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Summary

    Protein design is used as an approach to further the understanding of membrane protein assembly, in particular, 
the assembly of transmembrane (bacterio)chlorophyll-binding pockets.    Pigment-protein interaction motifs 
have been explored by (i) use of model proteins in which the native amino acid sequence in the pigment bind-
ing pockets are substantially altered and (ii) theoretical analyses of binding pockets of natural photosynthetic 
proteins. The bacteriochlorophyll binding sites of light harvesting complex 2, LH2, are replaced by model sites 
and expressed in vivo by the use of a modifi ed  Rhodobacter sphaeroides strain. The artifi cial helices are shown 
to bind bacteriochlorophyll and support the assembly of light-harvesting active complexes in the native mem-
brane. A H-bond, which has been introduced at the membrane embedded bacteriochlorophyll/helix model site, 
is shown to drive the assembly of the model LH2 complex. Statistical analyses of natural (bacterio)chlorophyll 
binding pockets reveal the presence of distinct interaction motifs at the pigment/helix interface. One example 
is intra-membrane H-bonding between the pigments and the surrounding polypeptides, particularly between 
the chlorophylls’ C131 keto carbonyl groups and the residues of the binding helices. With this system at hand, 
specifi c interaction motifs, such as the     H-bonding motif, and their contribution to the folding and assembly 
can now be directly addressed within a highly simplifi ed sequence context and in the polypeptides’ native 
membrane environement. 

Bernhard Grimm, Robert J. Porra, Wolfhart Rüdiger and Hugo Scheer (eds): Chlorophylls and Bacteriochlorophylls: Biochemistry, 
Biophysics, Functions and Applications, pp. 387–396. © 2006 Springer. Printed in The Netherlands.
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Abbreviations: (B)Chl – (bacterio)chlorophyll; CD – circular 
dichroism; ET – energy transfer; LH – light harvesting; Rba. – 
Rhodobacter; Rps. – Rhodopseudomonas; TMH – transmembrane 
helix; wt – wild type

I. Introduction

Photosynthetic pigment protein complexes chiefl y be-
long to the family of integral membrane proteins. The 
  transmembrane α-helix (TMH), the central structural 
element of most membrane proteins, traverses the 
lipid bilayer and usually binds, together with adjoin-
ing TMHs, the photosynthetic cofactors, primarily 
(bacterio)chlorophyll ((B)Chl) and   carotenoids. In 
nature, such membrane-embedded pigment-helix-
structures are formed either by oligomerization of 
monotopic polypeptides (as in light-harvesting (LH) 
systems of photosynthetic bacteria) or by association 
of helices from polytopic helix-bundle polypeptides 
(as in most other LH proteins and reaction center 
complexes). Recently, the understanding of  mem-
brane protein folding, in particular interactions at 
 helix-helix interfaces, has been greatly advanced by 
the increasing numbers of high resolution structures, 
by the availability of genomic sequencing data (Arkin 
et al., 1997; Wallin and von Heijne, 1998; Senes et 
al., 2000) and by a number of model studies (Choma 
et al., 2000; Zhou et al., 2000, 2001; Gratkowski et 
al., 2001; Lear et al., 2001). In the case of BChl- and 
Chl-proteins, however, additional factors have to be 
accounted for as these molecules may contribute 
signifi cantly to the pigment protein assembly in the 
bilayer (Kim et al., 1994; Davis et al., 1995; Plumley 
and Schmidt, 1995; Remelli et al., 1999; Horn and 
Paulsen, 2002; Schmid et al., 2002). 

The factors which drive the   assembly of (B)Chl 
and polypeptide into unique arrangements have 
been addressed in numerous studies. Four principal 
experimental approaches have previously been used 
to investigate the interplay between the proteins and 
pigments in Chl- and BChl-proteins. These are: fi rstly, 
exchange of pigment with chemically modifi ed pig-
ment in natural pigment-protein complexes in vitro 
(Scheer and Hartwig, 1995; Lapouge et al., 2000; 
Chapter 26, Paulsen); secondly, chemical synthesis 
of de novo proteins or of truncated versions of natural 
proteins followed by reconstitution of the complex in 
vitro (Davis et al., 1997; Meadows et al., 1998; Kehoe 
et al., 1998; Todd et al., 1998, 1999; Kashiwada et 
al., 1999; Rau et al., 2001; Chapter 24, Noy et al.; 
Chapter 25,  Nango); thirdly, mutagenesis and over-
expression of the gene, followed by reconstitution of 

