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Summary

This chapter comprehensively surveys both the conversion of  5-aminolevulinic acid to protochlorophyllide 
in the Mg-porphyrin-synthesizing branch of tetrapyrrole biosynthesis and also the formation of protoheme 
in the iron-chelating branch. This can be considered as the middle and fi nal stages of chlorophyll and heme 
formation, respectively: the fi nal conversion of protochlorophyllide to chlorophyll is discussed by Rüdiger in 
Chapter14 (Rüdiger). This chapter reviews the many individual enzymatic steps in these conversions, including 
enzyme and gene structures and the expression as well as the regulation of these steps. 
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Abbreviations: ALA – 5-aminolevulinic acid; ALAD – 5-
aminolevulinic acid dehydratase; BChl – bacteriochlorophyll; 
C. – Chlamy domonas; Chl – chlorophyll; Chl. – Chlorobium; 
Chlide – chlorophyl lide; Copro – coproporphyrin; Copro-
gen – coproporphyrinogen; CPO – coproporphyrinogen oxidase; 
CsCl – cesium chloride; HMB – hydroxymethylbilane I; Mg-
chelatase – magnesium protoporphyrin IX chelatase; MgPro-
to – magnesium protoporphyrin IX; MgProtoMe – magnesium 
protoporphyrin IX monomethylester; MgProtoMeC – magnesium 
protoporphyrin IX monomethylester cyclase ; MTF – magnesium 
protoporphyrin IX monomethyl transferase; PBG – porphobi-
linogen; PBGD – porphobilinogen deaminase; PChlide – pro-
tochlorophyllide; POR – protochlorophyllide oxidoreductase; 
PPOX – protoporphyrinogen oxidase; Proto – protoporphyrin 
IX; Protogen – protoporphyrinogen IX; Rba. – Rhodobacter; 
Rvi. – Rubrivivax; Rvu. – Rhodovulum; ROS – reactive oxygen 
species; Uro – uroporphyrin; UROD – uroporphyrinogen III 
decarboxylase; Urogen – uroporphyrinogen; UROS – uropor-
phyrinogen III synthase

I. Introduction

This chapter reviews the middle section of the multi-
step pathway of tetrapyrrole biosynthesis whereby 
eight molecules of 5-aminolevulinic acid (ALA) are 
converted to chlorophyll (Chl) via  protochlorophyl-
lide (PChlide), or to protoheme. Eight molecules of 
ALA are used to generate  uroporphyrinogen III (Uro-
gen III) through a linear tetrapyrrolic intermediate, 
 hydroxymethylbilane I (HMB). Urogen III constitutes 
a fi rst branch point in tetrapyrrole biosynthesis: it can 
be methylated and subsequently converted to either 
vitamin B12 (cf. Battersby, 1994) or siroheme (Murphy 
and Siegel, 1973); alternatively it can be decarboxyl-
ated and oxidized to form  protoporphyrin IX (Proto). 
Proto constitutes a second branch point: insertion of 
Fe2+ into Proto forms protoheme, while insertion of 
Mg2+ is the fi rst committed step in the biosynthesis of 
Chl. The individual enzymatic reactions of protoheme 
and Chl biosynthesis, including enzyme structure, 
encoding gene structure and expression, as well as 
their metabolic regulation, are discussed.

II. Enzymes of Porphyrin Synthesis

A.   5-Aminolevulinic Acid Dehydratase 
(Porphobilinogen Synthase)

    ALA dehydratase (porphobilinogen synthase) 
(ALAD) catalyzes the asymmetric condensation of 
two molecules of ALA to the monopyrrole,  porphobi-
linogen (PBG) (Fig. 1) (Jordan, 1991). The bacterial, 
animal and plant enzymes possess structural and 

catalytic similarities: the exclusive Mg2+-metal ion 
requirement, pH-optima and thiol sensitivity distin-
guish the plant-type ALAD from others (Senior et 
al., 1996). Plant ALAD contains a highly conserved 
metal-binding domain with Asp residues and can 
form active homohexameric and octameric complexes 
(Schaumburg and Schneider-Poetsch, 1992; Cheung 
et al., 1997). ALAD from other eukaryotic and pro-
karyotic organisms is octameric, requires both Mg2+ 
and Zn2+ and coordinates the latter through Cys and 
His in the metal-binding domain. X-ray structures of 
yeast and bacterial ALAD have been presented (Er-
skine et al., 1999; Frankenberg et al., 1999). Recent 
structural analysis shows that human allelic ALAD 
differs from the wild-type protein by an ability to 
shift between the octameric and hexameric form: 
this transition appears relevant in a Mg2+-dependent 
allosteric regulation of ALAD, as only the octameric 
form makes a Mg2+ binding site available (Breinig 
et al., 2003). 

The soluble plant ALAD was located in plastids 
from pea leaves or arum lily spadices (Smith, 1988).
The plant ALAD gene encodes a precursor for plastid 
translocation. Light differently affects ALAD gene 
expression in various plant species. ALAD mRNA 
levels are unchanged during greening of pea leaves, 
while the enzyme activity increases: a post-transcrip-
tional light-dependent control of this enzymatic step 
has been proposed (Boese et al., 1991). In soybean, 
ALAD mRNA accumulates during greening without 
an apparent change in enzyme activity or protein 
level (Kaczor et al., 1994). An increase in both ALAD 
mRNA and enzyme activity during light exposure 
corresponds in light-dark synchronized cells of 
 Chlamydomonas (C.) reinhardtii with the rate of Chl 
accumulation (Matters and Beale, 1995a). Although 
ALADmRNA accumulates under blue light, the ALAD 
gene is also controlled through the cell cycle or the 
circadian clock (Matters and Beale, 1995b).

