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Abstract: Historically, compact transistor models have been developed using general-
purpose programming languages such as C or Fortran, with the resulting source
code specifically targeted to a given circuit simulator’s proprietary model inter-
face. Although this approach has allowed for the creation of robust and efficient
compact models, it has nevertheless resulted in a situation where the model
development process is lengthy, the models are not portable across the vari-
ous simulation environments, and where the model development facilities are
often not open to independent model developers. The advent of analog hardware
description languages (AHDLs) over the last several years promises to address
the aforementioned issues by providing a portable, robust, and efficient plat-
form for analog model development. In this chapter, we describe the Verilog-A
language and explore the numerous benefits it provides in the area of compact
modeling.
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1. Introduction and Overview

The availability of accurate, robust, and efficient compact models is criti-
cal to the successful utilization of any circuit simulation tool. As new phys-
ical effects manifest themselves due to shrinking geometries, and as an
increasingly wide variety of highly specialized device technologies (e.g., RF
CMOS, SiGe, III–V) become available to analog circuit designers, the need
for rapid development and distribution of advanced semiconductor device
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models becomes more acute than ever. Traditionally, circuit simulators have
relied largely on “built-in” semiconductor device models. Such built-in devices
– typically implemented using general-purpose programming languages like
C, C++, or Fortran – are targeted specifically to the interface and internal
data structures of their host simulator, and are thus inherently non-portable.
Facilities for adding custom models (or “user-defined devices”) have been
made available in some simulation environments, but such interfaces have
typically been non-standard, non-portable, and inefficient. New model cre-
ation under these conditions was thus a time-consuming and error-prone
endeavor.

The rapidly increasing availability and adoption of analog HDLs such as
Verilog-A [1, 2] offers the promise of a comprehensive solution to the afore-
mentioned analog model development and deployment problem. Initially con-
ceived as a general-purpose analog modeling language, Verilog-A has over the
past several years become increasingly viewed as a leading candidate for new
compact model development [3–6]. Although the language has always been
applicable across the full range of analog modeling tasks – from behavioral
event-driven models all the way down to the transistor level – early Verilog-A
implementations were interpreted solutions, and were not viewed as being
viable alternatives to hand-coded built-in device models. The recent rise in
interest for Verilog-A based compact model development has resulted in com-
piled solutions becoming available, with an ongoing emphasis on improved
simulation performance.

The use of standardized, special-purpose analog HDLs such as Verilog-A
allows device modeling experts to focus on their area of expertise, rather than on
the underlying simulator-specific implementation details. The increased level
of abstraction means that the model developer can focus on model behavior,
and let the underlying implementation automatically take care of mundane
(and often simulator-specific) details such as matrix stamping and loading,
analysis-specific data structures, symbolic derivative computation, and so forth.
The device modeling engineer is thus shielded from the idiosyncrasies and
complexities of the various device interfaces in existence today.

2. Verilog-A Language Fundamentals

For model developers accustomed to working in a standard programming
language such as C or Fortran, the switch toVerilog-A syntax should be straight-
forward and painless. The language is relatively succinct and compact, and
is well-suited to analog model development. Several academic and industrial
model development groups now use Verilog-A as a key part of their develop-
ment methodology.
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2.1. Introduction by Example

To illustrate the straightforward and intuitive nature of Verilog-A source
code, we consider the following simple example.

module simple_diode(pos, neg);
inout pos, neg;
electrical pos, neg;

parameter real Area = 1.0 from (0:inf);
parameter real Is=1e-14 from [0:inf);
parameter real n = 2 from (0:inf);
parameter real Cjo=0 from [0:inf);
parameter real Phi = 0.7, m = 0.5, tt = 1p;

real Id, Qd;

analog begin
Id = Area*Is*(limexp(V(pos, neg)/(n*$vt))-1);
Qd = tt*Id + Area*V(pos, neg)*Cjo/

pow((1-V(pos, neg)/Phi), m);
I(pos, neg) <+ Id + ddt(Qd);

end
endmodule

The fundamental structural unit within Verilog-A is the module. In the first line
of the code fragment above, we see that the module is named “simple diode”,
and that it has two terminal connections (or ports, in Verilog-A parlance). The
language supports the presence of non-electrical domains, such as electro-
mechanical or thermal; for this simple diode example, the terminals (pos and
neg) are labeled as being “electrical”. (Some compact models incorporate ther-
mal effects, and would thus use a “thermal” discipline for the thermal node.)
Internal nodes are declared using the same syntax: if a discipline declaration is
present for a node whose name does not match the module port list, that node
becomes an internal node within the enclosing module.

