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CHAPTER 5 

DOWNSCALING ABUNDANCE FROM THE DISTRIBUTION 
OF SPECIES: 

Occupancy Theory and Applications 

FANGLIANG HE AND WILLIAM REED 

5.1 INTRODUCTION 

One of the most important contributions to our understanding of how and why 
species distribute in landscapes is to document the significant correlation between 
abundance and distribution of species across a broad range of scales (Brown 1984, 
1995, Gaston and Blackburn 2000). The correlation suggests that there is a general 
tendency that locally abundant species are more widely distributed in space than rare 
species, which forms a positive distribution-abundance (or occupancy-abundance) 
relationship. While the observed relationship of this macroecological pattern begs 
for ultimate biological accounts (Brown 1984, Hanski et al. 1993, Gaston 1994, 
Kolasa and Drake 1998, Gaston and Blackburn 2000), the mathematical forms of the 
relationship derived from physical, statistical and geometrical considerations have 
greatly advanced the study on the topics and have indeed provided a solid ground for 
fermenting biological explanation further (Maurer 1990, Wright 1991, Hanski et al. 
1993, Leitner and Rosenzweig 1997, Hartley 1998, Kunin 1998, He and Gaston 
2000, Kunin et al. 2000, Harte et al. 2001, He et al. 2002; see Holt et al. 2002 for a 
review). An important implication of the distribution-abundance correlation is to 
allow for the derivation of species abundance from information on species 
distribution, a downscaling process (Wu and Li, Chapters 1 and 2). Here we will 
follow this premise to derive abundance by examining the spatial distribution of 
species in landscapes based on the combinatorial theory of occupancy. 

The combinatorial theory of occupancy can date back as far as Pierre Laplace 
(Barton and David 1962) and has a long application in physics (Feller 1967). 
Laplace’s classical example of occupancy considers the following birth game. 
Assume that there are N births taking place within a year and that each birth has the 
same chance to occur in any of the 365 days. What Laplace wanted to know was 
how many days out of the 365 would have no births, i.e., the number of empty days. 
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Similarly, in statistical mechanics physicists are interested in knowing how N 
particles occupy a space composed of M small cells. The most well-known models 
that describe the number of empty cells (without particles) include Maxwell- 
Botltzmann and Bose-Einstein models. In this chapter, however, we wanted to know 
the reverse: not how many cells are empty, but how many particles are there 
provided that the number of empty cells is known. Specifically, let’s consider a real 
example illustrated in Figure 5.1a in which a 50 ha plot in a rain forest of Malaysia 
is evenly divided into 800 cells of 25 × 25 m each (Figure 5.1b). The distribution (or 

 

Figure 5.1. Example of distribution of canopy tree species Dacryodes rubiginosa in a 500 × 
1000 m tropical rain forest plot of Malaysia. (a) The actual distribution of 591 stems of the 
species in the plot. (b) The lattice representation of the species distribution with a map 
resolution of 25 × 25 m. The area of occupancy Aa1 by the species is 171875 m2. (c) The 
coarse-scale lattice map generated by aggregating four adjacent cells in (b) with a map 
resolution of 50 × 50m. The area of occupancy Aa2 by the species is 325000 m2. 
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occurrence map, binary map, or atlas) is so generated that a cell is grey if the species 
is present and white if it is absent. Thus, a grey cell has at least one tree, but can 
have many more. Given such a map, we want to find out how many trees there are; 
of course, for Figure 5.1 we already know the number of trees and their locations in 
the plot. Note that real distribution maps are usually not as regularly bordered as 
Figure 5.1, but, for simplicity, statistical derivations dealt with in this study will be 
based on a map with assumed regular borders. It will become clear later that the 
models so derived are equally applicable to irregular maps. 

In its mathematical form, a distribution can be defined as 

x = x1, x2,..., xM( ),         (5.1) 

where the subscript (1, 2, …, M ) is a (spatial) location index for the M cells, xi is 
represented by either 0 or 1, depending on the absence or occurrence of the species 
in the cell. The vector x can be a random or systematic sample from a study area, or 
an exhaustive sample (census) that covers entire area of interest as illustrated in 
Figure 5.1b. Although random or systematic sampling is important, this study 
concentrates on exhaustive sampling.  

In Equation 5.1, when xi = 1, we know for sure that there is at least one 
individual occurring in that cell. Therefore, for an observation x, we know that there 
are at least xi∑  individuals occurring in the M cells. But how many are actually 
there? This chapter was designed to answer this question. The reminder of the 
chapter is organized into three sections:  

(1) We start from a classical occupancy model to derive an abundance estimate 
by assuming that the individuals of a species are randomly and 
independently placed in space. The classical occupancy estimate was 
evaluated by simulations and real data from a tropical rain forest of 
Malaysia.  

