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Abstract. We compare two different N-body models simulating elliptical galaxies. Namely,
the first model is a non-rotating triaxial N-body equilibrium model with smooth center, called
SC model. The second model, called CM model, is derived from the SC by inserting a central
mass in it, so that all possible differences between the two models are due to the effect of the
central mass. The central mass is assumed to be mainly due to a massive central black hole of
mass about 1% of the total mass of the galaxy. By using the fundamental frequency analysis,
the two systems are thoroughly investigated as regards the types of orbits described either by
test particles, or by the real particles of the systems at all the energy levels. A comparison
between the orbits of test particles and the orbits of real particles at various energy levels is
made on the rotation number plane. We find that extensive stable regions of phase space,
detected by test particles remain empty, i.e. these regions are not occupied by real particles,
while many real particles move in unstable regions of phase space describing chaotic orbits.
We run self-consistently the two models for more than a Hubble time. During this run, in spite
of the noise due to small variations of the potential, the SC model maintains (within a small
uncertainly) the number of particles moving on orbits of each particular type. In contrast, the
CM model is unstable, due to the large amount of mass in chaotic motion caused by the
central mass. This system undergoes a secular evolution towards an equilibrium state. During
this evolution it is gradually self-organized by converting chaotic orbits to ordered orbits
mainly of the short axis tube type approaching an oblate spheroidal equilibrium. This is clearly
demonstrated in terms of the fundamental frequencies of the orbits on the rotation number
plane and the time evolution of the triaxiality index.
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1. Introduction

Self-consistent galactic models realized by N-body simulations are efficient
tools in studying the structure and evolution of galaxies. We use these tools in
investigating the orbital structure, the evolution and the stability of models
simulating elliptical galaxies.
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If we assume that elliptical galaxies are non-rotating triaxial equilibrium
configurations with a smooth center, i.e. the density near the center is flat, the
potential in this region tends to be harmonic. The most favored type of
ordered orbits in this case is the type of box orbits, i.e. orbits composed of
three oscillations along the corresponding principal axes of the anisotropic
system. They satisfy three integrals of motion, which are approximately the
energies along the three axes of the box. The pericenters of these orbits can be
arbitrarily close to the center.

In real galaxies, in principle, the central region may not be smooth. In
many cases the density near the center, instead of being flat, presents a cuspy
density profile (Ferrarese et al., 1994; Lauer et al., 1995; Gebhardt et al.,
1996; Faber et al., 1997). Furthermore, the dominant opinion today is that
the center is occupied by a black hole. Recent investigations provide accu-
mulated evidence that massive central black holes in galaxies must be quite
common (Kormendy and Richstone, 1995; Kormendy et al., 1997, 1998; van
der Marel et al., 1997, 1998; Magorrian et al., 1998; Cretton and van den
Bosch 1999; Gebhardt et al., 2000). The massive central black holes may be
surrounded by other types of mass, e.g. gas, clouds, stars, etc.

The dynamical effect of a central force field (produced by a massive central
black hole and its direct environment) on the orbits of stars in a galaxy is
important. Orbits passing near the center are appreciably deflected by the
central force field that dominates locally. As a consequence, the integrals of
motion of ordered orbits are destroyed when these orbits approach the
center. Thus, the orbits become chaotic (Gerhard and Binney 1985; Merritt
and Fridman 1996).

This effect may have important consequences on the stability of galaxies.
This field of research is very active in recent years (e.g. Merritt and Fridman,
1996; Merritt and Valluri, 1996; Fridman and Merritt, 1997; Valluri and
Merritt, 1988; Merritt and Quinlan, 1998; Siopis, 1999; Siopis and Kandrup,
2000; Kandrup and Sideris, 2002; Poon and Merritt, 2002, 2004; Kandrup
and Siopis, 2003; Kalapotharakos et al 2004; Voglis and Kalapotharakos,
2005)

In order to investigate further this problem, we concentrate our study on a
comparison between the following two models:

(1) a triaxial N-body model with smooth center in virial equilibrium, here-
after called Smooth Center (SC) model and

(i1) a model, called Central Mass (CM) model, that is created from the SC
model by inserting a central mass. The central mass is assumed to be
mainly due to a black hole of size comparable to the largest masses of
black holes in the centers of galaxies estimated from observational data.
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The comparison regards the various types of orbits described by the indi-
vidual particles in each system, as they are mapped on the space of their
fundamental frequencies. It is obvious that all the differences between the two
models must be attributed to the presence of the central mass.

As we will see below, this comparison reveals important features of the
dynamical role a central black hole can play in real galaxies, such as the
destabilization of orbits of certain types (e.g. box orbits) or enhancement of
the stability of other types (e.g. short axis tube orbits). We show that
redistribution of different types of orbits can take place, so that the system
develops a secular evolution towards a new equilibrium configuration.

In Section 2 we describe the main features of the two models (Sections 2.1
and 2.2, respectively). In Section 3 we give a short description of the method
developed earlier (Voglis et al., 2002) to distinguish the mass in chaotic motion
from the mass in ordered motion in N-body models and explain how this
method is applied in our problem. We use also the frequency analysis method to
make a similar distinction and we compare the results of the two methods. In
Section 4, we use the frequency analysis method to identify all the types of orbits
of test particles in the SC model and compare them with the orbits of the real
particles of the system on the rotation number plane i.e. the plane of the two
fundamental frequencies of oscillation of the orbits along the middle and the
longest axis, respectively, divided by the fundamental frequency along the
shortest axis. The types of orbits that appear at various energy levels are
examined. In Section 5 the same method is applied at a particular snapshot of
the CM model to identify the various types of orbits on the rotation number
plane and compare with the results of Section 4. In section 6 the secular evo-
lution of the CM model is examined by representing the orbits on the rotation
number plane at different snapshots of the system. Our conclusions are sum-
marized in Section 7.

2. Description of the Models
2.1. THE SC MODEL

The derivation of the smooth center model is described in detail in previous
papers (Contopoulos et al., 2002; Voglis et al., 2002). In brief, this N-body
model is the outcome of dissipationless collapse and relaxation derived from
quiet cosmological initial conditions. In the relaxed equilibrium configuration
this model is characterized by a triaxial bar. Let the principal axes, shortest,
intermediate and longest axes be respectively along the x,y,z cartesian axes. The
maximum ellipticity of the equidensity contours (on the x—z plane) in the inner
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parts is of E7 type, while it tends to an ES5 type in the outer parts (on the same
plane).

