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Abstract: The advent of network coding promises to change many aspects of networking.
Network coding moves away from the conventional approach to networking,
where packets are treated as inviolable, atomic units to be transported through
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the network, and instead allows packets to be mixed and combined, so packets
outgoing from a node are allowed to be arbitrary, causal functions of packets re-
ceived at that node. This approach has shown much promise in multi-hop wireless
networks, affording gains including more efficient use of resources and the abil-
ity for decentralized operation. In this chapter, we overview some of the issues
and technical approaches associated with network coding in the wireless domain.
We hope, thereby, to provide the reader with a firm theoretical basis from which
practical implementations and theoretical extensions can be developed.

Keywords: ad hoc networks, forward error correction, multicast communication, multi-hop
wireless networks, network coding.

1. Introduction

The notion of coding at the packet level—commonly called network cod-
ing—has attracted much recent interest. In this survey, we provide an overview
of some of the issues and technical approaches associated with network coding
in the wireless domain. Considering the wireless applications is not merely an
extension or simple modification of the wireline case. One could argue that
most wireless routing schemes have indeed sought to replicate, in the wireless
domain, topologies that resemble wireline networks. This approach has tended
to neglect characteristics of wireless transmissions, such as inherent broad-
cast, interference, fading and mobility, in order to re-use the vast algorithmic
and protocol knowledge established for routing in wireline networks. However,
limited acknowledgment, in protocol design, of wireless transmission peculiar-
ities has generally led to inefficient use of limited resources, such as spectrum
and battery life, as well as to considerable complications in deployment. It is
therefore our goal for this paper to afford some insights, in these early stages
of the development of network coding, for the application of network coding
to wireless environments, in such a way that identifies techniques that are com-
mon to both wireless and wireline networks, but embraces the peculiarities of
wireless media.

To illustrate the differences and similarities between network coding for
wireless and wireline applications, we commence with the simple canonical
example from the initial work on the topic of network coding by [Ahlswede
et al., 2000]. Figure 5.1 shows this example. Each link is assumed to have
unit capacity, be error-free, and provide a unidirectional link which does not
interfere with other links emerging from or incident upon a common node. The
simple coding shown in the figure affords a multicast connection conveying
two bits, b1 and b2, from the sender at node 1 to the receivers at nodes 6 and 7.
We consider bits rather than packets because, from bits, it is clear how packets
should be coded.

Figure 5.2 considers the same topology but seeks to represent the behavior
of wireless links sharing bandwidth and enabled by a single omnidirectional
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Figure 5.1. Canonical example of network coding in wireline networks given by [Ahlswede
et al., 2000]. We denote by b1 + b2 the binary sum of bits b1 and b2.
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Figure 5.2. Figure 5.1 redrawn for wireless links.
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Figure 5.3. A simple five-node wireless network employing network coding.

transmit antenna and a single omnidirectional receive antenna at each node.
Rather than using arcs to represent links, we draw circles whose radii indi-
cate the range of a transmission. Moreover, the constraints of shared spectrum
preclude a node transmitting and receiving simultaneously, as well as simul-
taneous reception of more than one transmission at a node. The sequential
transmissions represented in Figure 5.2 indicate a possible instantiation of a
schedule of transmissions and their associated ranges, which satisfy the simple
wireless transmission modalities we detailed above. Note that network coding
is still useful at transmission 5, in which node 4 communicates directly to node
5. In the absence of network coding, nodes 4 and 5 would need to perform two
transmissions, one for b1 and one for b2. Note, however, that other instances of
radii and schedule besides that represented in Figure 5.2 are possible. For exam-
ple, at transmission 5, node 4 could have selected a wider range of transmission,
including the receivers, nodes 6 and 7. In such a scheme, network coding would
still be advantageous. Some different choices of transmission ranges would ob-
viate the usefulness of network coding altogether, for example, if the source
node, node 1, transmitted b1 and b2 successively over wide enough regions to
include both receivers.
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Network size Approach Average multicast energy

2 sinks 4 sinks 8 sinks 16 sinks
20 nodes MIP algorithm 30.6 33.8 41.6 47.4

Network coding 15.5 23.3 29.9 38.1
30 nodes MIP algorithm 26.8 31.9 37.7 43.3

Network coding 15.4 21.7 28.3 37.8
40 nodes MIP algorithm 24.4 29.3 35.1 42.3

Network coding 14.5 20.6 25.6 30.5
50 nodes MIP algorithm 22.6 27.3 32.8 37.3

Network coding 12.8 17.7 25.3 30.3

Table 5.1. Average energy of random multicast connections of unit rate for various approaches
in random wireless networks of varying size. Nodes were placed randomly within a 10 × 10
square with a radius of connectivity of 3. The energy required to transmit at unit rate to a distance
d was taken to be d2. Source and sink nodes were selected according to an uniform distribution
over all possible selections.

The dependence of connectivity on choice of transmission radii renders
operation highly dependent on physical repartition of nodes. The simple ex-
ample of Figure 5.3 illustrates this dependence. The topology is similar to that
of Figures 5.1 and 5.2, except that nodes 1 and 5 have been removed and, so,
b1 originates at node 2 and b2 at node 3. The representation of the transmission
radii and schedules follow naturally from Figure 5.2. In this case, node 6 can
be seen as “overhearing” the transmission of b1 to the center of the network
and, similarly, node 7 receives b2 as part of the requisite transmission of b2 to
a distance sufficient to establish connectivity. Network coding in this case is
a natural relaying with combining. The coding establishes a multicast of two
sources originating at nodes 2 and 3 to two receivers at nodes 6 and 7. It can also
be used to unicast a single source (b1) from node 2 to node 7 and a single source
(b2) from node 3 to node 6. Thus, the coding establishes a natural multicast
scenario from two unicast scenarios. The cause for this natural multicast is that
nodes, because of the intrinsic properties of wireless transmission, overhear
communications which may not be of direct interest to them but which will
allow them to infer the transmission that are.

The examples that we have discussed clearly show that there is some po-
tential for improving the performance of wireless networks by using network
coding. We therefore wish to generalize the technique and make it broadly ap-
plicable. The remainder of this chapter is largely devoted to discussing such
a generalization. We give a general prescription for the operation of coded
wireless networks, i.e. we give a method for determining which node should
send what when. The techniques that we discuss are very recent and have not
yet been throughly tested, but preliminary results are promising. For exam-
ple, in the problem of minimum-energy multicast, these techniques have been
found to produce reductions in average energy consumption ranging from 13%
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to 49% when compared to the Multicast Incremental Power (MIP) algorithm by
[Wieselthier et al., 2002]—one of the few good approaches to minimum-energy
multicast in non-coded, routed wireless networks (see Table 5.1). The results
in Table 5.1 are for lossless networks, where links are, owing presumably to
some underlying retransmission scheme, effectively lossless. We believe that
performance gains for lossy networks, where network coding can be used as a
means of ensuring reliable transmission and retransmission is obviated, may be
even more significant. Before proceeding any further with the prescription for
operation, however, we first present a model for wireless packet networks.

2. Model

We model the network with a directed hypergraph H = (N ,A), where N is
the set of nodes and A is the set of hyperarcs. A hypergraph is a generalization
of a graph, where, rather than arcs, we have hyperarcs. A hyperarc is a pair
(i, J), where i, the start node, is an element of N and J , the set of end nodes,
is a non-empty subset of N .

Each hyperarc (i, J) represents a wireless broadcast link from node i to nodes
in the non-empty set J . This link may be lossless or lossy, i.e. it may or may not
be subject to packet erasures. Let AiJK be the counting process describing the
arrival of packets that are injected on hyperarc (i, J) and received by exactly the
set of nodes K ⊂ J , i.e. for τ ≥ 0, AiJK(τ) is the total number of packets that
are injected on hyperarc (i, J) and received by all nodes in K (and no nodes in
N \K) between time 0 and time τ . For example, suppose that three packets are
injected on hyperarc (1, {2, 3}) between time 0 and time 1 and that, of these
three packets, one is received by node 2 only, one is lost entirely, and one is
received by both nodes 2 and 3; then we have A1(23)∅(1) = 1, A1(23)2(1) = 1,
A1(23)3(1) = 0, and A1(23)(23)(1) = 1.