The diode’s parameters, including default values and allowable ranges, are
specified after the terminal disciplines, and two local real variables (Id and
Qd) are then declared. Both real and integer-valued quantities are allowed,
and arrays of variables (or parameters) are allowed as well. In a subsequent
Section (2.7) we will also encounter the Verilog-A specific variable type known
as a “genvar”.

Following the variable and parameter declarations, we come to the heart of
the model’s numerical description – the analog block. Each module can con-
tain at most one analog block, where the module’s analog behavior is specified.
Because Verilog-A allows hierarchical constructs (Section 2.8), some mod-
ules can merely instantiate other modules as child instances and connect them
electrically. In these cases, the analog block need not be present.
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Our simple diode example has no hierarchical constructs within it, and
the diode description resides solely within the analog section. Straightforward
mathematical expressions are used to assign physically meaningful values to Id
(the diode current) and Qd (the charge). The resulting current is then directed
to the output terminals via the contribution statement:

I(pos, neg) <+ Id + ddt(Qd);

So long as the target of the contribution statement does not switch from current
to voltage (or vice versa), the contributions are all additive. The following two
statements would be equivalent to the previous one:

I(pos, neg) <+ Id;
I(pos, neg) <+ ddt(Qd);

In the next several sections, we present a more detailed overview of the Verilog-
A language structure, with particular emphasis on constructs important to the
compact model developer.

2.2. Contributions and Branches

Verilog-A uses the so-called “source/probe” formulation for describing the
behavior of electrical networks. Consider a pair of electrical nodes, named n1
and n2. As we saw in the previous section, we can “probe” the voltage between
them via the expression V (n1,n2). To insert a current source (a “flow-branch”
or “current branch” in Verilog-A parlance) between the two nodes, we would
use the contribution statement:

I(n1, n2) <+ Idc;

Similarly, to insert a voltage source (also called a “voltage branch” or a “poten-
tial source”) between nodes n1 and n2, the contribution statement:

V(n1, n2) <+ Vdc;

would be used.The presence of either of these two contribution statements intro-
duces an “unnamed branch” between the two nodes. Explicit named branches
can also be introduced via declarations of the form:

branch (n1, n2) br_res;
branch (n1, n2) br_cap;
branch (n1, n2) br_ind;

and contributed to by statements such as:

I(br_res) <+ V(br_res)/R;
I(br_cap) <+ C*ddt(V(br_cap));
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V(br_ind) <+ L*ddt(I(br_ind)) + RL*I(br_ind);

Explicitly named branches can be useful in those cases where the user is inter-
ested in current flow through the named branch only, either for direct output or
for use in another expression:

Pdiss_L = I(br_ind)*I(br_ind)*RL;
Pdiss_R1 = I(br_res)*I(br_res)*R;

As we explain in more detail later, most compact modeling applications
should attempt to probe voltage (i.e., use V (. . .) only on the right hand side)
and contribute to current (i.e., use I (. . .) only on the left hand side) whenever
possible. Failure to do so may result in the introduction of additional state
variables, causing the simulation to be slower and more memory-intensive
than would otherwise be the case. For example, a nonlinear capacitor should
be implemented as:

I(p, n) <+ ddt(cap(V(p, n));

rather than the alternate (and usually less efficient) choice:

V(p, n) <+ idt(f(I(p, n));

In most implementations, the second choice will result in the introduction of
additional state variables into the system.