The number of particles used is N ~ 1.5 x 10°. The evolution is followed
by a N-body code based on the conservative technique Allen et al., 1990 In
this code the Poisson equation is solved in terms of an orthogonal set of basis
functions (Spherical Bessel functions and Spherical Harmonics). The po-
tential provided by this technique is smooth. Particles do not see their
neighbors. They move under the global field created by their distribution at
any time. In the central region this potential is roughly harmonic. In its
typical version the code gives the global potential expanded in 120 terms. In
spherical coordinates (r, 0, ¢) the radial expansion is extended up to 20 terms
and the angular expansions (6, ¢) up to quadrupole terms. Among the 120
terms, 20 are monopole terms (depending only on r), 20 quadrupole terms
(depending on r and 0) and 80 triaxial terms (depending on the three coor-
dinates). This potential can be written as

V(r,0,0) = ZBzoonoo +ZBzzoV120(V 0)

=0

20 monopole terms 20 quadrupole terms

19 19
+ Z Bp 1 Vi (r,0)cos ¢ + Z Cp1Vpi(r,0)sin ¢

=0 =0
19 19
+ Z Bp» V]z()(}’, 0) cos2¢ + Z Cm V]z()(}’, 0) sin 2¢ (1)
=0 =0

~
80 triaxial terms

where By, Bno, Bpi, Cpi, Bno, Cpy (with [ =0,...,19) are the coefficients of
the expansion.

The adopted scaling units are as follows. The unit of energy is defined so
that the value of the potential at the center (deepest value) of the SC model is
equal to V(0) = —100. The length unit is the half mass radius R; of this
system. The time unit is the half mass crossing time defined as
Thmet = (2R /GM )l/ % in terms of Ry, and the mass M, of the galaxy.

Itis useful to express some important time scales in thls unit. The period
T, of a circular orbit of radius Ry is Tep = 2nThmet. The relation between
the radial period T, of an orbit (i.e. the time needed for a star to go from the
pericenter to the apocenter and back to the pericenter of its orbit) and the
circular period T¢, of the same energy can be written as T, = f7; where the
factor fis f=1 in the Kelperian potential, and f=2 in the harmonic
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potential. In the potential of our N-body system f ranges between these two
values. For orbits of the N-body systems with energies near the value of the
potential at the half mass radius, the values of f are close to 2.

The radial period of the orbits with energy equal to the mean value of the
potential at the half mass radius, denoted by Ty, 1S Thmr = 3 Thmet. A star in
circular motion, in a typical galaxy, describes about 50 cycles in a Hubble
time tyyup. Therefore, a Hubble time can be written as

IHub =~ 5OTcp = 5ij]—'hmr ~ 300 Thmet- (2)

In a self-consistent run the coefficients of the potential (1) are re-evaluated at
regular small time steps Az = 0.025Thmet. The variations of the coefficients in
this model are quite small. They have only a small noise depending on the
number N of particles, i.e. of the order of 1/\/_]Vs1%.

If the coefficients of the potential are fixed at a given snapshot we can
write an autonomous 3D Hamiltonian

P Ly L
H= 2 + 21’2 sin 02 + 2]/2 + V(}", 07 (l)) (3)
Using this Hamiltonian we can study the phase space of the system. We can
find the various types of orbits using test particles and compare with the
orbits of the real particles of the system in this Hamiltonian.

Any possible changes in the types of orbits, due to the variations of the
coefficients in time, can be checked if we fix the values of the coefficients at a
different snapshot and repeat the study of the Hamiltonian (3). No serious
changes are detected in the phase space of this model even after run times
that considerably exceed the Hubble time.

2.2. THE CM MODEL

We choose a particular snapshot of the SC model (after a run time of
tsc = 100 Tymct in the relaxed configuration). At this snapshot the time is reset
to t = 0 and a central mass of a given size is inserted abruptly to create the
CM model. So all the differences between the two models can be attributed to
the presence of the central mass of this size.

We consider the case when the time of growth of the central black hole is
much less than the galaxy’s life time. In this case the main dynamical effect of
the black hole depends mainly on its final size. For this reason we simplify the
model by neglecting the transient period of growth of the black hole and we
insert abruptly the central mass.

For the central mass M., we have adopted the central potential

Vem(r) = Gﬂjcm [arctan (2) - g], (4)
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where a is a softening length given by

Mcm
a=0.05——R,, (5)
M, ¢
where R, is the radius of the galaxy. Notice that the force derived from this

potential is
G Mcn
Fom(r) = TR ra (6)

i.e. it is of a Keplerian nature only for orbits with pericenters much larger
than a. The force at the center of this model tends to a finite constant.
Stars with pericenters below the softening length « are not deflected
strongly by the CM. This softening length does not significantly alter the
global behavior of the system, since the number of orbits with pericenters
less than a is small.

Notice that the density profile derived from the above potential is

G Mma?
2nr(r? + a2)2 ’
i.e. this model for r < a gives an r~! cuspy density profile.
The relative size m of the central mass with respect to the mass of the
galaxy, i.e.
m= Mcm/M, (8)

is an important parameter. In the CM model we use the value of m = 0.01.
Such a value is of the same order of magnitude as the largest black hole
masses estimated by observational data (Magorrian et al., 1998; Merritt and
Ferrarese, 2001).

In this model, particles move under the superposition of the potential (4)
and the potential due to their distribution in space at any time given by (1) in
which the coefficients are re-evaluated at every small time step
(At = 0.025Thmet)-

Notice that after the introduction of the central mass the radial profile of
the density of particles near the center does not remain so flat as before. It
develops a weekly cuspy profile.

In order to study the types of orbits which are consistent with a given
snapshot of the total potential we fix the coefficients in (1) at this particular
snapshot and we run the particles in the autonomous Hamiltonian

Pem(r) (7)

2 2

H="+ L + 504 10,0, ) + Ven(r) )
= AT T 5.3 T A, r em\7)-
2 212sin%0 22 T

As we will see in Section 6 this model presents a secular evolution that can be
studied by applying (9) at many successive snapshots of the potential.
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3. Distinction of Particles in Ordered Motion from Particles in Chaotic
Motion

As a consequence of the non-integrability of the potential (1) a considerable
part of the orbits in the two systems are chaotic.

In Voglis et al. (2002) we have developed a method to identify particles of
N-body models moving in chaotic orbits provided that their mean logarith-
mic divergence rate exceeds a certain threshold.

In brief this method of distinguishing the chaotic from ordered orbits is
based on the combination of two different tools. First, is the calculation of
the mean exponential divergence in a given period of time, between the orbit
of a real particle in the system and a neighboring orbit. The mean exponential
divergence is measured in units of the inverse radial period T} of the par-
ticular orbit j. We call it Specific Finite Time Lyapunov Characteristic
Number (S-FT-LCN) and we use simply the symbol L; for it. The orbit j is
integrated in a 3D autonomous Hamiltonian, as the Hamiltonians (3) or (9)
when they are applied to a particular snapshot of the potential (1).

