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CHAPTER 13 

CAUSES AND CONSEQUENCES OF LAND USE CHANGE  
IN THE NORTH CAROLINA PIEDMONT: 

The Scope of Uncertainty 

DEAN L. URBAN, ROBERT I. MCDONALD, EMILY S. MINOR, 
AND ERIC A. TREML 

13.1 INTRODUCTION 

The Triangle Landscape Change Project is an on-going effort at regional assessment 
centered on the Triangle region of North Carolina, a region framed by the cities of 
Raleigh, Durham, and Chapel Hill. Like many regions of the eastern United States 
and elsewhere, the Triangle has an agricultural and industrial past, while its current 
status is defined by high-tech industries of Research Triangle Park, three major 
universities, and a growing retirement community. The Triangle is one of the fastest-
growing regions in the United States, with some portions experiencing 30-50% 
population growth in the 1990-2000 decade (Triangle J Council of Governments, 
public comm.).  

As a case study for the patterns and consequences of land use change, the 
Triangle is compelling because its period of explosive growth is rather recent and 
thus coincides with the period of record of satellite imagery. The availability of 
imagery is augmented by the inclusion of Duke Forest as a NASA SuperSite; 
specialized imagery flown for the Forest also encompasses much of the larger 
region. In addition, a wealth of ancillary ground-based data are available (including 
the Duke Forest data archives, with monitoring data originating in the 1930’s), and 
so there is a rich geospatial data infrastructure to support large-scale studies of 
landscape pattern and landscape change.  

The Triangle Landscape Change Project embraces a set of related research 
themes under the umbrella of land use/land cover change (Figure 13.1). Land use 
pattern provides a framework and template in which we are studying various 
consequences of changing landscape pattern. These themes include forest dynamics, 
forest bird communities, and watershed impacts. These themes are coupled in that 
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forests affect watershed hydrology via transpiring and intercepting leaf area as well 
as via protective ground cover typically associated with intact forests. Forests also 
provide the template of bird habitat, in terms of forest composition and structure, 
while land cover provides a larger context via edge effects on nesting success and 
potential dispersal limitations for habitat patches isolated by human land uses. 
Coincidentally, forest bird communities are coupled to watershed impacts indirectly 
because many forests are preserved as riparian buffers and these buffers represent a 
significant amount of forest habitat for wildlife.  

Figure 13.1. Schematic of linkages among research themes in the Triangle Landscape 
Change Project. 

We believe that the Triangle Landscape Change Project is typical of many 
large-scale programs in integrated assessment, which increasingly rely on a shared 
geospatial data infrastructure and various models to interpolate field data and 
extrapolate the assessment to the regional scale. Two implications of this approach 
are that the projects within the larger program tend to be loosely coupled (i.e., 
studies done by people with different objectives), and that there is no single model 
that represents the program (i.e., there may be several models). Often, the end-users 
of the models are not the people who developed the models initially, as illustrated by 
the increasingly common use of institutionalized models such as Century (Parton  
et al. 1987), BASINS (US EPA 2001), and other models. These aspects of integrated 
studies pose some challenges when we attempt to account for uncertainty in the 
model projections.  

Our goal in this chapter is to explore issues related to uncertainty encountered 
when attempting to conduct integrated, regional-scale assessments using coupled 
models. Specifically, we will (1) describe sources of uncertainty in scaling to 
regional applications with increasing reliance on remotely sensed data, and illustrate 
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how these sources of uncertainty are often “lost in translation” in loosely coupled 
applications in integrated assessments; and (2) explore methods for propagating 
these sources of uncertainty and communicating this information to a client audience 
of fellow scientists as well as city and regional planners.  

We will focus on the wood thrush (Hylocichla mustelina) as a case study and 
illustration. The wood thrush is an example of an area-sensitive forest bird species, a 
species that seems to prefer intact woods and is sensitive to nest predation and brood 
parasitism by cowbirds (Molothrus ater) (Brittingham and Temple 1983, Roth and 
Johnson 1993, Hoover et al. 1995). Thrushes have recently been exhibiting a 
regional decline in Triangle-area Breeding Bird Censuses and are consequently a 
species of some concern (Sauer et al. 2002). For our present purposes, the goal of 
forecasting regional patterns of abundance of the wood thrush is appealing because 
this represents quite a stretch for our data (indeed, perhaps the worst possible case), 
and thus introduces a number of issues related to uncertainty and error propagation 
in integrated assessment.  

13.2 SCALING CONSIDERATIONS AND STRATEGY 

Like many of our peers, we are interested in scaling our understanding of ecological 
processes and patterns at small scales – the scale of field studies or detailed 
simulation models – to their implications at the much larger scales of resource 
management and policy decisions (Christensen et al. 1996). The mismatch in scale 
between science and management has led to a variety of scaling strategies, often 
aimed at interpolating and extrapolating fine-scale information over larger extent 
(Peters et al. 2004). 