B. Porphobilinogen Deaminase (Hydroxy-
methylbilane Synthase)

 Porphobilinogen deaminase (PBGD) catalyzes the 
condensation of four molecules of PBG into the linear 
hydoxymethylbilane I (HMB) which is unstable and 
spontaneously cyclizes to Urogen I (Battersby et al., 
1979a) when the succeeding enzyme,  uroporphy-
rinogen III synthase (UROS) is absent, defective or 
limiting: for example, Uro I, the oxidation product 
of Urogen I, has been isolated from the urine of the 
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congenital porphyria patients (Rimington and Miles, 
1951) and coproporphyrin (Copro) I, the oxidation 
product of  coproporphyrinogen (Coprogen) I, which 
is formed by enzymatic decarboxylation of Urogen I 
(see Section II.D), has been isolated from anoxic 
yeast cells (Porra et al., 1973). Coprogen I is not a 
substrate for  Coprogen III oxidase (Section II.E). In 
the presence of UROS, however, HMB is directly 
converted to Urogen III (Battersby et al., 1979b; 
Jordan and Seehra, 1979), an intermediate common 
to the biosynthesis of protoheme and Chl. The syn-
thesis of HMB involves, as a preparatory step, the 
synthesis of a unique enzyme-bound dipyrromethane 
cofactor, which serves as an attachment point for the 
subsequent assembly of four PBG molecules to form 
a hexapyrrole (Fig. 2) (Hart et al., 1987; Jordan and 
Warren, 1987). In  E. coli, the newly synthesized  di-
pyrromethane cofactor is post-translationally attached 
to Cys242 of the apoprotein by a thioether linkage. 
Sequential condensation of four PBG molecules com-
mences at the free α-position of the cofactor. Once 
the hexapyrrole stage is reached, a linear tetrapyrrole, 
HMB, is released before the enzyme-dipyrrole com-
plex accepts more PBG molecules (Battersby et al., 
1983). X-ray structural studies of the E. coli enzyme 
suggest the stepwise elongation of the polypyrrole 
chain (Louie et al., 1996). Examination of wild type 
and mutants revealed essential amino acids for cofac-
tor binding and for enzyme-intermediate complex 
formation during chain elongation at the catalytic 
side (Louie et al., 1996). The same amino acids are 
also conserved in plant and algal PBGD which oc-
curs in the plastid stroma. The  pea and  Arabidopsis 

precursor proteins have an approximate Mr of 40 kDa: 
after import into isolated chloroplasts, the Mr of the 
mature protein was 35 kDa (Witty et al., 1993; Lim 
et al., 1994). Expression of the pea  gene is strongly 
induced by light: steady-state levels of PBGD mRNA 
increase in parallel with enzyme activity (Witty et 
al., 1993). 

C.  Uroporphyrinogen III Synthase (UROS)

  UROS simultaneously catalyzes the cyclization and 
isomerization of HMB by the inversion of ring D 
to yield the fi rst isomer III cyclic tetrapyrrole, 
Urogen III, which is the fi rst common tetrapyrrolic 
intermediate of heme and Chl. Inversion of ring D 
probably involves formation of a spiro-cyclic-inter-
mediate (Fig. 2) (Crockett et al., 1991; Stark et al., 
1993). The instability of HMB apparently requires 
a PBGD-UROS complex in vivo, since an altera-
tion of the sedimentation rate of wheat germ PBGD 
(Higuchi and Bogorad, 1975) and of the km for PBG 
of the  Euglena enzyme occurs in the presence of 
UROS (Battersby et al., 1979a). Purifi ed UROS from 
Euglena is a monomer (Mr = 31 kDa) (Hart and 
Battersby, 1985). Structural determination by X-ray 
crystallography of the human enzyme revealed a bi-
lobed structure of a homodimer. Mutation of various 
residues in the putative active site cleft revealed no es-
sential residue for the catalytic mechanism (Mathews 
et al., 2001; Schubert et al., 2002). 

Fig. 1. Two pathways for biosynthesis of ALA, the committed molecule of tetrapyrrole biosynthsis and the subsequent asymmetric 
condensation of two molecules ALA to porphobilinogen.
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D. Uroporphyrinogen III Decarboxylase

 Uroporphyrinogen III decarboxylase (UROD) is 
located at the fi rst branch point of the tetrapyrrole 
biosynthetic pathway: decarboxylation of Urogen III 
leads to the biosynthesis of protoheme and of Chl 
or bacteriochlorophyll, whereas its C-methylation 
initiates synthesis of  vitamin B12 (Battersby, 1994) 
and  sirohemes (Murphy and Siegel, 1973). UROD 
catalyzes the decarboxylation of all four acetate 
side-chains of Urogen III resulting in Coprogen III 
formation (Fig. 3). Decarboxylation starts from pyr-
role ring D followed by a clockwise decarboxylation 
at rings A, B, and C (Luo and Lim, 1993). Urogen I 
can also serve as substrate for UROD but the product, 
Coprogen I, cannot be further metabolized. 