Second, we use the Alignment Index Al; of the orbit j, i.e. the magnitude
of the sum or the difference of two initially arbitrary deviation vectors of this
orbit, normalized to unity at every At.

If the orbit is chaotic, the two deviation vectors tend exponentially to be
parallel or antiparallel (depending on their initial orientation). In this case,
the alignment index Alj;, expressed by the difference of the deviation vectors if
they are parallel, or by the sum if they are antiparallel, i.e. the smaller value
between the two, tends exponentially to zero (Voglis et al., 1998, 1999;
Skokos 2001).

If the orbit is ordered, or if it is so weakly chaotic that the chaotic char-
acter can not appear during the available integration time, the two deviation
vectors oscillate around each other. Thus, the corresponding values of Al; do
not tend exponentially to zero, but instead they maintain finite values, in
principle close to unity. (It is very improbable to become less than 1073).

The run time ¢ of the orbit j is ; = N, T}, where Ny, is a number of radial
periods common for all the orbits. In the case of ordered orbits, or chaotic
orbits that temporarily behave as ordered, the values of L; decrease on the
average as N;pl and they are almost independent of the orbit. As N,, in-
creases, the L; of chaotic orbits stops decreasing and it is saturated at a
roughly constant value L; > N, !. Chaotic orbits are characterized by such
constant values of L;. The detection limit of chaotic orbits is determined by
the maximum number of radial periods Ny_max. For the adopted value
Nip—max = 1200 the minimum L; of the detected chaotic orbits is the
threshold of ~ 10728,
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The index L; gives the rate of exponential divergence per radial period.
The advantage of using L; is the fact that the values of L; measure the chaotic
character independently of the characteristic time scale of the orbit. If the
value of L; is smaller than the threshold the orbit is either ordered, or close to
ordered, obeying two integrals of motion (at least approximately) beyond its
binding energy. In this sense the index L; is a measure of the departure from
integrability, or in other words, L; is a measure of the complexity of the phase
space of the orbit.

The Lyapunov time derived from L, i.e. the time L;” I'is expressed in radial
periods Tj and corresponds to different real time scales depending on the size
of Tyj. Such a Lyapunov time, LJ-*I, cannot be directly compared with a fixed
time scale, for example, the Hubble time. Furthermore, the threshold value of
this Lyapunov time, derived from the threshold value of Lj= 10728, is
smaller for orbits of short radial periods (innermost orbits, i.e. orbits of low
binding energies) than for orbits of long radial periods.

In Voglis et al. (2002), we have also used the CU-FT-LCN, of simply L;,
i.e., the Finite Time LCN measured in a common time unit for all the orbits,
equal to the inverse radial period Thm, of an orbit with energy equal to the
mean value of the potential at the half mass radius. The index L, gives the
total exponential divergence in time Ty, independently of the number of
radial periods during this time. This quantity measures the combined action
of two effects, i.e the chaotic character of the orbit and the characteristic time
scale of the orbit. For the innermost orbits (where Ty < Thmr), Leuj takes
larger values than the corresponding values of L;, while for the outermost
orbits it takes smaller values than L;. If the value of L, is smaller than the
adopted threshold there is no guarantee that the orbit obeys other integrals of
motion beyond its binding energy. Very small values of L,j can be derived
for long period orbits, even if they wander in a large chaotic sea. Therefore,
L, 1s not an objective measure of the departure from integrability, because
its values are biased by the dynamical time scales of the orbits. For this
reason we prefer using L; instead L, for distinguishing the orbits.

However, L, is also a useful quantity because the Lyapunov times L_},
expressed in common units 7Ty, can be directly compared to the Hubble
time. Furthermore, a particular threshold value of L, defines a common
threshold value of the Lyapunov times for all the orbits independently of
their characteristic time scales.

As a consequence of the above properties of the two indices, the number
of chaotic orbits, that can be detected by using a threshold value in L, is
not exactly the same with those detected by using the same threshold value in
L;. The threshold of L, gives more chaotic orbits in the inner parts, while
the threshold of L; gives more chaotic orbits in the outer parts. However,
provided that the adopted thresholds are small enough, so that the minimum
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Lyapunov times considerably exceed the Hubble time, the difference between
the two sets of the detected chaotic orbits regards only very weakly chaotic
orbits that might equally well be considered as ordered orbits.

Large values of L; are correlated with large variability per radial period of
the actions of the orbits and hence with larger rates of chaotic diffusion
(Lichtenberg and Lieberman 1992). Chaotic diffusion, however, is important
in a given time provided that this time is longer than the Lyapunov time. The
values of L; can give us the ability of chaotic diffusion in a given number of
radial periods, but not in a fixed period of time. Thus, after obtaining the
separation of chaotic orbits in terms of L;, we find the chaotic orbits that can
in principle develop chaotic diffusion in a Hubble time, by calculating their
L., in terms of their L; as

Tmr
gLl (10)

As mentioned above, the Lyapunov time Lgug, expressed in units of Ty, can
be directly compared with the Hubble time tgyu, ~ 1007}y, Therefore, a
necessary condition for a remarkable chaotic diffusion in one Hubble time is
L} < taup, Or Ly 2107271

The threshold Lj = 107>% is adopted for two reasons. First, because the
rate of appearance of new chaotic orbits slows down remarkably by
increasing further Npy,_max (Kalapotharakos et al., 2004). Second, all the
orbits with Lc,; > 1072 have values of L; well above the threshold 10728, so
they are certainly included in the set of chaotic orbits. This is seen in
Figure 1, where all the detected chaotic orbits of the SC model are plotted on
the log L; — log L, plane.

Chaotic orbits in a 3D Hamiltonian system can be either fully chaotic, or
partially chaotic. The fully chaotic orbits are characterized by two positive
Lyapunov numbers, the first (or the maximal) LCN corresponding to L; and a
second LCN, smaller than Z;. The partially chaotic orbits are characterized by
only one positive LCN corresponding to L; and they obey one more integral of
motion beyond their binding energy. Due to this integral, partially chaotic
orbits are confined in space, and are not allowed to diffuse to all directions.

In our distinction between ordered and chaotic orbits in terms of L;,
partially and fully chaotic orbits are bunched together. Most of the chaotic
orbits with large values of L; are fully chaotic, e.g. orbits with log L; 2 — 2 in
Figure 1. Those with smaller values of L; can be characterized as partially
chaotic because their second Lyapunov number is either very small or zero.
They obey an approximate integral of motion so they are confined to par-
ticular regions of phase space.

