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Abstract. With the standard map model, we study the stickiness effect of invariant tori,
particularly the role of hyperbolic sets in this effect. The diffusion of orbits originated from the
neighborhoods of hyperbolic points, periodic islands and torus is studied. We find that they

possess similar diffusion rules, but the diffusion of orbits originated from the neighborhood of
a torus is faster than that originated near a hyperbolic set. The numerical results show that an
orbit in the neighborhood of a torus spends most of time around hyperbolic invariant sets. We

also calculate the areas of islands with different periods. The decay of areas with the periods
obeys a power law, and the absolute values of the exponents increase monotonously with the
perturbation parameter. According to the results obtained, we conclude that the stickiness

effect of tori is caused mainly by the hyperbolic invariant sets near the tori, and the diffusion
speed becomes larger when orbits diffuse away from the torus.
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1. Introduction

Hamiltonian systems are conservative dynamical systems which are
encountered in various areas. The phase space of a nearly integrable Ham-
iltonian system typically consists of regular and chaotic regions. The study of
orbital diffusion in the phase space is the basis of many topics in Hamiltonian
dynamics. A chaotic orbit initialized close to a KAM torus will wander for a
long time before it finally leaves the vicinity of the torus. Since Karney (1983)
first uses the term ‘‘sticky’’ to describe such effect around islands, this phe-
nomenon was then called the ‘‘stickiness effect’’ of invariant tori. The study
of stickiness effect has now been extended to include all kinds of effects which
slow down the diffusion. These effects may come from different invariant sets
such as invariant tori (Lai et al., 1992; Perry and Wiggins, 1994; Sun and Fu,
1999), island-chains (Karney, 1983; Chirikov and Shepelyansky, 1984; Sun
et al., 2002) and Cantori (Meiss and Ott, 1985; Contopoulos et al., 1997). We
call this extended concept the ‘‘generalized stickiness effect’’. Moreover, it is
also known that hyperbolic invariant sets possess the stickiness effect too
(Froeschlé and Lega, 1998; Contopoulos et al., 1999; Zhou et al., 2002).
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Zhou et al. (2002) suggested that the hyperbolic invariant sets is essential to
the stickiness effect. In this paper we will clarify and confirm numerically this
conclusion with the standard map model.

2. Model

We take the standard map T as the model,

T :
xnþ1 ¼ xn þ ynþ1

ynþ1 ¼ yn � k
2p sinð2pxnÞ

(
ðmod 1Þ; ð1Þ

where k is the perturbation parameter. Figure 1 is the diagram of map T with
k ¼ 1.

We choose an island from the period-5 island-chain (indicated by the
arrow in Figure 1) as the chief torus to analyze. The center of the chief torus
is at ðx0; y0Þ¼ ð0:2476544; 0:6638289Þ. Figure 2 is the enlargement of the
chief torus, around which come out islands and hyperbolic invariant sets with
different orders due to the self-similarity. In the following sections, we will
investigate the stickiness effect of the chief torus as well as of the periodic
islands and the hyperbolic invariant sets near it. The role of the hyperbolic
invariant sets in the generalized stickiness effect will be discussed in detail.

Figure 1. Phase diagram of map T with k ¼ 1:0.
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3. Numerical Results

3.1. STICKINESS EFFECT OF HYPERBOLIC INVARIANT SETS

From Figure 3 we can see that in the vicinity of the chief torus, there is an
island-chain with 23 periodic islands and a hyperbolic invariant set consisting
of 23 periodic hyperbolic fixed points as predicted by the Poincaré-Birkhoff
fixed point theorem. We investigate the stickiness effect of this hyperbolic
invariant set.