For some components, of course, the preceding rule of thumb is not appli-
cable. A truly voltage-controlled component such as an inductor should be
implemented as:

V(p, n) <+ ddt(phi(I(p, n));

where (for the sake of generality) we have used the analog function “phi”
to refer to the potentially nonlinear inductance characteristic. Although this
formulation will introduce an extra state variable into the system, the voltage-
controlled nature of the component makes this intrinsically necessary. The
alternate integral-based implementation:

I(p, n) <+ idt(g(V(p, n));

does not use any fewer state variables than the ddt-based implementation.
Before concluding this section, we briefly discuss the topic of current

probes. As we have seen, probing voltage in Verilog-A is simple and straight-
forward. Probing current – although syntactically just as simple – requires a bit
more care. Using the expression I (n1,n2) on the right-hand side of a contribu-
tion statement yields the current flowing in the unnamed branch between nodes
n1 and n2. Similarly, to probe the current through a named branch br1, the syn-
tax I (br1) would be utilized. If the branch being probed is not contributed to,
the two terminals of the branch are effectively shorted together. Most Verilog-A
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implementations will insert an extra state variable to probe the current through
the branch, and thus it is desirable to avoid using current probes when possible.
For example, the code fragment:

I(n1, n2) <+ V(n1, n2)/R;
x = f(I(n1, n2));

would typically be less efficient than the analogous:

I(n1, n2) <+ V(n1, n2)/R;
x = f(V(n1, n2)/R));

Current flow into module ports (terminals) can be probed with the expression
I (<port name>), where port name is the name of the port. Note that it is usually
an error to write I (port name) instead, as the use of this expression on the right-
hand side will create an unnamed shorted branch from port name to ground,
and thus almost certainly cause the model to behave in an undesirable way.

2.3. Analog Operators

As a general-purpose analog modeling language, Verilog-A includes a large
number of “analog operators” that can be applied to signal waveforms. In addi-
tion to conventional operations such as differentiation, integration, and delay,
the language also provides the transition, slew, circular integration, laplace
transform, and Z-transform operators (see table below).

For compact model development, it is seldom necessary to use analog oper-
ators other than ddt. Occasionally, short delays may be used for some device
applications, and laplace operators can sometimes prove useful for modeling
passive circuitry or packaging outside the device. It is generally best to avoid
the use of the integrator with initial conditions, the slew and transition filters,
and the Z-transform operator because usage of these facilities restricts the range
of analysis types that the model is suitable for [10]. Fortunately, there is almost
never a need for such operations in compact modeling work.

Analog operators/
Waveform filters

ddt(x [,abs tol] ) Differentiate ‘x’ with
respect to time.

idt(x, [ic [, assert
[, abs tol] ]] )

Integrate ‘x’ with
respect to time with
initial condition ‘ic.’

idtmod(x, [ic [, modulus
[, ffset] ] ] )

Circular integration of
‘x’ with respect to time
with initial condition
‘ic’ using modulus and
offset.
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transition(x [, delay
[, rise time [, fall time]]])

Control details of signal
transition expression ‘x.’

slew(x [, max pos
[, max neg]])

Control slew rate
behavior of expression
‘x.’

absdelay(x, time delay,
max delay)

Output(t) = x(time −
time delay).

zi nd(x, num, denom,
period, [ transition time
[,sample offset time ] )

z-domain filter function
using numerator-
denominator form.

zi zd(x, zeros, denom,
period, [ transition time
[,sample offset time ] )

z-domain filter function
using zero-denominator
form.

zi np(x, num, poles, period,
[ transition time [,sample
offset time ] )

z-domain filter function
using numerator-pole
form.

zi zp(x, zeros, poles, period,
[ transition time [,sample
offset time ] )

z-domain filter function
using zero-pole form.

laplace nd(x, num, denom,
[, abs tol ] )

s-domain filter function
using numerator-
denominator form

laplace zd(x, zeros, denom,
[, abs tol ] )

s-domain filter function
using zero-denominator
form

laplace np(x, num, poles,
[, abs tol ] )

s-domain filter function
using numerator-pole
form

laplace zp(x, zeros, poles,
[, abs tol ] )

s-domain filter function
using zero-pole form

2.4. Noise

Noise analysis is an area of key importance for many analog appli-
cations, and thus comprehensive noise support is a requirement for com-
pact model development. To this end, Verilog-A provides the white noise,
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flicker noise, and noise table functions.1 For example, a noisy resistor would
be modeled as:

I(p, n) <+ V(p, n)/R + white_noise (4*`P_K*$temperature*R);

whereas shot noise could be added via the expression:

I(b, c) <+ white_noise (2*`P_Q*Ic);

As we see above, the noise power arguments can be a function bias. A list of
the available noise sources is given in the table below.

