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CHAPTER 8 

BUILDING UP WITH A TOP-DOWN APPROACH: 

The Role of Remote Sensing in Deciphering Functional and Structural 
Diversity 

CAROL A. WESSMAN AND C. ANN BATESON 

8.1 INTRODUCTION 

“. . . . particularity and contingency, which characterize the ecological sciences, and 
generality and simplicity, which characterize the physical sciences, are miscible, and 
indeed necessary, ingredients in the quest to understand humankind s home in the 
universe.” 

~ John Harte, 2002 

Ecological scaling, and hence any efforts to define universalities, is challenged 
by inherent nonlinear synergies and heterogeneity, cross-scale processes, thresholds, 
and emergent properties of ecosystems (e.g., Wu 1999, Peterson 2000, Wu and Li, 
Chapter 2). Techniques are required that are able to translate place-centered, 
mechanistic understanding (the “peculiarities and contingencies” sensu Harte 2002) 
across a range of spatial and temporal scales. Remote sensing of the Earth’s surface, 
while limited in its ability to fully address all the challenges, helps constrain the 
scaling problem through its synoptic view of biophysical and biochemical structure 
across different scales (Wessman 1992, Wessman and Asner 1998). The structure of 
landscapes and regions (i.e., the properties of cover types and their distribution) are 

Historically, ecologists have dealt with the complexity of ecological systems 
through small, place-centered studies. This approach, in controlling for environ-
mental variation, has led to important advances in our understanding of mechanisms 
behind ecological phenomena, and has moved us more directly from pattern to 
causal processes (Harte 2002). However, the need to develop broader “universal 
laws” in ecology is important in the context of global-wide environmental change. 
While ecological “laws” may lack the exactness and universality of physical laws, 
they will improve our power to predict the consequences of change due to human 
activities and climate variation, “signposting routes to a sustainable future” (Lawton 
2001). 

,
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Scaling in remote sensing is controlled in two fundamental ways: (1) hetero-
geneity in composition and configuration of the landscape under observation relative 
to sensor characteristics, and (2) nonlinear functional relationships between surface 
radiation and ecologically relevant parameters. The objective of this paper is to 
explore these aspects of the remote sensing scaling problem, and the power and 
uncertainties they interject into the upscaling of field measurements. First, we 
introduce the ecological variables and relationships that the community has or is 
attempting to measure with remote sensing. We then review briefly the radiation and 
remote sensing properties that are important to upscaling. Finally, we synthesize 
some of the more important sources of uncertainties and error in algorithms used to 
scale surface parameters.  

8.2 ECOLOGICAL VARIABLES RETRIEVED BY REMOTE SENSING 

Extraction of variables from imagery falls into two broad categories. First, classifi-
cation techniques are used to categorize the landscape into discrete recognizable 
units with relevance to various mapping aims. Second, continuous variables are 
retrieved on the basis of spectral-biophysical relationships in each pixel. In the 
former, within-class variance is ultimately ignored as pixels are assigned discrete 
values representing a given category. In the latter, pixel values will lie within the 
range of variability of the retrieved variable contained by the observation. 
Continuous variables such as leaf area index (LAI), fractional cover and fraction of 
absorbed photosynthetically active radiation (fAPAR) represent basic components or 
singular functions of the landscape and will largely scale as a function of the 
radiative transfer properties of landscape components, their relative dominance in 
the grid cell, and the linearity of the retrieval algorithm. Scaling of discrete, 
categorical variables will be influenced by the size and nesting of ground 
components detectable at diverse resolutions.  

The ecological variables that take on significance as scales are increased and that 
can be estimated remotely are integrative in nature or represent important constraints 
on processes (Table 8.1). These include structural variables such as LAI, biomass, 
land cover, and fractional cover of landscape components (e.g., green vegetation, 
bare soil) that quantify, to greater or lesser degrees, the spatial heterogeneity 
important to extrapolation or modeling of related processes. fAPAR is one of the 

of great importance and interest to the ecological scaling effort for two reasons. 
First, structure superimposes constraints on the functioning of ecological systems at 
broad to finer scales. Second, the structure itself is an expression of the functional 
properties that emerge from interactions among biological, physical and geo-
chemical processes. Scaling in remote sensing, by its attention to surface hetero-
geneity and the derivation of surface parameter algorithms (Chen 1999), takes an 
important role in earth system science, predicated on the assumption that we 
recognize the appropriate features to be scaled (Wessman 1992, Wessman and Asner 
1998). In many respects, remote sensing mandates a generality in our observations 
of the earth’s surface that, welcome or not, forces a new perspective of ecological 
properties. Through interchange between observational-based science and ecological 
scaling theory, generalities in ecological dynamics will surface. 
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few parameters that provide a direct connection between ecosystem structure and 
function (Asner and Wessman 1997), and it also provides a means to link to other 
functional attributes of ecosystems such as nitrogen use, CO2 assimilation, and water 
loss (Sellers 1987, Running et al. 1994, Field et al. 1995). Remote sensing of foliar 
chemistry is of interest due to its role in ecosystem productivity. Estimates of spatial 
variation in canopy chemistry from hyperspectral imagery, while empirically 
derived through local to regional calibration, are valuable for landscape-level links 
to ecosystem processes such as productivity and decomposition (Wessman et al. 
1988, Zagolski et al. 1996, Martin and Aber 1997, Smith et al. 2002). 