Our approach to this scaling dilemma has been to pursue an explicitly two-
scaled approach to ecological modeling. At a fine scale, we develop detailed (often 
spatially explicit) simulators geared to interact directly with field studies; these 
models are often developed in a reciprocal iteration between model analysis and 
model-guided field studies (Urban 2000, Urban et al. 2002). To extend the 
understanding garnered at fine scales to a much larger spatial extent, we build new 
models as statistical summaries of the detailed simulators. These new models 
capture the essential behaviors of the simulators, but at much coarser resolution and 
consequently, over much larger areas. The statistical models are essentially models 
of the simulators, or meta-models (Acevedo et al. 1995, Urban et al. 1999). In the 
case of forest dynamics, the detailed simulators have been forest gap models, while 
the meta-models have taken various forms including semi-Markovian state transition 
models, stage-structured matrices, or cellular automata (Urban et al. 1999). In each 
case, the paired models (detailed simulator plus meta-model) provide a toolkit that 
allows us to work at either fine or coarse scale, while preserving a common 
conceptual and parametric framework. 

In the case of animal metapopulations, our approach has been conceptually 
similar although the details vary. Our approach to forecasting regional abundance 
patterns for wood thrushes and other forest birds entails two linked approaches. Our 
ultimate goal is to develop macroscopic proxies for metapopulation dynamics, based 
on graph theory (Urban and Keitt 2001). Graph theory is compelling for such 
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applications because it can incorporate the richness of species life-history traits 
(habitat affinities, dispersal behavior) while still being immensely efficient 
computationally. This latter concern is important because our study area – like many 
applications in regional scale conservation practice – entails thousands of potential 
habitat patches and it would be logistically infeasible to address these through field 
studies or detailed simulation modeling. To infuse as much ecology as possible into 
this macroscopic approach, however, we are conducting preliminary assessments 
based on a very detailed individual-based simulator of metapopulation dynamics 
(modified from Urban and Shugart 1986). Our initial efforts suggest that a graph-
theoretic model can capture the essentials of the detailed simulator, while allowing 
us to work with extremely large and spatially complex landscapes. At issue is the 
question whether this detailed simulation approach can be defended, given the very 
real potential that error propagation might overwhelm any insights garnered from 
the detailed model.  

13.3 SOURCES AND SCOPE OF UNCERTAINTY 

One conventional definition of sources of uncertainty identifies four components of 
error in ecological models (reviewed by Gardner and Urban 2003, Peters et al. 
2004). These include: (1) measurement error (or observation error) associated with 
the data used to build or parameterize the model; (2) model error (or model 
misspecification) associated with the selection of state equations or the structure of 
the model; (3) estimation error associated with fitting the parameters for the model; 
and (4) process error, due to stochastic processes beyond the scope of the model 
(e.g., inter-annual variation in climate as an influence on recruitment or survivor-
ship). In practice, these sources are reasonably straightforward to identify for simple 
models such as regressions, although even in this case estimation error is partially 
linked to model error and measurement error. As we will show, these definitions are 
not as satisfying for more complicated simulations, especially in integrated 
assessments where the total (cumulative) error in one model is subsumed into, or 
lost from, a coupled application. For example, in our case study there are 
complexities and associated uncertainty in land cover classification, forest 
characterization, and habitat modeling that are subsumed into what might be labeled 
“measurement error” in the metapopulation model. Similar instances will become 
apparent in the following illustrations. 

In general, this introduces the notion of scope in defining model uncertainty. By 
scope, we refer to the tendency for sources of uncertainty or error to be recognized 
or ignored, depending on the specific focus of any single component of a larger 
integrated project. Our use of the word scope parallels its connotation in computer 
programming, to the extent that local functions might not be aware of parameters or 
variables elsewhere in the program; reciprocally, variables internal to a function 
might be invisible to the larger program. Thus, in our case the uncertainty inherent 
to image classification is well recognized by the colleague who was primarily 
responsible for performing these analyses; but these might be lost on a secondary 
consumer of the results of these analyses. As noted previously, the complicated 
result of one component of the project (“model output” in its own right) becomes 



 UNCERTAINTY IN LAND USE CHANGE MODELING 243 

 

“input data” for the next person in the chain. As ecological applications increasingly 
are integrated efforts by large research teams, this potential for error propagation 
within and across projects is an especially compelling technical issue.  

Given the rather fuzzy definitions of sources of uncertainty, it might be equally 
useful to distinguish sources that are inside as compared to outside a model. For 
example, once implemented as code, a model is reasonably well contained, with its 
assumptions and algorithms known, hence the uncertainty or potential error 
stemming from these is also knowable. By contrast, data used as initial or bounding 
conditions (e.g., a habitat map in the case of a population model) or for para-
meterization (e.g., demographic rates) can be gathered or estimated independent of 
the model itself (Botkin 1993). These data have their own intrinsic uncertainty (e.g., 
measurement or estimation error), but they might also induce further error as they 
interact with the model. In a sense, the distinction of whether a source is inside or 
outside a model also defines its accessibility to a client user of the model. For 
example, the specification of a dispersal algorithm in a metapopulation model might 
be well described, but a client user rarely has the capability to alter the algorithm to 
assess the uncertainty associated with that or an alternative algorithm; the end-user 
can only manipulate data and inputs external to the model. This is important because 
the conventional framework for uncertainty analysis (reviewed below) can only  
be extended to parameters or model components that can be freely varied by the 
modeler, and for which the error distribution (or range of variability) can be 
estimated.  