Noise
functions

white noise(power [, label ] ) Generate white noise of
power ‘power.’
Contributions with the
same label ‘label’ are
combined for a module
by the simulator.

flicker noise(power, exp [, label ] ) Generate pink noise of
power ‘power’ at 1 Hz
that varies in proportion
to 1/f∧exp. Contributions
with the same label
‘label’ are combined for a
module by the simulator.

noise table(vector [, label ] ) Generate noise where
power is described by
linear interpolation from
vector ‘vector’ of
frequency-power pairs.
Contributions with the
same label ‘label’ are
combined for a module
by the simulator.

In Verilog-A, each noise source is, by definition, independent. Correlation
effects between noise sources can be modeled through linear combinations of
real variables which are functions of the independent sources. For example,
suppose that we would like to have a source n1 with power P 1 and source n2

1The noise table function may not be supported for some types of RF noise analysis. Its use should be
avoided if possible.
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with power P 2, correlated to each other with a coefficient of K . This can be
achieved by introducing three independent noise sources:

A = white_noise(K);
B = white_noise(P1-K);
C = white_noise(P2-K);

and then linearly combining them into the desired noise sources n1 and n2 as:

n1 = A+B;
n2 = A+C;
I(a, b) <+ n1;
I(c, d) <+ n2;

2.5. Analog Functions

Analog functions – sometimes referred to as user-defined functions – are
directly analogous to their counterparts in conventional programming lan-
guages. Their primary role is to improve the readability and structure of a given
analog block by encapsulating potentially complicated mathematical function-
ality. In some cases, using analog functions (instead of macros, for instance)
can also lead to a smaller memory footprint.

Analog functions take as input a sequence of real or integer arguments, and
return a real or integer value. In the 2.1 version of the standard, the arguments
and return value are restricted to be scalar, and the arguments are passed by
value. The 2.2 language standard allows the arguments to be arrays, and also
allows them to be passed by reference (i.e., the function can effectively return
values to the caller).

As an example of a typical analog function definition, we consider the
following excerpt from a bipolar transistor model.

analog function real I_of_T;
input IS, T, T_NOM, EG, N, Vth, XTI, XTB;
real IS, T, T_NOM, EG, N, Vth, XTI, XTB;
real ratioT;

begin
ratioT = T/T_NOM;
I_of_T = IS / pow(ratioT, XTB) * exp((ratioT-1)*EG/

(N * Vth))*pow(ratioT, XTI/N);
end

endfunction // I_of_T

This function would be called from the module with the syntax

ISE_T = I_of_T(ISE, T, T_NOM, EG_T, NE, Vt, XTI, XTB);
ISC_T = I_of_T(ISC, T, T_NOM, EG_T, NC, Vt, XTI, XTB);
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2.6. System Tasks

The Verilog-A language provides a set of “system tasks” which allow mod-
ules to interact with the simulation environment and with the input/output sys-
tem. Each system task statement begins with the “$” character, followed by the
name of the task and a parenthesized argument list. System tasks of interest to
the compact model developer include the $strobe and $debug2 calls for textual
output to the display:

$strobe("V(coll) = %e", V(coll));
$debug("V(base) = %e", V(base));

The $strobe task outputs its results at every converged solution point. In contrast,
the $debug task generates output at every single Newton iteration, and (as
its name suggests) is thus useful for debugging purposes. Numerous other
system tasks are of course present in the language, and the reader is advised to
consult [1] for a detailed list.

In addition to “system tasks”, Verilog-A also provides several “system func-
tions” (also occasionally referred to as system calls). These are distinct from
system tasks in that they are function calls returning real-valued expressions,
whereas the system tasks are statements that do not provide a return value.
Of particular interest to compact model developers are $temperature (which
returns the temperature in Kelvin), $vt (which returns the thermal voltage), and
$abstime (which returns the current simulation time). Although compact mod-
els should not explicitly rely on time for their current-voltage characteristics,
the $abstime call can be very useful for data display and debugging.

2.7. Conditional Statements, Looping Constructs,
and Genvars

Conditional statements and for-loops are very useful language constructs for
device modeling. Their usage in Verilog-A is similar to their usage in standard
programming languages such as C, with one important distinction – analog
operators (Section 2.3) may be used inside the body of these constructs only if
the controlling expression is not a function of the state variables.3 The restriction
exists because analog operators must store their state internally, and thus need
to monitor their arguments during the course of an entire analysis. To illustrate
the restriction, consider the following simple code snippet:

if(V(ctrl) > 0) begin
x = V(a, b); // this is legal

2The $debug task is only present in the 2.2 (and later) versions of the standard.
3In the language of the standard, this is referred to as a “genvar expression”.