Table 8.1. Ecological variables commonly derived from remotely sensed imagery (after Milne 
and Cohen 1999). 

Variable Type Units Applications 
Land Cover Categorical ha, % Ecosystem model stratification, 

land use change, habitat 
characterization, ecosystem 
management 

LAI  Continuous m2 m-2 CO2 and trace gas exchange 
models or measurement 
extrapolation, carbon allocation 

NPP, NEP Continuous g m-2 yr-1 Estimation of ecosystem carbon 
gain 

Fractional cover Continuous % Ecosystem model stratification, 
land use/land cover change, 
succession, biophysical land 
surface modeling 

Canopy 
chemistry 

Continuous %, g m-2 Ecosystem productivity models, 
decomposition 

Canopy 
geometry 

Continuous m Land-atmosphere energy flux, 
climate models 

Each of these variables gains significance with broadened extent in either of two 
ways. The importance of their magnitude and distribution, alone or in combination 
with other remotely sensed variables, may indicate configuration and/or connectivity 
of landscape components undetectable at the field level. Also, certain remotely sensed 
variables are incorporated into process models to drive or constrain simulations of 
biogeochemical process, land-atmosphere energy and trace gas flux, and large-scale 
climate models.  

8.3 THE RETRIEVAL OF ECOLOGICAL VARIABLES 

Remote sensing is a valuable means of upscaling ecological variables due to 
multiple scales of observations and stability of satellite platforms in space and time. 
Repetitive acquisitions at temporal scales of interest (e.g., diurnal, seasonal, 
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interannual, duration of transient weather systems) enable analyses of change to 
answer questions about trends and cycles. But, fundamental to the retrieval and 
interpretation of ecological variables from remote sensing platforms are the 
reflectance characteristics of the observed surface and its components. Aside from 
some types of mapping and sophisticated radiative transfer methods, remote sensing 
does not replace any widely used ground measurement in ecology (Prince 1999). 
Most parameters derived from remote sensing data require a certain level of 
calibration with ground conditions (van Leeuwen et al. 1997, Qi et al. 2000). Each 
technique for the inference of an ecological variable must be understood in terms of 
the factors contributing to the measurement of reflectance integrated over the pixel.  

The reflectance signal measured by the sensor is the integrated outcome of a 
complex interaction of surface scattering properties, including single and multiple 
scattering of photons, and solar and sensor viewing geometry. For example, 
vegetation reflectance is primarily a function of tissue (wood, green, senesced) 
optical properties, canopy structure and geometry (leaf and stem area and 
orientation, foliage clumping), soil reflectance, illumination conditions, and viewing 
geometry (Ross 1981, Myneni et al. 1989). The structural attributes of ecosystems 
(e.g., species composition, vertical structure, canopy closure) determine the relative 
contributions of tissue, canopy and landscape factors that drive the variation in a 
reflectance signal (Asner 1998). Sorting out these factors requires an understanding 
of the sources of variation at each scale (which is ecosystem dependent) as well as 
an adequate sampling (spectral, angular, and temporal) of the spectrum. 

Spectral algorithms like vegetation indices (VI) that are relatively simple and are 
composed of few spectral bands are widely used to monitor vegetation dynamics and 
to infer biophysical properties such as leaf area index (LAI) and fAPAR. The main 
shortcoming of vegetation indices is the lack of functional relationships with 
biophysical parameters (van Leeuwen et al. 1997, Qi et al. 2000). Empirical or 
modeled relationships with variables such as LAI, fAPAR, and biomass can be 
developed on a site-specific basis, but these relationships are subject to changes in 
vegetation properties, soil background, atmosphere and the sun-surface geometry. 
Validation efforts for the MODIS sensor are aimed at testing the accuracy of VI 
products via multi-scaled analyses in order to gain an understanding of the causes of 
errors for potential improvement in future algorithms (Tian et al. 2002a). 

