

It is well known in topology optimization that the emerging structure often
progresses towards a pin-jointed frame that would have been iso-stressed in the
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manner of Michell structures if the structure is subject to single loading case.
However, the feature-based method simultaneously considers design objectives
and manufacture constraints, and its final design is obtained by gradually sub-
tracting basis features from the current structure, therefore the final result could
not be the pin-jointed frame structures. Obviously, the structure obtained by
the proposed method is associated with a low performance as compared with
the corresponding result by usages of a Micro-approach, because a price must
be paid for an extra machinable constraint.
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DESIGN OF FIBER REINFORCED SHAFTS
SUBJECT TO LOCAL STRESS CONSTRAINTS
THROUGH INVERSE HOMOGENIZATION

A Preliminary Study on Fiber Size Effect
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Abstract: A new inverse homogenization procedure is applied to design graded fiber re-
inforced shafts subject to local stress criteria. The method is based on new
multiscale stress criteria given by macrostress modulation functions. The mod-
ulation functions quantify the intensity of local stress fluctuations at the scale of
the microstructure due to the imposed macroscopic stress. The method is car-
ried out for long cylindrical shafts reinforced with stiff cylindrical elastic fibers
with generators parallel to the shaft. Benchmark examples are presented for
shaft cross sections that possess reentrant corners typically seen in lap joints and
junctions of struts.

Keywords: Pointwise stress constraints, optimal structural design.

1. INTRODUCTION

We present a computational design method for grading the microstructure in-
side composite media. The goal is to design a graded microstructure in order
to control local stress in the vicinity of stress concentrations. The method has
been developed by the authors in [10] and [14] and is based upon new rigor-
ous multiscale stress criteria that captures the effect of local stress fluctuations
at the scale of the microstructure [12, 13]. The multiscale criteria are given
in terms of quantities dubbed macrostress modulation functions. The design
methodology presented here is expressed in terms of a homogenized design
problem that satisfies two requirements: The first is that the homogenized
design problem is computationally tractable. The second is that the solution
of the homogenized design problem provides the means to identify graded mi-
crostructures that deliver the required structural response while at the same
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time provide local stress control. The approach used in this paper is in essence
an inverse method that uses homogenization theory to identify optimal graded
microgeometries. Because of this we refer to it as an inverse homogenization
design method. To the best of our knowledge these techniques represent the
first rigorously based approach to composite design in the presence of point
wise stress constraints.

It is now well established that homogenization theory is an effective tool
for the design of composites for optimal structural compliance and natural fre-
quency, see [1, 3, 4, 5, 8, 15, 16, 17]. On the other hand relatively little work
has been directed towards the solution of stress constrained composite design
problems. Recently new efforts have initiated the development of numer-
ical methods for structural optimization in the presence of stress constraints.
The investigation given in [6] provides a numerical method for the stress con-
strained minimum volume design problem. The method is carried out using an
empirical model known as the Solid Isotropic Microstructure with Penalization
(SIMP) model [3]. The problem of mean square stress constrained structural
optimization for fiber reinforced shafts is taken up in [9]. In that work a nu-
merical algorithm is developed based on a suitable homogenized quantity (the
covariance tensor) that rigorously encodes the mean square stress constraints.
The work of [2] introduces a partial relaxation for topology optimization for
minimum mean square stress using finite rank laminates. The rigorous theor-
etical context behind the homogenization approach to mean square stress (or
gradient) constrained structural optimization has been worked out in [11].

To fix ideas we addresses the problem of reinforcement for a long shaft
with constant cross section subjected to torsion loading. The microstructure
within the shaft consists of long reinforcement fibers of constant cross section
with isotropic shear modulus Gf embedded in a more compliant material with
shear modulus Gm. The shaft together with the fibers are right cylinders with
generators along the x3 axis. The cross section of the reinforced shaft is spe-
cified by the region � in the x1 − x2 plane. The shaft cross section is divided
up into small square subdomains of equal size. Each subdomain contains a
single fiber cross section. The fiber cross section is circular and is centered in-
side the square subdomain. The radii of the fiber inside each square is chosen
independently of the others. The side length of the square subdomain is de-
noted by ε. In this paper the diameter of the shaft cross section is 2 cm and
ε is chosen to be 0.066 cm. Two design problems are carried out when the
total fiber cross-sectional area is constrained to be 40% and 50%. The goal is
to design a graded distribution of fibers across the cross section such that the
following requirements are met:

I. The reinforced shaft has a torsional rigidity that is acceptable.

II. The magnitude of the local point wise stress inside the composite is con-
trolled over a designated subset of the cross section.
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The advantage of the inverse homogenization method introduced here is that it
allows the designer to efficently search the structural universe for good designs.
It is based upon asymptotics that rigorously predict the actual local fields inside
the composite when the length scale of the microstructure is sufficiently small.
In this paper we compute two illustrative examples that record the stress dis-
tribution inside the designs generated by the inverse homogenization method.
The designs presented in this paper were computed on a standard laptop com-
puter in about fifteen minutes using inverse homogenization. It is found in
Section 3 that the stress distribution inside the composite is well predicted by
the asymptotic theory.

2. HOMOGENIZED DESIGN FORMULATION AND
IDENTIFICATION OF OPTIMAL GRADED FIBER
MICROGEOMETRIES

The inverse homogenization design method is a top down design approach.
First a well posed homogenized design problem is developed. This design
problem is given in terms of design variables that reflect the local microgeo-
metry inside the composite. For the problem treated here the design variable
for the homogenized design problem is given by the density function θf (x).
The homogenized design problem is then solved to obtain an optimal density
function. With the optimal density in hand we use it to recover an explicit
graded fiber design that has structural properties close to that of the optimal
homogenized design and satisfies prescribed point wise stress constraints. The
homogenized design problem is described in the first subsection. The expli-
cit link between homogenized designs and graded fiber reinforced designs that
satisfy point wise stress constraints is provided in the second subsection.

2.1 Homogenized Design Problem

The design variable for the homogenized design problem is given by the dens-
ity function θf (x). This function is interpreted as providing the local area
fraction of the fiber phase in a homogenized design. The resource constraint
on the fiber phase is given by∫

�

θf (x) dx1dx2 ≤ !× (Area of �), (1)

where 0 < ! < 1. At each point the local area fraction satisfies the box
constraint given by

0 < θmin
f ≤ θf ≤ θmax

f < 1. (2)

Here the upper and lower bounds given in (2) correspond to the entire design
domain being filled with composite material. In this treatment the local fiber
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area fraction θf changes continuously with position according to the condition

|θf (x)− θf (x + h)| ≤ K|h|. (3)

Here the constant K is prescribed by the designer. The universe of admissible
designs given by all local area fractions θf satisfying the resource constraint,
box constraints, and (3) is denoted by D!.

The compliance in shear for the matrix and fiber are given by Sm = (2Gm)
−1

and Sf = (2Gf )
−1 respectively. Here the matrix is more compliant and

Sm > Sf . For a given θf (x) we introduce the effective shear compliance
SE(θf (x)) associated with a locally periodic microgeometry made from fibers
with circular cross sections centered inside square unit cells. The unit period
cell for this configuration is denoted by Q. The area fraction of Q occupied
by the fiber cross section is set to θf (x). The shear compliance inside Q is
written S(θf (x), y) and takes the value Sf for points y in the fiber and Sm for y
in the matrix. The unit vectors e1 = (1, 0) and e2 = (0, 1) are introduced and
for each x in � we introduce the periodic fluctuating stress potentials wi(x, y),
i = 1, 2 that solve the microscopic equilibrium equation

−divy
(
S(θf (x), y)(∇y(w

i(x, y))+ ei)
) = 0, y in Q. (4)

Here the x coordinate appears a parameter and all differentiations are carried
out with respect to the y variable. The effective compliance tensor is a func-
tion of the local area fraction of fibers θf and from symmetry the effective
compliance tensor is isotropic and given by

[SE(θf (x))]ij = sE(θf (x))δij , (5)

where the effective compliance is given by

sE(θf (x)) =
(∫

Q

S(θf (x), y)(∂y1w
1(x, y)+ e1

1) dy
)
. (6)

The macroscopic stress potential φH vanishes on the boundary of the shaft
cross section and satisfies

−div
(
SE(θf )∇φH

) = 1 (7)

inside the cross section. The torsional rigidity for the homogenized shaft cross
section made from a homogenized material with compliance SE(θf ) is given
by

R(θf ) = 2
∫
�

φH dx1dx2. (8)

The macroscopic stress in the homogenized shaft is given by σH = R∇φH
where R is the rotation matrix associated with a counter clock wise rotation of
π/2 radians.
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The multiscale stress criterion is given in terms of the macrostress modu-
lation function introduced in [12]. The macrostress modulation function cap-
tures the interaction between the macroscopic stress σH(x) and the microstruc-
ture. The microscopic response to the imposed macroscopic stress is given by
σ (x, y) = R[∑2

i=1(∇y(w
i(x, y)) + ei)∂xiφ

H (x)]. The relevant interaction is
described by the macrostress modulation function f (θf , σH ) given by

f (θf (x), σH (x)) = sup
y in Q

{|σ (x, y)|} . (9)

Physically the macrostress modulation provides an upper envelope on the os-
cillating point wise local stress in the composite [12].

From the symmetry of the microstructure it easily follows that macrostress
modulation for a locally periodic microgeometry made from fibers with circu-
lar cross sections centered inside square unit cells is of the form

f (θf (x), σH (x)) = f (θf (x),∇φH (x)) = A(θf (x))|∇φH(x)|, (10)

where for 0 < θmin
f ≤ θf ≤ θmax

f < 1,

A(θf ) = sup
y in Q

{|∇yw
1(x, y)|} . (11)

We enforce the stress constraint by adding a penalty term to the torsional
rigidity and the homogenized design problem is to minimize

L(θf ) = −R(θf )+ l

∫
�

(f (θf ,∇φH ))p dx1dx2, (12)

over all θf in D! where l > 0 and φH satisfies

−div
(
SE(θf )∇φH

) = 1 (13)

and vanishes at the boundary. The computational examples are carried out
for a domain with reentrant corners of interior angle 3π/2. In view of the
strength of the associated singularity at the reentrant corners the power “p”
appearing in the penalty term is chosen to be less than 3. We mention in closing
that the constraint (3) provides an upper bound on the spatial variation of the
homogenized designs. This constraint provides the compactness necessary for
a well posed design problem [10].

2.2 Identification of Graded Fiber Design from the
Homogenized Design

In this subsection it is shown how the optimal design θ̂f for the homogenized
problem is used to identify a graded fiber design satisfying the requirements (I)
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and (II). The examples considered in this treatment are given for a structural
domain specified by an “X” shaped cross section. All interior angles for the
reentrant corners are fixed at 3π/2 radians. The tip to tip length of each leg
of the “X” shaped domain is 2cm. The width of each leg is 2/3 cm. In order
to describe the graded fiber composite, the shaft cross section � is partitioned
into the N square subdomains Sk, k = 1, . . . , N and � = ∪N

k Sk. The side
length of these subdomains is given by ε = 0.066 cm.

Table 1.

Design # Fiber-Area Torsional Rigidity
H1 40% 0.452
1 40% 0.441
H2 50% 0.486
2 50% 0.475

The building block for the microstructure is the square unit cell filled with a
centered circular fiber cross secton. The area fraction of the fiber phase inside
the unit cell is given by θf . A microstructure is obtained by rescaling the unit
cell by the factor ε × ν, 0 < ν ≤ 1, so that it becomes the period cell for a
ε×ν periodic composite. A graded fiber composite is constructed by placing an
ε × ν periodic composite inside each square subdomain Sk. The area fraction
of fibers in each subdomain is given by the constant θkf and these constants
can change between subdomains. We note that choosing ν = 1 corresponds
to placing one fiber cross section inside Sk. Smaller values of ν correspond
to progressively finer periodic distributions of fiber cross sections inside Sk.
For future reference this type of locally periodic microstructure will be called
a (ε, ν)-graded periodic fiber microstructure. Let σ ε,ν = (σ

ε,ν
13 , σ

ε,ν
23 ) denote

the in plane stress inside the shaft and denote the torsional rigidity of the cross
section by Rε,ν .

The relation between the optimal design for the homogenized problem and
the pointwise in stress and torsional rigidity for the (ε, ν)-graded periodic fiber
microstructure is given by the following theorem, see [10, 14].

Theorem 1 (Identification of graded microstructure). Given the minimizing
density θ̂f and associated stress potential σ̂ H for the homogenized problem we
consider sets of the form

AT = {x ∈ � : f (θ̂f (x), σ̂ H (x)) ≤ T }. (14)

For fixed choices of δ > 0 and t > T one can choose ε and ν small enough
such that the (ε, ν)-graded periodic microstructure for which the the part of
AT over which the stress constraint

|σ ε,ν(x)| ≤ t (15)

Torsional rigidities.
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is violated has measure (area) less than δ,

|Rε,ν − R(θ̂f )| < δ, (16)

and
N̂∑
k=1

|Sk|θ̂ kf ≤ !× (Area of �)+ δ. (17)

For these designs the area fractions of the fibers inside each Sk are denoted by
θ̂ kf and are chosen according to

θ̂ kf = 1

|Sk| ×
∫
Sk

θ̂f (x)dx1dx2. (18)

The homogenized design formulation together with Theorem 1 comprise the
inverse homogenization method for identifying microstructures that satisfy
point wise stress constraints while delivering a torsional rigidity close to that
given by the optimal design θ̂f for the homogenized design problem.

3. INVERSE HOMOGENIZATION AND GRADED
FIBER DESIGNS FOR THE X-SHAPED CROSS
SECTION

In this section we display the results of the numerical calculations. The calcu-
lations were carried out using the gradient minimization algorithm introduced
in [14]. All calculations are done for the choice p = 1 in the Lagrangian (12).
The shear stiffness of the matrix is assigned the value Gm = 1 GPa and the
shear stiffness of the fiber phase is assigned the value Gf = 2 GPa. For all
examples θf is constrained to lie between 0.2 ≤ θf ≤ 0.7.

The optimal homogenized designs corresponding to the area of fiber cross
sections given by 40% and 50% are denoted as designs H1 and H2 respectively.
Plots of the fiber density field θ̂f for these designs are given in Figures 1(a)
and 3(a) for these designs. The contour plots of the macrostress modulation
function f (θ̂f (x), σ̂ H (x)) for these designs are given in Figures 1(b) and 3(b).

The (ε, ν)-graded periodic microstructure is constructed from the optimal
homogenized design according to the prescription of Theorem 1. All designs
are carried out for the choice ε = 0.066 and ν = 1. We compute the average
of θ̂f (x) over each square Sk according to (18) and denote it by θ̂ kf . The area

fraction of the fiber inside Sk is set to θ̂ kf . The first fiber design is carried out
subject to the constraint that the total area of fiber cross sections is fixed at
40%. This design is referred to as design 1. Design 2 is carried out with the
total area of fiber cross sections fixed at 50%. The fiber designs are displayed
in Figures 2(a) and 4(a).
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(a) (b)

Figure 1. (a) θ̂f (x) for design H1. (b) Contour plot of f (θ̂f (x), σH (x)).

(a) (b)

Figure 2. (a) Graded fiber design 1. (b) Contour plot of magnitude of in plane stress.

(a) (b)

Figure 3. (a) θ̂f (x) for design H2. (b) Contour plot of f (θ̂f (x), σH (x)).
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(a) (b)

Figure 4. (a) Graded fiber design 2. (b) Contour plot of magnitude of in plane stress.

The level lines of the magnitude of the stress field for designs 1 and 2 are
plotted in Figures 2(b) and 4(b). It follows from Figures 2(b) and 4(b) that the
point wise stress behavior in designs 1 and 2 are well represented by the level
curves of the macrostress modulation functions for the optimal homogenized
designs H1 and H2 respectively. The values of the torsional rigidities for each
design are listed in Table 1. The torsional rigidity of the homogenized designs
and the actual designs compare well.
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Abstract: This paper describes a multiscale computational algorithm to simultaneously op-
timize the macroscopic material distribution and the microscopic material layout
of two-phase, non-homogeneous composite structures. The optimization of the
composite material is performed within the context of transient thermal conduc-
tion problems. The objective is to identify the non-homogeneous composite that
minimizes the difference, at a prescribed time T , between the actual values of
the temperature field and a target temperature distribution. The methodology is
illustrated with a relatively simple test problem that indicates that the procedure
can successfully identify an optimal material layout at the micro- and macro-
scales.

Keywords: Multiscale optimization, hierarchical method, transient optimization, adjoint
method.

1. INTRODUCTION

Multiscale optimization techniques have been developed and applied for
problems involving mechanical structures within the framework of time-
independent (elastostatic) problems (see, e.g. Rodrigues et al., 1999, 2002;
Bendsoe and Sigmund, 2003). This formulation, frequently referred to as a
hierarchical model, can be used in conjunction with a homogenization ap-
proach for a locally periodic composite whose characteristic cell is made of
two base materials (materials 1 and 2). Accordingly, it is assumed that the
problem has two length scales: A global (or macro-) scale, related to the ma-
terial distribution of the composite within a structure � and a local (or micro-)
scale, connected to the topology of the material unit cell Yx in the neighbor-
hood of a macroscopic point x. The macroscale distribution of the composite is
characterized by the volume fraction ω of material 1 and the microscale topo-
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Figure 1. Macroscale region � and locally-periodic cell-level microstructures.

logy is described by a regularized characteristic function γ of material 1 that,
alternatively, can be interpreted as a microscale volume fraction. The two-scale
approach for a locally-periodic composite is shown schematically in Figure 1.