We assume that AiJK has an average rate ziJK ; more precisely, we assume
that

lim
τ→∞

AiJK(τ)
τ

= ziJK (5.1)

almost surely. When links are lossless, we have ziJK = 0 for all K � J .
Let ziJ :=

∑
K⊂J ziJK be the average rate at which packets are injected into

hyperarc (i, J). The rate vector z, consisting of ziJ , (i, J) ∈ A, is called the
coding subgraph and can be varied within a constraint set Z dictated to us by
lower layers (for examples of such constraint sets, see [Cruz and Santhanam,
2003; Jain et al., 2003; Johansson et al., 2003; Xiao et al., 2004; Kodialam
and Nandagopal, 2005; Wu et al., 2005]). We reasonably assume that Z is a
convex subset of the positive orthant containing the origin. We associate with the
network a cost function f that maps feasible coding subgraphs to real numbers
and that we seek to minimize. For wireless networks, it is common for the cost
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function to reflect energy consumption, but it could also represent, for example,
average latency, monetary cost, or a combination of these considerations.

We focus on network coding within a multicast session consisting of one or
more sources multicasting to the same set of receiver nodes, or sinks. Coding
within individual multicast sessions is a reasonable practical approach. There
are cases where capacity can be increased by coding across sessions, such
as the one mentioned in Section 1, but much less is known at present about
such codes, which are discussed briefly in Section 5. We consider multicast
sessions as they are the most general type of session, including unicast and
broadcast as special cases. We denote the source processes by X1, X2, . . . , Xr.
Source Xk is generated at node a(k), where a : {1, . . . , r} → N is an
arbitrary mapping. The source processes are multicast to a set T ⊂ N of
sinks. For simplicity, we assume subsequently that a(k) /∈ T for all k ∈
{1, . . . , r}. Processes X1, . . . , Xr, mapping a, and set T specify a set of
multicast connection requirements.

3. Distributed random network coding

In this section, we discuss how distributed random network coding can
achieve any feasible set of multicast connection requirements in a given cod-
ing subgraph z. As a consequence, in setting up a single multicast session in a
network, there is no loss of optimality in separating the problems of subgraph
selection and coding, i.e. separating the optimization for a minimum-cost sub-
graph, which we discuss in Section 4, and the construction of a code for a given
subgraph, which we now discuss. We ultimately aim for practicable distributed
solutions for both problems, which can be simultaneously and, to a large degree,
independently implemented.

We first consider idealized, lossless, “static” networks before considering the
“dynamic” packet networks of our model in Section 2.

Static networks

To illustrate the basics of algebraic network coding, let us first consider the
simple five-node network of Figure 5.2. Following our model, we represent the
network using the hypergraph shown in Figure . We have a(1) = 2, a(2) = 3,
and T = {6, 7}. We suppose that the source processes X1 and X2 are bits,
so node 2 transmits X1, node 3 transmits X2, and node 4 transmits X1 + X2,
the binary sum of X1 and X2. Recall that this coding permits both node 6 and
node 7 to recover X1 and X2, establishing a multicast session consisting of two
sources and two receivers.

We can generalize these basic ideas to more complex networks, with coding
functions that can be arbitrary functions instead of just binary sums of bits.
More specifically, we can consider the random process transmitted on hyperarc
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Figure 5.4. Figure 5.3 redrawn in its hypergraph representation.

Y1 Y2

Y3 = a1,3X1+c1,3Y1+c2,3Y2

Figure 5.5. Illustration of linear coding at a node.

(i, J), denoted YiJ , to be a binary sequence obtained as a function θiJ of hy-
perarc (i, J)’s inputs, i.e. source processes Xk for which a(k) = i and random
processes Yi′J ′ for which i ∈ J ′, if any. Functions {θiJ |(i, J) ∈ A} specify
a network code. The kth output process Zt, k at a receiver node t is the binary
sequence obtained as a function φt, k of the random processes Yi′J ′ for which
t ∈ J ′. If, for a given network code, functions {φt, k} exist for which the output
processes {Zt, k} are equal to the corresponding source processes {Xk} (pos-
sibly with some delay), the network code is called permissible for t. A network
code that is permissible for all receivers simultaneously is called valid, and the
network code together with the corresponding decoding functions {φt,k} form a
solution to the multicast connection problem. If a solution exists for a multicast
connection problem, it is called feasible, and the connection requirements are
said to be feasible on the network.

It turns out that for any feasible multicast connection problem, there exists a
linear network coding solution, in which coding operations are done on length-u
vectors of bits in a finite field Fq, q = 2u. We can express the coding functions in
compact mathematical form by considering unit rate sources and unit capacity
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hyperarcs, allowing for multiple sources at a node and multiple hyperarcs with
the same origin and destination nodes. In an acyclic network where each node
waits for inputs on all its incoming hyperarcs before sending an output, the
formation of the process YiJ transmitted on a hyperarc (i, J) is represented by
the equation

YiJ =
∑

{k : a(k)=i}
ak,iJXk +

∑
{(i′,J ′) : i∈J ′}

ci′J ′,iJYi′J ′ .

This is illustrated in Figure 5.5. Each sink receives as many linearly independent
input processes as the number of source processes, and is able to decode by
taking a linear combination of its input processes:

Zt,k =
∑

{(i′,J ′) : t∈J ′}
bt,k,i′J ′Yi′J ′ .

For general networks with cycles, we need to explicitly consider transmission
delays to ensure stability. For instance, if each link has the same delay, the linear
coding equations are

YiJ(t + 1) =
∑

{k : a(k)=i}
ak,iJXk(t)

+
∑

{(i′,J ′) : i∈J ′}
ci′J ′,iJYi′J ′(t),

Zt,k(t + 1) =
µ∑

u=0

b′t,k(u)Zt,k(t − u)

+
∑

{(i′,J ′) : t∈J ′}

µ∑
u=0

b′′t,k,i′J ′(u)Yi′J ′(t − u),

where Xk(t), YiJ(t), Zt,k(t), b′t,k(t) and b′′t,k,i′J ′(t) are the values of the corre-
sponding variables at time t respectively. The variable µ represents the memory
required at receiver t for decoding when link delays are considered. These equa-
tions and random processes can be represented algebraically in terms of a delay
variable D:

YiJ(D) =
∑

{k : a(k)=i}
Dak,iJXk(D)

+
∑

{(i′,J ′) : i∈J ′}
Dci′J ′,iJYi′J ′(D),

Zt,k(D) =
∑

{(i′,J ′) : t∈J ′}
bt,k,i′J ′(D)Yi′J ′(D),
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where

bt, k, i′J ′(D) =
∑µ

u=0 Du+1b′′t,k,i′J ′(u)
1 −∑µ

u=0 Du+1b′t,k(u)

and

Xk(D) =
∞∑

t=0

Xk(t)Dt,

YiJ(D) =
∞∑

t=0

YiJ(t)Dt, YiJ(0) = 0,

Zt,k(D) =
∞∑

t=0

Zt,k(t)Dt, Zt,k(0) = 0.

Furthermore, for a given feasible coding subgraph, choosing the code coef-
ficients {ak,iJ , ci′J ′,iJ} uniformly at random from a sufficiently large field Fq

gives, with high probability, a solution to any multicast connection problem
that is feasible on the subgraph. The field size q must be at least greater than
the number of receivers d. Some of the coefficients can be fixed rather than
randomly chosen, as long as there exists a solution to the network connection
problem with the same values for these fixed coefficients. For instance, if a node
i receives linearly dependent processes on two incoming links (i1, J1), (i2, J2),
it can fix ci1J1,iJ = 0 for all its outgoing links (i, J).

While not the only way to find a valid network code, this random linear
coding approach offers a particularly convenient distributed way to set up a
network code, in which each node makes independent random choices of coding
functions. The coefficient vectors needed for decoding can be sent through
the network with each data block over which the code remains constant. The
coefficient vector sent with each block of data from source Xk, k = 1, . . . , r,
is the length-r unit vector with a single nonzero entry, 1, in the kth position.
Each coding node applies the same linear mappings to the coefficient vectors
as to their corresponding data. In this way, the inputs received at a sink are
accompanied by coefficient vectors specifying their composition as a linear
combination of the original source processes.

