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Summary

The function of photosynthetic light harvesting complexes (LHCs) comprises absorption and regulated exci-
tation energy transfer (EET) to the photochemical reaction centers (RCs). Photosynthesizing organisms have 
developed a variety of LHCs but, apart from phycobilins in cyanobacteria and certain algae, use only two 
types of pigments, (bacterio)chlorophylls ((B)Chl) and carotenoids. Adaptation of their electronic excited state 
properties to the requirements of effi cient, yet safe light harvesting is realized by pigment-protein as well as 
pigment-pigment interactions, thereby varying: i) the mutual orientations and distances of the pigments; and, 
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ii) the pigments’ local environments. This will be exemplifi ed for the seemingly irregular (B)Chl networks of 
the main light-harvesting complex (LHC II) of higher plants and the so-called Fenna-Matthews-Olsen-Protein 
(FMO) of green photosynthetic bacteria, and the highly-ordered BChl arrangements in the LH2 antenna of purple 
bacteria and in chlorosomes of green bacteria. The occurrence and extent of excitons will be discussed.

Abbreviations: A – acceptor in EET; BChl – bacteriochloro-
phyll; BChl-Bxxx – BChl in a complex absorbing at xxx nm; 
BPhe – bacteriopheophytin; CD – circular dichroism; Chl – chlo-
rophyll; Chl. – Chlorobium; CIEM – confi guration interaction 
exciton method; CP29 – minor Photosystem II antenna complex 
(Lhcb4); D – donor in EET; EET – excitation energy transfer; 
FMO – Fenna-Matthew-Olsen complex; ISC – intersystem 
crossing; LH1, LH2 – core and peripheral light-harvesting com-
plexes of purple bacteria, respectively; LHC – light-harvesting 
complex; LHC II – main light-harvesting complex of higher 
plants and algae, alternatively also termed LHCB; NIR – near 
infrared; NLPF – non-linear polarization in the frequency domain; 
PCP – peridinin chlorophyll a-protein; PS – Photosystem; PSU – 
photosynthetic unit; Ptc. – Prostecochloris; Rba. – Rhodobacter; 
Rps. – Rhodopseudomonas; Rsp. – Rhodospirillum

I. Introduction

  The two essential  functions of (bacterio)chlorophylls 
((B)Chls) in photosynthetic  light harvesting com-
plexes (LHCs) are absorption of light and subsequent 
       electronic  excitation energy transfer (EET) to a 
photosynthetic  reaction center (RC). The latter can 
also absorb light, but such events occur at rates <10 
Hz whereas the RC can turn over excitations at rates 
around 1000 Hz (Mauzerall and Greenbaum, 1989). 
LHCs deliver excitation energy to the RCs to assure 
optimal performance according to the external and 
internal conditions. Isolated (B)Chls, however, do 
not harvest light effi ciently: they absorb light only 
in narrow regions of the spectrum, the electronic 
excitation energy is partly lost as heat (especially in 
aggregates), and potentially dangerous triplet states 
are formed by  intersystem crossing (ISC). LHCs 
have evolved to minimize and control these losses 
in effi cient EET arrays. While using relatively small 
amounts of protein, they broaden or extend the (B)Chl 
absorption regions and reduce wasteful and danger-
ous ISC to (B)Chl triplets, thereby increasing safely 
the effective cross section for absorption of the RC 
by orders of magnitude. 

Remarkable progress has been achieved in under-
standing photosynthetic EET processes. In particular, 
LH2 of purple bacteria of which detailed structural, 
spectroscopic and biochemical information is avail-
able, has triggered various theoretical investigations 
which, in turn, inspired further experiments. A nearly 

complete picture of EET through the bacter ial pho-
tosynthetic unit (PSU) has been proposed (Hu et 
al., 2002). Such a model is still lacking for the main 
light-harvesting complex II (LHC II) of higher plants 
and, also for EET through Photosystem (PS) II and 
PS I.

In LHC, there are two extreme cases of EET be-
tween donor (D) and acceptor (A), depending on their 
transition-dipole coupling: there can be ‘hopping’ of 
a completely localized excitation ( weak coupling, 
 Förster transfer), or coherent exciton motion with 
delocalization of excitation (strong coupling). In 
the case of intermediate coupling, EET may start 
with coherent motion, which is quickly perturbed by 
vibrations (called  partial exciton) or coherence may 
be lost early, so that EET and  vibrational relaxation 
coincide (hot transfer; Kimura et al., 2000).

In LHCs all these modes of EET have been ob-
served. The known LHC structures show two types 
of pigment arrangements: highly ordered arrays in 
purple bacterial LHC (Karrasch et al., 1995; McDer-
mott et al., 1995; Koepke et al., 1996; Robert et al., 
2003), or in  chlorosomes of  green bacteria (Chapter 
20, de Boer and de Groot,), as well as arrangements 
of much lower symmetry in LHCs of higher plants 
or the  Fenna-Matthews-Olsen-protein (FMO) (see 
Chapter 28, Melkozernov and Blankenship; and Fig. 1 
and Color Plate 3 from Chapter 24, Noy et al.) . 

In the monomeric subunits of  LHC II, 12–15 
Chls are located in distinct protein environments. 
Here, broadening of the absorption regions, com-
pared to monomeric Chl in solution, is assumed to 
occur mainly as result of heterogeneities caused by 
site-specifi c Chl-protein interaction. A similar as-
sumption is made for the FMO complex of green 
sulfur bacteria. 

By contrast, the 24–27 BChl a of  LH2 are arranged 
in two distinct, ring-like structures of high symme-
try. In one of the compartments, B850, it is not the 
diversity of BChl-protein interactions which extends 
the absorption regions, but band broadening and 
splitting caused by strong pigment-pigment excitonic 
interactions. Strong pigment-pigment interactions 
also cause the broad near infrared (NIR) absorptions 
of chlorosomes, which are nearly devoid of protein 
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(Blankenship et al., 1995; Chapter 15, Frigaard et 
al.; Chapter 20, de Boer and de Groot). 

The aforementioned strategies, alone or in combi-
nation, are useful not only to broaden the absorption 
regions, but they may also speed up EET within and 
between sub-complexes of the respective PS. Light 
absorption by any of these components with popu-
lations of an excited state is generally followed by 
deactivation to the vibrationally relaxed lowest ex-
cited state(s). Then, EET to a spatially and spectrally 
suitable acceptor (A) in the EET chain takes place 
with high quantum yield. Hence, EET overcomes 
the competing deactivation routes by radiative and 
radiationless processes in the lowest excited singlet 
state of D.   The EET rate, kDA, in case of weak D-A 
interaction is described: 

k V J
DA DA DA

= 2 2π
η  (1)

