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RECONSTRUCTION TECHNOLOGIES FOR 
MEDICAL IMAGING SYSTEMS 
Advances in Algorithms and Hardware for CT 

Roland Proksa 
Philips Research, Hamburg, Germany 

Abstract: Medical imaging made immense advances in the last years. Beside new 
modalities the traditional imaging techniques and systems made rapid 
improvements. A good example is the improvements of Computerized 
Tomography (CT) with the introduction of large detector arrays. One of the 
important technological challenges of most medical imager is the 
reconstruction technology, which has to deal with complex imaging techniques 
and steadily increasing requirements. This chapter provides a brief insight into 
this field and discusses some technological aspects of reconstruction for CT. 
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1. INTRODUCTION 

Most medical imaging devices use physical interactions to generate 
spatially resolved maps of static properties or functional information. 
Sensors are used to measure an impact of these physical interactions. Only in 
few cases the detected signals represent the final images directly (e.g. X-Ray 
radiography). In most imaging devices, the detected data itself are not useful 
for medical diagnosis and are usually converted back to the spatially 
resolved physical effect in the object that causes the acquired signals. The 
functional chain from the physical interaction up to the detected signal is 
called the forward problem and is usually well understood. However, the 
forward problem can become very complex and can include a number of 
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disturbing effects such as scatter radiation, noise, or imperfections of the 
medical imaging device. Reconstruction is the inversion of the forward 
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problem. It estimates the physical interaction from the acquired data given a 
forward model of the measurement. 

Most medical imaging devices have sensors outside the patient and detect 
data that do not only belong to a single point in the object but to larger areas. 
An example is a X-Ray beam that undergoes absorption on its way through 
the patient. The related mathematically forward models usually include 
integration in the object domain. This integral is usually the key problem of 
the reconstruction and requires integral transformation techniques. This can 
be demonstrated with simplified system models of some imaging modalities. 

Computerized Tomography generate images of the X-ray absorption 
coefficient µ (x) at  position x using measurements of the remaining X-ray 
intensities I of a beam with a primary intensity of I0 along a line S. The 
forward problem becomes: 
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A simple 2D Magnetic Resonance Tomography generates images of the 
electromagnetic response m, which is phase encoded with a gradient gp   in y 
direction applied for time T and frequency encoded with a readout gradient 
gr in x direction. With γ being the gyro-magnetic constant, the acquired 
signal s(t) is described in the forward model by: 
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A detector in nuclear medicine (NM) measures the integrated radiation of 
a line through the object that is caused by a local decay of radioisotopes. 
Neglecting the absorption and other effects we get: 

dssad = )(  

This chapter gives a brief inside into reconstruction technologies for 
Computerized Tomography. 

2. CONE-BEAM RECONSTRUCTION IN CT 

In recent years, CT scanners were subject to tremendous technological 
innovations. The most important improvement was the stepwise replacement 
of the one dimensional detection system with multi-line detectors up to two 
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dimensional, large area detectors. These systems combine ultra-fast 
acquisition with high spatial resolution. The enhanced clinical value of CT 
created a push of CT as an important imaging modality. New important 
clinical application, such as perfusion studies or cardiac imaging came into 
reach of CT. 

From a reconstruction point of view, these systems are Cone-Beam 
systems. The name reflects the geometrical shape of the x-ray beam, which 
is a serious challenge for reconstruction technologies. The related problems 
are twofold. One problem was the development of reconstruction methods 
and algorithms that produce good images, free of so-called cone-beam 
artifacts. The other challenge is the enormous amount of processing that 
came along with the complex reconstruction methods. This very practical 
problem is a severe burden for the industries, because the clinical workflow 
of CT imaging should not suffer from long reconstruction times. The use of 
non off-the-shelf super computer is considered as too expensive. 