One common approach to model uncertainty and sensitivity analysis uses 
regression as the framework (Gardner 1984, Gardner et al. 1981, Haefner 1996; also 
see Li and Wu, Chapter 3). In this, the model is driven by a set of input parameters 
x, each element xi of which has an error distribution (typically presumed normal). 
The model is run in Monte Carlo fashion and, for each iteration, a stochastic set of 
input parameters is generated by sampling from the error distribution of each 
parameter in turn (i.e., drawing a random parameter value from the mean ± 1 SE). 
For each iteration, a selected output variable is retained along with the input 
parameters for that run. This is repeated for a large number of runs. The analysis 
consists of regressing the output variable on the input parameters. A parameter’s 
uncertainty is indexed by its partial explanatory power in the regression (partial R2), 
a direct measure of the extent to which uncertainty in the parameter maps onto 
uncertainty (variability) in model output. For the sake of clarity, note that this same 
approach is used for sensitivity analysis, but in this case each parameter is perturbed 
randomly by some arbitrary amount – say 10% of its nominal value. A parameter’s 
sensitivity is indexed as its (standardized) partial regression slope: a measure of how 
much model output changes given a slight change in the input parameter. A 
parameter can have high uncertainty only if it has high sensitivity relative to its 
estimation error.  

Clearly this regression approach to model uncertainty is awkward for model 
inputs that cannot be provided as a mean and standard error. It is difficult enough for 
Boolean or categorical variables (e.g., open- versus cavity-nesting bird species); for 
elements such as dispersal algorithms, the approach must be modified so that these 
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inputs can be assessed. This is not complicated – it merely requires that the 
framework be relaxed somewhat – and it still relies on Monte Carlo simulations 
using a variety of model configurations.  

13.4 CASE STUDY: FORECASTING WOOD THRUSH ABUNDANCE 
PATTERNS 

As part of an exercise in forecast evaluation, Minor et al. (unpublished manuscript) 
attempted to assess the implications of various sources of uncertainty on the 
precision of predictions made with an individual-based metapopulation simulator. 
The illustrations provided here are extracted from their larger analysis. The basic 
steps involved in forecasting wood thrush abundance patterns are intuitively 
straightforward: (1) classify land cover for the region, masking out nonforest 
habitats; (2) predict forest stature and gross composition to aid in predicting 
potential wood thrush habitat; (3) classify potential wood thrush habitat (i.e., 
“habitat” versus “nonhabitat”); and (4) simulate thrush metapopulation dynamics for 
this habitat mosaic. 

As we shall illustrate, these simple steps invite a frustrating variety of potential 
sources of error or uncertainty. Our task is to identify and isolate these sources of 
uncertainty.  

In this illustration, we hold to two presumptions: (1) the wood thrush project is 
loosely coupled to other components of the larger research agenda (i.e., this 
application is not conducted simultaneously with other tasks, and some information 
about uncertainty is lost in the chain of custody), and (2) the metapopulation model 
itself is not accessible to the end-user (i.e., we will not alter the code, and will need 
to frame the analysis in terms of elements accessible through parameterization). For 
purposes of illustration, we focus here on four components of uncertainty selected to 
represent the range of these sources and their interactions. First, we will consider 
alternative definitions of potential wood thrush habitat. This habitat map represents a 
series of analyses and models, but is provided to the metapopulation model as 
boundary condition “data.” As model error, we will accept the gross structure of the 
metapopulation model as plausible, and focus instead on the implementation of bird 
dispersal between habitat patches. As one source of estimation error, we will 
consider the impacts of the uncertainty associated with our best estimate of wood 
thrush clutch size. We also will consider the impact of edge effects on nesting 
success, in effect an influence on net fecundity. Maximum dispersal range represents 
the third source of estimation error. Finally, we will consider process error as the 
sum of the main stochastic processes in the simulator: variation in clutch size, 
mortality, and dispersal (each implemented on a per-bird, per-event basis). We now 
consider the four steps to forecasting thrush populations in turn. 

13.4.1 Land Cover Classification 

We have compiled a time series of anniversary-dated winter/summer pairs of 
Landsat Thematic Mapper imagery. The images span the years 1986-2001 on 
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roughly a 3-year interval, depending on the availability of high-quality (cloud-free) 
images. Following radiometric and geometric rectification, the images were 
subjected to a supervised maximum-likelihood classification using high-resolution 
digital airphotos to identify training samples. Because the distribution of spectral 
values did not meet assumptions of multivariate normality, the classification was 
conducted using log-transformed spectral values. The classification was collapsed 
into 7 land cover types: (1) developed, (2) deciduous forest, (3) evergreen (pine) 
forest, (4) mixed forest, (5) sparse vegetation (agriculture, lawns), (6) shallow water, 
and (7) deep water. Because our land use change model (under development) 
considers land cover at the scale of a pixel (30-m cell) within the context of land use 
defined at the scale of the parcel, this simple classification scheme is sufficient for 
our purposes. The classification is reasonably robust; more importantly for our 
purposes, the classification provides posterior probabilities of membership in each 
land cover class, for each pixel of the image. Thus, we have direct estimates of the 
uncertainty of the land cover classification – uncertainties that might be inherited by 
subsequent applications that make use of the classified land cover maps. In this 
illustration, however, the applications are loosely coupled and what is conveyed 
from the land-cover classification project is simply a land cover map for further 
processing – the details about classification error are beyond the scope of the next 
stage.  