To see why random linear network coding is sufficient to solve any feasible
multicast connection problem with high probability, consider the hypergraph H
used by some (possibly nonlinear) solution to a feasible multicast problem. Note
that the multicast rate can be no larger than the minimum of the rates that can be
sent to each sink separately on H. We show that, with high probability, random
linear network coding achieves this rate, which implies that it is sufficient.

Suppose we do random linear network coding over H. Consider a subgraph
Ht of H that transmits the desired rate to sink t separately. The network coding
solution can be reduced to a flow solution to sink toverHt if the code coefficients



Network Coding in Wireless Networks 137

{ak,iJ , ci′J ′,iJ} associated with Ht take the value 1 and the rest of the code
coefficients take the value 0. In this case, sink t receives a set of inputs whose
coefficient vectors together form an identity matrix. Now consider the matrix
of coefficient vectors of the same set of inputs, but with the code coefficients
{ak,iJ , ci′J ′,iJ} as indeterminate variables. The determinant of this matrix is a
polynomial in {ak,iJ , ci′J ′,iJ} (and in D, if we consider link delays) which we
know, from considering the flow solution to t, is not identically zero. Each sink
similarly has a set of inputs whose associated coefficient vectors form a matrix
with a nonzero determinant polynomial. Multiplying these matrices together,
we obtain a polynomial in {ak,iJ , ci′J ′,iJ} that is not identically zero. By the
Schwartz-Zippel theorem (see, for example, [Motwani and Raghavan, 1995]),
if we choose the code coefficients uniformly at random from a finite field Fq

where q is greater than the degree of the polynomial, then the polynomial takes
a zero value with probability inversely proportional to q.

Owing to the particular structure of these polynomials, the probability of
obtaining a valid random code is actually higher than that given by the Schwartz-
Zippel theorem. We can bound this probability more tightly as follows. We
denote by η the number of hyperarcs (i, J) with associated random coefficients
{ak,iJ , ci′J ′,iJ}.

Theorem 5.1 Consider a multicast connection problem on an arbitrary sta-
tic network and a network code in which some or all network code coefficients
{ak,iJ , ci′J ′,iJ} are chosen uniformly at random from a finite field Fq where
q > d, and the remaining code coefficients, if any, are fixed. If there exists a
solution to the network connection problem with the same values for the fixed
code coefficients, then the probability that the random network code is valid is
at least (1 − d/q)η.

For a proof of Theorem 5.1, see [Ho et al., 2003]. Recall that q = 2u, so the error
probability decreases exponentially withu. Thus, random linear coding achieves
maximum multicast capacity with probability exponentially approaching 1 with
the number of bits in the coding field.

We can extend the basic network coding model and results for static networks
described above to dynamic packet networks with bursty sources and varying
link delays and capacities. In the static case, the code is the same for all vectors
of bits originating at the same source or traversing the same hyperarc. In the
dynamic case, the code may change from packet to packet, but is the same for
all vectors of bits in the same packet. Thus, we may draw an analogy between
sources and hyperarcs in the static case, and source packets and coded/forwarded
packets respectively in the dynamic case. In the dynamic case, each packet
would contain a coefficient vector of length equal to the number of source
packets that may be coded together in the network.
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One way to operate a dynamic network is for each coding node to wait until
it receives a packet corresponding to each of its inputs, before coding them
together and transmitting packets on its outgoing hyperarcs. But such waiting
seems unnecessary. An alternative approach divides packets formed around the
same time into batches. Each packet is labeled with a batch number and some
information specifying its intended sink node(s), and coding is done, without
waiting, only across packets of the same batch. We consider applying such a
batched approach to dynamic networks in the following section.

Dynamic networks

The specific coding scheme we consider, which we hereafter refer to as dis-
tributed random network coding, is as follows. We suppose that, at the beginning
of each batch, all nodes flush their memories of packets associated with previ-
ous batches. Now, at node a(k), source Xk generates a batch of K ′ message
packets Xk,1, Xk,2, . . . , Xk,K′ , which are vectors of length u over the finite
field Fq. (If the packet length is b bits, then we take u = �b/ log2 q�.) These
message packets are placed in node a(k)’s memory.

The coding operation performed by each node is simple to describe and is
the same for every node: Received packets are stored into the node’s memory,
and packets are formed for injection with random linear combinations of its
memory contents whenever a packet injection occurs on an outgoing link. The
coefficients of the combination are drawn uniformly from Fq.

Since all coding is linear, we can write any packet x in the network as
a linear combination of the K := rK ′ message packets; namely, we have
x =

∑r
k=1

∑K′
l=1 γklXk,l. We call γ the global encoding vector of x, and we

assume that it is sent along with x as side information in its header. The overhead
this incurs (namely, K log2 q bits) is negligible if packets are sufficiently large.

Nodes are assumed to have unlimited memory. The scheme can be modified
so that received packets are stored into memory only if their global encod-
ing vectors are linearly-independent of those already stored. This modification
keeps our conclusions regarding the scheme unchanged while ensuring that
nodes never need to store more than K packets.

A sink node collects packets and, if it hasK packets with linearly-independent
global encoding vectors, it is able to recover the message packets. Decoding can
be done by Gaussian elimination, and the scheme can be operated ratelessly,
i.e. it can be run indefinitely until successful reception (at which stage that fact
is signaled to other nodes).

We suppose that sink t ∈ T wishes to achieve rate arbitrarily close to Rt,
i.e. to recover the K message packets, sink t wishes to wait for a time ∆t that
is only marginally greater than K/Rt. The main result that we have in relation
to distributed random network coding is as follows.
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1 2 3

Figure 5.6. A network consisting of two links in tandem.

Theorem 5.2 Distributed random network coding achieves capacity for mul-
ticast sessions; more precisely, for K sufficiently large, it can satisfy, with ar-
bitrarily small error probability, the set of multicast connection requirements
(X1, . . . , Xr; a; T ) at rate arbitrarily close to Rt packets per unit time for each
t ∈ T if there exists, for all t ∈ T , a non-negative flow vector x(t) satisfying∑

{J |(i,J)∈A}

∑
j∈J

x
(t)
iJj −

∑
{j|(j,I)∈A,i∈I}

x
(t)
jIi = σ

(t)
i , (5.2)

for all i ∈ N , and ∑
j∈K

x
(t)
iJj ≤

∑
{L⊂J |L∩K 	=∅}

ziJL

for all (i, J) ∈ A and K ⊂ J , where

σ
(t)
i :=

{ |{k|a(k)=i}|
r Rt if i �= t,

−Rt if i = t.

We see from Theorem 5.2 that distributed random network coding is re-
markably robust: If run over sufficiently large batch sizes K, it achieves the
maximum feasible rate of a given coding subgraph, with only assumption (5.1)
on the arrival of received packets on a link. Assumption (5.1) makes no claims
on loss correlation or lack thereof—all we require is that a long-run average
exists. This fact is particularly important in wireless packet networks, where
slow fading and collisions often cause packets not to be received in a steady
stream.

To see why Theorem 5.2 is true, consider first the simplest non-trivial case:
that of a single unicast connection over two links in tandem (see Figure 5.6).

Suppose we wish to establish a connection of rate arbitrarily close to R
packets per unit time from node 1 to node 3. Suppose further that the coding
scheme is run for a total time ∆, from time 0 until time ∆, and that, in this time,
a total of N packets is received by node 2. We call these packets v1, v2, . . . , vN .

Any received packety in the network is a linear combination ofv1, v2, . . . , vN ,
so we can write

y =
N∑

n=1

βnvn.
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Since vn is formed by a random linear combination of the message packets
w1, w2, . . . , wK , we have

vn =
K∑

k=1

αnkwk

for n = 1, 2, . . . , N . Hence

y =
K∑

k=1

(
N∑

n=1

βnαnk

)
wk,

and it follows that the kth component of the global encoding vector of y is given
by

γk =
N∑

n=1

βnαnk.

