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Summary

Photodynamic therapy (PDT) has proved to be a viable and interesting alternative to currently used less selec-
tive methods for palliative care of cancer and, in a limited number of cases, for curative treatment. Still, in 
spite of impressive progress and a few approvals for clinical applications, the great potential of PDT has not 
yet been fully realized because of current defi ciencies of applied sensitizers and of applied treatment strate-
gies. Introduction of chlorophyll- and bacteriochlorophyll-derived sensitizers is expected to markedly change 
this situation in the coming decade. In this and the following chapter we provide an updated summary of these 
new sensitizers, their syntheses, relevant characteristics and pharmaceutical activity in vitro and in vivo. The 
fi rst chapter is focused on the general principles of photodynamic therapy with particular emphasis on the 
vascular-targeted approach to treatment. A general introduction is followed by a comprehensive description of 
chlorophyll based sensitizers. The following chapter (Chapter 33) is focused on the use of bacteriochlorophyll 
derivatives. 

Abbreviations: ALA – 5-aminolevulinic acid; AMD – age-related macular degeneration; BChl – bacteriochlorophyll; BChn – bacterio-
chlorin; BOLD MRI – blood oxygen level-dependent magnetic resonance imaging; BPP – bacteriopurpurin; BSA – bovine serum albumin; 
Chl – chlorophyll; Chl-Ser – chlorophyllide a L-serine ester; Chn – chlorin;; CNV – choroidal neovascularization; EC50 – median effective 
concentration; HDL – high-density lipoprotein; HpD – hematoporphyrin derivatives; HPMA – N-(2-hydroxypropyl)methacrylamide; 
HPPH – [3-(1-hexyloxyethyl)]-pyropheophorbide; i.p. – intraperitoneally; i.v. – intravenously; IC50 – median inhibitory concentration; 
IgG – immunoglobulin G; ISC – intersystem crossing; LD50 – median lethal dose; LDL – low-density lipoprotein; NPe6 – mono-L-as-
partyl Chn e6; PDT – photodynamic therapy; Pheide – pheophorbide; PP – purpurin; pyro-Pheide – pyropheophorbide; QSAR – quan-
titative structure-activity relationship; ROS – reactive oxygen species; TOOKAD – [Pd]-bacteriochlorophyllide a; φ∆ – quantum yield 
of singlet oxygen

H. Glycol- and Ketobacteriochlorin Derivatives .................................................................................... 474
1. General Description and Chemistry ........................................................................................ 474
2. Pre-Clinical Studies and Effi cacy ............................................................................................ 475

a. In Vivo Studies ............................................................................................................... 475
I. Dimeric and Oligomeric Structures .................................................................................................... 475

1. General Description and Chemistry ........................................................................................ 475
2. Pre-Clinical Studies and Effi cacy  ........................................................................................... 475

a. In Vivo Studies ............................................................................................................... 475
J. Chlorophyll Metabolites ..................................................................................................................... 475

1. General Description and Chemistry ........................................................................................ 475
2. Pre-clinical Studies and Effi cacy ............................................................................................. 475

a. In Vitro Studies .............................................................................................................. 475
b. In Vivo Studies ............................................................................................................... 476

III.  Clinical Trials .................................................................................................................................................. 476
Acknowledgments  ................................................................................................................................................ 476
References ............................................................................................................................................................ 476

I. Introduction

A. Definition and Current Strategy of 
Photodynamic Therapy

  Photodynamic therapy (PDT) of cancer is a rela-
tively new method of treatment whereby non-toxic 
drugs ( sensitizers) and non-hazardous visible and 
near infrared light (VIS/NIR) combine to generate 
cytotoxic  reactive oxygen species (ROS) at a selected 
treatment site. The application of PDT in  tumor care 

has been motivated by the quest for a treatment that 
is at least as effective but more selective than radio- 
and chemo-therapies, thus minimizing side effects. 
Current PDT aims at directly killing tumor cells and 
typically consists of fi ve steps.  

1. Administration of a  photosensitizer, usually 
intravenously (i.v.). 

2. A delay period that allows for retention or accu-
mulation of photosensitizers in the target tissue.
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3. Illumination of the target tissue (transcutanously 
or interstitially via optical fi bers for inner organs) 
with consequent local generation of cytotoxic 
ROS. 

4. Development of tumor  necrosis and tumor 
eradication.

5. Tissue remodeling and healing.

New sensitizers have usually been designed to 
achieve preferential accumulation in the tumor 
cells while photoexcitation techniques have been 
developed to irradiate relatively deep tumor tissue 
thus expanding the usefulness and effi cacy of PDT. 
Different porphyrinoids have been suggested as 
the preferred PDT sensitizers (Pandey and Zheng, 
2000; Osterloh and Vicente, 2002), although cyclic 
and long-chain polyenes with a signifi cant light 
absorption in the UV-VIS such as  indocyanines 
and  hypericin were also considered (Delaey et al., 
2000; Chen et al., 2002; Kassab, 2002). For several 
decades, research and pre-clinical efforts have fo-
cused on  hematoporphyrin derivatives (HpD) and 
other peripherally substituted   porphyrins of (near) 
D4h symmetry (Henderson and Dougherty, 1992; 
Dougherty et al., 1998; Bonnett, 1999; Pandey and 
Zheng, 2000; Ackroyd et al., 2001).

The preferential accumulation of hematoporphyrin 
derivatives in tumors relative to normal tissues, the 
formation of cytotoxic  ROS, and necrotic or apoptotic 
processes that culminate in tumor eradication, were 
promising in early PDT development (Dougherty, 
1987; Jori, 1992, 1996; Dougherty et al., 1998; Ronn, 
1999); however, none of the clinically or pre-clini-
cally used  sensitizers have yet shown suffi ciently high 
accumulation in the malignant tumor cells to enable 
optimally-selective and effi cient treatment (Bonnett, 
1999). In addition, the high attenuation of light in the 
UV-VIS domain, required for activation of tetrapyr-
role senstitizers with D4h-symmetry within animal 
tissues, has prevented treatment of massive tumors. 
Thus, the current clinical targets of PDT include 
relatively shallow malignant and benign tumors, 
 choroidal neovascularization (CNV) in  age-related 
 macular degeneration (AMD),  atherosclerotic lesions, 
as well as bacterial and viral infections. In addition, 
the photodynamic effect can be used as a subsidiary 
but method selectively for   light-enhanced delivery 
of a drug to the body area/organ to be treated (Selbo 
et al., 2002).  

Over the past decade, the use of PDT has in-
creased signifi cantly, mainly in cancer and AMD 
treatment.  Protoporphyrin-based photosensitizers 
(tradenames:  Photofrin,  Photosan,  Photoheme, 
 HpD,  Levulan,  Visudyne) have been approved 
for clinical use, and successfully employed in PDT 
in many countries. 

In spite of the impressive progress, the full potential 
of PDT has not yet been realized for the following 
reasons:  

(1) the spectroscopic properties of the clinically 
used sensitizers only allow for   sensitization of 
shallow tumors, 

(2) the pharmacological properties of the current 
sensitizers (i.e., lack of suffi cient specifi city for the 
tumor cells) together with the treatment strategy 
result in eradication of both tumor and non-tumor 
tissues within the illuminated zone, and fi nally 

(3) the retention of sensitizer in non-tumor tissues 
(e.g. skin) leads to prolonged cutaneous toxicity.

The disadvantages of currently-used drugs have 
long been known and have led to an extensive search 
for new sensitizers with superior spectroscopic 
properties. 

    As they were selected by evolutionary processes to 
perform VIS-NIR light-harvesting with consequent 
radical generation in photosynthesis, Chls and BChls 
have emerged as attractive alternative PDT sensitiz-
ers. However, because of their superior photophysics 
combined with a low chemical stability, Chls and 
BChls are rapidly degraded when exposed to light 
outside of their native and protective environment in 
the transmembrane proteins of light-harvesting com-
plexes and photoreaction centers of chloroplasts. To 
overcome this limitation, major research efforts have 
focused on producing Chl- and BChl-like molecules 
that are suffi ciently stable to enable light-induced 
radical generation deep within animal tissues and, 
preferentially, with higher selectivity for tumor cells 
than currently used sensitizers. Recently, an extensive 
description and screening of different Chl/BChl-
based sensitizers has been published (Pandey and 
Zheng, 2000). 

In this and the following chapter, we shall focus 
respectively on Chl- and BChl-derived PDT sensi-
tizers. Each section will highlight features related 
to sensitizer preparation, its photochemical and 
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photophysical properties, in vitro screening and in 
vivo targets. The state of clinical development will 
be described at the end of each chapter. 

