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ADVANCES IN EXTERNAL BEAM RADIATION 
THERAPY 
Towards Image-Guided and Adaptive Radiotherapy Using Multi-
modal Imaging 

Todd McNutt1, Michael R. Kaus2, Lothar Spies2 
1Johns Hopkins University, Baltimore, MD, USA; 2Philips Research, Hamburg, Germany 

Abstract: Radiation therapy has advanced in the last decade fueled by the advancement 
of dose delivery (3D conformal, IMRT), computer processing, and medical 
imaging. Image processing techniques such as model-based image 
segmentation and deformable registration are becoming efficient enough for a 
clinical setting. Biological modeling based on nuclear medicine imaging is 
needed to provide a quantitative understanding of tumor biology and enable to 
identify regions of the tumor resistant to radiation, thereby, warranting a 
higher dose level. These imaging and processing techniques promise to 
advance radiotherapy with the ability to monitor the course of treatment by 
enabling image-guided radiotherapy and adaptive radiotherapy.  

Keywords:  Image guided radiotherapy, adaptive radiotherapy, ART, IMRT, molecular 
imaging, biological modeling, deformable image registration, image 
segmentation 

1. INTRODUCTION 

Cancer is the second leading cause of death in the industrialized countries 
and the only major disease for which death rates are increasing. The demand 
for cancer care will increase over the decade as the aging of the baby boomer 
population drives a dramatic increase in the incidence of many cancers. 
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Approximately 60% of cancer patients are treated with external beam 
Radiotherapy (RT) at some point during management of their disease. The 
main goal of RT is to maximize the dose to the target while limiting the dose 
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to nearby healthy organs (‘risk organs’), in order to improve control of tumor 
growth and limit side effects. 

Radiation therapy is primarily used to treat cancer by locally targeting 
radiation to the diseased tissue. Radiation beams are produced by medical 
linear accelerators. These devices are mounted on a gantry with a rotating 
couch to allow for many beam directions to be focused on the target volume. 
Sparing of normal tissues is accomplished in two fundamental ways: 
Geometric avoidance of normal tissues is accomplished by directing multiple 
beams at the target, thus delivering a high dose where the beams intersect at 
the target, and a relatively lower dose outside of the intersection. Biological 
sparing of normal tissue is accomplished by fractionating the therapy over 
several weeks, irradiating daily. The tumor tissue lacks repair mechanisms to 
repair DNA damage from the radiation, whereas normal tissues can repair 
minor DNA damage. Therefore, by fractionating the treatment, normal 
tissues are provided time to repair, thus biologically sparing the normal 
tissue. 

In the late 1980s and 90s Computed Tomography (CT) based treatment 
planning became available due to the increased performance of computers. 
Both the imaging capabilities and the ability to compute radiation dose 
distributions on CT provided the framework for the modern 3D Radiotherapy 
Treatment Planning (RTP) system. These systems provide clinicians the 
ability to truly visualize and plan the treatments considering the true 3D 
nature of the problem.  

Today, the current workflow for a patient begins with a CT simulation 
where the patient is immobilized with body molds and/or head masks. A CT 
scan is acquired and the patient is marked for repeated alignment with 
localization lasers in the treatment room. The treatment planning is then 
performed on the CT scan where beam geometries, energies, and collimation 
are determined, and the resultant dose distribution is computed. The 
treatments are then performed daily for several weeks. During the course of 
treatment, different imaging modalities are used to monitor the geometric 
setup of the patient to verify constancy in the patient position. 

There have been many advances in the techniques used to deliver the 
treatment. Intensity Modulated Radiotherapy (IMRT) has allowed for each 
beam to be modulated, enabling dose distributions to carve out the target 
volume and spare normal tissues in the millimeter range. Several techniques 
and strategies have evolved and are in use today. 