Radiative transfer models provide a means to assess the canopy radiation regime 
from a physical and mechanistic basis, and model inversions derive variables that 
are more directly related to biophysical properties of vegetation. Current models are 
based on the physics of photon scattering, and range in complexity from one-
dimensional (vertical profile) algorithms to complex three-dimensional landscape 
simulations (Liang and Strahler 1993, Myneni and Asrar 1993, Kuusk 1995, Asner 
and Wessman 1997). The models that include scaled scattering characteristics of 
leaves, canopies, and soil can be used to explore the radiation regime in landscapes. 
For example, understanding the relative influence of structure at different scales 
(tissue, canopies, landscapes) on the fAPAR of an ecosystem helps determine what 
variables need to be accounted for and which can be ignored or held at a constant 
value in future studies (Asner et al. 1998b, Asner et al. 1998c). The anisotropic 
scatter of radiation by vegetation canopies has been exploited through measurement 
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and modeling of the bidirectional distribution function (BRDF) to retrieve LAI and 
canopy geometry (Li and Strahler 1992, Privette et al. 1994, Braswell et al. 1996, 
Asner et al. 1997, Asner 2000). This continues to be a strong area of research with new 
operational BRDF instruments (e.g., MISR, POLDER) (Jin et al. 2002, Chopping et al. 
2003). Less quantitative, but analogous to these modeling approaches, spectral mixture 
analysis decomposes the reflectance signal into the fundamental contributing 
components of the landscape (e.g., soil, green foliage, senesced vegetation) and 
simplifies the interpretable connection to biophysical parameters (Wessman et al. 
1997, Sabol et al. 2002). 

In this paper, we focus on the upscaling of biophysical variables through remote 
sensing. However remote sensing methods in land cover classification and feature 
mapping are very important aspects of remote sensing scaling and need to be noted 
here. Classification is a well-established approach to map land-cover types that 
represent composites such as vegetation and land use, habitat, or ecosystem types. 
Land cover maps are used widely as one means to quantify landscape heterogeneity 
and parameterize the biophysical properties of plant canopies in models of climate 
and biogeochemical processes. Efforts continue to improve accuracies and quantify 
errors associated with classification algorithms (e.g., Hlavka and Dungan 2002), 
particularly in the interest of scaling to continental and global scales (e.g., Friedl  
et al. 2002, Lotsch et al. 2003). The ability to describe spatial patterns and the 
underlying processes that generate them is largely determined by the relationships 
between the objects in the scene and the scales at which we observe them. A 
significant literature exists on scaling issues specific to feature extraction, spatial 
structures, and the spatial variation in remote sensing imagery (Marceau and Hay 
1999). Multiscale approaches to upscaling and feature extraction are being 
developed to contend with the multi-scaled and spatially distributed objects in a 
landscape (Hay et al. 1997, 2001). 

8.4 QUANTIFYING BIAS AND ERROR 

There are several sources of error and bias in analyses based on remote sensing that 
are caused by the indirect relationship between reflected radiation and surface 
characteristics. The most obvious source of error is the intervening atmosphere 
between the sensor and the reflecting surface. Although methods have been 
developed to remove atmospheric effects from imagery (Gao et al. 1993, Qu et al. 
2000), these methods do not duplicate ground based spectra and can themselves 
delete spectral features critical for detecting the presence of ground components in 
the scene (Kruse and Dwyer 1993).  

Another source of error that has been studied extensively in the literature and is 
algorithmic in nature involves extrapolating relationships between remotely sensed 
parameters and surface attributes from the scale for which they were developed to a 
coarser resolution. For example, a functional relationship between LAI and the 
NDVI, whose defining constants were found by relating the NDVI values at a 30 m 
pixel size to ground values adequately sampled on 30 m plots, may not be the 
correct relationship for predicting LAI from AVHRR or MODIS at 1 km pixels. In 
order for a quantitative algorithm to be scale invariant with respect to a particular 
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landscape, either the algorithm must implement a linear function between the 
parameters or ecological parameter values within the larger pixel must be constant 
(Hu and Islam 1997). Hence, for quantitative algorithms, heterogeneity and non-
linearity are the two factors determining the magnitude of scaling errors and bias. 
Since most radiance-to-ground relationships are developed on a small scale, methods 
are needed to measure the potential aggregation error and ideally add a correction 
factor. We will review several approaches for estimating large-scale quantities using 
smaller scale, field-acquired measurements. Many of these methods require pixel-
level knowledge of fractional coverage by ground components. We investigate 
spectral mixture analysis (SMA), which inverts a mixture model to retrieve cover 
fractions, as a tool for measuring heterogeneity that can be incorporated into scaling 
methods.  

Most but not all algorithms bridging remote sensing and surface attributes 
require adequate ground sampling for calibration and validation. Misregistration of 
image pixels with their ground locations is common and has an impact relative to the 
scene heterogeneity. Spatial statistics has provided tools such as the variogram, local 
variance and kriging to help in designing efficient sampling schemes by detecting 
spatial correlations and consequently appropriate lags between samples to achieve a 
set of statistically independent values. We will review some of these methods and 
issues related to error in their application. 