Muzzio and Mosquera (2004), Muzzio et al. (2005), in their study of the
mass in chaotic motion in self-consistent models of stellar systems, have used a
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Figure 1. The chaotic orbits in the SC model detected by L; above the threshold of 10728 are
plotted on the plane of log Lj — log Lc;. Very small values of L,; are only due to the orbits of
long radial periods. The orbits with log L.,; > —2 that can develop chaotic diffusion in a
Hubble are well above the threshold of log L; = —2.8. Partially chaotic orbits are found
mainly among the orbits with low values of log ;.

common unit for the evaluation of the Lyapunov numbers (as in our L;). They
evaluate both the first and the second FT-LCNs of the orbits above a threshold.
They show that the orbits of their systems that are characterized as partially
chaotic, but also those of the fully chaotic orbits with low values of the first FT-
LCN, have different spatial distributions compared with the fully chaotic orbits
with high values of the first FT-LCN. Fully chaotic orbits with low FT-LCN
and partially chaotic orbits are confined in a prolate-triaxial distribution, while
fully chaotic orbits with high FT-LCN show an almost spherical distribution.
Fully chaotic orbits with low FT-LCN behave as partially chaotic for a long
time. Therefore, a distinction between the chaotic orbits having a confined
spatial distribution and those having an almost spherical distribution can be
obtained by using the values of the first FT-LCN (small or large, respectively).
Itis not quite necessary to identify separately the partially and the fully chaotic
orbits, although such a distinction can give more details about the spatial
distribution of the orbits with low FT-LCN.
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As it is well known, an alternative method to distinguish between ordered
and chaotic motion is the frequency analysis method introduced by Laskar
(1990). (See also Laskar et al., 1992; Laskar, 1993a, 1993b; Papaphillipou
and Laskar, 1996, 1998). This method exploits the fact that the frequencies of
ordered orbits remain constant in time (within the available accuracy). The
frequencies of chaotic orbits, on the other hand, develop a considerable
variability. The distinction is obtained by evaluating accurately the funda-
mental frequencies of the orbits.

For this purpose we use the FMFT code by Sidlichovsky and Nesvorny
(1997) to find the fundamental frequencies v,, v, v. of the oscillations of the
orbits along the x,y,z axes. Notice that these frequencies are measured in
units of the inverse radial period of each particular orbit, as in the case of the
L.

In order to check the variability of the fundamental frequencies of the
orbits in a particular snapshot of the potential (1), we select two spans for
every orbit with the same number of radial periods AN, = 300, common for
all the orbits. The run time of the orbit j is:

span(1): from ¢ =0 to ¢t = 3007

span(2): from ¢ = 9007 to t = 12007;.

The fundamental frequencies along the shortest axis x (the most unstable
direction in the system) are always larger and more sensitive than the fun-
damental frequencies along the other two axes. For this reason we use the
quantity

| M _ (2)|
ay =0 9] ()

as a measure of the variability of frequencies. The upper index gives the
corresponding span from which the frequency is evaluated.

In terms of the three indices, L;, Al;, éwj, we can obtain a very clear
distinction between ordered and chaotic orbits. This can be seen in
Figure 2a,b, where all the orbits of the two systems are plotted in the three-
dimensional space (log A/;,log L;,log éw;). For most of the orbits (=~ 95%)
the index log AJ; works as a switch taking values either in the region from -3
to 0 for ordered orbits, or very small values, less than -10 for chaotic orbits.
The intermediate values of log Al; correspond to a relatively small number
(=~ 5%) of weakly chaotic orbits of the lane joining the two groups.

Using the above method we have found that in the SC model about 32%
of the total mass moves in chaotic orbits and about 68% in ordered orbits.
As we have checked, these fractions remain almost the same at various
snapshots selected at very different times even larger than the Hubble time.
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Figure 2. Distinction between ordered and chaotic orbits using the three indices
log Al;,log L, log éw; for the two models SC (a) and CM (b). The sensitivity of log A/, is
considerable larger than the sensitivity of the other two indices.

The identities of the particles in the groups are also well preserved, in spite of
the noise due to the variations of the coeflicients of the potential. Only a
fraction of 1-2% of the total number of particles jump from one group to the
other and vice versa.

It is worth noticing that Muzzio et al. (2005), in their smooth center model
of an elliptical galaxy, have found a fraction of mass in chaotic motion of
about 53%, i.e. considerably larger than in our study. Partially, this diffrence
is due to an overestimation (with respect to our estimation) of chaos (espe-
cially in the low energy orbits) because of the use of a smaller threshold in
their FT-LCN similar to L. Another source of this difference is the fact that
our SC model is more flat near the center than their model. However, their
results are in agreement with our conclusion that, even in models of stellar
systems with smooth centers, the fraction of mass in chaotic motion is not
negligible. It is at least of the order of a few tens per cent, although in most of
the chaotic orbits the corresponding Lyapunov numbers may be relatively
small.

Applying our method to various snapshots of the CM model we find that
at the snapshot of ¢ = 0 the fraction of mass in chaotic motion is ~ 80%. At
the snapshot of ¢ = 150 the chaotic mass is reduced to ~ 58%, while at the
snapshot of ¢ = 300 this fraction falls down to ~ 22% and remains perma-
nently (i.e. for a time much longer than a Hubble time) on this level, indi-
cating that the system has reached a well established equilibrium. The
reduction of the fraction of mass in chaotic motion from one snapshot to
another is due to a process of self-organization occurring in the CM model
that is discussed in Section 6.
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4. The Frequency Map of the SC Model

We define the rotation numbers v, /v, and v./v, and we mark the frequencies
on the rotation number plane (e.g. as in Papaphillipou and Laskar, 1998;
Wachlin and Ferraz-Mello, 1998; Valluri and Merritt, 1998; Holley-Bockl-
mann et al., 2002). Such diagrams are usually called frequency maps. Typical
examples of orbits found in the SC model are shown in Figure 3a—f. The
letters a,b,... label the rows of this figure. Every row gives the three pro-
jections of the same orbit on the planes x — y,x —z,y — z, respectively.
Following a standard terminology (de Zeeuw, 1985; Statler, 1987), the types
of ordered orbits found in this model can be classified in terms of their
rotation numbers as follows:

(a) Box orbits. They are combinations of three oscillations along the
x,y,z axes. They can pass arbitrarily close to the center. Their rotation
numbers v, /v, and v./v, are irrational. The major axis of most of the box
orbits is in average along the longest axis z of the system but it performs
two librational motions around the axis z with constant irrational fre-
quencies either on the y — z or on the x —z plane, filling in this way a
region having the shape of a parallelepiped, with curved surfaces, (Fig-
ure 3a). This type of orbits is compatible only with triaxial equidensity
surfaces.