the pigments in vitro (Bassi et al., 1999; Heinemann 
and Paulsen, 1999; Remelli et al., 1999; Lapouge et 
al., 2000; Chapter 26, Paulsen); and, fourthly, site-
directed or combinatorial mutagenesis combined 
with assembly of the complex in vivo (Fowler et al., 
1992; Olsen et al., 1994; Hu et al., 1998).

In the model synthesis approach, synthetic α-heli-
cal peptides have been made which are comprised 
of bundles of amphipathic helices; although they are 
water-soluble, they bind cofactors in the hydrophobic 
interior and mimic important features of membrane-
inserted redox-proteins. The fi rst examples of this 
approach were the heme-binding maquettes from 
the groups of de Grado and Dutton (Robertson et 
al., 1994; Gibney et al., 1997). Lately, the de novo 
design of a BChl-binding site has been accomplished 
by synthesis of an orthogonal,  four-helix protein. 
It mimics the coordination of (B)Chl-derivatives 
through one or two His residues located in the 
hydrophobic interior of the helix bundle, which is 
similar to the situation in natural (B)Chl-proteins. 
In a fi rst attempt, the Chls were bound covalently 
to the helices to enable effi cient Chl incorporation 
(Rau et al., 2001), but more recently, non-covalent 
binding has been achieved (Kashiwada et al., 1999; 
Snigula et al., 2001). 

These fi rst two approaches each depend on recon-
stitution with the pigments in a non-native system 
and they require the use of aqueous systems either 
by use of detergents or by rendering the helices 
water-soluble. A new approach has recently been 
introduced, namely, the in vivo use of artifi cial 
model TMHs to explore both BChl-binding and the 
assembly of light-harvesting systems in their native 
lipid environment.

II. Bacteriochlorophyll Proteins with Model 
Transmembrane Helices

A. Design and Expression

  The design of the model BChl-proteins is based on 
the peripheral  light-harvesting complex 2 (LH2) 
from purple bacterium,  Rhodobacter (Rba.) sphaer-
oides. LH2 is made of two short α-helical membrane 
proteins: the α- (LH2-α) and β- (LH2-β) subunits 
together with three BChl and one or two caroteinoid 
molecules. In essence, the membrane-embedded 
BChl-binding pocket of LH2     subunits has been 
re-designed by replacing the large portions of the 
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helix regions, which make up the scaffold for the 
BChls, with simplifi ed alternating alanine-leucine 
stretches (AL) (Fig. 1). In vivo expression of these 
model LH proteins has been accomplished by use of 
an engineered strain of the purple bacterium,  Rba.
sphaeroides (Jones et al., 1992); it lacks the operons 
encoding the apoproteins of the photosynthetic ap-
paratus, but provides the assembly factors, pigments 
and membranes which are required to test the fi tness 
of the model proteins as light harvesting units within a 
near-native system. Diffi culties, likely to arise during 
expression of heterologous or   artifi cial proteins in situ 
(Steiner and Scheer, 1985; McDermott et al., 1995; 
Drews, 1996; McGlynn et al., 1996; Braun and von 
Heijne, unpublished), have been initially avoided by 
retaining polypeptide domains which do not directly 
participate in pigment binding, namely, the domains 
that protrude out of the membrane. These, however, 
appear to be critical for the targetting and insertion 
of the helices into the membrane and for the overall 
assembly of the complex. 