Finally, we shall discuss current  PDT treatment 
strategies and suggest an alternative approach 
made possible by new BChl-based sensitizers. The 
last review, dedicated to Chl and BChl sensitizers, 
was published more than a decade ago (Spikes and 
Bommer, 1991).

B. Guidelines for Selecting New Sensitizers 

 In searching for new and better PDT reagents, the 
following features have been generally accepted as 
criteria for optimal photosensitizers (Jori, 1996; Bon-
nett, 2000). These are especially relevant for PDT 
reagents synthesized from natural compounds such 
as Chl and BChl.

1. Chemical Purity

There is a consensus that new sensitizers should be 
chemically pure compounds unlike the composite 
sensitizer  Photofrin®. A pure, single compound can 
be localized and targeted more effi ciently and it is 
easier to estimate its sensitizing effi ciency as well as 
its pharmacological and photochemical properties. 
Thus treatment protocols can be more rationally 
designed with readily identifi able  quantitative struc-
ture-activity relationships (QSAR) (Dougherty et 
al., 1998; Pandey and Zheng, 2000; Macdonald and 
Dougherty, 2001 and refs. therein).

2. Significant Absorption at Long Wave-
lengths (>650 nm)

New sensitizers should preferably have strong 
electronic transition intensities in the range of 650–
850 nm, where light penetration into animal tissue 
is maximized. At shorter wavelengths, endogenous 
pigments and light scattering substantially attenuate 
the photon fl ux to the tissue-impregnated sensitizers. 
At longer wavelengths, the energy transfer from the 
excited sensitizer becomes insuffi cient to transform 
oxygen into the excited singlet state (Moan, 1990). 
Further, the increased absorption of light by water 
molecules (λ >900 nm) reduces the effective dose of 
light and enhances thermalization (Macdonald and 
Dougherty, 2001). 

3. High Quantum Yield of Reactive Oxygen 
Species

The type and quantity of  ROS generated by an excited 
sensitizer determines its potential PDT effi cacy. ROS 
generation is initiated from the triplet state of the 
excited sensitizer (1TS), which is populated by inter-
system crossing (ISC) from the lowest excited singlet 
state (1SS) during its lifetime which is a few nano-
seconds in the best cases. Energy or electron transfer 
from 1TS to molecular oxygen may result in: 

(1) electron transfer from the excited sensitizer 
to the ground state oxygen, forming a  superoxide 
radical (  Type I processes) or 

(2) relaxation of the  sensitizer to the ground state 
0SS with concomitant excitation of molecular 
oxygen to the excited singlet state (Σ1O2) (Type II 
processes) (Foote, 1968; Henderson and Dough-
erty, 1992; Pandey and Zheng, 2000; Macdonald 
and Dougherty, 2001). 

The quantum yield for a particular ROS type de-
pends on the nature of the sensitizer, the availability of 
oxygen, and the reaction environment. Heavy atoms 
and side groups increase the yield of the intersystem 
crossing and the amount of resulting  singlet oxygen. 
The relative redox potentials of the excited sensitizer 
and concentrations of the molecular oxygen in the 
particular reaction environment determine the yield 
of electron transfer (Type I). The fate of the ROS 
and their cytotoxicity strongly depend on the site 
of their generation. This is mostly relevant to the 
oxygen radicals, which can be more reactive than 
1O2, and therefore possess a shorter lifetime than 
the excited singlet oxygen. Lipids, proteins and 
transition metals at low redox states may convert 
ROS to even more reactive forms that can initiate 
 radical chain reactions (Halliwell and Gutteridge, 
1990; Henderson and Dougherty, 1992). With most 
available sensitizers, Type II processes are generally 
believed to be the major pathway involved in tis-
sue destruction, (Henderson and Dougherty, 1992; 
Pandey and Zheng, 2000; Bonnett, 2002); however, 
Type I processes may be highly relevant to PDT with 
Chl/BChl derived sensitizers.



465Chapter 32 Chlorophyll Sensitizers in Photodynamic Therapy

4. No Dark Toxicity and No Undesired Photo-
toxicity in Skin, Eyes and Mucous Epithelia 

    Rapid clearance of the  photosensitizer is desired, with 
no dark toxicity or mutagenic activity of the sensi-
tizer or its degradation products. With a hydrophobic 
sensitizer, the carrier systems need to be clinically 
safe (Jocham, 1998). 

5. Stability and Ease of Packaging

Before administration, the  photosensitizer should 
have a long-term stability and shelf life; however, 
limited stability in vivo and under irradiation could 
be desirable to reduce the damage to normal tissue at 
threshold concentrations (Moan, 1986; Boyle and Pot-
ter, 1987; Svaasand and Potter, 1992). Water-soluble 
substances are favored.

6. Selectivity of Damage and Localization

Selectivity is important for  PDT treatments which 
require the presence of light, sensitizer and oxygen 
to produce local cytotoxicity in the target tissue; thus 
a well-defi ned zone of destruction is provided while 
preferably maintaining differentiation between nor-
mal tissue cells and those of target tumor cells.

  Tumor necrosis can be generally induced by: (i) 
direct cell killing; (ii) hypoxia caused by vascular 
shutdown, and (iii) immune effects. Here we shall 
briefl y refer to the current status in PDT research.

(i) Current research is aimed at developing new 
PDT reagents that preferentially accumulate in tu-
mor cells. Increasing the reagent’s hydrophobicity 
is generally believed to enhance its accumulation 
in the neoplastic cells (Kozyrev et al., 1996a; Pan-
dey et al., 1996c; Henderson et al., 1997; Pandey 
and Zheng, 2000). While better accumulation and 
higher effi cacy of more lipophylic sensitizers was 
demonstrated in cultured tumor cells (Pandey et 
al., 1997a; Zheng et al., 2001b), no therapeutic 
benefi t of these sensitizers was ever demonstrated 
in vivo. Indeed, the proven role of the  antivascular 
effect of PDT (Henderson and Dougherty, 1992; 
Fingar, 1996; Regillo, 2000; Zilberstein et al., 
2001; Schreiber et al., 2002; Koudinova et al., 
2003) raises questions about the usefulness of 
such an approach.

(ii) The role of  vascular shutdown in induction of 

tumor necrosis is now highly appreciated and sug-
gests several new treatment approaches (Folkman, 
1995; Schnitzer, 1998). Numerous experiments 
have indicated that tumor regression and cure after 
most PDT treatments involve occlusion and/or 
perforation of blood vessels (Boyle and Dolphin, 
1996; Dougherty et al., 1998; Pandey and Zheng, 
2000; Macdonald and Dougherty, 2001). This ef-
fect is more profound in treatment protocols that 
involve short intervals between drug administration 
and irradiation, and/or more hydrophilic sensitiz-
ers (Krammer, 2001). Further, relative response 
differences between the vascular bed of the tumor-
ous and the normal tissue may provide the key 
for treatment selectivity as suggested by several 
recent studies (Ferrario et al., 1992; Roberts and 
Hasan, 1992; McMahon et al., 1994; Zilberstein 
et al., 2001; Dolmans et al., 2002a; Gross et al., 
2003; Koudinova et al., 2003). Thus, the synthesis 
of specifi c vascular-directed PDT reagents may 
become an attractive option in future development 
of new sensitizers.

(iii) Systemic tumor   response to PDT involving the 
immune system and other mechanisms that results 
in metastatic tumor regression has been reported by 
several laboratories (Canti et al., 2002; Schreiber 
et al., 2002). This may provide the basis for new 
PDT treatments that are no longer limited to the 
treatment of single local tumors. However, it is not 
yet clear how to design new sensitizers for such 
broader treatment strategies.

In the following sections, we shall review the 
Chl derivatives, highlighting the above-mentioned 
guidelines. BChl derivatives are treated in Chapter 
33 (Brandis et al.).