All homologous plant UROD sequences, which are 
derived from cDNA sequences, possess an N-terminal 
extension for plastid translocation. The recombinant 
tobacco UROD forms a homodimeric structure 
under similar ionic strength conditions found in the 
plastidic stroma fraction.   X-ray crystal structure of 

 tobacco  UROD (Martins et al., 2001) confi rmed the 
previously published 3D-structure of the homologous 
  human enzyme (Whitby et al., 1998). The analysis 
reveals one catalytic cleft per monomer with six 
invariant polar residues. Asp82/86 and Tyr159/164 
(tobacco/human enzyme numbering) seem to be the 
catalytic functional residues, which may serve in sub-
strate recognition and binding. Arg32/37 is proposed 
to direct the substrate into the hydrophobic  catalytic 
cleft (Whitby et al., 1998; Martins et al., 2001).

UROD mRNA and protein levels increased dur-
ing greening of etiolated  barley leaves (Mock et al., 
1995). The  expression of UROD antisense RNA in 
tobacco plants leads to the formation of necrotic 
leaf lesions, which are caused by generating  reactive 
oxygen species (ROS) as a result of accumulating 
photo-reactive Uro III. The transgenic plants analyzed 
possessed a minimal wildtype activity of 70% (Mock 
and Grimm, 1997). The  photo-destructive processes 
in leaves induced an  anti-oxidative defense system 
in several cellular compartments and diminished 
the total content of reduced low-molecular-mass 

Fig. 2. Enzymatic steps of the   tetrapyrrole biosynthetic pathway from  porphobilinogen to uroporphyrinogen III.
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anti-oxidants (Mock et al., 1998). The   maize Les22
mutant carries a mutant UROD gene and also shows 
 necrotic lesions (Hu et al., 1998). A similar effect of 
Uro(gen) III accumulation was observed after cesium 
chloride (CsCl) treatment of greening barley leaves. 
However, the excess Urogen III was re-metabolized 
when the toxic metal cations were removed after 
less than 8 h of CsCl incubation. Upon longer CsCl 
exposure, accumulated Uro generated necrotic le-
sions. It is assumed that  photodynamic damage of 
leaves begins when photoprotective activities were 
overwhelmed with Urogen, which was infi ltrated into 
the cytoplasm (Shalygo et al., 1997, 1998).

E.  Coproporphyrinogen III Oxidase

Coprogen III oxidase (CPO) catalyzes the oxidative 
decarboxylation of the two propionate side chains 
of ring A and B to vinyl groups to yield the divi-
nyl compound, protoporphyrinogen IX (Protogen) 
(Fig. 3). Coprogen I cannot serve as substrate for 
this enzyme. Analysis of CPO activity in different 
subcellular compartments of  pea and spadices of 
 cuckoo-pint, as well as immuno-detection of CPO 

in soybean, revealed the exclusive location of this 
enzyme in plastids (Smith et al., 1993). CPO   gene 
expression showed tissue-specifi c and developmental 
changes rather than changes upon light exposure 
or under diurnal and circadian growth conditions 
(Kruse et al., 1995a; Papenbrock et al., 1999). The 
content of mRNA reached its maximum in young 
developing cells and drastically decreased in older 
differentiated cells. Roots from  soybean  and   pea 
synthesized elevated levels of CPO during nodulation 
and displayed also higher activities of ALAD, 
PBGD, protogen oxidase (PPOX) and ferrochelatase 
indicating the plant’s contribution to plant protoheme 
biosynthesis for the assembly of cytochrome as well 
as of nodule  leghemoglobin (Santana et al., 1998).

Reduction of CPO activity by antisense RNA 
expression led, in transgenic  tobacco plants, to an 
accumulation of Copro(gen) and consequently to 
light-intensity-dependent leaf necrosis (Kruse et al., 
1995b). Although the protective system against ROS 
was generally alerted, the ascorbate and glutathione 
concentrations were decreased relative to control 
plants, suggesting that anti-photosensitization pro-
cesses could not be suffi ciently invoked to prevent cell 

Fig. 3. Enzymatic steps of the tetrapyrrole biosynthetic pathway from uroporphyrinogen III to protoporphyrin IX.
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death (Kruse et al., 1995b; Mock et al., 1998). Like-
wise, in UROD antisense transgenic lines, CPO-defi -
cient plants induced several  defense responsive genes 
resembling the  hypersensitive reaction observed in 
response to pathogen attack (Mock et al., 1999). The 
recessive  Arabidopsis lesion initiation (lin2) mutant 
contains a defective gene encoding CPO and forms 
development- and light-dependent necrotic lesions in 
leaves and siliques (Ishikawa et al., 2001)

F.  Protoporphyrinogen IX Oxidase

Protogen oxidase (PPOX) is the last enzyme common 
to both Chl and protoheme biosynthesis. This fl avin-
requiring enzyme catalyzes the six-electron oxidation 
of Protogen to Proto (Fig. 3) and its activity was 
detected in plants in both plastids and mitochondria 
(Jacobs and Jacobs, 1987; Smith et al., 1993). Two 
different genes, PPOX I and PPOX II, exist in dif-
ferent plant species (e.g., Lermontova et al., 1997; 
Che et al., 2000; Watanabe et al., 2001). Identical 
isoforms from different plant species show a high 
degree of identity (e.g., PPOX II isoforms share ap-
proximately 70% identical amino acids), while the 
sequence identity between isoform I and II of the 
same species is relatively low (28%). PPOX is the fi rst 
enzyme of the tetrapyrrole biosynthetic pathway to 
be located in two different subcellular compartments: 
the mitochondrion and the chloroplast. The spinach 
PPOX I enzyme is preferentially associated with the 
stromal side of the thylakoid membrane, but a small 
portion is also found on the stromal side of the inner 
envelope membrane (Che et al., 2000). The spinach 
PPOXII gene encodes two translation products of 
different size, 59 kDa (PPOX IIL) and 55 kDa (PPOX 
IIS), by use of two in-frame initiation codons. In situ 
immunological analysis, by electron microscopy with 
anti-PPOX II, confi rmed the translocation of a 57 
kDa PPOX IIL in the inner plastid envelope fraction 
facing the stromal side while the 55 kDa PPOX IIS 
was located in the inner mitochondrial membrane 
fraction (Watanabe et al., 2001).

