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Abstract Speculations that encounters with interstellar clouds modify the terrestrial cli-
mate have appeared in the scientific literature for over 85 years. The articles in
this volume seek to give substance to these speculations by examining the exact
mechanisms that link the pressure and composition of the interstellar medium
surrounding the Sun to the physical properties of the inner heliosphere at the
Earth.
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1.1 The Underlying Query
If the solar galactic environment is to have a discernible effect on events on

the surface of the Earth, it must be through a subtle and indirect influence on
the terrestrial climate. The scientific and philosophical literature of the 18th,
19th and 20th centuries all include discussions of possible cosmic influences
on the terrestrial climate, including the effect of cometary impacts on Earth
(Halley, 1724), and the diminished solar radiation from sunspots, which Her-
schel attributed to “holes” in the luminous fluid on the surface of the Sun1

(Herschel, 1795). The discovery of interstellar material in the 20th century led
to speculations that encounters with dense clouds initiated the ice ages (Shap-
ley, 1921), and many papers appeared that explored the implications of such
encounters, including the influence of interstellar material (ISM) on the inter-
planetary medium and planetary atmospheres (e.g. Fahr, 1968, Begelman and
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Rees, 1976, McKay and Thomas, 1978, Thomas, 1978, McCrea, 1975, Talbot
and Newman, 1977, Willis, 1978, Butler et al., 1978). The ISM-modulated
heliosphere was also believed to affect climate stability and astrospheres (e.g.
Frisch, 1993, Frisch, 1997, Zank and Frisch, 1999). Recent advances in our
understanding of the solar wind and heliosphere (e.g. Wang and Richardson,
2005, Fahr, 2004) justify a new look at this age-old issue. This book addresses
the underlying question:

How does the heliospheric interaction with the interstellar medium
affect the heliosphere, interplanetary medium, and Earth?

The heliosphere is the cavity in the interstellar medium created by the dy-
namic ram pressure of the radially expanding solar wind, a halo of plasma
around the Sun and planets, dancing like a candle in the wind and regulating
the flux of cosmic rays and interstellar material at the Earth. Neutral interstel-
lar gas and large interstellar dust grains penetrate the heliosphere, but the solar
wind acts as a buffer between the Earth and most other interstellar material and
low energy galactic cosmic rays (GCR). Together the solar wind and interstel-
lar medium determine the properties of the heliosphere. In the present epoch
the densities of the solar wind and interstellar neutrals are approximately equal
outside of the Jupiter orbit. Solar activity levels drive the heliosphere from
within, and the physical properties of the surrounding interstellar cloud con-
strain the heliosphere from without, so that the boundary conditions of the
heliosphere are set by interstellar material. Figure 1.1 shows the Sun and he-
liosphere in the setting of the Milky Way Galaxy.

The answer to the question posed above lies in an interdisciplinary study
of the coupling between the interstellar medium and the solar wind, and the
effects that ISM variations have on the 1 AU environment of the Earth through
this coupling. The articles in this book explore different viewpoints, including
gedanken experiments, as well as data-rich summaries of variations in the solar
environment and paleoclimate data on cosmic ray flux variations at Earth.

The book begins with the development of theoretical models of the he-
liosphere that demonstrate the sensitivity of the heliosphere to the variations
in boundary conditions caused by the passage of the Sun through interstellar
clouds. A series of gedanken experiments then yield the response of planetary
magnetospheres to encounters with denser ISM. Variations in the galactic en-
vironment of the Sun, caused by the motions of the Sun and clouds through the
Galaxy, are shown to occur for both long and short timescales.

The heliosphere acts as a buffer between the Earth and interstellar medium,
so that dust and particle populations inside of the heliosphere, which have an
interstellar origin, vary as the Sun traverses interstellar clouds. These buffer-
ing mechanisms determine the interplanetary medium2. The properties of
these buffering interactions are evaluated for heliosphere models that have been
developed using boundary conditions appropriate for when the Sun traverses
different types of interstellar clouds.
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The consequences of Sun-cloud encounters are then discussed in terms of
the accretion of ISM onto the terrestrial atmosphere for dense cloud encoun-
ters, and the possibly extreme variations expected for cosmic ray modulation
when interstellar densities vary substantially. Radioisotope records on Earth
extending backwards in time for over ∼0.5 Myrs, together with paleoclimate
data, suggest that cosmic ray fluxes are related to climate. The galactic envi-
ronment of the Sun must have left an imprint on the geological record through
variations in the concentrations of radioactive isotopes.

The selection of topics in this book is based partly on scientific areas that
have already been discussed in the literature. The authors who were invited to
contribute chapters have previously studied the heliosphere response to vari-
able ISM conditions.

Figure 1.1 shows the heliosphere in our setting of the Milky Way Galaxy.
A postscript at the end of this chapter lists basic useful information. I in-
troduce the term “paleoheliosphere” to represent the heliosphere in the past,
when the boundary conditions set by the local interstellar material (LISM)
may have differed substantially from the boundary conditions for the present-
day heliosphere. The “paleolism” is the local ISM that once surrounded the
heliosphere.