To study the stickiness effect of the hyperbolic invariant set, we
trace an orbit with an initial point ðx; yÞ ¼ ð0:2972650; 0:6591000Þ, which
is very close to one of the period-23 hyperbolic fixed points
ðxh; yhÞ ¼ ð0:2972704; 0:6590667Þ. Figure 4 shows the diffusion process of the
orbit. Because the orbit diffuses to a secondary island-chain (or a secondary
hyperbolic invariant set) when the iterative number n � 3� 105, we trace the
orbit up to n ¼ 2� 105 iterations, before that the orbit diffuses around the
hyperbolic invariant set. Since the orbit is very close to the ‘‘boundary’’ of the
chief torus, we can calculate the distribution of points on the orbit along the
‘‘boundary’’, which can be approximatively defined as the possible outermost
curve l of the chief torus. Every point near l can be projected to l, so that gets
a reference coordinate from the projection on l. In such a way we can see
where the orbit is ‘‘stuck’’ during its diffusion.

Figure 2. Enlargement of one island (called the chief torus in the paper) from the period-5

island-chain.
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In Figure 5 we show the distribution of orbit points with respect to the
length of l, and the positions of the 23 hyperbolic fixed points are marked
too. The outstanding feature of Figure 5 is that every peak evidently corre-
sponds just to one of the positions of the period-23 hyperbolic fixed points
(hyperbolic invariant set). The distribution of points on other orbits starting
from points not very close to the hyperbolic fixed point, but lying between
two neighboring hyperbolic fixed points in the same hyperbolic invariant set,
are found to have very similar distribution to the one in Figure 5. We
repeated the same calculation around a higher-order island (one of the 23
islands around the chief torus), and obtained the same results as above.

Now it should be stressed that an orbit spreads in fact in a 2-dimensional
zone, so that the density of orbit points in the sticky zone should be counted
in definite areas rather than along a curve. However, from a practical
view, there is no straightforward method to define such areas, in which
higher-order islands are embedded as holes and around them there are sec-
ondary hyperbolic invariant sets related with the stickiness effects of the

Figure 3. Diagram of the period-23 secondary islands around the chief torus.
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higher-order islands. On the other hand, the sticky zone occupied by an orbit
shown in Figure 4 as an example shows a little thinner width around the
hyperbolic points than around the rest of the zone, and in fact, from Figure 4
we can see that the orbit points near the hyperbolic fixed point are denser
than in the zones far from it. Therefore, even if the sticky zone is considered
roughly as a uniformly wide strip around the chief torus, the distribution
along a curve in Figure 5 would reflect approximately the distribution of
orbit points in the sticky area near the chief torus.

It is well known that there are many different unstable periodic orbits in a
chaotic region. In Figure 5 the match between the positions of the out-
standing peaks and the hyperbolic fixed points reveals that this hyperbolic
invariant set is much more important than others in this region. It also
implies that such orbits spend more time around this hyperbolic invariant set
than elsewhere, therefore the hyperbolic invariant set plays an important role

(a) (b)

(d)(c)

Figure 4. Diffusion of an orbit around a hyperbolic invariant fixed point. a, b, c and d are the
snapshots of the orbit up to 5� 104, 2� 105, 3� 105 and 6� 105 iterations, respectively.
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in the stickiness effects. Moreover, an orbit on the ‘‘outermost’’ invariant
curve also has a similar accumulation of points (the distribution is very
similar to Figure 5). Since this invariant curve is very close to the hyperbolic
set located among the island-chain, this accumulation can be explained by the
continuous dependence of the density of orbits on the initial conditions.