The research described in this chapter focus on the ability to accurately 
predict the dose and to precisely deliver the radiation to conform the dose to 
the target volume utilizing IMRT; the improvement in target and critical 
structure definitions through the use of multi-modality imaging; and the 
tools to enable the monitoring of the course of treatment to support image 
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guided radiotherapy (IGRT) which provides daily alignment of the patient 
with soft tissue target volumes, and adaptive radiotherapy (ART) which 
provides the monitoring the treatment through repeat imaging for decision 
support on modifying the treatment strategy. 

2. INTENSITY MODULATED RADIOTHERAPY 

IMRT is a method to determine the optimal beam intensity pattern for 
each beam to deliver the dose distribution specified by a set of treatment 
objectives and constraints. Under IMRT, the paradigm of RT changes from 
specifying beam directions and apertures, to one where one specifies dose or 
biology based treatment objectives and the computer will optimize the 
modulated beam intensities to best deliver the treatment1. 

A typical target objective would be to deliver a uniform dose of 60 Gy in 
30 fractions, and a typical critical structure objective would be to keep the 
dose below 25 Gy in more than 70% of the volume of the structure. Figure 
13-1 shows a typical IMRT treatment. 

The process of IMRT utilizes an inverse planning strategy that iteratively 
optimizes the intensity pattern of each beam to deliver the desired dose 
distribution defined by the objective functions. The intensity pattern of a 
beam is represented by a matrix of beamlets, each being a parameter of the 
treatment. The optimization process begins by initializing the intensity map 
(beamlets) of each beam to expose the target objective. Then the dose is 
computed for the set of beams. The treatment objective is evaluated, and the 
derivative of the objective with respect to each beamlet is determined. A new 
intensity map for each beam is determined by the optimization, and the  
dose is recomputed. This process is repeated until the improvement in the 
treatment objective between iterations is small indicating convergence to an 
ideal solution of intensity modulation. 

Accurate dose calculation for RT is quite time consuming and is a 
difficult  challenge for efficient IMRT planning. The convolution/ super- 
position (C/S) dose engine in the Pinnacle 3 treatment planning system 
requires approximately 20 seconds per beam on a SunBlade 2000. This dose 
engine is quite accurate2-9, but lacks the speed required for during IMRT 
optimization. In order to maintain the accuracy of the C/S method, and gain 
the speed required for IMRT, the Delta Pixel Beam dose computation 
method was developed10. This method uses a high-speed pencil beam dose 
computation method to get close to the desired solution in early iterations of 
the IMRT optimization. Then the C/S method is used to compute the dose 
for the interim solution. Following the C/S computation, the pencil beam 
method is used to modify the dose based on the change in intensity of the 
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beam, leaving the majority of the dose computed by the more accurate C/S 
method. 

 

Figure 13-1. A 9-field IMRT treatment plan designed to deliver 60 Gy to the target volume 
(purple) and to spare the dose to the parotid glands (red) and the spinal cord and brainstem 
(green). The beams are equispaced in angle around the patient. 
 

Once the intensity pattern of each beam is determined, it is converted into 
deliverable shapes by a multi-leaf collimator (MLC). Each beam will then be 
defined as a series of apertures defined by multiple MLC segments. Medical 
linear accelerators are equipped with MLC and deliver the set of MLC 
shapes automatically. 

Newer methods in IMRT implemented in the Pinnacle3 planning system 
include the ability to optimize the positions of each leaf of the MLC for each 
segment directly, rather than optimizing an intensity distribution for each 
beam, then later converting it to a set of MLC segments. By optimizing the 
leaf positions directly, the loss in desired treatment objective is reduced in 
the process. 

IMRT provides a technique to conform the dose distribution tightly 
around a target volume while sparing the normal tissues. With this ability, 
the uncertainty in RT has been shifted to our ability to determine the desired 
target volumes, and the change in targets and critical structures over the 
course of RT. 
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3. MULTI-MODAL IMAGE PROCESSING TOOLS 

FOR TARGET AND STRUCTURE DEFINITION 

Understanding the use of multi-modal image-based information for 
treatment design is an area of intensive research around the world. The 
contouring of risk organs and the target area in medical images is a 
fundamental planning step to optimize treatment parameters. Today, 
contours are drawn manually (with a mouse) on every image slice, which is 
an extremely time- and labor-intensive task. Particularly in the head and 
neck the process may take several hours. The merits of IMRT can only be 
exploited if this type of segmentation is achieved. The integration of 
additional image-based information acquired weekly or even daily into the 
RTP process will lead to an additional substantial increase in data and 
workload by an order of magnitude or more. Automated image segmentation 
technology is necessary to automatically contour risk organs and the tumor 
in order to make the improved process clinically feasible. 