1.2 Addressing the Query: The Heliosphere and Particle
Populations for Different Interstellar Environments

The solar wind drives the heliosphere from the inside, with the properties of
the solar wind varying with ecliptic latitude and the phase of the 11-year solar
activity cycle. The global heliosphere is the volume of space occupied by the
supersonic and subsonic solar wind. Interstellar material forms the boundary
conditions of the heliosphere, and the windward side of the heliosphere, or the
“upwind direction”, is defined by the interstellar velocity vector with respect
to the Sun. The leeward side of the heliosphere is the “downwind direction”.
Figure 1.1 shows a cartoon of the present-day heliosphere, with labels for the
major landmarks such as the termination shock, heliopause, and bow shock.

In the present-day heliosphere, the transition from solar wind to interstellar
plasma occurs at a contact discontinuity known as the “heliopause”, which is
formed where the total solar wind and interstellar pressures equilibrate (Holzer,
1989). For a non-zero interstellar cloud velocity in the solar rest frame, the so-
lar wind turns around at the heliopause and flows around the flanks of the he-
liosphere and into the downwind heliotail. Before reaching the heliopause, the
supersonic solar wind slows to subsonic velocities at the “termination shock”,
where kinetic energy is converted to thermal energy.

The subsonic solar wind region between the termination shock and he-
liopause is called the inner “heliosheath”. The outer heliosheath lies just beyond
the heliopause, where the pristine ISM is distorted by the ram pressure of the
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Figure 1.1. The solar location and vector motion are identified for the kiloparsec scale sizes
of the Milky Way Galaxy (large image), and for the ∼500 parsec scale size of the Local Bubble
(medium sized image, inset in upper left hand corner). A schematic drawing of the heliosphere
(small image, inset in lower right hand corner) shows the upwind velocity of the interstellar wind
(“ISM”) as observed in the rest frame of the Sun. Coincidently, this direction, which determines
the heliosphere nose, is close to the galactic center direction. The orientation of the plane in the
small inset differs from the planes of the large and medium figures, since the ecliptic plane is
tilted by 60◦ with respect to the galactic plane. The Sun is 8 kpc from the center of the Milky
Way Galaxy, and the solar neighborhood moves towards the direction � = 90◦ at a velocity of
225 km s−1. The spiral arm positions are drawn from Vallee (2005), except for the Orion spur.
The Local Bubble configuration is based on measurements of starlight reddening by interstellar
dust (Chapter 6). The lowest level of shading corresponds to color excess values E(B-V) =
0.051 mag, or column densities log N (H) (cm−2) = 20.40 dex. The dotted region shows
the widespread ionized gas associated with the Gum Nebula. The heliosphere cartoon shows
interstellar protons deflected in the plasma flow in the outer heliosheath regions, compared to
the interstellar neutrals that penetrate the heliopause.
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heliosphere. A bow shock, where the interstellar gas becomes subsonic, is ex-
pected to form ahead of the present-day heliosphere in the observed upwind
direction of the ISM flow through the solar system.

Large interstellar dust grains and interstellar atoms that remain neutral in-
side of the orbit of Earth, such as He, are gravitationally focused in the down-
wind direction. This “focusing cone” is traversed by the Earth every year in
early December, and extends many AU from the Sun in the leeward direction
(e.g. Landgraf, 2000, Möbius et al., 2004, Frisch, 2000). The heliotail itself
extends >103 AU from the Sun in the downwind direction, forming a cosmic
wake for the solar system.

Of significance when considering the interaction of the heliosphere with
an interstellar cloud is that neutral particles enter the heliosphere relatively
unimpeded, after which they are ionized and convected outwards with the solar
wind. Ions and small charged dust grains are magnetically deflected in the
heliosheath around the flanks of the heliosphere (see Figure 1.1).

Space and astronomical data now confirm the basic milestones of the outer
heliosphere. Voyager 1 crossed the termination shock at 94 AU on 16 De-
cember, 2004 (UT), and observed the signature of the termination shock on
low-energy particle populations, the solar wind magnetic field, low-energy
electrons and protons, and Langmuir radio emission (Stone et al., 2005, Burlaga
et al., 2005, Gurnett and Kurth, 2005, Decker et al., 2005). The present-day
termination shock appears to be weak, with a solar wind velocity jump ratio
(the ratio of upstream to downstream values) of ∼2.6 and a magnetic field com-
pression ratio of ∼3. The magnetic wall that is predicted for the heliosphere
(Linde, 1998, Ratkiewicz et al., 1998, Chapter 3 by Pogorelov and Zank) ap-
pears to have been detected through observations of magnetically aligned dust
grains (Frisch, 2005), and the offset between upwind directions of interstellar
H◦ and He◦ (Lallement et al., 2005). The compressed and heated H◦ in the
hydrogen wall region of the outer heliosheath has now been detected around a
number of stars (Wood et al., 2005).

The present-day solar wind is the baseline for evaluating the heliosphere
response to ISM variations in the following articles, so a short review of the
solar wind is first presented. The remaining part of §1.2 introduces the topics
in the following articles in terms of the underlying query of the book.