The homogenized (or “equivalent”) macroscopic properties of the periodic
material are derived through modeling at the material characteristic cell level.
Assuming that the values of ω and γ can be locally modified (and thus used
as design variables), the hierarchical optimization method consists of identi-
fying the spacial distribution of material that minimizes or maximizes a given
objective functional.

Time-dependent objective functionals have been studied in the context of
heat conduction, quasi-static thermomechanics and elasto-dynamics (see, e.g.,
Turteltaub, 2001, 2002a,b, 2005). In these references, however, only a simple
rule of mixtures based on the Hashin–Shtrikman bounds was used to charac-
terize the composite material. The present formulation is a combination of
the hierarchical optimization approach and the optimization method for time-
dependent objective functionals. For simplicity, only a transient heat conduc-
tion problem is treated, although the present formulation can be naturally ex-
tended to thermomechanical problems. The design objective considered here is
to identify locally a non-homogeneous material and its distribution that minim-
izes the difference between the actual temperature distribution at a prescribed
time T and a desired target distribution. We consider that the periodic com-
posite is made out of two materials; one high-conducting (material 1) and the
other low-conducting (material 2). The equivalent thermal properties are ob-
tained through homogenization, thus connecting the two scales in the problem.
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2. FORMULATION OF THE PROBLEM

2.1 Transient Heat Conduction Problem

The physical framework under consideration corresponds to a transient heat
conduction problem. The heat flux q is assumed to depend linearly on the
temperature gradient (Fourier’s law), i.e., at a (macroscopic) point x and at
time t one has

q(x, t) = KH(x)∇xθ(x, t), (1)

where KH is the homogenized conductivity tensor and ∇x is the gradient with
respect to the macroscopic material point x. Furthermore, assuming that the
internal energy depends linearly on the temperature, then the balance of energy
of a rigid material, in a region � and for a time interval [0, T ], can be expressed
as

divx q(x, t) = (ρc)H (x)θ̇(x, t) in �× (0, T ] , (2)

where (ρc)H is the homogenized heat capacity and ρ and c are the mass dens-
ity and the specific heat per unit mass, respectively. A superimposed dot indic-
ates a derivative with respect to time. We consider a transient heat conduction
problem in � × (0, T ] where the fields satisfy (1) and (2) together with the
following initial and boundary conditions:⎧⎪⎪⎨⎪⎪⎩

θ(x, t) = θ̂ (x, t) on ∂�t × (0, T ] ,
q(x, t) · n = q̂(x, t) on ∂�q × (0, T ] ,
q(x, t) · n = h (θa(x, t)− θ(x, t)) on ∂�h × (0, T ] ,
θ(x, 0) = θ̂0(x) in � ,

(3)

where θ̂ is a prescribed temperature on ∂�t , q̂ is a prescribed heat flux through
∂�q , natural or forced convection is prescribed on ∂�h (where h is the film
coefficient – assumed constant – and θa is the sink temperature) and θ̂0 is the
initial temperature field. The vector n is the outward unit normal vector to the
boundary ∂� = �t ∪�q ∪�h.

2.2 Homogenized Properties

The material occupying the structural domain� is assumed to be a locally peri-
odic composite, i.e. at each (macroscopic) point x, the small-scale layout of
the material is obtained by a periodic repetition of a characteristic cell Yx . This
characteristic cell is assumed to be made of two isotropic linear conducting
materials, one with a high conductivity and the other with a low conductivity.
The high-conducting material has mass density ρ1, specific heat per unit mass
c1 and isotropic conductivity coefficient κ1. The respective properties for the
low-conducting material are ρ2, c2 and κ2.
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It is further assumed that the relative dimensions of the structure and ma-
terial cell introduces two scales: A macro scale, associated to a characteristic
length D (e.g., of the order of a side length of a rectangular structure �), and
a micro scale associated to a characteristic length d (e.g., of the order of the
side length of a characteristic cell Yx). As shown schematically in Figure 1,
the characteristic ratio ε = d/D of each cell is assumed sufficiently small so
that there is a clear separation of scales. Fluctuations in space at the macro-
scopic scale are measured as functions of x whereas variations within a cell
are measured as functions of a microscale variable y := x/ε. In particular,
inside each cell Yx , the microstructure is described by a pseudo-characteristic
function γ (x, y). The function γ can take values between 0 and 1, where
1 corresponds to material 1 (high conducting material) and 0 corresponds to
material 2 (low conductivity). In Figure 1, regions occupied by the high- and
low-conducting materials are graphically associated to black and white zones,
respectively.

In accordance with the previous interpretation of the function γ , the con-
ductivity Kε at a point y inside a cell Yx can be described as

Kε(x, y) := (
γ p(x, y)(κ1 − κ2)+ κ2

)
I , (4)

where I is the identity tensor and the power p is interpreted in the sense of the
SIMP method (see e.g. Rozvany, 1997; Bendsoe and Sigmund, 2003).

For a given microstructure characterized by γ (x, y) and following the reg-
ular perturbation method, the Cartesian components of the homogenized con-
ductivity KH in a basis {ei}i=1,2 are obtained as

KH
ij (x) = 1

|Yx |
∫
Yx

Kε(x, y)
[
êi − ∇yφ

(i)(y)
] · [êj − ∇yφ

(j)(y)
]

dvy , (5)

where |Yx | is the volume of the unit microstructural cell in a neighborhood of
the point x. In (5), the vectors êi and êj can be interpreted as representing unit
temperature gradients in the direction of the Cartesian vectors ei and ej , re-
spectively (with units of temperature per length). Furthermore, the Yx-periodic
fields φ(i) (with i = 1, 2 for two-dimensional problems) are solutions of the
following “cell problems”:

divy

{(
γ p(x, y)(κ1 − κ2)+ κ2

) [
êi − ∇yφ

(i)(y)
]} = 0, i = 1, 2 . (6)

The homogenized heat capacity (ρc)H is computed as

(ρc)H (x) = 1

|Yx |
∫
Yx

[
γ (x, y)(ρ1c1 − ρ2c2)+ ρ2ρ2

]
dvy . (7)

For the subsequent analysis, it is convenient to interpret the homogenized prop-
erties as functionals of γ (for a fixed point x).
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2.3 Optimal Design Problem

The objective functional in the present problem is a measure of the difference
between the actual temperature field θ(x, T ) at a given time T and a target
temperature field θ tg(x), i.e.,

J [θ, γ ] := 1
2

∫
�

(
θ(x, T )− θ tg(x)

)2
dvx . (8)

Define the design space A as

A =
{
γ | 0 ≤ γ (x, y) ≤ 1 ,

∫
�

(
1

|Yx |
∫
Yx

γ (x, y) dvy

)
dvx ≤ V̄

}
, (9)

where V̄ is a given upper bound on the global amount of material 1 used.
The objective functional J given by (9) can be seen as a functional of γ since
the temperature field θ satisfies problem (1)–(7) and is therefore an implicit
function of the material properties. The optimization problem can be expressed
as follows: ⎧⎪⎨⎪⎩

Given �, q̂, θ̂0, θ̂ , h, θ
a, κ1,2, ρ1,2, c1,2, θ

tg, T , V̄

Find γ ∗ ∈ A such that

J [θ∗, γ ∗] ≤ J [θ, γ ] ∀γ ∈ A ,

(10)

where θ and θ∗ are, respectively, the solutions to problem (1)–(7) for γ ∗ and γ .

2.4 Problem Separation: Multiscale Design

In the heat conduction problem, under the foregoing assumptions of separa-
tion of length scales, the macroscopic heat conduction problem is linked to
the microstructure via the homogenized properties. Similarly, for the design
problem, we will consider a separation between a macroscale design (struc-
ture) and a microscale design (material) following the approach presented by
Rodrigues et al. (2002). Specifically, the macroscale design variable is taken as
the volume fraction ω(x) of the high-conducting material in each periodic cell
Yx (in a neighborhood of a point x), whereas the microscale design variable
is taken as the regularized characteristic function γ (x, y) that describes the
details of the microstructure in each cell. The link between these two design
variables is

ω(x) = 1

|Yx |
∫
Yx

γ (x, y) dvy . (11)

We now reformulate problem (10) as a multiscale design problem. We con-
sider ω(x) and γ (x, y) as independent design variables and treat (11) as a
constraint. To this end, define the design spaces Aω and Aγ as

Aω =
{
ω |

∫
�

ω(x) dvx ≤ V̄

}
(12)
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and
Aγ = {γ | 0 ≤ γ (x, y) ≤ 1} . (13)

Observe that, in view of the pointwise constraints on γ imposed in the defin-
ition of the set Aγ in (13), then, fulfillment of the constraint (11) leads to
0 ≤ ω(x) ≤ 1. The use of independent design variables ω and γ is analog-
ous to the multiscale approach where x and y are treated as independent space
variables that are connected through the relation y = x/ε. From this point
of view, macroscopic changes in material design are measured in terms of ω
while microscopic changes are measured locally in terms of γ .

The objective functional J is now interpreted as an explicit and implicit
function of the variables θ , ω and γ and we use a superimposed hat to emphas-
ize this dependence. Consequently, the design problem (10) can be expressed
alternatively as follows:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Given �, q̂, θ̂0, θ̂ , h, θ
a, κ1,2, ρ1,2, c1,2, θ

tg, T , V̄

Find {ω∗, γ ∗} ∈ Aω × Aγ such that

Ĵ [θ∗, ω∗, γ ∗] ≤ Ĵ [θ, ω, γ ] ∀{ω∗, γ ∗} ∈ Aω × Aγ ,

ω(x) = 1

|Yx |
∫
Yx

γ (x, y) dvy ,

(14)

where θ∗ and θ are the solutions to problem (1)–(7) for {ω∗, γ ∗} and {ω, γ },
respectively.

2.5 Necessary Conditions

In order to obtain the necessary conditions satisfied by the constrained optim-
ization problem (14), one can introduce an augmented Lagrangian functional
L that includes the objective functional Ĵ as well as the constraints imposed
by the heat conduction problem (1)–(7) and the design constraints (11)–(13).
The constraints can be included in the Lagrangian L via a lagrange multiplier
field λ(x) associated to the constraint (11), a scalar multiplier " connected
to the global constraint in the definition of the set Aω in (12) and an adjoint
temperature field θ̄ (x, t) related to problem (1)–(7). The pointwise constraints
in the definition of the set Aγ in (13) can be treated separately and will not be
included in the Lagrangian L. For brevity, the explicit form of L is not shown.

The optimal solution is denoted as {θ∗, ω∗, γ ∗}. A variation of L with re-
spect to γ implies that δγL ≥ 0 for all δγ = γ − γ ∗, hence∫

�

1

|Yx |
∫
Yx

[
λ− pγ p−1(κ1 − κ2)

(
δim − ∂φ(i)

∂ym

)(
δjm − ∂φ(j)

∂ym

)
×

∫ T

0

(
∂θ∗

∂xi

∂θ̄

∂xj

)
dt − (ρ1c1 − ρ2c2)

∫ T

0
θ̇∗θ̄ dt

]
δγ dvy dvx ≥ 0 , (15)
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where the inequality is valid ∀δγ (x, y) and ∀(x, y) ∈ � × Yx . Stationarity
with respect to the macroscale design variable ω (i.e., δωL = 0) implies that

λ(x) = " , ∀x ∈ �. (16)

Stationarity with respect to the temperature field θ is equivalent to the (strong)
formulation of the following adjoint problem (see, e.g., Turteltaub, 2002a):⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

divx

(
KH∇x θ̄ (x, t)

) + (ρc)H (x) ˙̄θ(x, t) = 0 in �× (T , 0]
θ̄ (x, t) = 0 on ∂�t × (T , 0] ,
KH∇x θ̄ (x, t) · n = 0 on ∂�q × (T , 0] ,
KH∇x θ̄ (x, t) · n = −hθ̄(x, t) on ∂�h × (T , 0] ,
(ρc)H (x)θ̄(x, T ) = θ∗(x, T )− θ tg(x) in � .

(17)

Observe that the adjoint problem is solved from t = T to t = 0, hence the last
condition in (17) – related to the “error” between actual and target values at
time T – is treated as an initial condition.

3. NUMERICAL IMPLEMENTATION

The numerical procedure implemented to solve the necessary conditions and
obtain the optimal solution, closely follows the algorithm presented in Rodrig-
ues et al. (2002). It requires two finite element models: A macroscale (global)
and a microscale (local) model. The macroscale model approximates the
global domain � and interpolates the functions depending on x ∈ �. The
microscale model approximates the local domain Yx and interpolates the func-
tional dependencies on y ∈ Yx . Macro- and microscale finite elements are
denoted as �E and Y e, respectively, with E = 1, . . . , N and e = 1, . . . , n.
The local and global temperature fields are approximated using 4-noded iso-
parametric elements and the design variables ω and γ are interpolated as con-
stants in the respective macro- and micro-elements. Although the size of the
computational problem is relatively large, the uncoupling between the micro-
and macroscopic problems achieved through the multiscale-hierarchical design
formulation greatly facilitates the computational work. The numerical imple-
mentation assumes that all points x within the same global finite element have
equal microstructure, hence the number of local problems is equal to the num-
ber of finite elements in the global mesh. Furthermore, all these local problems
are independent of each other and can be solved simultaneously, e.g., using
parallel processing methodologies.

For the design problem, it is assumed that we are given the geometry of
the domain � and the boundaries ∂�t , ∂�q and ∂�h, initial and boundary
conditions θ̂0, θ̂ , q̂ and θa, film coefficient h, material data κ1,2, ρ1,2, c1,2 and
design input data T , θ tg and V̄ . Further, it is assumed that suitable macro- and
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micro-mesh have been constructed with elements �E and Y e. The basic steps
of the procedure are as follows:

1) Assume initial values for ω and γ ; solve the cell problems (6) within
each element �E and use (5) and (7) to compute KH and (ρc)H .

2) Solve sequentially the heat conduction problem (1)–(3) and the adjoint
problem (17) to compute θ and θ̄ .

3) For each element �E in the global mesh, update the micro design vari-
able γ that satisfies the necessary condition (15).

4) Calculate a new ω for each element using (11) and determine the new
values for the homogenized properties KH and (ρc)H by solving the cell
problems (6) within each element �E.

5) Check whether the variables ω and KH have converged. If convergence
has been achieved, accept the solution. Otherwise, compute a new mul-
tiplier " and repeat the procedure from step 2).

4. NUMERICAL EXAMPLE

To illustrate the use of the hierarchical optimization method applied within
the context of a transient problem, we consider an example similar to the one
presented by Turteltaub (2001). The structural domain � is defined as a 3 × 2
rectangular domain. The boundary and initial conditions are given as follows:
the initial temperature field is uniform θ̂0(x) = 100, the flux is constant along
the boundary ∂�q = ∂� and set to q̂ = −10 and the design time is T = 10,
where the definition of non-dimensional quantities can be found in Turteltaub
(2001). Concerning the materials, the properties used are the following: For
material 1, κ1 = 1 and (ρ1c1) = 10, and for material 2, κ2 = 10−3 and
(ρ2c2) = 1. The volume upper bound is set equal to 60% and the initial design
is uniform with ω set to 0.6. The macroscale finite element model has a mesh
with 30 × 20 four-noded isoparametric elements and the microscale one has a
35 × 30 mesh. The target temperature is chosen such that it is preferable to
concentrate the high-conducting material towards the periphery of the domain
(see Turteltaub, 2001).

Figure 2 shows the distribution of material as well as the material cell geo-
metry at selected locations (macro elements). Note that the unit cell Yx is al-
ways kept aligned with the global Cartesian basis, hence a rotation of material
axes should be achieved through the lay-out of the microstructure.

The target temperature and the actual temperature field for the optimal ma-
terial layout {ω∗, γ ∗} are presented in Figure 3. The corresponding error (i.e.,
the pointwise difference between the actual and target temperatures) is shown
in Figure 4. In this particular example, comparing the temperature scale in
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Figure 2. Optimal material layout in the structure �. The insets correspond to the detailed
microstructure in a characteristic cell Yx at selected points.

Figure 3. Target temperature (left) and actual temperature (right) at time T for the optimal
material layout.

Figure 4. Pointwise difference between the target temperature and the actual temperature for
the optimal material layout.

Figure 3 with the scale in Figure 4, it is clear that the difference between the
target temperature and the actual temperature is quite small, which indicates
that the procedure can indeed find an optimal solution.
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5. CLOSING REMARKS

A computational model was presented for the optimization of materials and
structure within the context of transient heat transfer problems. The proposed
approach is based on the hierarchical model presented in Rodrigues et al.
(2002) for elasto-static applications and extends previous models for transient
problems using simpler material models (see, e.g., Turteltaub, 2001, 2002a).

The hierarchical model, which uncouples the problem into local and global
sub-problems, has several advantages: (i) uncoupling the problem permits the
hierarchical solution model where the sensitivities (gradient information) re-
quired by the global optimization problem are obtained during the solution of
the local problem and at no extra cost; (ii) formulating and solving separately
the material optimization problem will allow for the introduction of material
specific design constraints, namely the ones due to technological limitations
and (iii) the structure of the local problem (material optimization) is ideally
suited to take advantage of parallel processing techniques.
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Abstract: This paper proposes a method to improve the application of cellular materials in
structural elements. The distribution of the density of different foams is being
controlled by material topology optimization method. Due to the very special
properties of cellular materials and resulting applications this concept is applied
in order to determine the density distribution of polymeric and metal foam as
core material in sandwich structures and in thin-walled hollow sections. The
first objective that is being investigated is the optimization of the overall buck-
ling behavior. In contrast to the well-known maximization of stiffness leading to
lightweight structures under static loading, the second objective is the maxim-
ization of the structural energy absorption with respect to quasi-static loading.
Due to the large number of design variables in material based topology optim-
ization, mathematical programming (MP) methods combined with variational
adjoint methods to determine the sensitivities turn out to be efficient and robust.