13.4.2 Forest Stature and Composition 

Using the land cover as a generous mask, we then predicted gross forest composition 
and structure as basal area of hardwoods and pines. In this, we used the 
winter/summer difference in greenness to separate deciduous hardwoods from 
evergreens (almost entirely pines in this region). Basal area estimates were derived 
from long-term sample quadrats archived in georeferenced form in the Duke Forest 
database. Basal area of hardwoods and pines was regressed separately on spectral 
values. The regressions were highly significant (R2 = 0.54, P < 0.001 and R2 = 0.73, 
P < 0.001, respectively). Importantly, because these predictions were by regression 
we can retain the prediction error for each component of forest stature. Thus, it is 
possible to map not only the regional extrapolation of hardwood basal area, but also 
the associated uncertainty. Again, however, these detailed measures of uncertainty 
are lost in translation; we have access to predicted maps of forest stature (basal area) 
for pine and hardwood components.  

13.4.3 Potential Wood Thrush Habitat Classification 

We should confess at this point that we have very limited field data on the habitat 
affinities of the wood thrush in our study area. Das (2000) used local census data 
and habitat measurements to attempt to discern separate effects of microhabitat (size 
class distribution, species composition) and landscape context (distance to edge, 
amount of development in the neighborhood), but small sample sizes rendered many 
tests nonsignificant. While we are collecting new data to build more reliable habitat 
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models, we have created a somewhat arbitrary habitat model for use in this 
illustration. The habitat model is based on predicted basal area, thresholded at values 
consistent with the limited field observations available. Thus, the uncertainty 
associated with the regressions is lost from this assignment of potential habitat, 
beyond the scope of this stage of the project. To provide a contrasting range of 
habitats, we used two thresholds. We constructed a “generous” habitat map by using 
15 m2 ha-1 of hardwood basal area to define “habitat” (Figure 13.2) and made a 
“strict” habitat map by using 20 m2 ha-1 as the second threshold (Figure 13.2). The 
strict habitat map included 306 discrete patches (defined using an 8-neighbor rule) 
with a total area of 794 ha, while the generous map included 823 patches and 3230 
ha of habitat. We should emphasize that these maps are intended only to illustrate 
the magnitude of uncertainty that might arise from uncertainty in habitat classifi-
cation; the maps themselves should not be over-interpreted in terms of thrush 
habitat. In particular, it is reasonable to assume that we have missed significant 
predictive power about thrush habitat because we cannot remotely sense understory 
density in these forests, a component of habitat quality that is probably important to 
the wood thrush based on our field observations.  

Figure 13.2. Contrasting maps of potential wood thrush habitat, defined generously (left) and 
strictly (right) in terms of hardwood basal area. Because the shaded clusters of cells are 
difficult to resolve, patches are overlaid with circles indicating their relative sizes. Insets are 
expanded to highlight differences in habitat definition, below; note the generous map has 
more patches and patches tend to be larger. 

As with previous steps of this integrated application, issues arise that are 
somewhat logistical but with significant implications to the application at hand. In 
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mapping potential habitat, one logistical constraint is that there is a potentially 
overwhelming number of habitat patches if every pixel classified as “habitat” is 
actually retained (see Keitt et al. 1997 for a similar dilemma). In practice, some 
minimum patch size is selected, and smaller patches are discarded and ignored. In 
this case, the distribution of patch sizes is roughly negative-exponential, so the 
number of patches increases dramatically as the minimum patch size is reduced. For 
our purposes, we have retained patches larger than 1 ha (a rough estimate of territory 
size for the thrush; Roth et al. 1996). But this decision invites three sources of error: 
(1) some actual habitat is discarded and, hence, some potential thrushes are not 
included; (2) the apparent distances between patches are increased by removing 
interstitial habitat, and so landscape connectivity is decreased; and (3) if small 
patches are sinks (sensu Pulliam 1988), then their removal actually improves the 
habitat mosaic and thus produces biases predictions about the metapopulation. 
Importantly, each of these sources of error or bias is largely unaccountable after the 
decision is made to discard small patches.  