PPOX is the target enzyme of phthalimide- and 
  diphenylether-type herbicides (Scalla et al., 1990; 
Duke et al., 1991). The inhibition of PPOX by these 
photodynamically-acting herbicides causes accumu-
lation of Protogen, which leaks out of plastids and 
is oxidized to Proto by unspecifi c herbicide-resistant 
peroxidases bound to plasma membranes (e.g., Jacobs 
and Jacobs, 1993). Excessive Proto concentrations 
are known to cause a potent phytotoxic photosen-
sitization, which results in the generation of lethal 

amounts of  ROS causing membrane peroxidation and 
cell death (Matringe and Scalla, 1988). 

 Genetic and biochemical analyses were performed 
to characterize herbicide-resistant mutants. A single 
nucleotide substitution (G → A) in the PPOX gene 
of  C. reinhardtii caused an amino acid alteration 
(Val291Met) which conferred  herbicide tolerance 
(Randolph-Anderson et al., 1998). An  Arabidopsis 
mutant with two substitutions in PPOX I (Tyr426Met 
and Ser305Leu) was 600-fold more tolerant to PPOX 
inhibitors (Li et al., 2003). Herbicide tolerance of the 
photomixotrophic  tobacco YZI-1S cell line was ex-
plained by amplifi cation of the PPOX II-gene leading 
to increased levels of the corresponding mRNA and a 
fi ve-fold increase of the mitochondrial enzyme activ-
ity (Watanabe et al., 1998, 2002). Transgenic tobacco 
or rice plants became more resistant to  oxyfl uorfen by 
expressing a  B. subtilis PPOX gene (Choi et al., 1998; 
Lee et al., 2000). Over-expression of Arabidopsis 
PPOX I gene made transgenic tobacco more resistant 
to acifl uorfen (Lermontova and Grimm, 2000). 

The genetic or chemical disruption of the meta-
bolic pathway at the step of Proto synthesis can 
also induce several defense responses as a result of 
porphyrin-induced  photosensitization. Arabidopsis 
plants expressing PPOX antisense genes display the 
known pattern of necrotic leaf lesions resembling 
lesions after pathogen-induced hypersensitivity reac-
tions (Molina et al., 1999). Different inhibitors were 
applied to clarify structural properties of the active 
site of PPOX (Arnould and Camadro, 1998; Arnould 
et al., 1998; Birchfi eld et al., 1998). The crystal 
structure of a PPOX has recently been published 
(Koch et al., 2004). 

III. The Chlorophyll-synthesizing Branch

A. Mg-Protoporphyrin IX Chelatase 

  Magnesium protoporphyrin IX chelatase (Mg-chela-
tase) catalyzes the insertion of Mg2+ into Proto and, 
thus, directs Proto into the Chl biosynthesizing branch 
(Fig. 4). The complexity of the structural, enzymatic 
and regulatory properties of Mg-chelatase has been 
addressed in numerous studies. The protein consists 
of three different  subunits. Transposon mutagenesis 
studies in  Rba. capsulatus (Bollivar et al., 1994b) 
and  Rba. sphaeroides (Gorchein et al., 1993) have 
initially demonstrated that the expression of the three 
gene products    BchI, -D and -H, are required for Mg-
chelatase activity. The homologous proteins in plants, 
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algae and cyanobacteria are named  CHLI/ XAN-H, 
 CHLD/ XAN-G, and  CHLH/  XAN-F with molecular 
masses 36–46 kDa, 60–87 kDa and 123-150 kDa, 
respectively (LCD Gibson et al., 1995, 1996; Jensen 
et al., 1996a,b; Papenbrock et al., 1997; Petersen et 
al., 1998). The  ChlI homologous gene is encoded in 
the chloroplast genome of most algae and  Euglena
gracilis (Orsat et al., 1992).

By analysis of  Arabidopsis thaliana (cs) and  Antir-
rhinum majus (olive) mutants, the fi rst plant genes 
encoding two different subunits of Mg-chelatase were 
detected (Koncz et al., 1990; Hudson et al., 1993). 
In barley, the Xantha-f, Xantha-g and Xantha-h loci 
were assigned to the structural genes for the three 
different subunits of Mg-chelatase (Jensen et al., 
1996b; Petersen et al., 1999). 