1.2.1 The Present Day Solar Wind
The solar wind originates in the million degree solar corona that expands

radially outwards, with a density ∼1/R2
S where RS is the distance to the Sun,

and contains both features that corotate with the Sun, and transient structures
(e.g. Gosling, 1996). The properties of the solar wind vary with the phase of
the solar magnetic activity cycle and with ecliptic latitude. The best historical
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indicator of solar magnetic activity levels is the number of sunspots, first de-
tected by Galileo in 1610, which are magnetic storms in the convective zone
of the Sun. Sunspot numbers indicate that the magnetic activity levels fluctu-
ate with a ∼11 year cycle, or the “solar cycle”, and solar maximum/minimum
corresponds to the maximum/minimum of sunspot numbers. The magnetic
polarity of the Sun varies with a ∼22 year cycle. During solar maximum, a
low-speed wind, with velocity ∼300–600 km s−1 and density ∼6–10 particles
cm−3 at 1 AU, extends over most of the solar disk. Open magnetic field lines3

are limited to solar pole regions. A neutral current sheet ∼0.4 AU thick forms
between the solar wind containing negative magnetic polarity fields and the
solar wind that contains positive magnetic polarity fields. The neutral current
sheet reaches its largest inclination (≥70◦) during solar maximum. During
the conditions of solar minimum, a high speed wind with velocity ∼600–
800 km s−1 and density ∼5 cm−3 is accelerated in the open magnetic flux
lines in coronal holes. During mininum, the high speed wind and open field
lines extend from the polar regions down to latitudes of ≤40◦ (Smith et al.,
2003, Richardson et al., 1995). The higher solar wind momentum flux asso-
ciated with solar minimum conditions produces an upwind termination shock
that is ∼5–40 AU more distant in the upwind direction than during solar maxi-
mum conditions (e.g. Scherer and Fahr, 2003, Zank and Müller, 2003, Whang,
2004).

During solar minimum conditions, the magnetic field is dominated by the
dipole and hexapole moments, with a small contribution from a quadrupole
moment. The alignment and strength of the multipoles depend on the phase
of the solar cycle (Bravo et al., 1998). The solar dipole moment is strongest
during solar minimum, when it is generally aligned with the solar rotation axis.
Sunspots migrate from high to low heliographic latitudes. The magnetic poles
follow the coronal holes to the solar equator as solar activity increases. During
the solar maximum period, the galactic cosmic rays undergo their maximum
modulation, the dipole component of the magnetic field is minimized, and the
polarity of the solar magnetic field reverses (Lockwood and Webber, 2005,
Figure 1.2). Over historic times, the cosmic ray modulation by the heliosphere
correlates better with the open magnetic flux line coverage than with sunspot
numbers (McCracken et al., 2004).

Variable cosmic ray modulation produced by a variable heliosphere may
be a primary factor in both solar and ISM forcing of the terrestrial climate.
The heliosphere modulation of cosmic rays is well established. John Simp-
son, to whom this book is dedicated, initiated a program 5 solar cycles ago
in 1951 to monitor cosmic ray fluxes on Earth using high-altitude neutron
detectors (Simpson, 2001). The results show a pronounced anticorrelation be-
tween cosmic ray flux levels and solar sunspot numbers, which trace the 11-
year Schwabe magnetic activity cycle, and which also show that the polarity
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of the solar magnetic field affects cosmic ray modulation (see Figure 1.2). The
articles in this book show convincingly that the ISM also modulates the he-
liosphere, and the effect of the solar wind on the heliosphere must be differen-
tiated from the influence of interstellar matter.

Variations in solar activity levels are also seen over ∼100–200 year
timescales, such as the absence of sunspots during the Maunder Minimum
in the 17th century. Modern climate records show that the Maunder Mini-
mum corresponded to extremely cold weather, and radioisotope records show
that the flux of cosmic rays was unusually high at this time (see Kirkby and
Carslaw, Chapter 12). Similar effects will occur from the modulation of galac-
tic cosmic rays by the passage of the Sun through an interstellar cloud.

These temporal and latitudinal variations in the solar wind momentum flux
produce an asymmetric heliosphere, which varies with time. Any possible
historical signature of the ISM on the heliosphere must first be distinguished
from variations driven by the solar wind itself.

1.2.2 Present Day Heliosphere and Sensitivity to ISM
The ISM forms the boundary conditions of the heliosphere, so that encoun-

ters with interstellar clouds will affect the global heliosphere, the interplan-
etary medium, and the inner heliosphere region where the Earth is located.
Today an interstellar wind passes through the solar system at –26.3 km s−1

(Witte, 2004). An entering parcel of ISM takes about 20 years to reach the
inner heliosphere, so that ISM near the Earth is constantly replenished with
new inflowing material. This warm gas is low density and partially ionized,
with temperature T∼ 6,300 K, and densities of neutral and ionized matter of
n(Ho)∼0.2 cm−3, and n(H+)∼0.1 cm−3.

An elementary perspective of the response of the heliosphere to interstellar
pressures is given by an analytical expression for the heliopause distance based
on the locus of positions where the solar wind ram pressure, PSW, and the total
interstellar pressure equilibrate (Holzer, 1989). The solar wind density ρ falls
off as ∼1/R2, where R is the distance to the Sun, while the velocity v is
relatively constant. At 1 AU the solar wind ram pressure is PSW,1AU∼ρ v2 so
the heliosphere distance, RHP, is given by:

PSW,1AU/R2
HP ∼ PB + PIons,thermal + PIons,ram + PDust + PCR

The interstellar pressure terms include the magnetic pressure PB, the thermal,
PIons,thermal, and the ram, PIons,ram, pressures of the charged gas, and the
pressures of dust grains, PDust, and cosmic rays, PCR, which are excluded
by heliosphere magnetic fields and plasma. Some interstellar neutrals convert
to ions through charge exchange with compressed interstellar proton gas in
heliosheath regions, adding to the confining pressure. An important response
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characteristic is that, for many clouds, the encounter will be ram-pressure dom-
inated, where Pram ∼ mv2 for interstellar cloud mass density m and relative
Sun-cloud velocity v, so that variations in the cloud velocity perturb the he-
liosphere even if the thermal pressures remain constant.