Compact modeling in Verilog-A 281

I(c, d) <+ V(a, b); // this is legal as well
x = ddt(V(a, b)); // this is illegal:

// analog operator prohibited here
end

The entire code fragment above would be legal if V (ctrl) was replaced by a
parameter type.

For-loops, although not as widely used as conditional statements, are still
quite commonplace in compact modeling applications. They are particularly
useful for such tasks as looping through the fingers of a multi-finger device or
iterating through the emitters of a multiple-emitter transistor. For those situa-
tions where analog operators are needed within the body of a for-loop, the lan-
guage introduces the “genvar ” type of integer-valued variable. Variables which
are declared as genvar may only be initialized within the controlling expres-
sions of a for-loop statement, and may only be functions of static expressions
(i.e., ones which are not functions of state variables, and are thus not depen-
dent on bias). As an example of this concept, the code fragment below would
insert a linear parallel RLC network into each of the NF fingers of a Verilog-A
device:

electrical [1:`NF] no, ni;
real vk;
real [1:`NF] R, C, L;
// Code to initialize R/L/C arrays goes here...
genvar k;
for(k = 1; k <= `NF, k = k+1) begin

vk = V(no[k], ni[k]);
I(no[k], ni[k]) <+ vk/R[k] + C[k]*ddt(vk) + L[k]*idt(vk);

end

2.8. Hierarchical Module Instantiation

Verilog-A modules can be hierarchical in nature – each module may itself
instantiate an arbitrary number of sub-modules. For example, if a detailed
Verilog-A model for a bias-dependent junction capacitor has been written, a
MOS model could instantiate instances of it with the statements

juncap #(.TRJ(TRJ1), .DTA(DTA1), ... ) JUNCAPsource(BS, S);
juncap #(.TRJ(TRJ2), .DTA(DTA2), ... ) JUNCAPdrain(BD, D);

The syntax above indicates that two juncap devices will be placed hierarchically
within the parent module. The first of these would be named JUNCAPsource,
and attached between nodes BS and S, while the second (named JUNCAPdrain)
would be connected to nodes BD and D. Parameters are passed from
the parent module to the child sub-device through a comma-separated list
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after the ‘#’ symbol. The values may themselves be functions of other
parameters:

parameter real L = 0.1u from (0, inf];
parameter real W = 0.5u from (0, inf];
some_device #(.Area(L*W)) dev(n1, n2, n3);

2.9. Events and Memory States

As a general-purpose modeling language, Verilog-A includes some behav-
ioral constructs that are best avoided in compact modeling applications. Chief
among these are events (e.g., @(cross) and @(timer)) and the use of “memory
states”, which are further explained below.

The Verilog-A language standard mandates that local variables are initial-
ized to zero at the beginning of the simulation, and that they retain their value
after a given time point has converged. If a variable is used before it is assigned
in a given module, it takes on the value from the previously-converged time
point. We refer to such variables as “memory states”. (In other literature [8],
such variables may be referred to by other names, such as “hidden states”.)
Although such variables can be very useful for behavioral modeling applica-
tions, they clearly have very limited utility in compact model development.
One possible use would be to limit the display of diagnostic information. For
example, to print a warning only once, we could structure the code as follows:

integer warn_flag;
if(!warn_flag && R < 0) begin

$strobe("Negative resistance in module %m");
warn_flag = 1;

end

In addition to representing a questionable formulation from the standpoint
of physical reality, modules with memory states can pose problems for RF sim-
ulation algorithms like harmonic balance and periodic shooting [9]. Indeed,
for methods such as harmonic balance – which do not rely on conventional
time-marching algorithms at all – the whole concept of memory states is
particularly problematic. In the area of compact modeling most memory states
can usually be attributed to an inadvertent mistake in variable usage, and com-
pact model compilers should automatically warn the model developer of their
presence [10].