8.4.1 Aggregation Error 

We first present a theoretical framework for understanding the issues involved in 
applying a functional relationship from the scale for which it is correct to an 
aggregate. Let R  be a function between the bands of a remote sensing instrument 
with spatial resolution L and a surface parameter P. That is,  

R(b1
L (i), ..., bm

L (i)) = PL (i)          (8.1) 

where b j
L (i)  is reflectance of the ith pixel in band j and PL (i)  is the ground 

parameter value in pixel i. Suppose we aggregate the pixels of the instrument into 
superpixels of size nL. We can compute two quantities: 

1
n2 R(b1

L (i), ..., bm
L (i))

i=1

n 2

∑          (8.2) 

and R(
1

n2 b1
L (i)

i=1

n 2

∑ , ...
1

n2 bm
L (i)

i=1

n2

∑ )        (8.3) 

An algorithm implementing Equation 8.2 will be described as parameter-
aggregated since it is the mean of the ground parameter PL (i) over the subpixels 
that comprise the superpixel. Algorithms implementing Equation 8.3, on the other 
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hand, will be described as band-aggregated since the bands are aggregated into a 
superpixel before the function R  is applied. R  is scale invariant if and only if 
Equation 8.2 and Equation 8.3 are equal and these two quantities are identically 
equal if and only if R  is a linear function of its variables. However, for a particular 
scene, if objects such as forests or grasslands have a typical size at least as large as 
the size of the superpixel, then all subpixels will be similar and hence their bands 
values and means will be approximately equal and scale invariance will persist for 
any function. Equality of band values over the subpixels, of course, will not happen 
in a real scene, but band variation over an object often has a negligible effect on the 
equality between Equation 8.2 and Equation 8.3 above (e.g., within forest variance 
in LAI produces small scaling errors). Since R was developed for resolution L, 
Equation 8.2 is the correct value for the ground parameter computed for the 
superpixel. However, for large-scale imagery such as AVHRR, we usually do not 
have subpixel information and ground sampling to produce relationships is not 
feasible. We look at error associated with using Equation 8.3 to estimate LAI from 
the normalized difference vegetation index (NDVI). But, first, we investigate the 
nonlinearity of the NDVI itself. 

8.4.1.1 NDVI 

The NDVI exploits differences in vegetation reflectance response between the red 
and NIR to detect ground vegetation properties and is computed by 

NDVI = (NIR − red) /(NIR + red)        (8.4) 

However, since the NDVI is not a linear function of its variables (NIR and red 
reflectance), the NDVI of a superpixel need not equal the mean NDVI of its 
subpixels (i.e., the parameter-aggregated NDVI doesn’t equal the band-aggregated 
NDVI). This discrepancy will introduce error in scaling up a functional relationship 
R between the NDVI and a ground parameter even when R is linear provided that 
the lower resolution pixels are not homogeneous. Hu and Islam (1997) investigated 
the effects of landscape heterogeneity on scaling errors with respect to the NDVI 
and reported the following: 

a) The relative difference between the parameter-aggregated and band-
aggregated NDVI (i.e., relative scaling error) is a function of within-
superpixel variance of red and NIR reflectances and within superpixel 
covariance between the two bands. If the distribution of red and NIR 
reflectances among the subpixels is too highly heterogeneous, then the error 
will be too great to approximate the parameter-aggregated NDVI with the 
band-aggregated NDVI algorithm.  

b) There was significant scaling error in a hypothetical example when the 
band-aggregated algorithm was used to estimate NDVI. 

c) A correction term CT to account for within-superpixel heterogeneity can  
be computed from information found on the superpixel level and  
in the hypothetical example band-aggregated NDVI + CT gave a good 
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approximation to the parameter-aggregated NDVI. The term CT is computed 
through functional relationships parameterizing within-superpixel variance 
and covariance between NIR and red bands with reflectances acquired by 
the sensor.  

The NDVI error measurement and correction algorithm in Hu and Islam (1997) 
has not been tested on remotely sensed data from two different instruments at two 
different scales. Since its assumptions are simplistic (e.g., all vegetation has the 
same reflectance and likewise for background) and only first and second order 
correction terms were considered, the result remains preliminary until such testing is 
performed. Aman et al. (1992) degraded SPOT and TM data collected over tropical 
sites in West Africa and agricultural fields in France from 20 and 30 m respectively, 
to resolutions ranging from 200-1000 m, which are more suitable for global 
vegetation studies. They found a significant linear correlation between parameter-
aggregated and band-aggregated NDVI for resolutions below 1000 m with slope and 
intercept close to 1 and 0 respectively. Hence, they concluded, on the basis of their 
samples, that the parameter-aggregated NDVI can be estimated from the band-
aggregated NDVI with acceptable errors. That is, the errors are less than the 
uncertainties relating the high resolution NDVI and ground parameters and the 
errors resulting from radiometric corrections. However, similar experiments with 
other landscape types need to be performed to determine the domain of acceptability 
for the band-aggregated algorithm.  