where VDA is the electronic coupling factor. All nuclear 
factors are contained in the Förster spectral overlap 
integral JDA. If the distance between D and A is much 
larger than the size of D and A themselves (long-range 
transfer), the Coulomb coupling can be expanded into 
a multipole series and restricted to the dipole-dipole 
term, which gives the  Förster formula:
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where κ2 and r describe the orientation and distance, 
respectively, of the D and A transition dipoles; φD 
and τD are fl uorescence quantum yield and excited 
state lifetime, respectively, of D in the absence of A, 
N is the Avogadro number; fD(ν~) is the normalized 
fl uorescence intensity of D; εA(ν~) the extinction coef-
fi cient of A at wavenumber ν~; and n is the refractive 
index of the medium in the optical range of the lo-
cal environment of the D-A pair. Since kDA depends 
inversely on n4, determination of n of the respective 
pigments local environment is of considerable im-
portance for assessment of absolute rates. A broad 
variety of values and their meaning is found in the 
literature (Knox and van Amerongen, 2002). Below, 
we refer to a recently-determined value for n for the 
local environment responsible for EET 800 → 850 
nm in LH2 (n = 1.59; I. Eichwurzel, unpublished), 
which is similar to that for Chl a in the  peridinin 
chlorophyll a-protein (PCP) (n = 1.6; Kleima et 

al., 1997). The weak coupling limit is applicable, at 
least in good approximation, for most EET processes 
between LHC. It is also applicable for EET to the 
RC, where relatively long distances prevail in order 
to prevent electron transfer to the antenna. 

II. Excitation Energy Transfer in Purple 
Bacteria 

A. General

  A prototypical  purple bacterial PS consists of several 
peripheral light-harvesting complexes, LH2, com-
prised of 8–9 identical units, each carrying 3 BChl a 
and 1–2 carotenoids. They surround a core antenna 
(LH1) complex with approximately 16 identical units 
each carrying 2 BChl a and 1 (or more) carotenoid 
which, in turn, encases the RC (data for the  Rhodop-
seudomonas (Rps.) acidophila-type of purple bacte-
ria; Papiz et al., 1996). Whereas the ratio of RC/LH1 
complexes is fi xed, the amount of  LH2, if present, 
depends on growth conditions (Georgakopoulou et 
al., 2002). An important modifi cation of this model 
is a clustering of LH1-RC complexes in a ‘lake’ of 
LH2 (Nagarajan and Parson, 1997). An interrupted 
ring is found in crystals of LH1-RC-complexes of 
Rhodoseudomonas (Rps.) palustris (Roszak et al., 
2003), and two LH1 complexes, forming an elongated 
S-shaped super-complex with two RCs, have been 
seen in bacteria containing the PufX protein (Jungas 
et al., 1999; Westerhuis et al., 2002; for more details 
and examples see Hu et al., 2002). 

The NIR absorptions differ for  LH1 (875 nm) and 
LH2 (800 and 850 nm) complexes. NIR photons can 
start the EET chain in either LH1 or LH2, and within 
the latter at either BChl- B850 or a BChl- B800, re-
sulting in different numbers and types of EET steps 
before reaching the RC. 

B. Light Harvesting Complex 2: Strong and 
Weak Coupling, Excitation Energy Transfer 
from Higher Excited States, Deactivation 

  In LH2, a photon is absorbed by one of the circular 
aggregates, either BChl-B800 or BChl-B850, or by 
a carotenoid. It is assumed that Qy of BChl-B850 is 
the terminal state for all light-harvesting processes 
in LH2 and, hence, the donor in EET to LH1.

The following discussion will focus on the Qy 
absorptions in the red to NIR region.  Investigations 
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involving higher excited states are scarce, they 
include EET from higher excited (Soret-region) 
BChl to carotenoids (Limantara et al., 1998), radia-
tive transitions (low-yield) from Bx and Qx states of 
BChl to the ground state (Leupold et al., 2002; D. 
Leupold et al., unpublished) and processes from 
higher excited states, which bypass the Qy excitonic 
manifold (Limantara et al., 1998). Energy transfer 
from carotenoids is discussed in Chapter 30 (Koyama 
and Kakitani).

1. The Qy-Band Region

Experiments and theoretical description of EET fol-
lowing excitation in the 800 nm-centered absorption 
band of LH2 (belonging mainly to the monomeric 
BChl-B800, but see Leupold et al., 1999b) and detec-
tion in the 850 nm band have concentrated on LH2 
from  Rps. acidophila,  Rhodobacter (Rba.) sphaeroi-
des, and  Rhodospirillum (Rsp.) molischianum. LH2s 
have been classifi ed as either ‘acidophila-like’ or 
‘molischianum-like’, with the main difference in the 
orientation of the BChl-B800 molecules. LH2 of Rba. 
sphaeroides is disputably grouped to ‘molischianum-
like’ (Georgakopoulou et al., 2002).

The experimentally determined kDA
–1 values 

for EET from BChl-B800 → BChl-B850 at room 
temperature are 600–900 fs (Table 1). It has been a 
general problem of Förster-formalism based simula-
tions that, neglecting among other issues (see below) 
the excitonic level structure, the calculated EET rates 
were too low by a factor of about 5 (Pullerits et al., 

1997). This has been corroborated by a study of B800 
→ B850 EET with complexes in which BChl-B800 
was completely exchanged (Herek et al., 2000), 
thereby blue-shifting the NIR absorption maximum 
(originally located at 800 nm) stepswise down to 670 
nm, while maintaining the BChl-B850 (see Table 1). 
The simulated data nicely parallel the experimental 
increase of transfer times, but are systematically lower 
by a factor of 5 (Herek et al., 2000). For LH2, precise 
structural data are available, as well as a wealth of data 
from linear as well as   nonlinear optical spectroscopy. 
Improved calculations, using the  confi guration inter-
action exciton method (CIEM), on LH2 from Rsp.
molischianum and Rps. acidophila by the group of 
Korppi-Tommola (Linnanto et al., 1999; Linnanto 
and Korppi-Tomola, 2000; Ihalainen et al., 2001) sat-
isfactorily described many of the experimental data. 
Important contributions to the recent improvement 
of the theoretical understanding of light harvesting 
in LH2 were also provided by Krueger et al. (1998), 
Cory et al. (1998), Scholes and Fleming (2000), Hu 
et al. (1997, 2002), Damjanovic et al. (2002), and data 
derived from single-moleucle spectroscopy (Chapter 
21, Köhler and Aartsma).  Remaining discrepancies 
regarding a few experimental results are stimulating 
for both, theory and experiment.

a. Excitonic Model for B800-B850

  Excitonic models for the Qy  transition range of LH2 
of Rps. acidophila and Rsp. molischianum (Cory et 
al., 1998; Krueger et al. 1998, Linnanato et al., 1999; 

Table 1. Experimentally observed and calculated EET time constants for BChl-B800 → BChl-B850 in LH2 of purple bacteria

Antenna complex
(modifi cation)

λpump

[nm]
λprobe

[nm]
k–1

DA [ps], exp.
 RT  77 K  4.2 K

k–1
DA [ps], calc.