We note the peaks in Figure 5 have different heights. With the eigenvalues
and eigenvectors of the mapping on the hyperbolic points, it may be given an
explanation. By iterating 115 (¼ 5� 23) times of the tangent map of (1), we get
the matrix of the corresponding tangent map and then calculate the eigen-
values and eigenvectors of this matrix. The results show that for a hyperbolic
point corresponding to a higher peak, the angle between eigenvectors (standing
for directions of stable and unstable manifold at this point) is relatively bigger,
and the eigenvalue corresponding to the unstable direction has a smaller value.
While on a lower peak, the angle is smaller and the eigenvalue is bigger. For
instance, the eigenvalues and eigenvectors of the sixth (counting from left to
right, indicated by an arrow in Figure 5) hyperbolic points, which has a lower
peak, are k1 ¼ 20:1326; v1 ¼ ð1:00000;�1:23649� 10�4ÞT; k2 ¼ 4:96707�
10�2; v2 ¼ ð0:998415; 5:62761� 10�2ÞT. The angle between v1 and v2 is
a ¼ 3�:23345. In comparison, for the 11th point in Figure 5, which possesses
a higher peak, we have k01 ¼ 3:84879; v01 ¼ ð�0:687897;�0:725808ÞT;

Figure 5. Distribution of points on orbit. The crosses inside circles correspond to the positions
of the 23 hyperbolic fixed points.
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k02 ¼ 0:259822; v02 ¼ ð�0:841136; 0:540823ÞT; and a0 ¼ 79�:2758. The same
phenomena appear in the case of other hyperbolic points. In the case of a lower
peak, the orbit spreads quickly due to the bigger eigenvalue k1 in the unstable
direction and occupies a wide region along the invariant curve. While in the
case with a higher peak, orbit diffuses along the unstable direction in a rela-
tively smaller speed (k01 < k1), and the points of an orbit focus in a relatively
narrower region (a0 > a). Consequently, the peaks have different heights.

3.2. STICKINESS EFFECT OF TORI

In order to clarify further the role of hyperbolic invariant sets in the sticki-
ness effect of tori, we discuss the diffusion of orbits in the vicinity of tori. We
define a ‘‘neighboring zone’’ of the torus, and if an orbit diffuses away from
this zone, we regard it as ‘‘escaped’’. To do this, we first calculate the length L
of the boundary curve l of the chief torus and the area A surrounded by it.
Then we define the neighboring zone around the chief torus by expanding the
curve l outwards a width D ¼ ðA=10LÞ, i.e., the area of the neighboring zone
is taken as A=10, where A ¼ 1:8341447� 10�3, L ¼ 0:2221069. As soon as
the distance of an orbit to the chief torus is larger than 2D, we regard it as
escaped.

3.2.1. Diffusion of orbits near the chief torus

We take 20,000 initial points spread uniformly in the neighboring zone
of the chief torus, Pij

0: ðri0 þ ðj=20ÞD; hi0 ¼ ð2p=1000ÞiÞ, i ¼ 1; 2; . . . ; 1000; j ¼
1; 2; :::; 20, where ðri0; hi0Þ are the polar coordinates of the points Pi

0 on l. Then
we choose 2000 points Pk

c ¼ ðrkc ; hkcÞ, k ¼ 1; 2; . . . ; 2000 spread uniformly on l
as the standard points. After n iterations of the map T, a point Pij

m

(m ¼ ðn=5Þ, noting the period 5) on the orbit initialized from point Pij
0 is

regarded as escaped, if the distance d ¼ minðPk
c ;P

ij
mÞ > 2D, where

1OkO2000. We regard an orbit as never escaped if it is not escaped before
n ¼ 1:15� 107. In the same way we take another 20,000 initial points near
one of the 23 periodic hyperbolic fixed points ðxh; yhÞ ¼ ð0:2972704;
0:6590667Þ. The selected initial points are all in a segment of the above
mentioned neighboring zone with angle coordinates from h1 ¼ 6:1851 to
h2 ¼ 6:1903. Interpretatively, this fixed point and its two neighboring fixed
points respectively have angle coordinates of h ¼ 6:1875, 6:1478 and 6:2337.
With the above definitions, we illustrate in Figure 6 the variations of the
surviving orbit number with time (iteration number) for both cases. From
Figure 6 we see the two curves are very similar, but for the orbits starting
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near the hyperbolic fixed point, the diffusion is slower than those started
from the vicinity of the chief torus.