The multifluid, magnetohydrodynamic (MHD), hydrodynamic and hybrid
approaches used in the following chapters provide much more substantial mod-
els for the heliosphere, and include the coupling between neutrals and plasma,
and field-particle interactions. These sophisticated models predict variations
in the global heliosphere in the face of changing interstellar boundary condi-
tions, and for a range of different cloud types. Although impossible to model a
solar encounter with every type of interstellar cloud, the following articles in-
clude discussions of many of the extremes of the interstellar parameter space,
including low density gas with a range of velocities, very tenuous plasma, high
velocity clouds, dense ISM, and magnetized material for a range of field ori-
entations and strengths. The discussions in these chapters extrapolate from our
best theoretical understanding of the heliosphere boundary conditions today
to values that differ, in some cases dramatically, from the boundary condi-
tions that prevailed at the beginning of the third millennium in the Gregorian
calendar.

The Sun has been, and will be, subjected to many different physical envi-
ronments over its lifetime. Theoretical heliosphere models yield the properties
of the solar wind-ISM interaction for these different environments, which in
turn determine the nature and properties of interstellar populations inside of
the heliosphere for a range of galactic environments. These models form the
foundation for understanding the significance of our galactic environment for
the Earth.

The interstellar parameter space is explored by Zank et al. (Chapter 2),
where 28 sets of boundary conditions are evaluated with computationally effi-
cient multifluid models. Moebius et al. (Chapter 8), Fahr et al. (Chapter 9),
Florinski and Zank (Chapter 10), and Yeghikyan and Fahr (Chapter 11) also de-
velop heliosphere models for a range of interstellar conditions. Together these
models evaluate the heliosphere response to interstellar density, temperature,
and velocity variations of factors of ∼109, ∼105, and ∼102, respectively.

The interstellar magnetic field introduces an asymmetric pressure on the
heliosphere, affecting the heliosphere current sheet and cosmic ray modulation.
Pogorelov and Zank (Chapter 3) use MHD models to probe the heliosphere
response to the interstellar magnetic field, including charge exchange between
the neutrals and solar wind. The resulting asymmetry provides a test of the
magnetic field direction, and shows strong differences between cases where the
interstellar flow is parallel, instead of perpendicular, to the interstellar magnetic
field direction. Since the random component of the interstellar magnetic field
is stronger, on the average, than the ordered component, particularly in spiral
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arm regions where active star formation occurs, a range of interstellar magnetic
field strengths and orientations are expected over the solar lifetime (Shaviv,
Chapter 5, and Frisch and Slavin, Chapter 6).

1.2.3 Planetary Magnetospheres
The Earth’s magnetosphere acts as a buffer between the solar wind and at-

mosphere, and as such is an ingredient in understanding the effect of our galac-
tic environment on the Earth. The decreasing solar wind density in the outer
heliosphere results in an interplanetary medium around outer planets that is
more sensitive to ISM variations than for inner planets, with implications for
the magnetospheres of Jupiter, Neptune, and Uranus. Most topics in this book
are already considered in the scientific literature, but questions about magne-
tosphere variations from an ISM-modulated heliosphere have received scant
attention. In a quintessential gedanken experiment, Parker explores the inter-
action between magnetospheres and the solar wind for variations in the inter-
stellar density, and for inner versus outer planets (Chapter 4).

1.2.4 Short and Long Term Variations in the Galactic
Environment

There is every reason to expect that the galactic environment of the Sun
varies over geological timescales. The Sun moves through space at a velocity
of 13–20 km s−1, and interstellar clouds have velocities ranging up to hun-
dreds of km s−1. The Arecibo Millennium survey showed that ∼25% of the
mass contained in interstellar H◦, including both warm and cold ISM, is in
clouds traveling with velocities ≥10 km s−1 through the local standard of rest
(Heiles and Troland, 2003). Thus Sun-cloud encounters with relative veloc-
ities exceeding 25 km s−1 are quite likely, and for a typical cloud length of
∼1 pc the cloud transit time would be ∼40,000 years. The many types of
ISM traversed by the Sun during the past several million years have affected
the heliosphere, the inner solar system, and the flux of anomalous and galactic
cosmic rays at Earth (Frisch and York, 1986, Frisch, 1997, Frisch, 1998).

For the past ∼3 Myrs the Sun has been in a nearly empty region of space,
the “Local Bubble”, with very low densities of <10−26 gr cm−3. Within the
past 44,000–150,000 years the Sun entered a flow of tenuous, partly neutral
ISM, nick-named the “Local Fluff”, with density ∼60 times higher (Chap-
ter 6). This transition was accompanied by the appearance of interstellar dust
and neutrals in the heliosphere, along with the pickup ion and anomalous cos-
mic ray populations. Galactic cosmic ray modulation was affected, providing
a possible link between our galactic environment and climate. Intriguingly,
the averaged cosmic ray flux at Earth, as traced by 10Be records, was lower in
the past ∼135 kyrs than for earlier times (Chapter 12). Was the decrease in the
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galactic cosmic ray flux ∼135 kyrs ago caused by an increase in modulation as
the Sun entered the Local Fluff?