(2) Following the same approach for the classical occupancy model, we derive 
an abundance estimate by assuming contagious distribution of the 
individuals. The estimate was also evaluated for the same data from the 
tropical rain forest.  

(3) We show the connection of the estimates to species detectability in 
population sampling and derived a variance estimate to quantify uncertainty 
in detectability. 

5.2 OCCUPANCY MODELS OF RANDOM PLACEMENT 

5.2.1 The Classical Occupancy Model 

The individuals of a species in an area can be distributed in many ways, which range 
from aggregated to regular patterns. Different spatial distributions result in different 
occurrence maps (Equation 5.1), even though the number of occupied cells may 
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remain the same. In total, there are 
M
m
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

 or 
M
u
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

 possible maps for xi = m
i=1

M
∑  and 

u = M – m, where m is the number of occupied cells, u is the number of empty cells. 
Figure 5.2 shows an example for M = 4, m = 2. Amongst these maps, the simplest 
case arises when all N individuals of a species are randomly distributed in a study 
area, A. This is equivalent to the situation of N individuals randomly placed into the 
M cells that comprise the area. Several models can be used to describe this random 
placement. In the statistical literature they are known as the “classical occupancy 
model” (Barton and David 1962, Kolchin et al. 1978). 

 

Figure 5.2. Six possible maps of distributions for M = 4, m = 2 occurrences. Location index  
s = (1, 2, 3, 4) is shown in the upper left map. 

In the classical model, a species with N individuals is assumed to be randomly 
and independently distributed among the total number of M cells. The cell size is 
denoted as a, which defines the resolution of a map, or is called scale or grain in 
landscape ecology. It is clear that the probability that an individual falls in a given 
cell is simply 1/M or a/A and the number of organisms, n, in a given cell follows a 
binomial distribution, i.e., 

1 1( ) 1( ) ( )n N nN
p n

n M M
−⎛ ⎞⎟⎜= ⎟ −⎜ ⎟⎜ ⎟⎜⎝ ⎠

,  n = 0, 1, 2, ..., N.     (5.2) 

This model can be equally written in terms of areas as 

p(n) =
N
n
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 
(a

A )n (1−
a
A )N − n , n = 0, 1, 2, ..., N.     (5.3) 
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A realization of Equation 5.2 or Equation 5.3 produces an occurrence map as 
given in Equation 5.1. What we are interested in here is to estimate N given the 
occupancy in the map. The problem can be thought of as equivalent to placing N 
balls randomly and independently into M cells. Some cells will end up with no balls, 
some will have one ball, and others have several balls.  

It can be shown that the random placement process will lead to the moment 
estimate of abundance N as (see the Appendix) 

ˆ N =
ln(1 − m / M )
ln(1 −1/M )

         (5.4) 

with approximate variance given as 

V(N) =
V(u)

[M (1 – 1/M ) N ln(1 – 1/M )]2
      (5.5) 

where V(u) is given by Equation A5 in the Appendix. 
Equation 5.4 relates abundance N to the number of occupied cells m and the total 

number of cells M. A more desirable expression that explicitly links N to mapping 
scale a can be readily obtained as  

ˆ N =
ln(1 − Aa / A)
ln(1 − a / A)

         (5.6) 

where Aa is the total occupied area (= a × m), A is the total study area (= a × M).  
While Equation 5.4 was derived from regularly shaped maps, Equation 5.6 is 

suitable for both regular and irregular maps because the data on areas are used. 
Equation 5.6 was obtained previously by He and Gaston (2000) by a different 
approach and the derivation here is more rigorous. The variance given by He and 
Gaston (2000) is incorrect although it differs from Equation 5.5 by a small term. 

The estimate given in Equation 5.6 can be further simplified for abundant species 
distributed in a large study area. It is easy to show that, when the study area A → ∞ 
(or the total number of cells M → ∞), Equation 5.6 becomes 

ˆ N = −
A
a

ln(1 −
Aa
A

) .        (5.7) 

Its variance can be similarly derived from Equation 5.5 when N>>M as 

V ( ˆ N ) =
A
a

exp(
Na
A

) .        (5.8) 
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5.2.2 Simulation Test and Applications 

5.2.2.1 Simulation 

The performance of Equation 5.4 or 5.6 was evaluated by generating a random 
distribution of a known number of “trees” (points) in an area. We simulated the 
distribution of “species” in a study plot of 500 × 1000 m. Three “species” were 
generated. The first one had 500 “trees” that were randomly located within the study 
plot. The plot was then divided into a lattice with scale a = 50 × 50 m to create a 
distribution map. Based on this map, the number of trees was estimated by using 
Equation 5.4. The simulation was repeated 100 times. The estimates are shown in 
Figure 5.3 (Species 1), along with the upper and lower bounds of the 95% 
confidence defined by N ± 1.96 V ( ˆ N ) , where V ( ˆ N )  is given by Equation 5.5. 