(b) Inner Long Axis Tube (ILAT) orbits. Such orbits fill tube-like regions
with maximum size along the longest axis z (Figure 3b). The hole of the tube
appears along the z axis due to the component of the angular momentum of
the orbit along this axis. For a number of ILAT orbits this hole may be small,
so that they can pass quite close to the center. In this case the ILAT orbits
resemble the box orbits. For this reason we call them box-like orbits. The
ILAT orbits are characterized by the resonant value of the rotation number
v, /vy = 1. Due to this resonance the major axis of the ILAT orbits describes
a precession around the z axis. This type of orbits is compatible with triaxial
and prolate equidensity surfaces.

(c) Outer Long Axis Tube (OLAT) orbits. This is another type of resonant
orbits with the same rotation number v, /v, = 1 as the ILAT orbits and with
the hole of the tube being again along the longest axis z (Figure 3c). The
main difference of the OLAT from the ILAT orbits is that the major axis of
the OLAT orbits oscillates up and down the x — y plane instead of precessing
around the z axis. Furthermore, the angular momentum along the z axis and
the radius of the hole are larger compared with the corresponding quantities
of the ILAT orbits. Thus, they do not approach so close to the center. This
type of orbits is compatible with triaxial and prolate equidensity surfaces.
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Figure 3. Examples of the various types of orbits of the particles in the SC model. Each row
gives a type of orbit projected on the three planes x—y, x—z, y—z, respectively. The types of
orbits are box (a), ILAT (b), OLAT (c), SAT (d), HORT (e), chaotic (f).
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(d) Short Axis Tube (SAT) orbits. They form tubes surrounding the
shortest axis x (having their hole along this axis, Figure 3d). They are
characterized by equal rotation numbers, i.e. v,/vy = v./v,. Their major axis
oscillates up and down the plane of the intermediate-longest axes (y — z
plane). Due to their angular momentum along the shortest axis they can not
approach the center. They support the flatness of the system along the
shortest axis. This type of orbits is compatible with triaxial and oblate
equidensity surfaces.

(e) Higher Order Resonant Tube (HORT) orbits. These are tube-like or-
dered orbits corresponding to various resonances of higher order. For
example the ratio of frequencies of the orbit in Figure 3e is approximately
v, : vy = 2 : 3. In general, HORT orbits do no approach very near the center.
This type of orbits is compatible only with triaxial equidensity surfaces.

(f) Chaotic orbits have been discussed in the previous section. Their
rotation numbers vary irregularly in time. An example of chaotic orbit is
shown in Figure 3f. This type of orbits is compatible with all the kinds of
equidensity surface.

As it is well known the resonant orbits satisfy the condition of Diofantos

Nyvy + nyvy +nzv. =0, (12)

where n,, n, and n. are integers. If one of the three frequencies is irrational to
the others the above equation is satisfied if the corresponding coefficient is
zero. This is the case of the ILAT, OLAT and SAT orbits. For ILAT and
OLAT orbits the vector (ny,n,,n.) that satisfies (12) is (1,—1,0), while for
the SAT orbits this vector is (0,1, —1).

For the HORT orbit shown in Figure 3e (ny,n,,n.) = (2,0, 3). There are
of course HORT orbits with non-zero integers in all the three components of
the vector (ny, n,,n.) satisfying (12). For box orbits equation (12) is satisfied
only for (ny,n,,n.) = (0,0,0).

As we will see by the end of this section a good number of the detected
chaotic orbits follow the geometry of the above types of ordered orbits and
they satisfy resonance conditions with a good accuracy for not negligible
periods of time.

At high energy levels all the types of orbits are present but this is not the
case at low energy levels. In order to study how the various types of orbits
appear along different energy levels at a given snapshot of the potential, we
run test particles scanning all the available phase space of the corresponding
Hamiltonian at an energy level 4. We find the fundamental frequencies of
their orbits and construct the frequency map on the rotation number plane.
This is repeated for a series of energy levels. The same process is repeated for
the orbits of the real particles of the system with energies inside a small
window (of width +1) around 4.
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In Figure 4a,a,b,f,¢,7,d,0,¢,¢,f,{ the rotation number planes of the
orbits of test particles and the orbits of real particles are shown for com-
parison in pairs at energy levels

h = —80, —70, —60, —50, —40, —10,

respectively, as they result from the snapshot of the potential (1) at t = 0. The
figures of the left column (labelled by Latin letters) give the orbits of test
particles (covering all the available phase space at the corresponding energy).
The figures of the right column (labelled by Greek letters) give the orbits of
the real particles of the system (with energies inside a small window around
the same value of energy).

We first describe Figure 4f (h = —10) where all the types of orbits are
present as indicated in this figure.

The ILAT and OLAT orbits are located on two separated segments along
a vertical line v, /v, = 1. The segment of ILAT is for v./v, <0.7. The almost
empty part of this line near the value v./v, = 0.7 corresponds to a zone of
instability that separates these two families of orbits.

In Figure 4f the SAT orbits are located along the diagonal v, /v, = v./v..
The box and the HORT orbits occupy a wide range on this plane with
v-/v+ <0.7 and v, /v, < 1. The box orbits form an almost continuous distri-
bution in this area, interrupted by straight lines corresponding to HORT
orbits. The points that are irregularly dispersed in between the above types of
orbits correspond to chaotic orbits.

As we can see in Figure 4{ the real particles of the system at the same
energy level occupy all the types of orbits of test particles and they are
distributed in a rather similar way. However, this is not always the case
especially for low energies as we will see below.

In the deepest parts of the potential only box and HORT orbits are
allowed. For example, for # = —80 (Figure 4a) only box orbits appear
(and a small number of HORT orbits that are not clearly seen in this
figure). The same happens also for smaller energy levels. It is remarkable
that on the rotation number plane the area of box orbits at low energy
levels has a shape of a curvilinear triangle as in Figure 4a. The three
corners of the triangle correspond to harmonic oscillations along the
longest axis z (top corner), the intermediate axis y (left corner) and the
shortest axis x (right corner), with small amplitude of oscillations along
the other axes in each case.

In Figure 4o the real particles of the system occupy preferably the left side
of the triangle than the right side, which is almost empty. This is because of
the self-consistency. The existence of stable orbits of test particles does not
necessarily imply that these orbits can be occupied by real particles of the
system. The orbits of real particles are further restricted by the self-consis-
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Figure 4. The rotation number plane at the energy levels 7 = —80, —70, —60, —50, —40, —10 for
the snapshot at # = 0 of the potential (1) of the SC model. In the figures of the left column (a), (b),
(c), (d), (e), (f) orbits of test particles are plotted scanning all the available phase space at every
energy level. In the right column a, f8, y, 9, €, { the orbits of the real particles of the system with
energies in a small window +1 around the corresponding energy are plotted for comparison. The
real particles of the system do not necessarily occupy all the available phase space, because they
are further restricted by self-consistency.
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Figure 4. (Continued)
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tency to follow a distribution that supports the equidensity surfaces having
their axis along y larger than their axis along x, otherwise the system could
not be in equilibium.