3. FROM 2D RECONSTRUCTION TO 3D CONE-
BEAM RECONSTRUCTION 

The reconstruction of CT images from a 2D scan is a well-defined 
mathematical problem. After some preparations of the measured data, the 
problem can be simplified to reconstruct a 2D function from line integrals of 
this function. The problem can be investigated as a mathematical problem of 
continuous functions, ignoring the discrete nature of quantities in a real CT 
scanner such as discrete detector samples or image pixel. The most often 
used solution is the so-called filtered back-projection, which reads 
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with p() being parallel projections and with the distribution 
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which is often called ramp-filter. The inner integral is a convolution of the 
measured data with the ramp filter. The outer integral is called back-
projection because it projects the filtered data back to the image domain. 
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The 2D filtered back-projection formula is an exact solution to the 
continuous inverse problem and can be mathematically proven. The general 
structure of the algorithm, filtering of the projection data and back-projection 
into the image domain, can also be found for similar reconstruction problems 
such as cone-beam reconstruction.  

Similar to other analytical reconstruction methods that solve the 
reconstruction problem by means of an analytical reconstruction formula, 
this solution has to be discretized to finite sets of discrete projection angles, 
detector samples and image points. For the discrete representation of the data 
and the reconstruction, care must be taken to use proper sampling patterns 
and to limit the frequency band of the continuous functions. 

The 2D reconstruction formula above assumes parallel ray geometry. 
Today’s CT scanners are usually so-called third-generation scanners with an 
imaging system that rotates around the patient. A point-like focal spot emits 
an x-ray beam with a fan or cone shape, which is detected in a 1D or 2D 
detector array on the opposite side. The problem of the different ray 
geometry (divergent versus parallel) can be solved with a reformulated 
version of the reconstruction algorithm or by means of a so-called rebinning 
step that transform the fan beam data into parallel beam data. 

The reconstruction of 3D cone-beam projections has a number of 
similarities to the 2D problem and again there exists a simple exact 
reconstruction formula. Unfortunately this formula requires parallel beams 
similar to the 2D version. Other than in the 2D case, there is no simple way 
to either reformulate the algorithm or to rebin the data. This was a serious 
challenge and it took quit some time until proper reconstruction methods 
became available. 

Radon20 derived a good theoretical framework of the inversion of integral 
transformations. This framework can directly be used for 2D reconstruction, 
because Radon described the Radon transform, which is equivalent to the 
forward problem and the inverse Radon transform, which is a reconstruction. 
The measured data i.e. the line integrals form the so-called Radon domain. 
The framework can also be applied to 3D functions. The Radon domain of a 
3D function describes plane integrals of the function. One basic problem of 
the application of this framework to cone-beam reconstruction is the fact that 
a cone-beam scanner measures sets of line integrals and not plane integrals. 
However the framework of Radon can be used to consider some theoretical 
properties of reconstruction methods and it was the base of a class of exact 
reconstruction methods for cone-beam reconstruction. 
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3.1 Approximate reconstruction techniques 

The absence of proper reconstruction techniques and later the high 
technological burden to use 3D cone-beam reconstruction techniques lead to 
a class of reconstruction techniques that performed some transformation or 
approximation of the acquired cone-beam data in such a way that the final 
reconstruction could be done with a traditional 2D technique. These simple 
solutions work fine if the number of detector rows and the related cone angle 
are small. For large detector arrays and large cone angles, the resulting 
image quality suffers from the approximation to 2D and shows so-called 
cone-beam artifacts. One example is the ‘nutating slice algorithm’17 or 
derivates10. This algorithm fits 2D planes to the helical trajectory. The 
projection data that are closest to this plane are extracted from the cone-
beam data and are reconstructed with a 2D technique. Since the orientation 
of the 2D slices is coupled to the helix of the source trajectory, they are 
nutated relative to each other. 

Another class of approximate algorithms generalizes the basic 2D 
methods into 3D. Good examples are 4,28,19.  These methods are of the type 
filtered back-projection. The rules for filtering in these methods are based on 
heuristics and geometrical considerations. However, there is no proof for 
exactness. The back-projection is a true 3D back-projection. A key feature of 
these algorithms is the utilization of the measured data. The framework of 
Radon allows the inspection of the used data in terms of completeness and 
redundancies, even if the inversion techniques of Radon are not applicable. 
For limited cone angles, these algorithms perform well and are in use in 
some clinical scanners. Especially the Wedge algorithm combines little 
cone-beam artifacts with good dose utilization and insensitivity against 
motion artifacts. The dose utilization measures, how good the x-ray exposure 
of the patient is utilized to provide images with good signal to noise ratio. 
Motion artifacts are image degradations from inconsistent projection data 
caused by patient motion during the data acquisition. 