8.4.1.2 NDVI and LAI 

The infeasibility of collecting LAI values in the field on a scale required for global 
and regional vegetation studies mandates efforts to compute LAI through functional 
relationships with vegetation indices derived from remotely sensed imagery or 
through inversions of radiative transfer models. Chen and Cihlar (1996) found the 
nonlinear relationship  

NDVI = 0.5520*LAI 0.1844         (8.5) 

between the NDVI computed from TM imagery and LAI values collected in boreal 
conifer forests in the Boreal Ecosystem-Atmosphere Study (BOREAS) site with a 
plant canopy analyzer (LAI-2000, Licor). 

The scaling error incurred in upscaling this algorithm from the TM 30 m pixel 
resolution to 1 km AVHRR pixels was investigated by first degrading the TM 
imagery to the AVHRR resolution (Chen 1999). Study areas of 990 m × 990 m with 
mixtures of vegetation and water were selected from the imagery to give a range of 
water coverage from 0% to 93%. Coexistence of these two highly contrasting 
surfaces in the same low resolution pixel was expected to produce large scaling 
errors since the LAI retrieval algorithm is nonlinear. The correct computation of LAI 
is the parameter-aggregated algorithm which first computes LAI from the TM-
derived relationship at each subpixel and then averages LAI over the TM subpixels 
of the AVHRR pixel. However, typically subpixel values would not be available and 
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Chen (1999) investigates the error in scaling up the TM-derived relationship 
Equation 8.5 via the band-aggregated algorithm, which uses the NDVI of the 
AVHRR pixel as input into Equation 8.5. Note that in the band-aggregated 
algorithm, non-linearity appears both in the computation of the NDVI from the NIR 
and red reflectance bands and in the computation of LAI from the NDVI. A 
theoretical error analysis based on mixed vegetation and water pixels derived a 
relative error that only depends on knowledge of the water fraction w within each 
pixel and the scaling exponents relating AVHRR NDVI and TM NDVI to LAI. The 
latter exponent (TM NDVI = cLb) corresponds to 0.1844 in Equation 8.5. Constants 
of the AVHRR power law (AVHRR NDVI = c0Lb0) can be estimated if subpixel 
water fractions are known since AVHRR NDVI at the BOREAS site has a strong 
power law relationship with (1-w) and LAI in the mixed pixel is proportional to (1-
w), with an unknown constant of proportionality equal to LAI of 100% vegetation, 
i.e., LAI(100%). It is shown in Chen (1999) that the relative error for a pixel is given 
by  

(LAI(parameter - aggregated) - LAI(band - aggregated))
LAI(100%)

= (1 − w) + (1 − w)b0 / b    (8.6) 

where w is the fraction of the pixel covered by water. The scaling exponent b for 
AVHRR pixels over the BOREAS site had a value of 0.68; by differentiating 
Equation 8.6 with respect to w, the maximum relative error is 0.44 and occurs for 
w = 0.384. Computations of relative errors for the 990m × 990m study sites fell 
encouragingly close to the theoretical predictions derived from Equation 8.6.  

Chen (1999) also revealed problems with linear algorithms. Although changing 
densities within the pixel do not introduce error into linear algorithms, scaling errors 
do occur when a linear relationship changes over diverse landscape components 
(e.g., vegetation versus water) and discontinuities are introduced. For example, the 
simple ratio (SR) scaled with LAI as SR = 2.78+0.824*LAI at the BOREAS sites 
and a bias was introduced since SR over water (LAI = 0) is approximately 1 and not 
2.78. Scaling errors are easier to derive for the nonlinear algorithm, since in the 
linear case error derivation requires knowledge of LAI (100%) as well as the water 
fraction.  

With both the linear and the nonlinear algorithms, negative biases occur when an 
algorithm from a finer resolution is used to estimate LAI at coarser resolutions. For a 
pure pixel (all vegetation), the bias with the nonlinear algorithm in Chen (1999) was 
less than 2% and there was no bias for the linear algorithm. Hence, errors with pure 
pixels could be ignored. When water and vegetation were both present, negative 
biases occurred in Chen (1999) close to 40% for the linear algorithm and exceeded 
44% for the nonlinear algorithm. Errors increased with increased heterogeneity. 