A contiguous stretch of 16 residues is replaced 

from α–Val–71 to α-Thr+6 in the LH2-α TMH, and 
another of 12 residues is replaced from β-Gly–7 to 
β-Ala+4 in the LH2-β TMH (Fig. 1). In wild type (wt) 
LH2, these stretches include all the residues that are 
proposed to interact with the BChl-B850 of both of 
the α- and β-subunits at distances of <4.5Å, except 
for residues α-Trp+9, α-Tyr+13 and α-Tyr+14 as well 
as β-Thr+7 and β-Trp+9, which lie outside of the 
TMH (McDermott et al., 1995; Prince et al., 1997). 
To retain the ligation with the central metal of the 
BChl, His01 was not replaced, nor was the neighboring 
α-Ile-1 residue replaced because of its proximity to 
the Mg-coordination site on the BChl-helix interface 
(McDermott et al., 1995). Alanine residues already 
occur in the wt sequence at positions –4, +1, +2 (for 
LH-α) and at positions –4, –1, +3, +4 (for LH2-β), 
while leucine residues already occur at position +4 
(for LH2-α) and –3, +2 (for LH2-β). This results in 
a total of eight ‘new’ residues in the 16-residue-long 
stretch and fi ve ‘new’ residues in the 12-residue-long 
stretch, enclosing all TMH residues of the BChl-B850 
site. Obviously, when screening LH2 sequences for 

Fig. 1. LH2 complex with model helices as BChl   binding sites. (a) Amino acid sequences of the model helices α-AL16 and β-AL12. The 
model sequences which replace the native sequences in α-AL16 and β-AL12 as well as His01, which binds the central Mg are underlined. 
Wt sequences are shown above the model sequences. (b) Schematic view of model LH2 complexes with α-AL16 and β-AL12. The helix 
stretches which are replaced by the model sequences are shown in dark grey, the native sequences and the BChl-B850 dimer are shown 
in light grey. For clarity, only the polypeptide’s backbone and the BChl-B850 are shown. 

1 The numbering specifi es the aa position relative to the histidine, designated His (0), which binds the central Mg of the α- or β-BChl-
850. Positive numbers indicate the C-terminal, negative the N-terminal direction.
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lower overall Ala-Leu content from other purple non-
sulfur bacteria, we found that the Ala and Leu content 
is usually relatively high in this stretch of the TMH. 
The novel LH2 complexes consist of assemblies either 
of chimeric α-subunits and wt β-subunits and vice 
versa, or of both chimeric α-subunits and chimeric 
β-subunits (Fig. 1b, see also 3.1).

B. Spectral Properties 

The    novel LH2 complexes with α-AL16 or β-AL12 

support not only binding of BChl but also its as-
sociation into structures with a geometry producing 
the red-shift characteristic of B850 pigments and of 
a natural B800 binding site. The absorption bands of 
the novel LH2 with model TMH have the ‘red shifted’ 
transition maxima, namely, at ~852 nm for α-AL16 
(see Fig. 2a) and at ~848 nm for β-AL12, which is 
typical for the B850 pigments of LH2 in membranes. 
     The absorption at 800 nm of the monomeric, weakly 
coupled BChl, proposed to be bound to the terminal 
N-formylated α-Met (McDermott et al., 1995), is 
well preserved in the model LH2, and is indicative 
of an intact B800 binding site in this complex (Fig. 
2a). There are minor, but noticeable, red-shifts from 
849 to 853 nm in the Qy-transition of α-AL16 which 
may indicate certain minor alterations in the BChl-
850 geometry. The structural information responsible 
for the shift in the absorption of the Qy band from 

770 nm (‘free’ BChl) to 850 nm is, however, clearly 
retained if the stretches α-Val–7 to Thr+6 or β-Gly–7 
to Ala+4 (Fig. 1a) are replaced by the much simpli-
fi ed Ala-Leu sequence. It should be noted, that the 
spectral properties of the BChl-B850 may be further 
tuned by altering the surrounding sequence in the 
TMH. For example, a mutagenesis study in  Rba.
capsulatus showed that combinatorial changes of 3, 4, 
5 and 6 residues in the TMH of the β-subunit caused 
spectral shifts of the B800-850 absorption (Hu et al., 
1998). In the light of these fi ndings, it is remarkable 
that the simplifi ed Ala-Leu sequence in the vicinity 
of BChl-B850 did not produce signifi cantly altered 
spectral properties. 