We call the vector β associated with y the auxiliary encoding vector of y, and
we see that any node that receives �K(1 + ε)� or more packets with linearly-
independent auxiliary encoding vectors has �K(1 + ε)� packets whose global
encoding vectors collectively form a random �K(1 + ε)� ×K matrix over Fq,
with all entries chosen uniformly. If this matrix has rank K, then node 3 is able
to recover the message packets. The probability that a random �K(1+ ε)�×K

matrix has rank K is, by a simple counting argument,
∏�K(1+ε)�

k=1+�K(1+ε)�−K(1 −
1/qk), which can be made arbitrarily close to 1 by taking K arbitrarily large.
Therefore, to determine whether node 3 can recover the message packets, we
essentially need only to determine whether it receives �K(1 + ε)� or more
packets with linearly-independent auxiliary encoding vectors.

Our proof is based on tracking the propagation of what we call innovative
packets. Such packets are innovative in the sense that they carry new, as yet
unknown, information about v1, v2, . . . , vN to a node. It turns out that the prop-
agation of innovative packets through a network follows the propagation of jobs
through a queueing network, for which fluid flow models give good approxi-
mations. We present the following argument in terms of this fluid analogy.

Since the packets being received by node 2 are the packets v1, v2, . . . , vN

themselves, it is clear that every packet being received by node 2 is innovative.
Thus, innovative packets arrive at node 2 at a rate of z122, and this can be
approximated by fluid flowing in at rate z122. These innovative packets are
stored in node 2’s memory, so the fluid that flows in is stored in a reservoir.

Packets, now, are being received by node 3 at a rate of z233, but whether these
packets are innovative depends on the contents of node 2’s memory. If node 2
has more information about v1, v2, . . . , vN than node 3 does, then it is likely that
new information will be described to node 3 in the next packet that it receives.
Otherwise, if node 2 and node 3 have the same degree of information about
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2

3z233

z122

Figure 5.7. Fluid flow system corresponding to two-link tandem network.

v1, v2, . . . , vN , then packets received by node 3 cannot possibly be innovative.
Thus, the situation is as though fluid flows into node 3’s reservoir at a rate of
z233, but the level of node 3’s reservoir is restricted from ever exceeding that
of node 2’s reservoir. The level of node 3’s reservoir, which is ultimately what
we are concerned with, can equivalently be determined by fluid flowing out of
node 2’s reservoir at rate z233.

We therefore see that the two-link tandem network in Figure 5.6 maps to
the fluid flow system shown in Figure 5.7. It is clear that, in this system,
fluid flows into node 3’s reservoir at rate min(z122, z233). This rate deter-
mines the rate at which packets with new information about v1, v2, . . . , vN —
and, therefore, linearly-independent auxiliary encoding vectors—arrive at node
3. Hence the time required for node 3 to receive �K(1 + ε)� packets with
linearly-independent auxiliary encoding vectors is, for large K, approximately
K(1 + ε)/ min(z122, z233), which implies that a connection of rate arbitrarily
close to R packets per unit time can be established provided that

R ≤ min(z122, z233). (5.3)

If, as in Theorem 5.2, there exists a flow vector x(3) such that x(3)
122 = x

(3)
233 = R,

x
(3)
122 ≤ z122, and x

(3)
233 ≤ z233, then it is clear that condition (5.3) is satisfied,

and the connection can be established.
From this simple case of a single unicast connection over two links in tandem,

it is in fact not difficult to extend to the general case described by Theorem 5.2.
We first extend from two links in tandem to arbitrarily many links in tandem,
which is quite straightforward. From arbitrarily many links in tandem, we then
consider any unicast connection by decomposing the hypergraph flow into a
set of paths, each of which can be considered as a unicast connection over a
number of links in tandem. Extending to multiple sources is straightforward,
as is extending to multiple sinks, where, because the coding scheme is quite
oblivious to the flow vectors x(t) for each t ∈ T , each flow behaves more or
less independently of the others. For a formal proof of Theorem 5.2, see [Lun
et al., 2005b].



142 Cooperation in Wireless Networks

4. Cost minimization

We now turn to the subgraph selection problem, which we see is the prob-
lem of finding a coding subgraph z of minimum cost satisfying (5.2). Thus,
the subgraph selection problem, for a single session, equates to the following
optimization problem.

minimize f(z)
subject to z ∈ Z,∑
j∈K

x
(t)
iJj ≤

∑
{L⊂J |L∩K 	=∅}

ziJL, ∀ (i, J) ∈ A, K ⊂ J , t ∈ T ,

x(t) ∈ F (t), ∀ t ∈ T ,

(5.4)

where x(t) is the vector consisting of x
(t)
iJj , (i, J) ∈ A, j ∈ J , and F (t) is

the bounded polyhedron of points x(t) satisfying the conservation of flow con-
straints ∑

{J |(i,J)∈A}

∑
j∈J

x
(t)
iJj −

∑
{j|(j,I)∈A,i∈I}

x
(t)
jIi = σ

(t)
i , ∀ i ∈ N ,

and non-negativity constraints

x
(t)
iJj ≥ 0, ∀ (i, J) ∈ A, j ∈ J ,

In the lossless case, problem (5.4) simplifies to the following optimization
problem.

minimize f(z)
subject to z ∈ Z,∑

j∈J

x
(t)
iJj ≤ ziJ , ∀ (i, J) ∈ A, t ∈ T ,

x(t) ∈ F (t), ∀ t ∈ T .

(5.5)

As an example, let us return to the wireless network shown in Figure 5.4.
The network is lossless, and we have a(1) = 2, a(2) = 3, and T = {6, 7}.
We wish to achieve unit rate to both sinks, so R6 = R7 = 1. We suppose that
Z = [0, 1]|A| and f(z) =

∑
(i,J)∈A ziJ . An optimal solution to problem (5.5) is

shown in Figure 5.8. We have flows x(6) and x(7), each with half a unit of flow
originating from each of the sources and going to their respective sinks. For
each hyperarc (i, J), ziJ = max(

∑
j∈J x

(6)
iJj ,

∑
j∈J x

(7)
iJj), as we expect from

the optimization. To achieve the optimal cost, we can apply distributed random
network coding to the subgraph defined by z.
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Figure 5.8. Cost optimization of a wireless network with multicast. Each hyperarc is marked
with ziJ at the start and with the pair (x

(6)
iJj , x

(7)
iJj) at the ends.

Neither problem (5.4) nor (5.5) as they stand are easy to solve. But they are
very general. Their complexities improve if we assume that the cost function is
separable and convex, or even linear; i.e. if we supposef(z) =

∑
(i,J)∈A fiJ(ziJ),

where fiJ is a convex or linear function, which is a very reasonable assumption
in many situations. Their complexities also improve if we make some assump-
tions on the form of the constraint set Z.

A simplification can also be made if we assume that, when nodes transmit in
a lossless network, they reach all nodes in a certain area, with cost increasing as
this area is increased. More precisely, suppose that we have separable cost, so
f(z) =

∑
(i,J)∈A fiJ(ziJ). Suppose further that each node i has Mi outgoing

hyperarcs (i, J (i)
1 ), (i, J (i)

2 ), . . . , (i, J (i)
Mi

) with J
(i)
1 � J

(i)
2 � · · · � J

(i)
Mi

. (We
assume that there are no identical links, as duplicate links can effectively be
treated as a single link.) Then, we assume that f

iJ
(i)
1

(ζ) < f
iJ

(i)
2

(ζ) < · · · <

f
iJ

(i)
Mi

(ζ) for all ζ ≥ 0 and nodes i. For (i, j) ∈ A′ := {(i, j)|(i, J) ∈ A, J �
j}, we introduce the variables

x̂
(t)
ij :=

Mi∑
m = m(i,j)

x
(t)

iJ
(i)
m j

,

where m(i, j) is the unique m such that j ∈ J
(i)
m \J

(i)
m−1 (we define J

(i)
0 := ∅ for

all i ∈ N for convenience). Then, provided that a
iJ

(i)
1

< a
iJ

(i)
2

< · · · < a
iJ

(i)
Mi

for all nodes i, problem (5.5) can be reformulated as the following optimization
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problem, which has substantially fewer variables.

minimize
∑

(i,J)∈A
fiJ(ziJ)

subject to z ∈ Z,∑
k∈J

(i)
Mi

\J(i)
m−1

x̂
(t)
ik ≤

Mi∑
n=m

z
iJ

(i)
n

, ∀ i ∈ N , m = 1, . . . , Mi, t ∈ T ,

x̂(t) ∈ F̂ (t), ∀ t ∈ T ,

(5.6)

where F̂ (t) is the bounded polyhedron of points x̂(t) satisfying the conservation
of flow constraints∑

{j|(i,j)∈A′}
x̂

(t)
ij −

∑
{j|(j,i)∈A′}

x̂
(t)
ji = σ

(t)
i , ∀ i ∈ N,

and non-negativity constraints

0 ≤ x̂
(t)
ij , ∀ (i, j) ∈ A′.