Another technique for estimating LAI per pixel is based on inversion of a 
radiative transfer model that produces top-of-canopy reflectance in terms of leaf 
tissue and soil radiative properties, LAI and leaf angle distribution (LAD). From 
remotely sensed data, top-of-canopy reflectance is known and other parameters such 
as LAD and leaf optical properties may be estimated from other sources or 
constrained to lie within a realistic range of values. Top-of-canopy reflectance 
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viewed at different, but known, sun sensor geometries gives several different con-
strained equations which can be inverted to retrieve values of parameters like LAI. 
More complexity is added to the model when other elements besides vegetation 
canopies are included in the pixel. In this case of pixel heterogeneity, the one-
dimensional (1-D) model is supplanted with a three-dimensional (3-D) model 
equation, which accounts for horizontal transport of photons potentially interacting 
with more than one element type within the pixel. Tian et al. (2002b) retrieved LAI 
values from AVHRR 1 km data aggregated to several coarser resolutions (8, 16, 32, 
and 64 km). Their imagery was acquired over North America and classified into 6 
vegetation biomes and bare soil. A lookup table was used in their model equation to 
associate with each biome its single scattering albedo, which measures the total 
scattering of energy per unit volume of the biome canopy. Coarser scales result in 
more mixed pixels. However, equating reflectance of mixed pixels with subpixel 
reflectance averages in the model equation neglects the effects of heterogeneous 
scattering elements within the pixel on the radiative regime and can lead to 
significant errors in the retrieval of LAI (Tian et al. 2003). Tian et al. (2003) found 
large LAI errors when forests were minority biomes within non-forest pixels and 
developed a spatial resolution-dependent radiative transform formulation. In this 
formulation, the single scattering albedo is adjusted to become a weighted average 
of the single scattering albedos of the six biomes with weights equal to the fractional 
cover within the pixel. Hence, again, knowledge of fractional cover is a requirement 
for estimating LAI. 

8.4.2 Spectral Mixture Analysis 

During the 1980’s, researchers began to examine spectral mixture analysis (SMA) as 
a means to characterize subpixel heterogeneity by modeling a pixel’s reflectance as 
a linear combination of the reflectance spectra of ground components (e.g., soil, 
green vegetation, dead vegetation, rock, etc.), called endmembers (Adams and 
Adams 1984, Adams et al. 1986, Smith et al. 1990). The coefficients in the linear 
model should lie between 0 and 1 and may be constrained to sum to 1. Physically, 
they correspond to the fractional coverages of the ground components in the pixel. 
Consequently, SMA is a promising tool for providing heterogeneity parameters 
needed to extend algorithms from finer to coarser resolution.  

Asner and colleagues (Asner et al. 1997, Asner et al. 1998a) combined SMA 
with an easily inverted 1-D model to calculate LAI for woody and herbaceous 
vegetation types in a complex savanna landscape. Inversion of the 1-D model for 
each of the cover types, in effect, accounted for the spatially heterogeneous 
landscape and, avoided a computationally intense inversion of a 3-D model. The 
study was initiated with high resolution spectral mixture analysis (Landsat TM) to 
compute fractional cover of trees, shade, senescent grass, bare soil and water. A 
suite of AVHRR images was acquired over the same area at different sun-sensor 
geometries. For each AVHRR image, the SMA model using the TM fraction covers 
was inverted to produce NIR and red reflectance values for tree, grass, shade and 
soil at the 1-km scale of the AVHRR pixel (Asner et al. 1997). Inconsistent shade 
fractions resulting from different sun-sensor geometries were corrected using a 
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geometrical-optical model (Li and Strahler 1992) prior to the inversions. These 
angular reflectances were used with a 1-D radiative transfer model to compute LAI 
for each vegetation type (tree and grass). Regional canopy LAI was computed by 
multiplying the type LAIs by their respective fractional covers. SMA in this example 
was critical not only because of the efficiency of inverting a 1-D radiative transfer 
model to compute LAI for two vegetation types (tree and grass), but also because 
inversion of the AVHRR SMA model produced endmember reflectance values for 
the AVHRR instrument, resolution and sun-sensor geometry.  