The BChl arrangement in LH2 with α- or β-AL 
seems to be largely preserved judged by the circular 
dichroism (CD) spectra, which serve as fi ngerprints 
for the BChl geometries (Cogdell and Scheer, 1985; 
van Grondelle, 1985; Braun et al., 1990; Braun and 
Scherz, 1991; Koolhaus et al., 1998). Typically, there 
is a conservative, S-shaped CD signal in the ‘near 
IR’ with a positive peak near 848 nm and a negative 
trough near 872 nm (see Fig. 2b), very similar to those 
observed in wt LH2 (Bandilla et al., 1998; Georgako-
poulou et al., 2002). In addition, the optical activity 
of BChl-B800, seen as a negative trough near 800nm 
is retained in the α-AL16 complex (Fig. 2b). 

The fi tness of the model TMH to support proper 
light harvesting function of the complex is demon-

Fig. 2. Absorption (a), circular dichroism (b) and fl uorescence excitation (c) spectra of model LH2 complexes with α-AL16  model LH2 
() and wt LH2(- - - - -).
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strated by    energy transfer within the pigment as-
sembly. The similarity of the excitation spectra (Fig. 
2c) with the absorption spectra shows that effi cient 
energy transfer takes place from BChl-B800 to BChl-
B850. In particular, there is a pronounced 800 nm 
excitation band when detecting at 900 nm (Fig. 2c). 
Energy transfer (ET) occurs not only from B800 to 
B850 but also from carotenoids to BChl-B850, as 
indicated by the excitation bands in the spectra range 
of the caroteinoids of the complex (455–550nm). ET 
from carotenoid to BChl has only been observed in 
pigment-protein complexes or covalent constructs 
(Gust et al., 1993) and never in BChl-Car mixtures. 

Thus, the model BChl-B850 site supports both pig-
ment-protein assembly and the function of this com-
plex as a light harvesting unit. Further, the residues in 
this region of the TMH, notably also at the BChl-pro-
tein interface, do not seem to be critical for specifying 
either the BChl-B850 array or the light-harvesting 
function in LH2. Possibly, the minimal requirements 
for this site in LH2 are fulfi lled already by His, which 
binds the central Mg of BChl, together with a few 
key residues, such as the aromatic residues anchored 
in the bilayer interface which have been shown to 
form H-bonds with BChl-B850 (Fowler et al., 1992, 
1994). Indeed, the sequence variability around the 
BChl-B850-binding region is high and most residues 
in the BChl-binding site with the exception α-His0 
and β-Ala–4 are not strictly conserved (Braun et al., 
2002). In view of that, it may not be surprising that 
additional extension of the AALL model sequence 
three residues towards the N-terminus of the TMH in 
LH2-α, does not impair BChl-B850 assembly. There 
is, however, signifi cant loss of BChl-B800, indicat-
ing the importance of residues in this region for the 
binding of BChl-B800. Furthermore, the extension 
of the AALL sequence by only one residue towards 
the N-terminus of β-AL12 results in the total loss of 
LH2 complex assembly.

III. Assembly Motifs of 
(Bacterio)chlorophyll Proteins

  Simultaneous replacement of the native TMH with 
the model AL (see Fig. 1) in both, the LH2 α- and 
β-subunits, abolishes assembled LH2 from the mem-
brane. In order to rescue assembly of the novel LH2 
complex, we aimed at designing stabilizing interac-
tion motifs at the model protein/BChl interface. To 
that end, theoretical analyses of (B)Chl-proteins, 

particularly the BChl-binding pockets, have been 
undertaken.

A. Statistical Analyses of (Bacterio)chlorophyll 
Binding Proteins

    Several   strategies have been employed for the predic-
tion of potential assembly motifs: Firstly, statistical 
analysis of existing high resolution structures, in 
particular,  Photosystem I (PSI) with nearly 100 Chl 
binding pockets; secondly, alignment of aa sequences 
of LH2 subunits; and, thirdly, computational analysis 
of the aa distribution in putative (B)Chl-binding pock-
ets of ‘non-homologous’ (B)Chl-proteins retrieved 
from protein databases. 