13.4.4 The Metapopulation Model METAPOP1 

Model overview. The metapopulation model is an individual-based simulator that 
tracks male birds in each patch of habitat mosaic (Urban and Shugart 1986). This 
version simulates a single species, although a multi-species version also exists 
(Urban et al. 1988). This is an “island” model, meaning that the landscape is 
partitioned into discrete “habitat” patches and a “nonhabitat” matrix. Each patch has 
a carrying capacity based on its area of preferred habitat and territory size for the 
species being simulated. Territorial breeders are distinguished from nonterritorial 
“floaters” that are assumed to occupy marginal habitats. The model works on an 
annual time step. Each year, birds are subjected to stochastic over-winter mortality 
with a probability based on expected longevity. Adults have age-independent 
survivorship, and juveniles (young of the year) and nonterritorial floaters have 
higher mortality rates than territorial adults. Survivors that occupy territories are 
then allowed to nest. The species has a mean clutch size (number of eggs per nest) 
with a standard deviation estimated from field studies. Actual clutch size is 
generated stochastically for each nesting attempt by each bird. The species may nest 
once or more per season (defined by the mean number of broods per year). For each 
nesting attempt, the brood may be subjected to stochastic nest predation and brood 
parasitism by cowbirds. Predated nests are lost entirely, while parasitism costs one 
fledgling of the host. Both processes are implemented as edge effects, according to 
functions defined in terms of the maximum rate in edges and the distance from the 
edge to which these processes extend into the forest. Rates and edge widths are 
estimated from field studies – which, we should note, vary drastically among field 
studies (Paton 1994, Lahti 2001). Juveniles successfully fledged are added to the 
pool of floaters for that patch, and then birds are dispersed.  

Dispersal is implemented as the product of two species life-history parameters. 
A bird’s dispersal range defines the maximum distance that it will disperse in a 
single episode (move). A species may move multiple times during dispersal, with 
the number of moves defined by its mobility. At each move, a bird disperses 
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probabilistically to a new patch. If the patch has unoccupied habitat available, the 
bird settles; otherwise, it moves again. This continues until the bird settles in habitat 
or all moves are used. Birds that do not find habitat persist as floaters in the last 
patch they sampled. Dispersal is also modified by site fidelity. Breeders have very 
high site fidelity; floaters have low fidelity. Thus, breeders tend to occupy the same 
site for their entire adult life, while floaters (including juveniles) tend to disperse to 
find new habitats. This algorithm represents a crude but efficient model of our 
understanding of bird dispersal (Greenwood et al. 1980, Greenwood and Harvey 
1982).  

At the end of each simulation year, the model updates censuses of each habitat 
patch and writes a variety of output statistics describing populations for each patch 
and for the entire landscape mosaic. The simulations are run in replicate, and the 
replicates are further summarized to provide means and standard deviations of 
patch-level and landscape-level populations.  

13.4.4.1 Parameterization 

The model requires a total of 20 parameters, 5 of which control a set of replicate 
simulations and 15 of which are species life-history parameters (Table 13.1). Of the 
15 life-history parameters, four are essentially set as constants for any species, so 11 
parameters must be estimated for a focal species. Previous sensitivity analyses 
identified clutch size and survivorship as being quite sensitive, while dispersal 
parameters were less so (at least in the landscapes simulated, which seemed 
reasonably well connected; Urban et al. 1988 and unpublished model analyses; see 
also Pulliam et al. 1992). For the case study illustrated here, we emphasize clutch 
size as a source of parameter uncertainty. This is not to deny that other parameters 
are important; rather, our point can be illustrated readily with clutch size.  

As an additional factor related to model parameterization, we also considered 
nest parasitism and brood parasitism as edge effects. In this, we set the range 
(functional edge width) and intensity (rate or probability) of these effects as 
constants, and then simply toggled these effects on or off in particular simulations. 
These effects are essentially reductions in fecundity and would be equivalent to a 
commensurate reduction in clutch size, but because they occur near forest edges 
they have the potential to have a local rather than a global impact on model 
behavior. We address the influence of dispersal parameters on model uncertainty 
explicitly in the following section.  

13.4.4.2 Alternative dispersal models 

Dispersal is difficult to observe in most cases, and for metapopulations it is 
logistically infeasible to expect to observe dispersal sufficiently to describe the 
process adequately from data. For birds, there is a wide range of opinions about how 
dispersal operates, leading to a variety of algorithms as implemented in population 
models. Our implementation is intended to be quite simple. Compared to models 
that attempt to simulate dispersal behavior (e.g., McKelvey et al. 1993, Gustafson 
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and Gardner 1996), our model simulates the result of dispersal. In this, a bird has a 
probability of dispersal from patch i to patch j that depends only on the distance 
between the patches, dij, and the size of the target patch j. (Because the model 
simulates birds individually, there is also an effect of the size of the donor patch i 
due to the likelihood that larger patches tend to support more birds.) We model 
dispersal probability as a negative-exponential function of distance:  

pij = exp(-θ dij ) ⋅ aj        (13.1) 

where θ is an extinction coefficient estimated from the tail distance at which 
ij j

complicated by the way that the distances dij are defined. For purposes of 
illustration, we compare two such alternatives.  

Table 13.1. Parameters used in the metapopulation simulator. 