The promise of SMA for solving scaling problems must be tempered, of course, 
by recognition of several sources of errors in the mixture model. First of all, multiple 
scattering of photons between different ground components can invalidate the 
linearity assumption. However, fraction errors from nonlinear mixing can be 
minimized by acquiring images from view angles close to the hot spot direction 
(Villeneuve et al. 1998). SMA requires the knowledge of endmembers, which are 
reflectance spectra of pure ground components. Selection of endmember spectra is 
the most difficult task in SMA and the most profound source of cover fraction 
errors. Perhaps, the most common methods of acquiring endmembers are collecting 
them from the field or picking pixels from the image that are homogeneously 
covered by one ground component. However, it is very difficult to align field-
collected spectra with image spectra even after (or because of ) atmospheric 
correction or conversion from radiance to reflectance (Kruse and Dwyer 1993). 
Moreover, remotely sensed images over arid and semi-arid landscapes may not have 
at their resolution pure pixels of green vegetation and in this situation using image 
endmembers will distort all cover fractions. A promising solution to the endmember 
selection problem has been methods that derive endmembers from the variance 
structure of the data (Boardman 1993, Bateson and Curtiss 1996) using principal 
component analysis. These derived endmembers do not necessarily coincide with 
pixel reflectances and may represent pure spectra when there are no pure pixels in 
the image. Moreover, since they are derived from the image, they have been 
subjected to all image pre-processing. In recent years, the assumption that each 
ground component is represented by a unique spectral signature has been questioned 
and new mixture models (Asner and Lobell 2000, Bateson et al. 2000) have been 
devised that substitute for a single endmember spectrum a bundle or collection of 
spectra representing endmember variability. Bundle unmixing produces ranges of 
possible fraction values (Bateson et al. 2000) or mean and standard deviation (Asner 
and Lobell 2000). 

8.5 CALIBRATION AND VALIDATION 

Tracking ground characteristics such as LAI, fAPAR and biomass with indices such 
as the NDVI derived from spectral reflectance requires ground sampling to establish 
functional relationships between the ground characteristics and reflectance-based 
indices, whose values have no direct physical interpretation. Regression modeling 
and curve fitting are common methods used to determine from image pixel values 
and corresponding ground samples the best equation to relate the imagery to the 
landscape. Because typical pixel sizes range from 20m to 1km and the extent of the 
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imagery is usually very large, efficient sampling strategies adequately representing 
image and ground variability are needed. Random sampling with a sample size n = 
(σ t / e)2, where σ is the standard deviation, e the desired error and t  the Student’s  
t-value for a 95% confidence interval and (n-1) degrees of freedom, can result in 
unnecessary ground sampling since it does not consider spatial correlations. That is, 
sampling neighboring pixels or neighboring regions within a pixel with correlated 
values can introduce costly redundancies. Systematic sampling based on spatial 
statistics may achieve results at least as good with a fraction of the effort. 

An important tool of spatial statistics is the semivariogram, which is a function 
γ (h)  measuring the average dissimilarity between parameter values sampled at 
ground locations or computed for image pixels that are h units apart. The semi-
variogram at lag h is mathematically defined by 

γ (h) = 1
2k(h) (V (xi) − V (xi + h))2

i=1

k(h)
∑       (8.7) 

where V (xi )  is the value of the parameter at ground location or pixel ix , V (x i+h)  
is the value at a location or pixel h units away and k(h) is the number of differences 
at lag h. In many natural scenes, γ (h)  will increase with h since nearby locations 
have similar characteristics compared to those at a distance. Since semivariance in 
the field or in an image is computed for discrete lag values, a continuous 
mathematical curve C is fitted to the scatter plot of lag versus semivariance in order 
to analyze spatial patterns. A spherical model (Isaaks and Srivastava 1989) is most 
commonly used for the fit and has three properties useful for understanding spatial 
correlations and deriving sampling strategies. When a spherical model is used, the 
graph of C increases with h until it reaches a plateau P at the lag S. P (referred to  
as the sill of the semivariogram) estimates the true variance of the data and S (called 
the range) is the lag distance at which values become uncorrelated and represents 
the typical size of objects in the scene. The value lim

h→0
γ (0) = c0  is called the nugget 

and its deviation from 0 may be due to fine scale or subpixel variance, measurement 
error or fitting with an incorrect model (Isaacs and Srivastava 1989). 

Tian et al. (2002b) devised sampling strategies for validating MODIS LAI 
products by decomposition of semivariograms into hierarchical components (e.g., 
semivariances of forest, stands and trees) to reveal the spatial pattern of different 
characteristic scales within the scene. Other applications of the semivariogram to 
ground validation and calibration can be found in (Curran 1988). 

Atkinson et al. (2000) used semivariograms to determine two scales of variations 
for biophysical properties of mean tree diameter at breast height, mean diameter at 
first leafing branch and tree density in a tropical forest of Cameroon Africa. Two 
sampling strategies were investigated in the analysis. One strategy maintained 1 ha 
subplots, while the other strategy averaged them to obtain a larger nugget area. 
Large nugget values relative to the sill for subplot semivariograms suggested 
variation at the 1 ha scale. The sill was reached at 20-25 km for all semivariograms. 
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From the analysis, the authors concluded that AVHRR 1 km data could capture the 
large-scale variance.  