Keywords: cellular materials, density distribution, gradient based topology optimization.

1. INTRODUCTION

Cellular solids are commonly used in a variety of practical applications. The
mechanical, thermal and acoustic properties provide opportunities for diverse
structural implementations: For example, the high specific stiffness of sand-
wich structures is utilized in light weight structures, the high property of ab-
sorbing energy suggests the implementation of cellular solids in impact ab-
sorbers. The improvement of the production methods allows reproduceable
pore geometry as well as the adaption of pore size distribution to the bound-
ary conditions for example layers of polymeric foams with different density
(stiffness) in a sandwich panel. Since the mechanical behavior of metallic por-
ous materials is decisively influenced by the density and the shape and size
of pores (Ashby and Gibson, 1988; Jemiolo and Turteltaub, 2000), diverse
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micro- and macroscopic material models have been developed to display the
correlation of the density and the mechanical properties. Up to now only in a
few investigations optimization algorithms are used to improve the mechanical
behavior of metal foam structures, for example using genetic algorithms or al-
gorithms that have originally been developed for the simulation of remodelling
of living bone to adapt the density distribution for the achievement of highest
possible stiffness. Topology optimization of two-dimensional structures was
very much influenced by the fundamental paper of Bendsøe and Kikuchi in
1988 and has been an active area of research since then. In order to generate
realistic designs by structural optimization the nonlinear structural response,
e.g. buckling or plasticity, has to be considered (Buhl et al., 2000; Kemmler
et al., 2005; Schwarz and Ramm, 2001; Schwarz et al., 2001). Porous mater-
ials are usually utilized in topology optimization in order to relax the integer
“1-0” (black and white) problem, allowing to identify zones with and without
design material. For this process materials with a micro- structure are intro-
duced like the micro-cell approach, with a rectangular hole and homogenized
to a macroscopic material law. In the present contribution the concept is not
used as a mathematical vehicle; rather we assume the existence of a “real”
physically existing material with a varying intermediate density (grey zones);
in other words the porosity is being introduced as a design variable which is
then being adjusted by the controlling optimization process. In this respect
we like to refer to “natural” material like the spongiosa in bones and tissues
with a varying density. Phenomenological material models are used in order
to determine the density distribution of polymeric and metal foams as well as
light weight concrete as core material in sandwich structures and in thin-walled
hollow sections.

2. MATERIAL BASED TOPOLOGY OPTIMIZATION

Material Models in Topology Optimization. For material based topology
optimization different porous material models were developed. They can be di-
vided into two different groups. One group relaxes the 1-0 (“black and white”)
optimization problem in an exact way. The rank-n laminates are well known
representatives of those optimal materials. The other group, the suboptimal
materials, e.g. used in the SIMP (Solid Isotropic Microstructure with Penalty
for intermediate density) approach do not relax the optimization problem ex-
actly, but have the advantage that the solution renders a nearly “black and
white” design pattern. The SIMP approach is based on a relation between
density and the Young’s modulus and is very similar to the mechanical beha-
vior of metal foams characterized by the Young’s modulus Eeff

Eeff =
(
ρ

ρ0

)β

E0 with β ≥ 2, (1)
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with the density ρ0 and the Young’s modulus E0 of the bulk material. β is a
penalization parameter driving the solution more into the “black and white”
situation. A SIMP-like method was considered in a pioneering paper by
Bendsøe (1989) for the first time. For large-scale topology optimization SIMP
was developed by Rozvany and Zhou (1991), the term “SIMP” has been in-
troduced since 1992 (e.g. Rozvany et al., 1992) and is applied today in several
industrial and research codes. A detailed discussion of various porous materi-
als used in topology optimization is given e.g. in Maute (1998) or Eschenauer
and Olhoff (2001). They basically differ in the dependency of the material
stiffness on the relative density.

2.1 Modelling of Cellular Solids

Gibson/Ashby Model – Small Strain. Ashby et al. (2000) analyze the
behavior of cellular solids with single cell models on a micro level. The mac-
roscopic force-deformation relation is associated with the deformation of the
cell ribs and their elastic and elastoplastic buckling. Ashby and Gibson (1988)
developed relations between the density and the parameters of various cellular
solids based on the geometrical parameters (cell ribs and faces). For Young’s
modulus E of a closed cell metal foam, Ashby et al. (2000) derive the follow-
ing relation to the density ρ:

E = αEs

[
0.5

(
ρ

ρs

)2

+ 0.3

(
ρ

ρs

)]
(2)

with the density ρs and Young’s modulus Es of the bulk material. The para-
meter α is chosen in the following range:

0.5 ≤ α ≤ 1. (3)

Without loss of generality, the parameter was chosen 0.8 in the investigated
examples. For open cell porous foams the following relation is given:

E = (0.1 ÷ 4.0) Es

(
ρ

ρs

)2

. (4)

For the elastic material behavior, Poisson’s ratio ν is chosen in the limits as
given in Equation (5).

ν = 0.32 ÷ 0.34. (5)

Young’s modulus of metal foams scales with the factor (ρ/ρs)
2. For closed

cell porous foams a further linear term is added (Equation (2)). This connec-
tion between density and stiffness is very similar to the equations describing
the porous material of the SIMP-approach used in topology optimization. For
the determination of an optimized density distribution under elastic material
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behavior, the correlations for the porous material of the SIMP-approach have
been replaced in this study by Equations (2) and (4) and the explicit derivatives
of the material tensor have been identified.

Hyperelastic Ogden Like Model – Finite Strain. The correlation between
density and material parameters, which is described by Gibson and Ashby,
was verified in the related literature and the corresponding parameters for the
particular material were identified. It has to be annotated though that the de-
veloped material models are mainly based on one-dimensional investigations.
The objective of the work of Jemiolo and Turteltaub (2000) is the extension
to the general three-dimensional case with emphasis on compressible behavior
with large deformations. They introduce a free energy function based on the
established hyperelastic material models of Ogden:

W (λ1, λ2, λ3, ρ) =
N∑
i=1

(
2mi

(
λ
αi
1 + λ

αi
2 + λ

αi
3 − 3

))

+
N∑
i=1

(
ni

(
(λ1λ2)

βi + (λ2λ3)
βi + (λ3λ1)

βi − 3
) + pi

(
J−γi − 1

))
. (6)

The postulated strain energy is a function of the principal stretches λ and de-
scribes their changes from the reference to the current configuration. N ≤ 1 is
an integer which determines the number of terms in the strain energy function
and is chosen depending on the required accuracy of the model. J = λ1λ2λ3

denotes the volume ratio. The parameter pi is controlling the compression
behavior

pi = 2 (miαi + niβi)

γi
. (7)

For the special case N=1 the functions mi and ni are determined as follows:

m = 1

6α

(
2 (2β + 3γ )K2 − βK1

αβ − γ (β − 2α)

)
, (8)

n = 1

3β

(
αK1 − (α + 3γ )K2

αβ − γ (β − 2α)

)
. (9)

For the correlation between the parameters m,n, α, β, γ , the so-called Kelvin-
Modules K1,K2 and the relative density ρ̄, related functions have to be as-
sumed.

K1 (ρ̄) = 3Esρ̄
2,K2 (ρ̄) = 3

4
Esρ̄

2, α (ρ̄) , β (ρ̄) , γ (ρ̄) . (10)

Es describes the Young’s Modulus of the corresponding bulk-material. The
non-linear material behavior is described by the parameters αi, βi, γi . For PE-
foam the authors in Jemiolo and Turteltabu (2000) choose a parabolic function,
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for PU-foam linear correlations are assumed. The procedure to determine the
linear relation for the PE-foam and the quadratic for the PU-foam is specified
in detail in Jemiolo and Turteltabu (2000). The relations were not modified
for the implementation of topology optimization problems. The stresses and
material parameters that are necessary for the implementation are computed by
the common gradients of the indicated potential with respect to the stretches:

τA = λA
δW

δλA
, Cτ

AB = λA
δ

δλA

(
λB

δW

δλB

)
, (11)

where τA describes the Kirchhoff-stresses and Cτ
AB denotes the correspond-

ing material matrix in principal directions. For further derivations and imple-
mentations in the form of a Total-Lagrangean formulation it is referred to the
literature on FE-analysis.

3. DESIGN CRITERIA

Material topology optimization problems are characterized by a large number
of optimization variables and a few constraints; in this study only one con-
straint exists. Therefore, the sensitivities are efficiently determined by adjoint
methods. The following objectives have been investigated:

Stiffness-Nonlinear Kinematics. The classical objective to get stiff struc-
tures is to minimize the strain energy with respect to a certain load level

f =
nele∑
i=1

1

2

∫
�

ETCE|J |d�. (12)

Here the Green–Lagrange-strains E are used to take the nonlinear kinematics
into account.

Displacement Level for a Prescribed Load – “End-Compliance”. Min-
imizing the displacements for a certain load level leads to minimization of the
“end-compliance” defined by:

fEC = λ̄P T ū, (13)

where ū denotes the displacements related to the prescribed load-level.

Load Level for Prescribed Displacements. The following objective can
be used to adjust a load-displacement curve when a displacement controlled
algorithm is utilized:

fλ̄ = λ̄. (14)
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Maximization of Critical Load. Assuming linear pre-buckling behavior
and deformations in the pre-buckling area are not taken into account, the crit-
ical load is approximated by a linear eigenvalue analysis:(

Ke + λiKg

)
�i = 0. (15)

Ke describes the linear elastic stiffness matrix and �i denotes the eigenmodes
corresponding to the eigenvalues λi . The geometric stiffness matrix Kg(ū)

is determined after the displacement field ū is determined through a linear
analysis

Keū = P . (16)

3.1 Examples

In the present study where metal- and polymeric foams have been investig-
ated, the Gibson and Ashby model was implemented for small strains. Large
strain analyses are based on the hyperelastic material model of Jemiolo and
Turteltaub. In the first example the influence of the density distribution on the
global stability behavior of a beam with a hollow rectangular cross section is
investigated. The hollow section was made of aluminum with an aluminum
foam core. As displayed in Figure 1, the left edge of the section is clamped.
Horizontal supports are assumed in the middle of the beam. On the right side
the structure is vertically supported. The load with is applied on the face sheets
on the right hand side. The face sheets and the foam core are discretized with
2560 quadratic hexahedral elements. The first two critical loads and their cor-

Figure 1. Eigenmode and eigenvalues, initial configuration.
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Figure 2. Eigenmode and eigenvalues, initial configuration.

Figure 3. Eigenmode and eigenvalues, initial configuration.

responding eigenmodes (Figure 2) are determined by an eigenvalue analysis
for a homogeneous metal foam filling and a relative density of 50% of the
bulk material. At the beginning of the optimization process the space within
the hollow section consists of equally distributed mass of a closed cell porous
aluminum foam. The material parameters are given in Figure 1.

As expected, a concentration of the metal foam with higher density and
stiffness occurs within the design space around the clamped support and in the
range of the maximum deflection of the eigenmode (Figure 3). The optim-
ized density distribution is basically used for the reinforcement of the hollow
section with respect to buckling rather than for the load carrying procedure. A
comparison of the lowest critical load of the initial system with a homogeneous
density distribution shows an increase of about 40% of the critical load. An in-
terchange of the eigenvalues could not be observed. Furthermore only single
eigenvalues do exist due to the horizontal support in the middle, the structure
is not symmetric. The objective in the following example is to fit the nonlinear
structural response of a polymeric foam cube to a prescribed characteristic.

Figure 4 shows the cube with a load applied on the top. The steel plate and
the design space of the foam cube, were discretized with 890 quadratic hexa-
hedral elements. Because of symmetry, the computation was carried out for
one quarter of the symmetric system. The optimization of the density distribu-
tion of the polymeric foam core leads to quite different results depending on
the objective. On the one hand the minimization of the strain energy was in-
vestigated, on the other hand the objective was the so called “end-compliance”.
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Figure 4. PE-foam specimen: geometry, material data and load.

Figure 5. Deformation with homogeneous density distribution and optimization results.

The optimization leads to density distributions displayed in Figure 5 and the
corresponding load-displacement-curve in Figure 6.

As expected, the displacement for the prescribed load level decreases re-
markably. Apart from that a softer increase of the gradient of the load-
displacement-curve for the objective “minimization of the strain energy” can
be observed, which is caused by the area of higher porosity directly below the
load plate.

The displacement controlled structural analyses show distinctly different
load-displacement characteristics. The objectives “strain energy” and “end-
compliance” can only be interpreted when the whole load-displacement-path
is known. Under very small load and therefore in the range of linear beha-
vior the same density distributions are achieved, as expected. With an increase
of the load level and correspondingly growing nonlinearity, completely dif-
ferent load-displacement curves for the optimized density distributions were
achieved. The design criterion “end-compliance” leads to structures of very
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Figure 6. Load-displacement diagrams with homogenous and optimized foam core.

high stiffness in the beginning which soften under an increasing deformation.
The objective “minimal strain energy” is an integral statement, where no direct
correlation between the stiffness and a certain load level exists. To get better
control on the overall structural response another objective was investigated.
The objective is to fit the load-displacement curve to prescribed points. The
required density distribution is determined by the optimization process. The
starting system is again the cube with a homogeneous porosity as displayed in
Figure 4. The optimization problem is formulated as a “least-square” problem
for n points on the desired load-displacement curve:

minf = min
n∑
i=1

wi

(
(λiPi)

∗ − λiPi

)
. (17)

λiPi defines the computed load levels for a certain density distribution. The
points on the desired curve are described by (λiPi)

∗. wi is a weighting factor
to control the optimization process. In Figure 6 the load-displacement curve of
the structural response of the initial configuration with a homogeneous density
distribution is shown in black. In addition two points A and B on the desired
load-displacement curve are defined. The gray curve shows the result of the
optimization process.

The achieved load-displacement curve does not exactly coincide with the
two points but is relatively close. The results can be improved by increasing
the solution space with a finer discretization on the one hand and an increase
of the number of prescribed points on the desired load-displacement curve on
the other hand. To get a softer structural response another two points C/D
were selected as objectives (see Figure 8). They are located below the initial
curve; the resulting load-displacement-curve of the optimized density for this
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Figure 7. Load-displacement diagrams with homogenous and optimized foam core.

Figure 8. Load-displacement diagrams with homogenous and optimized foam core.

alternative design fits the prescribed values again very well. To get an idea of
the potential of this method the third curve displayed in Figure 8 with target
points C/B shows a soft impact in the beginning and high energy absorption at
the end of the loading process.

The results point out how the density distribution and therefore the struc-
tural response can be controlled in a way that allows the realization of struc-
tures with completely different structural behavior. For example an optimal
crash mat for sports activities such as high jumping is as light as possible and
its behavior under deformation is characterized by a soft impact at the begin-
ning and a maximum absorption of energy at the end of its loading to provide
maximum landing protection.
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4. CONCLUSION

It is shown in the present contribution that the methods originally developed
and applied for topology optimization problems are suitable to determine the
density distribution of foam structures according to the loading requirements.
The relation describing the dependence of the material parameters on the dens-
ity is used to determine the derivatives with respect to the optimization vari-
ables, i.e. the sensitivities. The optimization variables can be the densities of
each finite element as well as the density of layers within sandwich panels as
a whole. The large optimization problems including nonlinear structural beha-
vior were solved with variational adjoint methods to determine the sensitivities
and an optimality criteria method has been proven to be efficient and robust.
With this concept it is possible to optimize very different structures such as
sandwich panels and arbitrary three-dimensional structures. To show the po-
tential of the method, further interesting optimization problems are discussed
during the presentation.
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Abstract: This paper treats the optimal layout of mixtures of regions of Stokes viscosity
dominated flow and regions of Darcy porous flow. The problem of minimizing
the potential of the state problem, representing essentially dissipation, is for-
mulated, and can be shown to have a solution under appropriate filtering of the
design. It can also be shown that the unfiltered design has a zero–one property.
An area-to-point flow problem is solved for various filter radii.

Keywords: Topology optimization, Stokes flow, Darcy flow, area-to-point flow.

1. INTRODUCTION

Topology optimization (TO) in fluids was initiated by Borrvall and Petersson
a few years ago. Their first work in this area concerned optimal regions of
Stokes flow (Borrvall and Petersson, 2003) and they also soon realized that
their earlier work on TO of linear elastic solids could be mimicked when deal-
ing with porous media (Borrvall and Petersson, 2002). Such media can be
modelled by the Darcy flow equation and the TO problem posed was to find
the topology of a mix of two materials with different permeability. This prob-
lem was inspired by the speculative monograph of Bejan (2000) who claims
that geometric form in flow systems, both natural and engineering, can be seen
as consequences of optimization principles and he points at lungs, arterial sys-
tems, river drainage basins, cooling of electronics and even traffic flow as ex-
amples of such systems.

In this work we take the standpoint that several of the systems indicated by
Bejan are better modelled as consisting of one region of free flow, or channels,
and one region of porous flow, instead as consisting of regions of different
porous flows. We let the free flow region be described by Stokes equation, and
the porous flow by the Darcy equation. That is, we would like to use TO to find
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the optimal layout of Stokes and Darcy regions. This problem can be treated
by a generalization of Stokes equations, that is similar to the Brinkman system
used in Borrvall and Petersson (2003). However, in this paper both the inverse
permeability α and the viscosity µ will depend on the design.