The second “species” had 2000 “trees”, but this time the distribution was 
converted into a map with scale a = 25 × 25 m (as illustrated in Figure 5.1b). The 
third “species” had 5000 “trees” in a map at the same scale as for the second species. 
The results in Figure 5.3 show that Equation 5.4 estimates the abundances 
reasonably well for the randomly and independently distributed species. It appears 
that with the increase in N the approximate 95% confidence intervals constructed 
using the asymptotic variance of Equation 5.5 are too liberal when N >> M. 

There was no estimation in the second simulation for species 3 (see the last table 
in Figure 5.3). This happens when a species fills up the entire area of a study. In this 
case, m = M, there is no solution to Equation 5.4. 

5.2.2.2 Applications 

We now apply Equation 5.4 to estimate the abundances of tree species in a lowland 
rainforest of Malaysia. The forest is located in the Pasoh Forest Reserve of Malaysia 
(2°55' N, 102°18' W). A 50 ha rectangular plot (500 × 1000 m) was initially 
established in 1987 and the census was repeated in 1990 and 1995 (Manokaran et al. 
1999). The data from the 1995 census were used in this study. In each census, all 
free-standing trees and shrubs with diameter at breast height ≥ 1 cm were located by 
geographical coordinates on a reference map, and identified to species. In the 1995 
survey, there were a total of 378224 trees belonging to 824 species. The most 
abundant species had 10470 individuals. Figure 5.1a is the distribution for one of the 
824 species. The spatial patterns of the species surveyed in1990 were analyzed by 
He et al. (1997) which showed that about 80% of the species were aggregated, 20% 
had random distributions, and only one displayed a regular distribution. Because the 
abundance of each species was known, these census data allowed us to test the 
models that we developed. 

Thirty-five of the 824 species were selected for analysis to represent the 
abundance range and spatial distribution patterns of the forest. The observed (true) 
abundances for the 35 species are listed in Table 5.1 together with the areas of 
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be read from Table 5.1 for a given scale a. Substitute these three values into 
Equation 5.6, the abundance for each species could be estimated, and its 
corresponding variance can also be obtained from Equation 5.5. The results are 
shown in Table 5.2. The results for the simplified Equation 5.7 at a = 25 × 25 m are 
also presented in Table 5.2. It is clear that the simplified Equation 5.7 differs very 
little from Equation 5.6 even for rare species. 

Figure 5.3. Estimation of abundance for three simulated “species” in a 500 × 1000 m  plot. 
The figures on the left-hand column are the outputs of 100 simulations for each species. The 

ˆ( ) ,  where ˆ( )V N
on the right-hand column are the outputs o f the first five simulations for each species. 

occupancy at four scales (a = 10 × 10, 12.5 × 12.5, 25 × 25 and 50 × 50 m). Note 
that the total area of the study A is 500000 m2 and that the area of occupancy Aa can 

N ± 1. 96 V N  is given by Equation 5.5. The tables dashed lines are  
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Table 5.1. Observed (true) abundance for 35 of 824 species in the Pasoh plot, and their area 
(m2) of occupancy at four scales: 10 × 10, 12.5 × 12.5, 25 × 25 and 50 × 50 m. 

 Cell Size (m2)  
 Species 

 
 Abundance 

10 × 10 12.5 × 12.5 25 × 25 50 × 50 
1 1 100 156.25 625 2500 
2 10 900 1562.50 5000 15000 
3 13 1300 2031.25 8125 32500 
4 22 1900 2968.75 11250 45000 
5 27 2600 4062.50 15625 55000 
6 30 2900 4531.25 14375 32500 
7 50 5000 7500 27500 90000 
8 98 9300 14375 51250 155000 
9 115 9700 15156.25 45625 130000 