II. Photosensitizers Derived from 
Chlorophyll a 

A. Chlorophyll a 

1. General Description and Chemistry

     Natural  Chl a (see formula in Chapter 1, Scheer) 
is a dihydroporphyrin with a fi fth, isocyclic ring. 
Chl a can be extracted and purifi ed with high yield 
and purity from practically inexhaustible plant and 
algal resources. Chl a without the admixture of 
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other chlorophylls can be obtained from biomass 
of the  blue-green alga,  Spirulina. Chl a has a high 
extinction coeffi cient at 660 nm (ε ~105 M–1 cm–1) 
and good singlet oxygen production (φ∆ = 0.57 in 
CCl4) (Krasnovsky Jr et al., 1990). However, Chl a 
is water-insoluble and very unstable, undergo-
ing oxidative degradation in the presence of light, 
acid, bases and alcohols, and demetalation in the 
presence of acids. Therefore, Chl a is not suitable 
for pharmaceutical application but may provide a 
suitable source for the synthesis of new sensitizers 
that comply with the pharmaceutical requirements 
(for review see Spikes and Bommer, 1991). Such 
sensitizers should be derived by modifi cations that 
do not alter the π-electron system which provides the 
optical spectra. They should allow, on the other hand, 
modifi cations to the redox potential and the overall 
reactivity of the compound. Metal incorporation and 
modifi cation of the C-3 vinyl substituent or the C-131 
carbonyl on the isocyclic ring E will modify both 
the reactivity and stability of the Chls and should be 
carefully designed. 

2. Pre-clinical Studies and Efficacy

No extensive studies have been conducted for deter-
mining the effectiveness of Chl a as a PDT agent.

B. Chlorophyllide a and Derivatives

1. General Description and Chemistry

   Chlide a is a produced from Chl a by hydrolysis of 
the C-173 phytyl ester, which can be accomplished 
enzymatically with  chlorophyllase. Enzymatic (Fie-
dor et al., 1992, 1996) and catalytic (Scherz et al., 
1994) esterifi cation of  Chlide a as well as enzymatic 
(Fiedor et al., 1996; Scherz et al., 1994) and non-
enzymatic transesterifi cation (Scheer et al., 2001) of 
Chl a with different amino acids (e.g., serine, tyro-
sine), peptides and proteins signifi cantly enhanced 
the pigment’s hydrophilicity. The excited Chlide a 
generates singlet oxygen with a φ∆ of about 0.3–0.4 
(Fiedor et al., 1993). 

 Targeting. Further modifi cation of the Chlide a 
propionic acid residue at C-17 via chemically acti-
vated amidation enabled conjugation with peptides, 
hormones and proteins as cell-specifi c ligands; for 
example, conjugation with  melanocyte stimulating 
hormones for site-specifi c PDT of   melanoma (Scherz 
et al., 1994).

2. Pre-clinical Studies and Efficacy

The L-  serine derivative (Chl-Ser) showed 100-fold 
higher photocytotoxicity in M2R melanoma cell cul-
tures than Photosan (Rosenbach-Belkin et al., 1996). 
In vivo, the water-soluble Chl-Ser was excreted from 
the normal tissues within 72 h, but clearance was 
considerably and favorably retarded from tumor tis-
sues (Rosenbach-Belkin et al., 1996), thus providing 
low skin phototoxicity. Its photodynamic activity, as 
tested in vivo on melanotic M2R melanoma tumors, 
was highly signifi cant (Tregub et al., 1992; Scherz 
et al., 1994).

C.    Pheophorbide a and Derivatives

1. General Description and Chemistry

  Pheide a is the free-base analogue of Chlide a, easily 
obtained from Chl a by acidic elimination of the phy-
tol side chain and central Mg. Its extinction coeffi cient 
near 660 nm is about 2/3 that of Chl a, but it has a 
higher dark- and light-stability, with φ∆ of about 0.6 
(Krasnovsky Jr et al., 1990; Fernandez et al., 1997). 
To examine the effect of pigment lipophilicity on 
the biological activity of Pheide a, three families of 
compounds with increasing n-octanol/water partition 
coeffi cients were synthesized: (a) 3-(1-alkoxyethyl) 
ether derivatives of Pheide a methyl ester (Pandey 
et al., 1991a); (b) esters with a longer alkyl chain 
(Wongsinkongman et al., 2002); and,     (c) amides, 
in which the carboxylic group was linked to  amino 
alkyls of various lengths and terminal functional 
groups (e.g. hydroxyl, amine, carboxyl, sulfonyl, 
sulfhydryl, and phosphoryl) (Dagan et al., 1995). It 
was found, in the presence of plasma, that the methyl 
esters of the tested 3-(1-alkoxyethyl) ether derivatives 
were susceptible to hydrolysis, probably by plasma 
esterases, whereas the ether bonds remained stable 
(Pandey et al., 1991a; Bellnier et al., 1993). Further, 
these compounds were found to slowly convert, at 
room temperature, into the more stable pyro-Pheides 
by cleavage of the methoxycarbonyl group at C-132 of 
the isocyclic ring (Pandey et al., 1996c). De-esterifi ca-
tion of 3-(1-hexyloxyethyl) and 3-(1-heptyloxyethyl) 
ethers of the pyro-Pheide a methyl ester was carried 
out with LiOH-THF*(Pandey et al., 1996c). The φ∆ 
remains at a value of 0.5 (Pandey et al., 1996c), close 
to that of the parent compound. The   pyro-Pheide a 

*LiOH-THF also promoted allomerization of pyro-Pheide 
(Kozyrev et al., 1998b). 
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derivative was further modifi ed to determine the 
effect of steric hindrance, unsaturation and electron 
withdrawing capacity of introduced groups on the 
biologial activity of the parent compound. The tested 
substitutions included (a) 1-alkoxyethyl (secondary) 
and alkoxymethyl (primary) ethers of different chain 
lengths, formyl or ethyl instead of the vinyl group 
at C-3; (b) thiocarbonyl or methylene instead of the 
carbonyl at C-131; (c) 1-heptyloxyethyl ether instead 
of ethyl at C-8; (d) di-t-butyl aspartyl instead of 
methyl ester at C-173; and (e) the formyl group or 
alkoxymethyl (primary) ethers with different chain 
lengths at the C-20 position (Pandey et al., 1992c, 
1996a,c). The replacement of the C-3 vinyl with the 
formyl group shifted the absorption maximum to 
690 nm. The reduction of the C-131 oxo group in 
the pyro-Pheide a derivatives to CH2 resulted in a 
blue shift to 648 nm (Pandey et al., 1996c), whereas 
the formation of alkyl ethers and pyro-compounds 
retained optical properties similar to those of the 
initial Pheide a. 

 Water-soluble derivatives of  pyro-Pheide a were 
synthesized by substituting the vinyl with either the 
2-carboxymethyl or 2-hydroxyethyl groups together 
with amidation of the propionic acid residue with 
glycine or aspartate. Being water-soluble (>5 mg 
kg–1 in 0.9% saline solution), these compounds un-
derwent disaggregation with the addition of human 
 serum albumin (Ando et al., 1991b). For testing the 
contribution of hydroxyl residues to Pheide hydrophi-
licity, the oxo, methoxycarbonyl and propionic acid 
groups of Pheide and pyro-Pheide were reduced to 
the corresponding mono-, di- and tri-ols. Although the 
resulting compounds were amphiphilic with oppos-
ing hydrophilic and lipophilic sites in the molecule, 
their water solubility was quite low (Bonnett et al., 
1992, 1994). Recently, new water-soluble glucose 
and galactose derivatives of Pheide and pyro-Pheide 
were synthesized for use in PDT (Aksenova et al., 
2000, 2001).   Amidation of pyro-Pheide and its Zn 
complex with 2-trimethylammonium ethyleneamine 
led to cationic water-soluble photosensitizers, which 
effi ciently induced DNA cleavage when irradiated at 
690 nm: singlet oxygen and electron transfer mecha-
nisms were invoked for the metal free compound and 
Zn complex, respectively (Mansouri et al., 1994). A 
similar cationic water-soluble compound was ob-
tained by replacement of the C-173 carboxyl group 
with a NH3Cl function (Fabiano et al., 1997). Aiming 
at mitochondrial localization within neoplastic cells, 
some water-soluble cationic vinyl-extended deriva-
tives of pyro-Pheide and   Chn e6 methyl esters were 

prepared (Pandey et al., 1991b, 1992b). Nucleoside 
adducts of vinyl-substituted pyro-Pheide and Chn e6 
methyl esters were synthesized as potential anti-viral 
and anti-tumor drugs (Jiang et al., 1995, 1996).

 Targeting. In an attempt to enhance the delivery 
and selectivity of the active ingredient, the Pheide was 
enclosed within  β-cylcodextrin dimers (Roehrs et al., 
1995), or was adsorbed either in monomer form on 
 microcrystalline  cellulose (Zeug et al., 2002) or as 
photodegradable  dendrimer conjugates (Hackbarth 
et al., 2001).