Evgrafov (2005a) extended the work of Borrvall and Petersson to the “pure”
black and white TO problem. Extensions to the Navier–Stokes’ equation is
reported in Gersborg-Hansen et al. (2005) and Evgrafov (2005b).

2. STATE PROBLEM

The flow takes place on a two- or three-dimensional domain �. The boundary
of this domain, ∂�, is divided into two parts, �u and �t . On �u the flow
velocity u� is prescribed, and on �t the surface traction t� is prescribed. The
state problem consist in finding the velocity u and the pressure p such that the
following equations are satisfied:

αu − 2 div (µD(u))+ ∇p = g in �

div u = s in �

u = u� on �u

−pn + 2µD(u)n = t� on �t .

(1)

Here, g is a given force, s is a given volume source term and D(u) = 1
2 (∇u +

∇uT ) is the rate-of-deformation tensor. The parameters α and µ are an inverse
permeability and a viscosity, respectively. When µ equals zero and α is strictly
positive, u can be eliminated from the first two equations of (1), resulting in a
Poisson equation modelling porous flow. On the other hand, if α equals zero,
µ is strictly positive and constant, and s is constant, then the system essentially
becomes Stokes equations of viscosity dominated flow. Thus, the possibility
of formulating a topology optimization problem which, on the basis of (1), at
each point of �, chooses between Darcy and Stokes flow, is obvious. Note that
when µ is constant and s is zero, (1) is known as Brinkman’s problem.

A velocity field u that is a solution of (1) in the standard weak sense is also
a solution of the minimization problem

min
u∈Udiv

Jη(u), (2)

where the total potential power functional is

Jη(u) = 1

2
aDη (u,u)+

1

2
aSη (u,u)− 〈f ,u〉,

and the set of admissible velocities is

Udiv = {
u ∈ H 1(�) : u = u� on �u and div u = s in �

}
.
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The total potential power functional is made up from the following functionals:

aDη (u, v) =
∫
�

αu · v d�, aSη (u, v) = 2
∫
�

µD(u) : D(v) d�,

〈f , v〉 =
∫
�

g · v d�+
∫
�t

t� · v d�,

The reason for using the subscript η in the two bilinear forms aDη and aSη is that
these will in the next section depend on the design.

3. OPTIMIZATION PROBLEM

In the optimization process, we control the shift between the two types of flows,
Stokes and Darcy, by introducing a design variable field η. This field belongs
to L∞(�), takes values in the interval [0, 1], and α = α(η) and µ = µ(η) are
continuous functions. To obtain a cost function we substitute these functions
into Jη(u) and define

φ(η) = min
u∈Udiv

Jη(u) = Jη(u
∗),

where u∗ is the solution of (2). As indicated in Borrvall and Petersson (2003),
with this definition of cost function, we get an optimization problem which will
minimize the dissipated power in the system and maximize the flow velocities
at the applied volume forces inside the domain, and at the tractions on the
boundary. When s �= 0 an alternative interpretation is also that we want to
minimize the pressure at the location of the volume source. This choice of cost
function will also make the sensitivity analysis particularly easy.

As is well known, topology optimization problems are usually not well-
posed unless a regularization of the design variable is introduced. Yet, the
problem of Borrvall and Petersson (2003) is an exception: since it can be
proven that the objective function is lower semi-continuous in the correct to-
pology, existence of solutions holds and no regularization is needed. However,
when extending the problem formulation of Borrvall and Petersson by letting
the viscosity term µ depend on the design variable, this property seems to be
lost and a regularization needs to be introduced. To that end we let the design
variable be filtered: the design η is calculated from an unfiltered design ξ by
the convolution

η(y) =
∫
�ξ

ξ(x)ψ(y, x) dx = S(ξ)(y), y ∈ �,

where we have used S(ξ) : L∞(�ξ) → L∞(�) to denote the convolution
functional. The integral kernel ψ is zero for |x − y| > R, where R is the filter
radius, and �ξ is an extension of � by a set if width R.
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Including the regularization, our optimization problem is stated in the the
variable ξ and becomes

min
ξ∈Hξ

φ (S(ξ)) , (3)

where

Hξ = {ξ ∈ L∞(�ξ ) : 0 ≤ ξ ≤ 1 in �ξ,

∫
�

S(ξ) d� ≤ γ |�|}.

It can be proved that if µ(η) > 0 for η ∈ [0, 1], then there exists a solution
of (3). In this respect we may note the difference from the corresponding result
in Borrvall and Petersson (2003): in that paper µ was constant, α = α(η) was
required to be convex and no regularization was needed; in this paper both µ

and α depend on the design and these dependencies are continuous but not
necessarily convex.

To be more specific about how α and µ depend on η, we point at a result
showing that linear functions produce zero–one designs. To that end, note that
problem (3) is equivalent to an optimization problem where both the design
variable ξ and the state variable u are treated as optimization variables, i.e., to
the problem

min
(ξ,u)∈Hξ×Udiv

J (u, S(ξ)). (4)

If a pair (ξ,u) solves (4), then ξ solves (3) and, conversely, if ξ solves (3),
then there is a u such that the pair solves (4). Let u∗ be a partial solution of
(4). Then a solution ξ ∗ of (3) or, equivalently, the other part of a solution of
(4), can be characterized as the solution of

min
ξ∈Hξ

J (u∗, S(ξ)). (5)

This fact follows since a solution ξ̂ of (5) satisfies J (u∗, S(ξ̂ )) ≤ J (u∗, S(ξ))
for all ξ ∈ Hξ , and a solution (ξ ∗,u∗) of (4) satisfies J (u∗, S(ξ ∗)) ≤
J (u, S(ξ)) for all (ξ,u) ∈ Hξ × Udiv. Thus,

J (u∗, S(ξ̂ )) ≤ J (u∗, S(ξ ∗)) ≤ J (u, S(ξ))

for all (ξ,u) ∈ Hξ × Udiv. Note that this reasoning is strictly related to the
min-min character of (4). In, for instance, stiffness optimization of elastic
structures, where there is a min-max saddle point structure, a similar property
is not true.

It is straightforward to prove that if α = α(η) and µ = µ(η) are linear
functions, then (5) has (essentially) a zero–one solution, i.e., ξ takes only the
values zero and one. Thus, our problem has a discrete strictly topological
character even though it is stated as a continuous problem.
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For the numerical solution it was argued in Borrvall and Petersson (2003)
that a linear function α(η) may impose a severe penalization of the design,
resulting in a high risk of ending up in local minima. Therefore, a strictly
convex function, where the degree of penalization is controlled by a parameter
q, was used. We follow this strategy also in the following, but for µ(η) we take
a linear function. Thus, the following explicit forms of functions are used:

α(η) = α + (α − α)η
1 + q

η + q
, µ(η) = µ+ (µ− µ)η,

where α and µ are the physical parameters for Darcy and Stokes flow, respect-
ively, and α = 0 while µ = ε > 0 for a small ε. A strictly positive lower
bound on µ is required for the proof of existence of a solution as well as for
finite element convergence.

4. NUMERICAL SOLUTIONS

As a demonstration of the proposed design method, we have studied a type of
area-to-point flow problem discussed in Bejan (2000). A similar problem was
also treated in Borrvall et al. (2002) and Borrvall and Petersson (2002), but in
those works the goal was to find optimal regions of Darcy flow with different
permeability.

Consider the square shaped domain with side length L, shown in Figure 1.
Most of the boundary has a non-slip condition, i.e. u� = 0, and on the remain-
ing part a traction condition has been prescribed. For simplicity this has been
set to zero as well, i.e. t� = 0. In every point inside the domain, fluid is added
(like rain falling down on a bed of sand, s �= 0), and the goal is to transport
this fluid out from the domain through the point–like boundary part �t , with
length |�t | = 0.1L.

Ω

Γt

Γu

L

Figure 1. The design domain for the area-to-point flow problem. The dashed line in the
middle indicates the line of symmetry used in most of the computations.
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With one exception (right picture in Figure 2, below) symmetry was utilized
when solving the problems, in order to reduce the computational load. The
discretization was made with a finite element grid of 54 × 108 velocity ele-
ments and 27 × 54 pressure elements, see Borrvall and Petersson (2003) for
details. For the implementation, the in-house C++ class library TO++ written
by Borrvall was used. This library contains, among other things, a direct solu-
tion method for solving the state problem, and MMA (see Svanberg, 1987) for
the optimization problem.

Figure 2. Optimal regions with different permeability of Darcy flow (left) and regions of
Stokes (white) and Darcy (black) types of flow (right). Prescribed volume fraction was γ = 0.3
in both cases. Note the non-symmetric solution due to not using symmetry conditions during
the computations.

In order to avoid local optimal solutions as much as possible, it is suggested
in Bendsoe and Sigmund (2003) and Borrvall and Petersson (2003) that the
computations should be carried out using an iterative procedure, where the
penalty parameter q is altered successively. This involves solving the problem
in several steps, where one uses a low value on q in the first step in order to
make the problem more convex. As an initial guess on the design variable,
η is in this step set to a constant value γ , where γ is the prescribed volume
fraction of Stokes flow. In the next step, the obtained design solution is used as
an initial guess when re-solving the problem with a new, increased value on q.
Here, we have adopted this strategy and used three steps with q set to 0.00001,
0.01 and 10.0, respectively.

We have studied the influence of the filter radius R. The remaining para-
meters, the inverse permeability α, the viscosity µ, and the volume source
term s, have been held constant. Regarding specific values, α and µ have
been chosen such that we may interpret the solution as representing water that
slowly trickles through a domain of clean sand, creating channels of Stokes
flow. In numbers this means α = 10.4 · 106 and µ = 10.40 · 10−6. For s we
simply take s = 1. The value of the filter radius has been set relative to the
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Figure 3. The result of increasing the filter radius. Starting from the top left corner, R =
1.5, 1.7, 1.9, 2.1, 2.5, 3.5 × [e.s.l].

size of the velocity elements, e.g., R = 2×[e.s.l], where e.s.l. means elements
side length.

As a first result, we have made a comparison between a pure Darcy problem
with two materials with different permeability (see Borrvall et al., 2002, for
a description of that problem) and the Stokes vs. Darcy problem treated in
this paper. The results are seen in Figure 2, where we note the significant
difference in the character of the two solutions. Also, bearing in mind that
the computations have been carried out without using symmetry conditions on
neither of the problems, a solution does not necessarily have to be symmetric.
However, looking at the value of the objective function for the Stokes vs. Darcy
problem, it indicates a local optimum since a better value is obtained using
symmetry for the same set of parameters.

For the next example, the effect of changing the filter radius R was studied
for fixed γ = 0.3. Looking at the sequence of pictures in Figure 3 the effect
of R on the size of the smallest channels is quite clear: when R increases the
smallest channels increases in size, and due to constraint on allowed amount of
Stokes flow in the system, the channels decrease in number. Also, the boundary
between Stokes and Darcy flow becomes more blurry with increasing filter
radius. This is due to the smoothing effect of the filter operator.

In all figures shown so far, the filtered design has been plotted. In Figure 4,
however, the unfiltered design variable is shown together with the filtered one,
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Figure 4. The filtered (left) and unfiltered (right) design variable for filter radius R = 2.1 ×
[e.s.l].

and as is to be expected, the unfiltered design is practically purely black-and-
white.
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Abstract: We consider the optimal design of flow domains for Navier–Stokes. The prob-
lem is solved by a topology optimization approach varying the effective porosity
of a fictitious material. The boundaries of the flow domain are represented by
potentially discontinuous material distributions. Navier–Stokes flows are tra-
ditionally approximated by finite element and finite volume methods. These
schemes, however, are particularly sensitive to the discretization of the flow
along the boundaries, leading to significant robustness issues in the case of
non-smooth boundary representations. Therefore, we study the potential of the
lattice Boltzmann method for approximating low Mach-number incompressible
viscous flows for topology optimization. In the lattice Boltzmann method the
geometry of flow domains is defined in a discontinuous manner, similar to the
approach used in material based topology optimization. In addition, this non-
traditional discretization method features parallel scalability and allows for high-
resolution fluid meshes. In this paper, we show how the variation of the porosity
can be used in conjunction with the lattice Boltzmann method for the optimal
design of fluid domains. An adjoint formulation of the sensitivity equations will
be presented and the potential of this topology optimization approach will be
illustrated by a numerical examples.

Keywords: Navier–Stokes flow, lattice Boltzmann method, topology optimization.

1. INTRODUCTION

The optimal control of fluid flows has received considerable attention by en-
gineers and mathematicians, owing to its importance for many technical and
bio-medical applications. The reader is referred to the recent monographs
of Gunzburger (2003) and Mohammadi and Pironneau (2001). Traditionally,
the geometry of flow domains is optimized by varying the shape of obstacles
and/or channel walls. We refer, for example, to the body of work by Jameson
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(1988) and co-workers on shape optimization for external and internal flows.
Shape optimization methods, however, allow varying only the shape of bound-
aries present in the initial design. This limitation can be overcome by extending
and applying the concepts of topology optimization developed for design prob-
lems in solid mechanics to flow problems. These concepts allow generating
complex, often non-intuitive optimal geometries and do not require an initial,
close to optimum design to start with. We refer to the monograph of Bendsøe
and Sigmund (2003), for an overview of topology optimization methods.

While the field of topology optimization is well established for the optimal
design of solids and structures, little work has been done for the optimal design
of fluid domains. In their pioneering work, Borrvall and Petersson (2003) con-
sidered the optimal design of Stokes flow problems by distributing inhomogen-
eous porous materials with a spatially varying Darcy permeability tensor. This
approach was generalized by Evgrafov (2005a), to include both limiting cases
of porous materials, i.e., pure solid and pure flow regions are allowed to ap-
pear in the design domain as a result of the optimization procedure. The Stokes
theory is only valid for flows with a small Reynolds number Re < 1. To over-
come this limitation, Gersborg-Hansen et al. (2005) extended the approach of
Borrvall and Petersson (2003) to laminar incompressible Navier–Stokes flows
at low Reynolds numbers. Evgrafov (2005b) studied the well-posedness of to-
pology optimization problems for incompressible Navier–Stokes flows in the
original infinite-dimensional setting, and proposed to relax the incompressibil-
ity constraint, amongst other modifications, to achieve such a well-posedness.

Internal and external Navier–Stokes flows are typically approximated by fi-
nite element and finite volume methods. While these discretization methods
are well established as high-fidelity simulation tools, their accuracy and nu-
merical robustness strongly depends on the quality of the fluid mesh, in par-
ticular as Reynolds and Mach numbers increase. This mesh sensitivity sig-
nificantly affects the suitability of traditional discretization methods for ma-
terial based topology optimization methods seeking to represent the geometry
of the flow domains by “0-1” discontinuous material distributions. Therefore
we propose to simulate the underlying flow problem by the lattice Boltzmann
method (LBM), a cellular automata approach for simulating low Mach-number
incompressible viscous flows. In contrast to finite element and finite volume
schemes, the lattice Boltzmann method does not discretize the Navier–Stokes
but operates on a discrete form of the Boltzmann equations. The geometry
of obstacles and channel walls is defined by turning off nodes in typically
structured fluid meshes. This approach allows describing complex geometries
without the need for generating fluid meshes aligned with the contours of the
flow domain. In addition, LBM solvers can be efficiently parallelized allow-
ing for high-resolution fluid meshes. The potential of the lattice Boltzmann
method has been recently recognized for a broad range of technical applica-
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tions and for complex biological flow problems. Here, we present a design
approach that exploits the unique features of the lattice Boltzmann method for
topology optimization purposes.

2. THE LATTICE BOLTZMANN METHOD

In recent years, the lattice Boltzmann method described by McNamara and
Zanetti (1988) and Succi (2001) has become a popular alternative to conven-
tional, Navier–Stokes equations based computational methods for a variety of
problems in fluid dynamics. It has been successfully compared to a number
of finite element and finite volume methods (see, for example, Breuer et al.,
2000), as well as to analytical solutions of the Navier–Stokes equations (see,
for example, Mei et al., 2002).