Parameter Definition Value1 Assignment2 
PCCI % of carrying capacity initialized 50% constant 
XNP Max rate nest predation 65% Input/constant3 
DENP Edge distance, predation 100 m Input/constant3 
XBP Max rate, parasitism 75% Input/constant3 
DEBP Edge distance, parasitism 200 m Input/constant3 
TS Territory size 1 ha input 
MBD Max breeding density 50 per 100 ha input 
Tsmin Min occupiable territory 0.50 ha constant 
Xclutch Mean clutch size 2.5 eggs input 
SClutch Std Dev (clutch size) 0.5 input 
NBroods Broods per season 2 input 
NT Nest type (open/cavity) open input 
NHt Nest height (1=ground, 3=canopy) 2 (midcanopy) input 
XSurv Annual survivorship 0.65 input 
RSFlt Relative survivorship of floaters 0.50 constant 
SFBrd Site fidelity of breeders 0.90 constant 
SFFlt Site fidelity of floaters 0.10 constant 
Range Dispersal range per move 1500 m input 
Mobil Number of dispersal moves 3 input 

 

p = 0.01, and a  is the area of the target patch. Even this simple approach can become 

1Nominal values set for model experiments, based on literature values (detailed in Urban and 
Shugart 1986, Urban et al. 1988, Minor et al., unpublished manuscript).  
2Values are set as: constants (typically not varied by end-user); inputs for edge effects 
(defined for the geographic study area and which do not vary by species); or species-level 
inputs, (defined for each focal species to be simulated).  
3Inputs for edge effects (constant for study area). 
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minimum cell-to-cell distance between any two cells, one from each patch, and 
saving this as the edge-to-edge distance. This is computationally straightforward 
(though the recursion is sufficiently tedious in a GIS that it is easier to do the 
computations in a stand-alone program). For very large landscapes (N>>1000’s of 
patches) this approach can become computationally daunting. This approach 
presumes implicitly that dispersing animals are sufficiently clever to find and use 
this minimum-distance path.  

The second alternative estimates between-patch distances as least-cost paths, 
using optimal routing algorithms in a GIS (Bunn et al. 2000). This requires the 
(ultimately arbitrary) assignment of relative resistances to dispersal (“costs”) for all 
cover types within a landscape. The routing algorithm then finds the “cheapest” path 
from the donor patch to the target patch. The least-cost patch method can be 
computationally infeasible for large sets of patches, because the analysis amounts to 
performing the routing solution recursively in the GIS. Various GIS-based 
algorithms have been devised and are available from websites such as ESRI’s (for 
Arc/Info). Our approach has been to write a custom macro in Arc/Info by which we 
find least-cost paths for pairs of patches that are within a minimum Euclidean 
distance of each other (e.g., twice the dispersal range of the focal species), and 
substituting simple edge-to-edge distances for patches farther apart. This saves 
considerable computation time and, because dispersal between distant patches 
occurs only via stepping-stone paths, this does not affect the traversability of the 
mosaic. Note that least-cost paths assume that the dispersing organisms are actually 
quite clever, that is, they sample cover types locally and tend to find the easiest route 
from patch to patch.  

This implementation of dispersal distances essentially uses different 
parameterizations to assess contrasting conceptual models of how birds disperse. In 
the case of either definition of dispersal distances, dispersal probabilities (Equation 
13.1) are re-normalized in the model to account for the proximity of habitat patches 
(the raw probabilities typically sum to >> 1.0).  

Clearly, there is a world of complexity available to us in implementing 
alternative dispersal models. This decision clearly influences overall model 
uncertainty in that the choice of dispersal model also dictates the kinds of 
parameters needed to implement it. This uncertainty is added to that due to the 
definition of habitat patches, as discussed above. Further, in many simulators, the 
probability of mortality increases as individuals disperse (e.g., the models described 
by McKelvey et al. 1993), and so assumptions about dispersal might also propagate 
through demographic rates or indeed to habitat definitions (Anders et al. 1998). We 
do not pretend to cover this full range of issues, but instead focus on two aspects of 
dispersal: (1) the implications of habitat resistance as implemented as least-cost 
paths, and (2) maximum dispersal range for the focal species. Note that because of 
underlying land use pattern, using least-cost paths will tend to have local rather than 
global effects in the model.  

The first alternative estimates between-patch distances as the minimum edge-
to-edge distance between the two patches. In practice, this is done by finding the 



 UNCERTAINTY IN LAND USE CHANGE MODELING 251 

 

13.4.5 Experimental Design 

As an illustration of how uncertainty can propagate through coupled regional 
assessments, Minor et al. (unpublished manuscript) contrived a set of model 
experiments to include several sources of uncertainty. In this, they considered a total 
of 32 cases, including: 

• 2 alternative habitat maps (“strict” versus “generous”), 
• 2 dispersal models (Euclidean versus least-cost distance), 
• 2 dispersal ranges (1500 versus 3000 m), 
• 2 clutch sizes (2.5 versus 3 eggs/clutch), and 
• 2 levels of intensity of edge effects on nesting success (on/off ). 
Each simulation was initialized with a population at 50% of carrying capacity 

for the landscape, and with the initial birds randomly distributed among patches. We 
simulated 100 years of population dynamics, by which time populations either 
stabilized or the trend was well established. We ran 100 replicate simulates for each 
case, in which stochastic processes (dispersal, mortality, and nesting success) were 
free to vary on a per-bird, per-event basis. Total error or uncertainty in the forecasts 
is the result of all of these sources.  