Proposition 5.1 Suppose thatf(z) =
∑

(i,J)∈A fiJ(ziJ)and thatf
iJ

(i)
1

(ζ) <

f
iJ

(i)
2

(ζ) < · · · < f
iJ

(i)
Mi

(ζ) for all ζ ≥ 0 and i ∈ N . Then problem (5.5) and

problem (5.6) are equivalent in the sense that they have the same optimal cost
and z is part of an optimal solution for (5.5) if and only if it is part of an optimal
solution for (5.6).

Proof: Suppose (x, z) is a feasible solution to problem (5.5). Then, for all
(i, j) ∈ A′ and t ∈ T ,

Mi∑
m = m(i,j)

z
iJ

(i)
m

≥
Mi∑

m = m(i,j)

∑
k∈J

(i)
m

x
(t)

iJ
(i)
m k

=
∑

k∈J
(i)
Mi

Mi∑
m =max(m(i,j),m(i,k))

x
(t)

iJ
(i)
m k

≥
∑

k∈J
(i)
Mi

\J(i)

m(i,j)−1

Mi∑
m = max(m(i,j),m(i,k))

x
(t)

iJ
(i)
m k

=
∑

k∈J
(i)
Mi

\J(i)

m(i,j)−1

Mi∑
m = m(i,k)

x
(t)

iJ
(i)
m k

=
∑

k∈J
(i)
Mi

\J(i)

m(i,j)−1

x̂
(t)
ik .
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Hence (x̂, z) is a feasible solution of problem (5.6) with the same cost.
Now suppose (x̂, z) is an optimal solution of problem (5.6). Since f

iJ
(i)
1

(ζ) <

f
iJ

(i)
2

(ζ) < · · · < f
iJ

(i)
Mi

(ζ) for all ζ ≥ 0 and i ∈ N by assumption, it follows

that, for all i ∈ N , the sequence z
iJ

(i)
1

, z
iJ

(i)
2

, . . . , z
iJ

(i)
Mi

is given recursively,

starting from m = Mi, by

z
iJ

(i)
m

= max
t∈T

⎧⎪⎪⎨⎪⎪⎩
∑

k∈J
(i)
Mi

\J(i)
m−1

x̂
(t)
ik

⎫⎪⎪⎬⎪⎪⎭−
Mi∑

m′=m+1

z
iJ

(i)

m′
.

Hence z
iJ

(i)
m

≥ 0 for all i ∈ N and m = 1, 2, . . . , Mi. We then set, starting

from m = Mi and j ∈ J
(i)
Mi

,

x
(t)

iJ
(i)
m j

:= min

⎛⎜⎜⎝x̂
(t)
ij −

Mi∑
l=m+1

x
iJ

(i)
l

j
, z

iJ
(i)
m

−
∑

k∈J
(i)
Mi

\J(i)

m(i,j)

x
(t)

iJ
(i)
m k

⎞⎟⎟⎠ .

It is now not difficult to see that (x, z) is a feasible solution of problem (5.5)
with the same cost.

Therefore, the optimal costs of problems (5.5) and (5.6) are the same and,
since the objective functions for the two problems are the same, z is part of an
optimal solution for problem (5.5) if and only if it is part of an optimal solution
for problem (5.6).

One specific problem of interest is that of minimum-energy multicast (see,
for example, [Wieselthier et al., 2002; Liang, 2002]). In this problem, we wish
to achieve minimum-energy multicast in a lossless wireless network without
explicit regard for throughput or bandwidth, so the constraint set Z can be
dropped altogether. Moreover, the cost function is separable and linear, i.e.
f(z) =

∑
(i,J)∈A aiJziJ , where aiJ represents the energy required to transmit

a packet to nodes in J from node i. Hence problem (5.6) becomes a linear opti-
mization problem with a polynomial number of constraints, which can therefore
be solved in polynomial time. By contrast, the same problem using traditional
routing-based approaches is NP-complete—in fact, the special case of broad-
cast in itself is NP-complete, a result shown by [Ahluwalia et al., 2002; Liang,
2002]. The problem must therefore be addressed using polynomial-time heuris-
tics such as the MIP algorithm by [Wieselthier et al., 2002]. Even if an optimal
routing solution is found, it is in general worse than an optimal coding solution
because coding subsumes routing. Thus coding promises to significantly out-
perform routing for practical multicast, and, indeed, simulation results reported
by [Lun et al., 2005a] show significant reductions in the average total energy
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of random multicast connections in random wireless networks of varying size
as a result of coding as opposed to routing with the MIP algorithm.

It is, however, not sufficient to have polynomial-time algorithms. For prac-
tical applications, it is usually important that solutions can be computed in a
distributed manner, with each node making computations based only on local
knowledge and knowledge acquired from message exchanges. Thus, we seek
distributed algorithms to solve optimization problems (5.4), (5.5), and (5.6),
which, when paired with distributed random network coding gives us a fully
distributed approach for establishing minimum-cost connections in wireless
networks. To this end, we simplify the problem by assuming that the objective
function is of the form

f(z) =
∑

(i,J)∈A
fiJ(ziJ),

where fiJ is a monotonically increasing, convex function, and by assuming
that, as ziJ is varied, ziJK/ziJ is constant for all K ⊂ J . Therefore,

biJK :=
∑

{L⊂J |L∩K 	=∅} ziJL

ziJ

is a constant. We also drop the constraint set Z, noting that separable constraints,
at least, can be handled by making fiJ approach infinity as ziJ approaches its
upper constraint. Moreover, in energy-limited scenarios where energy is the
principal concern, the rate of the multicast connection can always be dropped
so that the constraint set Z is not restrictive; we discuss bandwidth-limited
scenarios in a later section.

Hence problem (5.4) becomes

minimize
∑

(i,J)∈A
fiJ(ziJ)

subject to
∑
j∈K

x
(t)
iJj ≤ ziJbiJK , ∀ (i, J) ∈ A, K ⊂ J , t ∈ T ,

x(t) ∈ F (t), ∀ t ∈ T .

(5.7)

Since the fiJ are monotonically increasing, the constraint∑
j∈K

x
(t)
iJj ≤ ziJbiJK , ∀ (i, J) ∈ A, K ⊂ J , t ∈ T (5.8)

gives

ziJ = max
K⊂J,t∈T

⎧⎨⎩
∑

j∈K x
(t)
iJj

biJK

⎫⎬⎭ . (5.9)
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Expression (5.9) is, unfortunately, not very useful for algorithm design because
the max function is difficult to deal with, largely as a result of it not being
everywhere differentiable. One way to overcome this difficulty is to approximate
ziJ by replacing the max in (1.9) with an ln-norm (see [Deb and Srikant, 2004]),
i.e. to approximate ziJ with z′iJ , where

z′iJ :=

⎛⎝ ∑
K⊂J,t∈T

⎛⎝∑
j∈K x

(t)
iJj

biJK

⎞⎠n⎞⎠1/n

.

The approximation becomes exact as n → ∞.
Now the relevant optimization problem is

minimize
∑

(i,J)∈A
fiJ(z′iJ)

subject to x(t) ∈ F (t), ∀ t ∈ T ,

which is no more than a convex multicommodity flow problem. There are many
algorithms for convex multicommodity flow problems (see [Ouorou et al., 2000]
for a survey), some of which (e.g. the algorithms by [Bertsekas, 1980; Bertsekas
et al., 1984]) are well-suited for distributed implementation. Thus, there exists
a significant number of distributed algorithms for the subgraph selection prob-
lem. We present two: The first, which we call the subgradient method, does
not reformulate the problem as a convex multicommodity flow problem and
attempts to deal with the constraint (5.8) directly, while the second, which we
call the primal-dual method, applies a particular method for solving convex
multicommodity flow problems to our problem.