Rba. sphaeroides 2.4.1 795/800 800/840 0.7 1) 1.2 1) 1.5/1.3 ± 0.2 1)

Rba. sphaeroides (M(Y)210) 810 860 0.7 2)

Rps. acidophila 10050 810 870 0.9 2)

801 0.8 3) 1.3 3)

785 870 0.9 ± 0.1 4) 0.7–1.3 ps a) 5); 0.91 6) 
Rps. acidophila modif. (ZnBPhe a) 8) 785 870 0.8 ± 0.1 4) 0.8–1.1 ps a) 5); 0.75 6)

Rps. acidophila (3-vinyl-BChl a) 8) 754 870 1.4 ± 0.2 4) 1.1–1.5 ps a) 5); 0.75 6)

Rps. acidophila (31-OH-BChl a) 8) 742 870 1.8 ± 0.2 4) 1.2–1.6 ps a) 5); 1.34 6)

Rps. acidophila (3-acetyl-Chl a) 8) 685 870 4.4 ± 0.5 4) 29.1–38.1 ps a) 5); 13.8 6)

Rps. acidophila (Chl a) 8) 660 870 8.3 ± 0.5 4) 548–702.8 ps a) 5); 43.7 6)

Rsp. molischianum 790
800
810
830

(790–870)
(790–870)
(790–870)
(790–870)

1.2 7)

0.9 7)

1.0 7)

0.5 7)

1.3 7)

0.8 7)

0.9 7)

0.4 7)

a) Stokes shift 80 cm–1–0 cm–1; 1) Pullerits et al., 1997 ; 2) Kennis et al., 1997; 3) Ma et al., 1997; 4) Herek et al., 2000; 5) Linnanto and Korppi-
Tommola, 2002; 6) Scholes and Fleming, 2000; 7) Ihalainen et al., 2001; 8) modifi ed pigment at site B800 (see text)
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Ihalainen et al., 2001) take into account interactions 
between all BChl in the highly symmetric (C8, C9) 
circular structures (McDermott et al., 1995, Hu et al., 
1997). The B800 compartment of Rps. acidophila is 
a ring of 9 BChl a molecules with Mg-Mg distances 
of 21.2 Å and the B850 waterwheel-like compartment 
is a ring of 18 BChl a molecules with alternating 
distances of 8.9 and 9.6 Å. The closest BChl-BChl dis-
tances between the two rings are approximately 18 Å. 
There are analogous results for Rsp. molischianum 
(Ihalainen et al., 2001), where the 8 BChls a and 16 
BChls a in the respective compartments are separated 
by somewhat smaller distances, with distinct differ-
ences in the orientation of the BChl-B800 transition 
dipole moments (Koepke et al., 1996).

The  B850 Circular Aggregate without Disorder. 
In LH2 from Rps. acidophila, the site energies of 
BChl-     B850α and BChl-B850β (diagonal elements of 
the B850-part of the Hamiltonian)     were calculated 
(with explicit inclusion of the binding histidine resi-
dues) to 784 nm and 779 nm, respectively (Linnanto 
et al., 1999). The interaction energies (off-diagonal 
elements) between neighboring BChl-B850 (calcu-
lated by treating them as a supermolecule) amount to 
622 cm–1 (intra-) and 562 cm–1 (inter-subunit). They 

are larger than those obtained by calculations using 
point monopole-approximations (Sauer et al., 1996) 
or the transition density cube approximation (Krueger 
et al., 1998). The exciton level manifold including also 
dipole-dipole interactions of non-neighboring BChl-
B850 in a perfect circular arrangement, is given in 
Fig. 1, with each energy level representing a coherent 
superposition of individual BChl excitations. The op-
tically-allowed transitions terminate in the degenerate 
1,2E1 state (main transition at 862 nm) and the 2A-
state (weak transition at 719 nm). The dipole moment 
of the former is enhanced by a factor of about 9 , 
compared to monomeric BChl a, but the excitation 
density is identical at all 18 BChl a-sites, predicting 
an (initial)   exciton delocalization over the entire ring. 
The results are remarkable with respect to EET: i) the 
lowest excited state is ‘optically dark’ and therefore 
very long-lived, which strongly reduces competition 
of radiative processes with EET; ii) excitation into the 
dominating transition(s) to 1,2E1 renders the energy 
immediately available at each site of the entire B850 
ring; iii) there is a large overall splitting of the energy 
levels (‘ exciton splitting’) of more than 2000 cm–1, 
which should accelerate B800-B850 as well as the 
carotenoid-to-B850 EET (see below and Chapter 30, 

Fig. 1. Schematic representation (not to scale) of the energy level structures of the circular aggregates BChl-B800 (D) and BChl-B850 
(B) consisting of 9 weakly and 18 strongly coupled BChls a, and of their building blocks, monomeric BChl-‘B800’ (E) and dimeric 
BChl-‘B850’α,β  (A). Whereas (B, D) represent the perfect C9 symmetry, the infl uence of disorder on the lowest three transitions in 
BChl-B850 is shown in (C).
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Koyama and Kokitani); and, iv) interactions between 
BChl-B800 and BChl-B850 are very weak.

Considering these predictions that are based 
on the C9 symmetry and assuming no disorder, it 
is interesting to look at some experimental data. 
 B800-depleted LH2 have been studied from  Rba.
sphaeroides (Bandilla, 1995; Bandilla et al., 1998; 
Koolhaas et al., 1998; Leupold et al., 1999b) and Rps.
acidophila (Herek et al., 2000). The properties of 
their 850 nm-bands are almost identical to wild type 
(WT) complexes; that is, the infl uence of BChl-B800 
is negligible (Bandilla, 1995; Koolhaas et al., 1998; 
Nowak, 1999; Leupold et al., 1999b; Herek et al., 
2000). The B850 bands of both samples show clear 
indications of disorder (Nowak, 1999; Leupold et al., 
2000). Steady state and ultrafast kinetic absorption 
data indicate an even larger exciton splitting (and/or 
exciton-vibronic manifold) than calculated, and 
suggest non-negligible higher-energy transitions of 
BChl-B850 around 800 nm (Koolhaas et al., 1998; 
Leupold et al., 1999b; Herek et al., 2000).

The  B800 Circular Aggregate without Disorder. 
Linnanto et al. (1999) calculated a Qy transition at 797 
nm for monomeric BChl-B800 of Rps. acidophila, 
including 9 neighboring amino acid residues, part 
of the carotenoid and the phytyl chain of the closest 
BChl-B850. Using a similar approach, Ihalainen et 
al. (2001) obtained a value of 798 nm for LH2 from 
Rsp. molischianum. These values are considerably 
red-shifted compared to BChl in any polar solvent 
(e.g., 786 nm in quinoline; Limantara et al., 1997), 
suggesting the presence of special pigment-protein 
interactions like H-bonding to the  3-acetyl-group 
(Sturgis and Robert, 1996; Hu et al., 2002), steric 
distortions or axial ligation (Hu et al., 2002); there-
fore, explicit inclusion of the protein environment 
in the calculation of the BChl-B800 site energy is 
essential (Scholes et al., 1999). When applied to 
LH2 with exchanged B800-pigments (Table 1; Herek 
et al., 2000),   environment-induced red-shifts are 
observed for all but one substitute pigment (Chl a). 
Assuming that the latter lacks specifi c protein inter-
actions, its Qy absorption maximum can be used to 
determine a refractive index of n = 1.59 at the B800 
binding site (Eichwurzel et al., 2000; I. Eichwurzel, 
unpublished).