In Figure 4b (for 7 = —70) the area of box orbits is expanded covering
a wider range of values of v,/v.. The upper angle of the curvilinear tri-
angle flattens. This flattening corresponds to the increase of the amplitude
of the libration of the major axis of the box orbits either on the y —z
plane (expansion to the left), or on the x —z plane (expansion to the
right). The right corner of the triangle has been destroyed because the
oscillation along the shortest axis has already been unstable. A weakly
populated chaotic layer appears in this area separating the box orbits from
the ILAT orbits, that start appearing at about this level of energy (a few
points along the line v, /v, = 1). The left corner still exists, indicating that
the corresponding oscillations (along the y axis) are still stable. This
corner is expanded to smaller values of v,/v,.

As shown in Figure 4 the orbits of real particles again do not cover all the
area of stable orbits of test particles. They are preferably located near the left-
upper limit of this area because of self-consistency reasons, as explained above.

At the energy level # = —60 (Figure 4c) the area of box orbits is further
expanded along smaller values of v,/v,, due to further increasing of the
libration of the major axis on the y — z plane. The area of box orbits takes the
shape of a lane rather than a triangle. The upper limits of v./v, form a curved
line with an inverse curvature than the previous curvature (from convex it
becomes concave). This concavity becomes larger and larger as the energy
increases. The box orbits of real particles lie preferably along this line (Fig-
ure 4y).

For h = —50 (Figure 4d) the left end of the lane turns abruptly upwards.
The box orbits at this end become unstable and the SAT orbits appear as a
new family (short straight line with slope 1.0 in Figure 4d). As the energy
increases the area of the SAT orbits increases. The orbits of real particles
follow a roughly similar distribution (Figure 40).

At the energy level of about & = —40 (Figure 4¢,¢) the family of OLAT
orbits appears (a few points along the line v,/v, = 1 with v./v,20.75. For
higher energy levels all the types of orbits appear as in Figure 4f,(.

As described in Section 3, we have found that the ordered and the chaotic
components are respectively, =~ 68% and ~ 32% in the SC model. Further-
more, these fractions as well as the identities of particles in each type of
motion are almost permanent.

All the ordered orbits (of all the energy levels) of the real particles in this
system are plotted on the rotation number plane in Figure 5a, while the
chaotic orbits are plotted in Figure 5b.
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Figure 5. (a) All the ordered orbits of the SC model plotted on the rotation number plane

independently of their energy. (b) As in (a) but for the chaotic orbits. A number of chaotic
orbits are temporarily trapped near the resonant lines.

In Figure 5a we see clearly the groups of SAT, ILAT, OLAT and HORT
orbits on sharp straight lines. The box orbits form a not very sharp area due
to the superposition of the box orbits of different energy levels. Note that the
majority of the ordered orbits, i.e. ~ 91% of the ordered component, moves
in box (and HORT) orbits.

In Figure 5b we see that many chaotic orbits are located along resonant
lines. These orbits diffuse mainly along the resonant lines. As long as they are
trapped on a resonant line they maintain a very small or zero second FT-
LCN, i.e. they are partially chaotic. We collect those of the chaotic orbits of
Figure 5b that are projected upon the most important resonant lines and we
plot them separately in Figure 6a. We plot also their distribution along the
log L; axis in Figure 6b by a dashed line together with the distribution of all
the chaotic orbits (solid line). We see that among the more weakly chaotic
orbits (i.e. log L; < — 2) there is an almost constant difference between the
values of the two curves at any given L;. This means that there are many
weakly or partially chaotic orbits located outside the resonant lines. These
are mainly orbits resembling the box type. Among the more strongly chaotic
orbits the ratio of the values of the dashed curve to the values of the solid
curve decreases to zero as log L; increases. The probability of more strongly
chaotic orbits to be trapped along resonant lines is small.

As we have checked, due to the small variations of the potential, some of
the resonant orbits can escape the resonant lines, but other chaotic orbits are
trapped on the same resonant lines, so that the system preserves a dynamical
equilibrium, in which the number of orbits in every type remains remarkably
constant in time.
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Figure 6. (a) A separate plot of those chaotic orbits in Figure 5b that occupy the most
important resonant lines in the SC model. (b) Distribution of all the chaotic orbits (solid line)
along the log L; axis and the distribution of the orbits in (a) (dashed line). For small values of
L; there is a roughly constant difference between the two curves, due mainly to weakly chaotic
orbits resembling box orbits. For large values of L; the relative occurrence of chaotic resonant
orbits decreases considerably.

5. The Frequency Map of the CM Model

A similar analysis is performed in the CM model using the Hamiltonian (9) at
a snapshot of the self-consistent potential corresponding to a run time
t = 150 after the central mass is inserted.

At this snapshot, as mentioned in Section 3, we found that the fraction of
mass in ordered motion (L; < 1072%) and in chaotic motion (Z; > 102%)
are respectively, ~ 42% and ~ 58%. All the particles of these two compo-
nents, plotted on the rotation number plane, are shown in Figure 7a,b,
respectively.

In Figure 7a we see that the particles of the ordered component belong to
resonant orbits only, forming quite sharp straight lines. No box orbits appear
at all. Also the ILAT type is almost absent. The majority (~ 95%) of the
ordered orbits in this figure belong to SAT orbits, but there are some OLAT
and HORT orbits as well.

On the other hand, the chaotic component, shown in Figure 7b, con-
tains a large number of orbits in the area of box orbits. These orbits come
from the box orbits in SC model that became chaotic by passing near the
cental mass.

As in Figure 5b, the resonant lines in Figure 7b are occupied by a good
number of weakly or partially chaotic orbits, diffusing mainly along the same
resonant line. Due to the secular evolution of the potential these orbits escape
from the resonant lines, but other chaotic orbits can be trapped along res-
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Figure 7. As in Figure 5a,b but for the CM model. Ordered motion (a) occurs in resonant
orbits only. Orbits in the region of box and ILAT orbits are chaotic because of the central
mass and they are shown in (b).

onant lines. As we will see in Section 6, trapping along the line (v./v, = 1) of
SAT orbits is much favored by the new shape of the potential, so most of the
material is organized in SAT orbits.

In Figure 8a,b, which is similar to Figure 6a,b, but for the CM model, we
see that almost all the weakly chaotic orbits (log L; < —2) are located on
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Figure 8. (a) A separate plot of those of the chaotic orbits in Figure 7b that occupy the most
important resonant lines. (b) As in Figure 6b but for the CM model at 1 = 150. For small
values of L; the difference between the two curves is quite small, unlike Figure 6b, because
those of the weakly chaotic orbits that resemble box orbits (mentioned in Figure 6b) are
converted either to more strongly chaotic orbits, or to resonant chaotic orbits. For large values
of L; the relative occurrence of chaotic resonant orbits decreases considerably, as in Figure 6b.
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resonant lines, unlike Figure 6b. This is because those of the weakly chaotic
orbits in the SC model that were outside the resonant lines (resembling box
orbits) have been converted partly to resonant orbits and partly to more
strongly chaotic orbits in the CM model.