10 122 11700 18437.50 65625 202500 
11 155 14600 22031.25 79375 235000 
12 157 14700 22812.5 83750 255000 
13 177 16700 25312.50 82500 245000 
14 207 19700 30468.75 105625 290000 
15 302 27600 42031.25 140625 322500 
16 325 30800 46406.25 158125 385000 
17 333 31100 47968.75 159375 362500 
18 384 33200 50312.50 162500 377500 
19 405 36100 55156.25 175625 395000 
20 490 44700 64687.50 195000 390000 
21 520 43900 63750 161875 302500 
22 522 45000 68593.75 199375 407500 
23 537 47300 70625 203125 357500 
24 742 63900 92968.75 262500 445000 
25 874 72900 109062 290000 477500 
26 891 74600 110469 286875 462500 
27 1371 111400 156875 353750 482500 
28 1419 115200 166562 376250 497500 
29 2190 168000 231094 428750 492500 
30 2793 166200 222812 410625 490000 
31 3181 190300 246094 421250 492500 
32 6031 308200 371562 478125 495000 
33 7202 173400 200000 287500 392500 
34 8571 186400 207656 275000 340000 
35 10470 383300 433750 496875 500000 
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Table 5.2. Estimated abundances for the 35 species in Table 5.1 using random placement 
Equation 5.6 and its simplified Equation 5.7 at four scales. The last row measures the 
“goodness-of-estimation” ∆ of Equation 5.9. 

Cell Size (m2) 10 × 10 12.5 × 12.5 25 × 25 50 × 50 
Species True Equation 

 5.6 
Equation 

 5.6 
Equation 

5.6 
Equation 

5.7 
Equation  

5.6 
1 1 1 1 1 1 1 
2 10 9.0 10.0 8.0 8.0 6.1 
3 13 13.0 12.0 12.1 13.1 13.4 
4 22 19.0 19.1 18.2 18.2 18.8 
5 27 26.1 26.1 25.4 25.4 23.3 
6 30 29.1 29.1 23.3 23.3 13.4 
7 50 50.3 48.4 45.2 45.3 39.6 
8 98 93.9 93.3 86.5 86.5 74.0 
9 115 97.9 98.5 76.5 76.6 60.1 

10 122 118.4 120.2 112.5 112.6 103.6 
11 155 148.2 144.2 138.2 138.3 126.7 
12 157 149.2 149.4 146.6 146.7 142.3 
13 177 169.8 166.2 144.2 144.3 134.3 
14 207 201.0 201.2 189.7 189.8 173.1 
15 302 283.9 280.9 264.0 264.2 206.6 
16 325 317.9 311.7 303.9 304.1 293.2 
17 333 321.1 322.7 306.9 307.1 257.6 
18 384 343.5 339.3 314.2 314.4 280.6 
19 405 374.7 374.0 346.0 346.2 311.4 
20 490 468.2 443.3 395.2 395.4 302.1 
21 520 459.4 436.4 312.8 312.8 185.3 
22 522 471.5 472.1 406.7 407.0 336.6 
23 537 496.8 487.2 416.8 417.0 250.4 
24 742 683.6 658.2 595.2 595.6 440.4 
25 874 787.9 787.3 693.6 694.0 618.7 
26 891 807.8 798.8 681.8 682.2 516.8 
27 1371 1260.2 1204.7 982.8 983.4 668.8 
28 1419 1309.3 1296.3 1116.4 1117.1 1057.0 
29 2190 2047.2 1984.5 1557.8 1558.7 837.8 
30 2793 2020.1 1887.4 1376.6 1377.4 780.5 
31 3181 2394.8 2168.1 1477.7 1478.7 837.8 
32 6031 4790.3 4348.6 2501.9 2503.4 918.7 
33 7202 2129.2 1634.4 684.1 684.5 306.7 
34 8571 2332.2 1717.1 638.4 638.8 227.3 
35 10470 7274.3 6466.7 4057.6 4060.1  –  

∆  1.206 1.368 1.996 1.994 2.649 
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To measure the “goodness-of-estimation”, we define 

∆ = b2 ( ˆ N i )∑           (5.9) 

where b( ˆ N i ) =
ˆ N i − Ni

Ni
 for species i. 

The results in Table 5.2 show that except for those rare species there is 
considerable underestimation and that the underestimation becomes stronger with 
the increase of scale as evident from the measurement of ∆ of Equation 5.9 (see the 
last row of Table 5.2). This is expected because few species in nature would present 
a truly random and independent distribution. Except at very low abundance, 
individuals of most species are typically aggregated. The underestimation of the 
random placement Equation 5.6 is largely due to the aggregation of a species, 

dis

independently distributed, Equation 5.6 is biased. To reduce the bias, we need a 
method to take account of species aggregation. 