 In Photosystem I, remarkably consistent patterns 
of interactions were found (Fig. 3) at the Chl/TMH 
interface, i.e., between the binding helix and its 
attached Chl (Garcia-Martin et al., 2005). The 
macrocycle substituents chiefl y interact with resi-
dues at the positions –4, +3, –1 and ±7 (relative to 
the liganding His0), most noticeably the C132 oxo 
groups interact almost exclusively with residues at 
–4 of the binding helix while the C32 of the vinyl 
group primarily interacts with residues at +3 and, to 
a lesser extent, with residues at –1, –4 and –7 (see 
Fig. 3). Sequence alignment and mutation ‘hot spot’ 
studies indicate two conserved residues besides the 
His0 in the TMH of the LH2 α-subunit: one of these 
two residues is located at position –4 (Braun et al., 
2002). The sequence analysis showed that specifi c 
residues are found with signifi cantly higher or lower 
probability than expected from random distribution 
at the positions which are critical for Chl binding 
(Table 1; Garcia-Martin et al., 2005). These fi ndings 
point towards distinct amino acid motifs, which bind 
(B)Chl to its apoproteins.

Interestingly, the structural analysis of the Chl bind-
ing pockets indicate that H-bonding at the Chl/TMH 
interface is wide-spread: nearly half of the 100 Chl 
in PS I are likely to be H-bonded to the surrounding 
polypeptide, frequently through the C131 carbonyl 
group oxygen, but the oxygen atoms of other Chl 
substituents may also participate in H-bonding 
(Liebl et al., 1996; Braun et al., 2003). The residues 
participating in these bonds vary: for the H-bonds to 
the C131 oxo group, it included backbone NH (10×), 
heteroatoms of aromatic residues (13× Trp and Tyr, 
7× His), side chain amino (2× Lys), guanidinium (5× 
Arg), amide (5× Asn or Gln) and hydroxl groups (4× 
Ser or Thr). 
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H-bonds have previously been identifi ed in antenna 
and   reaction center complexes (Fowler et al., 1994; 
Gall et al., 1997; Olsen et al., 1997; Sturgis and Rob-
ert, 1997). The currently identifi ed H-bonds seem to 
participate primarily by modulating of the spectral 
properties of the BChls and, in reaction centers, in 
modulation of the redox potential (Chapter 19, Allen 
and Williams). It is not yet understood if polar inter-
actions, in particular H-bonds, also contribute to the 
stability of the (B)Chl-polypeptide association in the 
membrane. The contribution of such intra-membrane 
H-bonding at BChl/TMHs interfaces has been studied 
in LH2 with the model helices (Kwa et al., 2004; 
Garcia-Martin et al., 2005).

B. Identification of Assembly Motifs by 
‘Rescue Mutagenesis’

  With the intention to construct a H-bonding motif 
at the BChl/helix interface in the model proteins, 
residues with potential H-bonding properties have, 
therefore, been placed at position –4 in close vicinity 
of the C13 oxo groups of BChl-B850. The restoration 
of the model LH2 with α-AL16 and β-AL12 is achieved 
by the insertion of a single serine residue at –4 in 
α-AL16 (Fig. 4). This approach enables us to identify 
and analyze in depth local BChl-protein interactions 

in the model sequence context. The implementation 
of a strong H-bond at the BChl/TMH interface, most 
likely between the re-introduced serine at position 
–4 in α-AL16 (α-AL16/S–4) and the C131 oxo group 
of β-BChl-B850, has been confi rmed by   resonance 

Fig. 3. Statistical analysis of   Chl-binding pockets in  Photosystem I from the structure of PS I (Fromme et al., 2001). Position dependent 
interactions between the atoms of the Chl macrocycle and the residues at positions ±8 relative to the His0 a distance ≤ 3.5Å. The shading 
code (top) corresponds to the interaction frequencies (see inset).

Table 1. Occurrences of aa residues in (B)Chl-binding sites. 
A set of    BChl-binding proteins (2104 TM residues) has been 
investigated by computer based sequence analysis. The posi-
tion of the residue in the helix relative to the histidine ligand 
are listed according their interaction frequencies with Chl (see 
Fig. 3). Bold type letters indicate deviation from random with a 
confi dence interval of 95%, the regular type letters of 90% and 
the small letters of 85%.
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Raman spectroscopy (Kwa et al., 2004) and by pro-
tein modeling (Braun et al., 2003; Fig. 4.)     based on 
the high resolution structure of  Rhodopseudomonas
(Rps.) acidophila (McDermott et al., 1995). The 
BChl arrangment in α-AL16/S–4 is very similar to wt 
LH2 as confi rmed by absorption, CD, fl uorescence 
excitation and resonance Raman spectroscopy. By 
use of this ‘rescue-mutagenesis’ approach we have 
thus identifi ed H-bonding as a key assembly motif 
in the model BChl-proteins. 