2. Pre-clinical Studies and Efficacy

a. In Vitro Studies

Using Pheide as photosensitizer (IC50 0.5–2.0 µM, 
5 J cm–2, 670 nm) on human   pancreatic (Hajri et al., 
1999) and   colon (Hajri et al., 2002) carcinoma cells 
gave superior therapeutic results than with  Photofrin. 
The cyto-phototoxicity of Pheide a was 20-times 
higher than that of haematoporphyrin derivative 
(HpD) (Röder, 1998). The proposed phototoxic 
mechanism involved both type I and type II reactions 
(Tanielian et al., 2001). The Pheide was localized in 
the Golgi apparatus of OAT 75 lung carcinoma cells 
(Moser et al., 1992). Pheide and its methyl ester were 
far more phototoxic (EC50 0.3–3 µM) than the esters 
with longer alkyl chains using a panel of human 
tumor cell lines. However, the butyl ester was more 
active than the ethyl, hexyl, octyl or benzyl analogues 
(Wongsinkongman et al., 2002). In a series of mono-, 
di-, and tri-ol derivatives of Pheide and pyro-Pheide, 
the mono-ol compound was the most effective for 
light-induced killing of mouse colon Colo26 cells 
(LD50 0.35 µM), and possessed low dark toxicity 
(Bonnett et al., 1992; Bonnett et al., 1994). The 
photocytotoxicity observed in   EMT-6 cells for Pheide 
amides with alkyl chain lengths of 4–6 carbon atoms, 
which terminated with OH or CH3 groups, was three 
orders of magnitude higher than that of Photofrin®. 
A signifi cant effl ux of these drugs from cells, pro-
moted by HDL and LDL  lipoproteins, may account 
for their fast clearance from normal tissues and low 
phototoxicity side effects (Dagan et al., 1995).

The insertion of   Zn as a central atom in 132-hy-
droxy-Pheide a and Chn e6 methyl esters decreased 
phototoxic activity by a factor of 5–10, and increased 
the  dark toxicity more than 40-fold (Wongsinkong-
man et al., 2002).

Targeting. To enhance both drug uptake by tumor 
cells and subsequent delivery to lysosomes, Pheide 
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was incorporated into liposomes coated with mono-
clonal antibodies. Phototoxicity (LD90) toward human 
 bladder   tumor cells was about 0.8 µM (Bergstrom et 
al., 1994). 

To target tumor cells over-expressing receptors to 
plasma LDL,   pyro-Pheide was covalently linked by 
amide bonding with cholesteryl oleate as a double 
anchor for the LDL lipid core. The photosensitizer-
LDL was successfully incorporated into human 
 hepatoblastoma tumor cells (Zheng et al., 2002).

b. In Vivo studies

Twenty-four hours after i.v.-administration, the major 
target of   Pheide a in rats carrying   acinar pancreatic 
tumor was the reticuloendothelial system, with a very 
low level of Pheide in the skin. The ratio of tumor-
tissue/surrounding-tissue partitioning of the drug was 
6.7–13.5, resulting in PDT-induced (100 J cm–2, 660 
nm, 24 h after 9 mg kg–1 i.v.) selective   necrosis of 
the tumor (66% cure, 120 days) (Aprahamian et al., 
1993; Evrard et al., 1994). The higher selectivity and 
depth of sensitization provided by Pheide a, enabled 
more effi cient PDT and better results than with 5-
aminolevulinic acid (ALA)-induced protoporphyrin 
IX (100 J cm–2, 670 nm, 24 h after 30 mg kg–1 i.p.) 
in treatment of a pancreatic tumor in mice (Hajri et 
al., 1999). However, the poor uptake and insuffi cient 
selectivity of Pheide in HT29  colon cancer implied 
that photodynamic treatment with this pigment is 
less safe than with Photofrin® which has better tumor 
uptake (Hajri et al., 2002).

The 3-(1-alkoxyethyl) ether derivatives of Pheide a
methyl ester and the    Chn e6 trimethyl ester showed that 
hydrophobic ethers were more effi cient photosensiters 
than the parental Pheide a, Chn e6 methyl esters and 
Photofrin®, when tested on   SMT/F tumors in mice. 
These fi ndings suggested differences in localization 
and subcellular distribution of the different drugs. The 
new derivatives, in particular, had a shorter lifetime 
in normal tissues and were excreted within 5 days 
after injection, compared with weeks for Photofrin®. 
The 3-(1-hexyloxyethyl) ether of the Pheide methyl 
ester showed strong photodynamic effi ciency (140 J 
cm–2, 667 nm, 24 h after 1 mg kg–1 i.p.), providing 
50% tumor response at day 30, which is much bet-
ter than obtained with the related Chn e6 derivative, 
in which the isocyclic ring E is cleaved (Pandey et 
al., 1991a). 

   Pyro-Pheide a derivatives provided even slightly 
higher effi ciencies. The 3-(1-hexyloxyethyl) and 3-(1-

heptyloxyethyl) ethers of pyro-Pheide a methyl ester 
and related 131-deoxy derivatives showed 50% tumor 
response at day 30 under lower drug dose (0.3 mg 
kg–1), with only minor skin photosensitivity (Pandey et 
al., 1992c). In the authors’ opinion, the shorter-chain 
pyro-Pheide ethers showed diminished activity due 
to rapid clearance from plasma and tissues. Introduc-
tion of a double bond into the hexyl side chain (the 
cis- and trans-3-hexenyl ethers) essentially negated 
the activity (Pandey et al., 1996c). [131-thione]- and 
[3-formyl]-pyro-Pheide and Pheide methyl esters 
were active when illuminated at 3 h, but not 24 h, post 
i.p.-injection (Pandey et al., 1991a, 1992c). The 3-
(1-hexyloxyethyl) and 3-(1-heptyloxyethyl) ethers of 
pyro-Pheide carboxylate, prepared by saponifi cation, 
were as effi cient as the corresponding methyl esters. 
The low activity of the corresponding Chn e6 ethers 
probably resulted from their enhanced hydrophilic-
ity due to enzymatic de-esterifi cation (Pandey et al., 
1996c). The half-life time of  [3-(1-hexyloxyethyl)]-
pyro-Pheide (code name HPPH, see Fig. 1) in rat 
serum was 25 h (Lobel et al., 2001) and similarly 
26.9 h in dogs (Payne et al., 1996), which is longer 
than in mice (bi-exponential decay: 0.69 h and 21 
h) (Bellnier et al., 1993). Both direct effects on the 
tumor cells and indirect effects via vascular damage 
contributed to the overall  PDT response (Bellnier et 
al., 1993; Henderson et al., 1997). HPPH-PDT was 
estimated in the rat model as a useful adjuvant treat-
ment of  malignant gliomas (Lobel et al., 2001), as 
an effective treatment of canine oral (McCaw et al., 
2000), feline facial (Magne et al., 1997) and hamster 
cheek pouch (Furukawa et al., 1996)  squamous cell 
carcinomas, but as an undesirable adjuvant therapy 
to surgery of canine hemangiopericytomas (McCaw 
et al., 2001). Photodynamic activity of the anionic 
pyro-Pheide derivatives was correlated with intracel-
lular localization, which, in turn, was infl uenced by 
the aggregation state of the compound upon cellular 
uptake (Geze et al., 1993; Macdonald et al., 1999; 
Matroule et al., 1999, 2001; Kelbauskas and Dietel, 
2002; Sun and Leung, 2002). Amphiphilicity could 
play a more dominant role than lipophilicity (Mac-
donald et al., 1999; Kelbauskas and Dietel, 2002). 
However, the optimal photodynamic activity could 
originate from the binding of the photosensitizer to 
mitochondrially-located peripheral  benzodiazepine 
receptors (Dougherty et al., 2002). 

 PDT with Pheide 4-hydroxybutylamide (380 J 
cm–2, 673 nm, 1 h after 2 mg kg–1 i.v.) reduced the 
time for doubling of tumor volume to ~12 days in 
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Fig. 1.                Structures of some Chl derivatives used as active photosensitizers (IUPAC-approved names are followed by the trade names or 
abbreviations)
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mouse EMT-6 tumors (Morliere et al., 1998), probably 
by affecting the tumor vascular integrity (Chapman 
et al., 1994; Dagan et al., 1995; Gatt et al., 1996). 
When Pheide 4-hydroxybutylamide was used, photo-
inactivation of  erythrocytes infected by transfusion-
transmissible parasites was successful in whole blood 
with no side effects (Grellier et al., 1997).

 Water-soluble carboxymethyl- and hydroxyethyl-
substituted pyro-Pheide amides of glycine or aspartic 
acid exhibited fast clearance from normal organs and 
serum but were usefully retained in tumors for 24 h 
in hamsters with nitrosamine-induced pancreatic 
cancer (Ando et al., 1991b).