On the other hand, in Figure 8b, like in Figure 6b, more strongly chaotic
orbits have a very small probability of being trapped along resonant lines.

An idea of how the various types of orbits are distributed at different
energy levels at the snapshot ¢ = 150 of the CM model is given in Fig-
ure 9a,a,b,B. The left column (Figure 9a,b) refers to test particles, while the
right column (Figure 9a,f) refers to real particles.
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Figure 9. As in Figure 4, but for the snapshot at 1 = 150 of the CM model for two energy
levels. (a),(x) are for the level # = —90. In this model SAT orbits appear from the lowest
energy levels. In low energies the orbits of real particles do not follow the same distribution as
the orbits of test particles. (b), () are for a high level # = —10. For high energies the distri-
bution of real particles is not very different than the distribution of test particles.
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At the level of 1 = —90 (Figure 9a,x) the distribution of the orbits of real
particles, outside the resonant lines, is not the same with the distribution of
the orbits of test particles. Note that the system is not in equilibrium at this
snapshot.

In these figures the majority of the orbits are chaotic, but there are also
many ordered orbits mainly of SAT type. As we have seen (Section 4), in the
SC model, at low energy levels, only ordered box (and a few HORT) orbits
appear. At low energy levels (2 < — 50) of the SC model there are no SAT
orbits at all. In contrast, in the CM model SAT orbits appear already from
the lowest energy levels. This is another effect due to the presence of the
central mass. The central mass favors ordered motion of particles in SAT
orbits even at very low energy levels.

At higher energy levels of the CM model a relative increase of the ordered
resonant orbits of all the types occurs. This can be seen on the rotation
number plane as, for example, in Figure 9b,f for 7 = —10.

6. Time Evolution and Self-organization of the CM Model

In this section we examine the evolutionary features of the CM model.

The introduction of the central mass destabilizes the well established ini-
tial equilibrium structure of the SC model. As we have seen above, almost all
the box and the box-like (ILAT) orbits are converted into chaotic orbits. As a
consequence, at the snapshot 1 = 0 of the CM model, the fraction of mass in
chaotic motion is found to be about ~ 80%, in contrast with the fraction
~ 32% of mass in chaotic motion found in the SC model. This serious in-
crease of the mass in chaotic motion is accompanied by a serious change in
the distribution of the Lyapunov numbers. This distribution shows a peak in
the region of large values of L;, due mainly to box orbits that became chaotic.

As mentioned in Section 3, the diffusion of the orbit j is effective in a
Hubble time, if L, > 1072. In the SC model, the mass in chaotic motion
with L2 1072 is less than 8% and it is almost spherically distributed, un-
able to cause any considerable secular evolution in the system.

Notice that almost spherically distributed chaotic orbits cannot have
serious consequences on producing secular evolution in the system by chaotic
diffusion. Chaotic diffusion is important for producing secular evolution
provided that the corresponding chaotic mass has initially an anisotropic
spatial distribution. A more detailed examination of this effect is given in
Voglis and Kalapotharakos (2005).

In the CM model, the mass in chaotic motion with L, > 1072 is ~ 55%
at the snapshot 1 = 0 and it has an anisotropic distribution consistent with
the configuration of the SC model. As this mass diffuses, it causes serious
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changes on the equidensity surfaces and hence on the self-consistent equi-
potential surfaces of the system. Thus, the system becomes unstable and
undergoes secular evolution towards an equilibrium state. During this evo-
lution many chaotic orbits are trapped, by the new shapes of the equipo-
tential surfaces, in different regions of the phase space, where they are
converted to ordered orbits. The fraction of mass in ordered motion increases
in time, while the mass in chaotic motion decreases. The system is self-
organized. This process goes on until the remaining mass in chaotic motion
cannot considerably affect the equipotential surfaces any more and the sys-
tem achieves an equilibrium configuration.

The secular evolution of the CM model can be clearly demonstrated on
the rotation number plane. We plot all the particles of the system on the
rotation number plane using the Hamiltonian (9) for a series of successive
snapshots of the potential taken from the self-consistent run. In this way we
can follow the various types of orbits that are consistent with the corre-
sponding snapshots of the potential.

As an example, four different snapshots are shown in Figure 10a—d at
times ¢ = 10, ¢t = 100, ¢ = 200, t = 280, respectively, where all the orbits of
the real particles of the system are plotted. In these figures the areas of box,
HORT and ILAT orbits are moving upwards approaching the line of the
SAT orbits (compare Figure 10a—). The number of all the other types of
orbits decreases while the number of SAT orbits increases.

At the snapshot of r = 280 (Figure 10d) the majority of the orbits appear
along the line of SAT orbits. There is also a smaller number of orbits along
the line of OLAT orbits.Part of these orbits are expected to be (partially)
chaotic with small values of their LCN. In any case a component of angular
momentum along the shortest axis for the SAT orbits and along the longest
axis for the OLAT orbits is approximately conserved.

The fraction of mass in chaotic motion at this snapshot (z = 280) is found
~ 22% and remains constant at this level. The system has achieved an almost
oblate spheroidal equilibrium configuration supported by SAT orbits.

The time scale needed for the CM model to reach the equilibrium con-
figuration is comparable with the Hubble time. It is remarkable that cuspy
triaxial models with central mass of the same relative size, i.e. m = 0.01
investigated by other authors, (e.g. Holley-Bockelmann et al., 2002) appear
considerably more stable compared with the CM model here. In Kalapot-
harakos et al. (2004), the CM model (called Q100) is compared with another
model (called C100) containing a central mass of the same size. The C100
model evolves about six times more slowly than the Q100 model. The reason
for this slow evolution is the fact that the C100 model contains initially
(before the central mass is inserted) considerably less mass in box orbits and
more mass in tube-like orbits. Stability in such models has a sensitive
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Figure 10. Four snapshots of the rotation number plane of the real particles of the CM model
at times 1 = 10 (a), = 100 (b), t = 200 (c), ¢ = 280 (d), indicating the secular evolution of the
system. Most of the chaotic orbits approach gradually the line of the SAT orbits and they are
trapped on this line until an almost oblate spheroidal equilibrium configuration is achieved.

dependence on the number of box orbits supporting the triaxiality of the
system. If triaxiality is mainly supported by combinations of tube orbits,
rather than by box orbits, stable triaxial configurations are possible even with
large central black holes.