Subgradient method

We present the subgradient method for linear cost functions, though, with
some modifications, it may be made to apply to convex ones. Thus, we assume
that the objective function f is of the form

f(z) :=
∑

(i,J)∈A
aiJziJ ,

where aiJ > 0.
Consider the Lagrangian dual of problem (5.7):

maximize
∑
t∈T

q(t)(p(t))

subject to
∑
t∈T

∑
K⊂J

p
(t)
iJK = aiJ ∀ (i, J) ∈ A,

p
(t)
iJK ≥ 0, ∀ (i, J) ∈ A, K ⊂ J , t ∈ T ,

(5.10)
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where

q(t)(p(t)) := min
x(t)∈F (t)

∑
(i,J)∈A

∑
j∈J

⎛⎝ ∑
{K⊂J |K�j}

p
(t)
iJK

biJK

⎞⎠xiJj . (5.11)

In the lossless case (optimization problem (5.5)), the dual problem defined by
equations (5.10) and (5.11) simplifies somewhat, and we require only a single
dual variable p

(t)
iJJ for each hyperarc (i, J). In the case of optimization problem

(5.6), the dual problem simplifies more still, as there are fewer primal variables
associated with it. Specifically, we obtain, for the Lagrangian dual,

maximize
∑
t∈T

q̂(t)(p(t))

subject to
∑
t∈T

p
(t)

iJ
(i)
m

= s
iJ

(i)
m

, ∀ i ∈ N , m = 1, . . . , Mi,

p
(t)
iJ ≥ 0, ∀ (i, J) ∈ A, t ∈ T ,

(5.12)

where
s
iJ

(i)
m

:= a
iJ

(i)
m

− a
iJ

(i)
m−1

,

and

q̂(t)(p(t)) := min
x̂(t)∈F̂ (t)

∑
(i,j)∈A′

⎛⎝m(i,j)∑
m =1

p
(t)

iJ
(i)
m

⎞⎠ x̂
(t)
ij . (5.13)

In all three cases, the dual problems are very similar, and essentially the
same algorithm can be used to solve them. We present the subgradient method
for the case of optimization problem (5.6) and its associated dual (5.12) with
the understanding that straightforward modifications can be made for the other
cases.

We outline the subgradient method below. [Lun et al., 2005c] give a proof
that the algorithm does indeed converge to an optimal solution for appropriate
choices of the parameters {θ[n]} and {µl[n]}. We later explain how to choose
these parameters.

1 Each node i ∈ N computes siJ for its outgoing hyperarcs and initializes
piJ [0] to a point in the feasible set of (5.12). We take, for our purposes,

p
(t)
iJ [0] :=

siJ

|T | .

The values of siJ and piJ [0] are then sent over hyperarc (i, J).

2 In the nth iteration, use p(t)[n] as the hyperarc costs, and run a distri-
buted shortest path algorithm (e.g. distributed Bellman-Ford) to determine
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x̂(t)[n] for all t ∈ T . This can be done because subproblem (5.13) is in
fact a standard shortest path problem.

3 Based on the x̂[n]obtained, we calculate a subgradient of the dual function

with respect to p
(t)

iJ
(i)
m

[n], namely g
(t)

iJ
(i)
m

[n] :=
∑

k∈J
(i)
Mi

\J(i)
m−1

x̂
(t)
ik [n]. We

then compute, at node i,

piJ [n + 1] := arg min
v∈PiJ

∑
t∈T

(v(t) − (p(t)
iJ [n] + θ[n]g(t)

iJ [n]))2

for each (i, J) ∈ A, where PiJ is the |T |-dimensional simplex

Pij =

{
v

∣∣∣∣∣∑
t∈T

v(t) = siJ , v ≥ 0

}
,

and θ[n] > 0 is an appropriate step size. In other words, piJ [n + 1] is
the Euclidean projection of piJ [n] + θ[n]giJ [n] onto the feasible set PiJ .
This projection can be done using the method described by [Lun et al.,
2005c]. The value of piJ [n + 1] is sent over hyperarc (i, J).

4 At the end of each subgradient iteration, nodes recover a primal solution
{x̃[n]} by setting

x̃[n] :=
n∑

l=1

µl[n]x̂[l], (5.14)

where {µl[n]}l=1,...,n is an appropriate sequence of convex combination
weights.

5 Finally, we need to compute the current coding subgraph z[n] based on
the recovered primal solution x̃[n]. Therefore, for each i ∈ N , we set

z
iJ

(i)
m

[n] := max
t∈T

⎧⎪⎪⎨⎪⎪⎩
∑

k∈J
(i)
Mi

\J(i)
m−1

x̃
(t)
ik [n]

⎫⎪⎪⎬⎪⎪⎭−
Mi∑

m′ = m+1

z
iJ

(i)

m′
[n]

recursively, starting from m = Mi and proceeding through to m = 1.

6 Steps (2) to (5) are repeated until the primal solution has converged.

We see that the subgradient method is indeed a distributed algorithm, though it
does, unfortunately, operate in synchronous rounds. We expect that, in practice,
this synchronicity can be slightly relaxed.

For the choice of {θ[n]} and {µl[n]}, we first define

γln :=
µl[n]
θ[n]

, l = 1, . . . , n, n = 0, 1, . . .,
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and
∆γmax

n := max
l=2,...,n

{γln − γ(l−1)n}.

Now, if the step sizes {θ[n]} and convex combination weights {µl[n]} are
chosen such that

1 γln ≥ γ(l−1)n for all l = 2, . . . , n and n = 0, 1, . . .,

2 ∆γmax
n → 0 as n → ∞, and

3 γ1n → 0 as n → ∞ and γnn ≤ δ for all n = 0, 1, . . . for some δ > 0,

then the subgradient method converges to an optimal solution.
The required conditions on the step sizes and convex combination weights

are satisfied by the following choices ([Sherali and Choi, 1996, Corollaries
2–4]):

1 step sizes {θ[n]} such that θ[n] > 0, limn→0 θ[n] = 0,
∑∞

n=1 θn = ∞,
and convex combination weights{µl[n]}given byµl[n] = θ[l]/

∑n
k=1 θ[k]

for all l = 1, . . . , n, n = 0, 1, . . .;

2 step sizes {θ[n]} given by θ[n] = a/(b + cn) for all n = 0, 1, . . ., where
a > 0, b ≥ 0 and c > 0, and convex combination weights {µl[n]} given
by µl[n] = 1/n for all l = 1, . . . , n, n = 0, 1, . . .; and

3 step sizes {θ[n]} given by θ[n] = n−α for all n = 0, 1, . . ., where 0 <
α < 1, and convex combination weights {µl[n]} given by µl[n] = 1/n
for all l = 1, . . . , n, n = 0, 1, . . ..

Moreover, for all three choices, we have µl[n + 1]/µl[n] independent of l for
all n, so primal iterates can be computed iteratively using

x̃[n] =
n∑

l=1

µl[n]x̂[l]

=
n−1∑
l=1

µl[n]x̂[l] + µn[n]x̂[n]

= φ[n − 1]x̃[n − 1] + µn[n]x̂[n],

where φ[n] := µl[n + 1]/µl[n].

Primal-dual method

For the primal-dual method, we assume that the cost functions fiJ are strictly
convex, as this guarantees a unique optimal solution to problem (5.7). We
present the algorithm for the lossless case, with the understanding that it can be
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straightforwardly extended to the lossy case. Thus, the optimization problem
we address is

minimize
∑

(i,J)∈A
fiJ(z′iJ)

subject to x(t) ∈ F (t), ∀ t ∈ T ,

(5.15)

where

z′iJ :=

⎛⎝∑
t∈T

⎛⎝∑
j∈J

x
(t)
iJj

⎞⎠n⎞⎠1/n

.

Let (y)+a denote the following function of y:

(y)+a =

{
y if a > 0,

max{y, 0} if a ≤ 0.