The galactic environment of the Sun also varies quite dramatically over long
time scales, as discussed by Shaviv (Chapter 5). Over its 4.5 billion year life-
time, the Sun traverses spiral arm and interarm regions, with atomic densities
varying from less than 10−26.1 g cm−3 to over 10−20.1 g cm−3, and temper-
atures ranging over 7 orders of magnitude, 10–107 K. The Sun is now in low
density space between the Perseus and Sagittarius spiral arms, and on the inner
edge of what is known as the Orion spur on the Local Arm. The Local Arm
is not shown in Figure 1.1, as is consistent with the usual Galaxy depictions.
The Local Arm does not appear to be a grand design spiral shock (Bochkarev,
1984). The Sun has a systematic motion of 13–20 km s−1 with respect to the
nearest stars, corresponding to ∼3–4 AU per year. The Local Interstellar Cloud
(LIC) now surrounding the Sun traverses the heliosphere at ∼5.5 AU per year.
The Sun oscillates vertically through the galactic plane once every ∼34 Myrs,
and orbits the center of the Milky Way Galaxy once per ∼220 Myrs.

Shaviv evaluates variations in the galactic environment of the Sun over long
timescales. This bold discussion compares various geologic records of cosmic
ray flux variations, based on radioisotope data that sample timescales of ∼108

years, with models of the Milky Way Galaxy spiral arm pattern to reconstruct
the timing of the Sun’s passage through spiral arms. The chapter concludes
that star formation in spiral arms leaves a signature on the radioisotope records
of the solar system.

Frisch and Slavin (Chapter 6) reconstruct short-term variations of the galac-
tic environment of the Sun using observations of interstellar matter towards
nearby stars and inside of the solar system. Radiative transfer models of the
LIC show that ionization varies across this low density cloud, so that the
heliosphere boundary conditions vary from radiative transfer considerations
alone as the Sun traverses the LIC. Cloud transitions are predicted for the past
∼3 Myrs, including the departure of the Sun from the Local Bubble interior
44,000–150,000 years ago.

1.2.5 Interstellar Dust
The particle populations formed by the interactions between the solar wind

and interstellar dust, gas, and cosmic rays are emissaries between the cosmos
and inner heliosphere, varying as the Sun moves through clouds.

About ∼1% of the mass of the cloud surrounding the Sun is contained in in-
terstellar dust grains. The largest of these charged grains, mass >10−13 g, have
large magnetic Larmor radii of >500 AU at the heliopause for an interstellar
field of ∼1.5 µG, and flow into the solar system. The Earth passes through the
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gravitational focusing cone formed by these grains early each December. The
smallest charged grains, mass <10−14.5 g and radii <0.01 µm, have Larmor
radii of ∼20 AU, depending on the magnetic field strength and radiation field,
and are deflected around the heliosheath (Frisch et al., 1999). Interstellar dust
grains are measured in the inner heliosphere within ∼5 AU of the Sun, and
over the solar poles, by satellites such as Ulysses, Galileo and Cassini. Land-
graf (Chapter 7) reviews the properties of the interaction between interstellar
dust and the solar wind, and speculates on the changes that might be expected
from an encounter with a dense interstellar cloud.

Should it some day be possible to compare the ratio of large to small inter-
stellar dust grains on the surfaces of the inner versus outer planets, it would
become possible to disentangle cloud encounters from solar activity effects.

At the very large end of the dust population mass spectrum we find interstel-
lar micrometeorites, with masses ∼3 × 10−7 g, open orbits, and inflow veloc-
ities greater than the 42 km s−1 escape velocity from the solar system at 1 AU.
These interstellar objects, detected by radar as they impact the atmosphere,
evidently originate in circumstellar disks such as that around β Pictoris, and in
the interior of the Local Bubble (Baggaley, 2000, Meisel et al., 2002). These
objects do not collisionally couple to the interstellar gas (Gruen and Landgraf,
2000), and should not vary with the type of ISM surrounding the Sun.

1.2.6 Particle Populations in the Inner and Outer
Heliosphere

Presently, low energy interstellar neutrals, high energy galactic cosmic rays,
and interstellar dust all enter the heliosphere. The characteristics of each of
these populations and their secondary products are modified as the Sun transits
the ISM, or the cloud ionization changes. The first ionization potential (FIP)
of H◦ is 13.6 eV. Neutral interstellar atoms with FIP < 13.6 eV are ionized in
nearly all interstellar clouds because the main source of interstellar opacity is
H◦. Interstellar ions are deflected around the heliosheath, so the result is that
only interstellar atoms with FIP > 13.6 eV enter the heliosphere where they
are then destroyed, primarily by charge exchange with solar wind ions.

The density of interstellar neutrals in the inner heliosphere depends on the
density and ionization of the surrounding cloud, the ionization (or “filtration”)
of those neutrals by the heliosheath, and the subsequent interactions with the
solar wind inside of the heliosphere. Secondary products produced by so-
lar wind interactions with interstellar neutrals inside of the heliosphere in-
clude pickup ions4, energetic neutral atoms, the gravitational focusing cone
formed by helium (also seen in dust), and the anomalous cosmic ray population
with energies <1 GeV. Interstellar neutrals inside of the heliosphere, and the



12 The Significance of our Galactic Environment

heliosphere itself, form a coupled system that together respond to variations in
the heliosphere boundary conditions.