Mg-chelatase activities were detected in intact 
 cucumber chloroplasts (Castelfranco et al., 1979), 

in broken pea chloroplasts (Walker and Weinstein, 
1991), in a sub-plastid membrane fraction without 
a soluble stroma fraction (Lee et al., 1992) and, 
subsequently, in totally soluble fractions of pea 
chloroplasts (Guo et al., 1998). Enzyme assays with 
recombinant  Rba. sphaeroides,  Synechocystis PCC 
6803 and  Chlorobium (Chl.) vibrioforme subunits 
revealed that all three proteins were required to re-
constitute the Mg-chelatase activity in vitro (LCD 
Gibson et al., 1995; Jensen et al., 1996a; Willows et 
al., 1996; Petersen et al., 1998; Willows and Beale, 
1998). A stoichiometry of 4 BchI:1 BchD and 2 
CHLI:1 CHLD:4 CHLH was found to be optimum in 
in vitro reconstitution assays with the three recombi-
nant subunits from Rhodobacter and Synechocystis, 
respectively (Willows et al., 1996; Hansson et al., 
1999; Jensen et al. 1999a). 

Analysis of the  3-D structure of the  Rba. capsulatus 

Fig. 4. Enzymatic steps of the tetrapyrrole biosynthetic pathway at the branchpoint to chlorophyll and protoheme biosynthesis. Proto-
porphyrin IX is either directed into the Mg branch and subsequently converted into protochlorophyllide or into the Fe branch to form 
protoheme.
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BchI protein revealed that the I-subunit belongs to a 
chaperone-like family of AAA+ proteins (possessing 
ATPase properties associated with various cellular 
activities) and is proposed to form a hexameric ring 
structure with a ring diameter of about 110 Å (Fodje 
et al., 2001). The N-terminal domain of BchI contains 
Walker A and Walker B motifs, which are generally 
present in nucleotide triphosphate-hydrolyzing en-
zymes (Hansson et al., 2002). Due to the structural 
similarity to  BchI, the N-terminus of  BchD possibly 
contains an AAA module and, additionally, an inte-
grin I domain at the C-terminus (Fodje et al., 2001). 
An integrin I-domain-binding motif was proposed 
in the C-helical domain of BchI and BchH which 
could allow interaction of all subunits through BchD 
and, thus, establishing a linkage between porphyrin 
metalation by BchH and ATP hydrolysis by BchI 
(Fodje et al., 2001). 

The initial enzymatic studies by several groups 
permitted an advanced model for the molecular orga-
nization and the     mechanistic steps of Mg-chelatase. 
This model proposed that, fi rstly, an ATP-dependent 
double-ring structure consisting of BchI and BchD 
is formed, which hinders the ATPase activity of BchI 
(Walker and Willows, 1997; Fodje et al., 2001). 
Secondly, a ternary complex with the substrate-bind-
ing  BchH is formed upon addition of Mg2+ which 
instigates porphyrin metalation. Then, release of 
the BchI-ATP-binding site occurs by weakening the 
protein-protein interaction at the integrin I-domain 
which triggers ATP hydrolysis (Fodje et al., 2001). 
These enzymatic analyses of bacterial Mg-chela-
tase resemble those of recombinant subunits from 
Synechocystis and recombinant tobacco subunits 
expressed in yeast (Grafe et al., 1999).

Expression of both the  Xan-f/ CHLH and  Xan-h/
 CHLI gene in etiolated   barley seedlings, in young 
tobacco plants and in photomixotrophic soybean sus-
pension cultures is light-induced, but CHLH mRNA 
always accumulated more rapidly upon illumination 
than CHLI mRNA (Jensen et al., 1996b; Kruse et al., 
1997; Nakayama et al., 1998). The barley Mg-che-
latase activity increased three- to four-fold during 
greening, reaching a maximum after 6 h in light 
(Petersen et al., 1999). Thus, it is generally accepted 
that the capacity of Mg-chelatase activity correlates 
with the expression profi le of XAN-F/CHLH (Jensen 
et al., 1996b; Papenbrock et al., 1997; Petersen et 
al., 1999). 

In  barley,  Arabidopsis,  tobacco and  soybean, the 
XAN-F/CHLH expression was under the control of 

the circadian clock with a maximum at the beginning 
of the light period and a minimum at the transition 
from light to dark (Jensen et al., 1996b; Nakayama 
et al., 1998; Papenbrock et al., 1999). In contrast, the 
CHLI transcripts remained constant (LCD Gibson 
et al., 1996; Papenbrock et al., 1999). The tobacco 
 CHLD mRNA content inversely oscillated to the 
CHLH level in tobacco over a 24-h light-dark cycle 
(Papenbrock et al., 1999). 

Mg-chelatase subunits can exhibit Mg2+-dependent 
changes in their distribution between stroma and 
chloroplast membranes (LCD Gibson et al., 1996; 
Nakayama et al., 1998; Luo et al., 1999). CHLH is 
largely soluble at low Mg2+ concentrations but attach-
es to the envelope membrane at Mg2+ concentration 
above 5 mM. The association of CHLD with enve-
lope membranes shows a similar Mg2+ dependency. 
However, while CHLI was detected in the soluble 
fraction, regardless of the Mg2+ concentration, the 
importance of the sub-compartmental (stroma/mem-
brane) distribution of Mg-chelatase for modulation 
of its activity remains an open question. 