To solve problem (5.15) in a distributed fashion, consider the following
primal-dual algorithm:

ẋ
(t)
iJj = −k

(t)
iJj(x

(t)
iJj)

⎛⎝∂fiJ(z′iJ)

∂x
(t)
iJj

+ q
(t)
ij − λ

(t)
iJj

⎞⎠, (5.16)

ṗ
(t)
i = h

(t)
i (p(t)

i )(y(t)
i − σ

(t)
i ), (5.17)

λ̇
(t)
iJj = m

(t)
iJj(λ

(t)
iJj)

(
−x

(t)
iJj
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λ
(t)
iJj

, (5.18)

where

q
(t)
ij := p

(t)
i − p

(t)
j ,

y
(t)
i :=

∑
{J |(i,J)∈A}

∑
j∈J

x
(t)
iJj −

∑
{j|(j,I)∈A,i∈I}

x
(t)
jIi,

and k
(t)
iJj(x

(t)
iJj) > 0, h

(t)
i (p(t)

i ) > 0, and m
(t)
iJj(λ

(t)
iJj) > 0 are non-decreasing

continuous functions of x
(t)
iJj , p

(t)
i , and λ

(t)
iJj respectively.

It can be shown that the above primal-dual algorithm is globally, asymptot-
ically stable (see [Lun et al., 2005c]). Such stability of the algorithm implies
that no matter what the initial choice of (x, p) is, the primal-dual algorithm
will converge to the unique solution of problem (5.15). We have to choose λ,
however, with non-negative entries as the initial choice.

We associate a processor with each node. We assume that the processor for
node i keeps track of the variables {p(t)

i }t∈T , {λ(t)
iJj}t∈T , and {x(t)

iJj}t∈T . With
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such an assignment of variables to processors, the algorithm can be shown to
be distributed in the sense that a node exchanges information only with its
neighbors at every iteration of the primal-dual algorithm.

In implementing the primal-dual algorithm, we must bear the following
points in mind.

The primal-dual algorithm in (5.16)–(5.18) is a continuous time algo-
rithm. To discretize the algorithm, we consider time steps m = 1, 2, . . .
and replace the derivatives by differences:

x
(t)
iJj [m + 1] =x

(t)
iJj [m]

− α
(t)
iJj [m]

⎛⎝∂fiJ(z′iJ [m])

∂x
(t)
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(t)
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(t)
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p
(t)
i [m + 1] = p

(t)
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(t)
i [m](y(t)

i [m] − σ
(t)
i ),

λ
(t)
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(t)
iJj [m] + γ
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where

q
(t)
ij [m] := p

(t)
i [m] − p

(t)
j [m],

y
(t)
i [m] :=

∑
{J |(i,J)∈A}

∑
j∈J

x
(t)
iJj [m] −

∑
{j|(j,I)∈A,i∈I}

x
(t)
jIi[m],

and α
(t)
iJj [m] > 0, β

(t)
i [m] > 0, and γ

(t)
iJj [m] > 0 can be thought of as

step sizes.

While the algorithm is guaranteed to converge to the optimal solution,
the value of the variables at any time instant m is not necessarily a fea-
sible solution. A start-up time is required before a feasible solution is
computed.

Bandwidth-limited scenarios and medium access control

While constraints on feasible coding subgraphs are not needed in the energy-
limited case, they are central to operation in bandwidth-limited scenarios, e.g.
optimizing throughput or congestion. The set of feasible vectors of instanta-
neous and average rates of hyperarcs in A is determined by physical layer mod-
ulation and coding, channel characteristics, and constraints on transmit power.
Given the modulation, coding and channel characteristics, medium access con-
trol allocates channels or power among interfering transmitters, determining
the realizable coding subgraphs.
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The number of possible coding subgraphs grows exponentially with the num-
ber of nodes and power levels. Although obviously inefficient subgraphs can
be eliminated from consideration, optimal medium access in the bandwidth-
limited case is generally very complex, even for centralized methods. The only
known way to guarantee an optimal solution in general is to specify all feasible
subgraphs and optimize over this set. Since this is computationally prohibitive,
heuristics are used to reduce the number of subgraphs considered.

To illustrate two existing approaches, we consider the problem of supporting
a set C of multicast sessions on a network, where each session c ∈ C consists
of a source node ac ∈ N at which exogenous data arrives with average rate Rc

and is required to be multicast to a set Tc ⊂ N of sinks.

Iterative optimization. One approach, due to [Jain et al., 2003; Wu et al.,
2005], starts with a set Z of K feasible coding subgraphs z(1), . . . , z(K), called
elementary capacity graphs, or ECGs for short. Each ECG is formed by adding
unit rate hyperarcs using the following random greedy procedure. A typical
communication range R and interference range R′ > R are chosen. At each
step, a node i is chosen randomly from among those not within distance R′ of
any end nodes of hyperarcs previously added to the ECG. Let J be the set of
nodes within distance R of i but not within distance R′ of previously added
transmitters. The hyperarc (i, J) is added if power can feasibly be allocated to
support unit rate on (i, J) and each previously added hyperarc. This is repeated
until no further hyperarcs can be added.

Given Z = {z(k)}, we solve the following linear optimization problem.

minimize
K∑

k=1

λk

subject to λk ≥ 0, ∀ k = 1, . . . , K,∑
j∈J

x
(tc)
iJj ≤ y

(c)
iJ , ∀ (i, J) ∈ A, c ∈ C , t ∈ Tc,

∑
c∈C

y
(c)
iJ ≤

K∑
k=1

λkz
(k)
iJ , ∀ (i, J) ∈ A,

x(tc) ∈ F (tc), ∀ c ∈ C, t ∈ Tc.

(5.19)

where F (tc) is the bounded polyhedron of points x(tc) forming a flow solution
of rate Rc from source node ac to sink t of session c.

If the solution satisfies
∑

k λk ≤ 1, then variables λk specify a valid time-
sharing among the ECGs in Z that supports the connection requirements. Oth-
erwise, we carry out an iterative algorithm that alternates between heuristically
modifying the set Z and solving the linear optimization problem (5.19). The set
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Z is modified as follows. For some large integer Q, say 200, the new set Z is
initialized with �λkQ� copies of ECG z(k), for k = 1, . . . , K. Based on the
calculated flows {x(tc)}, the algorithm removes from these ECGs any hyper-
arcs that are not needed, and shrinks the destination sets of remaining hyperarcs
where possible. It then tries to remove one ECG at a time from Z by shifting
all of its remaining hyperarcs into other ECGs. Each ECG removed reduces the
objective function

∑
k λk by 1/Q. The iterative algorithm produces a monoton-

ically non-increasing sequence of objective function values, and is carried out
until the objective function cannot be further reduced. For more details, see
[Jain et al., 2003; Wu et al., 2005].

Dynamic operation. Another approach, due to [Ho and Viswanathan, 2005],
dynamically controls medium access, packet scheduling, routing and network
coding, without using knowledge of long-term average rates. This algorithm ex-
tends to multicast a back pressure approach for multi-commodity flow in which
routing and flow prioritization are locally determined by gradients in packet
queue length. One difference is that the multicast network coding algorithm
uses virtual queues to keep track of information intended for each sink. All
control decisions are locally made, except for medium access control among
interfering transmitters, which is guided by the virtual queue lengths. If all fea-
sible subgraphs are considered, the algorithm stably supports any set of source
rates stabilizable with intra-session network coding.

More precisely, we consider a dynamic network model with time slots of
length τ0. We assume that channel state is described by a vector S(τ) that is
constant over each time slot [τ, τ + τ0), takes values from a finite set and is
ergodic. Control decisions are made at most once a slot. For simplicity, we
assume fixed length packets and link transmission rates that are restricted to
integer multiples of the packet-length/time-slot quotient, i.e. an integer number
of packets can be transmitted in each slot. In each time slot [τ, τ + τ0), the
coding subgraph z takes a value z(τ), determined by the medium access control
policy, from a set Z(S(τ)) of feasible subgraphs that depends on the channel
state vector S(τ).

Each node i maintains a virtual queue Qct
i for each sink t of each session c,

whose length is denoted U ct
i . The queues are called virtual as the same actual

data may be associated with more than one virtual queue. Exogenous session c
data arriving at source nodeac undergoes random linear coding to produce coded
packets at (1 + ε) times the exogenous arrival rate, which are then associated
with queues Qct

ac
, t ∈ Tc. In each time slot [τ, τ + τ0), the following are carried

out:
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Scheduling: For each hyperarc (i, J), one session

c∗iJ = arg max
c∈C

⎧⎨⎩∑
t∈Tc

max
(

max
b∈J

(
U ct

i − U ct
b

)
, 0
)⎫⎬⎭

is chosen, and link weights
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∑
t∈Tc∗

iJ

max
(

max
b∈J

(
U

c∗iJ t
i − U

c∗iJ t

b

)
, 0

)

are defined.