C. H-Bonding at the Bacteriochlorophyll/Pro-
tein Interface

In the model LH2 with α-AL16, quantifi cation of the 
complex content in membranes as well as  thermal 
denturation experiments indicate that replacement 
of the native TMH in the BChl-B850 region by the 
Ala-Leu repeat sequence leads to (i) reduction of the 
model antenna complexes in the membrane and (ii) 
destabilized assembly of the complex. Remarkably, 
with serine at position –4, both expression levels and 
the thermal stability of the complex signifi cantly im-
proved and came close to the thermal stability of wt 

LH2 (Kwa et al., 2004; Garcia-Martin et al., 2005). 
However, exchange by most other residues tested, 

for example, tryptophane, tyrosine, phenylalanine, 
cysteine, lysine, aspartate, asparagine, glutamate and 
glutamine, resulted in total loss of LH2; and, exchange 
of serine –4 by a threonine or alanine, resulted in 
more or less pronounced reduction of assembled 
complexes relative to α-AL16. Thus, the residue at 
position –4 has a key function in the assembly of 
the model BChl-protein, although disturbances may 
be amplifi ed by the inherent instability of LH2 with 
α-AL16: this could be compensated in the native 
complex by other effects. 

Curiously, removal of the H-bond between serine 
–4 and the C131 oxo group only slightly affected the 
thermal stability in wt LH2 (Braun et al., 2003). Fur-
thermore, most LH2-α in related purple bacteria spe-
cies possess an alanine residue at –4. Thus, contrary to 
the situation in the model proteins, the strong H-bond 
at the BChl/TMHwt interface of  Rba. sphaeroides LH2 
apparently does not contribute critically to either the 
spectral properties or the stability of the native wt 
complex. One possible explanation for this apparent 
discrepancy maybe that alanine –4 favorably interacts 

Fig. 4. H-bonding drives assembly of LH2 complex with model BChl binding site. (a) ‘In situ’ ‘near IR’ absorption spectra of LH2 wt 
and of model LH2 with αAL16/βAL12 and with αAL16/S–4/βAL12. (b) Model of H-bonds at the BChl-B850/TMH interface in LH2 from
Rba. sphaeroides. In the high resolution structure of LH2 from Rps. acidophila (McDermott et al., 1995), residues 18–37 of the α-subunit 
have been replaced with residues 18–37 of the α-subunit of Rba. sphaeroides. Energy minimisation has been carried out on the replaced 
stretch and the BChl-B850 carbomethoxy groups (software WebLab ViewerProTM 3.7). BChl-B850 and α-serine –4 are depicted in detail. 
The OH of serine and the O atoms of the C-131, C133 and C173 carbonyl groups are shown as spheres. Putative H-bonds to the C-131 
carbonyl group of β-BChl-B850 and to the C-173 carbonyl group of the α-BChl-B850, are indicated by dotted lines.
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with the 131 group either by H-bonding interactions 
with Cβ-H of the methyl side chain (Jiang and Lai, 
2002) or by close packing interactions within the 
native sequence context. These interactions may be 
prevented in the model sequence context due to the 
slight reorganization of the pigments as refl ected in 
minor red shifts of the red-most transition (Fig. 2). 
Nevertheless, in the context of the model sequences, 
a single intra-membrane H-bond at the BChl/TMH 
interface converts the highly unstable model BChl 
protein complex into a complex with almost native-
like  thermal stability and expression levels in the 
membrane. To what extent the H-bond increases the 
inherent stability of the complex or its assembly in the 
membrane has not yet been determined. Using this 
system, however, the contribution of distinct interac-
tion motifs such as H-bonding between a (B)Chl and 
its binding polypeptide can now be directly assessed 
within the native membrane environement. 
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