5.3 OCCUPANCY MODELS OF CONTAGIOUS PLACEMENT 

5.3.1 The Contagious Occupancy Model 

Aggregated pattern arises when the distribution of individuals of a species among 
cells is produced by contagious processes. In this situation, the assumption of 
randomness and independence no longer holds; instead, a cell that already has an 
individual would be more likely to contain more individuals, and an occupied cell 
would be more likely to be adjacent to another occupied cell (and vice versa for 
empty cells). Barton and David (1959) show that contagious processes can either be 
modeled by a negative hypergeometric distribution arising from a Polyà urn model 
(they termed this model as pseudo-contagious process) or by a model of true 
contagion in which cells to be occupied are first selected at random and the number 
of individuals in the selected cells are then determined as realizations of 
logarithmically distributed random variables. It is well known that such a process 
generates the negative binomial distribution. For this latter model it can be shown 
that the moment estimate of abundance N of a species is (see Appendix B) given by 

ˆ N = Mk 1 −
m
M

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

−1/ k
−1

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
       (5.10) 

where k is the aggregation parameter of the negative binomial distribution that takes 
positive values. Aggregated species have small k while random species have large k. 
Equation 5.10 can also be expressed in terms of areas as 

-(overestimation would be more common if a species is actually at regular 
tribution). In other words, if the individuals of a species are not randomly and 
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ˆ N =
Ak
a

1 −
Aa
A

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

−1/ k
−1

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

       (5.11) 

with approximate variance (see Equation B5)  

V ( ˆ N ) = 1 +
N

Mk
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2k+ 2
V (u)         (5.12) 

where u is the number of empty cells and V(u) is given by Equation B4 in the 
Appendix. 

5.3.2 Test for the Contagious Abundance Estimate 

Given a distribution map, there are two unknown parameters N and k to be estimated 
in Equation 5.10 or 5.11. To use the method of moments one would normally equate 
the observed first and second moments with their theoretical mean and variance (see 
Equation B3 and B4 in the Appendix). In this case, however, a map only has one 
single observation on u, and its variance V(u) is not available. Splitting the map to 
create more observations will not work, because there will be a new unknown 
parameter for each part of the map (the number of organisms in that part). A 
possible alternative is to group cells to produce a coarser scale map (Kunin 1998, He 
and Gaston 2000). This will lead to two equations of Equation 5.10 or 5.11 for two 
unknown variables N and k with the assumption that the aggregation parameter k 
remains the same at both scales. We realize that this assumption does not necessarily 
hold in reality (Pielou 1957, Taylor et al. 1978). However, if the difference in scale 
for the two maps is not large, this assumption may be plausible. 

From the fine-scale map we can read the area of occupancy Aa1 at scale a1. The 
second map can be produced as follows. If any of the adjacent cells at the fine-scale 
map are occupied, then the aggregated cell at coarse-scale is occupied; otherwise, it 
is left empty. The second map has a coarse scale a2 and an area of occupancy Aa2 
(see Figure 5.1c for an example). 

With the two maps so generated, N and k in Equation 5.10 can be evaluated 
numerically using, e.g., Newton-Raphson method. The estimated abundances for 35 
of the 824 species are shown in Table 5.3. The first one is calculated in terms of two 

1
2

a2

 
2

1
2

and a2 = 50 × 50 m2. The results show that Equation 5.10 works fairly well. 
Compared with the random placement Equation 5.4 in the previous section, the 
estimation is substantially improved (compared the ∆’s in the last rows of Tables 5.2 
and 5.3). Estimation for rare species (e.g., abundance ≤ 2000) appears to work 
particularly well, which is indeed the strength of the method (Equation 5.10) 

= 25 × 25 m . The second map pair is the two maps with scales at a  = 25 × 25 m  
maps: the fine-scale map with a  = 12.5 × 12.5 m  and the coarse-scale map with 
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Table 5.3. Estimated abundance for the 35 species in Table 5.1 using the contagious 
occupancy Equation 5.11 in terms of two map pairs: 12.5 × 12.5 − 25 × 25 m, and 25 × 25 − 
50 × 50 m. The last row measures the “goodness-of-estimation” ∆ of Equation 5.9. 

Species   True 12.5 × 12.5 − 25 × 25 25 × 25 − 50 × 50 
1 1 1 1 
2 10 11.0 9.1 
3 13 13.0 13.0 
4 22 19.4 18.0 
5 27 26.4 26.2 
6 30 32.1 34.0 
7 50 49.5 47.6 
8 98 96.0 91.7 
9 115 110.3 85.1 

10 122 123.1 115.9 
11 155 146.3 142.7 
12 157 150.4 148.1 
13 177 175.8 147.9 
14 207 205.4 196.3 
15 302 287.2 294.3 
16 325 314.3 307.7 
17 333 328.5 329.5 
18 384 348.9 328.0 
19 405 384.7 359.9 
20 490 463.0 446.8 
21 520 515.1 439.5 
22 522 500.8 439.8 
23 537 518.5 576.3 
24 742 683.4 687.0 
25 874 826.6 724.2 
26 891 851.0 774.8 
27 1371 1312.8 1206.3 
28 1419 1375.2 1138.1 
29 2190 2209.1 2492.7 
30 2793 2200.8 2043.2 
31 3181 2659.5 2193.3 
32 6031 6341.9 14253.4 
33 7202 4803.7 1603.1 
34 8571 9078.3 4603.2 
35 10470 8548.8 3528.3 
∆  0.542 1.920 

 

 

because the abundance information on rare species is the major concern of 
conservation.  
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abundances for rare species which are actually very simple to compute, their 
conclusions are thus unfortunately biased. 