Mutants, lacking one of the subunits, and trans-
genic plants, with deregulated expression of one 
of the subunits, illustrate interesting effects on Chl 
biosynthesis and chloroplast development. Barley 
Xantha-h mutants lack not only the XAN-H (CHLI) 
but also the  XAN-G ( CHLD) subunit (Hansson et 
al., 1999; Petersen et al., 1999). In contrast, in Ara-
bidopsis T-DNA knockout mutants of the CHLI locus 
show wild type CHLD mRNA content (Rissler et al., 
2002). It was proposed that the CHLI2 gene product 
is responsible for a limited CHLD accumulation and, 
consequently, for Mg-chelatase activity and Chl ac-
cumulation in this mutant. Silencing of the tobacco 
CHLH gene by infection with tobacco mosaic virus 
vectors containing CHLH inserts resulted not only in 
strongly decreased levels of CHLH mRNA, but also 
of CHLD mRNA (Hiriart et al., 2002). 

Transgenic tobacco plants expressing antisense 
CHLI and CHLH mRNA, respectively, displayed 
a chlorotic phenotype and reduced plant-growth 
rate. The loss of Chl correlated with the gradually 
reduced Mg-chelatase activity in response to antisense 
inactivation (Papenbrock et al., 2000a,b). In spite 
of diminished Mg-chelatase activity, the metabolic 
substrate, Proto, did not accumulate. Lower heme 
contents exclude the possibility of re-direction of 
non-metabolized Proto into heme biosynthesis in the 
transgenic plants. ALA synthesizing capacity was di-
minished in parallel with reduced Mg-chelatase activ-
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ity and was due to lower levels of transcripts encoding 
glutamyl-tRNA reductase and ALAD (Papenbrock et 
al. 2000a, Chapter 16, Beck and Grimm). 

The barley  chlorina-125, -157, and -161 mutants 
contain point mutations in the CHLI gene and display 
a semi-dominant phenotype due to simultaneous 
expression of mutant and wild type CHLI. A small 
proportion of wild-type hexamers rescues the het-
erozygous plants but cannot provide suffi cient Mg-
chelatase activity to produce wild-type levels of Chl 
(Hansson et al., 1999, 2002). Both the Arabidopsis 
cs mutant (Koncz et al., 1990) and the  virus-induced 
silencing of the sulfur allele in  Nicotiana benthamiana 
(Kjemtrup et al., 1998) display chlorotic phenotypes 
similar to the CHLI antisense plants. 

Four out of fi ve Arabidopsis  gun mutants (genome 
unregulated) are affected in the expression of genes 
involved in tetrapyrrole biosynthesis. Gun5 encodes 
the CHLH subunit of Mg-chelatase and revealed a 
point mutation in the CHLH gene (Mochizuki et 
al., 2001; for more details see chapter 16, Beck and 
Grimm). The allelic Chl-less  C. reinhardtii mutants,
chl-1 and brs-1, could only grow heterotrophically 
in the dark because of Proto-mediated extreme light 
sensitivity. The genetic lesions could be assigned to 
frameshift mutations in the  CHLH gene, respectively, 
resulting in a CHLH defi ciency, but without alteration 
in expression of CHLI and CHLD genes (Chekounova 
et al., 2001; Chapter 16, Beck and Grimm). 

B. S-Adenosyl-L-Methionine: Mg-Protopor-
phyrin IX Methyltransferase (MTF)

This  MTF enzyme catalyzes the transfer of a methyl 
group from  S-adenosyl-methionine to the carboxyl 
group of the 13-propionate side-chain of MgProto 
to yield MgProto monomethylester (MgProtoMe) 
(Fig. 4) (KD Gibson et al., 1963; Ellsworth and 
Dullaghan, 1972). A ping-pong type mechanism was 
demonstrated for the plant MTF enzyme (Ellsworth et 
al., 1974). Expression of the recombinant BchM/ChlM 
from  Rba. sphaeroides,  Rba. capsulatus and  Synecho-
cystis PCC 6803 revealed a monomeric enzyme of 
25–27 kDa (Bollivar et al., 1994a; LCD Gibson and 
Hunter, 1994; Smith et al., 1996). Consistent with 
previous suggestions about a  Mg-chelatase-MTF 
complex (Gorchein, 1972), addition of soluble BchH 
from Rba. capsulatus increased seven-fold the activity 
of recombinant MTF (Hinchigeri et al., 1997), and 
soluble extracts of cell cultures co-expressing BchM 
and the three Mg-chelatase subunits readily converted 

Proto to MgProtoMe (Jensen et al., 1999b). 
The fi rst plant cDNA sequences encoding MTF 

with an N-terminal plastid transit sequence were 
described for  Arabidopsis thaliana and  Nicotiana
tabacum (Block et al., 2002; Alawady and Grim, 
2005; Alawady et al., 2005). It is suggested that a 
hydrophobic region in the N-terminal half of the 
mature protein is responsible for anchoring the pro-
tein to both the envelope and thylakoid membranes 
(Block et al., 2002). 

C.   Mg-Protoporphyrin IX Monomethylester 
Cyclase (MgProtoMeC)

This  oxidative  cyclase enzyme catalyzes the complex 
reaction sequence for formation of the isocyclic ring, 
which is derived from the C-13-methylpropionate 
side chain of MgProtoMe (Fig. 4). The reaction 
sequence consists of three steps: hydroxylation of 
the methylpropionate side chain at the C-131 carbon 
atom, oxidation of this C-131-hydroxyl to a C131-oxo 
group and ligation of the C-132 carbon of the newly-
formed 131-oxo-methylpropionate side chain to the 
C-15 bridge carbon between pyrrole rings C and D 
(Wong et al., 1985; Bollivar and Beale, 1996). The 
oxidative formation of the oxo group is facilitated by 
methylation of the carboxylate group to prevent its 
decarboxylation. Two   mechanisms of cyclization were 
found in the tetrapyrrole pathway. In higher plants 
and green algae, the oxo-group oxygen is derived 
from molecular oxygen (Chereskin et al., 1982) by an 
oxygenase mechanism, while a different hydratase-
type enzyme in  Rba. sphaeroides uses oxygen from 
water under anaerobic conditions (Porra et al., 1995). 
 Rhodovulum (Rvu.) sulfi dophilum, which forms 
BChl a aerobically in the dark or anaerobically in 
the light, possesses both the oxygenase and hydratase 
pathways which can operate simultaneously in aerobic 
conditions (Porra et al., 1998).  Anaerobic isocyclic 
ring formation for bacteriochlorophyll synthesis in 
Rba. capsulatus was shown to require a cobalamine 
cofactor (Gough et al., 2000).