Two different quantities can quantify the stickiness effect: the exponent of
the power law of orbit diffusion and the average time of orbit escape.
According to the results shown by Ding et al. (1990), the surviving number N
of orbits starting from a mixed region in the phase space of a Hamiltonian
system will decrease in a power law with respect to time T: N � T�z, where z
is a positive number depending on the dimension D of the system. When
D ¼ 2, z ¼ 1:2 � 1:5. In our cases, we find that each curve in Figure 6 can be
divided into several segments, which can be linearly fitted with different
slopes. Particularly, when log½Time� 2 ½3:6; 4:4� both of the two curves can be
well fitted by lines with slopes of �1.5, that is, the exponent here is z ¼ 1:5.
Besides, there are segments with smaller z, and we also find z ¼ 3 when
log½Time� > 6:4, which is consistent with the result in Chirikov and Shepe-
lyansky (1999). Despite these interesting details, in this paper we focus mainly
on the similar profiles of the two varying curves, therefore here we report the
average exponents over the whole time range from 0 to 107, which are
z1 ¼ 0:6756 and z2 ¼ 0:6028 respectively for both cases with starting points
near the chief torus and the hyperbolic sets as mentioned above. The small

Figure 6. Diffusion of orbits started closed to the chief torus and close to the hyperbolic fixed

point. The total number of points that have not escaped at time T is denoted by NðTÞ and the
number of points that will never escape is denoted by NðSÞ. Dots and squares stand for the
cases close to the chief torus and close to the hyperbolic fixed points, respectively. The dashed

lines are the linear fittings.
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values of z1; z2 are due to the existence of segments with flat slope. The
average times of escape �T ¼ ð1=N0Þ

RN0

0 T dN are also numerically calculated
and they are �T1 ¼ 4815 and �T2 ¼ 18677 (iteration times) for the cases of
torus and hyperbolic set, respectively.

Both the exponent z and the average time of escape �T imply that, the
orbits with initial points in the vicinity of the chief torus, will diffuse faster
than those started near the hyperbolic invariant set. These results also imply
the hyperbolic invariant sets will play a major role in slowing down the
diffusion of orbits near the torus, or in the stickiness effect of tori.

3.2.2. Diffusion of orbits near the islands

The phase space of map T possesses the self-similarity structure and an orbit
may diffuse around islands of different orders on its way of escaping. In this
section, we study the orbital diffusion near one of the above mentioned 23
periodic islands around the chief torus with center at ðx; yÞ ¼
ð0:2972144; 0:6599696Þ. The neighboring zone and the escape criteria are
the same as that in last subsection, but the A and L are now
A ¼ 2:8499899� 10�7, L ¼ 3:0598743� 10�3. With the same way of taking
initial points, we follow the evolution of 20,000 orbits starting from the

Figure 7. Diffusion of orbits started close to the chief torus and close to the island in the
vicinity of the chief torus. Dots denote the case close to the chief torus, and squares denote the
case close to the island.
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neighboring zone of this island. Figure 7 displays the diffusion of orbits near
the island and near the chief torus as a comparison. The similarity between
the profiles of the two curves in Figure 7 implies the similar sources of the
stickiness effects in these two cases. Combined with Figure 6 we may argue
once again that the stickiness effect of island is also caused mainly by the
hyperbolic invariant set near it. By the way, Figure 7 does not mean that the
diffusion speed of orbits near island is slower than that near the chief torus,
because the definitions of the escaping zone of chief torus and island are only
similar, but not the same.

3.3. SIZE OF ISLANDS

Froeschlé and Lega (1998) studied the variations of sizes of Fibonacci
islands with the distance to the chief torus. Efthymiopoulos et al. (1997)
discussed the variations of islands sizes with perturbation parameter. In
this paper we measure the size of different islands including the chief torus
in the phase space, then investigate the variations of islands’ area with
respect to the periods of island-chains and to the system perturbation
parameter k. With these results we can understand further the orbital
diffusion in phase space and the role of hyperbolic invariant sets in the
stickiness effect of tori. Here the area of an island is approximated by the
summation of areas of 2000 triangles inside the ‘‘outermost’’ invariant
curve surrounding the island.