Moebius et al. (Chapter 8) model the heliosphere for several different con-
ditions, and then probe the response of the inner heliosphere to the density of
interstellar neutrals flowing into this ISM-modified heliosphere. At 1 AU, the
neutral densities, particle populations derived from interstellar neutrals, and
characteristics of the helium focusing cone all respond to variations in the in-
terstellar boundary conditions. For some cases, increased neutral fluxes fall on
the atmosphere of Earth (also see Yeghikyan and Fahr, Chapter 11).

The velocity structure of the ISM appears to vary on subparsec scale lengths
(Frisch and Slavin, Chapter 6), and these variations may in some cases result in
significant modifications of the inner heliosphere, particularly the gravitational
focusing cone, when all other interstellar parameters such as thermal pressure
are invariant (Zank et al., Chapter 2, Moebius et al., Chapter 8).

The most readily available diagnostics of the paleoheliosphere are radioiso-
topes, formed by cosmic ray spallation on the atmosphere, interplanetary and
interstellar dust, and meteorites. Thus, the evaluation of cosmic ray modula-
tion for various types of interstellar cloud boundary conditions is a key part
of understanding the paleoclimate records that might trace the solar journey
through the Milky Way Galaxy. Fahr et al. (Chapter 9) and Florinski and
Zank (Chapter 10) use our understanding of galactic cosmic ray modulation
in the modern-day heliosphere as a basis for making detailed calculations of
the response of the paleoheliosphere, or the heliosphere as it once was, to the
paleolism, or the local interstellar medium that once surrounded the Sun. The
predictions of these calculations are quite intriguing. Both the termination
shock compression ratio and the solar wind turbulence spectrum may vary dra-
matically with different environments, as mass-loading by pickup ions and the
heliosphere properties vary. The problem of galactic cosmic ray modulation in
an ISM-forced heliosphere is extremely important to understanding the paleo-
heliosphere signature in the terrestrial isotope record.

Today, galactic cosmic rays (GCR) with energies ≥0.25 GeV penetrate the
solar system, and anomalous cosmic rays (energies <1 GeV) are formed from
accelerated pickup ions. The cosmic ray flux at Earth is sampled by geological
radioisotope records, as reviewed Kirkby and Carslaw (Chapter 12, also see
Florinski and Zank, Chapter 10). Astronomical data indicates that the Sun has
emerged from a region of space with virtually no neutral ISM within the past
∼0.4–1.5 105 years, and entered the Local Fluff (Chapter 6). The GCR mod-
ulation discontinuity that accompanied this transition may be in the geologic
record, which show lower cosmic ray fluxes at Earth, on the average, for the
past 135 kyrs years than the 135 kyrs before that (Christl et al., 2004).
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1.2.7 Atmosphere Accretion from Dense Cloud
Encounters

Harlow Shapley (1921) suggested that an encounter between the Sun and gi-
ant dust clouds in Orion may have perturbed the terrestrial climate and caused
ice ages. The discovery of interstellar H◦ and He◦ inside the heliosphere was
soon followed by studies of the ISM influence on the atmosphere for dense
cloud conditions (Fahr, 1968, Begelman and Rees, 1976, McKay and Thomas,
1978, Thomas, 1978, McCrea, 1975, Talbot and Newman, 1977, Willis, 1978,
Butler et al., 1978). Yeghikyan and Fahr (Chapter 11), evaluate the density of
ISM at the Earth based on models describing the heliosphere inside of an dense
cloud, and the interactions between the solar wind and ISM for these dense
cloud conditions (also see Chapter 9, by Fahr et al.). These models then yield
the concentration of interstellar hydrogen at the Earth, and the flow of water
downward towards the Earth’s surface, as a function of the dense cloud density.
Significant atmosphere modifications are predicted in some cases. Enhanced
neutral populations at 1 AU for a somewhat lower interstellar cloud density
regime are discussed in Chapter 8, by Moebius et al.

1.2.8 Possible Effects of Cosmic Rays
Both solar activity cycles (Figure 1.2) and ISM variations modulate the

cosmic ray flux in the heliosphere, and Kirkby and Carslaw (Chapter 12) com-
pare galactic cosmic ray records with paleoclimate archives. They examine
sources of climate forcing such as solar irradiance and cosmic ray fluxes, and
conclude that arguments in favor of cosmic ray climate forcing are strong al-
though the mechanism is uncertain. This relation between cosmic ray flux
levels and the climate is shown by radioisotope records and climate archives,
such as ice cores, stalagmites, and ice-rafted debris, and for modern times, by
historical records. Paleoclimate archives include terrestrial records of cosmic
ray spallation in the atmosphere, as traced by radioisotopes with short half-
lives (τ1/2), e.g. 14C (τ1/2 = 5, 730 yrs) and 10Be (τ1/2 = 1.6 Myrs). Possible
mechanisms linking the cosmic ray flux at 1 AU and the climate include cloud
nucleation by cosmic rays, and the global electrical circuit (see Chapter 12 and
Roble and Hays, 1979). The discussion in Chapter 12 provides persuasive ev-
idence linking the surface temperature to cosmic ray fluxes at Earth. The anti-
correlation between sunspot number and cosmic ray fluxes in Figure 1.2 shows
the heliosphere role in cosmic ray modulation; this mechanism must have also
been a prominent mechanism for relating the ISM-modulated heliosphere with
the climate. Fortunately this hypothesis is also verifiable by comparing paleo-
climate data with astronomical data on the timing of cloud transitions.