Using these Qy energies as diagonal elements of 
the B800-part of the Hamiltonian and off-diagonal 
interaction energies of 30–40 cm–1, as calculated 
according to the point-dipole model, a (disorder-
free) C9-symmetric B800 energy-level is obtained 

with only half of the level numbers as for B850, 
and a much closer spacing (excitonic splitting <100 
cm–1) (see Fig. 1). Again, the most intense radiative 
transition from the ground state is that to the lowest 
pair of degenerate E levels (λmax=799 nm) (Linnanto 
et al., 1999).

 B800-B850 Interactions. Including BChl a inter-
ring interactions (≤30 cm–1) reduces excitonic split-
ting of the Qy manifold of BChl-B800, while slightly 
increasing that of neighboring BChl-B850 levels 
(Linnanto et al., 1999), predicting a small red-shift 
of B850 in LH2, compared to the BChl-B800 de-
pleted pB850. Experimental results for the disordered 
systems of native complexes are in agreement with 
this prediction: namely a red-shift of 2 nm for Rba.
sphaeroides (Leupold et al., 1999b).

Consequences of Deviations from Highly Sym-
metric Circular Structures. For a simulation of the 
optical properties of single LH2 complexes (van Oijen 
et al., 1999; Chapter 21, Köhler and Aartsma), ho-
mogeneous broadening and intra-aggregate disorder 
have to be considered. Corresponding simulations 
for LH2 ensembles must additionally include inter-
aggregate disorder: 

i) Variations of the BChl environment in the circular 
aggregate may result in a Gaussian distribution of 
Qy energies (diagonal disorder) while symmetry is 
conserved, resulting in non-negligible oscillator 
strengths in higher — originally forbidden — tran-
sitions (among them 1A). The respective absorp-
tion bands become increasingly inhomogeneously 
broadened (Hu et al., 1997).

ii) Variations of BChl a positions and orientations 
along the circular aggregate result in changes of 
interactions (off-diagonal disorder) and give rise to 
similar changes, but should be of minor importance 
(Wu and Small 1997, 1998).

iii) Elliptical deviations from perfect circular ar-
rangements were invoked from low-temperature 
fl uorescence excitation spectra of single LH2 
complexes (van Oijen et al., 1999; Chapter 21, 
Köhler and Aartsma), causing a split of the B850 
Qy-band into two sub-bands (Matsushita et al., 
2001; Hu et al., 2002; for an analysis of intra- 
and inter-aggregate disorder, see Mostovoy and 
Knoester, 2000). 

iv) For ‘broken’ rings a lift of level degeneracy 



419Chapter 29 Excitonic Coupling in Excitation Energy Transfer

would also be expected. In this case, the oscillator 
strength would not be symmetrically distributed to 
the two sub-bands (van Oijen et al., 1999).

Experimentally, intra-aggregate disorder is evident 
for B800: several narrow bands around 800 nm are 
seen in single-complex spectra of LH2 from Rps.
acidophila at 1.2 K, while the B850 Qy band consists 
(in most cases) of two broad sub-bands of unequal 
intensities (interpreted as an elliptical deforma-
tion, van Oijen et al. 1999; Matsushita et al., 2001; 
Chapter 21, Köhler and Aartsma). Remarkably, such 
double-band substructure has also been resolved 
for ensemble-averaged B850 in LH2 from Rba.
sphaeroides at room temperature using    nonlinear 
polarization   spectroscopy in the frequency domain 
(NLPF), indicating that intra-aggregate disorder is 
small (Leupold et al., 2000). This would argue for a 
relatively uniform degree of ellipticity in the B850 
ensemble. There is no such substructure in the C8-
symmetric LH2 of Rsp. molischianum (Leupold et 
al., 2000).

Optical Properties Derived from the LH2 Qy Ex-
citon Model. To simulate the Qy absorption and the 
CD spectrum of  LH2, homogeneous broadening has 
to be considered (Linnanto et al., 1999; Ihalainen et 
al., 2001). The results obtained for Rps. acidophila 
(Linnanto et al., 1999; Linnanto and Korppi-Tom-
mola, 2000) and for Rsp. molischianum (Ihalainen et 
al., 2001) appear to be promising. In particular, the 
maxima and shapes of the two Qy absorption bands 
as well as the main features of the  circular dichroism 
(CD) spectra are relatively well reproduced. Also well 
reproduced is the red-shift of the CD zero-crossing 
with respect to the absorption maximum, and the 
CD fi ne structure in the 800 nm region resulting 
from overlap of B800 and higher excitonic B850 
contributions (Bandilla, 1995; Koolhaas et al., 1997; 
Bandilla et al., 1998). 

b. Excitation Energy Transfer B800 → B850

 The excitonic energy level systems of BChl-B800 
(Donor) and BChl-B850 (Acceptor) have been used 
to calculate EET rates according to Fermi’s Golden 
Rule (Linnanto and Korppi-Tommola, 2000; Ih-
alainen et al., 2001). Spectral overlap of D and A 
exciton states with pump and probe pulses has been 
considered. For comparison with the experimental 
rates, the resulting distribution of EET rates is fi t-
ted by triple exponentials (Table 1). Remarkably, 

the calculated EET rates are not lower, but actually 
somewhat higher than the experimental values. In 
LH2 from Rps. acidophila, the ‘dark states’ 1,2E2, 
1,2E3 of B850 located in the gap between 3,4E1 of 
B800 and 1,2E1 of B850 (Fig. 1), play an essential 
role. For LH2 of Rsp. molischianum, only 1,2E2 are 
in that gap, which is in agreement with the somewhat 
slower EET (Ihalainen et al., 2001). 

Using the same method (CIEM), the effect of ex-
changing the BChl a of the B800 ring by modifi ed 
pigments (Bandilla, 1995; Bandilla et al. 1998; Fraser 
et al., 1999) has also been investigated (Linnanto and 
Korppi-Tommola, 2002). The energetic positions of 
the shifted 800 nm-absorption bands (Herek et al., 
2000) are well reproduced by the calculations, but 
the calculated EET rates from the modifi ed pigments 
to BChl-B850 are still too slow (Table 1). The same 
discrepancy in EET rates was obtained using the tran-
sition density cube approach (Scholes and Fleming, 
2000), and has been discussed by these authors and 
also by Linnanto and Korppi-Tommola (2002).