3. Compact Model Development

3.1. Numerical Considerations

Circuit simulation algorithms are generally iterative in nature, and are typ-
ically based on the classical Newton-Raphson technique. To facilitate robust
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convergence, semiconductor device models should have smooth, differentiable
characteristics, and should guard against floating point exceptions that can
occur during the course of iterating to a solution. It is important to remember
that state variables can assume non-physical values during the course of the
iterative process, and that “reasonable” nodal values are only guaranteed once
the system has converged to a valid solution.

3.2. Model Topology

The program-flow aspect of the Verilog-A language tends to be straightfor-
ward, intuitive, and very similar to the languages that compact model developers
are accustomed to. The contribution statements specifying model topology –
while also fairly intuitive – do not have any direct counterparts in conventional
programming languages, and consequently merit some additional discussion.

Most circuit simulators use Modified Nodal Analysis (MNA) [11] or some-
thing very similar to formulate the circuit equations. Consider a simple linear
resistor, connected between nodes n1 and n2, represented by the constitutive
equation I = V/R (or I (n1,n2) < +V (n1,n2)/R in Verilog-A). A conven-
tional circuit simulator would have state variables corresponding to nodes n1
and n2, and all components connected to these nodes would contribute terminal
currents to the relevant Kirchoff’s Current Law (KCL) equations. The resistor
component would simply add the current V/R to one of the nodes, and subtract
V/R from the other node. No additional equations or state variables would be
necessary.

In contrast, consider a voltage source placed between nodes n1 and n2.
The Verilog-A constitutive relation for this component takes on the form
V (n1,n2) < +Vdc, and in this case cannot be expressed in a “voltage-
controlled” formulation. To handle this scenario, typical circuit simulators pro-
ceed to create a new variable representing the current through the source, and
then add the equation Vn1 − Vn2 − Vdc == 0 as an extra row in the system.

The formulation method is important for compact model developers, since it
can impact the size of the matrix. Because performance is a key issue in compact
model development, it is important to have a good understanding of when
“extra” state variables may be introduced by the various language constructs.
The general rule of thumb (described in Section 2.2) is that contributing to a
voltage (i.e., havingV (. . .) < + on the left-hand side) or sensing a current (i.e.,
using I (. . .) within a right-hand side expression) can lead to the insertion of
extra state variables.

One issue that frequently comes up in compact modeling work is the pres-
ence of optional parasitic resistors on the device terminals. These cannot be
portably implemented using the standard contribution statement:

I(e, ei) <+ V(e, ei)/Re;
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because the resistor value may be zero. The obvious solution – that is, using
the voltage contribution:

V(e, ei) <+ Re*I(e, ei);

is portable and robust. However, as we have seen previously, this formulation
will introduce an extra state variable for the resistive branch. For the case where
the resistor value is zero, this results in the creation of not one but two extra
state variables – one for the internal node ei, and one for the current through
the voltage branch between nodes e and ei.

To overcome the aforementioned problem, modern compact model compil-
ers will often make a special allowance for the following idiom:

if(Re > 0.0)
I(e, ei) <+ V(e, ei)/Re;

else
V(e, ei) <+ 0;

So long as Re is a static expression (i.e., one that does not depend on the values
of the state variables) the model compiler will “collapse” the nodes e and ei
into a single state variable if the parasitic resistance value is zero. In the case of
implementations which do not special-case this construct, the code fragment
will introduce a “switch branch” but will still execute correctly and be fully
compliant with the language standard.

3.3. Compact Modeling Extensions

The recent 2.2 release of the language standard [1] has added several features
of interest to compact model developers [7, 12]. Facilities have been added
for explicit derivative access, portable output of local variables, efficient and
convenient representation of parameter sets, more flexible specifications of
user-defined analog functions, as well as several other common tasks. Table-
based modeling support has also been added as a standard feature, enabling
compact models to utilize table-driven characteristics.

Because the new standard has only recently been released, support for
these features is not yet widely available across the various Verilog-A dis-
tributions. If portability is important, models utilizing the new feature set can
check the predefined macro ‘VAMS COMPACT MODELING; implementa-
tions that support the compact modeling extensions will have this definition
present. Constructs that are dependent on the 2.2 feature set can be placed
within an ‘ifdef for backward compatibility with earlier implementations.