Target definition based on the structural appearance of the tumor in CT 
has limited accuracy in determining the true extent of the disease, and does 
not allow assessment of morphology and biological changes in response  
to fractionated treatment. For example, PET/CT promises to improve 
throughput and accuracy for head and-neck RT planning by minimizing the 
uncertainty of contouring by the identification of metabolically active areas 
in PET, while CT provides high resolution and anatomical context to address 
non-tumor-specific uptake in PET. Recent studies have used CT against 
Magnetic Resonance Imaging (MRI) or PET alone rather than together with 
registered structured imaging, and the current clinical practice is to draw 
contours on one modality and transfer the contours manually to the planning 
CT. The optimal technique for fusing image data to compensate for inconsist-
encies between contours of different data sets remains controversially 
debated. Reproducible strategies for fusion of multi-modal contouring results 
and identification of conditions that exceed automated segmentation capacity 
are required.  

Novel imaging agents such as fluoromisonidazole, [18F] FMISO and 
others are becoming more widely available and are gaining clinical 
importance for radiotherapy applications11. These novel tracers probe deeply 
into the biological and molecular characteristics of a cancer. The tracer 
FMISO, for example, is a PET tracer that selectively binds to cells, which 
suffer from an undersupply of oxygen. The importance with respect to 
radiotherapy planning stems from the fact that so-called hypoxic cells may 
survive a radiation dose, which is lethal to cells with normal oxygen supply. 
This has wide-reaching clinical consequences, which will prompt molecular 
imaging guided targeting of cancers on sub-tumor level.  
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In this section key technologies required to pursue this strategy 
comprising segmentation, deformable registration and biological modeling 
are addressed.  

3.1 Segmentation and deformable registration 
approaches 

Image segmentation, at any level of automation or trained operator 
interaction, is difficult due to insufficient tissue contrasts, imaging artifacts, 
and the high inter- and intra-individual variability in shape and appearance 
of structures in the human body. Research efforts in image analysis and 
processing resulted in a well-established statement that segmentation of 
difficult cases cannot be done using image content alone, and some 
additional information is required12,13. 

A way to provide additional information to a segmentation algorithm is 
the use of prior knowledge about the shape of structures14. In medical image 
analysis, prior knowledge is represented, for example, in the form of an 
organ model, which includes information about both its shape as well as  
an organ-specific set of parameters specifying intensity range, gradient 
magnitude and direction, etc. When taking spatial relationships between 
different organs into account, this paradigm can be extended to organ 
constellations and even to whole regional anatomical atlases covering all 
structures of interest in particular body parts, which can automatically be 
adapted to the anatomy of individual patients. 

Only few methods in the domain of automated organ segmentation for 
RTP that provide efficiency gain have been quantitatively proven to be 
accurate and robust so far. One can distinguish between three basic strategies 
in approaching this challenging problem: automation of 2D contouring 
aimed at robust detection of organ boundaries in 2D slices15, 3D approaches 
based on deformable organ model adaptation16,17, and methods based on 
adaptation of deformable atlases (images with labeled anatomy) to patient-
specific image data18. 

Automated 2D delineation does not require substantial changes in the 
workflow compared to manual contouring to which the physicians are used. 
On the other hand, 3D shape context is not used at all by these methods, and 
this may negatively influence their robustness. In contrast, 3D delineation 
tools are potentially much more productive, since they simultaneously 
operate in several slices. Methods based on volumetric deformable atlas 
adaptation may be very useful, e.g. for delineation of ‘invisible’ structures, 
e.g. in the head and neck area. However, the results of delineation are 
dependent on the robustness of the image modality at hand, the underlying 
image registration algorithm and the validity of the deformation model.  
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Deformable image registration has been studied since the early 80’s19 
and for many years, brain surgery and neurosciences have been the driving 
applications for developing an abundant number of techniques20. Despite the 
significant progress that has been made, deformable registration is still not 
clinically accepted and remains a challenging problem. 