With the growing detector size in medical CT scanners, the need  
of helical acquisition techniques becomes less important. For some 
applications, the cone-beam covers the entire region of interest (40mm with 
state-of-the-art scanners). This could enable to use a single axial turn of the 
CT scanner to measure the entire region of interest. Unfortunately this 
attractive scan protocol has severe shortcomings. Up to now, there is only 
one basic reconstruction method available for this acquisition9. This method 
and its derivates generate severe artifacts, which can hardly be accepted 
especially in low contrast applications. Even worse, there is hardly any hope 
that this problem can be overcome with improved reconstruction techniques. 
The axial scan trajectory suffers form a so-called missing data problem. It 
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can be shown using the framework of Radon or other sufficiency 
conditions27,24 that not all data have been measured that are required for an 
exact reconstruction. It is assumed that this fundamental problem can only 
be overcome with other scanning trajectories that acquire all or at least more 
data for accurate reconstruction. 

3.2 Exact reconstruction techniques 

A breakthrough was achieved with the work of Katsevich11,12,13. The 
basic achievements of Katsevich were later generalized and applied to other 
reconstruction problems, such as the 3PI acquisition1,14, or the general nPI 
acquisition2. These methods are filtered back-projection methods, were the 
filtering direction has to be chosen such, that the Radon domain is captured 
completely and without any redundancy. The framework is very general and 
can be applied to reconstruction problems, if a proper set of filter directions 
can be found. 

Sidky23 recently achieved another important exact reconstruction technique 
with the exchange of the integration order. This novel reconstruction 
technique performs the back-projection prior to the filtering, which takes 
now place in the image domain. An important feature was added by Pack18 
and allows the utilization of arbitrary amount of redundant data. 

The first algorithms for exact cone-beam reconstruction27,8,5,16 required 
non-truncated projection data and were not applicable for axial truncated 
data of helical cone-beam CT. Non-truncation in the above sense means that 
the entire object must be in the cone-beam. This problem was solved with 
the Tam-Danielsson window25,3. This window defines a detector shape with 
some unique features. The most important feature becomes visible if one takes  
an arbitrary cross section through the scanned object. Inspecting the cross 
sectional plane of all cones which have the focal spot in this plane, one can 
see that the plane is segmented into triangles that cover the entire plane 
completely and without any redundancy. The cross sections can be related to 
Radon planes. Each Radon plane is covered by a set of triangles, which are 
part of the measure cone-beams. Together with an important relation of 
plane integrals and divergent line integrals8, it was possible to calculate the 
derivative of Radon planes from cone-beam projections. In the first 
algorithms based on these results, a limitation of the object support in axial 
direction by the entire helical scan was still required. This so-called long 
object problem was later solved21,22,26. One shortcoming for clinical 
applications was the restriction to a fixed pitch, defined as table feed per 
gantry rotation with a given detector size. This problem has been solved19 
with the nPI method that allows a set of discrete pitches. 
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Exact reconstruction methods are currently not used in commercial 
medical CT scanner although cone-beam artifacts become more important 
for large detector arrays. A basic shortcoming of these methods is the 
problem to handle redundant data properly. Redundant data are acquired if 
the physical detector is larger than required by the Tam-Danielsson window 
or by consideration to fill the Radon domain completely. These redundant 
data should properly be used to achieve a high x-ray dose utility. Even more 
important, this data are essential for the reduction of motion artifacts. Recent 
results15 that aim to overcome this limitation and combine the absence of 
cone-beam artifacts from the exact methods with the relative insensitivity to 
motion artifacts of approximate methods look promising. However, exact 
reconstruction methods have to demonstrate robustness and practicality. 