The lattice Boltzmann method was originally derived as an extension of
the lattice gas automaton. It can also be directly derived from the Boltzmann
equation with the Bhatnagar–Gross–Krook (BGK) collision operator (see
Bhatnagar et al., 1954; He and Lou, 1997). The numerical scheme of the
LBM can be derived starting with the Boltzmann equation as shown by Yu et
al. (2005):

∂f

∂t
+ ξ · ∇f = −1

λ
(f − f eq), (1)

where f is the distribution function, ξ is the velocity vector, λ is the relaxa-
tion time, f eq is the equilibrium distribution function, and − 1

λ
(f − f eq) is the

BGK collision operator of Bhatnagar et al. (1954). Equation (1) is discretized
in the velocity space, the displacement space, and time. Separating the dis-
cretized equation into a local collision and a global propagation step yields the
following numerical scheme:

Collision: f̃α('xi, t) = fα('xi, t)− 1

τ
[fα('xi, t)− f eq

α ('xi, t)],
Propagation: fα('xi + δt'eα, t + δt) = f̃α('xi, t),

(2)

where 'eα is the velocity vector belonging to some discrete set depending on
the lattice chosen, fα is the distribution function associated with the corres-
ponding lattice site velocity, 'xi represents the location in physical space, 'eαδt
is the displacement step, δt is the time step, and τ = λ

δt
is the dimensionless

relaxation time.
The exact form of the velocity vector 'eα in Equation (2) depends on the

lattice configuration. In this study, we use the two dimensional, nine velocity
D2Q9 lattice model, in which the velocity space is discretized by nine velocity
vectors at each lattice site. For low Mach number flow conditions, the equilib-
rium distribution function f eq in Equation (2) can be derived by a Taylor series
expansion of the Maxwell–Boltzmann equilibrium distribution, as shown by
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He and Lou (1997):

f eq
α = wαρ

[
1 + 3('eα · 'u)+ 9

2
('eα · 'u)2 − 3

2
'u2

]
, (3)

where the vector 'u represents the macroscopic velocities and wα are lattice
weights that depend on the lattice geometry. The macroscopic parameters,
such as density, velocity, pressure, and viscosity can be evaluated as follows:

ρ('x, t) =
8∑

α=0

fα('x, t),

ρ 'u('x, t) =
8∑

α=0

'eαfα('x, t),

p('x, t) = c2
s ρ('x, t),

ν = (τ − 1/2)c2
s δt,

(4)

where cs is the lattice speed of sound defined by cs = c/
√

3. Under the low
Mach number assumption, the Chapman–Enskog expansion allows verifying
that the macroscopic quantities obtained in this manner approximate solutions
to the Navier–Stokes equations within O((Ma)2).

For topology optimization purposes, the above scheme is augmented by a
continuous optimization model smoothly “transforming” fluid sites into solid
and vice versa. We adopt the LBM porosity model introduced by Spaid and
Phelan (1997) for solving the Brinkman equations for porous flows in place of
the Navier–Stokes equations. The porosity model requires only a minor modi-
fication of the collision step (2) in the LBM algorithm. Instead of using the
macroscopic velocity defined in Equation (4) when evaluating the equilibrium
distribution (3), we scale it by a factor 0 ≤ (1 − β('x))τ ≤ 1, where the para-
meter β is related to the porosity, defined in detail by Spaid and Phelan (1997).
The parameters d('x) = β('x)τ at every lattice point are the design variables.
The macroscopic velocity '̃u in a porous region can be computed as follows:

'̃u(t, 'x) = (1 − d('x))'u(t, 'x), (5)

where '̃u(t, 'x) is substituted into (3). When d('x) = 0, 'x is a pure fluid point,
when d('x) = 1, 'x is a pure solid point, and when 0 < d('x) < 1 'x is occupied
by a porous medium.

This simple idea allows us to control the fluid in a simple and continuous
fashion. By using the lattice Boltzmann method we can solve the same phys-
ical system as done by Borrvall and Petersson (2003), applying a conventional
Navier–Stokes based fluid solver to the solution of the Brinkman equation.
However, whereas Borrvall and Petersson must drive the porosity to infinity in
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order to recover a pure fluid, thus leading to numerical problems, we can con-
tinuously vary between solid and fluid by letting 0 < d('x) < 1, creating no
numerical problems. Note that employing LBM as the fluid solver, we avoid
the numerical difficulties related to the need to drive the inverse permeability
coefficient to infinity in the traditionally used Navier–Stokes based Brinkman
system.

In this study we consider only optimization problems for steady-state flow
conditions. To write the governing equations in a compact form, all design
variables { d('x1), . . . , d('xL)) } are collected into a vector 'd ∈ [0, 1]L, where
L ∈ N is the number of lattice points. Similarly, all distribution functions
fα(·) are collected into a vector 'f ∈ R

rL. The steady-state variant of the
time-dependent LBM equations (2) is formulated as follows:

�( 'f ) = 'f + '�( 'β( 'd), 'f ). (6)

The mapping � : R
rL → R

rL is responsible for the “propagation” part of
the discrete Boltzmann equation. The collision operator '� is the only design-
dependent part of the system and is highly nonlinear in 'f .

A generic topology optimization problem for steady-state flow conditions
can be written as follows:

min
( 'd, 'f )∈[0,1]L×RrL

F( 'd, 'f ),

s.t.

{ '1T 'd ≥ γL,

'f solves (6),

(7)

where F is a particular performance functional. Note that the above optimiza-
tion problem has a control in coefficients structure. Assuming the performance
functional and the governing steady-state equations are smooth functions of
the optimization variables, the problem (7) can be solved by any large-scale
gradient-based optimization algorithm. In this study, we use SNOPT by Gill et
al. (2002), a commercial implementation of a penalty-based SQP algorithm.

3. NUMERICAL IMPLEMENTATION

In this section we briefly summarize the key components of the numerical im-
plementation of the proposed optimization method. This includes finding the
steady-state solution, determining the sensitivities, and parallelizing the code.

The standard LBM algorithm is an explicit time-marching scheme for com-
puting time-dependent flows. In order to compute steady-state flow solutions,
the flow needs to be advanced in time until convergence, that is the difference
between two or more successive flow states vanishes. The steady-state condi-
tion can be written as follows:

| 'ft − 'ft−1|∞ ≤ ε (8)
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for ε > 0. Satisfying the above condition is equivalent to finding an approx-
imate solution to the following fixed-point problem:

'M( 'f )− 'f = '0. (9)

Here, the operator 'M performs one collision and one propagation step, which
is exactly what is needed to advance the flow to the next time step.

The sensitivities of the performance functional F in Equation (7) are com-
puted analytically by the adjoint method. The gradient of the objective function
F with respect to the design variables di can be written as follows:

dF
ddi

= ∂F
∂di

+
∑
j

∂F
∂fj

∂fj

∂di
, (10)

where fj the distribution function governed by the fixed-point formulation (9).
To evaluate the above equation by the adjoint method the transpose of the Jac-
obian J of the fixed-point problem (9) needs to be computed. For a nx × ny

D2Q9 lattice, J is a sparse unsymmetric square matrix of size (nx ·ny · 9)2. In
the presence of no-slip boundary conditions the Jacobian J is singular, which
in general precludes the use of the Implicit Function Theorem to perform the
sensitivity analysis. This problem can be easily dealt with by excluding some
of the “superfluous” particle distributions associated with the no-slip boundary
conditions from the fixed-point system (9).

Due to the local nature of the lattice Boltzmann method, it is well suited for
parallelization. Since the collision step occurs locally at each lattice site and
the propagation step only impacts neighboring lattice sites, only information
along the boundary of the subdomain treated by each processor must be trans-
ferred to the corresponding neighboring processor. Thus the convergence time
scales almost linearly for parallel computations, making the lattice Boltzmann
method ideal for parallelization.

4. NUMERICAL EXAMPLES

In order to illustrate the viability of the LBM-based approach for topology op-
timization, we consider the numerical example of a pipe bend (see Figure 1),
which is analogous to one of the examples presented by Borrvall and Petersson
(2003). We minimize the pressure drop between inlet and outlet, which has a
comparable effect to the power loss objective used by Borrvall and Petersson.
The volume fraction of fluid is restricted to at most 25%, which is again equi-
valent to the value used by Borrvall and Petersson.

As shown in Figure 1, a parabolic velocity profile at the inlet and the density
at the outlet are prescribed. In addition, the outlet velocities are forced to be
normal with respect to the boundary.
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Figure 1. Pipe bend design domain with inlet and outlet conditions.

In our computations we use (nx−1)×(ny−1) design variables for a lattice
of size nx × ny, i.e., one design variable between four lattice sites. We obtain
the porosity at each node, required by Equation(5), by interpolating from the
four surrounding design variables, which results in a small filtering/averaging
effect that leads to a smoothing of the results. This smoothing yields dens-
ity gradients at the fluid-structure interface. Therefore, the resulting plots of
nodal densities presented below seem a bit “blurred” at the interfaces. In addi-
tion, in our computational experience we obtained better convergence results
when instead of the linear scaling in Equation (5) we used a polynomial scaling
(1 − d)α for some α > 1. We obtained best results with α ∈ [2.5, 3].

Using the described setup of the pipe bend design problem and performing
the optimization at various Reynolds numbers (RE = 1, 10, 20, 100), where
RE is defined with respect to the inlet width (L = 0.2Ny), we obtain the results
shown in Figure 2. From these results, it can be seen that the topology of the
pipe is slightly curved and remains similar for the given range of Reynolds
numbers. From close observation, one can notice a stronger curvature in the
pipe for RE = 100, as would be expected from the physics of the problem. This
is due to the following competing physical effects, which lead to the optimal
solution. First, in order to reduce the shear stress along the walls (τw), the
pipe must be as short and as wide as possible. This explains the resulting
straight pipe shown by Borrvall and Petersson (2003), who use a Stokes model
where the power dissipation depends solely on the shear. Second, in order
to reduce the momentum loss in the pipe due to the turning of the flow, it is
advantageous to turn the flow slowly and continuously, rather than abruptly.
Thus, the optimal solution will result from the combined effect of minimizing
the shear stresses at the walls and minimizing the momentum loss due to the
turning of the flow. Therefore we expect a nearly straight pipe for low Reynolds
numbers (Stokes limit) and increasing curvature of the pipe for larger Reynolds
numbers, as shown by the numerical results in Figure 2.

565



A. Evgrafov et al.

Figure 2. Pipe bend optimization results at various Reynolds numbers.

Table 1. Comparison of pipe bend optimizations at different Reynolds numbers.

RE Initial Objective Final Objective Opt. Iterations Avg. LBM Iterations

1 0.0609 0.00166838 340 5907
10 0.6117 0.01648804 1310 11254
20 1.2217 0.03501250 765 18842

100 3.8590 0.19987795 1897 44702

Note: Optimization for RE = 100 was not completely converged within the allotted optimizer iterations.

Table 1 compares the initial objective value (pressure drop plus penalty
factor), final objective value, number of optimizer iterations, and average num-
ber of LBM iterations to steady state per optimization for the four different
Reynolds numbers, where the objective values are given in lattice units. It was
found that it is advantageous to start the optimization with an infeasible solu-
tion (d = 0.1 everywhere), since the convergence to steady state in the LBM
program slows down significantly for larger porosities due to the large pressure
drop that must be established. The reader can see from the number of optimizer
iterations and average number of LBM iterations that the optimization process
is fairly costly. This is a concern since both iteration numbers, in particular the
one for the LBM steady-state iterations, increase with increasing lattice sizes.

The objective value versus optimizer iteration is plotted in Figure 3. Fig-
ure 4 shows the topology of the pipe bend at different optimizer iterations.
The reader can observe that the general topology is obtained after only a few
iterations. Thus the optimizer convergence could be increased, for example,
by switching to a shape optimization approach once the general topology has
been found. The convergence of the LBM time-marching scheme towards
steady-state flow solutions can be significantly improved by switching to im-
plicit schemes, as suggested by Bernaschi and Succi (2003). Both options of
improvement are included in our future research plans.
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Figure 3. Objective vs. pptimizer iteration (RE = 1).

Figure 4. Bend design vs. optimizer iteration (RE = 1).

5. CONCLUSIONS

We have presented a novel approach to flow topology optimization based on
the lattice Boltzmann method. A numerical study has illustrated how the lattice
Boltzmann method can be employed to solve topology optimization problems
arising in fluid mechanics. The results obtained so far indicate that LBM suites
ideally for topology optimization owing to its ability to compute flows in com-
plex geometries represented by discontinuous material distributions, ease of
parallel implementation, and scalability. While the present study renders the
proposed LBM-based topology optimization method a promising alternative
to Navier–Stokes based flow optimization, there are many questions left open
before the methodology can be efficiently used to solve problems of practical
engineering interest.
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Abstract We introduce a family of optimal anisotropic two-dimensional multimaterial
laminate composites which correspond to extreme overall conductivity. These
laminates attain the translation bounds and generalize all previously known con-
structions for these bounds. The method of construction is based on the analysis
of the fields in optimal structures.

Keywords: Structural optimization, multicomponent optimal composites, bounds, polycon-
vexity, rank-one convexity, multiwell variational problem.

1. INTRODUCTION

The problem of the optimal structure of a periodic composite has been the
subject of substantial work in various communities. Since the pioneering work
of Hashin and Shtrikman (1962), two techniques have been used to solve the
problem. On one hand, outer bounds on the effective tensors are established,
which depend only on the physical properties of the constituent materials and
on their relative volume fractions. One the other hand, the effective tensors
of periodic microstructures are used to establish an inner bound on the set of
effective tensors. An outer bound is found to be optimal if it coincides with an
inner bound.

Though the G-closure problem for two conducting materials in two dimen-
sions was solved more than twenty years ago in Hashin and Shtrikman (1962),
Tartar (1979, 1985) and Lurie and Cherkaev (1984), the solution for three-
material mixtures is still not known. The translation bound, which is related
to the polyconvex envelope of an auxiliary energy, is always attainable for
two-material composites. However, for multimaterial composites the bound
is attainable only in a special range of volume fractions of the components
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(Hashin and Shtrikman, 1962; Milton, 1981; Lurie and Cherkaev, 1985; Milton
and Kohn, 1988; Gibiansky and Sigmund, 2000). Additionally, there are res-
ults for improved bounds in the case of small volume fractions of the best or
worst conductor (Talbot et al., 1995; Nesi, 1995).

In this paper, we construct a family of structures which realize the transla-
tion bound by analyzing the (pointwise) fields in optimal structures. In partic-
ular, our family of structures generalizes the structures of multimaterial com-
posites found in Milton and Kohn (1988), and those found in Gibiansky and
Sigmund (2000). Additionally, we discuss a new pointwise constraint on the
fields in the materials inside any translation-optimal structure which supple-
ments the translation bound. This constraint determines a new necessary con-
dition for the attainability of the translation bound. Our method is based on
the analysis of the fields in optimal structures. The results are presented for
two-dimensional linear conductivity, although much of the method applies to
various other types of physical phenomena both in two and three dimensions.

2. NOTATIONS AND BOUNDS

2.1 Multiphase Conducting Mixtures

Consider a two-dimensional periodic multiphase structure. The unit period-
icity cell � = [0, 1]2 is divided into N parts �1, . . . , �N occupied with ma-
terials with isotropic conductivity tensors

Ki = kiI for i = 1, . . . , N, (1)

where I is the two-by-two identity matrix. We assume the conductivities are
ordered so that 0 < k1 < · · · < kN . The conductivity equations applied to the
periodicity cell are written as

divK(x)∇u(x) = 0 in �,
∫
�

∇u(x) dx = e, (2)

where K : � → {K1, . . . , KN } is the variable conductivity tensor defined by

K(x) = Ki if x ∈ �i, i = 1, . . . , N, (3)

K1, . . . , KN are given by (1), and where e is the prescribed external field acting
on �.

Assume that the periodicity cell with material layout defined by K(x) is
subject to the homogeneous external field e that is gradient of a linear potential
eT x. The energy stored in the material is given by

W(K, e) = inf
u∈H 1

# (�)+e·x

∫
�

∇u(x) ·K(x)∇u(x) dx,
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where H 1
# (�) is the space of locally H 1 functions on R

2 which are �-periodic
with zero mean. The infimum is taken over functions with fixed affine part plus
a variable periodic oscillating part:

u(x) = e · x + osc(x),
∫
�

∇u(x) dx = e.

The affine part, e · x, is prescribed by the loading. The minimization is taken
over the zero-mean oscillating part, osc(x).

The effective tensor K∗ of the structure with the partition �i is defined as
a homogeneous material that stores the same energy as the mixture under the
same homogeneous loading. That is,

e ·K∗e = inf
u∈H 1

# (�)+e·x

∫
�

∇u(x) ·K(x)∇u(x) dx ∀e ∈ R
2.

In order to completely determine K∗, it suffices to consider the response
of the same structure to the two orthogonal loadings (see Lurie and Cherkaev,
1984; Francfort and Milton, 1994).

e = e1 = r1(1, 0)T and e = e2 = r2(0, 1)T . (4)

The response in this case means the sum of the energies of these loadings:

W(K, e1)+W(K, e2). (5)

This functional can be conveniently rewritten in terms of two-by-two matrices.
We write (4) as

E = diag(r1, r2). (6)

Given any pair of potentials U = (u1, u2), we define the two-by-two gradient
matrix as the matrix whose rows consist of the gradients of u1 and u2:

DU = {DUij}i,j∈{1,2}, DUij = ∂ui

∂xj
.

The sum of energies (5) becomes

W(K,E) = inf
U∈H 1

# (�)
2+Ex

∫
�

〈DU(x)K(x),DU(x)〉 dx

where 〈·, ·〉 is the inner product defined on two-by-two matrices by

〈A,B〉 = tr(ABT ).

The effective tensor K∗ is the unique (symmetric) tensor satisfying the relation

〈EK∗, E〉 = inf
U∈H 1

# (�)
2+Ex

∫
�

〈DU(x)K(x),DU(x)〉 dx ∀E ∈ R
2×2.
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3. BOUNDS

3.1 Wiener and Translation Bounds

The effective conductivity satisfies the following inequality bounds (see, for
example, Cherkaev, 2000; Milton, 2002).

1. The Wiener bounds:(
N∑
i=1

mi

ki

)−1

≤ λmin(K
∗) ≤ λmax(K

∗) ≤
N∑
i=1

miki. (7)

where λmin(K
∗) and λmax(K

∗) are the minimum and maximum eigen-
values of K∗ respectively and where mi = |�i| are the relative volume
fractions of the materials, m1 + m2 + m3 = 1. The inequalities place
the pair of eigenvalues of any effective tensor in a rectangular box in
the eigenvalue plane. The bound is sharp: The effective tensor of the
anisotropic laminate satisfies both inequalities as equalities. Moreover,
for multicomponent (N ≥ 3) structures, the bound is achieved at certain
intervals of the sides of the box (Cherkaev and Gibiansky, 1996).