A full detailed discussion of the new feature set is beyond the scope of
this chapter; for more information, the reader is directed to the language stan-
dard [1]. Here, we present a brief overview of some of the more useful 2.2
functionality.
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3.3.1. The ddx operator

Although Verilog-A compilers must internally compute symbolic deriva-
tives to ensure that the Newton-Raphson process exhibits robust convergence,
the language standard prior to version 2.2 did not allow model developers direct
access to symbolic derivative information. This situation has been remedied
with the introduction of the ddx operator. The ddx operator takes two argu-
ments – the expression to be differentiated, and the state variable with respect
to which the differentiation should take place:

Id = Area*Is*(limexp(V(pos, neg)/(n*$vt))-1);
Qd = tt*Id + Area*V(pos, neg)

*Cjo/pow((1-V(pos, neg)/Phi), m);
Gd = ddx(Id, V(pos));
Cd = ddx(Qd, V(pos));

It is important to keep in mind that the derivative is a true partial derivative – that
is, all state variables (i.e., nodal voltages and branch currents) except the one
being differentiated with respect to will be held fixed. The state variables being
held fixed should be distinguished from the local module variables, which may
of course vary with the “with respect to” state variable.4

An important point is that differentiation with respect to a voltage difference
is not allowed. For example, it may be tempting to calculate transconductance
for a BJT as:

Gm = ddx (Ic, V(b, e)); // error!

This formulation has two inherent problems. The first of these is that dif-
ferentiation with respect to a voltage difference is forbidden by the stan-
dard (as we saw above). The second issue is that nodes b (base) and e
(emitter) in most bipolar models will represent the external device nodes,
connecting to the intrinsic model only through the parasitic lead resistors.
As such, partial derivatives with respect to these nodes will not yield the
derivative derivative value that the model developer desires, since these
unknowns are independent of the intrinsic device’s nodal values under partial
differentiation.

3.3.2. Output variables

Built-in devices in spice-like circuit simulators are typically able to output
internal information such as small-signal operating point values for a given

4Note that this variation is only conceptual in nature; there is no numerical limiting process, since the
standard specifies that the derivative should be “exact” in a symbolic sense.
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model instance. To enable portable output of model-specific data, the 2.2 stan-
dard now mandates that module-scope variables with description and unit
attributes should be output to the data set. For example, if the real variable
Gd of the preceding section was declared as

(* desc = "diode conductance", units = "mhos" *) real Gd;

then the value of Gd would be made available for output and plotting at every
solution point (including every time point of transient analysis).

3.3.3. Limiting functions

Circuit simulators have traditionally employed solution algorithms which
effectively “limit” the potentially sharp changes in nodal values that can occur
during the Newton-Raphson iterative process due to strong device nonlineari-
ties. Prior to the 2.2 standard, the limexp operator was provided to fulfill this
role when dealing with exponential junction nonlinearities. However, the lim-
exp facility did not have the full generality available to built-in junction limiting
algorithms, and was clearly not applicable to other forms of limiting that are
sometimes used for various compact models.

To address this situation, the $limit facility was introduced into the 2.2 lan-
guage standard. In addition to providing a flexible interface for user-specified
limiting algorithms, the standard also recommends that simulation environ-
ments provide default implementations of the common “pnjlim” and “fetlim”
algorithms, which presumably are used by the built-in (native) devices. This
allows compact models written in Verilog-A to employ limiting algorithms that
are consistent with their native counterparts. For more detailed information, the
reader is referred to [7] and Section 10.9 of [1].

4. Examples

Verilog-A enables an efficient and fast process for compact model develop-
ers to create and distribute models. Already many popular models are available
in Verilog-A format from a variety of sources (see table below). However,
for this process to have wide acceptance, the experience of the end-user of
the model must be much the same as it is with the current model distribution
methods. That is, the model must be available in all the available analyses, the
simulation results must be identical, and the simulation performance must not
be impaired. This section illustrates how both industry-standard and complex
models implemented in Verilog-A perform with an identical use-model as far
as the end-user is concerned.
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Model Type Models
BJT SPICE-GP, HiCUM, MEXTRAM, VBIC

MOSFET BSIM3, BSIM4, BSIM5, BSIMSOI, MOS11, PSP,
EKV, RPI-Shur TFT

GaAs FET Angelov, Curtice, Parker-Skellern, TOM1/3

4.1. Angelov-Chalmers GaAs FET Model

The Angelov-Chalmers GaAs FET model is a prominent compact model
used in high frequency circuit designs [13]. It delivers good representation of
high power behavior while also providing good prediction of harmonics.