Registration algorithms are categorized into non-parametric and 
parametric methods21. In the non-parametric case the displacement-vector is 
estimated for each voxel. The reduced complexity in parametric approaches 
leads to efficient computation times, at the cost of fidelity in describing 
deformations. A classical example is landmark registration22, where the new 
position for each voxel is interpolated or approximated from a given set of 
irregularly distributed points. 

Another important choice is the deformation model, which can be purely 
geometric or physics-based. If the deformation process is due to physical 
processes, like in intra-patient registration, the use of physics-based 
deformation models aiming at describing real deformations may be 
advantageous over purely geometric transformations. Physics-based models 
are usually based on numerical23 or analytical24,25 solutions of the underlying 
equations of continuum mechanics. 

A further classification of the registration techniques is the division into 
landmark-based, surface-based, and voxel-based methods. The first two 
groups provide the correspondences in the registered images between certain 
geometric entities, e.g. point landmarks or surfaces. The third group of methods 
maximizes voxel-based similarity between the images, i.e. information from 
the whole images contributes to the result. 

In radiotherapy imaging, surface-based registration methods appear to be 
advantageous over voxel-based approaches. Surfaces of the relevant 
anatomical structures are available as output of the organ contouring. Based 
on this information, elastic tissue properties are assigned to the 
corresponding image regions26. Voxel-based image registration is difficult if 
the grey-value appearance of corresponding anatomical structures is not 
similar according to the definition of the similarity measure. This may not be 
the case in 4D CT of the thorax27, but is more severe in longitudinal imaging 
of e.g. the rectum, where the gray-value appearance constantly changes due 
to peristalsis. 

3.2 Biological modeling 

As soon as functional or molecular images, such as PET or SPECT, and 
anatomical images are properly registered, the biological parameters relevant 
for defining a treatment, such as the radio-resistance across a tumor, have to 
be extracted. In the case of glucose metabolism as measured with FDG-PET 
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this is not problematic. FDG, an analogue of glucose, accumulates in most 
tumors in a greater amount than it does in normal tissue, because tumor 
tissue growing faster and sugar uptake is thus greater.  

It is best clinical practice to quantify glucose metabolism by calculating a 
so-called standard uptake value (SUV). SUV is the FDG-PET signal in a 
specific pixel or region divided by the amount of administered tracer and the 
patient’s weight. The normalization shall eliminate the effect of patient size 
and weight on the detected signal. It provides a semi-quantitative measure to 
enable a better differentiation of an individual disease. It further enables a 
comparison of disease grades between different patients.  

However, for tracers, which feature more complex reaction patterns, such 
as hypoxia imaging with FMISO, and which probe deeper into the molecular 
pathways of the tissue, a simple normalization does not always provide 
enough specific information. In such cases a more sophisticated modeling is 
wanted. Then uptake rates, reaction rates, residence times and washout-rates, 
which are not directly accessible from the images, need to be considered.  

A pharmacokinetic analysis applied to time series of functional images 
can help quantify these parameters28. This technique deploys mathematical 
models, which describe the interactions of the tracer molecule with the tissue 
in time. The tissue is subdivided into compartments, which have by 
definition a similar tracer concentration-time behavior. Transfer of tracer 
from one to the other compartment and reverse is modeled via exchange 
rates.  

These exchange rates often represent important kinetic information, e.g. 
the trapping rate of metabolized FMISO correlates with oxygen content, 
which are estimated in a consecutive optimization process by fitting 
measured time-activity curves to the model. Performed on a per voxel basis, 
this results in so-called parametric maps. Figure 13-2 shows a parametric 
map quantifying hypoxia in a lung cancer superimposed to an FMISO-PET 
image of the whole thorax region sampled at 2 hours after tracer injection. 
The modeling engine has been integrated into a Pinnacle3 (Philips Medical 
Systems, Milpitas, Ca) research prototype (‘BioGuide’).  