In their Förster-type calculation of EET rates for 
modifi ed B‘800’ → BChl-B850, Herek et al. (2000) 
obtained a perfect qualitative reproduction of the 
diminished rates after introducing different pigments, 
but with a constant deviation by a factor of fi ve. These 
calculations were based on a monomeric Qy-transition 
dipole for the acceptor, BChl-B850. From nonlinear 
absorption measurements, however, the Qy-transition 
dipole moment of BChl-B850 has been determined 
to be ≈ 25 D (Leupold et al., 1996; Stiel et al., 1997), 
refl ecting the high degree of initial  exciton delocal-
ization in B850: the transition dipole moment scales 
with the square root of the pigment number (Ndel) over 
which the exciton is delocalized, resulting in Ndel = 
14 + 6 for LH2 from Rps. acidophila (Stiel et al., 
1997) and 16 + 4 for the Rba. sphaeroides complex 
(Leupold et al., 1996). Recently, Book et al. (2000) 
determined a comparably high initial  coherence 
length for LH2 from Rba. sphaeroides (Ndel ≈ 13) and 
asserted that it is this delocalization length which is 
relevant to the energy transfer process (Kimura and 
Kakitani, 2003). These enhanced transition dipoles 
would enlarge the EET rates by more than one order 
of magnitude; that is, the calculated EET would now 
become even too fast. However, the spatial extent of 
the charge distribution is non-negligible under these 
conditions and the point-dipole approximation may 
not be appropriate for EET modeling (Book et al., 
2000). Moreover, the usual assumption of 700 fs for 
complete excited electronic state- thermalization in 
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BChl-B800 prior to EET, as a pre-condition for the 
validity of the Förster-based reasoning, remains to be 
confi rmed (Ma et al., 1997). Results with dissolved 
BChl a (Book et al., 2000) suggest a cautious inter-
pretation; possibly, the theory of intermediate EET 
(Kimura et al., 2000) is more appropriate for the EET 
process BChl-B800 → BChl-850. 

EET from BChl-B850 of LH2 may occur either 
to another BChl-B850 or to BChl-B875 of LH1. For 
the latter process, a time constant of 4.6 ± 0.3 ps has 
been determined at room temperature in a mutant 
of Rba. sphaeroides lacking the RC. A second time 
constant of 26.3 ± 1.0 ps has been attributed to exci-
tation migration in the LH2 pool preceding EET to 
LH1. Back transfer BChl-B875 → BChl-B850 has 
not been observed (Nagarajan and Parson, 1997). 
For a single LH2 → LH2 EET step, a calculated 
value of 10 ps still awaits experimental verifi cation 
(Hu et al., 2002).

C. The Core Antenna Complex, Light 
Harvesting Complex 1

  For BChl-B870 in LH1 of purple bacteria, a wa-
terwheel-like closed circular arrangement has been 
assumed, analogous to that of BChl-B850 of LH2; 
however, it has a larger diameter and binds up to 34 
pigments per RC all located in the center of the ring. 
This model is based on the low-resolution structure 
of LH1 (Karrasch et al., 1995) and of LH1-RC com-
plexes from strains lacking the  PufX protein (Walz 
et al., 1998). For such BChl arrangements, exciton 
spectra and dynamics can be expected which are 
largely comparable to B850. Indeed, the steady state 
spectroscopic properties of LH1 from Rsp. rubrum, 
in which up to 90% BChl a was replaced with   Zn-
BPhe, could be simulated by altering merely dipole 
strengths and maintaining nearest-neighbor interac-
tions (400 cm–1) and diagonal disorder (600 cm–1) 
similar to those of LH2 (Wendling et al., 2002). The 
recent, somewhat ‘spiral-shaped’ structure of LH1 in 
a core complex still awaits theoretical interpretation, 
but like any deviation this is expected to infl uence the 
exciton level structure (Roszak et al., 2003).

   A smaller unit size of 20 BChls has been deter-
mined for PufX-containing LH1 from Rba. sphaer-
oides, in which a fraction of the native BChl a had 
been replaced by  Ni-BPhe a, from 40 fs pump-probe 
experiments within the 875 nm band (Fiedor et al., 
2000); this was also confi rmed by fl uorescence yield 
and decay measurements (Fiedor et al., 2001). This 

relatively small unit size agrees with the suggestion 
that PufX may interrupt ring formation (Cogdell et 
al., 1996). Remarkably, substitution of just one out 
of the twenty BChls a by Ni-BPhes is suffi cient to 
induce a monoexponential 60 fs-ground state recov-
ery, by-passing the fl uorescent level which in native 
LH1 is populated within 750 fs after Qy-excitation 
(Fiedor et al., 2000). In a similarly substituted LH1-
RC system, the EET BChl-B875 → RC would be 
completely inhibited. Further, a single quencher 
pigment within a LH1-RC complex, such as a BChl 
cation radical (Law and Cogdell, 1998), would also 
suffi ce to prevent ISC. Varying oligomer sizes up to 
10 or 11 αβ-heterodimers in LH1 from the PufX-con-
taining M21 strain of Rba. sphaeroides, which lacks 
LH2, has only a minor effect on the Qy absorption 
maximum (Westerhuis et al., 2002).

EET from LH1 to the RC occurs in about 25 ps at 
RT and, remarkably, the back transfer is about three 
times faster. Because the initial electron transfer step 
in the RC occurs in 3 ps, trapping and photoprotec-
tion of an already closed RC is effi cient (Hu et al., 
2002).

III. Excitation Energy Transfer in Light-
Harvesting Complex II-type Complexes of 
Higher Plants 

   Higher plants possess complex light-harvesting an-
tenna systems for both Photosystems I and II (PS I 
and PS II). Most abundant is the peripheral LHC II, 
which binds Chl a and b, and is associated mainly 
with PS II. LHC II consists of trimers of closely 
related proteins,  Lhcb1-3, which are members of a 
large protein family also including the monomeric 
minor PS II antenna complexes  CP29,  CP26,  CP24 
(alternatively designated  Lhcb4, Lhcb5 and Lhcb6), 
as well as  Lhca1-4 of PS I, and the Chl a/c containing 
complexes from heterokont algae (Jansson, 1994). 
Recently the structure of pea PS I including the 
Lhca1-4 proteins has been solved to 4.4 Å, confi rming 
the proposed structural similarities of these proteins 
to LHC II and their pairwise, Lhcb1/4 and Lhcb2/3 
dimer-formation (Ben-Shem et al., 2003).

The extent of excitonic interactions between Chls 
and their signifi cance for EET in these LHC is much 
less clear-cut than for those of purple bacteria: i) 
the arrangement of the chromophores (Kühlbrandt 
et al., 1994; Liu et al., 2004; Standfuss et al., 2005) 
is considerably less symmetric; ii) the previously 
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available resolution (3.4 Å) could not distinguish 
between Chls a or b (Kühlbrandt et al., 1994). An 
assignment, based on an assumed necessity of triplet 
quenching by the two central luteins (Kühlbrandt et 
al., 1994), was only partly verifi ed by mutagenesis 
(Bassi et al., 1999; Remelli et al., 1999; Rogl and 
Kühlbrandt, 1999; Rogl et al., 2002; Chapter 26, 
Paulsen). As a further complication,  promiscuous 
binding sites (occupied by Chl a or b) have been 
proposed (Bassi et al., 1999; Remelli et al., 1999; 
reviewed by van Amerongen and van Grondelle, 
2001; but see also Rogl and Kühlbrandt, 1999; Rogl 
et al., 2002); iii) orientations of the Chl transition 
dipole moments remained unresolved in the 3.4 Å 
Kühlbrandt-model; and, iv) neither the site energies 
of the individual and/or coupled pigments are known, 
nor the refractive index of the pigment-surrounding 
medium at the respective binding sites (see below). 
Hence, calculations of excitonic interactions as well as 
EET rates between pigments have been controversial 
(Kühlbrandt et al., 1994; Voigt et al., 1996; Trinkunas 
et al., 1997; Gradinaru et al., 1998; Renger and May, 
2000; Iseri and Gülen, 2001; van Amerongen and van 
Grondelle, 2001).