The radioisotope records also indicate that cosmic ray fluctuations have oc-
curred over longer timescales of many 108 years. Shaviv compares the 36Cl
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(τ1/2∼0.3 Myrs) and 40K (τ1/2∼1.3 Gyr) cosmic ray exposure records in iron
meteorites (Chapter 5), but in this case to obtain cosmic ray flux increases due
to the Sun’s location in spiral arms where active star formation occurs.

A number of studies, none convincing, have invoked the geological 10Be
record, as a proxy for cosmic ray fluxes at Earth, to infer historical encoun-
ters with interstellar clouds. As a way of dating the Loop I supernova rem-
nant, it was suggested that the relative constancy of 10Be in sea sediments
precluded a strong nearby X-ray source within the past ∼2 Myrs (Frisch,
1981). Sonett (1992) suggested that peaks in 10Be layers 35,000 and 65,000
years ago resulted from a compressed heliosphere caused by the passage of
a high-velocity interstellar shock. This extreme heliosphere compression ex-
pected for a rapidly moving cloud is supported by heliosphere models (Chapter
2). Structure in the 10Be peaks has also been related to spatial structure in the
local ISM (Frisch, 1997), and solar wind turbulence caused by mass-loading of
interstellar neutrals may supply the required mechanism. Global geomagnetic
excursions such as the events ∼32 kyr and ∼40 kyr ago also affect the 10Be
record, and can not be ignored (Christl et al., 2004). Indeed, Figure 1.2 shows
the sensitivity of galactic cosmic ray fluxes on Earth to geomagnetic latitude.

1.3 Closing Comments
This brief summary of the scientific question motivating this book does not

relay the full significance of the galactic environment of the Sun to the he-
liosphere and Earth; the following chapters provide deeper insights into this
question.

Historical and paleoclimate data show a correspondence between high
cosmic ray flux levels and cool temperatures on Earth (Parker, 1996). The
disappearance of sunspots for extended periods of time, such as the Maun-
der Minimum in the years 1645 to 1715, shows up in terrestrial radioisotope
records such as 10Be in ice cores (Chapter 12). The solar magnetic activity
cycle was present during this period, and cosmic ray modulation by the he-
liosphere was still evident (McCracken et al., 2004). The 10Be record now ex-
tends to ∼105 years before present, raising the hope that encounters between
the Sun and interstellar clouds can be separated from solar activity effects, and
from the global signature of geomagnetic pole wandering.

Sunspots have long been controversial as an influence on the terrestrial
climate. Sir William Herschel carefully observed them, and postulated that
diminished solar radiation at Earth during sunspot maximum affected the ter-
restrial climate (1801). Prof. Langley (1876) measured the radiative heat
from sunspot umbral and penumbral regions, and concluded the < 0.1% solar
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radiation decrease associated with sunspots was inadequate to affect the cli-
mate. Climate records show that the Maunder Minimum and other periods of
low solar activity levels have been exceptionally cold, which implicates high
cosmic ray fluxes with cold climate conditions. Solar activity levels have re-
turned to historic highs in the past few decades (Caballero-Lopez et al., 2004),
and the historic correlations indicate these high levels also yield warm climate
conditions. Unfortunately, these scientific conclusions also impact the politi-
cally loaded issue of global warming.

The possibility that the cosmos has affected the terrestrial climate is a long-
time source of speculation, with many of the first discussions focused on
explaining the “Universal Deluge”. In 1694 Edmond Halley presented his
thoughts to the Royal Society as to whether the “casual Shock of a Comet,
or other transient Body” might instantly alter the axis orientation or diurnal ro-
tation of the Earth, thus disturbing sea levels, or whether the impact of a comet
could explain the presence of “vast Quantities of Earth and high Cliffs upon
Beds of Shells, which once were the Bottom of the Sea” (Halley, 1724). Hal-
ley’s speculation has resurfaced in the hypothesis that the impact of a comet led
to the extinction of dinosaurs 65 Myrs ago at the Cretaceous-Tertiary boundary
(Alvarez, 1982). The common sense disclaimer that accompanied Halley’s dis-
cussion is timeless: “... the Almighty generally making us of Natural Means
to bring about his Will, I thought it not amiss to give this Honourable Society
an Account of some Thoughts that occurr’d to me on this Subject; wherein, if
I err, I shall find myself in very good Company.”

The articles in this volume show firmly that the interaction between the he-
liosphere and ISM depends on the detailed boundary conditions set for the
heliosphere by each type of interstellar cloud encountered by the Sun, and that
the galactic environment of the Sun changes over both geologically short time
scales of <105 years, and long time scales of >107 years. This interaction,
in turn, affects the flux of gas, dust, and energetic particles in the inner he-
liosphere.