Once parametric maps of the relevant parameter are available, the 
transition to a dose has to be made. Radiobiological models can guide dose 
prescription and provide a means to optimize dose with respect to tumor cell 
kill and reduction of collateral damage29. Very recently a theoretical 
framework has been presented to quantitatively incorporate the spatial 
biology data, such as parametric maps, into IMRT inverse planning30. This 
or a similar framework in combination with parametric maps can be used to 
guide dose escalation dose to sub-tumor volumes while keeping the dose to 
critical structures at minimum. This could be a step further towards a safer 
and more effective radiotherapy. 
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4. IMAGE GUIDED AND ADAPTIVE 

RADIOTHERAPY 

In conventional RTP, risk organs and target areas are defined based on 
information that is currently limited to a single 3D anatomical CT image 
data set acquired at the onset of treatment design. This concept results in 
significant treatment uncertainties with irradiation of risk organs and reduced 
tumor coverage, see e.g. Mageras31 and Chen32 for review. 

Natural processes in the body and response of normal and target tissue to 
the treatment result in significant inter- and intra-fractional geometrical 
changes. Intra-fractional geometric change occurs during radiation delivery 
due to breathing, cardiac motion, rectal peristalsis and bladder filling. 
Interfractional geometric change occurs in the extended time frame of 
fractionated radiotherapy (4-6 weeks), due to digestive processes, difference 
in patient setup, and treatment response like growth or shrinkage of the 
tumor or nearby risk organs (e.g. the parotids in head and neck treatment). 
These changes are only taken into account by population-based ‘uncertainty’ 
margins around the target area, which are often excessive and are applied to 
the structures identified before the therapy begins. 

The concepts of adaptive radiotherapy (ART) and image-guided 
radiotherapy (IGRT) provide methods to monitor and adjust the treatments 
to accommodate the changing patient. ART is an off-line approach where  
the anatomical and biological changes are monitored over the course of 
treatment, and the treatment is modified when significant changes are identified. 
IGRT is typically an on-line concept where the patient or treatment plan is 
shifted or modified for each treatment. Both concepts require advanced image 
processing tools in order to be successful in clinical practice. 

Additional imaging during the weeks of treatment is key to better 
understand and model these uncertainties. CT or kV cone-beam CT 
integrated into the treatment unit can provide patient-specific image-based 
quantitative surrogates of geometrical changes on the onset of a treatment 
fraction. Using the complementary strength of multi-modality imaging such 
as MRI providing superior soft-tissue contrast, and functional or molecular 
imaging such as PET, SPECT, MRI/MRS, can lead to improved target 
definition, and better understanding of the biological variations within the 
tumor that may affect response to the treatment. Finally, additional multi-
modal imaging over the course of the treatment enables monitoring of target 
change over the course of therapy. 

Integrating several image acquisitions over the course of treatment 
provides surrogates to compensate the change of risk organs and target areas. 
Besides the efficiency issue related to contouring, multi-modal image  
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analysis requires estimating the correspondence between each voxel element 
of the multiple planning images. Estimating correspondences requires dedicated 
deformable image registration algorithms. 

4.1 Concept for automated segmentation and 
deformable registration for adaptive IGRT 

In order to manage a series of images from the same patient, an 
integrated concept of automated image segmentation and deformable image 
registration, in which an operator is provided with efficient algorithms that 
compute in the order of seconds, and a set of interactive tools to quickly 
access segmentation and registration results, and correct problematic areas if 
required. 

The concept of automated organ segmentation proposed is a particular 
form of adapting deformable surface models33. Flexible surfaces are adapted 
to object boundaries by optimization of a measure expressing the goodness 
of the fit to image data in combination with certain constraints controlling 
the geometric properties of the surface.  