 

Figure 13.3. Relative importance of each simulated factor as a source of uncertainty in the 
metapopulation model, based on ANOVA. Analyses were conducted separately for total 
population size (left-side axis) and percent of carrying capacity (right-side axis) because the 
two habitat maps had very different amounts of habitat. Sources of uncertainty are arrayed as 
input data (left), model, estimation, and process error (right). 
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We analyzed the model simulations by ANOVA, using the experimental 
treatments as main effects. We should note that, of these factors, only clutch size 
and dispersal range would be easily amenable to implementation in the conventional 
regression framework for uncertainty analysis; that is, only these two parameters 
have estimates and standard errors. Process error, i.e., the result of stochastic 
implementations in the model, appears in the analysis not as a main effect but rather 
as within-treatment (replicate) variability.  

13.4.6. Relative and Cumulative Effects of Uncertainty 

With this range of parameters, simulations resulted in populations that ranged in size 
from 20-87% of carrying capacity. In the ANOVA, each main factor had a 
significant effect. When total population size was analyzed as the response variable, 
the choice of habitat map had the largest effect as expected, since the generous map 
includes substantially more habitat. When percent of carrying capacity was analyzed 
instead (to remove the effect of total habitat area), the rank order of factors was very 
similar (Figure 13.3).  

Almost all first-order interaction effects (7 of 10) were significant as well in this 
analysis (Table 13.2). In particular, there was a strong interaction between choice of 
habitat map and dispersal factors (Euclidean/least-cost path distances as well as 
dispersal range). Clutch size also showed an interaction with the habitat map and 
with edge effects.  

using percent of carrying capacity as the population response variable. 

Source of variation 
 

DF 
 

Sum of 
Square 

Mean 
Square 

F value 
 

Pr (F) 
 

Dispersal model 1 5.68 5.68 3476.25 0.00 
Map 1 65.57 65.57 40150.67 0.00 
Clutch size 1 60.44 60.44 37006.97 0.00 
Dispersal distance 1 19.80 19.80 12121.84 0.00 
Edge effects 1 1.28 1.28 786.29 0.00 
Dispersal model × map 1 0.41 0.41 251.30 0.00 
Dispersal model × clutch size 1 0.00 0.00 0.80 0.37 
Dispersal model × dispersal distance 1 0.08 0.08 51.09 0.00 
Dispersal model × edge effects 1 0.00 0.00 0.86 0.35 
Map × clutch size 1 1.60 1.60 979.97 0.00 
Map × dispersal distance 1 2.98 2.98 1827.02 0.00 
Map × edge effects 1 0.06 0.06 34.09 0.00 
Clutch size × dispersal distance 1 0.07 0.07 43.23 0.00 
Clutch size × edge effects 1 0.27 0.27 166.55 0.00 
Dispersal distance × edge effects 1 0.00 0.00 0.62 0.43 

Table 13.2. Results of ANOVA on sources of uncertainty in the metapopulation simulator, 
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To illustrate the uncertainty associated with a simulation model, the convention 
is to use Monte Carlo methods to propagate uncertainty through the model. This 
approach is readily extended to include process error; indeed, this is routinely done 
with stochastic simulators. Likewise, it is straightforward to propagate estimation 
error through a model, by using stochastic parameter sets from specified 
distributions of the parameters. This approach becomes somewhat unwieldy when 
we attempt to extend it to include model error and data error of a form such as an 
input habitat map. In the simplest case for our metapopulation model, the 
simulations would be run in Monte Carlo fashion, and for each run a new set of 
input map, dispersal model, and parameter set would be drawn from a set of 
alternatives; process error would be included by default because the model is 
stochastic. But because the initial habitat maps and (especially) the dispersal-
distance matrix are quite demanding computationally, this implies building a set of 
alternatives beforehand and then selecting from these for each simulation. Again, 
this is quite feasible in principle but rather tedious in practice. We have illustrated 
this approach by randomly selecting a set of 100 simulations from the full set (3200) 
used in our model experiment. From this set, we computed the range of population 
sizes as percent of carrying capacity. Because this range is not normally distributed 
(being bounded by 0 and carrying capacity), we index the variation as simply the 
central 95% quantiles of the data. For comparison, we also illustrate the amount of 
process error for a simulation with nominal parameter values, based on 100 replicate 
simulations. The differences are rather telling (Figure 13.4).  

Figure 13.4. Illustration of total uncertainty as propagated through the model, compared to 
the confidence limits generated by stochastic “process error” alone.  