 Excited state kinetics in LHC II are multiphasic 
with lifetimes ranging from a few 100 fs to several 
ns (Eads et al., 1989; Palsson et al., 1994; Bittner et 
al., 1994, 1995; Kleima et al., 1997; Gradinaru et al., 
1998; summarized in Table 2). The fastest EET step 
(about 200 fs) occurs from Chl b to Chl a within the 
monomeric subunits (Kleima et al., 1997), but it has 
not yet been established whether its nature is excitonic 
or incoherent hopping-type (Leupold et al., 1999a). 
Close packing of the pigments and recent  nonlinear 
laser-spectroscopic studies (Krikunova et al., 2002; 
Leupold et al., 2002; Schubert et al., 2002; Voigt et 
al., 2002) render strong excitonic interactions among 
certain Chls in LHC II and related complexes highly 
likely, but their extent is still controversial, as well as 
any consequences thereof for EET.

Most work on EET has been interpreted in the 
framework of the Förster-formalism. Simulations of 
ultrafast transient absorption in CP29 did not agree 
with the experimental data. Instantaneous bleaching 
in the spectral region of the pumped   Chl b (640 nm) 
and, simultaneously of Chl a, can not be explained by 
Förster-type EET (Cinque et al., 2000). The ultrafast 
EET steps, observed in one- and two-color pump 
and probe experiments (Bittner et al., 1994, 1995), 
are now explained by excitonically coupled Chl a/b 
heterodimers (Renger and May, 2000).

An early exciton calculation concluded that the 
lowest excited state in  LHC II carries almost no 
excitonic character (Voigt et al., 1996): the calcu-
lated dipole strength was only 1.16 times that of 
monomeric Chl a, whereas that of the next higher 
state was twice as strong. Trinkunas et al. (1997) 
were able to model, by the Förster-formalism, the 
transient absorption data of Connelly et al. (1997) as 
well as steady state spectroscopic data obtained with 
LHC II. The latter was only possible if two Chl a (a1 
and a2; Kühlbrandt et al., 1994) were swapped for 
Chl b (which is not in agreement with mutagenesis 
studies). More recently, it has been shown theo-
retically that the lowest excited state has signifi cant 
excitonic character but with a dipole strength only 
0.5 times that of Chl a (Renger and May, 2000). 
A somewhat larger value (0.8) was derived from 
 hole-burning experiments (Pieper et al., 1999). Van 
Amerongen and van Grondelle (2001) used the pig-
ment assignment of Remelli et al. (1999) to calculate 
excitonic interactions and EET rates, concluding that 
the lowest excited state is essentially localized on a 
single Chl a. Such a value (1.18) was corroborated 
in a study of super-radiance (Palacios et al., 2002). 
However, exciton delocalization is expected to be 
strongly time-dependent (Dahlbohm et al., 2001), 
and steady-state super-radiance measurements may 
yield only the fi nal value after thermalization. From 
a two-pulse  photon echo study it was also concluded 
that the long wavelength Chls a in LHC II are only 
weakly coupled (Hillmann et al., 2001).

Early experimental indications for strong excitonic 
interactions in LHC II and related complexes are 
based on the high optical activity (Ide et al., 1987; 
Hemelrijk et al., 1992). However, distortions of the 
Chl macrocycle may also lead to strong CD (Wolf 
and Scheer, 1973). 

Recent non-linear absorption and intensity-depen-
dent NLPF work favors strong excitonic interactions 
in LHC II: Both experiments indicated that a spectral 
form emitting at 682 nm has a dipole strength twice 
that of monomeric Chl a (Schubert et al., 2002). 

Table 2. Experimentally observed EET time constants (in ps) in 
LHC II and CP29 (adapted from Gradinaru et al., 1998) 

λpump [nm] λprobe [nm] LHC II CP29

640 678 0.3; 1 0.35

650 670–676 ≤0.2, 0.5, 2–6 2.2

660–670 670–680 0.3–0.4 0.3

670 678 10–20 10–13
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The most obvious explanation for the enhancement 
is excitonic interaction between the Chl molecules 
forming the terminal emitter. These experiments 
could not distinguish between a homo- (Chl a/Chl a) 
or a hetero-dimer (Chl b/Chl a). A special variant of 
the NLPF-technique was employed to assess heterodi-
meric interactions in LHC II (Krikunova et al., 2002). 
NLPF-spectra are pumped in a low-energetic band, 
and probed in a (spectrally well separated) higher-en-
ergetic absorption band. Remarkably, Chl a excitation 
in the Qy region resulted in a NLPF-response in the 
higher-energy Chl b-Soret-region, which appears to 
be explained only by strong excitonic coupling be-
tween certain Chls a and b. Strong Chl a/b interactions 
were also inferred from NLPF experiments with the 
structurally-related antenna complex,   CP29 (Voigt et 
al., 2002). There are, nonetheless, marked differences 
between both complexes: whereas in LHC II the low-
est energy Chl a (~678 nm) appears to be strongly 
coupled to Chl b, the red-most Chl-form in CP29 was 
attributed to a non-coupled Chl a (Pieper et al., 1999; 
Voigt et al., 2002). The strongly interacting pigments 
in CP29 appear to be a Chl a absorbing at 670 nm 
and a Chl b absorbing at 640 nm. These observations 
are consistent with the assignment of the longest 
wavelength band in LHC II to Chl a2 (Remelli et al., 
1999; Rogl and Kühlbrandt, 1999; Rogl et al., 2002): 
Chl a2 is closest to Chl ‘b2’ at a binding site which is 
apparently lacking in CP29. The different character 
of the lowest-energy transition in LHC II and CP29 

is corroborated by studies both at low (Pieper et al., 
1999) and ambient temperatures (Leupold et al., 
2002). Stepwise two-photon excitation with 100-fs 
pulses in the Qy-region of Chl a and b elicits a weak 
‘blue’ fl uorescence of considerably different character 
(Leupold et al., 2002). The blue emission profi les of 
LHC II are virtually identical (peaking at about 475 
nm) when exciting in the Chl a (680 nm) or Chl b
(650 nm) range: this is consistent with strong Chl 
a/b coupling. By contrast, two different peaks are 
observed in CP29 upon excitation of Chl a (at 450 
nm) and Chl b (at 475 nm). 

From the above results and previous site-directed 
mutagenesis studies on LHC II (Remelli et al., 1999; 
Rogl and Kühlbrandt, 1999; Rogl et al., 2002), we 
suggested that Chl a2 (Kühlbrandt et al., 1994) is 
involved in the proposed excitonic pigment cluster 
(Fig. 2) (Schubert et al., 2002). The distance to the 
nearby Chl ‘b2’ (8 Å) was the closest of all mutual 
Chl-Chl distances determined in pea LHC II (Küh-
lbrandt et al., 1994). 