Cyclase activity in developing  cucumber chloro-
plasts, wheat etioplasts and Synechocystis require a 
membrane-bound and soluble fraction (Wong and 
Castelfranco, 1984; Nasrulhaq-Boyce et al., 1987; 
Walker et al., 1991), while the activity of  C. reinhardtii 
was exclusively associated with membranes of lysed 
chloroplasts (Bollivar and Beale, 1995, 1996). Addi-
tion of iron chelators, but not of CO, KCN and NaN3, 
inhibited cyclase activity suggesting that nonheme 
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iron is involved in the reaction (Nasrulhaq-Boyce 
et al., 1987; Whyte et al., 1992; Bollivar and Beale, 
1995, 1996). 

Disruption of the orf358( ascF) gene in the purple 
bacterium  Rubrivivax (Rvi.) gelantinosus, which can 
form BChl a under aerobic growth conditions, causes 
accumulation of MgProtoMe aerobically indicating 
that the encoded protein is involved in the subse-
quent oxidative cyclization step (Pinta et al., 2002). 
Sequence comparison revealed homology with both
the  Crdl gene of C. reinhardtii, which was initially 
identifi ed by a  mutant screen for copper defi ciency 
(Moseley et al., 2002), and also with the PNZIP gene 
in  Pharbitis nil, which was characterized by phyto-
chrome and endogenous clock induction (Zheng et 
al., 1998). The encoded protein belongs to the family 
of di-iron carboxylate proteins, characterized by an 
iron binding motif consisting of six conserved amino 
acids (four carboxylate residues and two histidines) 
(Berthold and Stenmark, 2003). In Rba. capsulatus, 
the BchE gene was identifi ed as essential for anaerobic 
isocyclic ring formation (Bollivar et al., 1994a, b). 

It is still not clear whether these homologous 
proteins ( AscF/ Crd1/ PNZIP) can perform the whole 
reaction or whether other protein components are 
required for the entire reconstitution of the enzyme 
activity. The requirement of at least two plastidal 
protein fractions for the cyclization reaction was 
predicted after biochemical analysis of cyclase ac-
tivity of two different barley  mutants, Xantha l-35 
and  viridis K-23 (Walker and Willows, 1997). Thus, 
it is assumed that the  acsF gene of  Rvi. gelatinosus 
encodes at least a MgProtoMe hydroxylase (Pinta et 
al., 2002; Berthold and Stenmark, 2003) 

D. Vinyl Reductase

 8-Vinyl reductase catalyzes the conversion of an 8-
vinyl group on ring B to an ethyl group (Fig. 4). Enzyme 
activity was measured in isolated plastid membranes 
from cucumber cotyledons, maize and barley (Parham 
and Rebeiz, 1992). This reaction can be carried out at 
least at two different steps in the pathway transforming 
 divinyl-PChlide into  monovinyl-PChlide or  divinyl-
Chlide into  monovinyl-Chlide (Rebeiz et al., 1983; 
Tripathy and Rebeiz, 1988). Monovinyl-PChlide 
and -Chl are mainly found in plants. In the  necrotic 
 maize mutant (ON 8147), photosynthetic pigments 
are represented almost exclusively by divinyl Chl a
and b but, in darkness, divinyl-PChlide is the main 
Chl precursor. Disruption of the  Rba. capsulatus  bchJ 

gene leads to increased divinyl-PChlide and lowered 
bacteriochlorophyll concentrations. Thus, bchJ was 
thought to be a candidate for the structural gene of 
this enzyme (Bollivar et al., 1994b; Suzuki and Bauer, 
1995). But very recently, the fi rst plant gene encoding 
8-vinyl reductase was identifi ed by map-based 
cloning of an Arabidopsis mutant that accumulated 
divinyl-Chl (Nagata et al., 2005). This gene has no 
similarity to bchJ of Rhodobacter. Divinyl-Chls a and 
b are major pigments in some type II cyanobacteria 
(Goericke and Repeta, 1993).

IV. The Protoheme-synthesizing Branch

A. Ferrochelatase 

  The enzyme  ferrochelatase (protoheme ferrolyase) is 
a single membrane-associated- and ATP-independ-
ent-protein requiring only Fe2+ and Proto as substrates 
for the fi nal step of  heme formation. Ferrochelatase is 
considered to play an important role in the regulation 
of  metabolite distribution at the branch point of 
porphyrin biosynthesis. Ferrochelatase activity 
has been demonstrated in both plant plastids and 
mitochondria (Porra and Lascelles, 1968). More 
recently, plastid ferrochelatase was associated either 
with thylakoid membranes in peas (Matringe et al., 
1994) or with thylakoid and envelope membrane 
in  Arabidopsis (Roper and Smith, 1997; Masuda et 
al., 2003).