Similar to Equation 5.4, the accuracy of the estimation of Equation 5.10 also 
depends on the scale of observation. The results as measured by ∆ of Equation 5.9 
(the last row of Table 5.3) show that the estimation becomes progressively poorer 
with the increase in the scale from the map pair of 12.5 × 12.5 − 25 × 25 m2 to that 
of 25 × 25 − 50 × 50 m2. In addition to the effect of scale on the accuracy of 
abundance estimates, the precision (i.e., the variances of Equation 5.5 and 5.12) of 
the estimates also varies with scale. Figure 5.4 shows the effect of spatial 
aggregation on the variance-scale relationship for Equations 5.5 and 5.12. At 
random distribution (Equation 5.5), variance in abundance monotonically increases 
with scale (the dashed line), while the variance of Equation 5.12 can be hump-
shaped for aggregated species. The practical implications of the variance-scale 
relationship are that sampling scale for randomly distributed species should be as 
small as possible if high precision is to be achieved, and that, for aggregated species, 
the model scales that lead to high variance should be avoided in order to achieve 
high precision. 

  

Figure 5.4. Variance-scale relationships. The dashed curve is the variance for the classical 
random placement estimate (Equation 5.5). The solid curves are the variances of Equation 
5.12 with the aggregation parameter k varying from 0.1 to 100. The plot is produced by 
setting N=500 and a from 0 to 5000. Note Equation 5.12 approaches Equation 5.5 at large k. 

It is apparent that a considerable degree of underestimation still remains for 
those very abundant species. This underestimation is also observed for abundant 
insects (Warren et al. 2003). However, in that study they did not estimate 
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Equation 5.11 is an important occupancy-abundance model in ecology (Wright 
1991, Hanski et al. 1993, Hartley 1998, He and Gaston 2000), which is typically 
written in the standard form as 

p = 1 − 1 +
Na
Ak

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

−k
         (5.13) 

where p is the proportion of occupied area, or Aa /A.  

very flexible in that many other occupancy-abundance models are its special cases 
(He and Gaston 2000, He et al. 2002). For example, it is easy to show that the 
random placement Equation 5.6 is a special case of Equation 5.11 at k = –N. 
Equation 5.13 also provides a basic tool for investigating other biodiversity patterns, 
such as species-area curves (He and Legendre 2002, He et al. 2002) and beta 
diversity patterns (Plotkin and Muller-Landau 2002).  

When used for sampling populations, occupancy p is often referred to as species 
detectability. The occupancy-abundance model (Equation 5.13) suggests that the 
detectability depends not only on the abundance of the species but also on its spatial 
distribution and the size of sampling unit. This finding is useful in sampling design. 
For instance, for a given abundance we know from Equation 5.13 that strong 
aggregation (i.e., small positive k) leads to small detectability and randomly 
distributed species (large k) have large detectability. So, in order to retain a high 
level of detectability for an aggregated species, it is necessary to use a large sample 
area (i.e., large a). Similarly, Equation 5.13 would help us calculate the size of 
sample areas for rare and common species for a predetermined detectability p. 

Another important sampling issue is that the presence of a species in a site may 
or may not be observed in the field, i.e., there is always an uncertainty associated 
with detectability. The nondetection may mean that the species is truly absent or that 
it is missed because of insufficient survey efforts or sampling errors (MacKenzie  
et al. 2002). The latter scenario will inevitably lead to underestimation of occupancy 
rates. This uncertainty in occupancy p can be quantified according to the theory of 
occupancy in the Appendix. Because p = m/M = 1 – u/M, where the number  
of empty cells u is a random variable, it is easy to show that p has a variance of 
V (p) = V (u) M 2,  where the variance V(u) is given either by Equation A5 or B4, 
depending on whether the random placement model or the contagious model is used. 
V(p) provides information on the uncertainty in the detectability. 