It is a relatively straight-forward model to code; however, it is not available in
all simulators since it is used by only a small segment of the design community.
The model requires less than four hundred lines of Verilog-A code, including
parameter definitions; actual behavioral expressions are less than two hundred
lines of code.

The I–V characteristics shown in Figure 1 compare the results of a simu-
lation using the Verilog-A model to the simulator’s built-in version. As can be
seen, the results are identical, as one would expect. From the user’s perspective
the model behaves and performs as though it were a natively coded model.
Besides the advantage of easy-access to the code for modifications and exten-
sions, a Verilog-A implementation of the Angelov-Chalmers model provides
access to the model in simulators where the vendors have not provided a native
version.
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Figure 1. I–V characteristics of Built-in and Verilog-A versions of Angelov FET model.
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Figure 2. Output spectrum of EKV mixer analyzed in a commercial simulation program that
does not natively support the EKV model.

4.2. EKV Model

The EKV model is another example of a popular MOSFET model that
has been implemented in many, but not all, simulators. However, a Verilog-A
version was released by the developers and this provides access to the model in
simulators where it has not been implemented. Figure 2 illustrates a frequency
domain simulation of an EKV mixer in a simulator that does not natively support
the EKV model.

4.3. SPICE Gummel-Poon BJT

The SPICE Gummel-Poon BJT model is provided in virtually every ana-
log simulator. Even though developed a half-century ago, until recently it has
been general enough to sufficiently model advances in device technology. New
compact models have been developed to address these improvements in topol-
ogy and scaling. These recent models are more complicated, requiring more
effort to extract the model parameters and using more simulation resources
during analysis. However, in many cases minor modifications to the Gummel-
Poon model would still be sufficient to accurately predict circuit performance.
Verilog-A implementations of the BJT model allow users to add only the nec-
essary behavior without adding unnecessary complications. For example, self-
heating is an effect that is included in all of the next generation BJT models. It
is important for devices used for power generation, or in materials with poor
thermal characteristics. The self-heating effect can be modeled with just a few
lines of Verilog-A code. A similar implementation in C-code, assuming the
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end-user had access to the code, would be much more involved as it would be
up to the developer to provide the numerous associated thermal derivatives for
the simulator.

To demonstrate how Verilog-A models can be used in any analysis type,
including frequency domain simulations such as harmonic balance, a real-world
circuit using bothVerilog-A compact models,Verilog-A behavioral models, and
native simulator models for a modulator and demodulator.

Figure 3 shows the circuit schematic layout while the associated output is
presented in Figure 4. The magnitude of the output is plotted along with the
output for the Verilog-A model when self-heating is enabled.
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Figure 3. Schematic for a modulator-demodulator circuit employing Verilog-A for both com-
pact models and behavioral models.

Figure 4. Output of demodulator in the time domain for a conventional SPICE Gummel-Poon
model compared to the same model with a self-heating thermal circuit.
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Figure 5. Ring oscillator output for both a native BSIM3 model and its Verilog-A equivalent.

4.4. BSIM3 MOSFET Model

The BSIM3 MOSFET model is the most extensively used compact model
for analog and digital designs. It is the third generation model of the BSIM
family and was developed with the intent of providing good fit to the underlying
process as well as good mathematical behavior with respect to convergence.
It is a complicated model with tens of thousands of lines of C-code and with
hundreds of parameter values. In comparison, the Verilog-A implementation
requires about one tenth the number of lines of code.

Since the model equations’ derivatives are automatically generated, there is
less chance of coding errors. This helps to accelerate the time it takes to get com-
plex models out to the end-user. With shrinking geometries and novel device
topologies, it is more difficult for any one compact model to accurately portray
the device characteristics. Verilog-A allows new models to reach the end-user
quicker; and for end-user feedback to return back to the model developer for
model improvements.

Ring oscillator circuits are a simple way to exercise the model in a nonlinear
manner. Small deviations in the models will result in large changes in the
frequency of operation. Figure 5 shows the output of a ring oscillator for the
built-in BSIM3 model and the Verilog-A equivalent model. As can be seen, the
C-coded and Verilog-A models perform virtually identically.
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