We should emphasize that we do not propose Figure 13.4 as the true uncertainty 
in this modeled scenario. Rather, we offer this as an illustration of the potential 
magnitude of the implications of ignoring sources of error that are beyond the scope 
of conventional uncertainty analysis. In this case, the uncertainty associated with the 
underlying habitat map far outweighs the influence of details internal to the 
metapopulation model. Yet, even this simple illustration ignores potentially 
important implications of more extreme alternatives to the dispersal algorithm, as 
well as multiple combinations of model specifications and parameter estimation 
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error. On the other hand, we can also take some solace in that all sources of error are 
not equally likely in this case, and so if we bounded the selection of alternatives by 
some notion of their likelihood (i.e., via prior probabilities), we could reduce the 
extreme levels of uncertainty shown in Figure 13.4. For example, we do not think 
that the 1500 or 3000 m dispersal range is equally likely, and we could constrain our 
estimate of clutch size more tightly by using the available data more carefully. The 
use of prior probabilities to constrain error estimates in this way is only a slight 
generalization of the conventional approach of drawing parameter estimates from 
their empirical distributions. This approach is especially amenable to hierarchical 
Bayesian approaches to modeling (e.g., Wikle et al. 1998, Wikle 2003, Clark 2003), 
in which each component of the model has its prior and (fitted) posterior 
distributions.  

13.4.7 A Patch-Level Perspective 

Edge effects and differences in dispersal mediated by the “resistance” of local land 
cover should result in local rather than global influences on population dynamics. 
One example of these is illustrated in Figure 13.5, which shows the local persistence 
(years occupied of the last 10 years of a simulation) of selected patches. In this case 
the differences in local persistence are mediated by the local prevalence of 
developed lands, which reroute dispersal locally and thus change the pattern of 
dispersal subsidy that is key to patch recolonization after a chance local extinction. 
Because dispersal in this model is largely via short dispersal events among stepping-
stone patches, local dispersal limitations have the potential to propagate within 
connected subregions of the habitat mosaic. This spatial error propagation would 
lead to strongly autocorrelated errors in model predictions.  

Figure 13.5. Local effects of model uncertainty, as generated by variation in dispersal 
distance as modeled using least-cost paths as dispersal routes. Circles are overlaid on habitat 
clusters to indicate their relative size (see Figure 13.2). Effects of connectivity on population 
persistence are expressed locally.  
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We would expect edge effects on recruitment to have a similarly local influence 
on population dynamics, if habitat “edginess” varied locally within the study area. 
That is, if patches in one region of the study area were especially edgy, then there 
would be some potential for strong local patterns in populations to emerge. As 
discussed previously, this also would invite a local interaction with dispersal, so that 
local source and sink patches could have an influence that propagated to other 
nearby patches to which they were strongly connected. The lack of a dominant edge 
effect in our simulations probably reflects the reality that most of the patches are 
equivalently edgy.  

While we have not yet explored these local influences rigorously, the 
illustration in Figure 13.5 does provide an immediate aid to this future effort. 
Patches or regions that show a strong local effect as indicated by high patch-level 
uncertainty, clearly present themselves as compelling candidates as focal sites for 
follow-up field studies. This is an example of model-guided sampling design, a 
powerful approach for locating study sites that can provide crucial information 
efficiently (Urban 2000, 2002, Urban et al. 2002). In this case, the candidate sites 
are those exhibiting the strongest manifestation of key model uncertainties. This 
model-data dialogue is an added benefit of the approach to uncertainty analysis that 
we illustrate here: the modeling process is self-correcting if the approach admits 
iteration between model analysis and model-directed field studies.  

13.5 CONCLUSIONS 

Ecological forecasts extrapolated to regional scales invite a variety of sources of 
uncertainty. Performing integrated assessments across coupled applications (land 
use change, forest dynamics, bird communities, and watershed impacts) invites new 
sources that are problematic because they may not conform readily to conventional 
approaches to uncertainty analysis and error propagation. Moreover, if the separate 
components of such assessments are pursued by different research teams, 
participants or clients might not even be aware of these sources of uncertainty. At 
the least, the role of uncertainty may change dramatically across coupled project 
components with different specific objectives. For example, classification errors in 
the land cover maps might have very different implications for watershed hydrology 
than for thrush metapopulations. Because a client audience deserves – indeed, may 
demand – a full accounting of uncertainty in ecological predictions (Clark et al. 
2001), it is crucial that we devise thorough but efficient methods for incorporating 
uncertainty in integrated regional assessments.  

While an efficient analytic approach to uncertainty in integrated assessments 
remains a challenge, it is already quite feasible to communicate uncertainty in 
ecological extrapolations and forecasts. We do this routinely by adding error bars or 
confidence limits to histograms and line graphs; there is no reason why we should 
not include this information in maps as well. For example, we have estimated both 
classification error and prediction error for model predictions here, and these 
approaches are increasingly easy with the powerful cartographic tools available in 
geographic information systems. Further, we know how to translate model 
sensitivity and uncertainty from parameter space to geographic space (e.g., Urban 
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2000), and wider use of this approach can lead to a healthy model-data dialogue in 
which model-guided field studies are used to collect new data to improve the model 
most efficiently.  

There remains a technical challenge of finding computationally efficient 
methods for incorporating a range of sources of uncertainty into simulations. This 
may entail generalized methods for Monte Carlo simulations, or alternative 
formalisms for model development (e.g., hierarchical Bayesian models). It is 
unlikely that we will find a convenient “one size fits all” solution, and so a healthy 
variety of approaches should be pursued.  
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