 Targeting. Negatively charged phospholipid vesi-
cles, used for solubilizing [3-(1-alkoxyethyl)]-Pheide 
methyl ester, decreased the possibility of occlusive 
 vascular damage (Mayhew et al., 1993). On the other 
hand, PDT on   murine mammary tumor, performed 
with a short light-drug interval (15 min) using the 
indium complex of pyro-Pheide methyl ester (code 
name  MV6401) in cationically-charged egg yolk 
phosphatidylcholine emulsion (0.018-0.072 mg 
kg–1, 5 J cm–2, 664 nm), caused blood fl ow stasis and 
 vascular hyperpermeability that became apparent 3 h 
later (Dolmans et al., 2002b). The plasma half-life of 
MV6401 was ~20 min, and the drug was confi ned to 
the vascular compartment during the fi rst 15 minutes 
after administration. However, neovessel formation 
and tumor regrowth were observed 3 days after the 
treatment. Two equal MV6401 doses injected 4 h 
and 15 min before light exposure allowed the drug 
to localize in both vascular and tumor cell compart-
ments: such double administration of drug before 
PDT resulted in a profound delay of tumor growth 
and a more extensive antivascular effect (Dolmans 
et al., 2002a). 

Combining a PDT  protocol, based on administra-
tion of    ALA and a Pheide derivative, synergistically 
enhanced the inhibition of tumor growth (lymphoma 
and squamous cell carcinoma) in mice (Jin et al., 
2000).

D. Chlorin e6 and Derivatives

1. General Description and Chemistry

   Chn e6, formed by anaerobic alkaline hydrolysis of 
Pheide a, is a tricarboxylic water-soluble derivative 
absorbing light at 654 nm and has a φ∆ of about 0.7 
(Spikes and Bommer, 1993; Zenkevich et al., 1996; 
Fernandez et al., 1997). [Sn]IV-Chn e6 absorbs at 632 

nm and generates   singlet oxygen with φ∆ equal to 0.83 
(Spikes and Bommer, 1993). Amides of Chn e6 at 
C-131 were regioselectively obtained by    aminolysis 
of the isocyclic ring (Ando et al., 1991a, 1992; Guri-
novich et al., 1992; Zhang and Xu, 1999; see also Ma 
and Dolphin, 1996; Belykh et al., 2002). Mono- L-
aspartyl Chn e6 (code name  NPe6, Fig. 1), obtained 
by amidation of the acetic acid residue of Chn e6with 
L-aspartic acid (Gomi et al., 1998), possessed an 
increased hydrophilicity (Boyle and Dolphin, 1996) 
and a φ∆ of 0.77 (Spikes and Bommer, 1993).

2. Pre-clinical Studies and Efficacy

a. In Vitro Studies

A possible role for the acidic tumor microenvironment 
in the preferential uptake and retention of Chn e6 has 
been reported (Zorin et al., 1996; Cunderlikova et al., 
1999, 2000; Shevchuk et al., 2002). Higher accumula-
tion of Chn e6 dimethyl ester in   leukemic cells caused 
their selective photocytolysis (Savitskiy et al., 2002). 
A glucosamine salt of Chn e6 revealed high antifungal 
activity (Strakhovskaya et al., 2002).

  NPe6(Fig. 1), localized in the lysosomes of murine 
hepatoma cells, caused photodamage by triggering 
the mitochondrial apoptotic pathway by releasing 
lysosomal proteases (Reiners et al., 2002). Serum 
components inhibited cellular uptake of NPe6, and 
only free pigment was accumulated by murine leu-
kemia cells and caused phototoxicity (Sheyhedin et 
al., 1998).

Targeting.  Triacetoxymethyl ester of Chn e6

(CAME) and acetoxymethyl ester of Pheide a (PAME) 
were synthesized as photosensitizers for  lysosome-
mediated PDT (Sahai et al., 1993). These lipophilic 
esters, reaching acidic lysosomes by endocytosis, 
were hydrolyzed by esterases into pH-sensitive 
amphipathic compounds. Contact with the neutral 
pH of the adjacent cytosol results in conversion of 
the hydrophobic drug to a more hydrophilic anionic 
species, presumably by allowing its diffusion into the 
lysosomal compartment and partitioning throughout 
the lipophilic and aqueous compartments of the cell. 
Brief incubation of murine leukemia cells with 10 mM 
CAME followed by irradiation, led to mitochondrial 
photodamage and apoptosis, whereas higher doses of 
CAME inhibited  apoptosis, with cell death probably 
occurring via  necrosis (Kessel and Poretz, 2000). 

  Immunoconjugates of Chn e6 with   anti-ovarian 
carcinoma murine monoclonal antibody were more 
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effective in the selective photochemical eradication 
of target cells than the free pigment (Goff et al., 
1991, 1992). 

Light-dependent killing of  mammary adenocarci-
noma cells was examined with a Chn e6-transferrin 
conjugate, which was aimed at a corresponding 
receptor that is highly expressed in tumor cells (Ca-
vanaugh, 2002). 

Targeted delivery of  [Sn]IV-Chn e6, conjugated 
to   epidermal growth factor (EGF) through a car-
rier, showed increased phototoxicity to squamous 
carcinoma cells in relation to phototoxicity of the 
non-conjugated sensitizer, which express an increased 
number of EGF-receptors; however, the affi nity of 
the conjugate was strongly dependent on the carrier 
used (dextran, polyvinyl alcohol or human serum 
albumin) (Gijsens and de Witte, 1998; Gijsens et al., 
2000). [Sn]IV-Chn e6 linked to IgG selectively killed 
otherwise resistant strains of   Staphylococcus aureus 
(Embleton et al., 2002). 

 The importance of positive charges on the 
sensitizer’s periphery to the overall photodynamic 
activity was demonstrated by the killing of both 
gram-positive and gram-negative bacteria by cationic 
conjugates of  Chn e6 (Soukos et al., 1998; Hamblin 
et al., 2002b).

Conjugates for doubly-targeted delivery to both 
cell and nucleus were constructed using  Chn e6 to-
gether with BSA as a carrier, insulin as internalizable 
ligand and viral T-antigen within a β-galactosidase 
fusion protein as a nuclear localization factor. This 
molecular assembly demonstrated a 2400-fold higher 
photodynamic activity in human  hepatoma cells (EC50 
of 0.13 nM) compared to free Chn e6 (Akhlynina et 
al., 1997). Co-incubation with adenovirus addition-
ally increased the nuclear photosensitizing activity 
(Akhlynina et al., 1999). Chn e6 was also attached 
to linear or branched peptides for guidance to both 
cytoplasmic and nuclear targets: such conjugates 
displayed 400- and 40-fold more phototoxicity in 
CHO and RIF-1 cells than Chn e6 alone (Bisland et 
al., 1999).

b. In Vivo Studies

Photodynamic treatment of rat M-1 sarcoma with 
Chn e6 (90 J cm–2, 647 and 676 nm, 3 h after 5–10 
mg kg–1 i.p.) induced tumor necrosis to a depth 
of 14–16 mm via simultaneously damaging both 
vascular stroma and malignant cells. The effect 
was potentiated by increasing the drug and light 

doses, but was attenuated with the extension of 
the drug-to-light interval (Kostenich et al., 1991): 
photoradiation of various transplantable rat tumors 
was far more effective 15 min after injection than 
after 24 h, leading to 100% cure on day 14 after the 
treatment of spindle cell fi brosarcoma and alveolar 
liver cancer (Kostenich et al., 1993). The regression 
was correlated with the morphological difference 
between the tumor microcirculatory bed, as the main 
target of photodynamic exposure, and the normal one 
(Kostenich et al., 1993).  Pharmacokinetic studies re-
vealed a maximum concentration of Chn e6 in blood, 
internal organs and muscle 3 h after i.p.-injection, 
and in tumors after 12–18 h. Increased content and 
the relatively long clearance time of Chn e6 (>72 h) 
in blood and tumor were attributed to its binding to 
and interaction with blood components including 
erythrocytes and transport proteins (Kostenich et 
al., 1994). Nevertheless, Chn e6 demonstrated a high 
antitumor effi cacy in  colon carcinoma in mice with 
minimal damage to normal tissues (Orenstein et al., 
1996). The effi cient application of Chn e6-PDT for 
treating   rheumatoid arthritis has also been discussed 
(Tauraytis et al., 1992).

The water-soluble amide formed from Chn e6 and 
ethylenediamine stimulated affi nity for tumor cells 
and cellular membranes. The photodynamic effect, 
when the maximal concentration of sensitizer was 
reached in the tumor, was higher with the Chn e6-
amide than with Chn e6, possibly due to preferential 
binding with  lipoproteins (Gurinovich et al., 1992).