3.3 Iterative reconstruction techniques 

A very different class of reconstruction techniques is called iterative 
reconstruction. Instead of searching for an analytical solution of a continuous 
problem, the basic approach of these techniques is to model the imaging 
process with a discrete system model. A discrete set of image points µ and 
measurements p are linked with a system matrix A to a simple linear model: 

µAp =  

The system Matrix A basically describes the system geometry and models 
how much an image point influences a measurement sample. It can become 
more complex and take other system aspects of the forward problem into 
account. Within this model, the reconstruction problem becomes to estimate 
µ from a measurement p. Several numerical methods exist to solve this 
problem, typically with an iterative algorithm. From a mathematical point of 
view, the equation system is usually over determined and inconsistent, 
because there are more projection samples than image points and the data are 
inconsistent due to noise. 

A powerful method to solve such a problem is ART7. ART takes an 
intermediate image µ n and applies the forward system matrix to obtain a part 
of the projection data pn. A proper part could be a set of parallel rays through 
the image. These calculated projections are compared to the measured 
projections p and the difference is used to update the intermediate image.  
A simplified version of ART is: 
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This process is repeated e.g. with other projection parts, until a stopping 
criteria is meet. The parameter λ is to control the convergence speed. 

Even more powerful techniques take the noise in the measured data into 
account. A very popular method is the Maximum Likelihood (ML) method. 
Each projection value is modeled, as a random variable were the measured 
value is the expected value and the probability distribution is known. A 
simple noise model is to assume Poisson statistics of the measured data. 
Given an intermediate image µ, we can calculate the projections p of it. 
Knowing the probability distribution of each projection value, we can 
calculate the likelihood of the intermediate image for one projection value or 
the total likelihood as the product of the individual likelihoods. In other 
words we can calculate the likelihood L(µ) of an image, given a set of 
projections and a noise model. With some iterative numerical methods,  
we can search for an image that has the highest likelihood. Statistical 
reconstruction is a science for itself and far beyond the scope of this book. 
However the simple introduction can help to better understand the features 
of this reconstruction technique. 

ML reconstruction methods have a significantly better signal to noise 
ratio (SNR) than analytical methods. This is due to the incorporation of a 
proper noise model. ML reconstruction techniques are widely used in 
nuclear medicine (NM), were the count rates are typically low and the SNR 
advantage of ML is essential. Fessler6 showed that the advantage can also be 
realized in transmission scans such as CT. SNR improvements between 1.4 
and 2 have been reported29. This advantage could be used to reduce the x-ray 
dose by a factor of 2 to 4 and still provide the same SNR as conventional 
reconstruction methods. Studies with clinical data demonstrated that the 
image quality is better or equal to standard reconstruction methods. 
Although the advantages are known, iterative reconstruction methods are  
not applied in commercial CT scanner due to the enormous amount of 
processing power required for the reconstruction. The processing time of 
statistical reconstruction methods is acceptable for NM due to two reasons: 

 
• The processing time depend on the number of image points and the 

number of detector channel. These numbers are typically low compared 
to CT (typical number of image points per plane NM 64x64 versus CT 
512x512). 

• One acquisition in NM lasts typically 15 to 30 min. If a reconstruction 
takes about as long as the acquisition, the workflow does not suffer to 
much. 

 
This situation is very different for CT. Unfortunately the number of 

image points has to be increased compared to an analytical reconstruction 
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technique. To achieve the good results, the entire imaging area has to be 
reconstructed on a fine grid. This is because the discretization in the image 
domain goes already into the system model and influences the behavior of 
the algorithm. The resulting processing time for typical parameter settings 
and off-the-shelf computer hardware varies between hours and weeks and is 
not acceptable for clinical use. 

However it is expected, that the constantly increasing performance  
of computer hardware and especially some dedicated computer systems  
will sooner or later overcome this restriction, and will make the potential 
dose saving and the other advantages of statistical reconstruction methods 
available for the clinical use. 

As mentioned earlier, iterative techniques allow to integrate more 
imaging system aspects as just the basic geometry and physics. 