2. The translation bounds:

trK∗ − 2k1

detK∗ − k2
1

≤ 2
N∑
i=1

mi

ki + k1
, (8)

trK∗ − 2kN
detK∗ − k2

N

≥ 2
N∑
i=1

mi

kN + ki
. (9)

These bounds are sharp for certain values of the mi , ki , and the degree
of anisotropy of K∗ as is discussed later in this paper.

3.2 Conditions of Realizability of the Translation Bounds

The translation bounds (8) and (9) are not sharp for all values of the parameters
mi and ki . Intuitively, we see this from the fact that the formulas for the bounds
still depend on k1 (respectively kN ) when m1 = 0 (respectively mN = 0) as
was discussed in Milton and Kohn (1988). Besides, for m1 or mN near 0, there
are better bounds (Talbot et al., 1995; Nesi, 1995), so the translation bounds
cannot be sharp. In the rest of the paper we focus primarily on the lower bound
(8). Similar constructions exist for the upper bound (9) by duality arguments.

Theorem 1 (Realizability theorem) A structure realizes the bound
(8), if the following conditions hold on the pointwise field DU when the struc-
ture is placed in to a properly scaled diagonal external field E in (6) (compare
to Grabovsky, 1996; Milton, 2002).
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(P1) trDU = 1 a.e. in �1.

(P2) DU = k1
ki+k1

I a.e. in �i for i = 2, . . . , N .

(P3) DU is diagonal in �1.

In fact, the theorem is true if (P1)–(P3) hold in an approximate sense. In par-
ticular, if the piecewise constant “fields” in a sequential laminate satisfy (P1)–
(P3) then the laminate is optimal. It is in this sense that we refer to the fields
in laminate structures from now on.

In addition, we show that in order for a laminate structure to satisfy the
bound, the field in the first material cannot be “too anisotropic”.

Theorem 2 If a laminate structure satisfies the bound (8) then (under the
assumptions of the previous theorem) the field in the first material must satisfy
the relation

detDU ≥ k1kN

(kN + k1)2
in �1. (10)

Indeed, this inequality easily follows from the fact that the fields in a layer of
lamination must be in a rank-one connected.

The inequality (10) limits the applicability of (8); the bound cannot be satis-
fied by laminates that are either extremely anisotropic or that contain too small
an amount of the first material. The T 2-structures described below satisfy the
condition (10) as equality and therefore represent the boundary of applicability
of the translation bound for laminates.

4. THE OPTIMAL STRUCTURES

4.1 Known Structures

The first type of isotropic structures to attain the translation bound was de-
scribed in Milton (1981) (see Figure 1a). The construction for the lower
bound (8) (K∗ is isotropic) is possible if m1 is large enough. All such construc-
tions satisfy K1 ≤ K∗ ≤ K2. Milton’s construction was extended to aniso-
tropic composites later in Milton and Kohn (1988) (see Figure 1c). The topo-
logy of the optimal structures is not unique as follows from Lurie and Cherkaev
(1985) where an alternative construction was given for structures with exactly
the same volume fractions and effective properties as those presented by Milton
(see Figure 1b). In Cherkaev and Gibiansky (1996) three-material anisotropic
structures that have effective tensors with eigenvalues on an interval of the
sides of the Wiener box not only in its corner were introduced (see Figure 1e).
There are no similar structures in the two-material case.

In Gibiansky and Sigmund (2000) a new construction was described that
significantly increased the set of optimal points of the translation bounds (8)
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Figure 1. Previously known three-phase structures optimal for the translation bound (8).

and (9) for the case N = 3. The paper focuses on the problem of bulk moduli,
but the authors extend the results to the conductivity problem as well. Their
structures were the surprising result of a numerical simulation. Using a “to-
pology optimization” algorithm developed earlier by Sigmund, the authors
searched for optimal structures by computer. They found a structure which
lies outside the Kohn and Milton range of parameters (m1 is too small for any
of the previous constructions to apply) but which numerically appears to sat-
isfy the translation bound. The surprise occurred when the authors attempted
to replace the computer output with a similar, but simpler structure for which
the effective properties could be analytically computed. The simplified struc-
ture was optimal for the translation bounds. Instead of iterated laminates or
coated spheres, they used the Marino and Spagnolo (1969) type structures (re-
invented by Sigmund, 2000) that consist of rectangular domains with special
conductivities that make separation of variables possible in the homogeniza-
tion equations. Reinterpreting their results slightly, we divide the cell of peri-
odicity into four rectangular subdomains. The opposite squares are occupied
by K2 and K3, and the remaining rectangles are filled with laminates from K1

and K3 (see Figure 1d). The effective conductivity of the laminate depends
on the volume fraction of materials in it. This conductivity (or, equivalently,
the fraction of the materials in the laminate) is chosen in such a way that the
conductivity equation (2) permits a separation of the variables if the external
fields are homogeneous. Because of this feature, the solution is analytic and so
are the effective properties. Using Maple, the authors then found that the struc-
tures are optimal for the translation bound (8). The authors also described more
complicated structures that were optimal for larger values of m1 and which co-
incided with the previously known structures at the point K∗ = K2.
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4.2 Optimal Laminates

Here we describe a new family of optimal microstructures for the case N = 3.
They are the laminates with the special property that the fields inside the layers
of pure material satisfy the sufficient conditions (P1)–(P3). We observe that
they also necessarily satisfy the applicability condition (10). To find an optimal
structure, we assign the fields in layers to be optimal and choose the volume
fractions to allow compatibility for lamination. We begin with some degenerate
cases and work toward the general structure.

A Parameterization. The phase K1 and its volume fraction m1 play a spe-
cial role in the bound (8) and in the associated optimal structures. For this
reason, it is convenient to introduce the fraction p of K2 relative to K3,

p = m2

1 −m1
, 1 − p = m3

1 −m1
.

Using p-notation, the translation bound (8) for three material mixtures is
rewritten as

1

2
· trK∗ − 2k1

detK∗ − k2
1

≤ m1

2k1
+ (1 −m1)

(
p

k2 + k1
+ 1 − p

k3 + k1

)
. (11)

If we think of p ∈ [0, 1] as a parameter of the problem, we can write the
requirement that a structure attains bound (8) as

m1 =
1
2 · trK∗−2k1

detK∗−k2
1
−

(
p

k2+k1
+ 1−p

k3+k1

)
1

2k1
−

(
p

k2+k1
+ 1−p

k3+k1

) . (12)

Furthermore, the “coating principle” discussed in this section is an operation
on structures which increases m1, preserves p, and preserves the equality in
(12). For this reason, it is convenient to fix p and plot the values of K∗ where
the bound (8) is sharp in the eigenvalue plane. From these values, we can
recover via (12) the value of m1 (and thus all other volume fractions) for each
plotted point.

The Lamination Formula. The effective properties tensor K∗ of a laminate
from two anisotropic materials with conductivity tensors A and B, in volume
fractions m and 1 − m respectively, and with normal n to the layers, is given
by the representation (see, for example Cherkaev, 2000; Milton, 2002)

K∗ = L(KA,KB, n,m) = mKA + (1 −m)KB − N , (13)

where

N = m(1 −m)(KB −KA)n[nT (mKB + (1 −m)KA)n]−1nT (KB −KA).
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Figure 2. A selection structures optimal for (8): (a) a T -structure, (b) a T -structure with one
layer of “coating”, (c) a T 2-structure.

Coating with K1 Preserves Optimality. In order to describe the variety of
the optimal structures, we make the following observation.

Theorem 3 (The Coating Principle) If a structure K∗ is optimal for
the translation bound (8), then all structures obtained by laminating it with
material K1 are also optimal for (8). The laminating can be iterated so that
the original structure is “coated” by K1.

This observation allows us to describe only the extremal structures that attain
the bound (8) in the sense that they contain the minimal amount of K1.

In particular, the coating principle immediately proves the optimality of all
optimal two-phase structures – the laminates of second rank. These structures
are the result of the coating of the pure phase K2 (which is trivially optimal for
(8)). The two-phase structures correspond to p = 1 (see (11) and (12)).

The coating principle also plays an important role in the analysis of mul-
tiphase mixtures. Notice that the coating changes the volume fractions, mi ,
but it preserves the value of p. Since coating increases the value of m1, the
principle allows to look for the optimal structures with the lowest value of m1.
Every optimal structure generates a set of optimal coated structures.

T-Structures. The simplest optimal structure is the T -structure. It is as-
sembled as a sequence of laminates. First, K1 and K3 are laminated with
normal in the x1-direction. Then, the resulting composite is laminated with
K2 with the normal in the x2-direction. Figure 2a illustrates the construction
of the T -structure. The effective properties of the T -structure are found by
iterating the lamination formula for two materials KA and KB with normal n
and in relative amounts m and 1 −m respectively,

KT = L

(
K2, L

(
K1,K3, n1,

m1

m1 +m3

)
, n2,m2

)
,

where n1 = (1, 0)T and n2 = (0, 1)T .

Theorem 4 For all values of p ∈ [0, 1], there exists a T -structure with the
given value of p that is optimal for the translation bound (8).
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Figure 3. The set of optimal structures formed by coating the optimal T -structure.

It may seem surprising that we have found that there is always an optimal T -
structure for any p. Keep in mind that we consider structures with fixed relative
volume fractions of K2 and K3 but with arbitrary fraction of K1.

Coated T-Structures. From the optimal T -structure, we obtain a set of
optimal structures by coating with K1 according to Theorem 3. The obtained
region is shaded in the eigenvalue plane in Figure 3. The calculation corres-
ponds to the parameters

k1 = 1, k2 = 2, k3 = 5, p = 1

60
. (14)

It is convenient to represent an anisotropic material by two symmetric points
(λ1, λ2) and (λ2, λ1) in the plane of eigenvalues to avoid ordering the eigen-
values. Particularly, the optimal T -structure is represented by two points, both
labeled KT . The domain optimal structures given by coating the T -structure
is the union of two lens-shaped regions in the plane. The boundaries of this
set are the laminate curves. Recall that rather than fixing volume fractions,
we fix the value p which in turn fixes the ratio of m2 to m3. The figure also
includes some dotted curves of constant volume fraction. Those closer to K1

indicate larger values of m1 than those farther away. Any point where one of
these curves intersects the region of optimal coated T-structures is an optimal
point for the translation bound (8) with the volume fractions given through m1

and p.
An extremely anisotropic T -structure with an additional layer of K1 instead

of coating in the x-direction is shown in Figure 2b. We notice that these op-
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timal structures that attain the translation bound are topologically equivalent to
the extremal structures that attain the Wiener bound, Figure 1e (see Cherkaev
and Gibiansky, 1996). The structures differ by a single parameter: the relative
fraction of K1 in the inner layer. Although these two structures are both op-
timal, they are optimal for different bounds. Therefore, it is not yet known if
the structures with intermediate values of the parameter are optimal for some
generalized bound. They are not optimal for any of the bounds (7)–(9). How-
ever, these structure would give a fair approximation to the boundary of all
optimal structures.

T2-Structures. Next, we enlarge the class of optimal structures by consid-
ering a generalization of the T -structure. We laminate the T -structure with a
laminate of K1 and K3 in the orthogonal direction as seen in Figure 1c. The
effective tensor of such T 2-structures is found from the iterative procedure

KT 2 = L(KT ,K
′
13, n1, ω2), KT = L(K2,K13, n2, ω1),

K ′
13 = L

(
K1,K3, n2, ν

′) , K13 = L (K1,K3, n1, ν) .

The properties depend on four structural parameters: ν, ν′, ω1, ω2 that all
vary in [0, 1] and subject to the constraint that fixes p. The T 2-structures
form a class of optimal anisotropic structures between the T -structures and
the isotropic structures of Gibiansky and Sigmund, as is stated the following
theorem.

Theorem 5 For all values of p ∈ [0, 1] there exists a family of T 2-structures
optimal for the bound (8) and with variable anisotropy. The optimal paramet-
ers of optimal structures satisfy the relations

ν = !, ν′ = ω1!,

where

! = k1(k3 − k2)

(k2 + k1)(k3 − k1)
≤ 1

2
(15)

and

(1 − 2p!)ω1ω2 + p!(ω1 + ω2)− p = 0,
p(1 −!)

1 − p!
≤ ω1, ω2 ≤ 1. (16)

This construction generates a curve of eigenvalue pairs of effective tensors that
passes through T -structure and the isotropic point of Gibiansky and Sigmund.

The volume fractions in the optimal laminates are

m1 = !(ω1(1−ω2)+ω2(1−ω1)), m2 = ω1ω2, m3 = 1−m1−m2. (17)
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The effective tensors have eigenvalues λ1, λ2 parameterized by

λ1 = ω1k2(k1 + k3)+ (1 − ω1)k3(k1 + k2)

ω2(k1 + k3)+ (1 − ω2)(k1 + k2)
, (18)

λ2 = ω2k2(k1 + k3)+ (1 − ω2)k3(k1 + k2)

ω1(k1 + k3)+ (1 − ω1)(k1 + k2)
. (19)

The T 2 structures are extreme in the sense that (10) is satisfied as equality
everywhere in �1.

The extreme values of ω1 or ω2 correspond to the T -structure. On the other
hand, when ω1 = ω2, we obtain an isotropic structure whose volume fractions
satisfy the equality m1 = 2!(

√
m2−m2) (compare to Gibiansky and Sigmund,

2000, formula (49)!). The T 2-structures are a generalization of both the T -
structures and the Gibiansky-Sigmund structure with minimal amount of m1.
The parameters ω1, ω2, ν and ν′ are determined based on the requirements
(P1)–(P3) on the fields inside the phases of an optimal structure.

Recall that we do not fix m2. Instead we fix p = m2/1 −m1 and allow the
volume fractions to vary subject to this constraint. Using this, the natural limits
0 ≤ ω1, ω2 ≤ 1 and the values of the volume fractions given in (17), we find
(16).

The relation between the effective properties of optimal mixtures is sym-
metric to the interchanging ω1 ↔ ω2 in spite of the nonsymmetric iterative
procedure.

The Set of Optimal Structures. Combining the extremal T 2-structures
with the coating principle, we obtain a variety of optimal structures because
each T 2-structure can be coated, increasing the amount m1 but keeping relative
fraction p. The set of all coated T 2-structures with the given value of p forms a
subset of structures optimal for the translation bound (8). This set is illustrated
in the eigenvalue plane in Figure 4a for parameters as in (14). The set of
optimal structures is bounded by the solid boundary, which is the union of
coated T -structures (the curves between K1 and KT ) and the T 2-structures
(the curve passing through KGS). The closed region bounded by the dotted
lines represent the previously known optimal structures of Kohn and Milton,
and Gibiansky and Sigmund.

5. DISCUSSION

Curves of constant volume fraction are indicated in Figure 4a by the dot-
ted lines. In particular the curve passing through KT represents the case
m1 = !(1 −m2) while the curve passing through KGS represents the case
m1 = 2!(

√
m2 −m2).
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Figure 4. (a) Optimal points for the lower translation bound for m2/1 −m1 = 1/60. (b) Op-
timal points for the upper translation bound for m2/1 −m3 = 1/41.

Our results can be rewritten for the fixed volume fractions instead of fixed
parameter p = m2/(1 − m1). For example, consider the question of the
G-closure when

m1 = 0.4, m2 = 0.01, m3 = 0.59.

We need only examine Figure 4a and the corresponding figure for the upper
bound, Figure 4b. The optimal points of the lower bound marked by the thick
dashed curve in Figure 5 are the intersection of the curve of constant m1 = 0.4
with the optimal region shown in Figure 4a. The dot in Figure 5 marks the point
where this curve intersects the dashed Gibiansky–Sigmund line. Similarly, the
optimal points marked by the thick curve on the upper bound in Figure 5 are
points where the line of constant volume fraction m3 = 0.59 intersects the
set of optimal points in Figure 4b. The solid portion of the curve marks the
intersection with the Kohn–Milton region.

Look again at Figure 4a. As long as m1 ≥ 2!(
√
m2 −m2), the intersection

of the constant m1 curve and the region of optimal points is a connected section
of the curve which includes the isotropic point. Thus, the intersection can
be described by the most anisotropic point only. For m1 > !(1 − m2) this
most anisotropic point is a coated T -structure. For m1 ≤ !(1 − m2), it is a
T 2-structure. We summarize this in the following theorem.

Theorem 6 Let the volume fractions m1, m2 and m3 be given.
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Figure 5. (Left) The bounds (7)–(9) with known optimal points indicated by thick lines.
(Right) A magnification of the upper-left corner.

(i) If m1 > !(1 − m2), then (8) is sharp. Moreover, there exists a set
of optimal tensors whose most anisotropic member is that given by the
optimal coated T -structure with the given volume fractions.

(ii) If 2!(
√
m2 − m2) ≤ m1 ≤ !(1 − m2), then (8) is sharp. Moreover,

there exists a set of optimal tensors whose most anisotropic member
is that given by the optimal T 2-structure satisfying the volume fraction
constraints. In particular, the parameters ω1 and ω2 for this most aniso-
tropic structure can be found by solving simultaneously the equations

m1 = !ω1(1 − ω2)+!ω2(1 − ω1), m2 = ω1ω2.
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MULTIDISCIPLINARY TOPOLOGY DESIGN
AND PARTIAL DIFFERENTIAL GAMES

Introduction to Topology Games
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Abstract: We use the Nash game theory to deal with multidisciplinary topology optimiz-
ation. First, we introduce a basic Nash game framework. Then we apply it to
the modeling of a multidisciplinary topology design problem arising from bio-
mathematics.