We compute the areas of islands of different periods (the chief torus is a
period-5 island) in the main (island) sequences (island-chain sequence sur-
rounding the central island) for k ¼ 0:90; 0:95; 1:00; 1:05 and 1:10, respec-
tively. The results are shown in Figure 8, in which each square denotes the
total area of an island-chain of a definite period. From Figure 8 we can find
that the decay of island area with respect to the period obeys roughly a power
law, and the absolute values of the slopes of fitting lines increase monoton-
ically with k. This means that the decay rate of the area for island sequences
increases with the perturbation parameter k (Figure 9).

As well known, the self-similarity property indicates that there are sec-
ondary islands around an island in the main sequence, and then higher order
islands around this secondary islands, and so on. To study the area of such
‘‘islands around islands’’, we select the most outstanding secondary island
chain around an island, and successively repeat such selecting to higher and
higher order. We call such an island sequence ‘‘hierarchical (island)
sequence’’. Taking k ¼ 1:0, we compute the areas of islands in several hier-
archical sequences starting respectively from islands with periods of 4, 16 and
29 in the main sequence. The numerical results displayed in Figure 10 show
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Figure 8. Variations of area of islands in the main island sequence with respect to the period of
island. The linear fit of the data is indicated by both a line and a linear function. (a), (b), (c),
(d) and (e) are the situations of k ¼ 0:90; 0:95; 1:00; 1:05 and 1:10, respectively. The numbers

above the squares in (c) denote the periods of corresponding islands.
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the decay of the area of islands in the hierarchical sequence possesses a power
law too, but compared with the case for main sequence, the absolute values
of the slopes q of fitting lines are smaller. This implies the decay of areas in
the hierarchical sequences is slower than that in the main sequence.

Efthymiopoulos et al. (1999) found that the sizes A of islands with odd
and even ‘‘multiplicities’’ (periods) P in a sequence approaching to a cantorus
decrease following the same power law A ¼ CP�2:75 but with different con-
stants C. In this paper, we investigate the relations between the areas and the
periods of islands in the main and the hierarchical island sequences,
respectively. They are all proved to be power laws with different exponents.
The variations of such exponents with respect to parameter k are also studied
and we found that the exponents are the same for island sequences with even
and odd periods provided the parameters k are the same.

Now we try to estimate the upper bound of the total area of islands in
phase space. As indicated above, the variation of island area with period
possesses roughly a power law, i.e. log APðkÞ ¼ qðkÞ log Pþ CðkÞ, where
APðkÞ is the total area of period-P islands for a given k, qðkÞ the slope and
A1ðkÞ ¼ 10CðkÞ the area of the central island (period-1 island). According
to the result in Figure 9, we have qðkÞ ¼ 0:546� 3:04k and APðkÞ ¼
P0:546�3:04kA1ðkÞ, P 2 fNg, while fNg is the set of period of islands in the
main sequence for k 2 ½0:90; 1:10�. Based on these we obtain the total area of
islands in the main island sequence

Figure 9. Variation of slopes q of fitting lines in Figure 9 with the perturbation parameter k.
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AðkÞ ¼
X

P2fNg
APðkÞO

X
P2½1;1Þ

APðkÞ ¼ A1ðkÞ
X

P2½1;1Þ
PqðkÞ: ð2Þ

We know that series
P1

n¼1ð1=nsÞ is convergent if s > 1, and the sum is called
Riemann function fðsÞ. After elementary calculus, we get

fðsÞ < 1� s� 2�sð1þ sÞ
1� s

¼ 1� 2�sð1þ sÞ
1� s

: ð3Þ
Thus we have

AðkÞ < A1ðkÞ½1� 2qðkÞð1� qðkÞÞ
1þ qðkÞ � ¼ UðkÞ; k 2 ½0:90; 1:10�: ð4Þ

Generally the area of central island decreases as k increases in a long term for
large variation of k, but the varying is not smooth. It can even increase
temporarily (Efthymiopoulos et al., 1997), as happening to occur in the
present case. However we take the average CðkÞ for the five values of k,
CðkÞ ¼ �0:502.