4. HARDWARE ACCELERATION 

The reconstruction process of a typical CT system consists of four major 
parts: 

 
• Raw data correction. 
• Data rebinning. 
• Filtering. 
• Back-projection. 
 

The raw data correction is required to compensate for a number of effects 
on the measured data. The correction algorithms are usually not very 
computational intensive and can be realized with off-the-shelf computer 
systems. 

The filtering and the final back-projection are sometimes done in a 
geometry that differs from the geometry of the CT system itself. This 
transformation is often called rebinning. One example is the transformation 
of fan beam data to a parallel geometry. The processing consists of some 
interpolation steps without high demands on the processing power. 

Step number three, the filtering is usually be done in the Fourier domain. 
The processing includes a (Fast) Fourier transform, a multiplication with  
the filter and an inverse (Fast) Fourier transform. The analysis of the 
computational effort shows that the required processing power is equivalent 
to about one state-of-the-art personal computer. The main processing load 
comes from the Fourier transforms. For costs reasons, a more efficient 
implementation using off-the-shelf Digital Signal Processor (DSP) 
accelerator or FGPA based sub-systems can be considered. 
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The back-projection is much more demanding than the previous 
processing steps and requires special attention. In the following, an estimate 
of the computational effort is provided. The estimations are not very precise, 
because they depend on a number of details. The speed of different 
implementation can easily vary by a factor of two or more. However they 
can be used to get an impression of the order of magnitude of the problem. 

Back-projection is a simple operation that has to be performed very often. 
The basic operation is to take one image point, calculate the projection of 
this point onto one projection, perform an interpolation of the projection and 
add the result to the image point. In a simple 2D case, this operation requires 
roughly 20 instructions of a standard processor. The operation has to be 
repeated 2.5x108 times for a 512x512 image slice back projected from 1024 
projections. Today’s (2005) standard processor can perform this operation 
with a rate of about 2 images per second. In the 90’s, this was a real 
challenge for the first spiral CT scanners that were able to scan about 1 slice 
per second. The easily available processing power was a few hundred times 
less. At that time, Philips Medical Systems (PMS) managed this problem 
with a dedicated processor, which was highly optimized for this operation. 
Two main architectural choices made it possible to achieve a performance 
level of about 400 times the performance of off-the-shelf workstation 
computer systems. The first was to parallelize the operations. Instead of 
performing the 20 instructions in sequence, a dedicated computational 
pipeline was able to perform one complete back-projection operation in a 
single cycle. The second choice was to use multiple units and build a multi-
processor system with 14 units. The high specialization of the processor 
made it possible to increase the operation frequency. All measures together, 
enabled PMS to build a cost effective accelerator board that reaches real 
time performance, with a system that could reconstruct two images per 
second. The price of this attractive reconstruction unit was an investment in 
processor architecture and design. 

The next challenge came with the introduction of cone-beam CT systems. 
In the beginning of the millennium, the CT systems required: 

 
• Cone-beam reconstruction algorithm without cone-beam artifacts. 
• Detector arrays with 16 rows. 
• Faster rotation time (0.5 sec). 
 

The effective acquisition speed has increased by a factor of about 30. 
This was already a serious challenge and some CT manufacturer decided to 
stay with 2D reconstruction techniques. The 3D cone-beam reconstruction 
algorithm required about 20 to 30 times more processing power for a basic 
back-projection operation than the 2D equivalent. An additional problem 
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was that the traditional 2D hardware acceleration systems were not able to 
perform these more complex 3D operations. Again PMS took the challenge 
and designed a dedicated 3D cone-beam processor with the latest available 
semiconductor technology. The result was about the same. It was possible to 
improve the processing speed by a factor of a few hundred to thousand with 
dedicated hardware compared to multi-purpose computer systems. 

Figure 3-1. The 2D CT Reconstruction accelerator 

Figure 3-2. The 2nd Generation 3D Cone-Beam Processor 

The actual challenges for CT reconstruction are still growing with 
technological improvements of the CT scanners. They are driven by faster 
gantry rotation, larger detector arrays (64 rows and more?), the need to use  
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exact reconstruction algorithm or the wish to make use of statistical 
reconstruction methods. 
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