Medium access control: The state S(τ) is observed, and a coding sub-
graph

z(τ) = arg max
z∈Z(S(τ))

∑
(i,J)∈A

w∗
iJziJ (5.20)

is chosen.

Network coding: For each hyperarc (i, J), a random linear combina-
tion of data corresponding to each (session, sink) pair (c∗iJ , t ∈ Tc∗iJ

)

for which maxb∈J

(
U

c∗iJ t
i − U

c∗iJ t

b

)
> 0 is sent at the rate ziJ(τ)

determined by the medium access control, decreasing U
c∗iJ t
i by an amount

min
{
U

c∗iJ t
i (τ) , τ0ziJ(τ)

}
and increasing U

c∗iJ t

d by the same amount,

where d = arg maxb∈J

(
U

c∗iJ t
i − U

c∗iJ t

b

)
.

If the optimizations in the algorithm are done exactly, we have the following
theorem.

Theorem 5.3 Let Λ be the set of all exogenous arrival rate vectors (Rc)
such that the connection requirements can be stably supported by some control
algorithm with full knowledge of future events. If ((1 + ε)Rc) is strictly inte-
rior to Λ, the probability that not all sinks are able to decode their respective
information decreases exponentially in the length of the code.

In practice, the medium access control optimization (5.20) can be done
heuristically using a greedy approach similar to that in the static case, but with
the added guidance of weights w∗

iJ for prioritization among candidate hyperarcs
(i, J).

5. Further directions and results

Network coding has come a long way in the last few years and it has been
extended in many different ways. While we have focused in the previous sec-
tions on random coding and optimization problems for network coding in the
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wireless multicast scenario, it seems appropriate to shine a light also on other
applications and research directions that have been inspired by this new and
exciting techniques. Some of these advances reside most naturally in wireline
networks and we will describe them in this context when so indicated. Neverthe-
less, almost all results can be without much effort be translated into a wireless
context.

Network code construction

The multicast case. Random network coding is an extremely useful tool
for multicast operation. However, any randomly chosen network solution does
not come with guarantees or a certificate indicating that a “good” solution was
found. Moreover, it may be possible to significantly reduce the complexity of the
network coding itself by finding solution that operate in finite fields of minimal
allowable size. Clearly, a network code that can operate over a binary field,
i.e. utilizing only XOR operations on bits would be far easier to implement
than finite field arithmetic over, say, GF (212). An efficient, i.e. running in time
polynomial in the description of the network, algorithm to find network coding
solutions with guaranteed performance was given by [Jaggi et al., 2005b]. The
algorithm operates in a centrally controlled manner by first identifying a set
of disjoint paths between the source and each of the individual receivers. In
subsequent steps a network coding solution is iteratively grown starting from
the source node to each of the intended receivers by considering one edge at
the time. The encoding function for each edge is here chosen so as to guarantee
that the information flowing on any cut in the network is as rich and different
as possible.1 Since all we have to guarantee in order to find a valid network
coding solution is that random processes of maximal entropy have to reach
the receivers in order to satisfy the multicast requirements this approach will
be successful. This realization also led to the notion of a network code as a
“linear dispersion” by [Li et al., 2005].2 A distinguishing feature of the iterative
process is that it is possible to keep the field size at its minimum (which often
means binary operations). The construction algorithm, originally formulated
for acyclic graphs, was later extended by [Erez and Feder, 2005] to the case of
graphs with cycles so that we can now avail of efficient algorithms for practically
all interesting scenarios. In particular, the extension to constructing wireless
network coding solutions with guaranteed performance is straight forward once
a set of source/sink flows is known for each receiver. For this purpose the
algorithm of Section 4 can be effectively combined with the iterative encoding
function choice of [Jaggi et al., 2005b]. Nevertheless, we want to emphasize
that the added complexity of constructing a highly efficient network code is
only justified for very stable and well known network topologies.3 Wireless
networks would typically operate very efficiently with random network coding.
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The construction of network codes has spawned further research on low com-
plexity solutions. A natural question is the effect of limiting the number of nodes
or edges in a network that are capable of performing network coding operations
(see [Bhattad et al., 2005]). However, it appears that these considerations are
far more important in a wireline network where one might be confronted with,
e.g. converting optical signals into electrical signals in order to perform network
coding. The added cost of network coding in a wireless network are likely to
be relatively minor when compared to the already necessary modulation and
demodulation of RF signals.

The non-multicast case. Constructing codes for the non-multicast case is
considerably more difficult than the corresponding task in the multicast setup.
The main problem we are now facing is that network coding solutions have to
make sure that the right information is delivered to each node. In particular, this
renders random network coding as an almost useless tool. Indeed, at present we
do not know of an efficient, structured approach to solve the network coding
problem optimally. For linear network coding the algebraic characterization
of valid solutions given by [Koetter and Médard, 2003] leads to an algorithm
that, in principle, can decide if a given network problem has a solution or not.
However, the running time of this algorithm is not bounded by a polynomial
function in the size of the network.4 The situation is exacerbated by the fact that
linear network coding does not achieve the capacity of networks with arbitrary
demands (see [Dougherty et al., 2005]). We find ourselves in a situation where,
in practice, we have to resort to various ad-hoc solutions that can be used to
demonstrate network coding advantages.

Ad hoc approaches to network coding

Finding optimal solutions to network coding problems involving more than
one multicast session is a difficult problem and, at present, there is no practical
approach known to achieve the optimal throughput in a network. Nevertheless,
it is clear that this problem is of prime importance and a number of suboptimal
solutions have been investigated. In many of these ad hoc schemes network
coding operations are restricted to binary addition, which seems to realize a large
portion of the possible gains. Opportunistic network coding in a wireless context
has been described by [Katti et al., 2005] in a wireless 802.11 environment.
This approach to network coding in a wireless network is motivated by the
idea to start from a given wireless system and to opportunistically identify and
exploit opportunities for improvement, such as the one mentioned in Section 1.
The scheme proposed by [Katti et al., 2005] is characterized by an assumed
knowledge of a node of a list of packets that its direct neighbors have. Moreover,
network coding is used only if combining packets can give some immediate
advantage for the reception of the direct neighbors of a node. The scheme was
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implemented in an 802.11 network and shows surprisingly large throughput
advantages. For further details and for a quantification of the gains, see [Katti
et al., 2005]. A fairly similar thinking has been applied by [Hausl et al., 2005]
in the context of relay aided up/downlink improvement in a cellular network.
Here a relay provides a sum of an uplink and a downlink package to both the
mobile and the base station. Owing to the ability of mobile and base station to
subtract its own packet from the relay signal, both can improve their reception
link quality in a turbo coded system setup; see [Hausl et al., 2005] for further
details.

Security aspects

While the main thrust of network coding research aims at increasing band-
width and/or energy efficiency it also can greatly increase security of transmis-
sion. The main idea here is that in random network coded systems transmissions
are typically mixtures of many portions of a set of data. Thus no individual
packet reveals any information about the individual packets contributing to its
makeup. Moreover, a wire-tapper or attacker cannot undo the random linear
combination of the observed packets unless he/she has opportunity to observe
enough information to retrieve the entire data. In other words, there exists a
threshold behavior to the secrecy of the packets which is similar to more tradi-
tional wire-tapper or secret sharing schemes. The interested reader is referred
to [Ho et al., 2004] for an application of network coding to Byzantine secu-
rity and to [Jaggi et al., 2005a] for the situation where an attacker’s resources
are limited. Further references include [Cai and Yeung, 2002; Feldman et al.,
2004; Bhattad and Narayanan, 2005].

Notes
1. Loosely speaking we try to maximize the degrees of freedom on each cut
2. Indeed, Jaggi et al.’s algorithm readily solves the problem of constructing a “linear dispersion” as

well.
3. Network coding has, e.g. been proposed in a VLSI context to distribute multicast signals on a chip.

Such a extremely stable environment seems predestined for a very careful construction of the encoding
function.

4. In fact it has been shown by [Rasala Lehman and Lehman, 2003] that this question is NP-hard.
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