 NPe6 rapidly clears from the body (Ferrario et al., 
1992). The maximal PDT effectiveness in murine 
mammary tumors, achieved following light treat-
ment 2 h after drug injection, was correlated with the 
plasma, not tumor, levels of the photosensitizer (Fer-
rario et al., 1992) which possesses a selective affi nity 
for proliferating neovasculature (Roberts and Hasan, 
1992). In uterine cervical carcinoma the PDT effect 
using NPe6 resulted from tumor necrosis secondary to 
the obstruction of blood vessels around the tumor (Na-
kamura et al., 2002). In rats bearing chondrosarcoma, 
the achieved tumor cure of 83%, with no regrowth 
for 21 days, was found after an optimal delay of 4 h 
between injection and illumination (i.e. 135 J cm–2, 
664 nm, 4 h after 10 mg kg–1 i.v.), when the effect 
of both vascular stasis and direct tumor cytotoxicity 
was maximal (McMahon et al., 1994 ). 

 Atherosclerotic plaques of abdominal aorta can be 
selectively degraded by NPe6-PDT, as demonstrated 
in cholesterol-fed rabbits (50–200 J cm–2, 664 nm, 
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6 h after 5 mg kg–1 i.v.) (Saito et al., 1998). Two main 
mechanisms might be complementary and synergistic 
in the photodynamic production of vascular lesions: 
endothelial cell damage and platelet aggregation 
(fi brin plugging) (Yamamoto et al., 1999).

Choroidal vessel occlusion was evident starting 
from 2.65 J cm–2 in pigmented rabbits and 0.88 J 
cm–2 in non-pigmented rabbits (2 mg kg–1 of NPe6 
i.v.). Lesion diameter decreased as the time between 
injection and irradiation increased from 5 min to 24 
h (Kazi et al., 2000). NPe6-PDT was found to have a 
lower threshold for choroidal vessel occlusion than 
for retinal vessels (Mori et al., 1999; Peyman et al., 
2000a); thus, the PDT effect varied depending on the 
target characteristics (Peyman et al., 2000b).

 Targeting. Both immunoconjugates of    Chn e6 with 
anti-ovarian carcinoma murine monoclonal antibody 
and non-conjugated photosensitizer reached peak 
tumor concentrations at 24 h but the absolute con-
centrations of the conjugate were always 2 to 3-fold 
higher. Also, after 24 h, the conjugate concentra-
tions were 3.5- to 7.2-fold higher in tumor than in 
non-tumor cells. PDT with a single light exposure 
demonstrated a dose-dependent relationship with the 
fl uence and the conjugate concentration. However, 
there was signifi cant treatment-related toxicity at all 
light fl uences tested (Goff et al., 1994). 

A conjugate of Chn e6 with BSA was effi ciently 
taken up by a scavenger pathway, localized in areas 
of the intimal hyperplasia of the rat’s abdominal 
aorta, and functioned as a PDT-sensitizer (Nagae et 
al., 1998). Covalently linked Chn e6-albumin conju-
gate showed superior PDT-activated tissue sealing 
of scleral incisions than did non-covalent mixtures 
(Khadem et al., 1999). 

Bio-distribution studies showed that the polyan-
ionic conjugates of Chn e6 with murine monoclonal 
antibody accumulated more selectively in  liver tumors 
than corresponding polycationic conjugates or free 
Chn e6. PDT with the polyanionic conjugates was 
more effective in eradicating liver tumors and resulted 
in better survival of normal tissue (Del Governa-
tore et al., 2000b). Chn e6-succinylated polylysine 
conjugate was used to activate the transforming 
growth factor P that modulates  cartilage metabolism 
in  osteoarthritis (Sullivan et al., 2002). A cationic 
poly-L-lysine conjugate of Chn e6 to a Fab´ frag-
ment of the murine monoclonal anti-human ovarian 
carcinoma antibody, showed a PDT response better 
than that of the anionic conjugate or free Chn e6, with 
no systemic toxicity from the treatment (Molpus et 

al., 2000). The cationic conjugate, in combination 
with  cis-platin chemotherapy ex vivo, displayed a 
synergistic effect (Duska et al., 1999). A comparison 
between the positively-charged polylysine- and nega-
tively-charged succinylated polylysine-conjugates 
of Chn e6 for PDT of rat orthotopic prostate tumor 
models indicated that both conjugates initially bind 
to the endothelium lining of the vasculature. How-
ever, the anionic compound extravasated faster into 
the tissue (Hamblin et al., 1999). Targeted cationic 
conjugates showed superior binding to human  colon 
cancer cells (Del Governatore et al., 2000a). The 
use of cationic poly-L-lysine conjugate of Chn e6 to 
control wound healing was shown in mice (Hamblin 
et al., 2002a).

The use of water-soluble   N-(2-hydroxypropyl)
methacrylamide (HPMA) polymer for anticancer 
drug delivery was intended to bypass some forms 
of multidrug resistance, to enhance preferential 
accumulation in tumor tissue by increased perme-
ability and retention, and to take advantage of new 
targeting strategies such as  polymerizable antibody 
fragments and synthetic receptor-binding epitopes 
(Kopecek et al., 2001). Combination therapy with 
the HPMA-anticancer drug containing  doxorubicin 
and meso-Chn e6 attached via an enzymatically 
degradable oligopeptide, cured tumors which could 
not be cured with either chemotherapy or PDT alone. 
HPMA-copolymer-bound drugs exhibited selective 
tumor accumulation in contrast to free drugs. Most 
effective was the combination of multiple   chemo-
therapy with HPMA-copolymer-doxorubicin and 
multiple PDT with HPMA-copolymer-meso-Chn e6, 
especially with the attachment of monoclonal antibod-
ies to both copolymers. Reduced non-specifi c toxicity 
has been a constant advantage in all the preclinical 
studies (Kopecek et al., 2001). 

E. Purpurin 18,  Chlorin p6, and Derivatives 

1. General Description and Chemistry

      Purpurin 18 ( PP 18, Fig. 1), having a  6-membered 
anhydride ring as a result of  oxidative cleavage of 
isopentanone ring E, is easily prepared from Pheide a 
and its esters (Kenner et al., 1973; Hoober et al., 1988) 
or directly from a crude extract of Chl a (Mironov et 
al., 1993). PP 18 is lipophilic, has a strong absorp-
tion at 700 nm and φ∆ of about 0.7 (Zenkevich et al., 
1996). PP 18, a stable intermediate, can be used for 
further chemical transformations. Alkaline cleavage 
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of the anhydride ring produces water-soluble Chn p6

(Fig. 1), which absorbs at 656 nm and provides φ∆ of 
about 0.6 in ethanol, the same as Chn e6 (Zenkevich 
et al., 1996). The opening of the anhydride ring of 
the PP 18 methyl ester by L-lysine as a nucleophile 
yielded a water-soluble Chn p6 131-lysylamide methyl 
ester (K. M. Smith et al., 1992; Lee et al., 1993). 
Replacement of the 3-vinyl group with the 1-hy-
droxyethyl and 1,2-dihydroxyethyl functions did not 
cause signifi cant spectral changes, but substantially 
increased the hydrophilicity of the corresponding Chn 
p6 derivatives. In contrast, the distinct bathochromic 
shift with vinyl oxidation to acetyl (25 nm) and formyl 
(35 nm) groups did not infl uence the amphiphilicity 
balance (Kozyrev et al., 1994; Pandey et al., 1994). 
The propionic acid residue of  PP 18 was converted 
into corresponding amides with alanine and aspartic 
acid (Mironov et al., 1993). 

 Partial reduction transformed the anhydride ring 
of PP 18 into a δ-lactone. The mixture of the two 
products and their 3-(1-hydroxyethyl) and 3-acetyl 
derivatives displayed a higher stability toward acidic 
and basic cleavage; however, their spectral bands 
in the red region were blue shifted by 22–37 nm 
(Mironov et al., 1998).

  PP 18 cyclic imides, isoimides, and the correspond-
ing Chn p6 derivatives with 1-hexylamine (Pandey 
et al., 1994; Kozyrev et al., 1996c) and N,N-dimeth-
ylethylenediamine (Kozyrev et al., 1997) instead 
of lysine, have also been synthesized. Following a 
similar  QSAR-investigation approach as with Phe-
ides, a set of lipophilic PP 18 N-imide derivatives was 
synthesized with various alkyl, aryl, and fl uoroaryl 
substitutions at the C-3, C-8, C-20 and N-13 positions 
of the macrocycle: the main Qy absorption band of 
this set of compounds was near 700 nm and they had 
φ∆ values of 0.57–0.60 (Rungta et al., 2000; Zheng et 
al., 2000b, 2001b; Gryshuk et al., 2002).