 

5.4 UNCERTAINTY IN OCCUPANCY AND SPECIES DETECTABILITY 

More than any other occupancy-abundance models in the literature (see Holt  
et al. 2002 for a review), Equation 5.13 unifies occupancy (p), species abundance 
(N), the spatial pattern of the species (k), mapping scale (a), and the extent of study 
area (A) into a single mathematical form. In addition, Equation 5.13 is mathematically 
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5.5 CONCLUSIONS 

Based on the discussions in previous sections, we make the following conclusions: 
(1) The widely recognized distribution-abundance macroecological pattern 

suggests that distribution and abundance of species are closely correlated so that we 
may infer about one from the other. This premise provides an essential basis for 
deriving information on abundance in terms of the distribution of species. In this 
chapter, we approached this problem by modeling the distribution of species in 
landscapes with the occupation process that N balls are placed into M cells following 
the theory of combinatorial occupancy. 

(2) Two abundance estimates were derived from the theory of occupancy. The 
first one, as given by Equation 5.6, was derived under the assumption that the N 
unknown balls are randomly and independently placed into M cells. The second 
estimate (Equation 5.11) was derived from the contagious process that generates 
aggregated distribution of species (the negative binomial distribution). The random 
placement Equation 5.6 is a special case of Equation 5.11 at k = – N. 

(3) While Equation 5.6 predicted very accurately the abundance of randomly 
placed species, it underestimated the abundance of aggregated species. Equation 
5.11 greatly improved the accuracy of the estimation for real species because it 
accounts for aggregation with the addition of parameter k. Nevertheless, both 
simulated and observed data showed that the accuracy of the estimates consistently 
decreases with scale (i.e., the mapping resolution). The underestimation is 
particularly serious for abundant species as evidenced in Tables 5.2 and 5.3. 
Similarly, high intensity of aggregation would result in a poor estimation. In the 
extreme case, if a species is so highly aggregated that all of the individuals are 
clustered in a single cell, none of the methods could differentiate this species from 
the one that has only one individual and occurs also in a single cell. 

(4) Equation 5.13 is a fundamental occupancy-abundance model that unifies 
occupancy ( p), species abundance (N ), the spatial pattern of the species (k), mapping 
scale (a) and the extent of study area (A) into a single mathematical form. The model 
suggests that occupancy (or species detectability) depends not only on the 
abundance of the species but also on its spatial pattern and the size of sample unit. 
This finding would help us understand the factors that may influence the 
detectability of species in a field survey and, thus, design the survey in order to 
maintain a desirable level of detectability (e.g., to calculate the size of sample unit). 
The derived variance for the occupancy p can be used to quantify the uncertainty in 
the detectability. 

(5) Two obvious questions need to be answered: How can we further incorporate 
the information on scale (i.e., mapping resolution) and aggregation to improve the 
estimation? What scale should be used for mapping a distribution to ensure a certain 
level of accuracy? The questions about scale appear to be more challenging. 
Answers necessarily depend on the life history properties of organisms. For 
example, for insects with small body sizes and highly aggregated distribution, a 
small mapping scale compatible with the size of the insects should be used (e.g., in 
centimeters or a few meters), while for large body trees, a relatively large mapping 
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scale may be used (e.g., in 10 or 100 meters). The underestimation caused by strong 
aggregation may be solved by some ad hoc methods. The aggregated mapping 
method used in this chapter (Figure 5.1b, c) assumed that k in Equation 5.11 was 
constant. This assumption may be relaxed by correcting the k by comparing the 
observed map with its random counterpart. 

(6) This study deals only with exhaustive survey of a distribution map as defined 
by Equation 5.1. It will also be interesting and useful to consider Equation 5.1 as a 
random sample from a distribution map. If one knows that a species is randomly and 
independently distributed, the classical occupancy estimate Equation 5.6 can be 
applied to estimating abundance in this sampling scheme. But in other situations 
where the random and independent assumption does not hold, the estimation of 
abundance is a challenging task. This is certainly an interesting problem deserving 
further investigation. 

APPENDIX: DERIVATION OF OCCUPANCY-ABUNDANCE MODELS 

A. The Random Placement Occupancy Model 

Assume a distribution map of m occupied cells out of M total number of cells. Let u 
(= M – m) be the number of empty cells, and let Ei  be the event that the ith cell is 
empty and E i  be the event complementary to Ei . Then the probability that one 
particular, say the first, cell is empty is p(E1) = (1 − 1

M )N  which is equivalent to n 
= 0 in the binomial distribution Equation 5.2, or obtained by replacing A in Equation 
5.3 by a × M. 

The probability that two particular, say the first two, cells are empty is 
p(E1E2 ) = (1 − 2

M )N . This probability can again be derived from Equation 5.2 with 
n = 0 by replacing 1 by 2 since there are two empty cells, or by replacing a by 2 × a 
in Equation 5.3. Similarly, the probability that u particular cells are empty is 
p(E1...Eu ) = (1 − u

M )N . 