The discussions in this book also apply to the study of astrospheres around
cool stars, which are expected to have similar properties as the heliosphere.
Is the historical astrosphere of a star a factor in climate stability for planetary
systems? I think so (Frisch and York, 1986). If so, then the sample of ∼100
detected extrasolar planetary systems can be narrowed to those that are the
most likely to harbor technological civilizations by evaluating the astrosphere
characteristics suitable to the space trajectory of each star (Frisch, 1993). As-
trospheres have now been detected towards ∼60% of the observed cool stars
within 10 pc (Wood et al., 2005), and extensive efforts to detect Earth-sized
exoplanets are underway. Perhaps some day these questions will be answered.
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Figure 1.2. Galactic cosmic ray fluxes on Earth versus solar activity levels for sunspot cycles
18–23. Depicted are 27-day averages of the Climax (blue), and Huancayo/Haleakala (pink/red)
neutron monitor rates as a percentage of their respective 1954 solar minimum levels. The run-
ning averages of the monthly mean sunspot number (green) are a proxy for the level of turbu-
lence in the heliosphere as a function of solar activity. There is a clear anti-correlation between
the neutron monitor rates and the sunspot number. The flat-topped versus peaked-top neutron
monitor rates seen at successive 11-year solar minimum periods are a function of the polarity of
the heliospheric magnetic field, noted at the bottom. The Climax data show solar cycle modu-
lation for >3 GeV GCRs, while the Huancayo/Haleakala data show solar cycle modulation for
>13 GeV GCRs (for additional detail please see Lopate, 2005). The geomagnetic latitudes of
Climax and Huancayo/Haleakala are 48◦ and ∼0.5◦/20◦. The poles are given as N and S, for
north and south poles. The terms N+/S- indicate the times when the polarities of the north/south
poles became positive/negative, while N-/S+ indicates they became negative/positive instead.
The N/S poles do not appear to switch polarities simultaneously. The author thanks Dr. Clifford
Lopate for providing this figure, and for maintaining a valuable data stream from an experiment
begun by John Simpson in 1950.
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Postscript: Definitions
The nine planets of the solar system (including Pluto as a planet) extend out

to 39 AU, compared to the distance of the solar wind termination shock in the
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Table 1.1. Commonly Used Terms and Acronyms.

Object Description
Interstellar:
Interstellar Material, ISM Atoms in the space between stars
Local Fluff or CLIC ISM within ∼30 pc, density 10−24.3 g cm−3

CLIC = Cluster of Local Interstellar Clouds
Local Interstellar Cloud, LIC The cloud feeding ISM into the solar system
Local Bubble, LB Nearby ISM with density <10−26.1 g cm−3

Heliosphere:
Solar Wind, SW Solar plasma expanding to form heliosphere

Density ∼5 ions cm−3, velocity ∼450 km s−1

at Earth
Neutral Current Sheet Thin neutral region separating SW

with opposite magnetic polarities
Heliosphere, HS Region of space containing the solar wind
Termination Shock, TS Shock where solar wind becomes subsonic

TS at ∼94 AU on 16 December, 2004
Heliosheath Subsonic solar wind, outside TS
Heliosphere Bow Shock Shock where LIC becomes subsonic
Focusing Cone Gravitationally focused ISM dust

and helium gas downwind of the Sun

Interstellar Products in the Heliosphere:
Pickup Ions, PUI Ions from SW-ISM charge exchange
Energetic Neutral Atoms ENAs, Energetic atoms formed by

charge exchange with ions
Cosmic Rays:
Anomalous, ACR Accelerated pickup ions, energy <1 GeV
Galactic, GCR From supernova, energy >1 GeV at Earth

upwind direction of 94 AU. The Earth is 8.3 light minutes from the Sun, versus
the ∼0.5 light day distance to the upwind termination shock of the solar wind.
The ecliptic and galactic planes are tilted with respect to each other by ∼60◦,
and the north ecliptic pole points towards the galactic coordinates � = 96.4◦

and b = +29.8◦. This tilt allows the separation of large scale ecliptic and large
scale galactic phenomena by geometric considerations.

Acronyms are used throughout this book, and some of these are listed in
Table 1. For those new to this subject, an astronomical unit, AU, is the distance
between the Earth and Sun. A parsec, pc, is 206,000 AU, 3.3 light years (ly),
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or 3.1 × 1018 cm. For comparison, the nearest star, α Cen, is 1.3 pc from the
Sun.

Notes
1. In this same paper Herschel commented that “Whatever fanciful poets might say, in making the sun

the abode of blessed spirits, or angry moralists devise, in pointing it out as a fit place for the punishment
of the wicked, it does not appear that they had any other foundation for their assertions than mere opinion
and vague surmise; but now I think myself authorized, upon astronomical principles, to propose the sun as
an inhabitable world, and am persuaded that the foregoing observations, with the conclusions I have drawn
from them, are fully sufficient to answer every objection that may be made against it.” These comments
show that valuable data are not always interpreted correctly.

2. The buffering processes convert interstellar neutrals into low energy ions, which are convected out-
wards with the solar wind and accelerated to low cosmic ray energies that have an anomalous composition,
including abundant elements with FIP > 13.6 eV. The high energy galactic cosmic ray population incident
on the heliosphere is also modulated.

3. Open magnetic field lines are formed in coronal holes that reconnect in the outer heliosphere and
contain low density and very high speed, ∼700 km s−1, solar wind.

4. The pickup ions are interstellar neutrals formed by charge exchange with the solar wind. Energetic
neutral atoms are formed by energetic ions that capture an electron from a low energy neutral by charge
exchange. The gravitational focusing cone contains heavy elements (mainly He) that are predominantly
ionized inside of 1 AU and therefore gravitationally focused downwind of the Sun (Chapter 8). Large
interstellar dust grains are also gravitational focused (Chapter 7). The anomalous cosmic ray population
is formed from pickup ions accelerated to low cosmic ray energies, <1 GeV, in the solar wind and at the
termination shock, and then subjected to the same modulation and propagation processes as galactic cosmic
rays (Jokipii, 2004).
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