To reduce the need for accurate initialization and reduce the problem of 
attraction to false boundaries, a framework of shape-constrained deformable 
model adaptation was developed34, where prior knowledge obtained by a 
learning process35 is embedded into an elastically deformable triangular 
mesh to compensate for the lack of reliable image content.  

In the context of shape-constrained deformable models, a generic shape 
model is provided for each anatomical structure, i.e. a bladder model, a liver 
model, a lung model, etc. Since different structures consist of different tissue 
types (bone, soft tissue) with different imaging characteristics (grey value, 
contrast), organ-specific image features are used to diminish the risk for the 
model to be attracted by false image structures16. 

In an experimental validation study with 40 patient datasets, Pekar et al.16 
demonstrate that the method is suitable for clinical use for risk organs in the 
prostate area, i.e. bladder, rectum, and femoral heads, and significantly 
reduces the time for organ delineation compared to manual segmentation, 
with comparable segmentation accuracy in the order of 1-1.7 mm mean 
error. An example of the study is shown in Figure 13-3. 

The ability to use deformable models efficiently for the segmentation of 
CT time series for prostate treatment planning was evaluated in Kaus et al.36. 
In order to increase the degree of automation and reduce the amount of 
interaction with each 3D volume in the image time series, an automated 
initial positioning strategy was developed based on the propagation of 
adapted surface meshes from one 3D image dataset to the next. The 
feasibility of this 4D approach was tested on a CT image time series taken 



13. Advances in External Beam Radiation Therapy 211
 
from a single subject containing 16 3D CT datasets obtained at different 
days before and during treatment. Quantitative analysis demonstrated 
comparable results to the 3D interactive method for the femur and the 
bladder. 

In another study, the tools were applied to the problem of risk organ 
segmentation in 4D CT imaging for lung tumor treatment planning37. The 
assessment was based on the 8 breathing phases of a patient s 4D CT dataset. 
Patient-specific models for the lungs, the heart, the spinal cord and the 
esophagus were generated by a clinical user on a Pinnacle3 research 
prototype installed in the hospital, by manual contouring and triangulation  
of the first phase. The mesh adaptation algorithm was then carried out on  
the remaining 7 phases without further interaction. Accurate results were 
reported for all structures except for the esophagus, which is surrounded by 
soft tissue of similar grey value appearance. 

When applying surface-based segmentation in a primary and a secondary 
dataset, a boundary mapping between the organ surfaces is automatically 
established through the correspondences between the mesh vertices. This 
information can be used for deformable image registration38. Essentially, a 
point-based deformable registration scheme is used, where the vertices of the 
triangular meshes act as corresponding control points. A spline function 
maps each control point in one image to the corresponding control point in 
the other image, while interpolating the mapping at all intermediate locations 
in the image.  

Since the computation time increases linearly with the number of control 
points, only a subset of mesh vertices that is evenly distributed over the 
entire surface is used for the deformation. A reduction in the number of 
vertices (e.g. from 4000 to 80) reduces the computation time from hours to 
seconds on standard PC hardware with comparable surface registration 
accuracy. 

In order to be clinically acceptable, the automated tools compute results 
in the order of seconds. Secondly, they support efficient editing, allowing the 
operator to quickly access and correct problematic areas if required. The user 
is provided with the ability to manipulate the model, thus interacting with 
both the segmentation of a structure and the deformable registration of a 
secondary image. For example, automated mesh adaptation, manual 
deformation of the mesh proportional to the translation of the mouse pointer, 
and re-sampling of a secondary image according to an updated deformable 
transform. 

In contrast to manual slice-wise delineation, complete organ 
segmentation is possible within a few minutes. In addition, delineated 
structures are represented by smooth 3D shapes and not by stacked 2D 

,
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slices, which avoids the common ‘Christmas tree’ effect by providing 
smooth surfaces.  

 

Figure 13-2. BioGuide plug-in is a research application running under Pinnacle3. The plug-in 
features a pharmacokinetic modeling engine and radiobiological modeling to improve target 
definition of an individual disease. Left window: FMISO-PET late time image with target 
contour in green. Right window: Same FMISO-PET image but with the corresponding 
parametric map (color coded) representing hypoxia for the tumor region superimposed. 