Here we shall not be interested in a particular set of cells but the number of u 
empty cells given N balls being placed into M cells. From Figure 5.2, we know there 
are  

  
 
  
 possible combinations for u (out of M ) empty cells. Thus the probability 

that there are u empty cells is p(u) =
M
u
⎛ 
⎝  

⎞ 
⎠  

p(Ei1 ...Eiu
E ju

...E j M −u
) . It is equivalent to 

p(u) = p(E1...EuE u +1...E M ) .       (A1) 

M
u
⎛
⎝

⎞
⎠

M
u
⎛
⎝

⎞
⎠
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Because E1, …, Eu , E u +1, …, E M  are independent events, by some 
probability operations, we arrived at 

p(E1...EuE u+1...E M ) = 1 −
u
M

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

N
−1( )i M − u

i
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ i= 0

M − u
∑ 1 −

i
M − u

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

N

                                 = −1( )i M − u
i

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ i= 0

M − u
∑ 1 −

u + i
M

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

N
.

  (A2) 

Finally, the probability that there are u empty cells given N balls randomly and 
independently placed into M cells is derived by substituting Equation A2 into 
Equation A1, i.e., 

p(u) =
M
u

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

−1( )i M − u
i

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ i= 0

M − u
∑ 1 −

u + i
M

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

N
,  for u = 0, 1, …, M.  (A3) 

The factorial moment of the number of u empty cells of the probability mass 
function equation A3 is known to be (Johnson et al. 1993, p. 415) 

λ[r] =
M !

(M − r)!
(1 −

r
M

)N , 

where λ[r] = E(
u!

(u − r)!
) . Thus the expectation and variance of the number of empty 

cells are 

E(u) = λ[1] = M (1 −
1
M

)N         (A4) 

2
[2]

2 2

( ) ( ) ( )

2 1 1       ( 1)(1 ) (1 ) (1 ) .N N N

V u E u E u

M M M M
M M M

+

+ −

 

 (A5) 

The variance for the number of occupied cells m is the same as Equation A5 for a 
given map with fixed M because V (u) = V (M − m) = V (m) . 

Given an occurrence map, it is obvious that the moment estimate of E(u) is 
simply M - m. Hence, the estimate of N can be solved from Equation A4 as 

ˆ N =
ln(u /M )

ln(1 −1/M )
=

ln(1 − m /M )
ln(1 −1/M )

.       (A6) 

λ=

= −−−−−

−
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The approximate variance of the abundance estimate N̂  in Equation A6 can be 
easily obtained by applying the delta method to Equation A6, i.e., 

V ( ˆ N ) =
∂( ˆ N (u))

∂u
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

u= E(u)

2

V (u) ,       (A7) 

where V(u) is as Equation A5 and N̂  is as Equation A6. The derivative is evaluated 
at E(u) of Equation A4. The variance so obtained is 

V ( ˆ N ) =
V (u)

M (1 −1/M )N ln(1 −1/M )
2 .       (A8) 

B. The Contagious Occupancy Model 

For the contagious process that generates the negative binomial distribution, Barton 
and David (1959) show that the distribution of the number of empty cells u has 
probability mass function: 

p(u) =

M
u

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

kM + N −1( )(N ) (−1) i M − u
i

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ i= 0

M − u
∑ kM − k(u + i) + N −1[ ](N ) ,  (B1) 

where i( j ) =
i!

(i − j)!
, k is the aggregation parameter of the negative binomial 

distribution, N is the (unknown) number of organisms of a species distributed in a 
defined area with size A, M is the total number of cells dividing A. 

The rth factorial moment of u is 

λ[r] = M (r) kM −1( )! kM − kr + N −1( )!
(kM + N −1)!(kM − kr −1)!

      (B2) 

from which the expectation and variance of u can be found. However, Barton and 
David (1959) show that, even for relatively small M and N, the pmf given by 
Equation B1 can be well approximated by a normal distribution with mean and 
variance: 

E(u) = M 1 +
N

Mk
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

−k
        (B3) 

⎡
 

⎣  ⎢
 ⎤

⎦
⎥
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V (u) = Me−2µ eµ −1 − µ( )       (B4) 

where µ =
N
M

.  

Given a binary map, it is straightforward that the observed first moment estimate 
of E(u) is M – m. Therefore, from Equation B3 the moment estimate of N, Equation 
5.10, is resulted. The variance of the estimate ˆ N  of Equation 5.10 can be derived 
from Equation B3 and Equation B4 using the delta method following Equation A7: 

V ( ˆ N ) =
1

M 2 1 +
N

Mk
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2k+ 2
V (u)      (B5) 

where V(u) is given by Equation B4.  
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