Substituting qðkÞ ¼ 0:546� 3:04k and A1ðkÞ ¼ 10�0:502, we finally get an
upper bound UðkÞ of the total area of islands in the main island sequence.
Because the total area of higher-order islands in the hierarchical island se-
quences is much smaller than that in the main island sequence, UðkÞ is
roughly an upper bound of the total area of islands in phase space. Calcu-

Figure 10. Variations of area of island in the hierarchical island sequences with the period of

islands, and the corresponding fitting lines. The filled squares, circles and triangles represent
the situations in the sequence starting from the period-4, 16, and 29 islands in the main
sequence. q is the slope of the fitting line.
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lating of Equation (4) shows UðkÞ ¼ 0:500; 0:469; 0:445; 0:426; and 0:410
when k ¼ 0:90; 0:95; 1:00; 1:05; and 1:10, respectively.

If there were more values of island area for large variation of k, and if we
could get a better expressions on qðkÞ and CðkÞ, we would have a better
estimation of the upper bound of the total area of islands in phase space for
given k.

On the other hand, the whole phase space in our model consists of islands
and other invariant sets. If the total area of islands is smaller than 1:0, the
residue of them must have a positive measure. This may also imply the
importance of hyperbolic sets in the orbital diffusion. Although the above
calculation is only a coarse estimate, we hope it can give some valuable hints.

4. Conclusions

From the above results, we conclude that:

(1) An orbit started close to tori will spend most of time near the hyperbolic
invariant sets surrounding the tori, before escaping from the vicinity.
This is reasonable because of the following fact: according to the char-
acter of the hyperbolic invariant set, an orbit would spend very long time
in approaching to (leaving from) a hyperbolic fixed point along the stable
(unstable) manifold.

(2) The orbits started close to tori and those started close to hyperbolic
invariant sets obey the same diffusion rules, but in the latter case the
orbits diffuse slower than that in the former case.

(3) For the orbits initially close to the chief torus and orbits initially close to
the secondary island, respectively, they possess the similar diffusion rule.
This is consistent with the character of self-similarity structure of phase
space.

(4) The decay of island area with period in both the case of main island
sequence and hierarchical island sequence obeys roughly a power law,
and in the former case the absolute values of the slope of fitting line
increase monotonously with k. From these results it seems that when an
orbit diffuses outwards from the chief torus more and more, the proba-
bility of its encounter with the islands should be smaller and smaller, and
this could be a reason for the gradually faster diffusion of an orbits
farther from the chief torus. Moreover, the speed of diffusion increases
with k, coinciding with the above conclusions.

Finally, we conclude that the stickiness effect of tori is indeed caused
mainly by the hyperbolic invariant sets in the vicinity of tori. According to
the Poincaré-Birkhoff fixed point theorem, between the islands in
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an island-chain, there exist the hyperbolic invariant sets. And cantori are
known to consist of hyperbolic invariant sets too. Therefore, when the orbits
diffuse through island-chain and cantori, the corresponding hyperbolic
invariant sets would slow down the speed of diffusion. So we can conclude
also that the generalized stickiness effect is caused mainly by the hyperbolic
invariant sets.
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Froeschlé Cl. and Lega E.: 1998, ‘Modelling mappings: an aim and a tool for the study of

dynamical systems’, In: D. Benest & Cl. Froeschlé (eds.), Analysis andModelling of Discrete
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