The mechanism by which the chaotic orbits are converted to ordered
orbits of the SAT type is discussed in detail in Kalapotharakos et al. (2004).

In brief, this mechanism is as follows: Due to the deflection of the box or
box-like (ILAT) orbits as they pass near the center, the libration of their
major axis around the z axis becomes chaotic. Provided that the central mass
is large enough the chaotic libration of the major axis, after a transient
period, turns to rotation.
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This rotation takes place preferably close to the y — z plane, i.e. around
the shortest axis (x-axis) of the system, because this orientation is more
stable than others. Since the major axis of the orbit is no more trapped
near the z-axis of the system, it can be directed along all the azimuthal
angles on the y — z plane. If this happens for a good number of orbits the
predominance of the velocity dispersion along z is lost and the two
directions y and z tend to be equivalent as regards the dispersion of
velocities. As a response the equidensity surfaces and the self-consistent
equipotential surfaces approach an oblate spheroidal shape. Due to this
change of the potential the chaotic orbits are gradually trapped and
organized as SAT orbits. In their new SAT form these orbits do not
approach the center any more.

The secular evolution ceases when the remaining chaotic orbits are
isotropically distributed, or the rate of their passing near the central mass is
too small to cause any considerable change on the system.

The secular evolution of the CM model can also be seen in terms of the
triaxiality index 7 defined as

22
= %, (13)
—a
where a,b,c are the lengths of the principal axes of an equidensity surface
with major axis ¢ = 1 in units of the half mass radius. The triaxiality index T’
is equal to 0 for an oblate spheroidal surface and it is equal to 1 for a prolate
spheroidal surface, while it is 0.5 for a maximally triaxial surface.

In Figure 11 the evolution of this index is plotted (in our two models for
comparison) for times much longer than the Hubble time.

The SC model preserves the initial value of the triaxiality index 7 ~ 0.9,
indicating that this model preserves its initial triaxial shape (close to a prolate
shape) during all this time.

On the contrary, the triaxiality index of the CM model, starting from the
same initial value, decreases tending to a small constant value. This decrease
is irreversible. The index 7T remains permanently close to zero, indicating that
the system has achieved an almost oblate spheroidal equilibrium configura-
tion. In this configuration the majority of orbits are of the SAT type as we
have seen above (Figure 10c¢).

7. Summary and Conclusions

In terms of the fundamental frequency analysis we have investigated all the
types of orbits that are described by the particles in the two examined N-body
systems, i.e. a SC and a model with a large CM.
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Figure 11. The secular evolution of the CM model in comparison with the stability of the SC
model for times much longer than a Hubble time expressed in terms of the triaxiality index T.
In the SC model T remains remarkably constant at the initial value 7' 0.9 for long time. In
the CM model T starts from this value and decreases approaching the zero value in a time
scale of about one Hubble time when an almost oblate spheroidal equilibrium configuration is
established.

The investigation combines the results of the fundamental frequency
analysis with the results obtained by distinguishing chaotic from ordered
orbits in terms of L;, i.e. the Specific Finite Time Lyapunov Characteristic
Number (S-FT-LCN) and the Alignment Index Al;, a method introduced in
a previous paper. The use of L; has several pros and cons with respect to the
use of Ly, i.e. the Finite Time Lyapunov Characteristic Number in common
units (CU-FT-LCN), that are discussed in Section 3. We show that the
alignment index can make a considerably sharper distinction than the dis-
tinction obtained by the variability of frequencies dw; or by the rate of log-
arithmic divergence L; of the orbits (Figure 2).

We find that the SC model is stable. It contains a large fraction of ordered
orbits (= 68% of the total mass). The main part of them are box orbits, but
there are also many resonant tube orbits of various types, i.e. ILAT, OLAT,



SELF-CONSISTENT MODELS OF ELLIPTICAL GALAXIES 185

SAT and HORT. On the rotation number plane these types of orbits occupy
different loci, so they can be easily recognized, e.g. all the tube orbits are
plotted along their characteristic resonant lines. At low energy levels only box
and HORT orbits are present. As the energy increases the other types of tube
orbits appear in the sequence ILAT, SAT, OLAT.

Among the chaotic orbits in this model, many of them are weakly or
partially chaotic. Part of them resemble box orbits, but another part is
trapped along resonant lines. More strongly chaotic orbits have small
probability of being trapped along resonant lines.

In spite of the noise of the potential in a self-consistent run of the SC
model, the number of particles occupying the various types of orbits is
remarkably constant. This is obtained by a dynamical equilibrium estab-
lished between the orbits that escape from a resonant line and the orbits that
are trapped in this resonant line.

Comparing the distribution of the orbits of the real particles on the
rotation number plane with the orbits of test particles, we conclude that
extensive stable regions of phase space remain empty, i.e. they are not
occupied by real particles of the system. This effect is due to the self-con-
sistency of the system. Self-consistent equilibrium imposes serious limitations
on the distribution of the real particles. These limitations are more severe
than the limitations imposed by the stability of the orbits. Thus, finding
stable orbits in a given galactic potential does not guarantee the existence of
mass there and finding unstable regions does not guarantee the lack of mass
there. This remark underlines the significance of the self-consistent models in
studying galactic structures.

The empty stable regions are more pronounced in the low energy or-
bits, where chaos is weak and the chaotic orbits are rare. As the binding
energies increase the orbits of real particles are in a better agreement with
the orbits of test particles. In high binding energies real particles tend to
occupy most the available phase space, either by ordered or by chaotic
orbits.

The CM model is initially unstable. It presents a secular evolution due to
the large amount of mass in chaotic motion produced by the central mass.
This is initially about 80%. Most of this mass (about 55%) is characterized
by Lyapunov times Lc‘ug < 100T4me, 1.€. less than one Hubble time, and it has
initially an anisotropic spatial distribution forming the bar of the system.
Due to the diffusion of these orbits, the initially bar-like equipotential sur-
faces are gradually deformed approaching oblate spheroidal shapes with their
flatness along the x axis. As we have seen, by representing the orbits on the
rotation number plane at various successive snapshots, during this defor-
mation of the system, chaotic orbits are gradually converted to ordered orbits
mainly of SAT type.
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The secular evolution of the CM model ceases and equilibrium is estab-
lished, when the remaining number of chaotic orbits is no more efficient to cause
any considerable changes on the system, either because it is isotropically dis-
tributed, or because the rate of orbits that pass near the center is small.

The oblate spheroidal equilibrium configuration, established by the end of
the secular evolution, is supported mainly by SAT orbits preserving the
component of their angular momentum along the shortest axis. The orbital
structure of this system is remarkably simpler than the orbital structure of a
triaxial configuration.
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