Atkinson et al. (2000) also evaluated within-pixel sampling strategies based on 
ordinary block kriging that is a best linear unbiased estimation (BLUE) method that 
uses the semivariogram to approximate mean values from a set of sample points. 
Block kriging determines the weights in the weighted average 

V (P) = w i V (x i )
i=1

k
∑           (8.8) 

where V (x i )is the parameter value at point ix  and each ix  is in the ground pixel P 
whose mean value V is being approximated. To insure an unbiased estimate (i.e., 
mean error of the estimator is 0), weights iw  are constrained to sum to one. The 
weights are also constrained to minimize the variance σ k of the errors. This variance 
is referred to as the block kriging or estimation variance. Under the BLUE 
constraints the estimation variance is  

σ k = wiγ (xi,P) +∑ µ − γ (P,P)        (8.9) 

where µ is the Lagrange parameter, γ (x i ,P)  is the integral semi-variance between 
the pixel P  and xi , and γ (P,P) is the within pixel variance (for more details, see 
Atkinson et al. 2000, Isaaks and Srivastava 1989). Note that σ k  does not depend on 
the particular values of V( x i ), but only on the semivariogram and the spatial pattern 
of x i ’s. Hence, given the semivariogram, the kriging variance can be computed for 
any sampling strategy. Burgess et al. (1981) used block kriging to show that 
systematic sampling is more efficient than random sampling. Other researchers have 
used it to determine sample sizes needed for a specified precision (Webster et al. 
1989). 

Atkinson et al. (2000) examined two sampling strategies for scaling up 1 ha 
subplots for comparison with 1km AVHRR pixels. The subplots were arranged in an 
equilateral triangular pattern with each triangle constituting a plot. Although the 
estimation variances derived from representing each plot by the average of the three 
subplots were approximately 3 times less than those calculated as if a single subplot 
value was used to represent the triangular plot, the regression precisions obtained 
with the two sampling strategies were very close. They differed by factors of 1.02 
(basal area), 1.03 (biomass) and 1.03 (tree density). That is, a sampling strategy 
based on intensive fieldwork may yield considerably better estimates of ground 
parameters than a less costly one without substantially improving the precision of 
the regression model to predict values in unknown locations. Regression modeling 
and prediction are, of course, the ultimate goals. 

In conclusion, sampling and validation strategies based on semivariance and 
kriging can prove the sufficiency of smaller, more easily obtainable sample sizes. 
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However, even these sizes can be unnecessarily large when the purpose of the data 
(i.e., to develop regression equations) is ignored. 

8.6 CONCLUSIONS 

Biophysical variables (structural and functional) needed to track global 
environmental change must be collected at large scales that require the use of 
remotely sensed data. However, field studies are still necessary to relate remotely 
sensed parameters to their landscape counterparts. Consideration of the scaling 
problems inherent in extrapolating from the field to the image is critical to the use of 
remote sensing as a tool. An awareness, at the very least, of the sources of variance 
within a reflectance observation is important, as the structure of the canopy (leaf 
area, presence of senescent material, etc.) and landscape (canopy closure, 
background, etc.) will strongly influence the reflectance signal, and hence the 
biophysical interpretation. 

When remote sensing algorithms are nonlinear (e.g., computing LAI from 
NDVI, radiative transfer inversions), errors resulting from scaling from high to low 
resolution are mainly due to increased mixing of ground components in the larger 
pixel. Maps of the landscape based on spectral mixture analysis, classification or 
other methods are useful in measuring and correcting for this error. However, 
classification accuracy is sensitive to pixel size relative to the size of objects in the 
scene since relative pixel size impacts within-class variance and the level of classes 
(i.e., tree stands versus forests) that can be mapped. Pixel size also impacts selection 
of endmembers for SMA when pure image endmembers are being sought, since 
pixel heterogeneity increases with pixel size. However, methods for constructing 
endmembers from the variance structure of the data are promising techniques for 
retrieving endmembers from the image when no pure pixels reside in the imagery. 
Scaling up parameter values from the ground to the image requires calibration and 
validation. Spatial statistics provides tools (local variance, semivariogram and 
kriging) for determining adequate distances between sample locations and testing 
efficiency versus accuracy trade-offs for various sampling strategies. 

Moving from high resolution (e.g., TM) to coarse resolution imagery (e.g., 
AVHRR, MODIS) has scaling challenges, but it seems that, with adequate measures 
of surface heterogeneity through such methods as spectral mixture analysis and land 
cover classification, the problems are not insurmountable. The generality needed to 
gain perspective of the large-scale properties of ecological phenomena is attainable 
through remote sensing, yet we must understand the tool well enough to accurately 
accomplish the scaling operations we need. In concert with this, an active and 
reciprocal connection between remote sensing, ecological field studies, and scaling 
theory is important to guide scaling efforts and allow for the “surprises” which 
deepen our insights into the general behaviors of ecological systems. 
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