Very recently the structure of spinach LHC II was 
solved by X-ray crystallography to <3 Å (Liu et al., 
2004; Standfuss et al., 2005). The considerably re-
fi ned structure confi rmed many previously observed 
features (Kühlbrandt et al., 1994) but also revealed 
important hitherto unknown details: Two additional 
Chls (Chls b 601 and 605, in the nomenclature of Liu 
et al., 2004) were detected. All Chls a and b could 
be identifi ed directly. Thus, two ‘Chls b’ (previously 

Fig. 2. Structure (left, adapted from Rogl et al., 2002) and absorption spectrum (solid line, right) of LHC II. The red-most excitonic transi-
tion (peaking at 678 nm, dashed line, right) can be assigned to a cluster involving the pigment binding sites a2 and ‘b’2 in the structural 
model of  LHC II (but compare also the recent, refi ned structures of Liu et al., 2004; Standfuss et al., 2005). See also Color Plate 7.

“b“2

a2



423Chapter 29 Excitonic Coupling in Excitation Energy Transfer

designated b2, now: 611 and b3 now: 614) had to be 
re-assigned as Chl a. One ‘Chl a’ (a7 now: 607) had 
to be swapped for Chl b. No indication of promiscuity 
of the  binding sites was found. Orientations of the 
transition dipole moments of all Chl were identifi ed. 
Thus, more reliable estimates of excitonic interac-
tions strength between individual pigments could be 
given (Liu et al., 2004; see supplementary informa-
tion): Strong excitonic coupling is inferred for Chl a 
611/612 (a2/‘b2’) as well as at least two Chl a/b-pairs: 
Chl a 604 (a6)/b 611 (b6) and Chl a 603 (a5)/b 609 
(b5). Thus, our predictions, from nonlinear laser-spec-
troscopic studies on excitonic interactions between 
Chls a and a as well as Chls a and b in LHC II, are 
confi rmed by the structural data of Liu et al. (2004). 
Based on this refi ned, atomic level structure of LHC II 
much deeper insight into light harvesting in plants 
can be expected for the near future.

The Chl a 611/612 (a2/‘b2’) pair (possibly involv-
ing interactions with further nearby pigments), is 
located on the outer surface of LHC II, also in its 
trimeric form (Fig. 2). Its red-shifted absorption 
renders it a ‘relay state’ (for EET to neighboring 
complexes) of LHC II. Additionally, the enhanced 
dipole moment may ‘attract’ excitations from inside 
the complex to the surface. This would contribute to 
the effi ciency of light-harvesting in an extended PS II 
antenna-network, because Chl a2 are the most closely 
spaced pigments in adjacent LHC II trimers. 

IV. Excitation Energy Transfer in 
Chlorosomes

  Chlorosomes occur in both green fi lamentous- (des-
ignated F-chlorosomes) and green sulfur-bacteria (S-
chlorosomes). Among LHCs, these extremely large, 
extra-membranous structures are unique and their 
function, almost exclusively, appears to result from 
pigment-pigment interactions: the protein content of 
chlorosomes is generally very low (Olsen, 1998), and 
chlorosomes devoid of any protein exhibit nearly the 
same spectroscopic properties as those containing 
protein. However, the CD spectra of such isolates 
are quite variable (Griebenow and Holzwarth, 1989) 
and proteases induce distinct changes (Niedermeier 
et al., 1992); the function of the remaining proteins 
is therefore still unclear (Chapters 15, Frigaard et al., 
and 20, de Boer and de Groot). Chlorosomes consist 
of a core and an envelope. The core contains several 
thousand molecules of BChl c, d or e (depending on 

the species), which are organized in 10–30 (but see 
also Niedermeier et al., 1992) parallel tubular struc-
tures called rod elements (Blankenship et al., 1995; 
Olsen, 1998). Rod diameters and lengths are about 5 
nm and 100 nm, respectively, for F-chlorosomes, or 
10 nm and 180 nm, respectively, for S- chlorosomes 
(Olsen, 1998). 

BChls within the rods are strongly excitonically 
coupled,  but there is also non-negligible nearest-
neighbor inter-rod interaction. Otherwise, a spectro-
scopic behavior would be expected that is comparable 
to that of the well-known  J-aggregates (Buck and 
Struve, 1996; Bednarz and Knoester, 2001), with 
most of the dipole strength concentrated in the low-
est transition. This, however, is not the case with 
chlorosomes: absorption spectra, the large Stokes-
shift of fl uorescence and   hole-burning spectra all 
indicate that the lowest exciton band carries only 
a few percent of the total dipole strength of the Qy 
transition, while transitions to higher exciton levels 
are strongly allowed. From pump-probe (Savikhin et 
al., 1998a) and temperature-dependent fl uorescence 
spectra (Mauring et al., 1999), a tubular aggregate 
model has been developed for F-chlorosomes. The 
unit BChl c building block comprises 24 strongly 
coupled BChls c, arranged in six parallel chains of 
four BChls c: the maximum inter-chain interaction 
of 44 cm–1 is equal to about one tenth of intra-chain 
nearest-neighbor interaction energy (Yakovlev et al., 
2002). For comparison, a cluster size of 16 BChls c 
has been derived from the EPR line width of partly 
oxidized F-chlorosomes (van Noort et al., 1997). 
The individual exciton wave functions are delocal-
ized over 7–12 BChl c molecules, and the   coherence 
size of the steady state exciton wave packet is 7.4 
BChl c (Yakovlev et al., 2002; for defi nitions, see 
Fidder et al., 1991; Meier et al., 1997). Much larger 
delocalization lengths have been recently reported 
by Holzwarth and Prokhorenko (2002). Their model 
(Holzwarth and Schaffner, 1994; Prokhorenko et 
al., 2000; Chapter 20, de Boer and de Groot) has a 
higher pigment packing density (36 chains per rod 
of S-chlorosomes of  Chlorobium (Chl.) tepidum) 
than the model of Yakovlev et al. (2002), resulting 
in high intra-stack (-chain) as well as inter-stack 
interaction energies (about 500 cm–1 and 200 cm–1, 
respectively). 

F-chlorosomes are attached to the cytoplasmic 
membrane via a baseplate containing monomeric 
BChl a (B795) which is essential for EET to the RC. 
Within the Qy-band of F-chlorosomes, relaxation from 
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the high-energy exciton levels is multiphasic with 
times between sub-ps to several ps, probably refl ect-
ing faster intra-rod processes and slower inter-rod 
exchange. These processes are temperature-depen-
dent, as is the fi nal step from the lowest BChl c Qy 
exciton-level to the base plate BChl a, which takes
about 50 ps at low temperatures and 10–20 ps at RT 
(Prokhorenko et al., 2000 and references therein).