Keywords: Static games, topology optimization, Nash equilibrium.

1. INTRODUCTION

When multiobjective optimization is involved, the habit is to select a scalar
ersatz, usually a weighted version, and then to apply single objective optimiz-
ation techniques. This approach has two major drawbacks. First, the choice of
the ersatz (e.g. the weights) is arbitrary. Second, values of the objectives which
could be of very disparate scales are compared. The optimum could then be
dramatically dependent on a set of arbitrary choices. Moreover, the notion of
optimum is meaningless, since it depends on which objective function is un-
der consideration. For these reasons, the need for a natural and systematic
approach to deal with multiobjective optimization has led us to restate mul-
tidisciplinary topology design problems within the game theory framework.

A game formulation could be easily settled for problems starting from
simple multicriteria to fully complex multidisciplinary problems. In a game
vocabulary, one could assign a subfamily of the design parameters to one
player, and another subfamily to the second one. In the present paper, we
illustrate this approach with an application to a multidisciplinary topology op-
timization problem arising from biomathematics.
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2. PARTIAL DIFFERENTIAL GAMES

We outline a basic framework for the game-theoretic formulation of mul-
tidisciplinary topology design problems.

We shall consider a two-players game. The extension of the abstract frame-
work to N-players games is straightforward.

Consider then two subsets S1 and S2 of two respective Banach spaces, W1

and W2. A generic element of S1 (or S2) is called a strategy of the player one
(or two). The set S1 is called the set of admissible strategies for the player one,
and the same for the set S2.

We shall frequently consider pairs s = (s1, s2) ∈ S1 × S2 of strategies
chosen by each player. The variables s1 and s2 may be in some simple cases the
classical density functions which parameterize (by completion) the topology of
given disjoint parts of the structure. In some other cases, the actual topology ρ
of the whole structure may be obtained as a result from the interaction between
s1 and s2: ρ = ρ(s1, s2).

For simplicity, let consider the case where the pairs of strategies intervene
in the same state equation, which reads (using classical weak formulation):

∀v ∈ V a(ρ;uρ, v) = L(ρ; v). (1)

Here, the response uρ of the system depends on the joint choice, maybe con-
current, of the parameters s1 and s2.

The objectives of the two players are then respectively defined by:

j1(s1, s2) = J1(ρ;uρ) for the first player (2)

j2(s1, s2) = J2(ρ;uρ) for the second one. (3)

The new situation introduced here is that each player’s objective strongly
depends on the other’s choice. Instead of optimality, one should consider the
notion of equilibrium, a joint choice of strategies on which the two players
agree (in some sense).

In the framework of static games, which is our case, the most used ones are
the so-called Pareto and Nash equilibria.

Pareto Fronts. Let us define the set

P = {(j1(s), j2(s)); for all s ∈ S1 × S2}.
Then, the Pareto Front PF is the subset of all (x, y) ∈ P such that

{x < x; y < y} ∩ P = ∅.
Any strategy pair s = (s1, s2) ∈ S1×S2 such that (x, y) = (j1(s), j2(s)) ∈ PF
is called a Pareto optimum (or equilibrium). The Pareto front is also known as
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the set of non-dominated strategies (the meaning is obvious from the definition
of the front).

For the multiobjective designer, the Pareto Front is the best information sup-
port that could help to select a particular strategy. However, it has two draw-
backs: it is in general very expensive to compute (in theory, one should explore
more or less the whole design space), and it is not associated to an equilibrium
notion, which makes it useless in dynamic games. The notion of Nash – or
non-cooperative – equilibrium overcomes these two drawbacks.

Nash Equilibrium. By definition, a strategy pair s∗ = (s∗1 , s
∗
2 ) ∈ S1 × S2 is

said to be a Nash equilibrium (NE) if it solves the two coupled problems:

j1(s
∗) = min

s1∈S1

j1(s1, s
∗
2 ) (4)

j2(s
∗) = min

s2∈S2

j2(s
∗
1 , s2). (5)

From the definition above, we emphasize that Nash equilibria strongly de-
pend on the splitting of s ∈ S1 × S2 into two independent variables s1 ∈ S1

and s2 ∈ S2. This distribution of territories is often not unique, thus giving rise
to the problem of optimal partition of the strategies (which e.g. ensures that a
Nash equilibrium is located on the Pareto front).

Differently from the Nash case, Pareto equilibria give no particular role to
the splitting of s ∈ S1 × S2 into two independent variables since the Pareto
front only depends on the values (j1(s), j2(s)).

The main interest of using a Nash equilibrium is that it can be numerically
computed using descent algorithms, with a cost comparable to classical single
objective minimization. However, there are also two major difficult questions
to address : the proof of existence and the interpretation of NE. In particu-
lar, a Nash equilibrium could be located out of the Pareto Front (being then a
dominated strategy), which sometimes means that an iterative -dynamic- game
should be defined in order to converge to an acceptable equilibrium.

2.1 Modeling Tumoral Angiogenesis as a Topology Game

Angiogenesis is the biological process by which networks of blood vessels
are initiated and proliferate towards a mature vasculature – local circulatory
system. At early development and growth, angiogenesis is necessary to go
from the embryonic vasculogenesis into a complete and mature blood circulat-
ory system. Moreover, angiogenesis plays an important role in wound healing
and tissue repairing. But from other part, angiogenesis plays also a patho-
logical role, being a fundamental step in the growth of cancer tumors and in
tumoral metastasis, the ability of tumor cells to develop in other places using
the blood and lymphatic networks. Recently, oncologists have suggested that
the use of inhibitors of angiogenesis, an approach that is often referred to as
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anti-angiogenesis, could prove effective in cancer treatment. Combined with
directly curative drugs, anti-angiogenic drugs are intended to efficiently stop
the expansion of tumoral mass, forcing the tumor to dormancy or even regres-
sion.

We shall model angiogenesis and anti-angiogenesis processes as resulting
from a mathematical game between two players : activators of angiogenesis,
willing to provide the tumor with an efficient feeding network of blood vessels,
and inhibitors, with a specific action on the tumor vasculature.

From the activators viewpoint, the biological tissue surrounding the tumor,
and located between close existing vessels and the tumor is seen as a porous
medium, defined by its porosity distribution. The latter is defined as a result
of an interaction between activators and inhibitors. Activators would like to
design the porosity in order to yield the minimal pressure drop. From the
inhibitors viewpoint, the same biological medium is seen as a linear elastic
continuum, defined by its material elasticity tensor. As for the porosity, the
material properties are defined as a result of an interaction between activators
and inhibitors. Inhibitors would like to design the material distribution in order
to provide the matrix with the minimal mechanical compliance.

Mathematical Modeling. We make two assumptions on the respective ob-
jectives of the activators and of the inhibitors. The first one is that activators
monitor angiogenesis in order to provide the tumor with an optimal drain-
age mechanism. Natural circulatory networks, including human vascular net-
work are known to have arterial branchings optimal structure with respect to
the maximal-drainage objective; evidence is provided by Schreiner [1] “Ar-
terial branchings closely fullfil several ‘bifurcation rules’ which are deemed
to optimize blood flow. The question is whether these local criteria in con-
junction with a general optimization principle can explain the overall structure
of an arterial tree.” Schreiner concludes in the cited study that “The compar-
ison between the model and real coronary arterial trees shows good agreement
regarding structural appearance, morphometric parameters, and pressure pro-
files.” The second assumption we make is that inhibitors are used by the host
tissue which is willing to keep its structural integrity as a way to fight against
the tumor growth. Indeed, this assumption seems to gain audience among bio-
logists. Based on in vitro studies, Helmlinger et al. [2] demonstrated that solid
stress inhibits tumor growth in vitro, regardless of host species, tissue of ori-
gin, or differentiation state, which made Roose et al. [3] suggest that “the host
tissue provides resistance to tumor growth.”

A Porous Media Model for the Tumor. The extracellular matrix as well as
the tumoral vasculature are seen as a porous medium, which occupies a volume
� ⊂ R

N (N = 2 or 3), with a variable permeability denoted by ρ , which lies
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between the matrix permeability ρM and blood vessel permeability ρV . The
simplest effective model for porous media is the following, also known as the
D’Arcy Law, where the physical variable is pressure p:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−div (ρ∇p) = Q in �

ρ
∂p

∂n
= ρg over �V

∂p

∂n
= 0 over �N

p = 0 over �T

(6)

The right-hand side Q represents a residual source of nutrients by diffusion
through the host tissue, it is assumed to be negligible compared to the inward
blood flow g. It should be noticed that we do not take into account what hap-
pens inside the tumor itself, considering only its boundary �T as an outlet.

Obviously, the pressure field depends on the permeability distribution.
As mentioned before, we postulate that angiogenesis provides the tumor

with an optimal drainage mechanism, i.e. with a permeability such that the
tumor optimal blood network minimizes the averaged pressure drop.

The pressure drop denoted by L1(ρ;p) is given by the formula:

L1(ρ;p) =
∫
�

Qp dx +
∫
�V

ρgp ds

A Structural Model for the Extracellular Matrix. Now, one may also
consider the host surrounding tissue as a continuum medium, let say a linear
isotropic, nonhomogeneous, elastic material. This model is of course a coarse
approximation of the actual mechanical behavior of the living tissues, which
is rather of visco-elastic nature [4]. This medium is composed of healthy and
degraded tissues. The degradation could be due to established vascularization
or to an early enzyme’s action, like as the MMPs family. The elasticity tensor
E lies then (in a certain sense) between the degraded material tensor ED, and
the original – sane – extracellular matrix tensor EM.

Conforming to the linear elasticity classical equilibrium equations, the dis-
placement vector u = (uj ) solves⎧⎪⎪⎨⎪⎪⎩

−div (Eε(u)) = b in �
u = 0 over �V
Eε(u).n = 0 over �N
Eε(u).n = t over �T

(7)

The strain tensor denoted by ε(u) is defined with obvious notations as

ε(u)ij = 1

2

(
∂ui

∂xj
+ ∂uj

∂xi

)
.
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The mechanical stress tensor is given by σ (u) = Eε(u).
The body forces – such as selfweight – are denoted by b, and the normal

tension which models the stress induced by the tumor growth is denoted by t.
The tissue is assumed to be clamped to the mother vessel �V . A related model
can be found in [5] where the authors study the stress induced during avascular
tumor growth.

The displacement vector u depends on the elasticity tensor E. The latter
itself depends on the interaction between activators and inhibitors of tissue
degradation.

As said in the introductory section, we assume that the host tissue is willing
to keep its integrity, by using all available factors it could control (one example
is inhibitors of MMPs). In continuum mechanics, it is usual to consider that
such goal is achieved by maximizing the stiffness, or equivalently, minimizing
the compliance:

L2(E; u) =
∫
�

b.u dx +
∫
�T

t.u ds.

The Nash Game. We consider a two-players static game of complete in-
formation. The two players are the Tumoral Angiogenic Factors (TAF) which
control activators distribution, denoted by µ, and anti-Angiogenic Factors
(aAF) which control inhibitors distribution, denoted by k.

Strategy spaces are defined as follows:

• (TAF) is equipped with a strategy space

S1 = {µ ∈ L∞(�), 0 ≤ µ ≤ 1,
∫
�

µdx ≤ γ1|�|}.

• (aAF) is equipped with a strategy space

S2 = {k ∈ L∞(�), 0 ≤ k ≤ 1,
∫
�

kdx ≤ γ2|�|}.

The constraints on the relative volume fractions express the fact that there is
only a limited available amount of activators and inhibitors.

A simultaneous (or blind) choice of (µ; k) prompts an interaction between
TAF and aAF, which is modeled as follows:

• Interaction Law: θ = µ(1 − k),

• Permeability: ρ = ρ (µ; k) = ρM + (ρV − ρM)P (θ),

• Elasticity tensor: E = E (µ; k) = EM + (ED − EM)P (θ),
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where P(θ) is the identity, an exact homogenization operator, or an interpol-
ated SIMP-like (Solid Isotropic Material Penalization) operator, see Rozvany
et al. [6].

To end with the definition of the game, objective or loss functions are
defined respectively as:

Pressure Drop j1(µ; k) = L1(ρ;p) for player (TAF), (8)

Mechanical Compliance j2(µ; k) = L2(E; u) for player (aAF), (9)

where p is the pressure solution to the Darcy equation (6), and u is the dis-
placement vector solution to the elasticity equation (7).

Existence of a Nash Equilibrium. We consider the cases where either
P(θ) = θ or P(θ) is a restriction operator, i.e. P(θ) = g ◦SR(θ), with g being
a convex function and SR a linear compact filter, see [7] for details. We have
the

Theorem 1 There exists a Nash equilibrium, i.e. a pair of strategies
(µ*, k*) ∈ S1 × S2 such that

µ* solves min
µ∈S1

j1(µ, k
*) (10)

k* solves min
k∈S2

j2(µ
*, k). (11)

Proof. Let us first notice that the strategy spaces S1 and S2 are convex and
compact for the weak-star L∞ topology. �

From one part, in case of P(θ) = θ and since the functions j1 and j2 are the
respective compliances of Darcy and Elasticity equations, it is well known that
these functions can be expressed as supremum envelops of continuous affine
functions with respect to respectively µ and to k, so these functions are convex
and weak-star lower semicontinuous.

From another part, if P(θ) is a restriction operator, j1 and j2 can still be
expressed as supremum envelops of continuous convex (but not necessarily
affine) functions with respect to respectively µ and k. Convexity is preserved
thanks to linearity of the filter, and to convexity of g. Compactness of the filter
implies the weak-star lower semicontinuity of the objectives.

The assumptions are fulfilled in order to apply the Nash existence the-
orem,which yields the existence of a Nash equilibrium, see Aubin [8].

A Numerical Experiment. We consider the minimax (or duel) problem
j2(µ; k) = −j1(µ; k) = −L1(ρ;p) which models a game where the first
player aims to minimize the pressure drop, while on the contrary the second
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one aims to maximize it (or, equivalently, wants to minimize the drainage of
the network).

The case-study consists in a trapezium with an inlet in the upperside which
models the source vessel, and a circular hole located at the center of the
trapezium which models the tumour. The figures presented below show the
evolution of the game, until a Nash equilibrium is reached.

Density of activators, Nash iter = 1. Density of inhibitors, Nash iter = 1.

Density of activators, Nash iter = 2. Density of inhibitors, Nash iter = 2.

Nash Equilibrium Network ρ(µ*, k*).

Multiple channels arise as an
equilibrium resulting from the game

between activators and inhibitors.
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COUPLING TOPOLOGICAL GRADIENT AND
GAUSS–NEWTON METHOD

Jérôme Fehrenbach and Mohamed Masmoudi
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Abstract: Topological asymptotic analysis is an emerging method that has been applied
with success to shape optimization and shape inverse problems. However, it is
not suitable for solving severely ill-posed inverse problems. It is a short term
approach and it fails when applied to small inclusions detection in elastographic
imaging.

We show in this paper that it is possible to solve this problem by coupling
Gauss–Newton and topological gradient methods in a natural way. The data is
the displacement under a small compression, only one component of the dis-
placement is given. The inversion problem is solved in two steps. In a first
step, we obtain a weight vector for the observations; this is performed by a dual
Gauss–Newton method. The second step consists of computing the topological
sensitivity relative to the insertion of an inclusion in the medium (a stiff disk),
the cost function being weighted with the result of the first step. This method is
applied to numerical experiments.

Keywords: Gauss–Newton method, topological gradient, inverse problem, elastography,
medical imaging.

1. INTRODUCTION

Finding an optimal domain is equivalent to finding its characteristic function.
At first sight this 0 − 1 optimization problem is not differentiable, but it is pos-
sible to obtain the variation of a cost function when the characteristic function
is switched from 0 to 1 or from 1 to 0 in a small region. It is called the to-
pological gradient. It has been applied to shape optimization [7, 13, 18, 19]
and to shape inverse problems [2, 9, 14, 17] giving very promising results.
In comparison with relaxation methods (the characteristic function is replaced
by a density function) the topological gradient can be seen as a regularization
technique: it reduces the set of admissible solutions from [0, 1] to {0, 1}.

Despite this nice property, the topological gradient fails when it is applied
to small inclusions detection in elastographic imaging.
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We show in this paper that it is possible to solve this difficult problem by
coupling topological gradient and Gauss–Newton method.

The second basic idea of this paper is to start with uniform material property.
A wrong initial guess does not help to find the solution. For this reason, short
term approaches like the steepest descent method are not suitable for this kind
of applications. It is also the case of conjugate gradient methods (Fletcher–
Reeves and Polak–Ribiere) and BFGS [3], since they behave like the steepest
descent method at the first iteration. We show in this paper that the first itera-
tion of the gradient method creates inclusions on the boundary of the domain.
This is equivalent to give a wrong initial guess for the remaining iterations. For
this reason, our goal is to propose an algorithm having the capability to give a
good localization of the inclusions at the first iteration.

We consider a plane stress model for a linear elastic medium. It has a uni-
form Poisson coefficient ν and its Young’s modulus takes two values, E in the
background and KE in the inclusion, where K �= 1 is called the contrast.

The data is the displacement under a small compression, only one compon-
ent of the displacement is given (along the direction of compression), and the
objective is to determine the location of the inclusions from these data.