 

Figure 13-3. 3D model-based segmentation in CT of the target and the organs of risk. The 
image shows three orthogonal cross-sections, the contours where the surface meshes intersect 
the cross-sections (femur heads, bladder, rectum, prostate), and a rendering of the 3D surface 
models. 



13. Advances in External Beam Radiation Therapy 213
 

Unlike most voxel-based deformable registration schemes, surface-based 
registration is computationally efficient. In addition, because the deformation  
is controlled by surfaces that can be edited by an operator, it is possible to 
interact with the deformation algorithm, which is important in the context of 
clinical acceptance of a deformable registration algorithm. 

Another important advantage of the presented approach is its generality. 
The organ database is currently being extended to other treatment areas such 
as breast, liver, lung, head and neck. Potentially, the method can be applied 
to other imaging modalities by using the principle of organ-specific image 
features39. 

4.2 Validation concepts for adaptive radiotherapy 

In-treatment room kV cone-beam CT (CBCT) imaging is an emerging 
technology, which has still not reached the image quality of a conventional 
CT imaging regarding spatial resolution and soft tissue detectability.40 Hence 
image processing techniques, which provide good registration and 
segmentation for conventional CT time series, may not be directly applicable 
to IGRT based on cone-beam volumetric imaging.  

A test suite was designed to simulate the quantitative impact of CBCT 
imaging quality on the performance of image registration and segmentation 
techniques used to correlate treatment time images with planning images.41 
The result is measured with respect to improvements of the dose volume 
histograms. The main components of the test suite are: 

 
• A simulation engine to transform the grey-values of conventional CT 

images to better match the imaging characteristics of CBCT, including 
effects such as beam quality, residual scatter, residual beam hardening, 
simulation of defect pixels, truncation, flat panel detector noise. 

• The segmentation and registration algorithms such as described above. 
• An inverse planning dose engine to create treatment plans and associated 

dose distributions based on the delineated target and organ at risks. 
• A plan evaluation tool to create dose-volume histograms. 
 

A first result suggested that rigid registration works robustly on CBCT 
even under low dose conditions. Moreover, an adaptation of the plan using a 
rigid correlation already improves the dose volume histogram. 
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5. SUMMARY 

Radiation therapy (RT) has seen several advances in the past decade. 
Many improvements in computers, imaging and image post-processing 
technology have fueled much of these advancements. Sophisticated dose 
computation, 3D visualization and planning tools were enabled in software 
systems such as Pinnacle3. Intensity modulated radiotherapy was the next 
logical step and has provided the clinicians the ability to carve out dose 
distributions to treat desired targets while sparing normal structures. 

The next round of advancements in RT include adaptive radiotherapy and 
image guided radiotherapy where the image based monitoring of the patient 
and treatment will enable correction of the treatment while the patient is on 
the table, or monitoring of the anatomical or biological changes in the patient 
prompting re-planning of the treatment if necessary.  

These new techniques require substantial advances in image processing 
in the areas of model based image segmentation, deformable image 
registration and biological modeling. These tools will enable the evaluation 
of anatomical and biological changes in the patient and the accumulation of 
the true delivered doses to the tissues undergoing deformations during the 
course of RT.  

Further evaluation of the biological and functional properties of the 
tissues in RT is enabling better definition of target volumes and improved 
knowledge of the effects of RT on biological function. Molecular imaging 
techniques have the potential to identify hypoxic regions of tissues, which 
are known to be resistant to RT, enabling the clinician to consider this in the 
prescription of doses. The knowledge of molecular imaging combined with 
intensity-modulated radiotherapy (IMRT) will give the clinician the ability 
to tailor the dose distribution to the anatomical target volumes as well as 
boost the dose to regions that are identified as either resistant to radiation, or 
regions known to contain high densities of tumor tissue. 

As these techniques advance, radiotherapy departments will need to 
manage image-based data at an ever-increasing rate. Computers will 
continue to play a large role in advancing the practice of RT as well as other 
areas of medicine. 
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