 EET from S-chlorosomes to the RC also occurs 
via a base plate; however, these EET kinetics are 
dependent not only on temperature but also on re-
dox potential. At high (positive) redox potential, the 
chlorosomal Qy lifetime is shortened and EET to 
the base plate BChl a is strongly reduced. A similar 
redox dependence has been observed for the sub-
sequent EET steps in green sulfur bacteria, thereby 
shortening, for example, the Qy lifetime in the FMO 
complex (see reviews by Olsen, 1998 and Psencik 
et al., 1998)

V. Excitation Energy Transfer in the Fenna-
Matthews-Olsen (FMO) Complex 

  The FMO complex of  green sulfur bacteria is a 
trimeric, water-soluble pigment-protein complex 
carrying 7 BChl a in each monomeric subunit. In the 
EET chain, it links the chlorosome and the RC. The 
spatial arrangement of the 7 BChl a in the monomer, 
and the mode of their attachment to the protein ma-
trix, are known at a resolution of 1.9 Å (Fenna and 
Matthews, 1975; Tronrud and Matthews, 1993; Li et 
al., 1997). Yet, only recently has a detailed picture 
of the structure-function relationship emerged. Both 
pigment-pigment and pigment-protein interactions 
contribute to the absorption band substructure 
and EET processes and, in particular, the latter are 
theoretically not well understood (Pearlstein, 1992; 
Savikhin et al., 1998b, 1999). The 7 BChl a in the 
monomeric  subunit are ‘irregularly’ arranged (as in 
LHC II), with nearest neighbor Mg-Mg distances 
between 11 and 15 Å. Therefore, signifi cant transi-
tion-dipole interaction can be expected, as refl ected by 
a redistribution of oscillator strengths and energetic 
shifts of the 7 Qy transitions of the BChls at the seven 
different sites and, also, by large CD signals (Savikhin 
et al., 1998b, 1999). The closest distance between 
BChls in different subunits of the trimer is about 24 
Å, the maximum inter-monomer coupling strengths 
(10–20 cm–1, depending on the model) are about one 
order of magnitude smaller than intra-monomer cou-
plings (100–190 cm–1) (Pearlstein, 1992; Vulto et al., 

1998a; Iseri and Gülen, 1999; Wendling et al., 2002). 
It is expected, therefore, and largely confi rmed, that 
the essential FMO structure-function relations are 
dominated by the properties of the monomer.

At room temperature, neither the Qy-absorption 
(λmax = 809 nm) nor the CD show fi ne structure. 
They become well-structured, however, at 77 K: 
Philipson and Sauer (1972) resolved 5 bands for FMO 
from  Prostecochloris (Ptc.) aestuarii.  Hole-burning 
studies at temperatures of a few K gave 8 excitonic 
components (Johnson and Small, 1991), which is 
one component more than expected for pure intra-
monomer BChl interaction and strict C3-symmetry 
with identical micro-environments for corresponding 
BChl sites in all three subunits. A further component 
has been resolved and the three lowest-energy com-
ponents have been attributed to the lowest Qy states in 
each of the three non-equivalent monomers (Rätsep 
et al., 1999). These data have been complemented 
by absorption, linear dichroism, CD and transient 
spectra (Savikhin et al., 1998b, 1999; Vulto et al., 
1998a; Wendling et al., 2002)

    Earlier simulations of the Qy structure of  FMO 
trimers from Ptc. aestuarii resulted in seven groups 
of exciton levels in the range between 775 and 825 
nm (Pearlstein, 1992; Lu and Pearlstein, 1993). In 
each group, the excitation density is distributed 
(unevenly) over several BChls, but mostly local-
ized at one or two sites (‘mini-excitons’). Refi ned 
calculations reproduced distinctly different spectral 
characteristics between FMO from Chl. tepidum and 
Ptc. aestuari, in spite of largely identical pigment ar-
rangements (Gülen, 1996; Louwe et al., 1997, Vulto 
et al., 1998a,b). Calculations have concentrated on 
monomers, yielding, consequently, seven exciton 
levels. They suggest, that spectral differences are due 
to different energies of the BChls at the seven bind-
ing sites, possibly related to differences in hydrogen 
bonding and planarity of the porphyrin rings (Vulto 
et al., 1998a,b). Unfortunately, these site energies 
are adjustable parameters in the calculations. They 
are, currently, neither available experimentally nor 
from quantum chemical calculations which take 
into account the protein micro-environment (the 
latter, however, has been obtained for BChl-B800 
in LH2; Linnanto et al., 1999; see above). Other re-
fi nements, for example, the inclusion of broadening 
mechanisms, are already available and have given 
additional evidence for inter-monomer interactions 
(Wendling et al., 2002). 

There seems to be consensus that after excitation 
to the highest exciton level, energy relaxation to the 



425Chapter 29 Excitonic Coupling in Excitation Energy Transfer

second-highest level in several tens of fs is the fast-
est process in a, possibly branching, cascade down 
to the lowest level, with time constants gradually 
increasing up to few ps (Savikhin et al., 1998b, 1999; 
van Amerongen et al., 2000). As the exciton levels 
in the relaxation cascade can be linked to defi ned 
pigment sites (mini-excitons), the fs/ps time course 
of EET can be represented in the structural picture 
as rapidly varying excitations of defi ned BChls (see 
Fig. 3 for a preliminary representation). There is an 
emerging consensus that the fi nal site, preceding 
EET to the RC, is a BChl in the core of the subunit 
(site 3) (Vulto et al., 1998a; Owen and Hoff, 2001; 
Wendling et al., 2002).  

Note Added in Proof

Recent experimental results with LH2 of  purple bac-
teria highlight the contribution of exciton transitions 
to the ‘ blue absorbance tail’ (at around 800 nm) of 
B850: Hole-burned absorption and line-narrowed 

fl uorescence spectra at 5 K indicate that in  Rba.
sphaeroides more than 2/3 of this ‘blue absorbance 
tail’ are of excitonic nature, only the remainder be-
longs to dysfunctional BChl a (Rätsep et al., 2005). 
Whereas the exciton structure of the blue tail is inter-
preted by the authors as result of off-diagonal disorder, 
single-molecule spectroscopy (at 1.4 K) of B850 from 
 Rps. acidophila led to the conclusion, that random 
and correlated diagonal disorder — rather than off-
diagonal — dominates (Hofmann et al., 2004). 

Structural features of LHC II (Liu et al., 2004) 
were confi rmed at even higher (2.5 Å) resolution 
(Standfuss et al., 2005). The 2.72 Å data were used 
to generate a sophisticated excitonic model of EET 
in  LHC II (Novoderezhkin et al., 2005) confi rming 
the predicted excitonic clusters and their relevance 
for inter-complex EET. 

FMO of Chl. tepidum was studied by femtosecond 
two-dimensional heterodyne-detected three-pulse 
photon echo spectroscopy at 77 K (Brixner et al., 
2005). The theoretical analysis revealed the following 
 non-cascading energy relaxation pathways between 

Fig. 3. Simplifi ed projection of the BChl a-arrangement in the monomeric subunit of the FMO-complex (left). Room temperature ab-
sorption spectrum of the FMO-complex (Qy-range, right). Exciton levels and corresponding excitation densities at the seven pigment 
sites (center) are adapted from Vulto et al. (1998a).



426 Dieter Leupold, Heiko Lokstein and Hugo Scheer

the 7 excitonic levels (see also Fig. 3): 7→3→2→1; 
6→5 and from level 5 two parallel channels (→4→
2→1 and →2→1).
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