PPs of increased hydrophiliciy, comprising cyclic 
imides with NH, N-substituted residues of C2-C4 
aliphatic alcohols, carboxylic acids (C1, C5) or con-
taining the N-OR group, where R is a hydrogen, alkyl 
or acyl residue, have their major absorption in the 
706–718 nm domain. The replacement of the vinyl 
group by a formyl function resulted in a red shift to 
750 nm (Mironov and Lebedeva, 1998; Mironov et 
al., 1999). A PP derivative with N-(3-hydroxypropyl) 
residue absorbs at 711 nm and has a φ∆ value of 0.66 
(Feofanov et al., 2002).

A positively charged PP was recently prepared by 
introducing a pyridinium group at the C-5 position 

of  [Ni]-Chn p6 trimethyl ester or at the C-121 position 
of [Ni]-PP 18 N-hexylimide methyl ester (Mettath 
et al., 2000).

2. Pre-clinical Studies and Efficacy

a. In Vitro Studies

The photodynamic effi cacy of [3-formyl]-Chn p6 
and Chn p6 were similar in causing necrotic death 
of A-549 human  adenocarcinoma cells (IC50 about 
4-8 µM), with the mitochondria as a primary target. 
The water-soluble Chn p6 131-lysylamide methyl ester 
was found photocytotoxic against 9L  glioma cells at 
concentrations 10 to 100-fold lower than Photofrin® 
(K. M. Smith et al., 1992; Lee et al., 1993). The 
Chn p6  lysylamide was localized by endocytosis in 
the endosomal compartment, causing morphological 
damage in the mitochondria, Golgi apparatus, and 
rough endoplasmic reticulum (Leach et al., 1993).

A hydrophilic PP N-(3-hydroxypropyl)imide dem-
onstrated photocytotoxicity on A549 human adeno-
carcinoma cells 60-fold higher than [3-formyl]-Chn 
p6, with no dark cytotoxicity. Subcellular localization 
implied mitochondria and Golgi apparatus as the 
primary targets (Feofanov et al., 2002). 

b. In Vivo Studies

PP 18 was found inactive, probably due to the 
instability of the anhydride ring in vivo (Zheng et 
al., 2000a). PDT on Ehrlich carcinoma in mice (90 
J cm–2, 696 nm, 5-10 mg kg–1 i.v.), performed 1-6 
h after [3-formyl]-Chn p6 administration, resulted 
in severe complications and light-induced deaths, 
whereas after 24 h it induced moderate suppression 
of tumor growth (Grichine et al., 2001). 

PDT with Chn p6 lysylamide on 9L  glioma tumors 
in rats (100 J cm–2, 664 nm, 4 h after 2.5 mg kg–1 
i.v.) showed long-term inhibition of tumor growth. 
However, side effects in normal tissues, including 
severe skin necrosis, were observed (Leach et al., 
1992). To prevent conversion of Chn p6 lysylamide 
into PP imide, the C-151 acid residue was esterifi ed 
(Lee et al., 1993). The Chn p6 lysylamide esters were 
less effi cient PDT sensitizers than the corresponding 
PP imide when tested on mammary adenocarcinoma 
in mice. However, these lysylamide agents caused 
a substantial direct toxicity with 5 mg kg–1 dose in 
contrast to NPe6 (Kessel et al., 1995).

The tumorcidal ability of the 3-(1-alkoxyethyl) 
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ethers of PP 18 N-hexylimide methyl ester compared 
with that of the 173-alkylamide derivatives of PP 18 
N-hexylimide was studied by Zheng et al. (2000b); 
the therapeutic response of  RIF tumors in mice (135 
J cm–2, 705 nm, 24 h after 1 µmol kg–1) was stronger 
with the ether derivatives, especially with the n-hexyl 
chain (100% tumor response on day 30), than with 
the amides. The location of alkylether substituents 
in alkylether analogues of meso-PP 18 N-hexylimide 
methyl ester and meso-PP 18 N-decylimide methyl 
ester is important for photosensitizing effi ciency: 
the 3-(1-heptyloxyethyl is more effi cient than 8-(1-
heptyloxyethyl), 3-octyloxymethyl and 20-heptyloxy-
methyl derivatives (Rungta et al., 2000). Essential 
differences in tumor uptake, selectivity and PDT 
effi cacy were observed among homologues of the 
PP-18 imide methyl ester containing 3-(1-O-alkyl) 
and 132-N-alkyl substituents possessing similar 
lipophilicity and  singlet oxygen production, sug-
gesting differences in their  pharmacokinetics and 
pharmacodynamics (Zheng et al., 2001b). Screening 
of PP 18 imide methyl esters, containing aromatic 
(3,5-dimethylbenzylic) or trifl uoromethyl-aromatic 
substituents instead of O-alkyl or N-alkyl groups, 
indicated the superiority of the fl uorinated purpu-
rinimides, especially the N-fl uoro-aryl derivatives 
(Gryshuk et al., 2002).  

PDT in P-388  leukemia-bearing mice with hydro-
philic PP N-(3-hydroxypropyl)imide (230 J cm–2, 
>690 nm, 24 h after 25 mg kg–1) halved the tumor 
growth rate (Mironov et al., 1999).

 Targeting.  Meso-PP 18 imide methyl ester, N-sub-
stituted with galactose or lactose via diene spacer, 
was designed for targeted delivery to the galectin-1 
receptor, which is highly expressed by malignant 
cells. Preliminary studies have indicated the superior-
ity of carbohydrate conjugates over non-conjugated 
photosensitizers (Zheng et al., 2001a).

F. Benzochlorin Derivatives

1. General Description and Chemistry

   Benzoisobacteriochlorin, formed by the cyclization 
of a meso-acrolein to a β-pyrrolic position in the [20-
(2-formylvinyl)-131-deoxypyro]-[Ni]-Pheide methyl 
ester (Vicente and Smith, 1991), was converted into 
benzochlorin, and then to 5-formyl, alkoxymethyl 
and cationic iminium salt derivatives (Pandey et al., 
1995) and also to 131, 132-oxobenzochlorins (Fig. 1) 
(Mettath et al., 1998). These compounds have absorp-

tion maxima between 708-759 nm. Similarly, based 
on the PP 18 N-hexylimide methyl ester, 3-ethyli-
dene-substituted isobacteriochlorins and fl uorinated 
benzochlorin (λmax 751 nm) were produced (Mettath 
et al., 1999). 

G. Diels-Alder Adducts of Chlorins 

1. General Description and Chemistry

  When the 3-vinyl group of Pheide a was utilized as 
a diene component, isomerically pure 2,3-benzopor-
phyrin analogues (Fig. 1) were obtained (Pandey et 
al., 1993, 1996b; Ma and Dolphin, 1997). Also, by 
 Diels-Alder cycloaddition, an 8-vinyl-meso-PP 18 
methyl ester was transformed into 7,8-benzobacte-
riopurpurins, having an absorption at 760-795 nm 
(Zheng et al., 1996). Regioselective   cycloaddition of 
diazomethane to pyro-Pheide and PP 18 N-methyl 
imide produced the corresponding 1´-pyrazolinyl-
substituted derivatives, which were altered to cy-
clopropyl derivatives by pyrolysis (Kozyrev et al., 
2003). However, with [132-oxo]-pyro-Pheide a, the 
primary target of diazomethane was the α-diketone 
ring, producing  verdinochlorins with fused cyclo-
hexenone rings and an absorption at 739–777 nm 
(Kozyrev et al., 1998a). 

2. Pre-Clinical Studies and Efficacy 

a. In Vivo Studies

In preliminary tests, a benzporphyrin derivative of 
rhodoporphyrin XV aspartyl amide (λmax 668 nm) was 
a successful photosensitizer against  SMT/F tumors 
in mice at 3 h but not 24 h after injection of 1 mg 
kg–1 (Pandey et al., 1996b).