Such an identification is of crucial importance in the medical imaging field.
As a matter of fact, prostate or breast cancerous tumors are stiffer than the
surroundings and Young’s modulus can be 4 to 10 or more times higher. Elast-
ography is an ultrasonic imaging modality that provides an image (called elas-
togram) of the displacement of tissues after a small external compression [16].
A reliable detection of small inclusion of Young’s modulus using the analysis
of elastograms would help early detection of cancers.

The paper is organized as follows: in Section 2 we present the direct and in-
verse problems of elasticity, in Section 3 we introduce the dual Gauss–Newton
method and we show how to build weights for the residual vector. In Section 4
we estimate the topological gradient of the weighted cost function with respect
to the insertion of a stiff inclusion, and in Section 5 we present numerical sim-
ulation results.

2. THE DIRECT AND INVERSE PROBLEMS

Let � be a 2D domain, its boundary ∂� is divided in two parts of positive
measure: ∂� = �N ∪ �D. We consider g ∈ H 1/2(�N), uD ∈ H 1/2(�D),
E ∈ L∞(�) and ν ∈ R. The direct problem is (isotropic linear elasticity):⎧⎨⎩ ∇ · σ (u) = 0 �

σ(u).n = g �N
u = uD �D,

(1)

596



Coupling Topological Gradient and Gauss–Newton Method

where

σ (u) = νE

(1 + ν)(1 − 2ν)
tr ε(u)I + E

2(1 + ν)
ε(u)

is the stress tensor and ε(u) = 1
2 (∇u + ∇uT ) is the linearized strain tensor.

The solution u of (1) is the elastic displacement of the body �.
The variational formulation of this problem reads{

find u ∈ V s.t.
∀v ∈ V a(u, v − u) = �(v − u),

(2)

where V = {u ∈ H 1(�)2 | u|�D = uD},

a(u, v) =
∫
�

σ (u) : ε(v) dx and �(v) =
∫
�N

g.v dl.

The functions g and uD, and the Poisson coefficient ν are assumed to be fixed.
The solution u of (1) depends on the spatial distribution of Young’s modulus
E, and the parameter-to-state map is defined by

U : L∞(�) −→ V(�)
E )−→ uE,

where uE is the solution of (1). It is proved in [6] that the parameter-to-state
map U is differentiable, and has a compact differential, at every point where E
is bounded below by a positive constant.

We consider also a continuous linear observation map L : V → X where X
is a Hilbert space. In the case of radial elastography (when the probe gives a
radial image), the observation map consists of taking the radial component of
a vector field.

The inverse problem is: given an observation, determine Young’s modulus
distribution E. The data is denoted uobs and it is the measurement estimation
of LuE .

The inverse problem is

min
E

j0(E) := 1

2

(||LU(E)− uobs||2
)
.

It is highly ill-posed, the classical way to improve its stability is to add a
Tikhonov regularization term [11], and look for the minimum of

jα(E) := 1

2

(||LU(E)− uobs||2 + α||E||2) .
Among known techniques for minimizing the cost-function jα in the context
of elastography, let us mention the steepest descent method [15] and Gauss–
Newton method [4–6, 10]. The topological sensitivity [1, 2, 7] of jα with
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respect to the insertion of an inclusion has also been considered in the frame
of this work, but it does not give satisfying results.

These methods do not allow to find very small inclusions, we propose in the
following to couple the Gauss–Newton and topological gradient methods.

3. GAUSS–NEWTON METHODS

In this section, we introduce the dual Gauss–Newton method, that will provide
us with a weight vector for the observations.

3.1 Primal Gauss–Newton Method

After discretization, we keep the same notations of j, uE,E, . . . . Then the
cost function j : Rp → R is of the form

j0(E) = 1

2
||F(E)||2,

where F : Rp → Rn is the residual F := LU(E) − uobs, it is a differenti-
able vector-valued function. For the sake of simplicity we do not consider the
regularization term α||E||2.

The well-known Gauss–Newton algorithm for the minimization of j0 is
defined as follows:⎧⎨⎩ E0 is given

Ek+1 = Ek + dk, where
DFT (Ek)DF(Ek)dk = −DFT (Ek)F (Ek), k ≥ 0.

(3)

3.2

In our context, we have p > n, hence the matrix DFTDF is singular, and
the resolution of (3) requires the use of techniques [3, 11] like Levenberg–
Marquardt, discrepancy principle, etc. There exists an alternative that we call
the dual Gauss–Newton method [12]. When p > n and DF is surjective, the
matrix DFDFT is invertible, and the following problem:{

min ||d|| s.t.
DFd = −F (4)

is equivalent to its Euler–Lagrange optimality condition{
DF DFT λ = F

d = −DFT λ.
(5)

Dual Gauss–Newton Method
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A heuristic justification for the introduction of (4) is the following: the
asymptotic expansion of F around Ek is

F(Ek + d) = F(Ek)+DF(Ek)d + R(Ek, d),

where the rest R(Ek, d) is small: ||R(Ek, d)|| = o(||d||). In order to cancel
the two first terms, the descent direction has to satisfy DF(Ek)d = −F(Ek).
Among the affine vector space of solutions, taking d with minimal norm should
make the rest R(Ek, d) small.

In this paper we do not iterate the dual Gauss–Newton method, but we solve
(5) once and use the vector λ ∈ Rn as a weight for the residual LU(E)− uobs.
More precisely, we are interested in the topological sensitivity of the following
“weighted” cost function

jW (E) = F(E)T λ,

where
F(E) = LU(E)− uobs. (6)

This makes sense for the following reason: the descent direction given by the
dual Gauss–Newton algorithm is d = −DFT λ = −D(FT λ). Then −d is the
gradient of the cost function FT λ, and it is natural to consider the topological
variation of FT λ. Notice that, thanks to the positivity of DF DFT , the cost
function FT λ is positive.

3.3 A Zero Memory Gauss–Newton Implementation

The linear system in (5) is solved using the conjugate gradient (CG) method.
It gives a good approximation of λ after a few iterations because DF DFT

is the discrete version of a compact operator: its eigenvalues tend rapidly to-
wards zero. Each iteration of CG requires performing the product of DF DFT

by a vector, this can be performed without computing and storing the whole
Jacobian [6, 8]. More precisely, when a vector x is given, y = DF DFT x is
computed in two steps: t = DFT x is evaluated by solving an adjoint equation,
and y = DFt is evaluated by solving a direct problem.

4. THE TOPOLOGICAL GRADIENT

In this section, we study the topological sensitivity of the cost function
JW(u) := (Lu − uobs)

T λ with respect to the insertion at point x0 of a very
stiff disk. The Young’s modulus takes two values, 1 in the background and
K $ 1 in the inclusions.

The cost function JW depends linearly on u, hence the adjoint is the solution
p ∈ V0 of

∀w ∈ V0, a(w, p) = −(Lw)T λ, (7)
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where V0 = {u ∈ H 1(�) | u|�D = 0}.
The inclusion is εB where B is the unit disk. The first term in the asymptotic

expansion of the cost function jW is

ε2|B|ε(u)Mε(p),

where M is the elastic moment tensor of the disk inclusion. It is proved in [1]
that the coefficients of the tensor M satisfy mij

pq = m
ij
qp, m

ij
pq = m

pq

ij and have
the following expression depending on the Lame coefficients of the material
λ0 = Eν

(1+ν)(1−2ν) and µ0 = E
2(1+ν) , and on κ = λ0+3µ0

λ0+µ0
:

m11
11 = m22

22 = (λ0 + 2µ0)(K − 1)
(λ0 + µ0)(1 + 2κK −K)+ µ0(κ − 1)

1 +K(λ0 + µ0)(1 + κK)
,

m22
11 = (λ0 + 2µ0)

λ0(K − 1)(1 + κK)+ µ0(K − 1)2

(µ0 +K(λ0 + µ0))(1 + κK)
,

m12
12 = µ0(K − 1)(1 + κ)

1 + κK
.

The topological gradient of j at the point x0 is:

T (x0) = ε(u)Mε(p)+ (K − 1)σ (u) : ε(p). (8)

The procedure for calculating the topological sensitivity of JW goes as follows:

1. The initial guess is E ≡ 1. Compute the direct state u,

2. The weight λ is determined by solving

(DF DFT + αI)λ = F, (9)

where α is a Tikhonov regularization parameter and F = Lu− uobs,

3. compute the adjoint state p solution of (7),

4. compute ε(u) and ε(p),

5. at each point x0, determine the value of T (x0), using (8).

The higher isovalues of T give the location of the inclusion.

5. APPLICATION TO A NUMERICAL EXPERIMENT

A numerical simulation was conducted in order to simulate an in vitro exper-
iment [20]. The method described in Section 4 is applied as follows. The
domain � is an annulus, on the inner boundary �D a uniform radial displace-
ment is applied, and the outer boundary �N is free, see Figure 1.
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Figure 1. The domain � and the Dirichlet boundary.

Figure 2. The inclusion (left); the gradient of j0 (right).

The elasticity problem is discretized using P1 finite elements. It is imple-
mented using Matlab and GetFem++, the mesh has 3077 elements and 1606
nodes. The total computation time for the procedure described above is about
1 minute on a desktop computer (Intel Pentium M processor, 1.6 GHz, 512Mo
RAM).

The Poisson coefficient is ν = 0.45. We insert 1 or 2 inclusions in the
domain, where Young’s modulus is 4 times higher than in the background.
The data are perturbed with 0.1% noise, and with 1% noise (white Gaussian
noise). The weight λ is computed by solving (9).

Once the weight λ is known, the adjoint state p is computed. The topolo-
gical gradient is computed with K = 50 (value of the contrast).

The results on different geometries are displayed in Figures 2–7.
The following observations can be made:

(1) The gradient of the classical cost function j0 = 1
2 ||F ||2 gives no inter-

esting information: its maximum is on the boundary, see Figure 2 right.

(2) The topological gradient of j0 gives no interesting results, see Figure 3
left.

(3) The topological gradient of the weighted cost function jW = FT λ de-
tects the location of the inclusion with a reasonable accuracy, even for
noisy measures (Figure 3 right, Figures 5 and 7).
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Figure 3. The topological gradient of j0 with 0.1% noise (left); the topological gradient of
jW (right).

Figure 4. The inclusion (left); the weight λ for 0.1% noise (right).

Figure 5. The topological gradient of jW with 0.1% noise(left) and 1% noise (right).

(4) Our method to determine the weight is justified a-posteriori: this weight
gives more importance to the measures that are located “in front” and
“behind” the inclusion (relatively to the compression direction), see Fig-
ures 4 right and 6 right. These are precisely the points where the dis-
placements are the more affected by the inclusion, and the data are the
more relevant to detect it. In the points “in front” of the inclusion, the
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Figure 6. The inclusion (left); the weight λ for 0.1% noise (right).

Figure 7. The topological gradient of jW with 0.1% noise (left) and 1% noise (right).

weight takes negative values and this makes sense: at these points F also
takes negative values, hence FT λ decreases when F gets closer to zero.

(5) When more noise is added, the detection of inclusions becomes much
less accurate.

6. CONCLUSIONS

We presented in this paper a method for the detection of small inclusions in an
elastic medium, when the data is the radial displacement at each point. The first
step consists of finding a weight for the measurements that gives importance
to the data in the relevant zones, this weight is determined using a dual Gauss–
Newton method and an efficient implementation. The second step consists of
computing the topological sensitivity of the so weighted cost function.

Unlike classical methods, this method gives satisfying results for small in-
clusions.
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109. P. Ståhle and K.G. Sundin (eds.): IUTAM Symposium on Field Analyses for Determination
of Material Parameters – Experimental and Numerical Aspects. Proceedings of the IUTAM
Symposium held in Abisko National Park, Kiruna, Sweden, July 31 – August 4, 2000. 2003

ISBN 1-4020-1283-7
110. N. Sri Namachchivaya and Y.K. Lin (eds.): IUTAM Symposium on Nonlinear Stochastic

Dynamics. Proceedings of the IUTAM Symposium held in Monticello, IL, USA, 26 – 30
August, 2000. 2003 ISBN 1-4020-1471-6

111. H. Sobieckzky (ed.): IUTAM Symposium Transsonicum IV. Proceedings of the IUTAM Sym-
posium held in Göttingen, Germany, 2–6 September 2002, 2003 ISBN 1-4020-1608-5

112. J.-C. Samin and P. Fisette: Symbolic Modeling of Multibody Systems. 2003
ISBN 1-4020-1629-8

113. A.B. Movchan (ed.): IUTAM Symposium on Asymptotics, Singularities and Homogenisation
in Problems of Mechanics. Proceedings of the IUTAM Symposium held in Liverpool, United
Kingdom, 8-11 July 2002. 2003 ISBN 1-4020-1780-4

114. S. Ahzi, M. Cherkaoui, M.A. Khaleel, H.M. Zbib, M.A. Zikry and B. LaMatina (eds.): IUTAM
Symposium on Multiscale Modeling and Characterization of Elastic-Inelastic Behavior of
Engineering Materials. Proceedings of the IUTAM Symposium held in Marrakech, Morocco,
20-25 October 2002. 2004 ISBN 1-4020-1861-4

115. H. Kitagawa and Y. Shibutani (eds.): IUTAM Symposium on Mesoscopic Dynamics of Fracture
Process and Materials Strength. Proceedings of the IUTAM Symposium held in Osaka, Japan,
6-11 July 2003. Volume in celebration of Professor Kitagawa’s retirement. 2004

ISBN 1-4020-2037-6
116. E.H. Dowell, R.L. Clark, D. Cox, H.C. Curtiss, Jr., K.C. Hall, D.A. Peters, R.H. Scanlan, E.

Simiu, F. Sisto and D. Tang: A Modern Course in Aeroelasticity. 4th Edition, 2004
ISBN 1-4020-2039-2

117. T. Burczyński and A. Osyczka (eds.): IUTAM Symposium on Evolutionary Methods in Mechan-
ics. Proceedings of the IUTAM Symposium held in Cracow, Poland, 24-27 September 2002.
2004 ISBN 1-4020-2266-2

118. D. Ieşan: Thermoelastic Models of Continua. 2004 ISBN 1-4020-2309-X
119. G.M.L. Gladwell: Inverse Problems in Vibration. Second Edition. 2004 ISBN 1-4020-2670-6
120. J.R. Vinson: Plate and Panel Structures of Isotropic, Composite and Piezoelectric Materials,

Including Sandwich Construction. 2005 ISBN 1-4020-3110-6
121. Forthcoming
122. G. Rega and F. Vestroni (eds.): IUTAM Symposium on Chaotic Dynamics and Control of

Systems and Processes in Mechanics. Proceedings of the IUTAM Symposium held in Rome,
Italy, 8–13 June 2003. 2005 ISBN 1-4020-3267-6

123. E.E. Gdoutos: Fracture Mechanics. An Introduction. 2nd edition. 2005 ISBN 1-4020-3267-6
124. M.D. Gilchrist (ed.): IUTAM Symposium on Impact Biomechanics from Fundamental Insights

to Applications. 2005 ISBN 1-4020-3795-3
125. J.M. Huyghe, P.A.C. Raats and S. C. Cowin (eds.): IUTAM Symposium on Physicochemical

and Electromechanical Interactions in Porous Media. 2005 ISBN 1-4020-3864-X
126. H. Ding and W. Chen: Elasticity of Transversely Isotropic Materials. 2005

ISBN 1-4020-4033-4
127. W. Yang (ed): IUTAM Symposium on Mechanics and Reliability of Actuating Materials.

Proceedings of the IUTAM Symposium held in Beijing, China, 1–3 September 2004. 2005
ISBN 1-4020-4131-6
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128. J.-P. Merlet: Parallel Robots. 2006 ISBN 1-4020-4132-2
129. G.E.A. Meier and K.R. Sreenivasan (eds.): IUTAM Symposium on One Hundred Years of

Boundary Layer Research. Proceedings of the IUTAM Symposium held at DLR-Göttingen,
Germany, August 12–14, 2004. 2006 ISBN 1-4020-4149-7

130. H. Ulbrich and W. Günthner (eds.): IUTAM Symposium on Vibration Control of Nonlinear
Mechanisms and Structures. 2006 ISBN 1-4020-4160-8

131. L. Librescu and O. Song: Thin-Walled Composite Beams. Theory and Application. 2006
ISBN 1-4020-3457-1

132. G. Ben-Dor, A. Dubinsky and T. Elperin: Applied High-Speed Plate Penetration
Dynamics. 2006 ISBN 1-4020-3452-0

133. X. Markenscoff and A. Gupta (eds.): Collected Works of J. D. Eshelby. Mechanics and Defects
and Heterogeneities. 2006 ISBN 1-4020-4416-X

134. R.W. Snidle and H.P. Evans (eds.): IUTAM Symposium on Elastohydrodynamics and Microelas-
tohydrodynamics. Proceedings of the IUTAM Symposium held in Cardiff, UK, 1–3 September,
2004. 2006 ISBN 1-4020-4532-8

135. T. Sadowski (ed.): IUTAM Symposium on Multiscale Modelling of Damage and Fracture
Processes in Composite Materials. Proceedings of the IUTAM Symposium held in Kazimierz
Dolny, Poland, 23–27 May 2005. 2006 ISBN 1-4020-4565-4

136. A. Preumont: Mechatronics. Dynamics of Electromechanical and Piezoelectric Systems. 2006
ISBN 1-4020-4695-2

137. M.P. Bendsøe, N. Olhoff and O. Sigmund (eds.): IUTAM Symposium on Topological Design
Optimization of Structures, Machines and Materials. Status and Perspectives. 2006

ISBN 1-4020-4729-0
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