The  crystal structure of  Bacillus subtilis and human
ferrochelatases indicates that while the major features 
of the chelation reaction are conserved (Lecerof et al., 
2000; Wu et al., 2001) differences were revealed in 
molecular size, subunit composition, solubility and 
presence or absence of a [2Fe-2S]-cluster between 
bacterial, plant and human ferrochelatases (Dailey et 
al., 2000). Mechanisms of porphyrin distortion and 
metalation were proposed for the bacterial enzyme, 
under the assumption that the enzyme attaches to 
pyrrole rings B, C and D and forces a tilt in ring A, 
which allows the metal to enter the porphyrin via the 
distorted pyrrole (Lecerof et al., 2000).

cDNA sequences encoding plant ferrochelatase 
were obtained from cucumber, barley ( HEMH; Mi-
yamoto et al. 1994) and Arabidopsis ( AtFC-I, Smith 
et al., 1994) by complementation of the bacterial 
or yeast ferrochelatase  mutants. Subsequently, a 
second Arabidopsis cDNA sequence ( AtFC-II) was 
found that encodes another precursor ferrochelatase 
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with a 69% identity to AtFCI (Chow et al., 1998). 
AtFC-I was expressed in all plant tissues and could 
be imported in vitro both into pea chloroplasts and 
mitochondria, whereas AtFC-II was expressed only 
in leaves, stems and fl owers, where it was solely 
targeted to chloroplasts (Chow et al., 1998; Singh et 
al., 2002): ATFC-II was not expressed in roots. The 
importation properties of AtFC1, reported above to 
be dual-targeted into mitochondria and plastids, have 
recently been re-evaluated.    Both AtFC1 and AtFC2 
could not be imported into Arabidopsis mitochondria, 
suggesting that the presence of ferrochelatase in plant 
mitochondria should be re-investigated (Lister et al., 
2001). However, calculations about the contribution 
of mitochondrial ferrochelatase to the total activity 
in roots, green and etiolated leaves revealed 30% of 
total activity in tobacco mitochondria (Papenbrock 
et al., 2001) and less than 10% in pea mitochondria 
(Cornah et al., 2002). Only traces of activity, how-
ever, were found in cucumber mitochondria (Masuda 
et al., 2003); indeed, both ferrochelatase isoforms 
were immunologically detected in plastids but not 
in mitochondria (Masuda et al., 2003). 

 Supporting the studies of Chow et al (1998), but not 
of Lister et al. (2001), the cucumber CsFeC1 gene, 
which is homologous with AtFC1, showed a light-
insensitive expression in non-photosynthetic tissues, 
such as hypocotyls and roots, but not in cotyledons 
(Suzuki et al., 2002) and could be imported into 
mitochondria. The  CsFeC2 mRNA was detected in 
all tissues and strongly light-induced in cotyledons 
(Suzuki et al., 2000, 2002). The protein was predomi-
nantly translocated to thylakoid membranes and, to 
a lesser extent, to the envelope membranes. It has 
been suggested that two routes operate concurrently 
in plastids for ALA biosynthesis and its conversion to 
heme by ferrochelatase: one pathway to form heme, 
which is required for cytochromes, protective roles 
in non-photosynthetic tissue, and a second for heme 
and Chl formation in photosynthetic tissue (Singh et 
al., 2002; Suzuki et al., 2002). 

Loss of plastidic ferrochelatase activity by anti-
sense RNA expression in tobacco of the ferroche-
latase type II causes accumulation of Proto and, 
consequently, the formation of   necrotic leaf lesions. 
The activity of a mitochondrial ferrochelatase was not 
reduced, but could not compensate for lower plastidic 
ferrochelatase activity. Moreover, excessive Proto 
attributed for heme synthesis cannot be re-directed 
to Mg-chelatase suggesting that spatial separation 
of both ferro- and Mg-chelatase occurs in plastidal 

sub-compartments as well as tight substrate chan-
neling in multi-enzymatic complexes from the early 
enzymatic steps through to heme or Chl biosynthesis 
(Papenbrock et al., 2001).

V. Concluding Remarks

All plant tetrapyrroles are synthesized in plastids 
with the exception that the last two steps of heme 
synthesis also occur in mitochondria. All enzymes 
of the pathway are nuclear-encoded and the genes 
always encode precursor proteins, which are tar-
geted to their organellar destination. The metabolic 
fl ow and the activities of all enzymes are adjusted 
to developmental, tissue specifi c, circadian rhythm 
or environmental conditions. Although each enzy-
matic step is independently controlled at various 
steps of gene expression, it is accepted that certain 
regulatory steps control the general activity of the 
pathway. Subcellular compartmentation of multi-
enzymatic complexes, as well as tight regulation of 
the expression of each enzyme, is probably essential 
for appropriate channeling of metabolites between 
the branched pathways.

In general, tetrapyrrole biosynthesis from ALA 
to PChlide and protoheme shows some interesting 
trends: the metabolic intermediates became increas-
ingly hydrophobic and photoreactive. These proper-
ties, in turn, affect sub-compartmental location and 
functions of enzymes involved in photoprotection 
and substrate channeling. General aspects of enzyme 
localization, their implication on metabolic fl ow and 
the photo-toxic risks of porphyrin accumulation are 
discussed in Chapter 10, an introductory chapter by 
Rüdiger and Grimm.
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