H. Glycol- and     Ketobacteriochlorin 
Derivatives

1. General Description and Chemistry

The reaction of non-vinyl derivatives of pyro-
Pheide a, Chn e6, PP 18 and its N-imides with  osmium 
tetroxide yielded vicinal 7,8-dihydroxy-substituted 
bacteriochlorins (BChns, Fig. 1) with reduction of 
opposite pyrrole rings B and D: these compounds 
show signifi cant spectral red shifts up to 754 nm 
for the 3-formyl-derivatives of pyro-Pheide a and 
Chn e6 and 828 nm for the 3-formyl-derivative of 
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[Zn]-PP 18 (Pandey et al., 1992a,c, 1994, 1997b; K. 
M. Smith et al., 1992; Kozyrev et al., 1994, 1996a). 
By a similar approach, [Ni]-complexes of meso-Chn 
e6 and meso-PP 18 methyl esters yielded vicinal-
 dihydroxy-substituted isoBChlns with reduction of 
adjacent pyrrole rings (Kozyrev et al., 1996a).

 The  pinacole-pinacolone rearrangement in vici-
nal-dihydroxy-BChns led to keto-BChns (Fig. 1). 
The migration of alkyl groups and the fl uctuation of 
absorption maxima (711-786 nm) of the products 
obtained was infl uenced by the number and position 
of the electron-withdrawing groups (Pandey et al., 
1992a, 1997b; Kozyrev et al., 1996b). The keto-BChn 
from [131-deoxo]-mesopyro-Pheide a provided a φ∆ 

of 0.40 (Pandey et al., 1997a).

2. Pre-Clinical Studies and Efficacy

a. In Vivo Studies

BChn products derived from pyro-Pheide a and Chn 
e6 were photodynamically inactive (135 J cm–2, 702 
nm, 3 h after 0.3 mg kg–1 i.p. or 4 and 24 h after 10 
mg kg–1 i.v.) (Pandey et al., 1992c; Kessel et al., 
1993). Among [3-formyl]-   bacteriopurpurin (BPP) 
agents, however, the N-132-lysylimide and C-173-
aspartylamide derivatives, irradiated 3 h post i.v.-
injection (135 J cm–2, 815 nm, 5 mg kg–1), exhibited 
100% tumor response on day 7, while the lysyl-free 
[3-formyl]-BPP was inactive (Pandey et al., 1994).

An isomeric mixture of keto-BChns, obtained from 
[3-acetyl-8-isobutyl]-pyro-Pheide a methyl ester, was 
successful in treating mice bearing the RIF tumor 
(135 J cm–2, 5–10 mg kg–1) when photoexcited at 
4 h but not 24 h after i.v.-administration; however, 
some post-PDT toxicity was observed. The effi cacy 
and cytotoxicity were correlated with plasma rather 
than with the tumor levels of the drug (Kessel et al., 
1993). Similarly, keto-BChns from [131-deoxo-20-
formyl]-mesopyro-Pheide a were photodynamically 
active on  SMT/F tumors in mice (135 J cm–2, 1–2.5 
mg kg–1), when illuminated 3 h but not 24 h after i.v.-
administration, but post-PDT mortality was recorded. 
Di-tert-butylaspartic esters were more potent than 
the methyl ester derivative, probably due to esterase 
activity.   Cutaneous phototoxic side effects were not 
observed from day 9 after keto-BChn injection. Pho-
tosensitizing effi cacy was correlated with an affi nity 
for the peripheral  benzodiazepine receptor (Pandey 
et al., 1997a). 

I. Dimeric and Oligomeric Structures

1. General Description and Chemistry

A number of   Chl-based  dimers and  trimers with 
ether, amide and carbon-carbon linkages were pre-
pared (Ando et al., 1991a, 1992; Brandis et al., 1992; 
Jaquinod et al., 1996; Pandey et al., 1996d; Zheng 
et al., 2000a) similar to Photofrin®, which consists 
of a mixture of dimers and higher oligomers with 
ether, ester and carbon-carbon linkages determin-
ing its biological activity (Pandey and Zheng, 2000; 
Macdonald and Dougherty, 2001). Dimers of pyro-
Pheide a, Chn e6 and PP 18 derivatives, linked with 
amide bonds via lysine and propylenediamine, had 
a φ∆ < 0.5. 

2. Pre-Clinical Studies and Efficacy 

a. In Vivo Studies

Dimers of pyro-Pheide a, Chn e6 and PP 18 deriva-
tives, linked with amide bonds via lysine and propyl-
enediamine, were evaluated in mice SMT/F tumors 
(135 J cm–2, 665 nm, 24 h after 4 µmol kg–1 i.v.) and 
they generated weak antitumor activity relative to the 
related monomers (Pandey et al., 1996d; Zheng et al., 
2000a), which contrasts with the enhanced effect of 
porphyrin dimers and trimers. 

J. Chlorophyll Metabolites

1. General Description and Chemistry

  Numerous metabolic derivatives of Chl, discovered in 
the last decade, exhibit biological activity as protec-
tive antioxidants or cellular signaling mediators (Ma 
and Dolphin, 1999). Some of them have potential in 
PDT. A hydrophobic Chl metabolite from  silkworm
excreta,  132-hydroxy-Phe a, generates singlet oxygen 
at a φ∆ of 0.50 (Dai et al., 1992).  Tolyporphin (see 
formula in Chapter 1, Scheer), extracted from the 
cyanobacterium  Tolypothrix nodosa, has a structure 
similar to diketo-BChn photosensitizers: it possesses 
absorbance at 675 nm and has two sugar moieties, 
providing solubility in water (Prinsep et al., 1992).

2. Pre-clinical Studies and Efficacy

a. In Vitro Studies

  Pheide a methyl ester isolated from  Garuga pinnata 
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Roxb. leaves showed promising light-induced cyto-
toxicity against a number of human cancer cell lines 
including drug-resistant sublines (Wongsinkongman 
et al., 2002). 

Tolyporphin was 6-, 70- and 5,000-fold more effec-
tive in photokilling EMT-6 tumor cells than Pheide a 
[4-hydroxybutylamide], [3-(1-hexyloxyethyl)]-pyro-
Pheide a methyl ester and Photofrin®, respectively: 
this enhancement is probably due to permeation to 
different subcellular sites such as the endoplasmic 
reticulum and nuclear membrane and to reversal 
of multiple drug resistance (Morliere et al., 1998). 
Binding of tolyporphin to P-glycoprotein inhibited 
the transport of cytotoxic natural product drugs, en-
hancing the cytotoxicity of  adriamycin or  vinblastine 
in SK-VLB cells (C. D. Smith et al., 1994).

b. In Vivo Studies

PDT with tolyporphin (38 J cm–2, 681 nm, 1 h after 
2 mg kg–1 i.v.) appears promising as it delayed re-
growth of mouse EMT-6 tumors by 20 days indicating 
that this sensitizer is 10-20 times more potent than 
Pheide a [4-hydroxybutylamide] or [3-(1-hexyloxy-
ethyl)]-pyro-Pheide a methyl ester (Morliere et al., 
1998). A very low level of the pigment in blood in 
contrast to elevated delivery to tumor 1 h after ad-
ministration implied mutual direct (tumor cells) and 
indirect (vasculature) photokilling effect (Morliere 
et al., 1998).

III. Clinical Trials

PDT with  HPPH (trade name Photochlor®) has en-
tered Phase I/II clinical trials (Roswell Park Cancer 
Institute, Buffalo). Excellent results were reported 
in the treatment of fi ve  oesophageal cancer patients 
with no skin phototoxicity (Pandey, 2000). A recent 
study of the drug pharmacokinetics in humans dem-
onstrated a bicompartmental clearance with short and 
long half lifetimes of 7.77 h and 596 h, respectively 
(Bellnier, 2003). 

 NPe6-PDT entered a Phase I study (University of 
Louisville) on 11 patients with superfi cial cutaneous 
malignancies. Sixty six percent of the sites were tu-
mor-free after 12 weeks (100 J cm–2, 664 nm, 4 h after 
2.5–3.5 mg kg–1 i.v.). At these drug doses, there was 
no apparent selectivity for destruction of tumor cells 
compared with normal skin cells, but only temporary 
generalized skin photosensitivity was noted (Taber et 

al., 1998) despite detection of the drug in the plasma 
for up to 6 weeks (Kessel, 1997). Phase II trials 
have commenced in Japan for use in endobronchial 
carcinoma; so far, thirty-nine lesions in 35 patients 
have been treated with an 85% response (33 lesions), 
out of which 29 patients (83%) showed a complete 
recovery (Furukawa et al., 2001).

Clinical trials with   HPMA-copolymer-meso-Chn 
e6 are also in progress (see Kopecek et al., 2001).

A clinical evaluation of PDT in different tumors 
with a water-soluble pigment mixture based on   Chn e6 
and Chn p6 (trade name  Radachlorin®), is now being 
performed in Russia (RadaPharma, 2002). 
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